Trisotech Tutorial

INFN50 | Spring ‘23 | Department of Informatics
Odd Steen®

Content

2) SRS SRRSR 1
USETUL RESOUICES ..uvveeeiieieiieceieeeete ettt et ee e ee e e eeteeesaeeeabeesesaeessaesessseesseeensaesensaesssesanseesnnses 1
Step 1: Login to Trisotech Enterprise Suite..........cooovviiiiiiiiiiiiieceee e, 1
Part Tttt ettt st e s et e e st e st e st e e et e s aa e st a e e st e s e aee st a e e nteeeaaennns 3
Test Grading Workflow and DECISIONIINGccuveieervrieiereeieeeeieeeineeeeireeeeeeeenseeeesseeeesseeessesesssesesssnes 3
The Regulation for the Type of Exam We Will Work with Is the Following. 3
The Top-level WOrKlOW.o 3
Step 1: Model the WOrKFIOWcooiiiiiieeee e 4
A Short Aside on the Difference Between Process and Workflow, and Black-Boxed

P OO .. e e e e e e e e e e e aeaaeee 5
BaACK tO BUSINESS ... et e e e e e e e e e e e eeaeeees 6

A Short Aside on Flow Arrows and Message ArfOWScuuveeeeeeeeeeeeenienieeeennn. 6
BaACK tO BUSINESSeiiiiii ettt e e e e e e e e e e e eeeeeees 6

A Short Aside on P0oOIS @Nd LanES...........uuuuiuiiiiiiiiiiiiiiiiiiiiiiiieieiieeeeeeeeennennnnnnnnenee 9
BaCK tO BUSINESS.ot e e e e e e e e e e e e eeeaees 10

A Short Aside on Data Store and Data Objectcooovviiiiiiiiiiiiiieee 12
BaACK tO BUSINESSttt e e e e e e e e e e e e e eeeaees 13
Managing SUD-PrOCESSES........ccoviiiiiiie e e e e e e e e eeeeees 13
Step 2: Modelling @ SUD-ProCESS.......cooeiiiiiiie e 13
Part T ..ottt ettt st e bt e st s e s b s bt e st e e b e e sseesaa e e se e st esntesseenaenns 25
Modelling the Business DECISIONSuiivuiiriiriieiiiirieniieesieentesitessiesstesssesssessseesssesssessssesssesssesssaenns 25
Step 1: Adding a DRD to a Business Rule Task..........cccooeeeiiiiiiiiiiiiiiieeeeeeeeeeee, 25
Step 2: Creating Data Types for the DeciSionscoooeeeiiiiiiiiiiieen 26
Step 3: Designing the DRDuiiii et e e 29
Step 4: Does the Student Have Score for All Tasks?......ccoooveviiiiiiiiiieeeeeieeeeeee, 30
Step 5: Test YOUr DECISION.........uiiiiiiiee e 36
Step 6: Is the Achieved Score for Each Task Greater Than or Equal to the Task Pass

S TeTo] (- T 40
Step 7: Test the DECISIONeiieeeeeeeee e 41
Step 8: Another Way to DO ... 43
Step 8.1: Yet Another Way to DO It ... 44
Step 9: Are All Test Tasks Done and Passed?cooeeeeiiiiieeiiiiiiieeeeeeeeeeeee, 45

Step 10: Test YOUr DECISION.......coi i e e 49

Step 11: What Is the Student’s Grade Calculated from The Achieved Total Score for

tNe TSt 50
Step 11.1: TeStthe DL ... e e 52
Step 11.2: Infer a Letter Grade from the Achieved Test Percentage..................... 52
Step 11.3: Test YOUr DECISION......ccooiiiieeeiiee e 57
Step 12: Awarded grade............ee e i 61
Step 13: Test YOUr DECISION.......coi i e e 63
Step 14: Add Knowledge Sources to the Modelccooeeeiiiiiiiiiiiiiieeeeeeeee, 66
Part IV ottt et e e e e et e e e e e e te e e st e e e ba e e b e e e nae e e saeeenae e e steeeraeeenreean 67
Step 1: Connect Decision Tasks in BPM with Decisions in DMN 67
0] (=T 0 22 1 o T PSSR 69

RETETEIICES veveetiieeeeeteeeee ettt ettt e ee e ettt et e sseessssssateeeessssesssssesteeesssssssssssssaeeessssssssssssseeesssssssnnnes 70

Part |

Useful Resources

You will find several videos and other material at https://www.trisotech.com/webinars

There 1s extensive documentation for the Trisotech Enterprise Suite at: https://lund.trisotech.

com/help/

You could start by viewing this recorded webinar: https://www.trisotech.com/how-to-capture-busi-

ness-decisions-using-dmn

In the modelling environment you also have several resources under the LEARN ribbon.

‘Workflow

H Workflow Modeler ‘ Odd Steen » Test grading super process tutorial

FILE HOME VIEW BPMN IMPORT-EXPORT TEAMWORK LEARN

O & B B w w w [H B B B

Help EU-Rent BPMM BPMN BPMN Automation Buy Logical - Text- Date & List - Math - Context - Interval =
Quick Guide Rule Book Free Intro Freeintro Course Time =
Help Case Study Guides Method & Style Training FEEL functions
Shapes

BPMN 2.0 (Basic)
BPMN 2.0 (Advanced)

Workflow Patterns

O task

[| -

Decision

FILE HOME VIEW DMN IMPORT-EXPORT EXECUTION TEAMWORK

® E MsS MsS MeS IE Im Iﬂ

Help EU-Rent DMN Automation Buy Logical = Text~- Date & List ~ Math ~ Context - Interval -
FreeIntrc Free Intro Course Time =
Help Case Study Method & Style Training FEEL functions
[Decision

You could start by viewing the “DMN Free Intro” with Bruce Silver. Of some reason it wouldn’t
start in FF so I used Chrome to watch it.

It might come in handy to have a short list of all FEEL functions in Trisotech: https://www.

trisotech.com/feel-functions,

Step 1: Login to Trisotech Enterprise Suite
When you have received the confirmation email go to the login page as shown in the picture
below.

https://www.trisotech.com/webinars/
https://www.trisotech.com/how-to-capture-business-decisions-using-dmn/
https://www.trisotech.com/how-to-capture-business-decisions-using-dmn/

@ Trisotech

Access to Lund University Digital Enterprise Suite

Password

l:‘ Remember Me

LOG IN

SIGN UP LOST YOUR PASSWORD?

« Go to Trisotech

‘When you have successfully logged in, you should have something like the picture below. Since
I have done this earlier, I have already models under my place. You should however at least have
EU-Rent and Trsotech Examples.

“#7 Lund University Digital Enterpri- % @ Trisotech Help b +
&« C @ U B &= hitpsy//lund.trisotech.com ww Q sok @ X In @ ¢ @

™ Inkorgen (1992) - odd... n Bank och farsikring | .. '::) Oversikt) E-post-odd.steen@ics... TimeEdit Lunds univer... » O

A Lund University Digital ... |

Places Odd Steen odd steen
Q, Search Place + Name £
Il Test grading super process
& Odd Steen
™y EU-Rent

™y Trisotech Examples

Part I

Test Grading Workflow and Decisioning

In this tutorial you will model one workflow and one decision model for managing students’
grades on one type of exam.

The Regulation for the Type of Exam We Will Work with Is the Following.
A written exam includes one or more tasks where each task has a max score and a pass score.
The exam has a max score which 1s the sum of the tasks’ max scores. The grade scale for the test

1s UA.

Test max score = sum(task max scores)
Test Grade Scale

For each task the following applies: UA

0 < Task pass score < Task max score A: 85-100%

If Task score < Task pass score then task = fail (U) B: 75-84%
To calculate the grade of the exam the following LUSEM policy applies: C: 65-74%

If total score 9% < 50 then the grade 1s U D: 55-64%

If total score 9% [50..100] and all tasks are passed E: 50-54%

then the grade is calculated according to the _ .

policy (53 = grade E, etc.) U: 0-49%

If total score 9% [50..100] and at least one task 1s failled
then the grade 1s U

The Top-level Workflow

The overarching (top-level) workflow for managing the grading of students 1s shown below.

The real correction and grading work 1s not as prescribed and structured as in this tutorial. There
1s for mstance no requirement that the “T'eacher’s should use a special system to manage grades
before they are entered into Ladok. It could be done on paper, using spreadsheet or word pro-
cessor, or perhaps sometimes even directly into Ladok. It would probably be better to model this
using Case Management Model and Notation (CMMN) instead, but the tight integration between
BPMN and DMN suggests to use BPMN.

Ladok 1s a pure record keeping system and not a work support system. Normally, anything below
a test like an assignment or item in an exam are very hard to handle m Ladok. There 1s also no
automation of grading built on rules in Ladok, meaning e.g., that there is no automation for cal-
culating grade B on a test using a grade model, achieved score, and max test score. So, we could
enter 75% of test max score and grade D when it should be B.

This tutoral therefore assumes that a special system 1s used and if you are not authorized to use
it the process terminates. And that 1s quite simplified!

Normally, a test should be corrected and graded within 15 working days.

Exam oo
frchie| Exam recep lon

hd
. T
% &
B
B
il
T
5
E
)
=
2
W [y
7 3
! |
L
T
] |
O | |
! |
type = wren et o o= : 1
¥ 2 v remis .—E—' em!
FdsUE = B 3 Ercniing
WE regissiates ofgraes. I
I Lsacke 1
15 wafas I :
| 1
| 1
ﬁlmnn:_. .). I !
b= assgrmens L
S N a @
"What Isthe fpe of fhe
st WE Pty pmchar £
B . . et rs fr
§ 5 wofeys _
E
B
= \Comec piah best
B | 2 regimar rasues
5 fype = pimifest
E W
o Egnq.s
i
=
yoem . = regisier rembs
n
1 oS

Step 1: Model the Workflow
First, you need to model this workflow in Trisotech Workflow Modeler.

