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Abstract – The usage of mobile phones has increased multi-fold in recent decades, mostly because of their utility in most aspects 
of daily life, such as communications, entertainment, and financial transactions. In use cases where users’ information is at risk from 
imposter attacks, biometrics-based authentication systems such as fingerprint or facial recognition are considered the most trustworthy 
in comparison to PIN, password, or pattern-based authentication systems in smartphones. Biometrics need to be presented at the 
time of power-on, they cannot be guessed or attacked through brute force and eliminate the possibility of shoulder surfing. However, 
fingerprints or facial recognition-based systems in smartphones may not be applicable in a pandemic situation like Covid-19, where 
hand gloves or face masks are mandatory to protect against unwanted exposure of the body parts. This paper investigates the 
situations in which fingerprints cannot be utilized due to hand gloves and hence presents an alternative biometric system using the 
multimodal Touchscreen swipe and Keystroke dynamics pattern. We propose a HandGlove mode of authentication where the system 
will automatically be triggered to authenticate a user based on Touchscreen swipe and Keystroke dynamics patterns. Our experimental 
results suggest that the proposed multimodal biometric system can operate with high accuracy. We experiment with different classifiers 
like Isolation Forest Classifier, SVM, k-NN Classifier, and fuzzy logic classifier with SVM to obtain the best authentication accuracy of 
99.55% with 197 users on the Samsung Galaxy S20. We further study the problem of untrained external factors which can impact the 
user experience of authentication system and propose a model based on fuzzy logic to extend the functionality of the system to improve 
under novel external effects. In this experiment, we considered the untrained external factor of ‘sanitized hands’ with which the user 
tries to authenticate and achieved 93.5% accuracy in this scenario. The proposed multimodal system could be one of the most sought 
approaches for biometrics-based authentication in smartphones in a COVID-19 pandemic situation.

Keywords: Fuzzy Logic, Keystroke, Multimodal Biometrics, Smartphone, Swipe

1. INTRODUCTION

The last decade has seen many evolutions in smart-
phones with touch displays, bigger screens, large 
memory, and processors with high capability. The most 
powerful and advanced systems for smartphones in 
this decade are Android and IOS, developed by Google 
and Apple, respectively. In 2018, the mobile smart-
phone operating system market share worldwide from 

these platforms was 98% with Android (76%) and IOS 
(22%) [1]. With a report from counterpoint research, 
there were 1.43 billion smartphones sold in the year 
2018. According to a report from Strategy Analytics, 
major players such as Samsung which sold 291.3 million 
smartphone units, and Apple sold 215 million smart-
phones worldwide. Smartphones have a huge impact 
on people’s daily lives and are not limited to calls and 
messaging. Its utility has increased manifold with the 
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availability of a huge number of utility applications 
available for the user, including social networking, en-
tertainment, shopping, and financial transactions. Evo-
lution and advancement in network technology with 
5G have opened up several possibilities for streaming 
and Internet-based applications. While all these smart-
phones provide convenience and improved use cases, 
it also brings security and privacy issues for individu-
als as smartphones process a large amount of private 
and financial data, which can cause serious loss when 
it falls into the wrong hands. Therefore, a strong user 
authentication system that provides user access to 
smartphones is the most important requirement. Tra-
ditional authentication approaches in smartphones, 
such as swipe, PIN, password, and pattern, are prone 
to various attacks such as shoulder surfing, guessing 
attacks, brute force attacks, and dictionary attacks. 
Shoulder surfing is a very common attack in which the 
user’s password is compromised by peeping into the 
password entry screen while the actual user types in 
the password [2]. Biometrics such as the face, finger-
prints, voice, and iris are some of the authentication 
solutions that are the recent trend in Smartphones to 
provide user access. It utilizes the physiological prop-
erty of the user that needs to be presented at the time 
of power-on; hence, it cannot be guessed or attacked 
through brute force and eliminates the possibility of 
shoulder surfing. However, fingerprints or facial rec-
ognition-based systems in smartphones may not be as 
applicable in pandemic situations like Covid-19, where 
hand gloves or face masks are mandatory to protect 
against unwanted exposure of the body parts. Fig. 1 
depicts some of the cases where device operations are 
required to be performed using hand gloves. 

This paper investigates the situations in which fin-
gerprints cannot be utilized due to hand gloves and 
hence presents an alternative biometric system us-
ing the multimodal Touchscreen Swipe and Keystroke 
dynamics pattern. We propose a HandGlove mode of 
authentication where the system will automatically be 
triggered to authenticate a user based on Touchscreen 
Swipe and Keystroke dynamics patterns. The proposed 
system incorporates the user’s touchscreen swipe and 
typing patterns as a security layer for authentication to 
ramp up the total security in the system. We propose 
the use of a fuzzy network classifier to learn the pat-
terns in this multimodal system to reduce the effects 
of hand gloves and other external factors in user au-
thentication. Our experimental results suggest that the 
proposed multimodal biometrics system can operate 
with high accuracy and the HandGlove mode of au-
thentication has very little or no effect of hand gloves 
on the accuracy of the authentication system. The pro-
posed multimodal system could be one of the most 
sought approaches for biometrics-based authentica-
tion in smartphones in a COVID-19 pandemic situation. 
The rest of the paper is organized as follows: Section 2 
presents the related work on biometric authentication 
for smartphones and our proposal, Section 3 presents 

the proposed HandGlove mode, Section 4 presents the 
modules of the proposed multimodal system, and Sec-
tion 5 depicts the experimental results, and finally, con-
clusions are discussed in Section 6. 

