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SUMMARY 
 
Humans represent a complex ecosystem colonized not only by our cells but trillions of 

other microbes such as bacteria, archaea, fungi, and viruses. This microbiome gains 
increasing interest due to its involvement in human health and disease. While we live in 
symbiosis with most of these travelers, dysbiosis can lead to the growth of pathogens. 
Pathobionts are commensal microbes and harmless in healthy individuals until specific 
circumstances occur. There is increasing interest in studying this pathobiome due to the 
rise in infections with high mortality rates and stagnant treatment options. Due to the 
complexity of possible interactions between the host and microbes, studies on microbial 
interactions are conducted at varying scales. In this thesis, we start to study interactions in 
small, well-controlled model systems in vitro and then at the community level in vivo. The 
key technology used to identify, quantify, and characterize microbes and study host-
microbe interactions throughout my studies is whole-genome and transcriptome 
sequencing. 

 
A standard tool to study interactions of and with the immune system is RNA-Seq. This 

method quantifies the expression of genes, the transcriptome. To study mechanisms of 
infection in vitro, dendritic cells (DCs) are commonly co-cultured with pathogens. 
Aspergillus fumigatus airway infections are associated with high mortality rates in 
immunocompromised patients. DCs are recognized as critical immune cells for the 
detection of and response to A. fumigatus infections. Historically, technical limitations 
allowed the simultaneous sequencing of two different organisms (dual) at most. We 
expanded on this concept by performing the first triple RNA-Seq ([1], Cell Reports). 
Thereby, we investigated triangular effects between two pathogens (A. fumigatus and 
Cytomegalovirus [CMV]) and DCs. Previous works suggested that CMV may increase the 
successful invasion of Aspergillus, but experimental evidence was lacking. Triple RNA-
Seq allowed us to investigate the crosstalk of DC during co-infection of human DC. In 
contrast to expectations, the response of DCs was a mixture of fungi and viral defense but 
also included other reactions that were not observed during single infections. In the 
presence of CMV, A. fumigatus stopped expressing many genes, implying a potential to 
save energy when the virus already challenges DCs. In a follow-up study, we studied the 
genomes of 300 clinical and environmental isolates of A. fumigatus ([2], Nature 
Microbiology). We observed an underappreciated level of genomic diversity and showed 
how clinical isolates differ from environmental. 

 
To date, the complex ecosystems present in the human body cannot be replicated in the 

lab. Hence, we used cultivation-free methods to study human microbiota-host interactions 
at the community level. We focused on the influence of the host’s health status and 
environmental stressors, e.g., antibiotics, on human gut bacteria and fungi. A common, 
non-invasive approach to studying the gut microbiota of living organisms is the extraction 
of nucleic acids such as DNA from host feces. Such samples serve as a proxy for the 
microbiome of the lower gastrointestinal tract. Gut bacteria are the most abundant and 
intensely studied part of the microbiome, but fungi were mostly neglected despite their 
possible roles in health and disease. In four studies, we performed community-level 
analyses of both bacteria and fungi concomitantly, with the focus on evaluating the risk of 
severe infections. 
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One major risk factor for overgrowth of opportunistic gut pathogens – such as the 
commensal fungus Candida albicans – is antibiotic drugs. Antibiotics are used to kill or 
stop the growth of bacterial pathogens. However, bacteria positively associated with the 
host’s health are often targeted as well, which can allow other pathobionts to proliferate in 
turn. In two studies, we investigated the influence of antibiotics.  
First, we assessed the temporal dynamics of bacteria-fungal interactions in healthy subjects 
up to 90 days after treatment ([3], Microbiome). While some level of recovery was 
observed in the bacterial community, the effects on the fungal community seemed more 
stochastic and lasting. Candida abundance also increased shortly after treatment but was 
effectively inhibited later on. Overall, we describe several bacteria with the potential to 
inhibit or promote Candida albicans in vivo. In a follow-up study, we compared healthy 
against critically ill patients with or without antibiotic treatment ([4], Gut Microbes). Again, 
we found Candida to increase in abundance under antibiotic treatment in critically ill 
patients. More importantly, we found that antibiotic therapy in critically ill patients leads 
to an infection vulnerable microbiome composition characterized by extremely low levels 
of short-chain fatty acids. In the 5th study that focused on human infections ([5], in 
preparation), I studied the microbiome differences contributing to varying levels of 
Candida abundance in lung cancer patients undergoing anti-cancer antibody therapy. Using 
the knowledge acquired from the previous studies, we found a non-trivial connection 
between decreased gut anaerobes, increased lactate production by lactic acid bacteria, and 
high Candida abundance levels. A key component linking all the above was oxygen 
availability within the gut lumen. Our findings challenge the current perception that 
Lactobacilli and lactate always inhibit Candida species’ overgrowth in the human gut.  

In the last manuscript of my thesis ([6], PLoS One), I studied the gut microbiota 
associations with lung function recovery one year after tumor resection. Longitudinal data 
revealed associations between specific gut bacteria, fungi, and their metabolic pathways 
with the recovery of lung functions. Interestingly, an increase in VO2 coincides with an 
increase in certain species and the GABA shunt pathway, suggesting that treatment 
outcomes might improve by enriching butyrate-producing species. Overall, our data 
suggested a link between loss of anaerobes and tumor recurrence. We contribute evidence 
to the hypothesis that anaerobes have beneficial effects on positive treatment outcomes. 

 
In summary, while an extensive body of work has focused on understanding the 

virulence factors of common pathogens, such as Aspergillus and Candida species, very 
little work has been done on understanding the interplay of those pathogens with the host’s 
symbionts or other pathogens at the start of my Ph.D. In my Ph.D. project, I used next-
generation sequencing, advanced statistical approaches, and machine learning to 
significantly expanded our knowledge of the life of pathogens from an ecological point of 
view. 
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ZUSAMMENFASSUNG 
 
Der Mensch stellt ein komplexes Ökosystem dar, das nicht nur von unseren Zellen, 

sondern auch von Billionen anderer Mikroben (Bakterien, Archaeen, Pilzen, und Viren) 
besiedelt wird. Dieses so genannte "Mikrobiom" gewinnt aufgrund seiner Beteiligung an 
der menschlichen Gesundheit und Krankheiten zunehmend an Interesse. Mit den meisten 
dieser Mikroben leben wir in Symbiose. Jedoch kann eine Dysbiose zum Wachstum von 
Krankheitserregern führen. Diese „Pathobionten“ sind kommensale Mikroben, die für 
gesunde Menschen harmlos sind, bis bestimmte Umstände eintreten. Das Interesse diesen 
„Pathobiomen“ nimmt durch die Zunahme von Infektionen mit hoher Sterblichkeitsrate 
und stagnierenden Behandlungsmöglichkeiten zu. Aufgrund der Komplexität der 
Interaktionen zwischen Wirt und Mikroben erfolgt die Erforschung mikrobieller 
Interaktionen auf verschiedenen Skalen. In der vorliegenden Dissertation beginnen wir mit 
der Untersuchung von Interaktionen in kleinen, gut kontrollierten Modellsystemen in vitro 
und dann auf der Gemeinschaftsebene in vivo. Die Schlüsseltechnologie zur 
Identifizierung, Quantifizierung und Charakterisierung von Mikroben und zur 
Untersuchung von Wirt-Mikroben-Interaktionen während meiner Studien sind 
Gesamtgenom und -transkriptom Sequenzierung. 

Ein gängiges Instrument zur Untersuchung der Interaktionen von und mit dem Wirts-
Immunsystem ist „RNA-Seq“. Diese Methode quantifiziert die Expression von Genen, das 
„Transkriptom“. Zur Untersuchung von Infektionen in vitro werden häufig dendritische 
Zellen (DCs) mit Krankheitserregern ko-kultiviert. Atemwegs-infektionen mit Aspergillus 
fumigatus sind bei immungeschwächten Patienten mit einer hohen Sterblichkeitsrate 
verbunden. DCs gelten als essenziell für die Erkennung von und Reaktion auf A. fumigatus 
Infektionen. In der Vergangenheit war es aus technischen Gründen nicht möglich mehr als 
zwei verschiedenen Organismen gleichzeitig zu sequenzieren (dual). Wir haben dieses 
Konzept erweitert, indem wir den ersten "triple RNA-Seq" durchgeführt haben ([1], Cell 
Reports). Dabei untersuchten wir trilaterale Effekte zwischen zwei Pathogenen 
(A. fumigatus und Cytomegalovirus [CMV]) und DCs. Man nahm bereits an, dass CMV 
den Erfolg von A. fumigatus Infektionen erhöhen könnte, aber experimentelle Beweise 
fehlten. Mit Hilfe des triple RNA-Seq konnten wir den Crosstalk von DCs während einer 
Koinfektion von menschlichen DCs untersuchen. Die Reaktion der DCs stellte sich als eine 
Mischung aus Pilz- und Virusabwehr und zusätzlichen Reaktionen heraus, die bei 
Einzelinfektionen nicht beobachtet wurden. In Gegenwart von CMV hat A. fumigatus die 
Expression einiger Gene eingestellt. Dies deutet darauf hin, dass der Pilz Energie sparen 
kann, wenn CMV die DCs attackieren. In einer Folgestudie haben wir die Genome von 300 
klinischen und Umweltisolaten von A. fumigatus untersucht ([2], Nature Microbiology). 
Wir fanden ein unterschätztes Ausmaß an genomischer Vielfalt vor und zeigen, inwieweit 
sich klinische von Umweltisolaten unterscheiden. 

Bislang lassen sich die komplexen Ökosysteme des menschlichen Körpers nicht im 
Labor nachbilden. Daher haben wir kultivierungsfreie Methoden verwendet, um die Inter-
aktionen zwischen Mikrobiota und dem menschlichen Wirt auf der Gemeinschaftsstufe zu 
untersuchen. Wir konzentrierten uns dabei auf den Einfluss (a) des Gesundheitszustands 
des Wirts und (b) der Umweltstressoren, z. B. Antibiotika, auf das menschliche Darm-
mikrobiom. Dabei quantifizierten wir die Nukleinsäuren, die wir aus Fäkalien extrahieren 
konnten. Die darin enthaltenen Mikroben repräsentieren das Mikrobiom des unteren gastro-
intestinal Trakts. Bakterien sind der am häufigsten vorkommende und am meisten unter-
suchte Teil des Darmmikrobioms, während Pilze trotz ihrer möglichen Rolle für Gesund-
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heit und Krankheit weitgehend ignoriert wurden. In drei Studien haben wir Bakterien- und 
Pilzgemeinschaften analysiert, wobei der Schwerpunkt stets auf der Risikobewertung für 
schwere Infektionen lag. Ein Hauptrisikofaktor für das übermäßige Wachstum von oppor-
tunistischen Darmpathogenen - wie etwa dem kommensalen Pilz Candida albicans - sind 
Antibiotika. Antibiotika werden eingesetzt, um das Wachstum von bakteriellen Krankheits-
erregern zu bekämpfen. Häufig werden jedoch auch Bakterien attackiert, die mit der Ge-
sundheit des Wirts in Verbindung gebracht werden, was wiederum die Vermehrung anderer 
Pathobionten ermöglichen kann. In zwei Studien haben wir daher den Einfluss von Anti-
biotika untersucht.  

Zuerst untersuchten wir die zeitliche Dynamik der Interaktionen zwischen Bakterien und 
Pilzen bei gesunden Probanden bis zu 90 Tage nach der Behandlung ([3], Microbiome). 
Während sich die bakterielle Gemeinschaft in gewissem Umfang erholte, schienen die Aus-
wirkungen auf die Pilzgemeinschaft eher stochastisch und dauerhaft zu sein. Die Abundanz 
von Candida nahm für kurze Zeit nach der Behandlung zu. Wir identifizierten mehrere 
Bakterien, die das Potenzial haben, das Candida Wachstum in vivo zu hemmen oder zu 
fördern. In einer Folgestudie verglichen wir gesunde mit schwerkranken Patienten mit und 
ohne Antibiotikabehandlung ([4], Gut Microbes). Erneut stellten wir fest, dass die Häufig-
keit von Candida nach Antibiotikabehandlung bei kranken Patienten zunahm. Insbesondere 
fanden wir heraus, dass die Antibiotikabehandlung bei schwerkranken Patienten zu einer 
"infektionsanfälligen" Mikrobiomzusammensetzung führt, die durch extrem niedrige 
Mengen an kurzkettigen Fettsäuren gekennzeichnet war. In der fünften Studie über Infek-
tionen im Menschen (Erstautor, in Vorbereitung) [5] wurden Lungenkrebspatienten mit 
Immunotherapie behandelt. Dabei untersuchte ich welche Unterschiede im Mikrobiom die 
verschiedenen Mengen an Darm Candida erklären. Unter Verwendung der Erkenntnisse 
der vorangegangenen Studien fanden wir einen wichtigen Zusammenhang zwischen der 
Verringerung von Anaeroben im Darm, erhöhten Laktat produzierenden Milchsäurebak-
terien, und erhöhter Candida Menge. Eine Schlüsselkomponente, die all diese Faktoren 
miteinander verbindet, ist die Menge an Sauerstoff im Darmlumen. Die Ergebnisse meiner 
letzten Studie stellen die gängige Auffassung in Frage, dass Laktobazillen und Laktat das 
Überwachstum von Candida spp. im menschlichen Darm grundsätzlich verringern. 

Im letzten Manuskript meiner Dissertation (Erstautor, PLoS One) [6] untersuchte ich 
den Zusammenhang zwischen Darmmikrobiota und der Wiederherstellung der Lungen-
funktion von Patienten einem Jahr nach Tumorresektion. Longitudinaldaten zeigten Zu-
sammenhänge zwischen Darmbakterien, -pilzen, und deren Stoffwechselwegen, mit der 
Lungenfunktion. Interessanterweise ging ein Anstieg in VO2 mit einem Anstieg bestimmter 
Spezies und des "GABA-Shunt"-Stoffwechselwegs einher, was darauf hindeutete, dass sich 
die Behandlung durch die Anreicherung von Butyrate-produzierender Spezies verbessern 
könnten. Unsere Daten deuten auf einen Zusammenhang zwischen dem Verlust von 
Anaeroben und dem Wiederauftreten von Tumoren hin, was die Hypothese einer positiven 
Wirkung von Anaeroben auf positive Behandlungsergebnisse untermauert. 
 

