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ABSTRACT
In this study, in-tube condensation was conducted for mass fluxes of 100, 75 and 50 kg/m2s,
and temperature differences of 1, 3, 5, 8 and 10 �C. Measurements and flow regimes were
captured at various mean vapor qualities between 0.1 and 0.9 inside an inclined smooth
tube with an inside diameter of 8.38mm and 1.49m long. Fifteen distinct inclination angles
from -90� to 90� were considered while the condensation temperature was always main-
tained at 40 �C. The experimental results showed that the inclination angle significantly
influenced the flow patterns and the heat transfer coefficients. It was also shown that the
heat transfer coefficient was dependent on the temperature difference, even though this
dependency was greater for downward flows than for upward flows. By using the experi-
mental data and fuzzy C-means clustering adaptive neuro-fuzzy inference system (FCM-
ANFIS) technique, a model was proposed for the prediction of heat transfer coefficients dur-
ing condensation of low mass fluxes inside inclined smooth tubes. By using three statistical
criteria, the performance of the proposed model was examined against experimental data
and it was found that FCM-ANFIS was a strong tool for the prediction of the heat transfer
coefficient based on the effective parameters of vapor quality, temperature difference and
inclination angle.

Introduction

In-tube condensation finds application in refrigeration
systems, heat pumps, power, nuclear and chemical
industries. It has been thoroughly studied in the past
(but not at low mass fluxes typically below 100 kg/m2s
in inclined smooth tubes). For this reason, it is
important to thoroughly understand the two-phase
flow process at low mass fluxes in the design and
optimization of condensers. Studies may be experi-
mental, theoretical, computational or analytical. The
goal of these studies is to maximize heat transfer coef-
ficients and minimize pressure drops.

Details of previous experimental studies can be
found in [1–22]. According to these studies, at high
mass fluxes, the heat transfer coefficients are mass
flux dependent. On the other hand, studies at low
mass fluxes reveal that temperature differences
between the condensing wall and saturation tempera-
tures of the condensing fluids play a pivotal role in
the overall heat transfer process. The challenge with
experimental work is that it is usually expensive to
carry out because of the nature of the equipment and

instrumentation needed. Furthermore, it may be time
consuming and challenging. On the other hand, com-
putational fluid dynamics work [23,24] is also in the
development phase and no study has yet coupled the
effect of temperature difference and inclination on
heat transfer at low mass fluxes.

Soft computing and artificial intelligence (AI)
methods have been touted as an optimization tool for
the future. These methods are gaining magnificent
grounds in a variety of engineering applications such
as pattern recognition, decision-making, control sys-
tems, information processing, symbolic mathematics,
computer vision and robotics. Artificial neural net-
work (ANN) and adaptive neuro-fuzzy inference sys-
tem (ANFIS) as soft computing tools have been used
to successfully model, optimize and predict heat trans-
fer coefficients and other thermal performance param-
eters in a variety of heat transfer applications [25–45].
The advantage of AI is that it is quicker and it allows
the study of complex thermal systems that otherwise
would have been impossible to characterize with con-
ventional analytical or numerical techniques.
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In general, AI studies with respect to heat exchang-
ers are categorized into four major groups, namely (i)
modeling of heat exchangers, (ii) estimation of heat
exchanger parameters, (iii) estimation of phase change
characteristics in heat exchangers and (iv) control of
heat exchangers [42]. A review of these studies shows
that ANN has been successfully used for a variety of
heat transfer applications. However, no ANN study
has coupled the combined effect of inclination and
temperature difference for condensation inside
inclined smooth tubes.

Azizi and Ahmaldoo [27] developed an ANN
model to predict the convective heat transfer coeffi-
cients during the condensation of R134a inside
inclined smooth tubes. They used the experimental
data from the published work of Meyer et al. [14].
They concluded that the ANN model was able to pre-
dict the heat transfer coefficients over the entire range
of inclination angles and independent of the flow pat-
tern. However, their model did not consider the tem-
perature difference effect, which was found
[13,17,18,46] to influence the heat transfer at low
mass fluxes.