On the Lund University Digital Enterprise Suite page, you click the on the matrix-like symbol to
the right:

A Lund University Digital Enterprise Suite n

Places

This will open the palette of modelling tools, settings, help, etc. Select Workflow Modeler.

& Lund University Digital Enterprise Suite .

This should open a new tab for you with a blank canvas to the right and a tool palette to the left.
Go to the File menu and do ‘Save as...” and name the diagram “Test grading super process”.
Select by holding down the left mouse button and drag the Pool symbol on to the canvas. Double-
click in the name field of the pool and name it “Fxam Correction and Grading Workflow”.

A Short Aside on the Difference Between Process and Workflow, and Black-Boxed Pools

Since we are designing the inner workings of a workflow and in fact are prescribing how this work
should be carried out with actors, tasks, events, etc. the pool will subsequentially be filled with
such shapes. For this kind of internal and specified workflow the name should reflect that the
pool 1s a process or workflow.

Other pools that are external or black-boxed in relation to this process or workflow should not
prescribe the mner workings. Such a pool is empty or black-boxed and 1s always an external actor
and the name of the pool should reflect that it 1s an actor and not a workflow.

Hence, workflows that we both can and should detail and prescribe because they are internal and
mn focus of our design and development effort, belong in pools named to reflect the work. Exter-
nal workflows that we shouldn’t, couldn’t, or are uninterested i detailing and prescribing their
mner workings, are always actors and the name should reflect that.

One way to separate a workflow from a process 1s to use the Zachman Framework for EA (ZEF)
where a process, 1.e., several work tasks in a directed flow, 1s in the How column (column two)
whereas a workflow, 1.e., several work tasks in set order that are carried out by actors, is in in the
‘Who column (column four). It could be discussed if a BPMN model that includes actors (Who)
1s a composite of How and Who, or a primitive model in Who. Anyway, a process pure should
not consider or design data (What - column one) actors (Who - column four), geography
(Where - column three), or reason (Why - column six). It could consume and produce data
(C1) and could consider timing (C5) as at least start and end events, but should thus not consider
who does what, where does it happen, why does 1t happen, and how should the persistent data
be structured.

The terminology in BPMN is not that clear. I would still consider a process with actors to be a
workflow with lanes for actors and roles. Without any lanes for actors and roles it could be con-
sidered a business process. But in that case, I would find it strange with tasks that signifies an actor

5

(Manual, User, Service, etc.) in a process. According to me should a proper business process not
model and name tasks that are tied to a needed actor or role.

Back to Business...
Then select and drag the Start symbol on to the canvas. Right-click the circle symbol and change
the shape into a Message start.

Exam Cormection and Grading
Frocess

C\E Details...
Change Shape b None
Attributes v | B Message N
£T3 Timer
24 Escalation

Double-click the start symbol and enter “Received message about exams to correct” as the name.

S

o

Received meszage
about exams to correct

Exam Cormection and Grading

Since this process starts with a received message, the message must be received from somewhere
outside the process. Hence, the origin of the message 1s an external actor, 1.e., a black-boxed actor
mn the form of a pool.

I use colours in my diagrams to more easily see what 1s what. To colour the shapes, you select
the artifact in the diagram and use Fill on the HOME tab.

A Short Aside on Flow Arrows and Message Arrows

BPMN is not strict in its syntax and many things can be done in many ways. One thing, however,
1s quite strict In BPMN: There cannot be any sequence arrows between pools since pools com-
municate through messages. Likewise, there cannot be any messages flows inside pools since the
token of the sequence is the communication.

Back to Business...

The message received in the workflow must therefore emanate from an external actor that sends
the message to our workflow. As you just learned 1s an external actor a black-boxed pool. We
thus need to add that to our diagram.

It 1s the department secretary at the reception desk that 1s handed the pack of exams by the
mvigilator. She/He emails the “Teacher’ in question that exams have arrived and are ready to be
picked up for correction and grading.

Department Secretary

@
|
|
i

Exams arg ready for
corrfection
|

Received message
about exams to
correct

wam Comection and Grading Work flow

Connect a message arrow from the external actor edge going to the message start event in the
workflow. Right-click the message arrow and select Initiating Message under Change Shape.

Select the newly created Start event and click on the blue arrow pointing to the right and select
the task symbol from the pop-up menu.

]

5 Ol

5 W

2 ({Task Click or Drag
4]

EE (o]

S Hecei'.fecﬂ'nessage 0

Lé about exams to

E correct .

Double-click the Task and enter “Pick up the exams from the department reception” as name.
Change the task shape into a Manual task:

£
=)
o
3
By
(o]
58 = Details...
3 £
3 Received message Change Shape "I [Task
= about exams to
E correct Attributes v | (@ Sub-Process
(=) Expanded Sub-Process
B cal Activity
Label Position 4 .
O expanded call Activity
a6 Cut imi Event Sub-Process
Em Copy +_J Expanded Event Sub-Process
E Faste
Mone
2% Delete B Send
B Receive
& User
7% Manual
@ service

The Manual task 1s explained as this in the BPMN 2.0.2 spec: “A Manual Task 1s a Task that 1s
expected to be performed without the aid of any business process execution engine or any appli-
cation.” (Object Management Group, 2013, p. 161). This means that the “Teacher’ in question
strolls over to the reception desk and picks up the pack of exams to correct and grade.

If you want to, you can select the shapes and fill them with colour using the Fill function in the
top menu.

The workflow model should now look like this:

Departmert Secretary

0
|
|
i

Exams arg ready for
correction

Pick up the exams
from the
department
reception

Received meszage
about exams to
correct

xam Cormection and Grading Workflow

One thing that 1s missing in the workflow 1s the “T'eacher’ actor. That actor 1s the one picking up
the exams from the department reception, correcting and grading the exams, entering the grades
mto the Student Grade System, sending the list of grades to the secretary for registration in Ladok,
and mailing/handing the corrected exams to the exam archive/Reception desk.

A Short Aside on Pools and Lanes

In BPMN an actor 1s modelled using a lane mside a pool on top-level and without any pool on
sub-level. A white-box pool contains the end-to-end process/workflow and 1s named that way. A
lane inside the pool 1s an actor or role (not an individual!) performing tasks in the process
flow/workflow.

A black-box pool represents an external actor and how they should work 1s not our task to specify
or 1s out of scope in the current design situation. They should always be named according to the
actor/role and should never have any shapes mside.

Since actors/roles represent details of the work, it might be better to use them in child (sub-) levels
and only have the pool at the parent (top-level). Since a child process 1s part of the parent pool it
should not have any pool of its own. If the parent process’s pool has lanes, then the child process
may only expand the lane it resides in. It may not suddenly cross lanes or add lanes that are not
considered subsumed under the lane of the parent process pool.

Since the hierarchy of parent and child processes/workflows represent drill down and up in the
models and the design problem, lanes may be added to the child level to specify more detail than
on the parent level.

However, this must be consistent between parent and child levels. If the parent level for mstance
has a “Teacher’ lane with a sub-process in it, that sub-process may not add other lanes that are
not specialisations of “T'eacher’. Proper could be ‘Bachelor’ and ‘Master’ “T'eacher’ or “I'eacher’
and ‘Course Director’ lanes, but probably not “T'eacher’ and ‘Secretary’ lanes, unless you consider
a secretary to be a kind of “T'eacher’ (which I don’t).

Unless necessary and a good design decision, I would not have any lanes at the top level. In
addition, 1t might be complicated to have a mix of atomic tasks and sub-processes at the top level
and use lanes, at least if the tasks are inconsistent from an actor perspective. If they are in the
same lane the sub-process may not add lanes that are not consistent with the atomic task at the
top level.

The question 1s also whether we should have pools n child diagrams to, for instance, model sub-
processes. It would seem natural to make a pool in a sub-process and name that pool after the
sub-process. However, a pool signifies an end-to-end process and since a sub-process 1s part of
that it cannot itself be an end-to-end process too - you should thus not have pools in pools. There
are other reasons too that you can read about in e.g. Silver (2011).

Back to Business...

It seems better to avoid lanes on the top-level diagram and have the same granularity for all the
tasks of the top-level process/workflow. Actors and roles may be specified in sub-processes using
lanes.

However, three external actors could be added to the diagram as black-boxed pools: The ‘De-
partment secretary’, the ‘Invigilator’ that delivers the pack of exams to the department secretary,
and the ‘Exam Reception’ that stores the corrected exams and hand them to the students:

Exam invigiator
‘Arehive/Exam reception

o
' &
=} =
A
£ g
' i
& 3
£ B
£
8 S
¢ p) T

They communicate with each other and the end-to-end process using message flows.

To continue modelling the top-level process we will add tasks for the “T'eacher’: Pick up the
exams from the department deception desk, log in to the Student Grade System which handles
grades on a granular level under Ladok and uses business rules to calculate grades, correct and
grade the exams, use the Student Grade System to store and render grades, produce a list of
grades and send it to the secretary for registration in Ladok, and finally mail/hand the exams to
the exam desk/archive.

10

To avoid the situation above of atomic and sub-processes at the same level 1s it better to treat all
tasks that involves some actor (human or system) at the top-level as sub-processes. In this case,
there are two types of sub-processes: Preparation and Correction, and Grading. But we need a
task after the Preparation sub-process that checks what type of test 1s handled, since that controls
the procedure and rules of the correction. This task 1s in this case a script task carried out by the
Student Grade System.

We had reached the model in the picture below but understand, based on the discussion above,
that instead of atomic tasks followed by sub-processes, we should only have tasks of the same type
on the top-level diagram without lanes.