Zusammenfassend lässt sich sagen, dass sich zwar zahlreiche Arbeiten auf das Verständ-
nis der Virulenzfaktoren häufiger Krankheitserreger wie Aspergillus- und Candida Spezies 
konzentriert haben, dass aber zu Beginn meiner Doktorarbeit nur sehr wenig über das Zu-
sammenspiel dieser Erreger mit den Symbionten des Wirts oder anderen Krankheits-
erregern bekannt war. In meiner Promotion habe ich Next-Generation Sequenzierung, fort-
schrittliche statistische Ansätze, und maschinelles Lernen eingesetzt, um unser Wissen über 
das Leben von Erregern aus ökologischer Sicht erheblich zu erweitern.  
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ABBREVIATIONS 
 

Abbreviation Full Name 
ASV amplicon sequencing variant 
CAG co-abundance cluster of genes 
CLR centered log-ratio 
CMV Cytomegalovirus 
CNV copy number variation 
DA differentially abundant 
DC dendritic cell 
DNA deoxynucleic acid 
EC Enzyme Commission 
FDR false-discovery rate 
FEAST Fast Expectation-maximization for microbial Source Tracking 
FGS first generation sequencing 
GI gastrointestinal system 
GO Gene Ontology 
GRiD Growth Rate InDex 
GWAS genome-wide association study 
IA Invasive Aspergillosis 
ITS internal transcribed spacers 
KEGG Kyoto Encyclopedia of Genes and Genomes 
MGS metagenomic species 
NCBI National Centre for Biotechnology Information 
OTU orthologous taxonomic units 
PAMP pathogen-associated molecular patterns 
PCR polymerase chain reaction 
PERMANOVA permutational analysis of variance 
Pfam protein family database 
PRR pattern recognition receptor 
RNA ribonucleic acid 
SCFA Short-chain fatty acid 
SGS second generation sequencing 
SNP single nucleotide polymorphism 
SNV Single-nucleotide variant 
TGS third generation sequencing 
TSS total-sum scaling 
UniProt universal database of proteins 
UniRef database of non-redundant proteins; based on UniProt 
WMS whole metagenome sequencing 
WTS whole meta-transcriptome sequencing 
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I. INTRODUCTION 
 

1. The Human Host and its Bugs – The Holobiont 
Microbes represent the most successful form of life. They are omnipresent in every 
environment and adapted to any niche, including water, soil, plants, and animals. Many 
microbes co-evolved with their host, thereby forming synergies by complementing 
metabolism and protecting each other from potentially dangerous pathogens. Formally, the 
term microbiota refers to the collection of all bacteria, fungi, archaea, and viruses within a 
habitat. Microbiome refers to their genes [7]. Microbial-host interactions are complex. Over 
the last two decades, research has found many associations between health, disease states, 
and microbiota. Many human-associated microbes are commensal, but some of them – 
opportunistic pathogens – may attack or invade their host under – often unknown –   
circumstances such as weakened host-immune defense. It was even suggested that every 
human disease could be related to the microbiome [8]. While this is likely an exaggeration, 
microbes are understood to be an integral part of our bodies - an additional organ. In the 
following sections, I will introduce terminologies and concepts used to characterize 
microbial communities. 
 
1.1. Essentials in Ecology Research 
Ecology is the study of relationships between living organisms. While many concepts 
evolved from observing and counting visible organisms in relatively large ecosystems, 
many concepts were proven useful in microbial research. 
 
Biological Taxonomy 
In biology, taxonomy is a scheme used to classify organisms into coherent units called 
“taxa” [9]. It is mostly based on morphological, physical, or genetic properties. 
“Phylogeny” is the evolutionary history of species assuming common ancestors of 
organisms and is commonly used to create taxonomies [9]. There are seven generally 
agreed taxonomic levels from broad to increasing precision: Kingdom, Phylum, Class, 
Order, Family, Genus, and Species (Figure 1). The catalogue of Life [9] currently separates 
Kingdoms into Bacteria, Archaea, Protozoa, Chromista, Plantae, Fungi and Animalia. 
Viruses are often considered as separate kingdom because viruses are not cells and may not 
share a common ancestor with cellular life. 
 
Ecological Diversity 
Diversity aims to describe the complexity of ecosystems. Diversity indices are often used 
in metagenomic research to compare habitats and as basic indicators of biotic and dysbiotic 
habitats. Diversity is defined in three general levels (Figure 2) [10]. Because diversity 
indices give complementary information, we chose them on a case-to-case basis. I used all 
the following indices in my work (manuscripts III-VI). 

Alpha diversity can be measured by the number of distinct species detected (richness), 
by the distribution of taxon abundances (Shannon- and Simpson-indices), and by 
phylogeny-aware indices (Faith’s PD) [10]. Assuming closely related organisms have 
similar functions or roles, phylogeny-aware diversity indices give similar diversity scores 
to taxa profiles with distinct but phylogenetically close organisms. Beta-diversity is 
commonly estimated as Bray -Curtis dissimilarity, even though its application to 
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sequencing data has been heavily criticized [11]. I expand on some technical challenges in 
section 3.1. One appropriate alternative is the log-ratio-based Aitchison index which 
compensates for compositionality bias [11]. Another index is UniFrac, which integrates 
phylogenetic relationships of taxa [11,12].  

 

 
 

Figure 1. Taxonomic ranks of life from low resolution (left) to high resolution (right).  
Creative Commons license.  

 

 

 
 

 
1.2. The Human Microbiome 
The human body provides a nutrient-rich habitat for various microorganisms, many of 
which are essential for the host’s homeostasis. The typical human body of a 70kg male is 
composed of 3•1013 somatic cells and, according to current estimation, an extra 3.8•1013 
microbial cells [13]. While the human genome encodes roughly 20,000 protein-coding 
genes, the bacterial metagenome carries at least 100 times more genes and is therefore 
coined the "second genome" [14]. The gastrointestinal tract contains over 90% of these 
microbial cells, but there are still roughly 1012 on the skin and a modest amount in the lungs 
[13,15]. Together with these microbes, we form a holobiont, whose health depends on 
symbiotic interactions between the residents – microbes – and host [8]. 

Microbes are masters at sensing and responding to their environment. Host-associated 
microbes cover diverse roles. On epithelial surfaces, they act as physical barriers against 
foreign pathogens [16–18], degrade and modify compounds, and have roles in the 
maturation and function of the immune system. Resident strains have evolved mechanisms 
to break down antimicrobial peptides produced by the human host, utilize low-energy 
sources such as free lipids for growth, and improve adherence to specific surfaces. Low-

Figure 2. Three levels of ecological diversity. 𝛼-diversity describes diversity within a site (sample, 
habitat), 𝛽-diversity describes the diversity between two sites, and 𝛾-diversity describes the 
diversity between two landscapes. Created with BioRender.com. 
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energy compounds are frequently broken down in ways that benefit us: especially gut 
microbiota convert indigestible food into nutrients, release vitamins, peptides, and immune 
regulatory compounds, to name a few. Microbes also create complex natural products such 
as macrolides and polyketides, many of which have antimicrobial and immunomodulatory 
activities [19]. 

The human gut represents a unique, complex, and heterogeneous environment. Because 
most of the manuscripts in this thesis are studies on the gut microbiota of the large intestine, 
I will briefly introduce the structure of the gastrointestinal tract and the conditions microbes 
encounter therein. 

 

 
 

 
 

The Human Gastrointestinal Tract 
The human gastrointestinal system (GI) is a complex organ with many different sites and 
functions. While the overall role of the GI is the extraction of nutrients and removal of 
indigestible waste, it also represents a unique environment for microbes to thrive and the 
largest compartment of the immune system [18]. Thus, it is constantly exposed to antigens, 
commensal bacteria, and pathogens. The GI tract (Figure 3) begins in the mouth, with the 
esophagus carrying fluids and food to the stomach. The lower GI tract starts with the small 
intestine, connecting the stomach outlet and the large intestine. The small and large 
intestines form a tube of column-shaped epithelial cells and end in the anus. 

The small intestine plays a role in dietary component digestion and absorption and the 
synthesis of antimicrobial peptides [18]. The large intestine, on the other hand, performs 
little digestion and is physiologically primarily responsible for absorbing water and 
eliminating undigested food [18]. Only a few immune cells are enriched, including 
macrophages, IgA+ plasma cells, and Treg cells [18]. However, because the gut’s distal 
regions are also home to billions of commensal human bacteria, it’s an important target for 

Figure 3. Basic anatomy of the human gastrointestinal system. The majority of microbial 
cells (>90%) is found in the large intestine [18]. Creative Commons license, Marina Ruiz. 
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research into host-microbe interactions [13,18]. The lower GI can directly influence 
microbes via crosstalk between colonocytes, immune cells, antimicrobial peptides, 
exchange of metabolites, limiting carbon sources, and gut movement. Analogously, 
microbes can interact with the GI by exchanging metabolites and binding mucosal surfaces. 

Proximal regions of the GI are still challenging to access non-invasively. Instead, fecal 
samples were used as proxies for most studies on the large intestinal microbiota of humans 
and mice [10,20] and in the microbiome studies presented in this thesis (manuscripts 
III-VI). 
 
The Human Gut Bacteriome 
The bacteriome is the most abundant and frequently studied part of the gut microbiome 
[21,22]. Bacterial composition varies over the different parts of the GI, but most notably 
between upper and lower GI tracts [23]. Molecular techniques estimate 500-1000 different 
species in the GI of healthy adults, most of which are harmless [24,25]. Gut microbes have 
major roles in maintaining host homeostasis [26], extracting nutrients and energy from food 
[25,27], host immune function [22,28] and defense against pathobionts [26,29]. They also 
have important roles in several diseases such as obesity [30,31], malnutrition, inflammatory 
bowel disease [22,32], metabolic disorders [22], type 2 diabetes [30,33], neurological 
disorders and cancer treatment [25,34,35]. 

Despite large-scale projects such as the Human Microbiome Project [7,36], defining a 
“healthy” microbiome remains a challenging and ongoing topic. In healthy adults, 98% of 
bacterial species are from the phyla Firmicutes, Bacteroides, Actinobacteria, and 
Proteobacteria [26]. However, at increased resolution, the composition of gut communities 
and functions is highly personalized and dynamic over time [26]. An ensemble of factors 
with significant influence on the composition was identified, including age, gender, diet, 
alcohol and lifestyle, hyper immunity, and host genetics [26]. Furthermore, metabolic and 
structural patterns consistent across healthy human individuals were identified [37,38]. 
These structural patterns are often described in terms of stability, resilience, perturbation, 
resistance, redundancy, and differences in the abundance of specific taxonomic clades. 

 
The Role of Gut Strict Anaerobes 
While microbes produce a variety of compounds, one group of microbes consistently 
showed differences in abundance in the manuscripts in this thesis: obligate anaerobes[18]. 
These microbes are an exciting example of co-evolution between microbes and their host. 
Obligate anaerobes – microbes that cannot survive in the presence of oxygen – are the main 
colonizers of the large intestine [18]. Many anaerobes ferment non-digestible fiber from 
food, thereby creating small molecules called short-chain fatty acids (SCFA), such as 
acetate, propionate, lactate, and butyrate [22,39]. SCFAs are abundant in stool samples [40] 
and have antimicrobial, immunoregulatory, and homeostasis properties [22]. In addition, 
some SCFAs are critical to maintaining gut hypoxia: Colonocytes consume microbial 
butyrate as a major energy source [40] to perform aerobic respiration [41], using up most 
of the cells’ oxygen. The resulting hypoxia, in turn, selects for obligate anaerobe bacteria, 
creating a positive feedback look selecting for SCFA-producing bacteria. However, some 
of these compounds can also be harmful in dysbiotic communities. For example, in autistic 
spectrum disorder, subjects show increased bacterial diversity alongside higher 
concentrations of SCFAs and ammonia [42]. 
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The Human Gut Mycobiome 
Fungi are the most abundant group of eukaryotes in the gut [43]. However, gut mycobiota 
remain understudied due to technical challenges, including their lower abundance, 
differences in the cell wall and DNA extraction, larger and more complex genomes, and 
lack of reference genomes required for comparative genomics [44]. In addition, while 
fungal cells and genomes are much larger than bacterial cells, fungi are vastly outnumbered 
by bacteria in stool samples (105 compared to 1011 [45,46]). I address some solutions to 
these issues in section 2.3. These notwithstanding, gut fungi were often associated with 
disease development [47]. Therefore, mycobiota were an important part of microbiomes to 
study during my Ph.D. 

Mycobiota composition is even more dynamic than bacterial. Still, many fungal genera 
are commonly detected: around 50 fungal genera are typically reported in stool samples, 
although only about 10 explain most of the community compositions [48,49]. Commonly 
detected genera include Saccharomyces, Candida, Malassezia, Cryptococcus, Penicillium, 
Fusarium, and Yarrowia [47,49–51]. What factors and how they affect fungal communities 
are not well established. A recent study reported significant, systematic differences by host 
age and diet [47]. Interestingly, dairy consumption was positively correlated with 
Saccharomyces and negatively with Candida.  

Little is known about the positive health impacts of fungi. Saccharomyces is generally 
considered harmless to humans, and some selected species (S. cerevisiae) are even used as 
probiotics. In addition, fungi are likely involved in conditioning the immune system, as 
evident by their involvement in inducing and preventing allergies [49]. Therefore, my work 
aimed to identify affecters of mycobiome diversity and composition. 

 
1.3. Pathobiosis 
Environmental stressors can drive some commensal microbes from mutualistic or harmless 
states into pathogenic states [52]. Such microbes are called “opportunistic pathogens” [53]. 
The prime example of an opportunistic pathogen is Escherichia coli, one of the most 
prevalent gut bacteria [54]. E. coli is a facultative anaerobic bacterium. While prolonged 
exposure to oxygen is toxic, most strains can utilize aerobic respiration for short amounts 
of time, which can help them outcompete other microbes [54]. Incidentally, an expansion 
of facultative anaerobes in the gut was frequently observed in inflammatory diseases and 
dysbiotic communities [55–57]. Another concept is the induction or increase of virulence 
by horizontal gene transfer between microbes [53]. Thereby, commensal strains may turn 
pathogenic on accident, or already virulent strains spread their virulence factors. The exact 
mechanisms of pathogenesis are often complex and likely context-dependent (temporally 
and locally) [53]. It was thus suggested to use the term pathobiome, which describes a set 
of circumstances, microorganisms, and their interactions, that result in a diseased state of 
the host [8]. Pathobiome is often defined or identified by dysbiotic gut communities. 

 
Markers of Dysbiosis 
Dysbiosis of bacterial communities in the large intestine is not well-defined. Due to the 
complexity and dynamics of microbial communities, microbiomes from healthy subjects 
are typically used to describe a balanced or biotic microbiome [58,59]. In this sense, 
dysbiosis is identified by microbial communities sowing significant structural differences 
from those of healthy individuals [58,59]. This is possible because microbiomes of healthy 
individuals often demonstrate higher similarity than dysbiotic ones, following the idea: 
“There are many ways to be sick, but only a few ways to stay healthy”. Typical dysbiosis 
markers include low taxonomic and functional diversity, reduced abundance of strict 
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anaerobes, presence of pathogens in host blood due to loss in the gut barrier integrity, or 
substantial changes in metabolic states [53,58]. 
 