Abadi et al. [47] used ANFIS for the optimization
and prediction of pressure drops and heat transfer
coefficients during the condensation of R134a in
inclined smooth tubes. They examined the perform-
ance of three different ANFIS structure identification
methods. For the training, they used the experimental
data of [14,48,49]. They also compared their model

with the numerical simulations. It was found that
while the numerical simulations performed better
than the proposed model, the errors of both ANFIS
models were within the uncertainties of the experi-
mental data. They also concluded that the ANFIS
model was a useful tool in obtaining fast and reli-
able results.

Balcilar et al. [50] investigated the best ANN
method to model the heat transfer coefficient and
pressure drops during the condensation of R134a at
high mass fluxes in a vertical smooth tube at two dif-
ferent saturation temperatures. They used the results
of their experiments for the training and validation.
They found that their model was able to predict the
experimental condensation heat transfer coefficient
and pressure drops with a deviation of ± 5% for all
tested conditions.

Therefore, it can be concluded that no AI study
has coupled the effect of temperature difference and
inclination angles to describe the condensation heat
transfer characteristics in the low mass flux region in
smooth tubes covering the whole range of inclina-
tions. This paper therefore studies the applicability of
AI to model the effect of inclination and temperature
difference, vapor quality and mass fluxes on heat
transfer coefficients. It is a continuation (4th part) of
the authors’ previous works [13,17,18,51] where the
heat transfer coefficients, pressure drops and flow pat-
terns during condensation in smooth and inclined
tubes were studied and reported.

Nomenclature

A fuzzy set in ANFIS structure
Acs test section cross-sectional area [m2]
Ai internal surface area [m2]
ai,j consequent parameter matrix
AI artificial intelligence
ANFIS adaptive neuro-fuzzy inference system
ANN artificial neural network
B fuzzy set in ANFIS structure
C Gaussian membership function center
di inlet diameter of test section tube [m]
f outputs within the fuzzy region in ANFIS structure
FCM fuzzy C-means clustering
G mass flux [kg/m2s]
h heat transfer coefficient [W/m2K]
L length of test section [m]
M multiplication function in ANFIS structure
_m mass flow rate [kg/s]
MAE mean absolute error
MF fuzzy membership function
N normalization function in ANFIS structure
MRE mean relative error
n number of data points
_Q heat transfer rate [W]

RMSE root mean square error
S summation function in ANFIS structure
T temperature [K]
Tsat saturation temperature [K]
�Tw, i average wall inner temperature [K]

w firing strength in ANFIS structure
�w normalized firing strength in ANFIS structure
x input of ANFIS structure
Xa actual (experimental) data
Xp predicted value
y input of ANFIS structure

Greek symbols
v vapor mass fraction
H inclination angle [�]
r Gaussian membership function width

Subscripts
r,in inlet refrigerant temperature
r,out outlet refrigerant temperature
w,test water side of the test section
r,test refrigerant side of the test section
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Experimental set-up

The set-up utilized for this study (Figure 1) is well
known and was previously used for various condensa-
tion studies [13–15,18–20,46,48,49,51–56]. However,
upgrades were made to cater for the low mass flux
needs of this particular investigation as detailed in
[13,17,18,46,51]. The experimental bench consisted of
a refrigerant compression cycle (shown as solid lines
in the figure) and various water cycles (shown as
dashed lines in the figure). The angles of inclination
(Ɵ) of the test condenser could be altered from �90�

(downward flow) to 90� (upward flow), with 0� (hori-
zontal flow) kept as the reference point. These angles
were measured with an inclinometer, which was cali-
brated to an error of 0.01�. The internal tube of the
test condenser was 1.49m long with an inner diameter
of 8.38mm and an outer diameter of 9.54mm. The
annulus outer tube had an inner and outer diameter
of 14.5mm and 15.9mm, respectively. The test, pre-,
post- and bypass condensers, evaporator, and all
refrigerant and water lines were insulated with 60mm
of a closed cell elastometric nitrile rubber, which had
a thermal conductivity of 0.039W/m.K. This was to
prevent energy losses.