Exams are ;ea dy for

co rreé[m n
|
|
Wy

Pick up the exams

@ from the
department

Teacher

reception

Received message
about exams to
correct

xam Correction and Srading Wiorkflow

Hence, we don’t continue to model like this and instead move the “Pick up...” task to a sub-
process. Therefore, we add a task after the “Received message...” message start event, name it
“Prepare for correction and grading”, and change it into a sub-process.

Exams are ready for
correchon

4

<

=== ===

Prepare for
@ coneciion and

grading

Rzoeived messags
about exams o
correct

BExam Cormection and Grading Vibrkflow

11

Click the “+” symbol of the sub-process and model the sub-process like this:

=

8

<
Pick up the exams
from the
department
reception

Log in to the
grading IT system

Select the specific
test to be graded

Preparation complete

Teacher

: - Code
. - Hame
RV I B 177

. - Credits

Test details
Login rejected

STUDENT, GRADES

@ @

Collect test data
from DB

Check fest type

Collect based on
course and lerm *
with default values -

e 5 Iihf E

A collection of tests
according to criteria Test type

Studert Grade System

Here I added a catching Intermediate Event to the edge of the “Log in...” tasks to catch an error
generated by the system when a user tries to login but i1s not authorized to use the system. It 1s on
the edge of the task since we must not wait until the task 1s completed but need to catch the error
during the execution of the task. If the error 1s caught, it leads the flow to an End event, and we
need to process that end state on the parent level.

A Short Aside on Data Store and Data Object

The disk pack shape in the diagram above denotes a persistent data store that the workflow can
perform CRUD (Create, Read, Update, Delete) operations on (depending on access rights). This
1s probably a centralized database that 1s not tailored to the workflow, but to many different pro-
cesses and workflows. It could be a datastore for an ERP or a CRM. The datastore i1s never
designed in BPMN. The architecture of the data belongs to the What (column one) in ZEF and
1s often designed m EER or UML using a data design tool such as DB-Main or semantic model-
ling or ORM modelling in a tool like System Architect. It 1s also possible to devise such a model
i Semantics of Business Vocabulary and Rules (SBVR) with a tool that supports that.

The dog-eared paper shape denotes a data object. Data objects are never persistent and only live
during the duration of the session or workflow instance. As soon as the session or instance reaches
its end the data objects are killed and ready for garbage collection. If data of a data object should
be persisted, a service or script task i the workflow is needed to do that work.

Data objects don’t need to be in a 1:1 relationship with entities in a data model. They are more
likely to only hold data that 1s needed by the workflow since holding and moving redundant data
1s poor from a data quality perspective and should be avoided. It could also be that a data object
1s the combination of several data entities and sources through e.g., views with joins and unions.
You will discover further on that the workflow 1s responsible for providing the decision tasks with
the needed data. It could therefore be an 1dea to model the required data in a model or to detail
and explain the data objects i a dictionary.

12

Back to Business...
Next 1s Sub-processes.

Managing Sub-processes

There are four different types of tests with different rules for how a grade 1s calculated based on
a student’s performance and different data to enter - score, grade, etc. To manage this, the flow
needs to branch based on the type of the test.

Each of the four sequences after the “What 1s the type of the test?” gateway is too complex to
show in the same diagram without making it cluttered and hard to read. Therefore, we will intro-
duce four Sub-processes but for the tutorial you only need to develop one of them.

Step 2: Modelling a Sub-process

To add a Sub-process diagram, click the “+” sign in the task. In this case you want to model the
Sub-process for “Correct written test and register results” so you click the & sign in that task. You
should now get a new browser tab with an empty diagram canvas.

B Workflow Modeler | | B odasteen » Test grading super process utorial

FILE HOME VEW BPMN IMPORTEXPORT TEAMWORK LEARN Q o A H B O P 8

o8 R zomn
Dagam Relion QL 700m 01

O Grdines [Snaptoguidelines

Zoomfittomodel 1 Snaptogrd

napes
6PN 20 Basc)
BPHN 20 (Achancea)
Workow Ptterns Trisot

DPage L) Correct v

To move up one level, click the link (Page 1 in this case) in the bottom-left of the screen:

/

> o:0Page 1 | (@) Correct written test and register results All ~ (‘:")

Select the “What 1s the type of the test?” gateway in the model and add a new task. Name 1t
“Correct written test and register results”. Iterate this three times and name the tasks respectively

13

“Correct test with assignments and register results”, “Correct plain test and register results”, and
“Correct score test and register results”. Order the layout of the model so it looks like the model
in the picture below.

Now you need to turn the new tasks into collapsed sub-processes. You do that by right clicking
each task and select Collapsed Sub-process in the contextual menu.

type = written test)
wdCorrect written test
"and TEgISTEr ref
= Details...
[
Change Shape " O Task
—_—
type = assignment test Correct test Attributes ' sub-Process
P assignments (=) expanded Sub-Process
register resy
<> & call Activity
e — Label Position v
What is the type of the O Expanded Call Activity
test? Reset Size o
ums Event Sub-Process
—— ¥ Cut I} Expanded Event Sub-Process
- lai Ey Co
type = plain test | Ccorrect plain [a Ry None
"l and register re{ |[5 Paste
B4 Send
\ < Delete F4 Receive
& User
(% Manual
type = score test
> Correct score test % Service

and register results
= Business Rule

4} script
£3 Case

After this you must change the Sub-processes into parallel ones:

14

type = written test

pacorrect
andregi = Details...
Change Shape ’
Attributes ' Compensation
type = assignment test Correc‘}
» ig Call Activity
regist
Label Position ’ No Loop
f the
What is t::stls;pe o Reset Size © Standard Loop
¥ cut Il Mi Parallel Loop
B2 Copy = MI Sequential Loop
type = plain test .
Correcl |75 paste Data Mapping...
and regi
X Delete Start/Completion Quantity...
Performers...
Attended task...
type = score test o | Correct score test Identifier...

and register results

Since the policy says that a test should normally be corrected and graded within 15 working days,
we need to show that somehow in the model. You do that by dragging an Intermediate Event
shape from the palette and attach that to the edge of the first collapsed sub-process. If it can be
attached to the edge of the sub-process the edge will turn thick green. When done change the
colour to orange and add “15 workdays” as name/label.

Do this for all four tasks. You should then have the following model:

15

=

corréction

|
|
|
|
i

Received

Exams ard ready for

[

Not authorlzed to use
the skstem

|
|
|
|
>
Prepare for

correction and
grading

type = written test

3

Correct written test

>Wh at is the type of the

test?
ized to use

about exams to
correct

Exam Comrection and Grading Wark flow

Test type

syslem?

1’ Correct test with
type = assiinment test assignments and

register results

1=

15 workdays

and register results

= .
15 workdays

)

Correct plain test

type = plain test

and register results

15 workdays

Correct score test

type = score test

and register results

15 workdays

Continue adding symbols to the model so it looks like this:

=

Exams ard ready for
corréction

|
|
|
|
|
7,

Received message
about exams to
correct

Exam Correction and Grading Workflow

correction and

B4

Hot authorized to use
the sPslem

Prepars for

grading
+]

Test type

fype = written test Correct written fest

" and register resuits

= .
15 workdays

T toe - aect

Correct test with

15 workdays

o Correct plain test

Resﬁ for Exams ;ué archiving

registration of grades |
in Lhdok |

] |

| |

| |

| |

I |

type = test » =l
register results
Whatis the type of the e
test?

and register results

L11E3] .
15 workdays

type = plain test

Correct score fest

and regisler results

III

15 workdays

type = score lest

Since we have an intermediate Timer event on each correction and grading sub-process, we need
to take care of the flows out of them. The timer event means that the subprocess starts and con-
tinues until done, unless the 15 workdays timer 1s triggered: That 1s, a timer 1s started when the
flow token reaches the sub-process and if 15 workdays are used before the flow continues out the
sub-process, the timer will “ring” and the flow will be directed out of the timer event and not the
sub-process itself. Hence, we need to add a flow out from the timers to a task that takes care of
the activity flowing the timer event. So, let’s add that task and simply let it notify the teacher about
the delay and flow back to the Prepare... sub-process:

16

D m Tk e test I ——

andregier resails %5!:
s ki

mE ragEate oAgraces
Ltk

K
Bl

15 oS

I — Comes tas Wil r
o s UL amgrres 0 .
o _< . : regtoss vt L @)
. e & e o mE (
Author oum
ERET

fasT MOTH dmmdher
aioout meed r

15 vof oy s —

N 2 -]
m Comed giain test
g regioer ragubs |

III@
15 WOk oS

Ly
et graieg oy [—

Exaumn Comechon ol Crading ek iow

S ES—

Corract moo e test
anregisier resubs|

YDt = s tast

Now we need to model the sub-processes, but i this tutorial, it suffices to model the “Correct
written test and register results”. This sub-process will eventually use Business Rule tasks for au-
tomatic and rule-based grade calculations based on each student’s achievement and details of the
test.

Click on the “+” symbol in the “Correct written test and register results” to open a new empty
diagram to model the sub-process.

Begin by adding two lanes (no pool!) and name them ‘Student Grade System’ and “T'eacher’
respectively. Drag a Start Event and place it to the left in the ‘Student Grade System’ lane.

The first work task that needs to be performed is to get the tasks or items 1n the test, 1.e., what are
the questions of the test? We need to know this to decide whether a particular student has an-
swered or done each task mn the test and 1f the student has passed all mandatory tasks. We also
need to know the max score of each task since the sum of them entails the max score of the whole
test. That max score (normally 100) 1s used to derive the grade given the percentage of the max
score as in the table on page 5: 75 out of 100 means 75% and a B while 75 out of 120 means
62.5% and a D.