Perturbation 
Perturbation is an external event that causes a distinct selective pressure on the ecosystem 
[60]. Microbiota demonstrate a certain capacity to revert perturbations (resilience). 
However, resilience works in both directions: perturbations can result in resilient unhealthy 
states, some of which are associated with diseases such as obesity [60]. Perturbations were 
identified in most diseases linked with microbiota [19]. Many factors influence microbial 
composition in potentially harmful ways, including age, diet, treatment with antimicrobial 
agents, pharmaceutical proton-pump inhibitor drugs, xenobiotics, environmental toxicants, 
pet exposure, and birth delivery mode [19]. 

A powerful source of perturbation is antibiotics, a broad group of compounds with 
typically antibacterial effects [60]. Some diseases, such as antibiotic-induced colitis or 
inflammatory bowel disease, are directly linked to antibiotic treatment [19]. Even though 
bacteria are the main target of these drugs, there is evidence of a profound influence of gut 
fungi as well. Some studies on the gut of mice indicated a substantial increase in the 
colonization of pathogenic fungi such as Candida at multiple body sites in the early 
aftermath of antibiotics treatment [3,4,61–64]. However, how much this applies to humans 
is unclear and therefore addressed in manuscripts III-IV. 
 
The fungal pathobiont C. albicans 
C. albicans is a dimorphic, opportunistic, facultative anaerobic fungus [65] and one of the 
most prevalent in the human gut [66]. While harmless to healthy hosts, it often infects 
patients with immunocompromised immunity, causing an often lethal disease systemic 
candidiasis [66,67]. In its commensal form, it resides in ball-shaped yeast cells, but on 
contact with surfaces, it forms tube-shaped hyphae [65]. This morphological switch is 
considered a key virulence factor [65,66]. While the circumstances enhancing its virulence 
and allowing the translocation of the fungus through the epithelial lumen are not entirely 
clear, the intestinal microbiota are considered a key regulator to prevent fungal overgrowth 
[66]. 

 
1.4. Fungal Infection 
The human body represents an attractive environment for many microbes, both beneficial 
and detrimental. While human pathogenic fungi are an increasing cause of dangerous 
diseases [68], the conditions that allow fungal infection are complex and not fully 
understood. Host immune dysfunction is a key requirement for fungal infection [69], and 
the bacteriome is likely to have substantial roles in promoting and inhibiting opportunistic 
fungi. Bacteria can limit fungal colonization by producing antifungal compounds, 
competing for nutrients, cellular contract, chemotaxis, or physiochemical changes to the 
local environment [70,71]. Likewise, bacteria may promote fungal growth by exchanging 
metabolites, creating biofilms, and adherence to the pathogen [70]. But findings for the 
latter are sparse due to the difficulty of studying microbes directly in their native 
environment. 
 
Host Immunity 
The host can adopt three main strategies to deal with microbes: avoidance, resistance, and 
tolerance. A simplified view of the human immune system describes three levels of 
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complementary systems: (1) anatomic and physiological barriers, (2) innate immunity, and 
(3) adaptive immune system [72]. 

Physiological barriers include intact skin, low stomach pH, and bacteriolytic enzymes 
in several body fluids [72]. In the intestine, a set of diverse microbes residing on the 
mucosal surface act as an integral part of host defense. On breaching this first defense, 
microbes encounter cells of the innate immune system [72]. These cells have invariant 
receptors that detect conserved components presented by pathogens [72]. The system lacks 
specificity but responds fast and will activate pro-inflammatory responses, including 
mobilizing the more specific but slower adaptive immune system [72]. One type of innate 
cell (dendritic cell) was of particular interest in my studies. 

The innate immune system consists of a group of specialized, “professional” cells that 
perform phagocytosis with high efficiency [73]: Monocytes that differentiate into 
macrophages and dendritic cells (DC), granulocytes (neutrophils, eosinophils, basophils, 
mast cells) and specific lymphocytes (natural killer cells) [73,74]. Pattern recognition 
receptors (PRRs) in professional cells recognize pathogen-associated molecular patterns 
(PAMPs) that are present in microbial cell walls and foreign to the host [75]. While the 
overall mechanism is understood, the recognition mechanisms of PAMPs are mostly 
unknown [75]. 
 
Aspergillus fumigatus infections 
On a daily basis, every human inhales thousands of airborne conidia of the fungus 
Aspergillus fumigatus [75]. While harmless to healthy human individuals, A. fumigatus 
frequently infects the respiratory systems of immunocompromised patients, especially after 
treatment with immune-suppressant drugs used during stem-cell or organ transplantation 
[75]. Upon infection, A. fumigatus causes Invasive aspergillosis (IA), a life-threatening 
disease associated with high mortality rates and insufficient treatment options [76]. Anti-
fungal prophylaxis, including azole drug treatment, works only in a fraction of patients, 
and drug-resistant A. fumigatus strains were already detected [76,77]. In one of our studies, 
we investigated the potential origins of azole resistance across many A. fumigatus isolates 
(manuscript II). 

A. fumigatus is a dimorphic fungus, i.e., it exists in non-pathogenic states (conidia) but 
can also form hyphae (germ tubes) [75]. Infections start by conidia reaching lung surfaces 
such as alveoli which are protected by innate immune cells [75]. Without successful 
clearance, the fungus germinates hyphae and forms a colony. It degrades the surrounding 
tissue to acquire nutrients, which can obstruct lung function [75]. While innate immune 
cells are generally poor at recognizing conidia [75], antigen-presenting cells, especially 
DCs, recognize hyphae well [75]. Upon detection of the pathogen, DCs release pro- and 
anti-inflammatory cytokines, present antigens of the detected pathogens to T cells, and 
release cytokines to promote B cell activation [74,75]. Consequently, DCs act as an 
essential regulator of innate and adaptive immune systems [74,75]. 

The virulence of A. fumigatus may further be enhanced during simultaneous infection 
by other microbes or viruses [78]. To address the latter, I conducted a study on the 
transcriptome changes of a human herpes virus, A. fumigatus, and human dendritic cells 
during co-infection by both pathogens (manuscript I). 
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2. Quantification of Host and Microbes by Genome Sequencing 
In the past, the study of microbiota was limited to the cultivation of microbes in Petri dishes. 
But many, if not most, gut microbes are strict anaerobes and challenging to cultivate [44]. 
But around the year 2000, things began to change. Advancements in genomics technology 
allowed faster and cheaper sequencing of large portions of genomic material from 
biological samples, resulting in a new approach: Comparative Genomics. Cultivation 
methods were replaced mainly by DNA sequencing of marker genes or entire 
metagenomes, revealing an enormous number of new organisms, microbial functions, and 
biodiversity [79]. The following section will describe sequencing technology and its use in 
genomic research, as used throughout my studies. 
 
2.1. Next-Generation Sequencing 
Genomics evolved around the concept of a reference genome, which is a roadmap for a 
typical individual of a species [80]. In its most simple form, it is a consensus nucleotide 
sequence and an annotation of functional regions [81]. Such references are used together 
with genomic sequences acquired from new samples. Many companies offer kits and 
services to extract nucleic acids (RNA or DNA) from biological samples such as stool, 
blood, and cell cultures and perform sequencing. However, it is still essential to understand 
how this quantification works, as it affects downstream analyses. For all current sequencing 
technologies, cells are first isolated from the sample, then lysed, and their nucleic acids 
extracted. 

1st-generation sequencing (FGS) methods are based on Sanger sequencing [82]. Long 
nucleic acid molecules were broken down into many random fragments (shotgun). For 
RNA sequencing (RNA-Seq), RNA molecules were converted before or after 
fragmentation into complementary DNA (cDNA) by a reverse transcriptase enzyme [83]. 
DNA or cDNA were then amplified (cloned) in vivo using a host bacterium (Escherichia 
coli) or in vitro using polymerase chain reaction (PCR) to acquire enough material for the 
sequencing [82–84]. The final readout of cDNA sequences are reads, a term used for DNA 
readouts from newer technology as well. 

Next-generation, or 2nd-generation sequencing (SGS), methods reduced cost and 
increased speed of sequencing. This was achieved by (a) combining amplification and 
sequencing and (b) the parallel sequencing of thousands to millions of colonies of single-
DNA fragments [84]. Compared to FGS, the sequencing output increased by five orders of 
magnitude [85]. While the latest FGS technology produces sequences of up to 1000nt [86], 
modern Illumina machines can sequence fragments of up to 600nt [87]. While there are 
different commercial technologies, Illumina platforms became the de facto standard for 
SGS due to high–throughput, low-error readout, relatively low cost, and excellent protocols 
for DNA extraction and filtering [87]. 

Next-next-generation sequencing - 3rd generation - will enable the sequencing of single 
molecules of even longer length and without amplification [84]. Current technology allows 
sequencing of fragments up to 13kb [88] and some even 150kb [86]. Furthermore, RNA 
does not need to be converted to cDNA, removing some of the biased caused by the 
conversion process. However, while these technologies offer some advantages (which I 
discuss on page 203), they have higher base-calling error rates [86]. Especially 
technologies aiming for over 30kb may exhibit up to 20% [86]. This elevated error rate and 
the high volume of genomic material required for sequencing made this technology 
impractical for many quantitative analyses (e.g., transcriptomics). 
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The choice of sequencing machines depends on the main objectives of the study. The 
following section will introduce the most important methods in the downstream processing 
of SGS data to quantify genes and microbes. A general overview is given in Figure 4. Again, 
only DNA fragments of close to 600nt can be sequenced with high quality [89], exceeding 
the average length of protein-coding genes and genomes. This major limitation was dealt 
with in two general ways: (a) extraction and amplification of small, specific genomic 
regions – amplicons or (b) deep metagenome sequencing with binning techniques. 
 
Quality control, Genome assembly and Read mapping 
The first step in processing read libraries involved trimming low-quality read segments and 
the removal of low-quality reads and contaminants (e.g., PCR primers or foreign DNA) 
[90]. A position-wise quality score (Phred Score) indicates read quality [87]. Commonly, 
base-call error rates of 1 in 100bp (Q20; 99%) to 1 in 1000bp (Q30; 99.9%) are chosen 
[87]. I performed trimming-related tasks with the program Trimmomatic in all 
manuscripts included in this thesis [90]. The next typical steps tasks involve the 
reconstruction of genomes (assembly), identification of homologous sequences 
(alignment), or quantification of enriched segments (mapping). 

Reads originating from the same chromosome may be identical, aside from a few 
mutations, and have significant degrees of overlapping regions. To reconstruct a genome, 
reads are assembled based on these overlapping sequence sections into progressively longer 
sequences (contigs) [84].  

Sequence alignment is the process of matching two or more sequences to identify 
regions of high similarity. The alignment tool BLAST [91] is often employed to predict the 
functions of genes (query) by sequence homology and allows low sequence identity to the 
reference gene (<80%). Alternatively, the aligner DIAMOND gained popularity in 
metagenomic research [92]. DIAMOND is 1.000-10.000 times faster than BLAST+ but has 
lower sensitivity and is limited to amino acid sequences [92]. Notably, the new 
ultrasensitive mode of DIAMOND achieves BLAST-level accuracy at an 80-fold faster speed 
[92].  

Sequence mapping is a particular type of alignment but involves assigning billions of 
short sequences (i.e., reads) against a few reference sequences. Mapping is used to quantify 
genomic regions (e.g., genes), create coverage profiles, or identify short mutations 
(section 2.7). Mapping approaches are high-speed but require a high similarity between 
reads and reference segments. While RNA-Seq research uses mapping tools such as 
HiSat2 with increased speed and accuracy [93] (manuscript I), metagenomic studies use 
older tools such as BWA or Bowtie2 because these programs allow more mismatches 
between a read and a target region (manuscripts III-VI). 
 
2.2. Single and Dual RNA-Seq 
While infection studies involve two or more organisms, transcriptome sequencing was 
limited to only one organism at a time [94]. Cells from different organisms had to be 
separated and sequenced independently, leading to substantial biases in gene quantification 
down the line [94,95]. But one decade ago, laboratory and in silico improvements allowed 
for the first dual RNA-Seq experiments of human cells and one pathogenic species, 
significantly decreasing sequencing costs and bias [96]. So far, mammalian host cells have 
been challenged with one viral, bacterial, fungal, or eukaryotic pathogen [94]. In this thesis, 
we go one step further to perform the first “triple RNA-Seq” to study triangular interactions 
between human cells and two pathogens (manuscript I). 
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2.3. Fungal ITS Amplicon Sequencing 
To date, most microbiome studies focused on characterizing community compositions 
(Figure 4) [97]. A cost-effective, high-throughput, and common approach involves 
sequencing of marker genes amplicons, i.e., genes that can be used to delineate taxa [98]. 
Standard marker genes are the highly conserved ribosomal RNA (rRNA) genes (16S for 
bacteria; 18S and 23S for eukaryotes) or the variable regions between them [99]. A 
common technique to create amplicons uses polymerase chain reaction (PCR) and small 
DNA template molecules (primers) to define and extract the region of interest from a pool 
of DNA [99].  
 

 

 
 
 

  
SSU 5.8S LSU

ITS1 ITS2

Figure 4. An overview of our microbiome analysis workflows. Amplicon-based approaches are mostly 
limited to taxonomic profiling. Whole shotgun genome sequencing approaches can be applied to derive 
bacterial species and functional profiles. Reads are decontaminated in silico (e.g., host-reads). 
Metatranscriptomics requires additional filtering steps pre- and post-sequencing. High-level analyses 
such as diversity, differential abundance, or co-abundance network analysis are required to gain 
biological insights. This figure is based on figures from [10,137]. 

Figure 5. Internal transcript spacer regions (ITS) of the eukaryotic rRNA gene (small subunit – SSU; 
5.8S; large subunit - LSU).  Each ITS region can be fully sequenced by merging the overlapping 
regions of paired-end reads. 
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Fungal ITS Sequencing 
The eukaryotic 23S rDNA region is over 1500 nt long and exceeds the effective length of 
SGS technology [44,89,100]. Instead, DNA fragments are extracted based on highly 
conserved regions within the rDNA gene (5.8S) and sub-sequent variable regions internal 
transcribed spacers (ITS) are sequenced (Figure 5) [44,89,99,101]. Thereby, conserved 
regions are used to capture as many species as possible, while variable regions discriminate 
taxa [89,102]. Choosing ITS1 or ITS2 is important due to amplification-specific bias across 
different species [44,103]. Sequencing both regions would be best in theory but is 
impossible with SGS technology [44,103]. In our studies, we used ITS2 as it is more 
generic [50,103], has a more consistent length (186 bp on average, but up to 730 bp) 
[50,103], and captures more diversity of human gut fungi [44]. 