The data reduction of the heat transfer coefficients
is exhaustively discussed in [13,18] and will not be
repeated in this study. However, it should be noted
that the “temperature differences” frequently used in
the present study for the heat transfer coefficient cal-
culations were:

DT ¼ Tsat � Tw, i (1)

They refer to the difference in temperature between
the refrigerant condensation temperatures, Tsat , and
mean wall inner temperatures, Tw, i, of the test sec-
tion. The condensation temperatures were the mean
between the measured inlet, Tr,in, and outlet refriger-
ant temperature, Tr,out, measurements of the test con-
denser. The condensation temperature also
corresponded to within 0.1 �C of the condensation
temperature, which was obtained from REFPROP [57]
when the absolute saturation pressure measurements
taken from the mean of the entrance and exit test sec-
tion pressure measurements were used.

The heat transfer coefficients were calculated as:

h ¼
_Qw, test

AiDT
(2)

Figure 1. Schematic diagram of the experimental set-up and test section.
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The rate of heat transfer, _Qw, test , of the water side
of the test condenser was used to determine the heat
transfer coefficients. The inner-surface area
(Ai ¼ pdiL) of the test section of the heat transfer
tube was determined from the measured tube inlet
diameter, di, and the length of the test section over
which the heat transfer occurred, L.

Finally, all the mass fluxes were calculated as:

G ¼ _mr, test

ACS
(3)

where the area of test section cross-section was calcu-
lated as Acs ¼ ðp=4Þd2i :

Neural and neuro-fuzzy networks

An artificial neural network is a calculation tool,
which is used to test the data and to create a model
by these data. When a neural network applies the
training data for learning latent patterns existing
within the data, it may use them to access the outputs.
Regarding the researchers’ objectives, various kinds of
artificial neural networks may be used. One of the
most well-known artificial neural networks is the
multilayer feed-forward neural network, which is a
neural network with a supervised learning. This neural
network is useful for solving the problems that
include learning the relationship between definite
input and output sets. In the error backpropagation
algorithm, the network creates an output (or an out-
put set) for the provided input criterion and compares
the reaction with the appropriate reaction of each
neuron. Then the weights of the network are cor-
rected to reduce the error and the next criterion is
emerged. The weights will be corrected continuously,
until the total errors are less than the authorized error
value. Because this algorithm has a descending gradi-
ent in the error function, the inputs correction grad-
ually minimizes the mean square error [58–60].

In moving forward, the neuro-fuzzy networks nor-
mally calculate the node outputs up to the last layer
in every period of instruction. Thus, the resultant
parameters are calculated by the least squares error
method. After calculating the error in the returning
backward route, the error ratios are distributed on
condition parameters and their values are corrected
by the error descending gradient method. Various
structures have been suggested to establish a fuzzy
system by neural networks. One of the most powerful
structures developed by Jang [61] is known as ANFIS.
The main instruction approach in this structure is
error backpropagation, which scatters the error value

toward inputs by algorithm of the steepest gradient
descent and corrects the parameters.

Architecture of ANFIS

An ANFIS system is built based on a combination of
ANN and fuzzy logic techniques. This combination
creates robust modeling for many different engineer-
ing problems. In an ANFIS network, an ANN is used
to find the appropriate membership functions and
reduce the rate of errors in the rule determination
process [62]. On the other hand, a rule-based fuzzy
inference system in an ANFIS system transfers quali-
tative knowledge into an accurate quantitative ana-
lysis. The ANFIS structure consists of five distinct
layers shown in Figure 2.