Fig. 1. Device operated using hand gloves

2. RELATED WORK AND OUR PROPOSAL

Several methods have been utilized for authentica-
tion purposes to grant users access to smartphones. 
Some of the popular authentication methods for 
smartphones are PIN, password, and pattern. However, 
these methods are not secure, and they have various 
shortcomings associated with them [3]. Owing to these 
shortcomings of PIN, password, and pattern-based 
methods, biometric-based solutions are the recent au-
thentication trends in smartphones. Biometric-based 
authentication is based on the modalities and traits 
presented by the user, which can be physical or behav-
ioral patterns of the user based on which they can be 
recognized by the system. 

2.1. RELATED WORK IN SMARTPhONES 

If the literature on personal authentication can be ar-
ranged chronologically, the biometric traits have been 
used for authentication for over a century [4], machine-
based personal authentication is approximately forty 
years old [5], and the establishment of automatic bio-
metric authentication as a specific area of research is 
more than a decade old [6]. In smartphones, the first 
attempt at bringing a fingerprint sensor was done by 
Toshiba for their G500 and G900 models in 2007, as 
shown in Fig. 2. Toshiba used Windows as an operating 
system in their smartphones, which became instantly 
popular among people in the days when the current 
mobile operating systems, Android and iOS, were still 
not in use. Another smartphone that attempted to 
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implement a fingerprint sensor was the HTC P6500, 
which was available in the market after a few months 
of the G500 release. In 2013, Apple launched Touch ID 
where the fingerprint was used to unlock smartphones 
and made available to the iPhone 5S, iPhone 6, iPhone 
6 Plus, iPad Air 2, and iPad Mini 3. One of the important 
security features in Apple Touch ID that makes it very 
difficult for external imposter attacks is that the finger-
print information is stored locally in a secure location 
on the Apple chip, instead of being stored remotely on 
Apple servers or iCloud. The popularity of fingerprint 
authentication in Apple has paved the way for almost 
all smartphones to add a fingerprint sensor to their 
flagships, for example, Galaxy S5/S6, iPhone 5S/6/6S, 
Huawei Mate S/Ascend, HTC M9+, Xperia Z5, One Plus 
Two, LG V10, etc.

Fig. 2. Popular Smartphones which initiated using 
fingerprint sensor Toshiba 6500, HTC P6500, iPhone 6s

To the best of our knowledge, Apple introduced Face-
ID using face recognition in iPhone X for the first time in 
2017. The popularity of Face-ID has led to various other 
Android-based smartphones introducing face recogni-
tion for user access. However, face recognition also has 
several limitations, such as low light accuracy, spoofing 
attacks using photographs, and user inconveniences 
[7]. Consequently, behavioral biometrics-based meth-
ods have also been utilized for user authentication. 
Researchers have attempted to understand and learn 
user behavior patterns and how they interact with sys-
tems such as keystrokes, touches, and tapping patterns 
on the device. These behavioral biometric methods 
provide several benefits over physiological methods, 
such as behavioral patterns that can be collected con-
tinuously and without user knowledge; they do not 
require any additional hardware sensors to support 
them. Some of the key works that researchers have at-
tempted on behavioral biometric traits and their accu-
racy are listed in Table 1.

Keystroke typing pattern-based biometric authentica-
tion is based on the fact that each user’s typing pattern 
is unique and consistent. Many approaches to authenti-
cate a device by keystroke biometrics have been utilized 
in the literature. Clarke and Furnell [8] studied user au-
thentication using keystroke dynamics on mobile de-
vices. In their work, they have used the key typing pat-
tern of 11-digit telephone numbers and 4-digit security 
PINs to distinguish users. Their models were based on 
the generalized regression networks with an accuracy of 

EERs ranging from 9% to 16%. Sunghoon Park et al., in 
their paper “Keystroke dynamics-based authentication 
for mobile devices”, achieved an EER of 13% when apply-
ing the “Arthematics rhythms with Cues” [9]. 

Nan Zheng et al. used the union of four features that 
is pressure, acceleration, time, and size pulled out from 
smartphone sensors. Experimental results have shown 
that their verification system achieves accuracy with av-
eraged equal error rates of 3.65% [10]. Meng et al. [12] 
leveraged touch behavioral patterns from touch gesture 
data collected from 20 Android phone users for train-
ing several classifiers including neural networks. In their 
work, they also performed optimization of neural net-
works by using Particle Swarm Optimization (PSO) and 
achieved an equal error rate of 2.92%. Pin Shen Teh et al. 
[13] performed an experiment in which data is collected 
from 150 subjects, and this dataset is shared in three 
packages of 50 each. In this process, subjects have to en-
ter the same string 10 times, resulting in 20 samples per 
subject. The timing data and finger touch size features 
were captured during subject interaction. Three match-
ing functions were used to compute the likelihood of a 
test sample. These three functions are Gaussian estima-
tion (GE), Z-score (ZS), and standard deviation (SD) drift. 
FAR and FRR are measured to estimate the accuracy of a 
biometric authentication system. The Gaussian estima-
tor (GE) gives the lowest EER value in both cases, that 
is, 8.55% EER when the input string is 4-digit and 5.49% 
EER when the input string is 16-digit. Ka-Wing Tse [14] 
evaluated their approach and formulated a dataset of 31 
subjects where each subject had to enter a password 50 
times. Temporal features, spatial dynamics features, and 
swipe features were extracted from the dataset. They 
used the RNN method, and three unique RNNs were im-
plemented and trained separately. The results from each 
model were fused to obtain the final results. The results 
indicate that late fusion yields better results than early 
fusion, and the best result is achieved by spatial features, 
which were 83.91%.