17

=

STUDBNT GRADES

Geat st
tasks/iemE

Student Grade Systemr

Te= k colection

Teacher

Add a new task in the “T'eacher’ lane and name it “Correct test and enter written test tasks scores”.
Change 1t into a User task:

18

Srocee

O Task
@ Sub-Process
= Expanded Sub-Process

& cal Activity
_Eﬂiluser bresks
e 0 - O expanded Call Activity
T |
Corecttestandentd = Details... w Event Sub-Process
} wrme:c?:sc L.} Expanded Event Sub-Process
Change Shape ’
[} ., None
Attributes ’
N4 Send
£ Receive
Label Position » & User
nts’ Reset Size (& Manual
And then nto a looping task:
g’ - g Call Activity
C:r's-d:tn_etsnd ented = Details... No LDDFI
written tst tas ks
= Change Shape + | & Standard Loop
O : - MI Parallel Loop
Attributes ’
- = Ml Sequential Loop

The 1dea is that the user of the grading system, 1.e., a “T'eacher’, corrects each test in the manner
he or she wants to (most often Q1 for each student, then QZ2... etc.) On a form in the system the
“Teacher’ registers each student’s score for each task. Whenever he or she wants to save, save
and close (i.e., “Done”), or cancel, the person clicks on the respective button in the dialog. The
system then applies all the necessary controls, calculates the student’s test grade based on the
applicable business rules, and saves the data to the database. If the “Teacher’ clicked “Save” he
or she just continues with the form open. If the “Teacher’ clicked “Done” the system runs the
same procedures as for “Save” but closes the dialog when done. If the “Teacher’ clicked “Cancel”
the dialog 1s closed without processing any data (you should have a warning here about unsaved
work and 1f you want to save it first, which, if you chose to save first, tell the system to do the same
as for “Done”. We skip that here though.)

Since this click of a button could happen anytime the form 1s up and in focus, it is not possible
to wait until the “Correct...” task 1s done before handling the UT event. Hence, we cannot have a
sequence arrow to some event that takes care of the Ul event, since that would mean that the full
task must be done before we reach that event. Instead, we need to throw (or maybe catch) that
event within the ongoing task whenever it happens. To do so we need to add an event to the edge

19

of the task by dragging an event shape and place it on the task shape’s edge. The event will be an
mtermediate Catching Signal event:

Test without I Until user breaks A Escalation
specific tasks is = E] Conditional
treated logically as &
a test with one task Caorrect test and enter ';5 Link
- the full test written test tagks
scores WA Error
82 cancel
| = Details...)
Unanswered task . <Kl Compensation
| scores 0. T . It Change Shape v [A signal

Attributes v | O Mmultiple
'=|"f' Parallel Multiple

List of students’ Interruption ty|

Catchin
results Label Position ' 4 ¢

A Throwing

¥ Cut

We need to keep track of the type of mterrupt to handle the different states of “Save”, “Done”,
and “Cancel” since this affects the sequence of the workflow.

Test without ,Izntil user breaks
specific tasks is . .
treated logically as &

a test with one task Correct test and enter

- the full test | wiritten test tasks

. SCOres

: Unanswered task -
scores 0. e

Type of interrupt?

List of students' Nemuption type

results Stop processing and

scrap results

The “Correct...” task must produce two data objects: One with the students and their score per
test task (so programmatically probably a collection of student result objects containing another
collection of task score objects) and one to keep track of the interrupt type.

Having done this, we must connect the “Get test...” task in the ‘Student Grade System’ lane to
the “Correct...” task in the “T'eacher’ lane.

20

STUDENT: GRADES
List of students” +
results -
E
z
£
1)
& areeeeeaen
m
& - Test id
1; - Tk #
E - M= score
w - Pass soore
Task collection
Save or Dona

Test without | Uil us er bresks

specific tasks i Sy

treated logically == =

atest with one tesk Comect test and enter

- the full test written test tasks
% Trpe of interupt?

m
= Unanswared task
spoes . LTt
List of stugants® IMiEMURtien type
results Stop processing and
sorapresuls

The workflow has now prepared data objects that could be used to calculate test grades for the
students and store them in the database. The next step in the flow will be to react to the interrupt
event and, depending on the type of interrupt, process the produced data.

Since we have a collection of data the Student Grade System needs to process each student and
his or her results iteratively in a loop. So, first add a task to the ‘Student Grade System’ lane and
change 1t into a Regular and Expanded Sub-process and set its attributes to Standard Loop. Add
a sequence flow from the “Type of interrupt?” gateway to the new sub-process. Finally, add an
mput data object named “List of students' results”. You should have a model looking like the one

below.

21

O

!g@

i o
HE

Tt w oot

Spectic tais 8 =
uses kgiealy s

bt w i e b F
- the full st

= - [unerswered s
scores O

Type of interrupt?

Iemw

- S10p process ing and
3orap res i

T T
[

Add a start event mside the sub-process and name i1t “New single result”. Then add a task named
“Compose collection of the student's task scores and test task details” and another task named
“Decide test grade with total score”. The first task will compose the needed data objects for the
subsequent decision service, and it should probably be a Script task. The second task will execute
a decision service to receive the test grade based on the scores on the task n the test per student.
Thus test grade will be stored as the student’s grade i the system.

For this to work, the new task must be changed into a Business Rule task:

22

A letof Score objpcts. One Score object
= Dy P
. . pertask:
Ii |-students’s schisved s core

Test Gradescale Sodr .
Task cdllection es tes k max score

o e e e - tesk pass score
A students result - B —

e
‘Compos e collection of the

studenfs tesk scores and
test task detsils = Details...

P Mew singleresul

Change Shape O Task
Tt ' Attributes v | @ Sub-Process
v A lst of Soore objeck . One Score abject [=) Expanded Sub-Process
per task: o
Ii """ tudertss achisved score | obel Foc @ call Activity
- task max s core abel Position * o
Scares - fssk pess scors O expanded call Activity
— Reset Size o
ims Event Sub-Process
- 2 6 Cut {3 expanded Event Sub-Process
ER Copy
. None
[Paste
=4 Send
< Delete £ Receive
8, User
& Manual
{3 service

e or Done
[Business Rule

4} script
3 Case

Add all the necessary data nput and output objects that are needed to calculate the test grade per
student. In addition, add annotations to explain the content in the data objects.

I like to change the colour of BR tasks in BPMN and decisions in DMN diagrams to light purple
to easily separate them from other tasks in a BPMN diagram and other shapes in a DMN dia-
gram.

Fach time the BR task 1s done it will produce a test grade as a letter (e.g., “A”) and a text (e.g.,
“Excellent”). This grade needs to be stored properly in the database. We therefore need another
task after the BR task that composes an output data object of a result list with a collection of: Test
1d, Student 1d, Grade, “Teacher’ signature, Task Scores, and result date. This task could probably
be a Script task.

The expanded sub-process will loop until there are no more results to process and then continue
to a Service task that uses the produced result list to create and execute proper update commands
for the database.

After this we need to check the interrupt status and branch back (“Save”) to the “Correct...” task
or to the end event (“Done”).

Finally, you should have the following complete model for the “Correct written test and register
results” sub-process:

23

B

STUDENT_GRADES

]

.

A student’s resut

D DD
C U Scorss Colecfen

Task caflection Test Gmdescale |

A listof S core objeck. One Scom object
per task

-studants’s achizved score

-task max scom

- task pass soom

ist of Result obits:

Al
m - student’s id
[~]-testid
- gmde
Resut list

List of students’ MSmupbon type
mults

Stop processing and
SCrap results

Get test List of students” - P 2
i st RRE-) i=} O P
c Compose collection of the o
.m. =tudent's t3=k scores and > coota tast Add bo result st
= . test task details
2 e New single result Single resut ‘
5 y Testid ™ " - Y procassed dane
H “Task # Coene [B Type ofinerrupt? Done processing of
K T Maxsees | see N : A fist of Resuit ajscts: - results
& . -Pass soore . - student's i -
Task collection : Test grading pficy @ ECE wes "
» ot of Scora objacts. Test grade Testgrade Resitizt LLF2® m
. | On= Score object per task A studen(s esult STUDENT_GRADES
Scares Cdlection’. - | - Sidents’s schised soors
- tesk maxsoare
- task pass score
B _m.mmn_ result
L 2]
Sae o Done
Test without .ma._ user breaks
spesilic tasks is :
‘reated logicallyas 2
3 st with cnetask Comect test and enter
- the il test writen test tacks.
scores
H ' Type of intemat?
5
ki + | Unanswered task
REETS

24

Part Il

Modelling the Business Decisions

Now you should have workflow models that show the flow of registering results, calculating test
grades based on those results, and storing them in the student grade system.

In the diagram you now have one Business rule task that is responsible for generating test results
based on mput and decision logic. The very idea of Business Decision Management 1s that mod-
els and logic for decision making must be kept separate from process models, workflow models,
data models, and so on. We should thus not try and model the required decisions using BPMN.
Instead, we should use the DMN standard and design DRDs and DL that take care of the deci-

sion making needed.

The order of modelling 1s seldom as sequential as it 1s portrayed here. Probably you would model
workflows and decisions in parallel. If we are working with a decision-centric or rules-rich work-
flow/process, we should start in the decision end. As it happened, this time in this tutorial it was
easler to start with workflow modelling.

Step 1: Adding a DRD to a Business Rule Task
In this case, you will design the decisions requirements and decision logic for the Business rule
task “Decide written test grade with total score and pass scores”.

To add a decision diagram to control the decision in the workflow task, go to your Lund Digital
Enterprise Suit tab of your browser and click the matrix like symbol to the right and select Deci-
sion Modeler:

25

This will open a new tab with an empty diagram canvas to the right and the DMN 1.2 palette to
the left. Name the diagram “Test Grade”. You should now have a graphical editor looking like
this:

FILE VIEW DMN IMPORT-EXPORT TEAMWORK LEARN
4 Horizontal [Selectll — D
4+ Vertical {'s SelectNone Details Feedback
Undo Clipboard Shape Font Arrange Spacer Select Attach Mode Feedback
3 Decision
[Input Data

[Business Knowledge Model
Collapsed Decision Service
B Expanded Decisian Service
T3 Knowledge Source

L Group

-L Annotation

Image

.+ Association

,+" Knowledge Requirement
,** Authority Requirement

/ Information Requirement

Before we do any modelling of decision, input data, etc. we need to create the necessary data
types that the decision making will need.