Next, taxonomic abundance profiles are created from the amplicon reads. The short 
length of ITS2 fragments results in, on average, sequence overlaps between paired-end 
reads (Figure 5). Reads are merged based on these segments before or during the 
quantification process [104–106]. Due to mutations and sequencing errors, we expect some 
divergence between reference ribosomal DNA sequences and amplicons reads. 
Furthermore, we expect reads from unknown organisms. To resolve these, the following 
steps involve read clustering, taxonomic assignment of clusters, and cluster quantification. 
I used two evolved concepts in my work: orthologous taxonomic units (OTUs) or amplicon 
sequencing variants (ASVs), both of which were used in manuscripts of this thesis. 
 
Amplicon Profiling 
In OTU clustering, amplicon sequences of high similarity (e.g., 97%) are clustered together 
to form a unit (OTU) [89,107]. A representative sequence is chosen for each OTU and used 
for taxonomic assignment. Additionally, reference sequences of known taxa can be 
included to improve accuracy and speed-up taxonomic assignment of clusters. These OTU 
picking procedures are thereby further divided based on the use of the reference sequence 
collection. In open-reference picking, amplicons are first clustered against the reference 
sequences. Clusters containing a reference sequence inherit the taxonomy of that reference. 
Amplicons without a hit to the reference are then clustered de novo. In de novo picking, the 
sequence with a median similarity between all cluster sequences is used as representative 
of the cluster. We used a complete framework for read merging, ITS extraction and open-
reference OTU picking called PIPITS [105] in two manuscripts (III, VI). 

A considerable drawback of OTU clustering is the need for an (often arbitrarily) chosen 
similarity cut-off of 97% [107,108]. While justified historically, genomes from thousands 
of species revealed many clades requiring higher (>99%) or lower (<97%) cutoffs for 
delineation [102,107]. The new approaches amplicon sequencing variants (ASV) and zero-
radius OTUs are denoising procedures that aim to detect and correct for sequencing errors 
so that each resulting ASV represents exactly one organism [89]. In contrast to OTU 
clustering, denoising approaches do not require use-defined cutoffs, offer superior 
sensitivity and precision, and can be directly compared across studies [108]. We used 
DADA2 [104] to estimate ASVs in two manuscripts (IV, V). 
 
Taxonomic Assignment 
Taxonomic assignment is performed using ITS-optimized reference sequence databases 
such as INSDC, Warcup ITS, and UNITE. UNITE [109] is the most favored and was also 
suggested in a recent review [50]. Different alignment software is proposed in the literature 
with large variations in prediction accuracy [110]. BLAST+, RDP, SINTAX, and Mothur 
and commonly used [110]. In our studies [3,6] and others [110], Mothur often had superior 
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taxonomic accuracy compared to the other common methods, but there is still considerable 
room for further improvement [110]. 
 
2.4. Whole Metagenome Sequencing 
While amplicon sequencing technology is cheap, it is limited to primarily genus-level 
resolution and cannot reliably be used to estimate functional information (Table 1; Figure 
4) [89,111–113]. While some tools like PICRUSt [112] offer a rough estimation of the 
functional potential purely from a bacterial composition, they rely too heavily on 
assumptions of functions of representative species. A more comprehensive solution uses 
the entire collection of DNA within a sample, which allows for superior assessment of 
diversity, functional quantification, growth-rate estimation, accurate species-level 
quantification, and even strain identification [114]. However, this applies primarily to the 
study of bacteria. Of note, fungi remain largely undetected in whole shotgun metagenome 
samples due to low abundance and insufficient sequencing depth [44], making amplicon 
sequencing a better approach for studies of this kingdom. 
 

Table 1 Pros and Cons of genomic analyses for microbiome research [10]. 

Methods Advantages and Use Disadvantages 
Marker-Gene 
Sequencing 

• Cheap and amenable to low-
biomass and high-host DNA 
samples 

• Many public datasets 

• Amplification bias and results vary heavily 
on primers and amplification targets 

• Requires a priori domain knowledge 
• Limited to mostly genus-level resolution 
• Very limited functional resolution 

Whole Meta-
genome 
Sequencing 
(WMS) 

• Quantifies genes, functions, species, 
and strains 

• Allows population-wide gene de 
novo assembly and mining 

• Quantifies all kingdoms of life 
• Allows in situ growth rate 

estimation 

• Expensive, laborious, and complex samples 
preparation 

• Host-DNA can influence downstream 
analysis 

• Identifying dead cells is computationally 
intense 

• Inaccuracies in genome assemblies 
Whole meta-
Transcriptome 
Sequencing 
(WTS) 

• Identifies active species when 
paired with metagenomes 

• Captures microbial activity to 
treatment exposure the best 

• Most complex sample preparation 
• RNA Degradation leads to strong bias in 

profiles 
• Host and microbe rRNA depletion is required 
• Biases towards organisms with high 

transcription rates 

 
Formally, the metagenome is the collection of all genomes (or genes) present in a 

sample, including the host. But in practice, host DNA is depleted before and after 
sequencing to prevent hybrid assemblies, assembly errors, and the detection of spurious 
microbes [114]. Host-depletion and the removal of other potential contaminants are done 
in silico by filtering out reads that align with high identity to relevant sections of the human 
reference genome (Figure 4) [114,115]. Metagenomes are acquired through whole meta-
genome sequencing (WMS) [10]. Analogously, the metatranscriptome is the collection of 
all transcribed RNA molecules derived from whole meta-transcriptome sequencing (WTS) 
[10]. Metatranscriptome studies of the microbiome gave vastly different results compared 
to metagenomic results [38,116,117] due to various factors. (a) Only a fraction of genes 
will be expressed by a microbe at any given time, (b) transcription rates vary across cells, 
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and (c) essential genes are sometimes expressed primarily by relatively low abundant 
species. In addition, it can be subject to additional sources of bias. RNA is also far less 
viable than DNA [118]. Unless deep-frozen, RNA can degrade within a few days, which 
leads to uneven degradation of fragments, amplification bias, and incorrect transcriptome 
profiles [118]. Furthermore, host and microbial rRNA is usually removed before 
sequencing (Figure 4). rRNA accounts for at least 90% of sequencing material without 
giving much information, resulting in wasted resources [10,117]. RNA sequences may 
further differ from their reference gene sequence due to post-transcriptional modifications. 
Still, transcriptome profiling can separate alive from dead cells, identify key microbiota 
members of otherwise low abundance, and quantify real-time microbiota response to 
treatment [10,38,119,120]. Furthermore, DNA and RNA profiles can be combined by 
normalizing RNA gene abundances with their DNA gene abundance, resulting in as 
transcriptional activity [3,38,120] (used in manuscript III). 
 
Whole Metagenome Profiling 
The next step is assigning or grouping high-quality reads into taxa, genes, and functions 
(Figure 4). This is not a trivial task considering that reads from metagenomic stool samples 
originate from hundreds to thousands of species [24]. In addition, the shortness of SGS 
technology comes at the cost of precision: assigning reads to specific genomes, organisms, 
or even genes, is challenging. Within the last two decades, a myriad of methods (a) defined 
marker genes to distinguish microbes, (b) created comprehensive references and 
pangenomes, (c) proposed new concepts of species and strains, or (d) focused on functional 
quantification and annotation. The following section describes different strategies for 
transforming read sequences into interpretable units. I will thereby focus on quantifying (a) 
taxonomic composition, (b) functional composition, and (c) joined taxonomic-functional 
composition. 
 
Microbial Composition by Marker-gene Quantification 
To estimate microbial composition directly from reads, three main strategies exist: DNA to 
marker (e.g., MetaPhlan2, mOTU2), DNA to protein sequence (e.g., KAIJU), or DNA to 
reference DNA (e.g., Kraken) [121]. In most manuscripts (manuscripts III-VI), we used 
MetaPhlAn [122,123], a DNA-to-marker method that maps reads to a database of clade-
specific marker genes and quantifies relative abundance at each taxonomic rank [121]. The 
marker genes were identified from reference genomes of many human gut samples [121]. 
While some “DNA to reference DNA” tools such as Kraken claimed superior 
performance, the choice of tools depends on a trade-off between sensitivity (number of 
distinct species) and specificity (accuracy of their estimated abundance) [121]. 
Furthermore, a recent review addressed the difference between estimating (a) the number 
of reads per taxon and (b) taxonomic abundance [121]. Taxonomic abundance estimation 
(e.g., by MetaPhlAn) includes bias correction against varying genome sizes and marker-
gene copy-numbers. At the time of writing, MetaPhlAn and mOTU2 were found to be 
accurate estimators of taxonomic abundance with comparable resolution [121]. 
 
Reference-based approach: gene family catalogues 
Identifying correlations between taxonomic clades and specific traits is insightful, but 
associations at this level are often difficult to confirm. It can therefore be more informative 
to look at genomic information. However, constructing complete and accurate genomes 
from complex biological samples is challenging because reads originate from a diverse set 
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of often closely-related organisms [124]. Instead, gut metagenomes are usually a collection 
of genes [84,125]. Therefore, genes with high sequence similarity (e.g., 90%) are grouped 
into gene families. The resulting representative reference genomes and unified gene family 
catalogs can serve as a common ground for data analysis, interpretation, discussion, and 
cross-study comparison [120,125,126]. 

Gene catalogs can be built from reference genomes of public databases such as the 
National Centre for Biotechnology Information (NCBI) [127,128] or by merging all 
potentially relevant genes from de novo assemblies [125]. An example of the latter is the 
integrated gene catalog of the human gut microbiome (IGC). IGC comprises 9.8 million 
non-redundant genes reconstructed from thousands of de novo gut metagenome assemblies 
[125]. A more sophisticated procedure is presented by the HUMAnN pipeline [120,123]. 
First, MetaPhlAn identifies microbial species in the sample. Then, the species’ 
pan-genomes (ChocoPhlAn) are merged and used as the reference genome for high-speed 
read mapping with bowtie2. Lastly, reads not assigned to genes of known species are 
mapped with DIAMOND to a universal database of protein-coding genes (UniRef90). A 
unique advantage of HUMAnN lies in quantifying microbial functions per species but is 
limited to (a) the knowledge of bacterial genomes and (b) requires more computational 
resources. We used HUMAnN in most studies included in this thesis (manuscripts III-VI). 
 
2.5. Growth Rate Estimation from metagenomic data 
Metagenomics captures the DNA of living, stationery, and dead cells [129]. Therefore, the 
state and origin of many microbes (e.g., microbes found in food) cannot be determined. 
However, the replication rate of microbial species can be estimated from metagenomic 
sequencing data to identify proliferating species [129]. The core idea relies on the 
assumption that bacterial replication starts bidirectionally from one region (ori) and 
proceeds until a terminal region (ter) [130]. Therefore, species replicating faster would 
have a stronger genome coverage at ori compared to ter [129]. This is reflected in the gene 
coverage, which can therefore be used to estimate the replication rate of microbes. We 
estimated bacterial growth rates using “Growth Rate index” (GRiD) [129] (manuscripts 
II, III) to verify that species with significant differential abundance were replicating despite 
antibiotic drugs’ inhibitory effects. 
 
2.6. Metagenomic Species 
Metagenomic species (MGS) is a concept produced by Nielson et al. in 2014 to identify 
novel microbial species in metagenomic samples [131] and was used to assess the functions 
of both known and unknown microbial species. Conceptually, genes are clustered by high 
linear co-abundance of genes (CAGs), assuming that genes have highly correlated DNA 
abundance across different samples if they originate from the same source (organism) 
[131]. Instead of computing all pair-wise gene abundance, the heuristic canopy clustering 
algorithm is used to make this computation feasible for dozens of millions of genes [131]. 
Original work defined CAG abundance as either (a) the median abundance of clustered 
genes [131] or (b) the sum of the 50 most-correlated genes within a cluster [132]. MGS are 
CAGs with many genes (at least 500-700) [131]. Taxonomic assignment is based on the 
consensus taxonomy assigned to each gene, i.e., If at least 50% of genes in an MGS are 
assigned to one species, that MGS is assigned to that species [131,132]. Furthermore, MGS 
can be computed directly from gene family catalogs, as demonstrated in manuscripts (III, 
IV) and by others [56]. Furthermore, I enabled strain-level annotation of MGS utilizing the 
concept of pan-genomes as required for follow-up experiments (manuscript III). 



INTRODUCTION 
 

 15 

2.7. Strain Analysis 
While genomes from different isolates of the same species are very similar (by definition), 
they represent only snapshots of continuously evolving organisms. To identify the genomic 
changes turning a commensal into a pathobiont or how pathogens adapted to humans, we 
used two methods to describe genetic variations in the manuscripts of this thesis: genome-
wide association study (GWAS) and pan-genomics [80]. 

Coverage profiles of mapped reads [81] can be used to identify short insertions, 
deletions, and substitutions. Changes at a singular position are called single nucleotide 
variants (SNVs) [133]. An SNV found in at least 1% of the study population is a single 
nucleotide polymorphism (SNP). A common tool to analyze SNPs is GWAS. GWAS 
performs association tests between each SNP and a phenotype of interest [134]. However, 
due to the fast evolution time of microbes, phenotypic variations can also result from 
duplications or deletions of larger genomic regions, so-called copy number variations 
(CNVs) [134]. Because of that, many methods use SNPs in gene coding regions [135] or 
selected marker genes [136]. 

Pan-genome analysis, in contrast, deals with the presence and absence of entire genes 
and genomic regions [80]. The pan-genome is the whole set of genes from all strains of a 
clade. It comprises a core genome – genes found in all or most genomes, a shell genome or 
accessory genome – genes found in at least two genomes, and unique genes found in only 
one isolate [80]. Importantly, this definition works well for prokaryotes but not eukaryotes. 
Especially for eukaryotes with large genomes (>500 Mb), exons explain only a fraction of 
genetic diversity. Instead, all genomic sequences should be considered, including 
intergenic ones [80]. Our studies used pan-genome analysis to expand our understanding 
of A. fumigatus diversity across different environments (manuscript II) and to annotate 
MGS at the strain level (manuscript III). 
 
2.8. Functional Annotation 
To better understand the functions of genes, they can be grouped based on a higher 
functional context, such as enzymic classes, cellular compartments, metabolic reactions, 
and pathways. Functional categories of novel genes are often inferred in silico. Approaches 
are based on the sequence and structural information of genes with known or putative 
functions [137]. Annotation approaches fall into four major categories: homology-based 
(e.g., alignment), motif-based (e.g., Hidden Markov Models, neural networks), context-
based and specialized approaches [137]. Public databases encompass our collective 
knowledge of verified and predicted functions for genes. The grouping of genes can be 
achieved through gene-set enrichment tests [138] or by accumulating gene profiles into 
functional profiles [90]. In the following, I will introduce the databases most important in 
my studies. 