Study Work Description Modality EER

N. L. Clarke et 
al. [8]

Authentication using 
keystroke dynamics  keystroke 9% to 16%

Hwang et. 
al [9]

Arthematics rhythms 
with Cues keystroke 13%

Nan Zheng 
[10] Tapping patterns Touch  3.65%

Wang Y. et al 
[11]

Support Vector 
Machine keystroke 8.70%

Meng et al. 
[12]

Neural Network with 
PSO

Touch 
gestures 2.92%

Pin Shen Teh 
et al [13]

Gaussian, Z-Score, 
Standard deviation Touch 8.50%

Ka-Wing Tse 
et al [14] RNN Touch, 

keystroke
Accuracy 

83.9%

Table 1. Behavioral biometric keystroke 
and touch dynamics
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2.2. OUR PROPOSAL

The increasing popularity of biometrics in smart-
phones has attracted considerable research work; 
thus, the literature has shown the number of poten-
tial attempts made in this area. However, our litera-
ture survey shows the following areas, which are less 
explored:

•	 Most of the biometrics utilized in smartphones 
are physiological, such as fingerprints, iris, face, 
etc. Some attempts have been made to use be-
havioral biometrics such as voice and signature, 
gait, and keystroke. However, these attempts are 
very few and are currently not well industrialized 
in smartphones. 

•	 Most of the available work explores a single-
modal biometric approach for user authentica-
tion in smartphones. Multimodal systems are 
mostly not considered because of the complex-
ity of the fusion of two different biometric traits 
in real-time in smartphones. Multimodal refers 
to systems that can process and relate informa-
tion from multiple modalities, in our case touch-
screen swipe and keystroke typing patterns.

•	 Most of the available biometrics in smartphones 
do not consider a pandemic situation like Cov-
id-19, where hand gloves or face masks are man-
datory to protect against unwanted exposure of 
the body parts. In such situations, the acquisi-
tion of biometrics from the user itself is a difficult 
task, which further limits the use of biometric 
authentication.  

In this research, we propose a multimodal-based 
behavioral biometric system that uses touchscreen 
swipe and keystroke dynamics patterns to uniquely 
identify the user and distinguish them from impos-
ters. The highlights of the proposed work are as fol-
lows: We propose a behavioral multimodal biometric 
system with the fusion of the Touchscreen swipe and 
Keystroke dynamics. The acquisition of these two bio-
metrics is easy and user-friendly, as both of these mo-
dalities can be acquired in one action of the hand. An-
other important highlight of this work is that it inves-
tigates the proposed multimodal for situations where 
hand gloves can be present at hand. We propose a 
HandGlove mode of authentication where the system 
will automatically be triggered to authenticate a user 
based on Touchscreen swipe and Keystroke dynamic 
patterns. The proposed HandGlove mode will be trig-
gered by the user, and the system will incorporate the 
user’s touchscreen swipe and typing patterns as a se-
curity means to authenticate the user.

We develop a fuzzy network classifier to learn the 
patterns in this multimodal system to reduce the ef-
fects of hand gloves and untrained samples in user 
authentication. Our experimental results suggest that 
the proposed multimodal biometrics system operates 

well with high accuracy and the HandGlove mode 
of authentication has very little or no effect of hand 
gloves on the accuracy of the authentication system. 
We experiment with different classifiers to obtain the 
best authentication accuracy of 99.55% with 197 us-
ers on the Samsung Galaxy S20. The proposed mul-
timodal system could be one of the most sought 
approaches for biometrics-based authentication in 
smartphones in a COVID-19 pandemic situation. 

A block diagram of the proposed system is present-
ed in Fig. 3. Data collection is the first major module of 
our proposed system, which is responsible for extract-
ing the keystroke and touch dynamics data from the 
user’s input sample. Details of how the input samples 
are acquired are explained in Section 4.1. The feature 
extraction module extracts feature data from the col-
lected sample. In the proposed work, we have used a 
multimodal approach, and the user sample has fea-
tures for Touchscreen Swipe and keystroke dynamics. 
In the training module, a combined feature vector is 
generated with the touch-swipe and keystroke dy-
namics and is passed to the feature classifier after be-
ing normalized. The fuzzy logic controller unit in the 
fuzzy classifier is configured to convert a crisp input 
into a fuzzy value termed fuzzification (explained in 
Section 4.4). The authentication unit then makes final 
decisions on accepting genuine users or rejecting im-
posters.

Fig. 3. Multi-Modal Behavioral Authentication 
Systems

3. hANDGLOVE MODE

The HandGlove mode is used to ease the user. This 
mode will trigger the multimodal behavioral authen-
tication system and allow device access based on user 
acceptance by the proposed multimodal system using 
user swipe and keystroke dynamics. A depiction of the 
HandGlove mode in mobile devices is shown in Fig. 4.