Step 2: Creating Data Types for the Decisions
A DRD models decisions that take input and use that to produce output. Input can be either data
or the output from a preceding decision. Decision logic may be designed, and 1t details on what
grounds a certain output 1s generated from mput.

The BR task in the workflow inputs two data objects to the decision service: Test Gradescale and
Scores. Scores 1s a collection of Score objects where each score object holds the pass and max
score for the test task and the student’s achieved score for the test task.

FILE HOME VIEW IMPCRT-EXPORT TE

D(' MeS MeS \Tj

Validate Manage hidden DT About Include
items Analysis
Model Method & Style nclude

Data Type

Decision
Input Data
Business Knowledge Model

—1

[

—]

[@ Collapsed Decision Service
B Expanded Decision Service
=

Knowledge Source

i Group

_,--[Annotation

To decide on the student’s test grade for this kind of test means to check if the student has results
for all tasks 1n the test and that the score per task 1s at least equal to passScore. If true, the grade
1s calculated as percentage of the sum of the student’s task scores

In your DMN tab click Data Type. This will open a new dialogue where you specify the new data
type.

Sort A-Z Delete = Reuse from Graph Import X5D

Here you chick Add.

Any

Cancel

4

Write “Scores” in the Name field. Then click on the little link symﬁ to the right and m the pop-
up menu select Structure. Turn “Scores” into a Collection.

Scores = Description... Gy =
a6 Cut Cancel

Eg Copy
T Paste

Collection

Refactor as a type

27

£

Scores 1 Mame Any
n

Cancel

In the Name field of the first item write “Score”. Also turn that into a Structure and specify
“Score” as a collection.

Sctlal ;’es 1 Score 1 Name Any %

Cancel

Add members to the “Score” structure and type them as Number:

Scares 7 1 Score i 1 passScore T Number €
! Simple type 3 Text
Existing Ty Number
Structure Boolean

Days and time duration
Reuse from graph
Years and months duration
Reuse from accelerator

Date and time

Date

Time

File

Any

Collection of Text

Collection of Number

Collection of Boolean

Collection of Days and time duration
Collection of Years and months duration
Collection of Date and time

Collection of Date

Collection of Time

Continue until you have this:

- - -

1 pass5core Number

-
Scores 1 Score 2 maxScore Number
I}

-

3 achievedScore Number

Cancel

Step 3: Designing the DRD

To decide on the final test grade for a student we first need to know if all the tasks of the test are
passed by the student. Since this 1s a written test, we also need to calculate the grade based on the
percentage of the maximum test score achieved by the student. Hence, the decision on final test
grade 1s preceded by the decision on the student having passed all test tasks and the decision on
which grade the student has achieved based on the sum of task scores:

1. Test grade
1.1. Are all test tasks passed?
1.2. What 1s the grade given the total score percent?

OK, but to decide whether all tasks are passed we must decide - per task - if the achieved task
score 1s greater than or equal to the task pass score. In addition, if a student doesn’t have scores
for all tasks included in the test, he or she has not passed the test. We then have:

1. Test grade
1.1. Are all test tasks passed?
1.1.1. Is the achieved score for each task greater than or equal to the task pass score?
1.1.2. Does the student have score for all tasks?
1.2. What 1s the student’s grade given his or her total score percent?

To decide the grade based on achieved total score means that we need to know the sum of the
achieved scores and compare that to the maximum test score to render a percentage. This per-
centage 1s the ground for deciding on the grade. We then have:

1. Test grade

1.1. Are all test tasks passed?
1.1.1. Is the achieved score for each task greater than or equal to the task pass score?
1.1.2. Does the student have score for all tasks?

1.2. What 1s the student’s grade given his or her total score percent?
1.2.1. What 1s the sum of the student’s scores for the tasks?
1.2.2. How many percent of the test maximum score 1s the sum of the student’s scores

for the tasks?

1.2.3. What grade matches that sum?

To decide whether an achieved task score 1s greater than or equal to or below the task pass score,
we must calculate that difference. If task score - pass score < 0 then the task 1s failed, otherwise
it 1s passed. We then have:

1. Test grade
1.1. Are all test tasks passed?
1.1.1. Is the achieved score for each task greater than or equal to the task pass score?
1.1.1.1. What 1s the student’s score on a task?
1.1.1.2. Is that score minus the task pass score below zero or not?
1.1.2. Does the student have score for all tasks?
1.2. What is the student’s grade given his or her total score percent?
1.2.1. What is the sum of the student’s scores for the tasks?
1.2.4. How many percent of the test maximum score 1s the sum of the student’s scores
for the tasks?
1.2.2. What grade matches that sum?

We also need to know if the student has results for all tasks in the test. In this case of a written
exam, not answering a question would mean 0 points for that task. If you hand in a blank written
exam, it will thus mean that you will score 0 on all included tasks. Not handing in a written exam
would mean no scores at all.

But when we have a test of scored assignments, not handing in one of them does not mean 0 as
score. That instead means that you will have no score for that assignment. To handle that in an
IS could be to set the score to -1 to signal lack of result (since the value needs to be numeric)

Finally, we then have:

1. Test grade
1.1. Are all test tasks passed?
1.1.1. Is the achieved score for each task greater than or equal to the task pass score?
1.2.2.1. What 1s the student’s score on a task?
1.2.2.2. Is that score minus the task pass score below zero or not?
1.1.2. Does the student have score for all tasks?
1.1.2.1. Is the score greater than or equal to zero?
1.2. What is the student’s grade given his or her total score percent?
1.2.1. What is the sum of the student’s scores for the tasks?
1.2.2. How many percent of the test maximum score 1s the sum of the student’s scores
for the tasks?
1.2.3. What grade matches that sum?

Step 4: Does the Student Have Score for All Tasks?

Let us begin with the simple question of item 1.1.2 in the list above. To decide on this, we need
to iterate through the collection of the student’s task scores and test each score to see whether it
1s greater than or equal to 0.

We need one data mput: A list of the “Scores” objects according to the data model and dictionary.
Drag an Input Data symbol onto the canvas, change its colour to light yellow and change its Input
Data Type...

30

Scores gollection

= Details...
Change Shape
Attributes ’
Hide
Label Position »

3% Cut
E® Copy

X Delete

Input Data Type...

Identifier...

Click the little link symbol far right of the Type: field:

Input Data Type

Type: Text

|Change the type

In the pop-up menu select Existing Type.

Input Data Type

Type: Text

Simple type »
Existing Type
New type

Reuse from graph

Reuse from accelerator

31

Select your previously specified data type “Scores”.

Q

Scores

Close the dialogue and you should have the following on your canvas:

Scores @pllection
1]

The three vertical bars denotes that the mput data 1s in the form of a collection. Use the north
arrow to add a decision to the model.

TEBlooa /[

Scores @pllection

Change its colour into purple and name it “Are all tasks done?” That naming convention will tell
you that the decision outcome 1s either yes or no and hence a Boolean output.

32

Are all tasks done?

D
Scores Collection
11}

Now we will add the decision logic to the decision, 1.e., the precise way to get to the outcome
from the mput data. But before that we will describe and document the question this decision will
answer and the all the possible answers.

| Are all tanks done?
| = Details...
Change Shape ’
0 Attributes : Decision Logic...
Scores Collection Output Data Type...
1] : : -
Create Decision Service Question and Answers...
Hide Impacted Performance Indicators...
. Decision Makers/Owners...
Label Position ’
¥ Cut Identifier...
E@ Copy
O Paste
O Paste by value
X Delete

33

Question and Allowed Answers

Question

Has the student done all the tasks in the test? For instance, if there are four questions/tasks in the test and
the student has provided three answers then he or she has not done all tasks.

Allowed Answers

Yes or No.

[JJ Use Data Qutput Type as allowed answers

Now we will add the decision logic for the decision. Right-click the purple decision shape in your
model, expand Attributes and select Decision Logic...

| Are all tarks done? = Details...
Change Shape v
Attributes '

Decision Logic...

[Output Data Type...
Scores Collection o . .
Create Decision Service Question and Answers...
11}
Hide Impacted Performance Indicators...
Label Position . Decision Makers/Owners...
¥ cut Identifier...
ER Copy
[Paste

[Paste by value

< Delete

34

You should get this DL modeler:

Are all tasks done?

<> = = [=] s e s

Literal Expression Decision Table Context Relation Invocation List lterator Conditional Filter

select a Logic Type

The logic we want to specify 1s whether a student has results for all the tasks included in the test.
To do this we need to know the number of tasks in the test and the number of tasks the student
has done - “passScore” per task in the student’s result 1s greater than or equal to 0 (i.e., greater
than -1 which denotes absence of a result). When we have these counts, we can check the follow-
ng:

If
The number of test tasks > number of student result tasks where achievedScore > 0
Then
All tasks are done? = false
Else

All tasks are done? = true
But I couldn’t make this work in FEEL. So, I had to revert to another solution.

There are several list operations in FEEL that possibly could be used to work with the list of
scores. Two of these are all(list) and any(list). The all(list) function returns false if any element in
the list is false, true if all elements are true, and null otherwise. The any(list) function returns true
if any element is true, false if all elements are false, and null otherwise.

First of all we need to establish whether the scores collection contains any score element where
score.achievedScore 1s below zero (< 0). To do this we use the for...n...return statement, which
1s used to iterate (for) over a collection (in) and return a new list fulfilling the conditions in the
return part. We can then test the existence of true/false in the new list with all(list) or any(list).