Enzyme Commission (EC) annotation is a strict classification hierarchy used to organize 
reactions catalyzed by enzymes [139] and is one of the most important resources for 
functional annotation. It was originally invented by the Nomenclature Committee of the 
International Union of Biochemistry and Molecular Biology in order to assign consistent 
naming schemes to enzyme functions [140]. Unlike other functional annotations, EC 
groups enzymes by common functions instead of sequence similarity. EC is maintained by 
ExPASY, which performs manual curation of protein functions [141]. 

T The Gene Ontology (GO) Consortium provides structured, controlled vocabularies of 
biological terms that can be used to summarize and analyze functional knowledge of gene 
products [142]. GO annotations are used because they describe a gene’s role in a process, 
a location in a cell, or molecular function, even if the gene’s activity is still being 
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investigated or changed in the future [142,143]. GO terms are thereby organized in a 
hierarchy of major domains: Molecular Functions, Biological Processes, and Cellular 
Components [142]. A gene can therefore be assigned to multiple GO terms with 
complementary information. 

MetaCyc and KEGG are large metabolic pathway databases with similar aims and scope 
and are used across all projects involving sequencing data [144,145]. In contrast to GO, 
KEGG and MetaCyc provide precise information about the molecular function of genes 
and do not include genes whose function is not identified [146].  

KEGG, founded in 1995, was one of the first public annotation resources, including 
tools to assign higher-order functionality to gene sequences. KEGG defined so-called 
KEGG orthologs (KOs), a set of manually curated orthologous gene groups based on public 
reference genomes. KOs form the base for multiple types of annotation within the database, 
including EC numbers, KEGG modules, KEGG pathways, and KEGG compounds.  

MetaCyc [145] is considerably newer and more curated but did not supersede KEGG 
yet. A direct comparison between the two databases is difficult, but some concrete numbers 
were published in 2013 [144] and 2019 [145]. MetaCyc super pathways are roughly 
equivalent to KEGG pathway maps, while MetaCyc base pathways relate to KEGG 
modules [144]. At the time of writing, MetaCyc has fewer super pathways than KEGG (382 
vs. 548) but substantially more base pathways (2,980 vs. 457) [147,148]. MetaCyc has 
more substantially more metabolic reactions (17,509 vs 11,741). KEGG still covers more 
compounds (18,905 vs. 17,490), but this difference has decreased significantly since the 
last major comparison in 2013 [144]. Importantly, MetaCyc contains more database 
attributes, which allows for finding more relations between compounds, reactions, 
pathways, and species. Both databases should be considered complimentary. KEGG has 
advantages in the number of compounds, a more robust user API, and a more robust 
functional hierarchy. Functional associations can then further be stratified with MetaCyc’s 
more curated reactions. Soon, MetaCyc is likely to become the main resource the 
metagenomic research. 

The Pfam database is a protein-centric database for classifying protein sequences into 
families and domains [149]. Pfam is useful to get first insights into protein-coding genes 
for which little to no functional annotation is present or if a particular class (e.g., antibiotics) 
is of interest. 

UniProt knowledge database is another essential resource used to identify and annotate 
protein families. It contains around 190 million protein sequences submitted from projects 
across the globe [142]. UniProt supplies several sub-databases with different levels of 
annotation, curation, and redundancy. To reduce the enormous amount of often redundant 
gene sequences, the “UniRef” databases were created and are routinely updated [142]. 
Therefore, proteins are clustered by their homology, starting with 100% (UniRef100) and 
further clustering by 90% (UniRef90) down to 50% (UniRef50). The UniRef90 database is 
frequently used as a reference to annotate de novo gene family catalogs. UniRef90 genes 
often contain EC, GO, Pfam, KEGG, and other annotations that can also serve as quick 
approximations of novel genes’ functions. The HUMAnN pipeline uses UniRef90 as the 
primary reference for genome annotations, gene catalogs, and subsequent higher-level 
annotations. 
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3. Downstream Data Analysis 
After quantifying genomic material into abundance profiles, the next step is the 
identification of associations between features (genes, microbes) and host traits (e.g., age, 
host disease, treatment, genetics). Approaches used in my work can be divided roughly into 
(a) univariate methods, which infer associations of only one feature with one or more traits, 
and (b) multivariate methods, which associate multiple features with one or more traits. 
Examples of univariate methods are simple linear regression (including Pearson 
correlation) and generalized linear models (GLMs). Regression is often used to determine 
the differential abundance of one species between two genders (f ~ group). A typical 
example of multivariate estimation is a test for significant differences in β-diversity 
between groups. The standard method (Permutational analysis of variance – 
PERMANOVA) estimates grouping related differences from pairs of samples  
(Sample1 + Sample2 ~ group). Other examples include sophisticated machine learning 
frameworks, which often integrate the abundance of multiple features to make predictions. 
I will focus on the methodologies utilized in the included manuscripts, although I will 
address common alternatives briefly where merited. 
 

 
 
 
 
3.1. Bias in Genomic Data 
Many different analyses methods, from simple regression models to entirely new 
algorithms, were developed in the past decade without reaching a clear consensus among 
the scientific community working on microbiome [128,150]. A good overview of the 
sources of bias is presented by Weiss [151] and Bharti and Grimm [137], and a 
comprehensive overview of processing pipelines was published by Breitwieser [128], and 
analysis methods by Matchado [150]. The three most significant sources of bias frequently 
mentioned in the literature are compositionality, relative abundance, and sparsity. 

Protocols for sequencing library preparation are optimized towards maximum yield, 
regardless of the density of the original material [152]. While this maximizes sequencing 
success, the link between cell density and sequencing depth is lost, resulting in a 
proportional data structure [11]. One stark consequence is negative correlation bias, by 
which the abundance increase of one feature requires an equal decrease of the remaining 
features and vice versa (Figure 6) [11,152]. This “constraint sum problem” in high-
throughput sequencing data needs to be addressed to avoid spurious estimates of statistical 
properties [11,153–155]. 

We rarely know the real abundance of genes, cells, or microbes in samples because (a) 
it is hard to precisely control the amount of DNA extracted from a sample and (b) due to 
amplification bias [156]. As a consequence, sequencing data estimates only relative 
abundance or relative observed abundance [156]. 

Bacterium A

Bacterium B

Control Treatment

Absolute Abundance

Control Treatment

Relative Abundance

Figure 6. Compositionality bias. While bacterium A changes, B does not. However, due to 
sub-sampling and scaling effects, both species may appear differentially abundant. Figures 
based on Matchado et. al [150]. 
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Zero-inflation (sparsity) bias comes from uncertainty about the meaning of zero and 
how to replace zeros before log-transformation. Zero abundance estimates have different 
sources, including insufficient sample material, other high abundance taxa, and true 
absence [157]. Workarounds involve (a) replacing zeros with a constant, positive value or 
(b) modeling zeros as a statistical process [150]. 

Of note, many of these problems can be mitigated when data is analyzed within the 
correct framework. In the following sections, I will introduce the most important in silico 
solutions to these problems used throughout my Ph.D., but I will further address promising 
technological advancements in the  Discussion. 
 
Normalization 
Normalization aims to account for technical, non-biological effects that prevent count data 
from accurately reflecting abundance differences. Common factors include gene length, 
GC content, and sequencing depth [151]. Read length and GC-content are within-sample 
effects: they affect comparisons between feature abundances within a sample. On the other 
hand, sequencing depth is a between-sample effect: They can affect comparisons of the 
same feature across samples. Bias is mitigated or removed by a mathematical 
transformation that results in an invariant: a data property that is identical (within or 
between samples) after a specific transformation was applied. 
 
3.2. Differential Abundance Testing 
We consider a feature differentially abundant if its’ group-wise mean differs significantly 
between at least two conditions [158]. Significance relates to P-values, a statistical concept 
used to deal with randomness in scientific measurements. The P-value is defined as the 
probability of observing an outcome at least as high (or higher) than expected by chance 
assuming the Null-Hypothesis to be true [159]. Such a P-value is valid if we can make 
reasonable assumptions about the expected distribution of the measurement under 
experiment conditions. Indeed, we rarely know the true distribution of data in the real 
world, but we can often either approximate it or transform data to fit a distribution better. 

We can generally differ between differential abundance estimators that make minimal 
assumptions about the distribution of data (non-parametric) and those that make additional 
assumptions in order to increase statistical power (parametric) [90]. Non-parametric tests 
such as the Wilcoxon rank-sum or Kruskal-Wallis test perform statistical inference on data 
transformed into ranks [90] (manuscript IV). In addition, they can often be applied to data 
without known distributions. While less common, non-parametric generalized linear 
models exist as well [160,161]. In contrast to many other non-parametric methods, these 
models support the control of additional covariates and confounders. I used such a model 
(Rfit [161]) in my work to control for additional covariates such as gender. Parametric 
methods, in contrast, are more diverse and their applicability context specific. 
 
Parametric tools – RNA-Seq 
RNA-Seq data generated by high-throughput sequencing machines follows a Poisson 
distribution with over-dispersion, also known as a negative binomial distribution [158]. 
This distribution is commonly assumed in generalized linear regression models fit to gene 
expression data [151,158,162]. This assumption is also made by the leading methods for 
estimating differential gene expression in bulk RNA-Seq experiments, DESeq2 and edgeR 
[158]. However, in stark contrast to metagenome studies, only 4-6 biological replicates per 
group are sufficient to control the false-discovery rate (FDR) at the desired level (e.g., 5%) 
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for typical case-control RNA-Seq experiments [158]. This power is achieved because (a) 
gene expression data of one organism is described well by negative binomial distributions 
and (b) by further assuming insignificant differences in gene expression between treatment 
groups for most genes. The latter assumption makes between-group normalization 
procedures very robust against violations of all the assumptions made. I used DESeq2 and 
edgeR in manuscript I. 
 
Parametric tools – Metagenomics 
DESeq2 and edgeR were also applied in metagenome investigations [90]. However, their 
applicability has been doubted due to statistical disparities in metagenomic data [151,156]. 
Furthermore, microbiome abundance profiles (metagenomics and metatranscriptomics) 
have substantially different properties: (a) Zero-inflation is usually high at genus and lower 
levels. (b) The constant-sum constraint is stronger because the number of species in a 
taxonomic composition is much smaller than in gene compositions. (c) The majority of 
species or genes– or even all –can be differentially abundant between traits [163], which 
violates the central assumption of most (RNA-Seq) scaling normalization methods [156]. 

Early solutions that addressed these problems involved (a) generalized linear mixed-
models with zero-inflation components [164], (b) normalizing abundances by assessing 
library size factors derived from only some taxa across samples [156], and (c) by making 
further assumptions on parametric distributions of data [156]. For example, Maaslin2 
[165] is a general regression framework that applied a GLM to log-transforms total-sum 
scaled data (manuscript V). Another example is metagenomeSeq [156,164], which uses a 
log-normal mixture model with a zero-inflation component (manuscript III). While 
powerful, this tool was later shown to have inflated FDR with certain types of complex 
microbiome data, indicating the need for further methodological improvements [163]. Still, 
both methods yielded consistent results in my study but showed differences in statistical 
power between projects. 

 
Enrichment Tests 
Once a set of differentially abundant genes or microbes is determined, it can be helpful to 
identify their common functional processes or properties. This is often done using 
overrepresentation analysis (ORA) methods [138]. Thereby, a contingency table of 
features and their membership is used (e.g., gene identifies to GO terms) together with a 
set of features (e.g., DA or network clusters). Hypergeometric (Fisher) or chi-square tests 
are commonly used to determine significant enrichments in membership [138] 
(manuscript I-VI). For protein-protein interactions and enrichments, the STRING 
platform provides comprehensive analysis and visualization tools (manuscript I) [166]. 
For microbes, specialized tools like microbe-set enrichment analysis (MSEA; manuscript 
V) were developed [167]. MSEA categorized all published microbe-host-gene interactions 
and performs tests on enrichments for host-disease genes. 
 
3.3. Correlation Network Analysis 
Network-based analytical approaches have proven useful to study complex systems with 
many interactions, such as gene-regulatory or gene abundance networks [168]. Given the 
complex interactions between thousands of individual species found in microbiome 
samples, such network analysis methods are also helpful in the microbiome field [169], 
including cross-kingdom associations. A key feature of network analysis is that structural 
elements of networks appear to be ubiquitous to most complex systems. Network biology 
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approaches range from correlation methods to complex graph-based modeling approaches 
[168]. 
 
Co-Abundance Methods 
A network is formally a graph in which features (genes, microbes, traits) are nodes, and 
edges between these nodes represent their interactions. The correlation of feature 
abundances (co-abundance) is a common approach to generating hypotheses about feature 
dependencies and networks. Estimating naïve Pearson and Spearman correlation 
coefficients is popular in many microbiome fields [150]. However, Weiss et al. [15] and 
others [170,171] discussed the strengths and weaknesses of different approaches. Since 
naïve methods do not address sparsity and compositionality, they can create many spurious 
(false-positive) correlations. Matchado et al. compiled a comprehensive yet not exhaustive 
list of alternative approaches in metagenomics [150]. More sophisticated methods often 
rely on some form of sparsity assumption (e.g., SparCC, SPIEC-EASI, BAnOCC) and infer 
quantities relating to the log-transformed unobserved counts (SPIEC-EASI, BAnOCC) 
[170]. The sparsity assumption increases statistical power when studying thousands of 
interactions from only dozens or hundreds of samples [171,172]. To mitigate bias, log-ratio 
transformations such as the centered log-ratio (CLR) [150] (manuscript V) or Median-by-
ratio (MED) [162,163] (manuscript I) are applied to raw read counts as a pre-processing 
step. Alternatively, a Dirichlet multinomial model can be used to directly account for 
compositionality (BAnOCC) [150] (manuscript III) but at the cost of high runtime. 

Most methods address only the compositionally or library size bias but not zero-inflation 
bias. Workarounds involve (a) replacing zeros with a constant, positive value or (b) 
modeling zeros as a statistical process. An example of the latter is BAnOCC, a Bayesian 
framework method to fit a log-normal prior and therefore does not require zero-replacement 
[170]. 

 
Ultimately, none of the existing methods is fully satisfying. Their applicability must be 

considered on a case-to-case basis, which was the case for manuscripts included in this 
thesis. Still, many tools yield complementary results, which could be combined for more 
robust conclusions [173]. 
 