To detect hand gloves or other external factors on 
the surface of mobile phones, three main techniques 
are considered based on the popularity and usability of 
touch panel devices. Fig. 5a-5c illustrate various detec-
tion mechanisms for the detection of hand gloves and 
other external factors such as wet hands.
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Fig. 4. Hand Glove Mode - Multimodal Behavioral 
Biometric

Fig. 5(a)

Fig. 5(b)

Fig. 5. Detection Mechanism of External Factors

Fig. 5(c)

A detection mechanism based on total internal re-
flection (TIR) within the display technique is illustrated 
in Fig. 5a. In physics, TIR is a phenomenon in which the 
complete reflection of a ray of light within a medium 
such as water or glass from the surrounding surfaces is 
reflected into the medium [15]. This phenomenon oc-
curs if the angle of incidence is greater than a certain 
limiting angle, called the critical angle. Using this prin-
ciple of total internal reflection, an object along with 
an external agent is identified. Referring to Fig. 5a, a 
vertical-cavity surface-emitting laser (VCSEL) or other 
types of light-emitting diodes capable of producing 
a controlled beam of infrared light via a lens are pro-
vided. When a film/layer of foreign object/contamina-
tion/external agent (e.g., finger, gloves, grease, facial 
oil, water, or other viscous contaminants that may pre-
vent functionality) is present over a proximity sensor 
(LED), infrared light is reflected into the light detector. 
As long as the surface is not touched, the light remains 
inside the screen. However, when an object touches 
the screen based on the total internal reflection, the 
light is shattered, so the light escapes from the exact 
point where the pressure is applied; thus, the position 
of an object is accurately determined by the sensor reg-
istering the light loss. This diversion of the light is also 
utilized to detect the presence of external agents, such 
as water, on the surface of the touch screen. The detec-
tion mechanism of ultrasonic sensor-based reflection 
within the display technique is shown in Fig. 5b, which 
has several advantages over existing technologies for 
touch screen applications [16].

Finally, the detection mechanism was based on a 
capacitance-based false positive detection mecha-
nism. Unlike resistive-based touch screens, capacitive 
screens do not use the pressure of an object to create a 
change in the flow of electricity. Instead, it works with 
anything that holds an electrical charge similar to that 
of human skin. The basic principle of the capacitance-
based false-positive detection mechanism is explained 
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below. As already known, the simplest form of a capaci-
tor consists of two conductors, for example, two metal 
plates separated by an insulator. The following formula 
shows the parameters that influence the capacitance:

(1)

Where, C is the capacitance,  is the relative permit-
tivity (also called the dielectric constant) of the insulat-
ing material between the plates,  and is the permit-
tivity of free space (8.854 × 10–12 F/m). A is the area of 
the plates, and d is the distance between the plates. As 
shown in Fig. 5c, a flexible and thin display for smart 
devices having a large coupling capacitance between 
the sensor electrode of the touch screen panel (TSP) 
and the display electrode is provided to detect the ex-
ternal agents by utilizing a varying capacitance value 
that occurs due to the presence of external factors on 
the touch screen.

4. MODULES OF MULTIMODAL SYSTEM

In this section, we discuss in detail the various mod-
ules of our system which work together to authenticate 
the user.

4.1. DATA COLLECTION AND ENROLLMENT

The data collection for the proposed multimodal 
system can be performed once the android applica-
tions trigger the physical sensors to read touchscreen 
to swipe touch patterns and keystroke password-key 
input by users. For touchscreen swipe, accelerometer 
and gyroscope are the sensors used to acquire the 
user inputs. It captures the touch speed and distance 
of swipe features corresponding to each enrolled user. 
For keystroke, we captured the hold-time and inter-
key time as a feature for each enrolled user. In contrast 
to the enrolment module of other biometric systems, 
the input to the enrolment system in the proposed 
multimodal system may work in continuous enrol-
ment mode. It can read the above-mentioned features 
whenever a user swipes and types in a smartphone for 
better learning of the authentication system. The enrol-
ment system works in the background and reads the 
swipe pattern and keystroke inputs when the user logs 
into the system. The application was developed on a 
Samsung Galaxy S20 device using Google Android OS, 
11. We collected data from 197 volunteers (124 men, 
73 women) aged between 25 and 40 years. The data 
collection was done in three different postures: stand-
ing, sitting, and walking. The users who participated in 
the data collection process are presented with a mobile 
application to collect sensor measurements required to 
calculate feature values encompassing the behavioral 
patterns in touch-screen swipe and keystroke dynam-
ics. The users are required to swipe on the application 
and then type the password appearing on the screen. 
Each user recorded the data 30 times for each posture 

and with three different scenarios of external factors 
namely dry hands, wet hands, and hands with gloves, 
making a total of 270 data samples for each user, or 
53190 data samples for 197 users. The schematic of the 
data collection application is presented in Fig. 6.

For the experiments reported in this paper, we col-
lected 30 patterns from each individual in each pos-
ture. We also asked users to provide inputs with dry 
hands, wet hands, with gloves as part of data collec-
tion, to handle such scenarios to better train the model 
in HandGlove mode. In total, we collected 53190 sam-
ples from 197 users under the three mentioned pos-
tures and three external factor cases. Data collection 
was performed in two separate sessions for each user. 
The entire enrolment process took 2 weeks period to 
collect sample data from all 197 users. Data collection 
and all experiments were performed at the Samsung 
Research Institute, India R&D, where one of the authors 
is working. A multimodal spectrogram with data col-
lected considering three scenarios- normal dry hands, 
gloves, and wet hands–is shown in Fig. 7 for 8 users for 
better representation.

(a)

(b)

(c)
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Fig. 6. Schematic of the Keystroke and Touch-Swipe 
behavioral data collection application from users. 
(a) Application home-screen where users set their 

current position. (b) Swipe layout where participants 
are asked to swipe on the screen to capture touch-

swipe related feature values. (c) Password layout 
where users type the displayed password on the 

keyboard to capture keystroke dynamics.