The first layer of the ANFIS structure combines all
input and output data into a single input-output
space, and applies the fuzzification later. The firing
strength of a rule is calculated in the second layer,
which is called the “rule layer”. This layer connects
each node of the second layer with a fuzzy rule. The
third layer conducts a normalization of the member-
ship functions by calculating the rate of the firing
strength associated with each rule for a summation of
all rule firing strengths. Defuzzification occurs in the
fourth layer, which is the conclusive part of the fuzzy
rules. Consequent parameters of the fuzzy rules are
calculated in this layer. Finally, the last layer calculates
the network outputs. Detailed information regarding
the ANFIS is provided in the previous works of the
authors [63–68].

Fuzzy C-means (FCM) clustering structure
identification method

Grid partitioning, subtractive clustering method and
fuzzy C-means clustering (FCM) are three structure
identification methods commonly used in an ANFIS
system. The selection of input variables, input space
partitioning, the membership functions and creation
of the fuzzy rules as well as selection of the initial

Figure 2. Schematic of the ANFIS architecture.
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parameters for membership functions all take place
during the structure identification process [47,69,70].

In this paper, the fuzzy C-means clustering method
was used as the ANFIS structure identification. This
algorithm was initially introduced by Dunn [71],
Bezdek [72] and Bezdek et al. [73] as a data clustering
technique in which each data point belongs to two or
more clusters. The purpose of this algorithm was to
determine cluster centers based on the minimization
of the sum of the weighted squares distance between
each data point and the cluster centers. In this algo-
rithm, the number of clusters and the fuzziness index
are first selected randomly. The algorithm then begins
by initializing the cluster centers using a random
value from the data points. In the next step, the mem-
bership matrix and the objective function are com-
puted. Finally, the new fuzzy cluster centers are
computed. This iterative process is continued until the
objective function is lower than the termination crite-
ria. Detailed information about the FCM identification
method is provided by the present authors in
References [63,64,66–68].

Result and discussion

Results of experimental studies

The results of the experiments are detailed in Ewim
et al. [13]. The general trend found in the experimen-
tal study is shown in Figures 3–5. The figures show
the inclination effect on the measured heat transfer
coefficients at different temperatures at a mean vapor
quality of 0.5 and mass fluxes of 100, 75 and 50 kg/

m2s. The three figures indicate that the highest heat
transfer coefficient was obtained at the lowest tem-
perature difference tested per data point and at inclin-
ation angles of either �15� or �30� (downward flow).
On the other hand, the lowest heat transfer coeffi-
cients were consistently found at the highest tempera-
ture difference tested per data point and at an
inclination angle of �90� (vertical downward flow). It
was also found that even though the heat transfer
coefficients for an inclination angle of �90� increased
with a decrease in temperature difference, this differ-
ence was about 2% (negligible). The opposite was
found for vertical upward flows. It was also found

Figure 4. Experimental condensation heat transfer coefficients
as a function of inclination angle at G¼ 75 kg/m2s, v¼ 0.5,
and different wall and refrigerant temperatures.

Figure 5. Experimental condensation heat transfer coefficients
as a function of inclination angle at G¼ 50 kg/m2s, v¼ 0.5,
and different wall and refrigerant temperatures.

Figure 3. Experimental condensation heat transfer coefficients
as a function of inclination angle at G¼ 100 kg/m2s, v¼ 0.5,
and different wall and refrigerant temperatures.
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that the inclination effect on the heat transfer coeffi-
cients were more noticeable for downward flows than
for upward flows. The trend in the variations in heat
transfer coefficients could be linked to the prevailing
flow pattern. For instance, during vertical downward
flows, the flow pattern was churn, which generally
corresponded to low heat transfer coefficients. With
an increase in the inclination angle to between �15�

and �30�, the flow regime became stratified wavy and
as a result, there was an increase in the heat transfer
coefficients. With an additional increase in the inclin-
ation angle, there was an increase in the liquid film
thickness, which led to an increase in the heat transfer
resistance and consequently a reduction in the heat
transfer coefficient.