Thus, we iterate over “Score Collection.Score” and pick each “score item” in the list and return
a new list “Undone tasks” where “score item.achievedScore” is less than zero.

The next test will be to use a conditional expression that checks whether “Undone tasks” contains
any true value, which means that at least one tasks 1s undone. If so, “All tasks are done” is false,
or else 1ts true.

Let’s begin with the iteration over the list of score elements. Create a new Context. Name it “Un-

done tasks”.

Are all tasks done?
Boolean
> = =]] = o e v
Literal Expression Decision Table — Con Context tional Filter

A collection of name value pairs with an optional result value,

In the new Context add an Iteration.

Are all tasks done?
Boolean

<> =) =] m| f B o o =
Undone tasks Literal Decision Context Relation Function Invacation List lterator Conditional Filter
Expression Table

Result

Enter Literal Expressions in each of the Iterator statement’s parts. Use auto completion for the
variables.

Are all tasks done?
Boolean

Done tasks

return

score item

Scores Collection.Score

score item.achievedScore »>= 8

all{Done tasks)

Now we need a test to find out if the “Undone tasks” list contains any true element. Click on the
yellow +-sign to add a new row below. Name the variable “Are all tasks done?” and select Condi-

tional.

Use Literal Expressions to specify the logic in the Conditional expression. Set the output to be
“Are all tasks done?”

Step 5: Test Your Decision
You should now have a first complete decision!

36

Now we will first see if it contains any errors. Click on Validate in the DMN ribbon.

Decision Modeler |22 | B odd steen » Test Grade

FILE HOME O IMPORT-EXPORT EXECUTION TEAMWORK LEARN

b
J D M&—_S M&v,s ﬁ E
Vali i Include Data Type Dig
Validate your diagram following DMM 1.1 specification

Model Method & Style Include Data
FEEL Quick Guide «
o]
Operation Description Are all tasks done?
. Boofean
+ Addition

- Substraction -
! Division

You should get this message at the bottom of the screen:

a1 valay VAL =Var [V 10 7 TEEE T [[T an @ohs uorer [ErTeEy
Log Viewer
Severity Message

O Validation is complete. Mo errors were found in the diagram.

Showing 1 to 1 of 1 entries

So, we have no formal errors. Now we will test the DL to see if it works the way it should. Go to
Execution and select Test.

FILE HOME DMN IMPORT-EXFORT CxCCUTION TEAMWORK LEARN

R

T . .
'{An swer the questions in your decision to test the outputs]

Putomation Test Operations
Shapes «
DMN 1.2
Are all tasks done?
I Decision Boolean
= Input Data

 Business Knowledge Model

[@ Collapsed Decision Service Undone t3

Click on the +-sign under “Score” to add an element to the collection.

37

Decision Test

Trace In Data

B

Out

Breakpoints

«

~ Scores Collection null

Score
4 L«
Grade Scale

Are all tasks done?
Boolean

Done tasks

all(Done tasks)

Enter values for the fields of “Score” in “Score Collection”:

Decision Test

Trace n Data

B

out

Breakpoints

&«

« Scores Collection null
Score
passScore
25
max5Score
50
achievedScore
30
[+ x|

<>

<>

£>

=]

Are all tasks done?
Boalean

Done tasks

all({Done tasks)

Click Submit to run the logic. The output should be this:

38

Trace In Data

Are all tasks done?
true

Save || Download

Breakpoints

&«

Are all tasks done?
Boolean

Done tasks

all(Done tasks)

You could Save this test for later tests, so you don’t need to construct the same test data repeat-

edly.
Run a new test with “-1” for “achievedScore” which means that there 1s no achievedScore for this
task.
&«
Trace Data Out Breakpoints Are all tasks done?

+ Scores Collection nul

Score

passScore
25

maxScore
50

achievedScore
-1

Clear

<>

<>

<)

Boolean

Done tasks

all(Done tasks)

The result should be:

39

Trace In Data Breakpoints Are all tasks done?
Baolean

Are all tasks done? 0
false

Save | Download Done tasks

all({Done tasks)

Great! This seems to work as intended. Save the test as “Test case 2: 25,50,-17.

Step 6: Is the Achieved Score for Each Task Greater Than or Equal to the Task Pass Score?
The next step would be to check whether the student has passed all the tasks he or she has results
on. Again, it 1s an iteration over the collection of the student’s results and a comparison with the
tasks of the test. In this case, the comparison 1s between the student’s scores on tasks and the pass
limit of each task. If the score 1s below the pass limit the task 1s failed.

Add a new decision shape from the data input and name it “Are all task passed?”

Are all tasks done? Are all task passed?

3

Scores Collection
[[1]

Speafy its DL like this:

40

Are all task passed?
Boofean

for score item

in . Scores Collection.Score

if
Boolean

Passed tasks score item.achievedScore > @

return

then score item.passScore <= score item.achievedScore

else score item.passScore > score item.achievedscore

al1(Passed tasks)

Step 7: Test the Decision
First do Validate to see if there are any formal errors. To test the DL, use the same mput for
testing this DL as the previous DL above. Go to your list of test cases on the Decision Test page
and pick your intended test:

Trace Data Out Breakpoints

Pick the test case to load

Test case 1: 25,50,30

Load it. Hit Submit.

41

Decision Test

kB8

Trace In Data Out

€

~ Scores Collection null
Score

passScore
25

maxScore
50

achievedScore
30

[}

Breakpoints Are all task passed?
Boolean
[i]

-~

= Passed tasks

<

~

b
all(Passed tasks)

o [

for

return

Correctly “All tasks are passed?” 1s true as 1s “Are all tasks done?”. It works.

Decision Test

«

Trace In Data Breakpoints Are all task passed?
Boolean
Are all tasks done? o
true
Are all task passed?
true

Load the “Test case 2: 25,50,-17:

Decision Test

Trace In Data

B

Out

&«

= Scores Collection null

Score

passScore
25

maxScore
50

achievedScore

Breakpoints Are all task passed?
Baolean
i

~

hd Passed tasks

<

el

g
all{Passed tasks)

42

That worked too.

Decision Test «

Trace In Data Cut Breakpoints Are all task passed?
Boolean

Are all tasks done? 0
false

Are all task passed?
true

Save || Download Passed tasks

Let’s try [[25,50,30],[25,50,20]]. That should give “true” and “false”.

Decision Test «
Trace In Data Out Breakpoints Are all task passed?
Boolean
Are all tasks done? o
true
Are all task passed?
false
Save || Download Passed tasks

Let’s try [[25,50,30],[25,50,25],[25,50,-1]]. That should give “false” and “true”.

Decision Test «

Trace In Data Out Breakpoints Are all task passed?
Boolean

Are all tasks done? 0
false

Are all task passed?
true

Save || Download Passed tasks

Step 8: Another Way to Do It
There are many ways to set up FEEL expressions to do the same thing. The two solutions above
are clear and easy to understand, but maybe a bit long and verbose for quite simple decisions.

You will achieve the same logic by changing the FEEL expressions like this:

43

Are all tasks done?
Boolean

Done tasks Scores Collection.Score[achievedScore > -1]

count(Done tasks) = count(Scores Collection.Score)

And this:

Are all task passed?

Boolean

Passed tasks Scores Collection.Score[achievedScore »= passScore]

count(Passed tasks) = count(Scores Collection.Score)

You do this by creating a Context with Literal Expression per decision that filters out elements in
“Score Collection.Score” that fulfil the expression inside the “[]” part and create a new list with
those elements. In the output the number of elements in this new list 1s compared to the number
of elements i the original score collection list. If the numbers are equal the result 1s “true” oth-
erwise “false”. This 1s a more compact way to do the same things as above, but perhaps a tad
more “programming”.

Step 8.1: Yet Another Way to Do It
The most compact way to do it 1s to use the every {range variable} in {list expression} satisfies
{Boolean expression with range variable} function as Literal Expression. The “element” evaluates

to a “Score” object in the “Score Collection” and thus has the “achievedScore”, “maxScore”, and
“passScore” attributes.

To decide if all tasks are done, we therefore check the “Score Collection” list that every “Score”
object in the list has “achievedScore” greater than -1. If so, the result 1s “true”, else it 1s “false”.

Are all tasks done?
Boolean

every element in Scores Collection.Score satisfies element.achievedScore > -1

To decide if all tasks are passed, we do the similar: Every “Score” object in the list must have
“achievedScore” which 1s greater than or equal to “passScore”. If so, the result 1s “true”, else 1t 1s
“false”.

44

Are all task passed?
Boolean

every element in Scores Collection.Score satisfies element.achievedScore = element.passScore

Step 9: Are All Test Tasks Done and Passed?
Now we can set up the decision and DL for deciding if all the tasks are done and all the done
tasks are passed. Add a new decision to your DRD and name it “Are all tasks done and passed?”

Hdhreﬂtasksdunexu:l

= 3

Are all tasks done? Are all task passed?

L

Scores Collection
11}

We have three possible outcomes from this decision. Fill in the Q&A of the decision.

1 Are all tasks done and passed?

Question and Allowed Answers

Question

Has the student done all tasks in the test and has he or she passed all the done tasks? There are three
possibilities: 1. He or she has completed the test and has passed; 2. He or she has completed the test but
has failed; 3. He or she has not completed the test.

Allowed Answers

1. Complete, pass
2. Complete, fail
3. Incomplete

[J) Use Data Output Type as allowed answers

From the Answer of the Q&A we see that we need an enumeration as output of the decision. We

will specify that enumeration for the output column of the Decision Table that will be the DL of
this decision.

Are all tasks done and passed?
Any

inputs outputs annotations
Are all tasks done? Are all task passed? Are all tasks done and passed?
Boolean Boolean Any

Click on “Any” in the header of “Are all tasks done and passed?” to open the header type editor.

46

B2 Are all tasks done and passed?
Editing Header Type

Type: Any

Constraints: | MNane

Default Output: |

Change the Type to “Text” and set the Constraints to “Enumeration”.