In a preliminary analysis of the data set collected, it 
was observed that the touch-swipe and keystroke typ-
ing patterns of the users when collected have a unique 
pattern to distinguish the users considering the typing 
speed (key hold time and key switch time), touch swip-
ing speed, and distance to unlock the device we can 
identify the smartphone user uniquely.

• Vivak• Shailes• Chirag• Nishant• Megha• Manpreet• Arnitabh• Santosh

• Vivak• Shailes• Chirag• Nishant• Megha• Manpreet• Arnitabh• Santosh

• Vivak• Shailes• Chirag• Nishant• Megha• Manpreet• Arnitabh• Santosh

(a)

(b)

(c)

Fig. 7. 3D plot spectrogram of data collected from 
users with (a) Dry hands, (b) Hand Gloves, and (c) 

Wet hands

4.2. FEATURE ExTRACTION

The next step is to extract features from the data col-
lected from the user. In the proposed work, we used a 
multimodal approach, and the user sample has features 
for Touchscreen Swipe and keystroke dynamics. The 
feature set captured for Touchscreen Swipe includes the 
speed of swipe, duration of swipe, and orientation of 
the touch area with axis along the x-axis when touched 
on the screen, the orientation of the touch area along 
the y-axis, accelerometer, and gyroscope. The feature 
set captured for keystroke dynamics for 6-digit pass-
code entry-key hold time, key switch time-the time 
interval to switch from one key to another, also called 
flight time. A combined vector comprising both mo-
dality inputs is the final feature set to be trained with 
the model. A description of the Touchscreen swipe and 
keystroke dynamics features is presented in Table 2. To 
use these features in multimodal authentication, we 
need to fuse the information extracted from them. Fu-
sion of these features can occur at various levels, such 
as feature level [17-18], match score level [19], rank 
level [20], and decision level [21]. The literature work in 
the areas of biometric authentication has shown that 
the data fusion at the feature level incorporates the 
best performance. Hence, in the proposed work, we 
have utilized the feature level data fusion of the two 
behavior modalities that is keystroke and Swipe touch 
features. We combined the feature vectors of the two 
modalities and generated a combined feature vector 
with a total of 18 features. However, features extracted 
from different modalities have different value ranges; 
therefore, these values should be normalized to repre-
sent them in the common range of values.

Event Features Description

Swipe

Touch

MajorAxis

Orientation of touch 
area with axis along 

x-axis when touched on 
a screen

MinorAxis

Orientation of touch 
area with axis along 

y-axis when touched on 
a screen

SwipeTime Duration of swipe

Speed distance covered by 
swipe in touch duration

Accelerometer A_axisMean mean value of the list of 
accelerometer values

Gyroscope

G_Jitter

the difference in the 
ideal signal we type 

or touch from the 
gyroscope value

G_axisMean
axis standard deviation 

from the list of 
gyroscope values

Table 2. Feature set of the proposed system
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Event Features Description

Keypad

Key1_Latency Hold Time Key1

Key2_Latency Hold Time Key2

Key3_Latency Hold Time Key3

Key4_Latency Hold Time Key4

Key5_Latency Hold Time Key5

Key6_Latency Hold Time Key6

Key1_2_Latency key switch time  K1->K2

Key2_3_Latency key switch time  K2->K3

Key3_4_Latency key switch time  K3->K4

Key4_5_Latency key switch time  K4->K5

Key5_6_Latency key switch time  K5->K6

In our work, we utilize the min-max normalization, 
which maps the minimum of a feature to zero, the 
maximum to one, and everything else to a decimal be-
tween 0 and 1 [22]. Given a set of N feature vectors x1,  
x2,…xN, we normalize them as

(3)

Where, xmin and xmax are calculated as

&

4.3. CLASSIFIER

After the feature extraction step, we experiment with 
three different classifiers namely 
•	 Isolation Forest (IF) 
•	 k-NN Classifier
•	 Radial SVM. 
We partitioned the dataset into training and test 

sets and trained these classifiers on the training set. 
Each model was trained on the combined dataset of 
the presence of different external factors. The external 
factors considered in our experiments are dry hands 
(normal), wet hands (water), and hands with gloves. 
Each classifier was trained on the combined dataset 
collected under these three external factors present 
from each volunteer. The dataset also constitutes key-
stroke and swipe dynamics collected under three dif-
ferent positions of the subject, while: Standing, Sitting, 
and Walking. Evaluation of the model network involves 
computation of the false acceptance rate (FAR), false 
rejection rate (FRR), and equal error rate (EER), as dis-
cussed in more detail in Section 5.  

4.3.1. Isolation Forest

Isolation Forest works on the principle of the deci-
sion tree algorithm and is an unsupervised technique 
mostly utilized for anomaly detection. This algorithm 
recursively generates partitions on the datasets by ran-
domly selecting a feature and then randomly selecting 

a split value for the feature. Anomalies are patterns that 
have features that are dissimilar to the usual cases. It 
exploits the fact that anomalous feature observations 
are few and significantly different from normal obser-
vations. Let S be an anomaly score at an instance t. 