When stratified smooth flow and stratified wavy
flow occurred, the inclination angles had a heat trans-
fer enhancement effect. As the inclination angles
decreased from 0� to �30�, the liquid film thickness
decreased because of the gravity and consequently led
to an increase in the convection effect. As a result, the
thermal resistance decreased, and therefore, the heat
transfer coefficient increased. Furthermore, the flow
regimes were almost the same for this region (strati-
fied wavy or stratified.) With a further decrease of the
inclination angle from �30� to �60�, the flow regime
remained stratified wavy and the liquid film thickness
did not change significantly; therefore, the heat trans-
fer coefficient remained almost unchanged between
these two inclination angles. However, with the
decrease in the inclination angle from �60� to �90�,
there was a change in the flow regime from stratified
wavy to either churn, intermittent or annular flows.
When the flow regime changed to churn or intermit-
tent flows, the liquid phase covered the tube surface
sporadically, which caused an increase in thermal
resistance and consequently a decrease in the heat
transfer coefficients. However, when the flow regime
changed to annular flow, the liquid film always cov-
ered the entire tube surface, which also caused a sig-
nificant decrease in the heat transfer coefficients. The
same interpretation is valid for the upward flow direc-
tions, but the difference is that in those regions, the
flow regimes were always intermittent or churn, for
which the inclination had no significant effect on the
heat transfer coefficients. For the vertical upward
flows, the flow regimes were almost churn and there-
fore the heat transfer coefficients decreased, while the
inclination effect was non-existent. For upward flows,
there was no noticeable effect of inclination on the
heat transfer coefficients at the different temperatures.
Furthermore, it was noticed that the effect of

temperature difference was different for the vertical
upward (þ90�) flow in comparison with the vertical
downward (�90�) flow.

When comparing the heat transfer coefficients of
the horizontal tube (0�) orientation with those of the
downward vertical (�90�) orientation, it was found
that the heat transfer coefficients of the horizontal
orientation were greater. This could be ascribed to the
stratification due to gravity, which enhanced the heat
transfer by keeping the condensate thickness low in
the upper region of the tube in comparison with the
case of vertical downward flow. In this case, even
though the heat transfer coefficient at the bottom was
lower, the heat transfer enhancement in the upper
region prevailed and the average cross-sectional heat
transfer coefficient was increased in comparison with
the case of the vertical downward flow orientation. To
conclude, it was confirmed that the condensation heat
transfer coefficients were more responsive to varia-
tions in the inclination angles near the horizontal
orientation. In these slightly tilted positions (either
upward or downward), the flow patterns were found
to be either stratified wavy or stratified smooth.

Validation of the proposed ANFIS models

A total number of 525 input-output experimental data
points obtained from the authors’ previous works
[13,17,18,46] were used to predict the condensation
heat transfer coefficient of low mass fluxes in an
inclined smooth tube. The experimental data were
divided into two subsets as 405 data points for train-
ing and 120 data points for testing purposes. The
optimum ANFIS structure and the membership func-
tions were obtained by the FCM structure identifica-
tion method in which the input variables were
fuzzified with Gaussian membership functions labeled
MF1-MF28. The parameters of these membership
functions are given in Table 1. The optimum conse-
quent parameters (ai,j) obtained after the ANFIS train-
ing are given in Appendix. Three statistical criteria,
namely the mean absolute error (MAE), mean relative
error (MRE) and root mean square errors (RMSE),
were used as given in Table 2 to show the accuracy of
the proposed FCM-ANFIS models to predict the con-
densation heat transfer coefficient of low mass fluxes
in an inclined smooth tube.