Trans-Kingdom Correlation Analysis 
Most network-based tools and models are designed for intra-kingdom interactions and may 
create spurious correlations in trans-kingdom estimations [150]. Regardless, sparsity-based 
methods such as SparCC were also applied in cross-kingdom studies [169,174]. However, 
an adaption of SPIEC-EASI enabled trans-kingdom correlation analysis [175]. It was 
thereby demonstrated that log-ratio transformations allow the study of bacterial-fungal 
correlation in lung microbiome data with a smaller bias [175]. Thereby, the composition of 
each kingdom is log-ratio transformed separately, allowing for a direct comparison of the 
resulting abundance ratios within and between samples. It is worth noting that 
SPIEC-EASI adds 1 to abundances to remove zeros, introducing considerable bias in data 
with high-sparsity or low abundance samples [11,176]. However, log-ratio transformations 
can be applied easily, and the resulting data can be analyzed using simpler or naïve 
correlation methods. For example, zeros can be replaced with Bayesian-multiplicative 
replacement (BM) [177] to replace zeros, the result log-ratio transformed with CLR, and 
then analyzed using Pearson or Spearman-based methods. For longitudinal data, I used a 
Bayesian framework (BAnOCC) due to its higher robustness (manuscript III). For data with 
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even greater dimensionality, SparCC (manuscript IV) and log-ratio-based approaches 
(manuscripts V, IV) were more suitable because these methods were fast and had 
sufficient statistical power. 
 
3.4. Microbial Source Tracking 

Microbial source tracking refers to statistical methods quantifying microbial 
contaminants in a metagenomic sample [178]. Thereby, they use the microbial abundance 
profiles from potential contaminant samples (sources) to estimate their species abundances 
in the observed microbial community (sink) [179]. However, the methodology is also 
helpful to quantify the divergence of microbial communities in longitudinal studies [180]. 
Fast Expectation-maximization for microbial Source Tracking (FEAST) [179] superseded 
previous approaches, including more robust estimations of unknown sources of taxa. FEAST 
was an integral part in manuscript IV. 

 
3.5. Machine Learning 

Machine learning is a vast area with a scope beyond this thesis. But since it was an 
essential part of the manuscripts of this thesis, I will briefly introduce the most important 
concepts. Machine learning is a form of artificial intelligence that uses statistical methods 
to identify predictors (features) of outcomes (classes). Learning can be supervised, in 
which samples are labeled (e.g., treatment groups) and unsupervised (no labels) [181]. An 
example of supervised learning is predicting host disease from the corresponding 
microbiome composition. Examples of unsupervised learning are several clustering 
approaches (e.g., k-nearest neighbor) and ordination techniques (e.g., non-metric 
dimensional scaling). In the field of microbiome, machine learning is applied for a wide 
range of tasks, including the creation of patient-status classifiers [182], annotation of gene 
functions [183], and predicting metabolite profiles from microbiome compositions [184], 
just to name a few. One critical source of error is overfitting: A model that memorized the 
data but cannot make accurate predictions on new data. To assess the robustness and 
accuracy of machine learning models, the predictive power of models is evaluated using 
cross-validation [182]. Thereby, iteratively, a fixed number of samples is held out from 
both feature selection and model training and used only to make predictions. 
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II. OBJECTIVES OF THIS THESIS 
 
Microbiome research emerged as an attractive field to study due to the involvement of 

microbiota in host homeostasis and disease. Research on host-pathogen interactions is 
essential for developing new diagnostics and therapeutics. A remarkably flexible tool for 
the study of microbiota is genome sequencing technology. In this thesis, I use several types 
of genome and transcriptome sequencing to assemble and quantify genes, estimate 
microbial abundance across distinct kingdoms, and apply advanced statistical methods to 
predict differences in microbial functions and interactions. Throughout this thesis, I focus 
on interactions between host, bacteria, fungi, and viruses and demonstrate how multi-omics 
technology can be used to create verifiable hypotheses. 

 
The first two papers of my thesis are focused on one specific human pathogen, Aspergillus 
fumigatus. Since fungal infections are on the rise and mortality rates remain high despite 
improvements in antifungal therapy, understanding host-pathogen interactions between the 
human immune system and human pathogenic fungi is of major interest. 

After breaching physiological barriers, innate immune cells are the first line of defense 
against invaders. Even though patients are often co-infected by human viruses in addition 
to A. fumigatus, previous studies were limited to the analysis of only one pathogen and one 
host cell. The latter is clinically relevant because some viruses, such as human 
cytomegalovirus (CMV), were hypothesized to enhance the infectious potential of A. 
fumigatus. However, hard evidence was lacking. 

To address this hypothesis, we surpassed existing dual RNA-Seq approaches by 
developing the first triple RNA-Seq. It enabled the study of transcriptome changes between 
human monocyte-derived dendritic cells (moDCs) with simultaneous co-infection by two 
pathogens. Furthermore, we reconstructed and analyzed the pan-genomes of 300 A. 
fumigatus isolates to better comprehend strain diversity. My work addresses the following 
questions: 

1. What mechanistic changes occur in the transcriptome of moDCs and each pathogen 
during co-infection by A. fumigatus and CMV? 

2. Do clinical A. fumigatus strains differ from environmental strains, and are their 
consequences for infection studies? 

 
In a broader context, and instead of focusing on specific pathogens, we also need to 

investigate the native environments of microbes such as the human gut. Many opportunistic 
microbes – “pathobionts” – such as certain members of Enterococcus, Streptococcus, 
Escherichia, and Candida, are commensal to the lower gastrointestinal tract of humans and 
harmless unless specific circumstances occur. It is still not sufficiently understood how the 
host, its’ immune system, and commensal microbes control the pathogenesis of other 
microbes. However, a fair amount of research has identified several essential microbial 
mechanisms, host conditions, and drug interventions that are frequently associated with the 
promotion or inhibition of pathogenesis. In this regard, antibiotic administration, critical 
illness, and cancer are of strong interest. 
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Again, I used and adapted sophisticated pipelines to improve our understanding of 
microbial interactions. However, my focus here is on community-wide changes in human 
gut bacteriomes and mycobiomes. In particular, I address the following questions: 

1. What changes in interactions occur between gut bacteria and fungi during oral 
antibiotic administration, and are the observed effects reversible? 

2. Which findings from antibiotic drug administration studies on healthy humans 
translate to critically ill patients? 

3. Are there microbial functions encoded in metagenomes that are resilient to various 
diseases and treatments, and what are they? 

4. Can we identify bacteria that limit or promote the growth of common human 
pathogens such as Candida under various conditions in the gut of asymptomatic 
patients? 
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I. Manuscript:
Triple RNA-Seq to Study Host Co-Infection 

FORM 1 

Manuscript No. 1 

Manuscript title: Triple RNA-Seq Reveals Synergy in a Human Virus-Fungus Co-
infection Model 

Authors:  Seelbinder B., Wallstabe J., Marischen L., Weiss E., Wurster S., Page L., 
Löffler C., Bussemer L., Schmitt A. L., Wolf T., Linde J., Cicin-Sain L., Becker J., Kalinke 
U., Vogel J., Panagiotou G., Einsele H., Westermann A. J., Schäuble S., Loeffler J. 

Bibliographic information: Cell Reports 33 (2020), pp. 108389, 
10.1016/J.CELREP.2020.108389 

The candidate is 

 First author,  Co-first author,  Corresponding author,  Co-author.

Status: Published 

Authors’ contributions (in %) to the given categories of the publication 

Author Conceptual Data analysis Experimental Writing the 
manuscript 

Provision of 
material 

Seelbinder 10% 90% 35% 
Wallstabe 10% 40% 20% 
Marischen 5% 40% 25% 
Westermann 25% 5% 30% 
Schäuble 25% 10% 5% 30% 
Loeffler J. 25% 30% 
Others 0% 0% 20% 10% 10% 
Total: 100% 100% 100% 100% 100% 

Overview: 
Together with my co-authors from Würzburg, we developed a new methodology termed 
“triple RNA-Seq” to investigate the transcriptome of both pathogens and host cells 
simultaneously. We studied the interactions between a fungal (Aspergillus fumigatus) and 
a viral pathogen (human cytomegalovirus) during co-infection of human monocyte-derived 
dendritic cells. I created the pipelines for RNA-Seq data processing and analysis, including 
differential gene expression and gene co-expression network analyses to decipher cross-
kingdom communication. We deliver strong evidence for synergistic effects of both 
pathogens during co-infection and identified a surprisingly large, distinct gene expression 
cascade during co-infection compared to single infections. 

http://www.doi.org/10.1016/J.CELREP.2020.108389
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Supplement 

           
Supplementary Figure S1: Infection of monocyte-derived dendritic cells (moDCs) challenged with Aspergillus 
fumigatus (Afu) and cytomegalovirus (CMV) in single- or co- infection settings. (A) moDCs were stained with a 
live/dead marker and cells were analyzed by flow cytometry. Viability of moDCs is depicted as mean + SEM. n 
= 4. Asterisks indicate significance values after multiple test corrected (FDR) pairwise Dunns test. ****: p < 
0.0001, ***: p < 0.001; *: p < 0.05; ns: not significant.. (B) Quantification of CMV-infected moDCs during single- 
or fungal co-infection. Virus-infected cells were distinguished from uninfected bystander cells by flow cytometric 
measurement (CMV constitutively expresses the fluorescence reporter mNeonGreen). Boxplots show median and 
interquartile range. n = 6. (C) moDC infection rate with A. fumigatus in presence or absence of CMV as 
determined using a non- fluorescent CMV strain and GFP-expressing A. fumigatus germ tubes. Phagocytosis of 
A. fumigatus was measured 3 h after addition of germ tubes by flow cytometry (quantification of cells positive 
for GFP). Boxplots show median and interquartile range. n = 3. (D) Infections of moDCs with CMV 
(mNeonGreen) and A. fumigatus (expressing dTomato) were analyzed by fluorescence microscopy at 9 h after 
addition of A. fumigatus germ tubes. Images illustrate one representative result out of three independent 
experiments. Scale bars indicate 100 μm. Related to Figure 1.  
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Supplementary Figure S3: Differentially expressed genes (DEGs). (A): Number of DEGs for 
each experimental condition. (B): Common and unique number of DEGs for co-infection (COI) 
and single-infection (SI) compared with uninfected monocyte-derived dendritic cells (moDCs) 
in single-culture (SC) (left) or Aspergillus fumigatus (Afu) in single-culture (right) for 9 h. 
CMV: cytomegalovirus. Related to Figure 2.  
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Supplementary Figure S4: Gene expression fold-changes from left to right in each rectangle: 
Co-infection vs. no stimulation, co-infection vs. single-infection with cytomegalovirus (CMV) 
at time point 0 h, co-infection vs. single-infection with Aspergillus fumigatus at time point 0 
h. Red color indicates an upregulation in the left hand side condition of comparisons. To 
visualize also small fold-changes, color-code for expression changes beyond -1.5 and 1.5 were 
capped to the maximum intensity. A: Toll-like receptor signaling pathway, B: Cytosolic DNA-
sensing pathway, C: C-type lectin receptor signaling pathway. Related to Figure 4.  
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Supplementary Figure S5: Relative gene expression and quantitative qRT-PCR-derived 
values for selected genes. qRT-PCR-derived values were normalized against delta- 
aminolevulinate synthase mRNA. n = 4. Mean and SEM are shown. Afu: Aspergillus 
fumigatus, DC: monocyte-derived dendritic cell, CMV: cytomegalovirus. Asterisks indicate 
significance level after multiple test correction (FDR): ***: p < 0.001; **: p < 0.01; *: p < 0.05. 
Related to Figure 5.  
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Supplementary Figure S6: Surface marker expression on monocyte-derived dendritic cells 
(moDCs). moDCs were infected with cytomegalovirus (CMV, mNeonGreen) for 24 h or left 
uninfected. Then, Aspergillus fumigatus (Afu) germ tubes were added for 9 h in a single- or 
co- infection setting. Cells were stained for CD40, CCR7, CD80, TLR2, CD209, and TLR3. 
Histograms show fluorescence signal intensities subtracted by isotype controls for one 
representative result out of three independent experiments. Bar plots refer to the mean and SEM 
of relative surface marker expression over the three replicates. Asterisks indicate significance 
after multiple test corrected (FDR) pairwise Dunns test: *: p < 0.05; (*): p < 0.01. Related to 
Figure 5.  
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Supplementary Figure S7: Multiplex cytokine secretion assays. Relative concentrations of 
cytokines in culture supernatants were normalized to their mean in moDC + CMV 0h + Afu 
0h. n = 4. Mean and SEM are given. Afu: Aspergillus fumigatus, DC: monocyte-derived 
dendritic cells, CMV: cytomegalovirus. Asterisks indicate significance level after multiple test 
correction (FDR): *: p < 0.05; (*): p < 0.1. Related to Figure 5.  
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Overview: 
Here, I studied within- and cross-kingdom interactions between gut bacteria and fungi in 
healthy human individuals longitudinally. I investigated how these interactions are shaped 
under external perturbation by oral antibiotic administration over 4 different time points. A 
combination of metagenomics, metatranscriptomics, ITS sequencing, and advanced 
statistical approaches (MGS, comparative genomics, co-abundance network analysis) 
allowed me to assess the resilience of the microbiome in terms of functional potential and 
expression. Strict anaerobe bacteria suffered the most from treatment. However, while 
some level of recovery was observed in the bacterial community, the effects on the fungal 
community seemed more stochastic and lasting. The fungal opportunist Candida 
abundance increased shortly after treatment but was effectively inhibited later.  
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Suppl. Fig. 1: Fungal species alpha diversity per antibiotic. Lines show average values. Error lines show 
standard error. Alpha diversity was measured by Shannon index, Simpson 1-D, and the number of observed OTUs.  
We focus on Shannon index in the following. Baseline diversity was similar between subjects, ranging from 0.2-
0.5 (one outlier with 1.4). In many cases, diversity increased already during treatment (DT). Augmentin showed 
high variation between subjects and Cefotaxime a slight decrease. In most cases, we observed a spiked increase 
30d post treatment (EPT), including controls. Doxycycline exhibited an increase, but overall flatter response. 
Augmentin showed the strongest peak increase by far. Diversity at 90d post treatment (LPT) was diverse, but 
indices fell within the range of controls. Overall, Augmentin and Cefotaxime induced a considerable gain in fungal 
diversity compared to controls. Ciprofloxacin induced higher than control change in one patient as well. Only 
Azithromycin and Doxycycline showed variation in alpha diversity within the same range as observed for controls. 
 