E® Are all tasks done and passed?
Editing Header Type

Type: Text

Constraints: Enumeration

Values: Mone

Expression

Allow null

Default Output:

Create Type

Add the three output options as strings of the enumeration.

47

B2 Are all tasks done and passed?
Editing Header Type
Type: Text %
Constraints: Enumeration -
Values: "complete, pass” &£ X
"complete, fail" r
"incomplete” &S x
Allow null
| Default Output: - |

Close the dialogue and you should get this:

Are all tasks done and passed?
Text

Inputs outputs annotations

Are all tasks done? Are all task passed? Are all tasks done and passed?

Test
‘compilete, pass”, “complete, fail”, “incomplete”

Specity the first business rule in row one by clicking in the cells and selecting the right alternatives
until you have this:

Boolean Boolean

48

Are all tasks done and passed?

Text

® ® ®
inputs outputs annotations
Text
"romplete, pass”, “complete, fail”, “incomplete”
"complete, pass”
“complete, fail”
false - “incomplete”
Step 10: Test Your Decision
Use the same mput as above and you should get:
[25,50,30]
I
Are all tasks done and passed?
Text

Are all tasks done? Are all task passed?

false

Are all tasks done and passed?
Text

‘tomplete, pass”, “complete, fail”, “incomplete”

“complete, fail”

“incomplete”

[[25,50,301,[25,50,20]]

49

Are all tasks done and passed?
Text

Are all tasks done? Are all task passed? Are all tasks done and passed?
Text

‘tompiete, pass”, “complete, fail”, "incomplete”

"complete, pass”

“incomplete”

[125,50,301,[25,50,251,125,50,-11]

Are all tasks done and passed?
Text

Are all tasks done? Are all task passed?

Are all tasks done and passed?
Text

‘complete, pass”, “compiete, fail”, “incomplete”

"complete, pass”

true false "complete, fail”

Step 11: What Is the Student’s Grade Calculated from The Achieved Total Score for the

Test?

It’s not very likely that a result is graded “complete, pass” or the like. Rather, a grade according
to a set policy is calculated/inferred from the score of a test. The first decision 1s thus to generate
a letter grade from a score.

Drag a decision shape onto your canvas, set its colour to purple, and name it “Grade from score
percentage”.

50

Scores Collection
1]
Specity the Q&A of the decision.
1 Grade from score percentage
0 xOh@ === = = Paragraph v

B I YU Ava#&~v =Zvi=v oOpenSans™v 14px v

A grade for a score test is calculated as the rounded achieved score percentage of the test max score. The
percentage is used to match a letter grade given a grade scale table.

At LUSEM the table for a graded (UA) test looks like this:
A: B5-100%

B: 75-84%

C: 65-74%

D: 55-64%

E: 50-54%

U: 0-49%

Example: Achieved score = 63. Test max score = 100. Percentage = 63% which is in the interval for grade D.

Allowed Answers

A letter grade inferred from the achieved score, the test max score, and the test grade scale.

[J Use Data Qutput Type as allowed answers

Close

51

The math is quite simple:
round up(100 * (Total achieved score of the test / Total score of the test))

Add the DL to the decision as three Contexts.

Achieved test percentage

Total score of the test sum(Scores Collection.Score.maxScore)
-
Total achieved score on the test sum(Scores Collection.Score.achievedScore)
-
Achmvedtestpercentage round up(1l8@ * (Total achieved score on the test / Total score of the test))

Achieved test percentage

Step 11.1: Test the DL
Use [25,50,30]. The achieved test percentage is 60.

Step 11.2: Infer a Letter Grade from the Achieved Test Percentage

Here we could create a new decision that infers the grade from the achieved test percentage
calculated by the preceding decision. But we will not do that. Instead, we will edit the DL above
to decide on the letter grade with the contexts already in the DL. First, we need to add the “Grade
Scale” mput to the decision and change the name of the decision to reflect what 1s decided. We
don’t need to update the Q&A to match the added logic, since we obviously wanted this decision

from the start.

3

i\\.re all tasks done and
passed?

Achieved test grade

3 3

Are all tasks done? Are all task passed?

0

Grade Scale

Scores Collection
1

Click on the DL symbol in the upper left corner of the decision and add a new row named
“Achieved test grade”. Specify the DL as a Decision Table. Change the final output from

“Achieved test percentage” to “Achieved test grade”

Achieved test grade
Total score of the test
2 Total achieved score on the test
Achieved test percentage

Number

Achieved test grade

4

Achieved test percentage

sum({Scores Collection.Score.maxScore)

sum(Scores Collection.Score.achievedScore)

round up({l@@ * (Total achieved score an the test

<y

Literal
Expression

=

=

])

Dedl pecision Table
T8} A tabular representation of a set of related input
rules indicating which output entry applies to a

You should now have the following:

Achieved test grade

-

Achieved test percentage
Number

inputs

New Input

®

outputs

Achieved test grade

Text

-
Total score of the test . sum(Scores Collection.Score.maxScore)

®

-
Total achieved score on the test . sum(Scores Collection.Score.achievedScore)

annotations

-
. round up(l8@ * (Total achieved score on the test / Total score of the test))
-

®

Achieved test grade

4 Achieved test grade
Text

Set up the decision table to look like this:

53

® ® ®

annotations

test percentage Grade Scale Description

Click the 7Textattribute of the “Grade Scale” header and set its Constraints to “Enumeration”

EX Grade Scale

Editing Header Type

Type: Text

Constraints: None

None

Expression

Add the enum values and close the dialogue.

54

E= Grade Scale
Editing Header Type
Type: Text Gy
Constraints: Enumeration -
Values: AT F
IlUGIl ! x
Il"I _9" f x
Allow null
| L] [) = TTUILE TS

Edit the Decision Table to look like in the picture on the page 59. Before you go there, merge
mput cells with equal content. Select the cells to be merged and merge them:

chieved test percentage Grade Scale ILIMDEr 1Ex]
»= 85 A" Achieved test percentage A

[75..84] LAY Achieved test percentage "B’

[65..74] LAY Achieved test percentage "C"

[55..64] "UAY Achieved test percentage "Dl

[50..54] "UAS 1Y erge fentage "E

The cells will be merged, and it increases the readability.

55

Achieved score percentage ﬂ
Achieved test percentage Grade Scale

NLUMDeEr 1]

>=85 Achieved test percentage A
[75..84] Achieved test percentage "H
[65.74] "LAY Achieved test percentage "(
[55..64] Achieved test percentage 'O
[50..54] Achieved test percentage "

It 1s probably also easier to read if the merged cells are to the left, so put the mouse over the
header of the column, press down the left mouse button, and drag the column to the far left. The
“Achieved test percentage” and the “Grade Scale” columns should swap places.

56

Achieved test grade

Achieved test grade

Achieved test grade

. Total score of the test . sun(Scores Collection.Score.naxicore)
. Total achieved score on the test . sen{Scores Collection. Score. achisvedscore)

mm? “lm . round wp(100 = (Total achieved score on the test / Total score of the test))

Achieved test percentage

annotations

Achieved test grade
3 Description
Achieved test grade

Grade Scale
Fext
L LV, T

Number Text Tort

»>= 85 b, "Excellent™
- [75.84] B *Very Good”
- uN [65..74] S "Good”
- [55..64] o “Fair”
[50.54] Y “Satisfactory”
- >=80 G" “Excellent”

w

[50..79] G "Good”
- >= 00 b i "Excellent”™
- [80..89] Eas *Very Good"
1497 [70.79] i *Good”
- [60..69] 6 “Fair”
- [50..59] 5 “Satisfactory”
- 0 v rar

Save your model.

Step 11.3: Test Your Decision

Use the same test data as above and “UA” as grade scale.

[25,50,30]. The achieved test percentage 1is 60.

57

Trace In Data Breakpoints

Are all tasks done and passed?
complete, pass

Achieved test grade
Wording
Fair
Achieved test grade
D

Save || Download

It worked as intended. It’s probably a good idea to output the score percentage too, so let’s edit
the decision table and add a new output “Achieved score percentage” as in the next picture.

Achieved test grade

Any
-

. Tetal score of the test .

Total achieved score on the tast .

v.

sem|Scores Collection Score.meScors]

sum(Scores Callection Score.achisvedscons)

Achisied test grade

3 B B EE rownd up(108 * (Total achieved soore on the test / Total score of the test))
inputs outputs annotations
Achieved test grade
Description
u
Text
TV S fras Humber Text Text
- »= @5 Achieved test percentage s "Excallent”
- [75..84] Achieved test percentage B "Very Good”
- “UAT [65..74] Achieved test percentage Wy “Good”
- [55.64] Achieved test percentage o “Fair”
- [50..54] Achieved test percentage “E" Satisfactory”
4 Achieved test grade
n == 30 Achieved test percentage WGt “Excellent”
e
[50.79] Achieved test percentage “G" “Good”
- == 40 Achieved test percentage ' “Excallent”
- [80..83] Achieved test percentage g "Very Good”
n g [0 791 Achieved test percentage - “Good”
- [60..69] Achieved test percentage 6" “Fair”
- [50..59] Achieved test percentage 5" “Satisfactory”
<50 Achieved test percentage U “Fail*

Run again [25,50,30]. The achieved test percentage 1s 60.

59

Trace In Data Breakpoints

Are all tasks done and passed?
complete, pass

Achieved test grade
Wording

Fair

Achieved score percentage
60

Achieved test grade

D

Save || Download

Try with [[25,50,301,[25,50,20]]

Trace In Data Breakpoints

Are all tasks done and passed?
complete, fail

Achieved test grade
Wording

Satisfactory

Achieved score percentage
50

Achieved test grade

E

Save | Download

Try with [[25,50,301,[25,50,25],[25,50,-11]

60

Trace In Data Breakpoints

Are all tasks done and passed?
incomplete

Achieved test grade
Wording

Fail

Achieved score percentage
33

Achieved test grade

U

Save || Download

Test other values to see what happens.