Figure 6 compares the predicted results of the
FCM-ANFIS model with the experimental results of
the condensation heat transfer coefficient for two
cases of G¼ 75 kg/m2s, v¼ 0.5, DT¼ 5 �C and
G¼ 75 kg/m2s, v¼ 0.75, DT¼ 3 �C. The plot shows

6



that the proposed model for both cases is in excellent
agreement with the experimental data (MAE¼ 11.27,
MRE¼ 0.7% and RMSE¼ 15.52) and (MAE¼ 17.58,
MRE¼ 0.96% and RMSE¼ 19.74).

Figure 7 shows the results of the condensation
heat transfer coefficient using the proposed model

Figure 6. Comparison between the performances of the pro-
posed ANFIS models for the prediction of condensation heat
transfer coefficient for G¼ 75 kg/m2s and v¼ 0.5 and 0.75,
and DT¼ 3 and 5 �C.

Table 2. Statistical criteria used for the analysis of the results.
Statistical criterion Equation

Mean absolute error MAE ¼ 1
n

Pn
i¼1 jXp � Xaj

Mean relative error MREð%Þ ¼ 100
n

Pn
i¼1

jXp�Xa j
Xa

� �

Root mean square error RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1 ðXp � XaÞ2

q

Xp is the predicted value, Xa is the actual (experiment) data, and n is the
number of data points.

Figure 7. Comparison between the performances of the pro-
posed ANFIS models for the prediction of condensation heat
transfer coefficient for G¼ 50 kg/m2s and v¼ 0.25 and 0.62,
and DT¼ 1 and 3 �C.

Table 1. Parameters of ANFIS membership functions for the modeling of the condensation heat transfer coefficient in low
mass fluxes.

Membership function

Input 1 G (kg/m2.s) Input 2 x Input 3 DT Input 4 h

r C r C r C r C

MF1 8.607 56.14 0.04456 0.5227 0.7233 3.347 12.52 19.93
MF2 7.864 65.32 0.1395 0.6528 0.9567 3.709 12.47 �15.34
MF3 6.769 96.01 0.05391 0.5712 0.961 6.276 11.61 �6.943
MF4 8.476 57.4 0.02091 0.5507 0.7911 2.594 11.76 14.09
MF5 6.566 94.03 0.01888 0.3432 0.6735 4.523 11.5 12.66
MF6 8.215 60.68 0.05007 0.5063 0.975 3.939 11.36 �2.423
MF7 5.999 71.99 0.07658 0.595 0.8145 3.774 18.83 56.78
MF8 6.636 86.61 0.07655 0.4815 1.038 6.678 12.6 �15.82
MF9 5.583 73.05 0.1066 0.3 0.8544 3.933 25.7 85.98
MF10 8.358 52.14 0.07782 0.3474 0.8222 3.417 16.87 52.21
MF11 5.669 92.34 0.02749 0.677 0.9053 1.926 10.62 �13.5
MF12 7.694 64 0.0553 0.3999 0.7043 4.459 17.36 �44.72
MF13 6.718 97.72 0.04038 0.4001 1.133 7.114 11.69 10.69
MF14 6.407 94.74 0.0567 0.4944 0.9262 4.012 11.98 �16.8
MF15 5.843 74.84 0.1041 0.5352 0.9743 4.491 12.75 �19.01
MF16 6.668 93.2 0.03034 0.3844 1.171 6.261 19.28 �53.07
MF17 5.852 66.43 0.06478 0.3968 0.8537 4.491 23.6 �89.97
MF18 6.353 89.3 0.06611 0.6202 1.187 6.597 17.81 45.15
MF19 5.591 99.76 0.03213 0.6098 1.017 6.713 24.1 �89.96
MF20 4.737 77.45 0.04323 0.5739 0.7245 4.181 24.09 �89.93
MF21 5.946 98.46 0.06805 0.7493 0.9486 2.237 10.73 6.78
MF22 6.127 70.38 0.02848 0.3418 0.8457 5.549 11.15 11.38
MF23 6.25 98.27 0.05082 0.6447 0.8436 2.763 14.12 28.34
MF24 7.878 51.49 0.01763 0.5625 0.6949 3.022 23.98 �89.94
MF25 6.053 74.19 0.05002 0.3845 0.7447 5.04 11.64 �3.972
MF26 6.562 99.05 0.04954 0.4913 0.9627 6.204 19.44 56.49
MF27 5.787 79.6 0.09433 0.255 0.9665 5.176 13.76 31.86
MF28 6.253 71.46 0.1402 0.7056 1.036 4.197 11.26 5.363
MF29 5.476 99.93 0.00865 0.7015 0.9232 1.483 11.56 �23.82