Then,

(4)

Where, p(t): length of a point t is computed by the 
number of edges t covered in the tree until the travers-
al is terminated. 

k(m) is the average of p(t) for specified m

Here, E(p(t)) is the mean of p(t) from a group of isola-
tion trees. Using the anomaly score, we can make the 
following assessments: 
•	 Values close to 1 are considered an anomaly
•	 smaller than 0.5 considered as normal instances
We split the dataset of samples from each individual 

into test and training sets and train an individual isola-
tion forest model for each individual. The samples from 
each person are divided into training and test sets at 
85:15 proportion. For the model trained on each indi-
vidual, we use the rest of the individuals’ samples as 
test samples to evaluate the accuracy of that model.

4.3.2. k - Nearest Neighbor

k–Nearest Neighbor (k-NN) is a simple supervised 
classification algorithm that can be applied to both 
classification and regression problems. For each query 
sample, it finds the k number of nearest samples from 
the train set in the feature space according to a distance 
metric. We train a k-NN classifier model on our dataset 
as a multi-class classification model assigning a label of 
target identity for the test sample. We divide the entire 
dataset into training and test sets randomly at 85:15 
proportion and classify the test samples and record the 
FAR, FRR, and EER of the model for evaluation. By tun-
ing the hyper-parameters using the validation set, we 
used k=5 in all our experiments with k-NN. For the dis-
tance metric, we used the Minkowski distance metric 
which is computed as follows.

Let X=(x1 , x2 ,... ,xn) and Y=(y1 , y2 ,... ,yn) be the two 
points in the feature space. Then the Minkowski dis-
tance of order p between those two points is given by

(5)

4.3.3. Radial Support Vector Machine

Support Vector Machines are primarily used for bi-
nary classification problems. They simply generate the 
hyperplanes to separate/classify data in some feature 
space into different regions. The nonlinearity is added 
into SVM to work well on high dimensional and linear-
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ly inseparable data using a mechanism called Kernel 
Trick. The Kernel function is of the form 

(6)

Here d is the degree of the polynomial. In our experi-
ments, we use the Radial Kernel function, which is of 
the form,

(7)

Where γ is the hyper-parameter that controls the 
smoothness of the decision boundary and in turn 
regularizes the model. The regularization strength of 
the model is inversely proportional to γ. The SVMs can 
be used for multi-class classification problems in many 
different ways. We train the N number of SVM classifiers, 
where N is the number of identities/classes in the dataset. 
Each classifier learns the decision boundary between its 
specific class and the rest of the classes. For a new test 
sample, we compute the score on each classifier and 
decide the target class by combining all the scores.

4.4. FUzzY NETWORK

In the proposed work for HandGlove mode, we trained 
the network for external factors such as dry hands, wet 
hands, and hand gloves. However, there can be external 
factors other than hand gloves that could impact user 
input. For example, the user’s hand could be affected by 
sanitizers, dust, oil or grease, cloth gloves, and so on. This 
may bring vagueness to the input presented from the 
user during the authentication phase with HandGlove 
mode, and we observed high false-positive cases. In such 
scenarios, the conventional machine learning-based 
classifiers may not be decisive and fail to handle the test 
input because their network is not trained for all external 
factors. To handle such a situation, we train a fuzzy logic 
classifier with SVM to incorporate fuzziness to minimize 
the effect of external factors on verification accuracy. 

A membership function for a fuzzy set A on the uni-
verse of discourse X is defined as μA : X⟶[0,1], where 
each element of X is mapped to a value between 0 and 1. 
This value, called membership value or degree of mem-
bership, quantifies the grade of the membership of the 
element in X to the fuzzy set A. Membership functions 
allow us to graphically represent a fuzzy set. The input to 
the membership functions are the feature values and the 
output is the degree of membership in the [0, 1] interval 
for each fuzzy set. In our experiment, we implement a 
triangular membership function as shown in Fig. 7. 

It contains a lower limit ‘a’, upper limit ‘b’, and ‘m’, 
where a < m < b. In our case, as the feature vector X=(x1 
, x2 ,... ,xM) ∈ RM is the input to the membership function, 
the parameters a, b, and m are also M-dimensional i.e., 
a, b, m ∈ RM. The membership function is as follows.

for all i = 1, 2,..., M (8)

Fig. 8. Triangular membership function

We tune the values of vectors a, m, and b based on 
the training set to minimize training recognition error. 
The authentication module makes the authentication 
decision that the claimant sample matches with the 
owner of the device. In this case, the claimant user 
sample features are matched against the stored mod-
el, and the degree of membership for each fuzzy set 
is computed. In the matching process, the degree of 
membership is compared to the threshold value; if the 
membership degree is higher than the threshold value, 
the sample is classified as genuine otherwise impos-
ter. During HandGlove mode in the case of input from 
the user impacted by the external factor, which is not 
trained example hands with sanitizer, oil, grease, etc., 
the proposed fuzzy logic classifier helps to get consis-
tent performance on untrained cases.

5. ExPERIMENTAL RESULTS AND ANALYSIS

This section describes the evaluation method for the 
proposed multimodal behavioral biometric system on 
the test data set. The following sub-sections cover the 
evaluation metrics, methodology, results, and analysis. 

5.1. EVALUATION METRICS

The accuracy of the proposed multimodal behavioral 
biometric system was measured using the following 
metrics

•	 False rejection rate (FRR): It is defined as the 
probability of a genuine user being rejected as 
an impostor. It is measured as the fraction of 
the genuine user’s score below the predefined 
threshold.

•	 False acceptance rate (FAR):  FAR is defined as the 
probability of an impostor being accepted as a 
genuine user. It is measured as the fraction of the 
impostor score (a matching score that involves 
comparing two biometric samples originating 
from different users) exceeding the predefined 
threshold. 