As you can see are the two decisions not integrated. You are not supposed to get e.g., grade “E”
when another decision 1s “complete, fail”. Hence, we need to change our model to work the right
way.

Step 12: Awarded grade

In this step you will complete the decision model.

Drag a Decision symbol from the palette and place 1t at the top of the present model. Name it
“Awarded Grade” and change its colour to purple. Connect it to the “Are all tasks done and
passed?” and “Achieved test grade” decisions. These decisions will precede the “Awarded
Grade” decision. Specify the Q&A of the decision.

61

2 Awarded grade

Question and Allowed Answers

Question

What is the final grade awarded to a student for a test? It is based on preceding decisions on score
percentage to grade, if the student has completed all the tasks in the test, and if the student has passed the
completed tasks.

Allowed Answers

The outceme of the preceding decision on score to grade.

[[) Use Data Output Type as allowed answers

Close

Open the dialog for decision logic of the “Awarded Grade” decision. Edit the Decision Table to
look like in the picture below.

Awarded grade
Any

@ @ @

inputs outputs annotations

Are all tasks done and passed? Awarded grade Description

“complete, pass”, "'co::;:'te. fail", "incomplete™ Any
"complete, pass” Achieved test grade
“complete, fail" Achieved test grade
"incomplete” "Not graded”

62

Step 13: Test Your Decision
Now the decision model 1s complete!

O

Scores Collection
1]

Test the model in Execution, Test mode using the same values as above.

It seems to work!

Change the score on one of the tasks to be below the

[[25,50,301,[25,50,251,125,50,20]]

Awarded grade
Any

Are all tasks done and passed?

Text
"complete, pass", "complete, fail", “incomplete”

Any

"complete, pass"

“incomplete”

Achieved test grade

"Mot graded"”

63

pass

limit

score:

Decision Test &«

Trace In Data Out Breakpoints

Awarded grade
Wording
Satisfactory
Test grade
E
Achieved score percentage
50

Save || Download

That did not work! You should not get “complete, fail” and “E” at the same time. The error is in
row two, column two of the decision table. “Are all tasks done and passed?” results in “complete,
fail” while “Achieved test grade” in “Awarded grade” results in “E”.

The “Achieved test grade” decision only derives a letter grade based on the score percentage and
grade scale without caring about whether all required tasks are passed. This 1s tested in another
branch of the DRD.

The upside of this 1s that we can use the “Achieved test grade” decision as a general decision for
all test with total score in other workflows. It could possibly be turned into a BKM. The downside
1s that we don’t only get the “Achieved score percentage” from “Achieved test grade” but all
outputs. Maybe this can be controlled somehow, but I couldn’t find out how.

Given this, we need to change the top-level decision logic. To make the output clearer we also
add an “Explanation” output.

Awarded grade

inputs outputs annotations
Awarded grade
Are all tasks done and passed? Description
Awarded grade Explanation
“complete, pass", cump.rete. Joil™, "incomplete”™ Any Text

"Some tasks are mandatory and have a pass score
greater than zero. The score achieved for at least one
task in the test is below the pass score of that task. All
mandatory tasks need to be passed to pass the test,
even if the achieved total score is at least equal to the

pass score of the full test™

"complete, fail" g

"Only tests where all included tasks are done are
3 "incomplete” "Not graded" graded. At least one task in the testis not done and
the test is thus incomplete.”

64

When we run the same test as above, we get the following:

Trace In Data Breakpoints

Awarded grade

Awarded grade

U

Explanation

Some tasks are mandatory and have a pass score greater than
zero. The score achieved for at least one task in the testis
below the pass score of that task. All mandatory tasks need to
be passed to pass the test, even if the achieved total score is at
least equal to the pass score of the full test

Save || Download

That works fine!

Try with [[25,50,301,[25,50,25],[25,50,-11]

Trace In Data Breakpoints

Awarded grade
Awarded grade
Mot graded
Explanation
Only tests where all included tasks are done are graded. At least
one task in the testis not done and the test is thus incomplete.

Save || Download

Works as it should!
Try with [[25,50,30],[25,50,25],[25,50,35]]

65

Trace In Data Breakpoints

Awarded grade

Awarded grade

Wording

Fair

Test grade

D

Achieved score percentage
60

Explanation

=null=

Save || Download

Try other different combination of input data and vary the number of score triplets, their scores,
and the grade scales.

Step 14: Add Knowledge Sources to the Model

The decisions in the model are based on policies at the school and department. One very nice
and mmportant feature of the DMN standard 1s that this can be recorded in the DRD itself. It 1s
called Knowledge Source.

Drag two Knowledge Source symbols onto the canvas.

One should be to the left and be named “INF Grading Policy®. The other to the right and be
named “LUSEM Grading Policy”.

Change the colour of the Knowledge Source symbols to light green.

Connect the “INF Grading Policy” knowledge source to both the “Awarded grade” and the “Are
all tasks passed?” decisions.

Connect the “LLUSEM Grading Policy” knowledge source to the “Achieved test grade” decision.

When you are done your model should look like in the picture below:

66

B
Awarded grade

3

hre all tasks done and

Achieved test grade
passed? <

[
|
3 =

Are all tasks done? Are all task passed?

s

=

Scores Collection

Grade Scale

LUSEM Grading
Palicy

Part IV

Finally, we need to connect our decisions to the workflow we modelled before.

The workflow should look like in the picture below.

A lstof Score otjeck. One S com abiect
B o o e
STUDENT, GRADES . o] -student’s achized scare
: . * Soores Collection task

. Task caflection Test Grdescale © e
[— : .

& @ . “taes s s
Gattest Listof shudents’ © e
tasksftams reais Tt
[——
() swsmrstas coves e

test task cetats

Single resut
pocesssd

New single resuit

: ST
=
Test grade Testgrade Resitist 2

A studenfs msult

Task oallsotion

S G

fEEe
g(
,j.

‘Seores Caeaton” -

Sae o Dene

Type ofinkerupt? Done prosessing of
resuits

STUDENT_GRADES

For each resut

o -
abes

Stap processing and
sorapresul

Step 1: Connect Decision Tasks in BPM with Decisions in DMN

If you click on the table-like symbol in the top left corner of the “Decide written test grade with
total score” rules task a pop-up window will show which diagram that 1s inked to the task.

67

Q

¥ ™y 0dd steen
4 Drawing 1
- Test Grade

» Decision Services

~ Decisions

Link to Existing Decision from the Decision Modeler

Achieved test grade

Are all task passed?

Are all tasks done and passed?

Are all tasks done?

Awarded grade

Awarded grade

Data mapping

Close

Navigate to your top-level decision for awarding a grade on at test with max score and pass scores.
Select that decision and click Close. As you can see did the name of the rules task change to the

name of the decision you linked.

™ O

Alstudenfs res ull

-

Compas e collection of
the s tudent's task s cores
and tes t msk details
[Mew single res ult

per task:
-students's schieved s core
-task mecs core

Soores -task pass score

Tesk colledion TestGrades cale

Alistof Soore objects. One Score objed

Awarded grade

Testgrade

0

Alist of Score objeck . One Score ohject
pertask:

-students's achisved score

-tssk maxscore

-tssk pass soore

=
&f
Add fo resultlis]

Single res ult
processed

= . Alistof Result objeck:
.. |-students id
M =
- grade
Testgrade Rles ult lisi g

A students res ull

—]

R

When you click on the table-like symbol in the rule task you should see this:

68

Link to Existing Decision from the Decision Modeler EX

Linked Element

| Data mapping || Close |

Step 2: End
Congratulations! You are now done with the tutorial.

69

References

Object Management Group. (2013). Business Process Model and Notation (BPMN) version
2.0.2. Retrieved from: htitps://www.omg.org/spec/BPMN/2.0.2/PDF
Silver, B. (2011). BPMN Method and Style: With BPMN Implementer's Guide: Cody-Cassidy

Press.

70

https://www.omg.org/spec/BPMN/2.0.2/PDF

	Part I
	Useful Resources
	Step 1: Login to Trisotech Enterprise Suite

	Part II
	Test Grading Workflow and Decisioning
	The Regulation for the Type of Exam We Will Work with Is the Following.
	The Top-level Workflow
	Step 1: Model the Workflow
	A Short Aside on the Difference Between Process and Workflow, and Black-Boxed Pools
	Back to Business…
	A Short Aside on Flow Arrows and Message Arrows
	Back to Business…
	A Short Aside on Pools and Lanes
	Back to Business…
	A Short Aside on Data Store and Data Object
	Back to Business…

	Managing Sub-processes
	Step 2: Modelling a Sub-process

	Part III
	Modelling the Business Decisions
	Step 1: Adding a DRD to a Business Rule Task
	Step 2: Creating Data Types for the Decisions
	Step 3: Designing the DRD
	Step 4: Does the Student Have Score for All Tasks?
	Step 5: Test Your Decision
	Step 6: Is the Achieved Score for Each Task Greater Than or Equal to the Task Pass Score?
	Step 7: Test the Decision
	Step 8: Another Way to Do It
	Step 8.1: Yet Another Way to Do It
	Step 9: Are All Test Tasks Done and Passed?
	Step 10: Test Your Decision
	Step 11: What Is the Student’s Grade Calculated from The Achieved Total Score for the Test?
	Step 11.1: Test the DL
	Step 11.2: Infer a Letter Grade from the Achieved Test Percentage
	Step 11.3: Test Your Decision
	Step 12: Awarded grade
	Step 13: Test Your Decision
	Step 14: Add Knowledge Sources to the Model

	Part IV
	Step 1: Connect Decision Tasks in BPM with Decisions in DMN
	Step 2: End

	References