 

 
Suppl. Fig. 2: Mean relative abundance per antibiotic of fungal genera for Baseline and DT. Only Candida 
had significant increase in relative abundance (15-fold). At the level of individual antibiotic drugs, we also 
observed increased relative abundance except for AUG (almost no change). 
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Suppl. Fig. 3: Mean relative abundance per antibiotic of fungal species with significant change from DT to 
EPT. Displayed are five fungal species. Candida albicans was measured in each group except in CIP. In the 
remaining cases, its abundance decreased consistently. AUG and DOX had the strongest effect, especially with 
respect to the initiate abundance levels > 10%. A minor reduction in growth was also observed in controls, but 
not as much. Candida parapsiloses was measured in at most halve of the patients. In decreased profoundly in 
relative abundance at EPT in both, treated and untreated patients. The other 3 fungi had less consistent patterns at 
the level of individual antibiotic drugs. 
 

 
Suppl. Fig. 4 (left): Bacterial phylum composition of baseline samples. Patients (x-axis) were ordered by the 
level of the highest contributing phylum (Bacteroides). Phyla were ordered by their average contribution across 
samples. Most patients were dominated by Bacteroides and Firmicutes spp. These two phyla together accounted 
for 75-98% of sample-wise abundances. In patient M, we observed an unusual strong contribution by 
Proteobacteria (30%), which are otherwise the 3rd most abundant phylum on average. Remaining contributions 
were from Actinobacteria, Verrucomicrobia and Fusobacteria. An insignificant fraction was contributed by 
Candidatus Saccharibacteria and Tenericutes. 
Suppl. Fig. 4 (right): Bacterial family composition of baseline samples. Patients (x-axis) were ordered by the 
level of the highest contributing phylum (Bacteroidaceae). The 12 most abundant families across samples are 
shown. Abundance from other families were summed up as “other”. Families were ordered by their average 
contribution across samples. Overall, we observed a strong difference between Bacteroidaceae spp. (from <1% 
to 75%) and the remaining bacterial spp. contributions. Bacteroidaceae, Rikenellaceae, Eubacteriaceae, 
Porphyromonoadaceae, Ruminococcaceae, Prevotellaceae and Lachnospiraceae accounted for most 
contributions across samples. Enterobacteriaceae accounted for only 0.02% on average, except patients M (30%), 
L (5%) and N (9%), which are all control patients. 
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Suppl. Fig. 5: Antibiotics induced severe changes in bacterial community 6 days after treatment. (a-c) 
Diversity analysis of samples from subjects using MetaPhlAn2 relative abundances. (a) Boxplots showing Species 
Richness (right), Shannon (left) and Gini-Simpson Index (middle). First row shows diversity for antibiotic treated 
samples. Second row show alpha diversity for control samples. The median (centerlines), first and third quartiles 
(box limits) and 1.5x interquartile range (whiskers) are shown. Lines between boxes connect same-donor samples. 
Statistical testing was performed using a Wilcoxon signed-rank test and p values were adjusted for multiple testing 
using FDR (q). Signs indicates significance level (**: q<0.01; .: 0.05<q<0.1). (b) Principle coordinate analysis of 
generalized UniFrac distance (a = 0.5) as a measure of beta diversity. (b-c) We tested for differences between 
times in treated subjects while controlling for subjects using a pairwise two-way PERMANOVA. (c) R² values of 
covariate “Time” from pairwise PERMANOVA. Five different measures of beta diversity were tested 
independently. R² values for consecutive samples are shown. 
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Suppl. Fig. 6: Proportional change of bacterial species alpha diversity compared to Baseline. Proportional 
change of bacterial alpha diversity at species level based on MetaPhlAn2 OTU profiling. In untreated patients, we 
observed a drop in species richness during after treatment. However, Shannon and Simpson diversity remained 
mostly unchanged, implying changes due to sequencing depth or other technical artifacts. In antibiotic treated 
patients, alpha diversity changes the most for Shannon diversity. It decreased by 5%-40% during treatment, except 
for CFX treated patients. One CFX treated patient showed a monotonous increase in diversity compared to 
baseline. The strongest, negative impact was observed using CIP. In most patients, alpha diversity was increased 
90d post treatment compared to their respective DT and EPT time points. This implies that most of the original 
diversity was regained after treatment, but not all. Furthermore, the difference between LPT and Baseline alpha 
diversity range from +18% to -21%. Some of difference in late-post treatment diversity might be explained with 
natural variation we observed in controls (left-most panel; roughly +/- 5%). 
 

 
Suppl. Fig. 7: Proportional change of DNA gene family alpha diversity compared to Baseline. Gene family 
abundance was estimated by HUMAnN2 pipeline. In untreated patients, we observed a drop in gene richness after 
treatment (EPT). However, Shannon and Simpson had contrasting differences to that (mixed for Shannon, increase 
for Simpson), implying changes due to sequencing depth or other technical artifacts.  In antibiotic treated patients, 
richness decreased by 19%-49% during treatment, except for CFX treated patients. One CFX treated patient 
showed a monotonous increase in diversity compared to baseline. Differences in Shannon diversity were less 
severe, ranging from 0.02% to 0.18%. These two findings together imply that many genes lost during treatment 
(as measured by richness) were in relatively low abundance (and hence did not affect Shannon diversity much). 
So overall, the changes observed for bacterial species diversity were qualitatively like those for gene family 
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diversity. The major exceptions were the control samples, which exhibited bigger variance in diversity at the 
functional level compared to the species level 

Suppl. Fig. 8: Principle coordinate analysis of DNA bacterial function beta diversity between time points. 
Beta-diversity was measured as Bray-Curtis index. We separate between treated samples (left) and untreated 
controls (right). Time points were pre-treatment (Baseline, B; red), treatment (DT; green), 30d post treatment 
(EPT; blue) and 90d post treatment (LPT; violette). In treated samples, we observe a significant difference 
between Baseline and DT, q=0.014). Control samples did not show significance differences across time points. 

Suppl. Fig. 9: Core- and Variable Metatranscriptome of MetaCyc pathways (PWY). (a) Up-regulated core 
with RNA/DNA > 1 and prevalence >= 80%. (b) Down-regulated core with RNA/DNA < 1 and prevalence >= 
80%. (c) Variable metatranscriptome with prevalence between 30% and 80%, ordered by mean RNA/DNA ratio. 
There were no significant differences in RNA/DNA ratio of PWYs between time points. 
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Suppl. Fig. 10: Contributional alpha diversity of MetaCyc pathways using Simpson (g; 1-D) and Shannon (h) 
diversity indices. Pathways are ordered by the sum of the mean DNA and mean RNA Shannon diversity. RNA 
diversity was generally lower than DNA diversity. Shannon diversity dropped more gradual compared to Simpson. 
A Shannon diversity of 2 implies that only 4 species are truly relevant for the contribution to the corresponding 
pathway. A Simpson diversity of 75% implies that (in addition) 1 species accounts for 75%. 

Suppl. Fig. 11: 26 MGS were sign. diff. abundant during treatment. Heatmap of z-transformed, cumulative 
sum scaled relative abundances of significantly differentially abundant MGS between baseline and treatment time 
(ZIG model; Time and Patient as covariate; qTime < 0.05). 
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Suppl. Fig. 12: Fold-change of named MGS. 
Out of 26 MGS with sign. change during 
treatment, 14 had species level annotation. 
Here, log2 fold-changes relative to baseline 
levels are shown per treatment group. 
Observation with 0 counts before and after 
treatment were ignored. Fold-changes of +/- 
infinity were set to 110% of the strongest non-
infinite value to presence/absent observations. 
Whiskers show minimum and maximum 
values. Colours indicate if fold-changes were 
positive (red), negative (blue) or both (black) at 
a given time in each treatment group. 
6 of these were consistently decreased 
independent of the antibiotic drug used: 
Ruminococcus lactaris, Dialister invisus, 
Odoribacter splanchnicus, Bacteroidetes 
bacterium ph8, Akkermansia muciniphila, 
Bifidobacterium adolescentis. 
Among the other species (8), 7 had negative 
fold change in 4 out of 5 drugs: 
Bifidobacterium longum, Coprococcus comes, 
F. prausnitzii A2-165, Eubacterium hallii,
Roseburia inulinivorans, Ruminococcus sp.
5_1_39BFAA, Eubacterium rectale.
Clostridium bolteae had positive fold change in
4 out of 5 drugs.
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Suppl. Fig. 13: Mean relative abundance of species with possible differential effect by 
specific antibiotic classes. Maier et al. (https://doi.org/10.1101/2020.01.09.893560) reported that broad-
spectrum antibiotics targeted all measured - the 40 most common - gut bacteria. However, beta-lactams may have 
a different influence on Bacteroides (a) compared to other species. Here, this would apply to Augmentin (AUG) 
and Cefuroxime (CFX). In all treated samples, Bacteroidetes increased in relative proportion during (DT) or early-
post treatment (EPT). Despite the expectation, the effect seems to be rather low in CFX treated samples, which 
had comparatively high levels of Bacteroidetes at baseline. Likewise, Doxycycline (tetracycline class) showed an 
effect equal to Augmentin. So overall, we only noticed a slight delay in response for CIP and AZY, but not 
qualitative difference. 
Analogous, macrolides may have a different influence on Proteobacteria. Here, this would apply to Azithromycin. 
In most subjects, Proteobacteria have less than 1% contribution, making it hard to assess if relative abundance 
changes are due to colonization difficulties or antibiotic effect. We noticed that Augmentin lead to a severe decline 
in abundance for this phylum even though it belongs to an entirely different class. In contrast, CIP lead to an 
increase. Since we have relative abundance, we cannot assess if abundance increase relates to an actual increase 
in abundance. An increase can be the result of a severe decrease of the remaining community. Such could be the 
case for CIP. 
So all together, we cannot find a selective difference in targets by the different antibiotics used. 
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Suppl. Fig. 14: interactions between fungi, bacteria species and pathway expression. (a-b) Co-abundance 
networks of different time points using BAnOCC with (a) 25% and (b) 50% prevalence filter. Only significant 
edges (based on 95% credibility interval) with |r| >= 0.3 are shown. Negative correlations (blue), positive 
correlations (red). Networks are ordered from left (Baseline) to right (Late-Post-Treatment). (a) Correlations 
between fungal and bacterial species based on MGS and ITS relative abundances. Node colors indicate phyla. 
Unclassified MGS are black. (b) Correlations between fungal species and pathway expression based on 
HUMAnN2 RNA pathway and ITS relative abundances. Node colors indicate fungi (green) and functional groups. 
Superpathways and other pathways which did not fit into the six major categories were grouped into “other”. 

 Suppl. Fig. 15: Node degree centrality of RNA-PWY-ITS network based on correlations between fungal species 
and MetaCyc pathway groups. Bar plots showing the number of nodes which increased and decreased in centrality 
between time points. Statistical testing for significant changes in centrality was performed using a two-sided 
Wilcox signed-rank test. P values were adjusted for multiple testing. Significance is indicated by symbols (ns: q 
≥ 0.05; *: q < 0.05; **: q < 0.01; ***: q < 1e-3; ****: q < 1e-4; *****: q <1e-5). 
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Suppl. Fig. 16: Metabolites significantly correlated with C. albicans OTU abundance levels (Spearman |rho| > 
0.3; p < 0.05). 

Suppl. Fig. 17: C. albicans growth inhibition by metabolites. (left) Generation times of C. albicans in h over 
varying degrees of substance concentrations. Substances were diluted (from left to right). For some compounds, 
measurements failed at higher concentrations. (right) Substance concentration per well in g/l. 
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Suppl. Fig. 18: Inhibition of C. albicans growth and host cell damage. We tested the effect of the metabolites 
on a human vaginal cell line (A431) at two concentrations each: the lowest concentration where C. albicans 
growth was significantly inhibited and the highest without any significant effect on growth (table 1; top-left; 
bottom-left). There was some limited cytotoxicity observed for lithocholic acid and cis-5-dodecenoic acid, but 
all other substances did not elicit any detectable host cell damage. Glutathione, however, interfered with our 
assay and was therefore excluded from these studies. Next, we assayed the effect of the same concentration on 
cell damage by C. albicans. None of the substances affected the host-pathogen interactions at the lower 
concentration (top-right). The notable exception is cis-5-dodecenoic acid, with severely reduced the damage by 
C. albicans to the host cells, albeit not at a statistically significant level. At the higher concentrations (bottom-
right), where fungal growth was reduced in vitro, we also observed lower host cell damage in presence of the
short-chain fatty acids propionic and acetic acid, where damage by C. albicans was nearly fully abolished, and
again of cis-5-docenoic acid. To lesser extent and not statistically significant there was a tendency to lower
damage also with ornithine (p=0.087) and benzoic acid (p=0.051) in the medium.

Suppl. Table 1 

[µg/µl] 
Lithocholic 

Acid 
Benzoic 

Acid 

cis-5-
Dodecenoic 

Acid 

8,11,24-
Eicosa- 

trienoic Acid 
Aminoadipic 

Acid 
Propionic 

Acid Ornithine 
Acetic 
Acid 

Adipic 
Acid 

Subinhibitory 0.103 0.25 0.263 0.85 0.05 0.0004 1.27 0.0004 0.95 
Inhibitory 0.413 1.00 1.05 3.40 0.20 1.70 5.05 7.29 3.82 
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Suppl. Fig. 19: Correlations of bile acid and metabolite abundance with MGS abundance. Cell colour 
indicates correlation strength (blue: negative; red: positive). Absolute correlation below 0.3 and insignificant 
correlations (p > 0.05) are coloured white. 

Suppl. Fig. 20: Number of genes contributing to each MGS. For each sample, the number of genes with at 
least 1 gene (first row of each panel) and at least 50% coverage (2. Row) per strain. Different strains are indicated 
by colour and line type. For Faecalibacterium prausnitzii, we have 2 MGS with exactly 1 matching strain for each 
(CAG0155 with A2-165 and CAG0198 with L2/6) 
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Suppl. Fig. 21: C. albcians growth rate on bacterial supernatant. (a) Growth curves for C.albicans strain 
SC5314 mGAM media with 50% or 100% sterile bacterial supernatant added. (b) Growth curves for three 
C.albicans strains; SC5314, ATCC10231 and ATCC 18804 in mGAM media with 100% sterile bacterial
supernatant added.

Suppl. Fig. 22: Co-cultivation of C. albicans with bacterial species. Cell counts of C. albicans was measured 
using FACS. When co-cultured with B. eggerthii or O. splanchnicus, no growth occurred. 
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Suppl. Fig. 23: Relative 
concentration of short-chain-
fatty-acids (SCFA) in bacterial 
supernatants. Here, we display all 
SCFA with significant difference 
to control samples (fold-change 
greater 2). Control samples were 
created by random pooling of 
sample material (see main 
manuscript methods for details). 
We measured the supernatants of 
Bacteroides eggerthii (B.E.), 
Odoribacter splanchnicus (O.S.) 
and Ruminococcus [Blautia] 
torques (R.T.). OS and BE were the 
main producer of most of these 
compounds. OS was by far the 
strongest producer of butyrate 
(butanoic acid & 3-methyl butanoic 
acid). RT produced Formic acid, 
but not as much BE. 