•	 Equal error rate (EER): This is used to determine 
the accuracy of the proposed biometric system. 
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When both FAR and FRR rates are equal, the in-
tersection point is the EER. The lower the value 
of EER, the higher the precision of the biometric 
system.

The relationship between FRR, FAR, and EER is shown 
in Fig. 9.

Fig. 9. Relation between FAR and FRR

5.3. EVALUATION METhODOLOGY

To evaluate the accuracy of the proposed multimod-
al behavioral biometric system based on touchscreen 
Swipe and keystroke dynamics [23-32], we performed 
the following task in our experiments to train with bi-
nary classifiers such as Isolation Forest, k-NN, SVM, and 
Fuzzy with SVM Classifier. First, we divided the subjects 
into two parts: one was treated as the genuine subject 
and the other as the imposter subject. In our experi-
ment, a total of 197 users participated; for every mobile 
device, one user is the owner of the device, and his/her 
samples are labeled as genuine and the remaining 196 
users are labeled as imposters. We partitioned the col-
lected dataset into training and test sets in a ratio of 
85:15 and trained these classifiers on the training set. 
We generated four models using four different train-
ing sets for different postures: sitting, standing, walk-
ing, and all postures. Both the training and the test 
sets contained all the variations in the external factors 
(dry hands, wet hands, and hands with gloves). Finally, 
based on the decision, the evaluation metric values 
were computed on testing data.

We have four sets of data samples: a genuine training 
set, a genuine testing set, an imposter training set, and 
an imposter testing set. Once we have acquired the 
sample sets, they are used to evaluate the above met-
rics of the proposed multimodal behavioral biometric 
system. In the experiments with fuzzy classifier with 
SVM, users also presented the inputs with non-trained 
external inputs such as hands with a sanitizer.

For training the k-NN classifier, we simply consider 
the identities of the users as class labels and train the 
model as a multi-class classification model. Generally, 
SVM doesn’t support multi-class classification in its 

normal form. For multi-class classification, the basic 
SVM principle is utilized after breaking down the multi-
class classification problem into smaller sub-problems, 
all of which are binary classification problems.

5.3. EVALUATION RESULTS 

In experimental results, the EER value was comput-
ed for the Isolation Forest Classifier from FAR and FRR 
values while controlling the ‘ease of acceptance’ of the 
isolation forest by varying the contamination factor, 
and the intersection point in the graph between FAR 
and FRR for varied contamination level gives us the EER 
value as shown in the Receiver Operating Characteris-
tic (ROC) Curve plot in Fig. 10.

Fig. 10. ROC Curve plot of the proposed system

The equal error rate with isolation forest is obtained 
at around 6.74% for authentication as shown in Fig. 10. 
These results are obtained on the combined dataset 
with and without the presence of external factors such 
as hand gloves, wet hands, etc. for both training and 
validation. We conducted experiments by including 
individual positions in the dataset separately as well 
as the complete dataset with all three positions stand-
ing, sitting and walking. We also experiment with other 
classifiers such as k-NN and SVM as well and summarize 
our results in Table 3.

Table 3. Results of proposed Multimodal Behavioral 
Biometric System with Isolation Forest, k-NN, and 

SVM classifiers with the test data

Classifier Posture Average EER (%)

Isolation Forest

Standing 
Sitting 

Walking 
All

8.65 
6.55 
8.92 
6.74

k-NN

Standing 
Sitting 

Walking 
All

4.54 
4.08 
4.76 
1.58

SVM

Standing 
Sitting 

Walking 
All

2.04 
0.68 
2.70 
0.45

International Journal of Electrical and Computer Engineering Systems
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5. 4. ANALYSIS

As per the results mentioned in table 3, we observed 
that SVM gave the best result of 0.45% equal error rate 
when including all the positions (Sitting, walking, and 
standing). SVM is closely followed by k-NN at 1.58% 
and then isolation forest at 6.74% ERR. The error rates 
are shown for each posture setting as shown in Fig. 11. 
Classifiers gave the best results when all the positions 
are included except for the isolation forest which gave 
the best result with the ‘Sitting’ position. This shows 
that the presence of samples of each identity in diverse 
positions helps to form precise decision boundaries for 
that identity which further increases the identification 
accuracy. We note that both touch swipe and keystroke 
dynamics for all the subjects were considered in the 
dataset to achieve the results. Further, we observe that 
the results obtained in the ‘Sitting’ position are better 
than other positions for all the classifiers as expected 
because the users are generally more stable while in 
the sitting position and the variance among the differ-
ent samples obtained will be minimum. On contrary, 
the users will be most unstable while walking and so 
the variance of the samples would be considerably 
high, and thus walking position accuracy is the lowest.

Fig. 11. Chart showing performance of classifiers 
for each position and all positions together

We also quantitatively compared our work with the 
recent existing methods utilizing touch-swipe and/or 
keystroke dynamics behavioral patterns for authentica-
tion/verification [8-14] in Table 4. We observed from Ta-
ble 4, that our approach achieves the Equal Error Rate 
of 0.45% with the SVM classifier.