r represents Gaussian MFs width and C determines Gaussian MFs center.
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for two cases of G¼ 50 kg/m2s, v¼ 0.25, DT¼ 3 �C
and G¼ 50 kg/m2s, v¼ 0.62, DT¼ 1 �C compared
with the experimental results. The accuracy of the
proposed model to predict the experimental data is
good in two cases (MAE¼ 29.03, MRE¼ 1.85% and
RMSE¼ 41) and (MAE¼ 62.83 MRE¼ 3.85% and
RMSE¼ 78.83). The performance of the proposed
FCM-ANFIS is not as great as the result of Figure 6,
but still is in a very reliable range. The model can-
not predict the condensation heat transfer coefficient
of G¼ 50 kg/m2s, v¼ 0.62, DT¼ 1 �C for the inclin-
ation angles between h¼ 10� and h ¼ 45�. The rea-
son for this behavior could be related to the lack of
training data for the mentioned range of inclin-
ation angles.

In Figure 8, the experimental results for the con-
densation heat transfer coefficient are compared with
those of the proposed FCM-ANFIS model for two
cases of G¼ 100 kg/m2s, v¼ 0.25, DT¼ 10 �C and
G¼ 100 kg/m2s, v¼ 0.5, DT¼ 8 �C respectively. While
the model performs the best for the case of
G¼ 100 kg/m2s, v¼ 0.25, DT¼ 10 �C (MAE¼ 7.18,
MRE¼ 0.44% and RMSE¼ 8.88), it fails to predict the
condensation heat transfer coefficient for the case of
G¼ 100 kg/m2s, v¼ 0.5, DT¼ 8 �C and for inclination
angles between h ¼ 10� and h ¼ 60� with high accur-
acy. However, the overall accuracy of the proposed
model is still very good for the case of G¼ 100 kg/
m2s, v¼ 0.5, DT¼ 8 �C (MAE¼ 60.91, MRE¼ 3.91%
and RMSE¼ 89.67) since the relative error is lower
than 4 percent.

Conclusions

Experiments were conducted during the in-tube con-
densation of R134a in an inclined smooth tube at
mass fluxes of 50, 75 and 100 kg/m2s. The average
vapor qualities considered were between 10% and 90%
at temperature differences of 1, 3, 5, 8 and 10 �C.
Based on the experimental results, a model based on
FCM-ANFIS was proposed for the prediction of the
condensation heat transfer coefficient at low mass
fluxes of R134a in an inclined tube.

Based on this study, the following conclusions
are made:

I. The optimum condensation heat transfer coeffi-
cients were found at the lowest temperature dif-
ferences tested per data point and at inclination
angles between �15� and �30�.

II. The condensation heat transfer coefficient was a
function of the circumference occupied by the
condensation film and its thickness, primarily a
function of the angle of inclination and tempera-
ture difference.

III. The comparison between the experimental data
and the result of the proposed FCM-ANFIS
model showed that the proposed model could
predict the heat transfer coefficient condensation
inside an inclined smooth tube very well.

IV. The result of the proposed model also showed
that the FCM-ANFIS technique was a very useful
method that could help us to find the condensa-
tion heat transfer coefficient of low mass fluxes
of R134a in an inclined smooth tube fast with a
high level of accuracy. In all tested cases, the
deviation of the predicted result was not more
than 5 percent of the experimental data.
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