However, in a real case scenario, users can try to ac-
cess the authentication system in presence of varied 
types of external factors. For example, in the current 
situation of the pandemic, the user may likely try to 
authenticate his/her mobile by swiping/typing a pass-
code with hands containing sanitizer, dirt or dust, etc. 
In such cases, the typing or swiping behavioral charac-
teristics may vary slightly due to the presence of such 
external factors. So, there is a need for a system that can 
recognize the true owner/ imposter even when the be-
havioral patterns are slightly varied because of external 

factors. Since training the model on the dataset under 
the influence of all possible external factors is infeasible 
and impractical, we aim to explore the neighborhood 
similarities in feature space in an unsupervised manner 
to solve this problem. We argue that the behavioral fea-
tures influenced by an unknown external factor ‘a’, will 
be in near neighborhood space to the behavioral fea-
tures of ‘closely related’ external factor ‘b’. For example, 
the behavioral patterns influenced by sanitized hands 
will be in the near neighborhood to the patterns influ-
enced by wet hands in the feature space because of 
the closely related physical properties of sanitizer and 
water. We utilize this contextual neighborhood to train 
the model to classify into fuzzy sets instead of sharp 
binary sets such that it incorporates relations between 
the ‘closely related’ external factors.

Study Work Description Modality Average 
ERR

N. L. Clarke et al. [8]
Authentication 
using keystroke 

dynamics  
keystroke 9% to 

16%

Hwang et. al [9] Arthematics 
rhythms with Cues keystroke 13%

Nan Zheng [10] Tapping patterns Touch  3.65%

Wang Y. et al [11] Support Vector 
Machine keystroke 8.70%

Meng et al. [12] Neural Network 
with PSO

Touch 
gestures 2.92%

Pin Shen Teh et al [13] Gaussian, Z-Score, 
Standard deviation Touch 8.50%

Ka-Wing Tse et al [14] RNN Touch, 
keystroke

Accuracy 
83.9%

Proposed work

SVM

Touch, 
Keystroke

0.45%

k-Nearest Neighbor 1.58%

Isolation Forest 6.74%

Fuzzy Classifier 6.50%

Table 4. Behavioral Biometric Keystroke and Touch 
Dynamics

For this reason, we train a fuzzy logic classifier on the 
collected dataset with samples affected by only two ex-
ternal factors namely wet hands and gloves. We consid-
ered the triangular membership function as explained 
in Section 4.4 to decide positive/negative class for a 
sample and tuned the value of a, b, and m based on 
the training set. We then utilized the trained fuzzy logic 
classifier to classify samples of the same individuals af-
fected by an untrained external factor like hands with 
sanitizer as positive/negative. The results on the un-
trained external factor are summarized in Table 5. We 
observe that the error rates of the traditional machine 
learning-based classifiers increased when tried to eval-
uate an untrained external factor case. The fuzzy classi-
fier gave the best evaluation results on untrained cases 
with a 6.46% error rate. This shows that our approach 
can minimize the effect of external factors like sanitizer, 
gloves, etc. which are common during the pandemic 
times like COVID-19 by making use of fuzzy logic.

Volume 13, Number 9, 2022
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Table 5. Validation results of the authentication 
system in the presence of untrained external factor: 

Hands with sanitizer

Classifier Average EER (%)

Isolation Forest 22.4

k-NN Classifier 18.25

SVM 16.5

Fuzzy Logic Classifier with SVM 6.46

6. CONCLUSION 

This paper investigates the situations in which finger-
prints cannot be utilized due to hand gloves and hence 
presents an alternative biometric system using the mul-
timodal Touchscreen swipe and Keystroke dynamics 
pattern. We propose a HandGlove mode of authentica-
tion where the system will automatically be triggered 
to authenticate a user based on Touchscreen swipe and 
Keystroke dynamics patterns. The proposed system in-
corporates Touchscreen swipe and typing patterns as 
a security layer for authentication to increase the total 
security in the system. We propose the use of a fuzzy 
classification network to incorporate fuzziness in the 
authentication system with SVM, thereby reducing 
the effects of unknown external factors such as dust 
or sanitized hands in user authentication. Our experi-
mental results suggest that the proposed multimodal 
biometrics system can operate with high accuracy and 
that the HandGlove mode of authentication has very 
little or no effect of hand gloves on the accuracy of the 
authentication system. We experimented with multiple 
commonly used machine learning-based classification 
algorithms to obtain the best authentication accuracy 
of 99.55% with 197 users on the Samsung Galaxy S20. 
With the developed work accuracy of 99.55% with 197 
users with a Samsung Galaxy S20 device and Android 
R OS, 11.0. The importance of this work is mainly due 
to the following reasons. First, most of the biomet-
rics utilized in smartphones are physiological, such as 
fingerprints, iris, face, etc. Some attempts have been 
made to use behavioral biometrics such as voice and 
signature, gait, and keystroke. However, these attempts 
are very few and are currently not well industrialized 
in smartphones. This work provides a framework for 
the implementation of a multimodal approach for user 
authentication in smartphones using touch swipe and 
keystroke patterns of users. It also provides extensive 
experimentation on a dataset created using a smart-
phone (Samsung Galaxy S20). The experimental re-
sults established the usability and importance of the 
presented work for smartphones. We use a fuzzy net-
work to learn the patterns in this multimodal system 
to reduce the effects of hands with sanitizer in user 
authentication and achieved 93.5% accuracy on novel 
external factor case with SVM. The results are shown 
for 197 users; however, it is sufficient to conclude the 
potential of the presented work for user authentication 
in smartphones. More extensive experiments on large 

smartphone datasets with more variations in acquisi-
tion could be a future scope. To further increase the 
scope of this work, other modalities such as application 
usage patterns, battery charging patterns, and walking 
patterns of an individual can be explored as future re-
search work for smartphone security under a behav-
ioral biometric research scope.
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