Suppl. Fig. 24: Area of MS-MS 
measured metabolites in bacterial 
supernatants. Here, we display all 
non-SCFA metabolites related to the C. 
albicans growth inhibition 
experiments. Control samples were 
created by random pooling of sample 
material (see main manuscript methods 
for details). We measured the 
supernatants of Bacteroides eggerthii 
(B.E.), Odoribacter splanchnicus 
(O.S.) and Ruminococcus [Blautia] 
torques (R.T.). Bile acids (Lithocholic 
acid, cis-5-Dodecenoic acid) were 
below detection threshold, implying 
that these species do either (a) not 
produce such compounds or (b) 
possible due to missing components in 
the growth medium used. RT produced 
Adipic acid is levels comparable to OS 

and BE. OS produced higher levels of Aminoadipic acid and BE produced higher levels of Benzoic acid. Ornithine 
was primarily produced by OS, but also a little by RT. 
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Suppl. Fig. 25: Mean relative abundance of Enterobacteriaceae spp. per ATB. We investigated the relative 
abundance of Enterobacteriaceae spp. and the impact of antibiotics [ATB] treatment. In most samples, the 
accumulated relative abundance of Enterobacteriaceae spp. (blue) at baseline was below 1%, implying only a 
minor role for the overall community. The exception were patients treated with AUG, which had roughly 14% 
Enterobacteriaceae. Enterobacteriaceae relative abundance in AUG treated patients decreased profoundly at EPT 
and also LPT compared to baseline levels. In CIP, we observed a strong increase of up to 27% during treatment, 
but far below 1% for time points before and after treatment. 
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Overview: 
In this follow-up, we used a similar framework to study tri-partite communication between 
bacteria, fungi, and the human host during critical illness. We elucidated how antibiotic 
treatment could induce detrimental effects on the health of the patients in addition to the 
effects caused by infection. Again, we found Candida to increase in abundance under 
antibiotic treatment in critically ill patients. More importantly, we found that antibiotic 
therapy in critically ill patients leads to an “infection vulnerable” microbiome composition 
characterized by extremely low levels of short-chain fatty acids. Together with Manuscript 
III, our studies deliver consistent evidence for the growth of opportunistic fungi such as 
Candida in the human gut during oral antibiotic administration and generated several 
further hypotheses for control mechanisms of Candida by gut microbiota. 
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Supplement 
Supplementary File 1 

Characteristic ICU+ group, 
N = 54 

ICU- 
group, N = 

16 

Healthy 
group, N = 

9 

P-value
(ICU+ vs

ICU-) 

P-value
(Healthy
vs ICU)

male sex 38 (70%) 11 (69%) 5 (56%) 1.0000 0.6197 
Age [years] 66 

(58, 76) 
72 (65, 78) 63 (57, 70) 0.1321 0.1786 

BMI [kg/m2] 27.5 
(25.9, 30.1) 

26.8 (24.2, 
29.1) 

25.2 (21.9, 
26.5) 

0.3088 0.0705 

type of admission 
medical 20 (37%) 7 (44%) 0.8476 
elective surgery 19 (35%) 6 (38%) 1.0000 
surgical emergency 15 (28%) 3 (19%) 0.6891 

type of surgery 
none 20 (37%) 7 (44%) 0.8476 
cardiac surgery 17 (31%) 6 (38%) 0.8830 
neurosurgery 8 (15%) 2 (12%) 1.0000 
abdominal surgery 5 (9.3%) 0 (0%) 0.4774 
trauma surgery 1 (1.9%) 0 (0%) 1.0000 
other 3 (5.6%) 1 (6.2%) 1.0000 

COPD 6 (11%) 2 (12%) 1.0000 
cardiovascular disease 35 (65%) 10 (62%) 1.0000 
renal disease 13 (24%) 3 (19%) 0.9152 
diabetes mellitus 17 (31%) 8 (50%) 0.2888 
focus of infection 

none 0 (0%) 16 (100%) 9.93E-16 
respiratory tract 37 (69%) 0 (0%) 5.70E-06 
Abdominal 6 (11%) 0 (0%) 0.3756 
bones/soft tissue 3 (5.6%) 0 (0%) 0.7941 
Chest 2 (3.7%) 0 (0%) 1.0000 
catheter associated 
infection 

1 (1.9%) 0 (0%) 1.0000 

urogenital 1 (1.9%) 0 (0%) 1.0000 
unknown 4 (7.4%) 0 (0%) 0.6114 

origin of infection 
none 0 (0%) 16 (100%) 9.93E-16 
nosocomial (ICU) 40 (74%) 0 (0%) 6.66E-07 
nosocomial (non-ICU) 9 (17%) 0 (0%) 0.1855 
community acquired 5 (9.3%) 0 (0%) 0.4774 

antibiotics 
piperacillin/tazobactam 32 (59%) 0 (0%) 0.0001 
meropenem 22 (41%) 0 (0%) 0.0055 
none 0 (0%) 16 (100%) 9.93E-16 

mechanical ventilation 31 (57%) 6 (38%) 0.2644 
vasopressor therapy 37 (69%) 5 (31%) 0.0172 
dialysis 18 (33%) 0 (0%) 0.0186 
ICU length of stay [days] 16 (10, 27) 21 (14, 29) 0.3073 
ICU mortality 14 (26%) 2 (12%) 0.4328 
hospital length of stay [days] 31 (24, 45) 29 (19, 47) 0.7873 
hospital mortality 16 (30%) 2 (12%) 0.2931 
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Continuous data are expressed as median and interquartile range. BMI: body mass index, COPD: 
chronic obstructive disease, ICU: intensive care unit. Continuous data were compared by the t-test, 
dichotomous variables by the chi-squared test. 
 
 

 
Figure S1. Distinct gut microbiota composition in ICU patients 
(A – B) Box plots showing the median (centerlines), first and third quartiles (box limits) and 1.5x 
interquartile range (whiskers) measurements. Significant differences were determined using Wilcoxon 
rank-sum test. A comparison was considered significant if P<0.05. 
(A) Alpha diversity of bacterial species using Shannon (left), Simpson (middle), and Chao1 (right) 
indices.  
(B) Beta dispersion of bacterial species measured as the distance of the samples from one group to the 
group centroid in multivariate space.  
(C) Principal component analysis (PCoA) of Bray-Curtis dissimilarity between bacterial species 
abundance profiles. Significant differences were determined using PERMANOVA and were 
considered significant if P<0.05.  
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Figure S2. Distinct gut microbiota composition in ICU patients 
(A - B) Box plots showing the median (centerlines), first and third quartiles (box limits) and 1.5x 
interquartile range (whiskers) measurements. Significant differences were determined using Wilcoxon 
rank-sum test. A comparison was considered significant if P<0.05. 
(A) Alpha diversity of Metagenomic Species using Shannon (left), Simpson (middle), and Chao1
(right) indices.
(B) Beta dispersion of Metagenomic Species measured as the distance of the samples from one group
to the group centroid in multivariate space.
(C) Principal component analysis (PCoA) of Bray-Curtis dissimilarity between Metagenomic Species
abundance profiles. Significant differences were determined using PERMANOVA and were
considered significant if P<0.05.
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Figure S3. Most important features for ICU+ and ICU- classification. Plot showing the top 20 
most important features at the taxonomic and functional level for the classification of ICU+ and ICU-, 
based on the Random Forest classifier. 

Figure S4. ICU patients have a distinct taxonomic composition 
(A) Box plots showing the median (centerlines), first and third quartiles (box limits) and 1.5x
interquartile range (whiskers), of the relative abundance of significantly different phyla and the most
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abundant significant genera. Significant differences were determined using Kruskal-Wallis test. A 
comparison was considered significant if P<0.05. 
(B) Taxonomic tree visualized using R package metacoder [1]. Only taxa differentially abundant
between Healthy and ICU- (P<0.05, Wilcoxon rank-sum test) are highlighted in the tree by color.
Color of the taxa reflects the group with higher abundance. Bar plots show the relative abundances of
significantly different (FDR<0.05, Wilcoxon rank-sum test) short-chain fatty acid producers (green
circles), bile acid producers (red circles) or disease-associated species (purple circles).

Figure S5. The distinct impact of live bacteria on the host toxicity of L. cripatus and B. 
animalis. Germ-free L1 larval stage C. elegans worms were populated with depicted bacterial 
strains (live and heat-killed) in the anoxic chamber for indicated times, followed by transfer to 
normoxia and UV-killed OP50 E. coli diet. Host survival was measured after 24 h of normoxic 
culture. 
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Figure S6. Live B. animalis is the strongest inducer of the protective DAF-16/FOXO 
nuclear translocation in the host. 
Age-synchronized germ-free transgenic worms were grown until L4 stage on UV-killed OP50. 
L4 worms were populated with depicted bacterial strains (live and heat-killed) and incubated 
for 5h in the anoxic chamber. DAF-16::GFP localization was assessed microscopically with 30 
animals measured for each condition. Representative images of three localization types are 
shown in (A) and quantification is provided in (B). 
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Figure S7: Comparison of gut mycobiome alpha diversity and species abundances. 
(A) Box plots, with median (centerlines), first and third quartiles (box limits) and 1.5x interquartile
range (whiskers), showing mycobiome alpha diversity (indices of Shannon, Simpson, and Chao1) in
different categories. Accordingly, significant differences were measured using the Kruskal-Wallis or
Wilcoxon rank-sum test.
(B) Comparison of fungal species' abundance. Significant differences were measured using Wilcoxon
rank-sum test (*P<0.05; **P<0.01, ***P<0.001). The color of species name indicates whether its
median abundance is higher in the ICU-/ICU+ group (pink) or the Healthy group (blue)
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Figure S8: ICU patients harbor a very different resistome compared to healthy individuals. 
(A) Dot plot showing the differentially abundant bacterial Pfams (P<0.05, Wilcoxon rank-sum test)
related to the resistome and/or mobilome. The size of the dots represents the strength of statistical
significance. The color of the dots reflects the group with the higher abundance.
(B) PCoA plots based on Bray-Curtis distances for antibiotic resistance genes (ARGs) in each
pairwise comparison. Significant differences were determined using PERMANOVA.
(C) Comparison between the 3 groups of total cumulative relative ARG abundance for ARGs
(Wilcoxon rank-sum test). In the corresponding samples for individuals from different classes (ICU+,
ICU- and Healthy), the relative abundance of ARGs was standardized by the content of 16S rRNA.
(D) Representative significantly different ARGs between ICU+ and ICU- (dabestr, 95% confidence
interval (95% CI)). ARGs with the top difference in ICU- vs ICU+ comparisons are included. All data
points are plotted. The mean difference (the effect size) and its 95% confidence interval  are displayed
as a point estimate and vertical bar respectively, on a separate but aligned axis. Adjacent to the plots
are thorough annotations of the ARG term, category, mean difference and its 95% confidence interval.
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Figure S9. Distinct gut microbiota signatures in ICU patients. 
Principal Component Analysis (PcoA) of Bray-Curtis dissimilarity between (A-B) bacterial species 
abundance profiles, and (C) Metagenomic Species (MGS) abundance profiles. Significant differences 
were determined using PERMANOVA and were considered significant if P<0.05. 
 
 
 

 
Figure S10. Distinct mycobiome and ARGs in ICU patients. 
Principal Component Analysis (PcoA) of Bray-Curtis dissimilarity between (A) gut mycobiome 
species abundance profiles, and (B) ARGs. Significant differences were determined using 
PERMANOVA and were considered significant if P<0.05. 
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Overview: 
We performed metagenomics and ITS sequencing on stool samples from lung cancer 
patients undergoing anti-cancer immunotherapy. Through machine learning, I identified a 
robust microbial signature explaining varying levels of Candida abundance. We also found 
a non-trivial connection between decreased anaerobes, Lactobacillus, gut oxygen levels, 
and Candida abundance levels. Finally, through experiments conducted by our 
collaborators, we deliver further evidence for a competitive advantage of Candida over 
other fungal residents in the human gut due to alternative carbon sources present under 
dysbiotic conditions characterized by increased oxygen availability. 
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Abstract 22 
The overgrowth of Candida species in the human gut is considered a prerequisite for invasive 23 

candidiasis [1]. However, the reason that many individuals with high levels of gastrointestinal Candida 24 
do not develop systemic candidiasis is unclear. Positive and negative interactions have been observed 25 
between individual Candida species and gut bacteria. These observations are from studies that were 26 
mainly conducted in mice or in vitro. Few large-scale human studies aimed to identify intestinal 27 
ecological signatures associated with Candida genus expansion in the gut. We integrated mycobiome 28 
and shotgun metagenomics data from 75 patients with lung cancer to determine the role of gut bacteria 29 
in shaping mycobiome composition. In addition, we developed machine learning models that used 30 
only bacterial taxa or functional relative abundances to predict the levels of Candida genus in an 31 
external validation cohort with an area under the curve of 78.6-81.1%. Last, we proposed an intriguing 32 
mechanism for Candida species overgrowth based on a decrease in short-chain fatty acid producing-33 
bacteria resulting from increased oxygen levels. These conditions favour the growth of oxygen-tolerant 34 
lactic acid-producing bacteria, creating a metabolic niche for Candida species to use lactate as a carbon 35 
source and overtake their fungal competitors (especially Saccharomyces) in the human gut. We 36 
experimentally demonstrate that lactate supports the overgrowth of Candida species and show that 37 
lactate producing-bacteria also have a positive impact on gut barrier integrity. These observations 38 
emphasise the complex ecological interaction between multiple microbiome-gut epithelium factors 39 
that are involved in Candida species overgrowth and dissemination. 40 
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Introduction 41 
Candida species, predominantly C. albicans, C. glabrata, C. tropicalis, and C. parapsilosis, are among 42 
the most common causes of bloodstream infections. These infections result in high rates of mortality 43 
for patients in intensive care units or who have a dysfunctional epithelial barrier or compromised 44 
immunity [2,3]. Although the pathogenicity of different Candida species has been extensively studied 45 
[4–9], only a handful of studies focused on understanding the commensal lifestyle of the fungus in the 46 
human gut. We recently performed a systematic evaluation of the interactions between human gut 47 
bacteria and C. albicans using genome-scale modelling and pairwise growth simulations [10]. We 48 
showed that 81% of C. albicans interactions with approximately 900 gut bacteria species were 49 
mutualistic (positive growth effects for both C. albicans and bacteria) or parasitic (negative growth 50 
effect on C. albicans, positive growth effect on bacteria), with only a few examples of parasitism, in 51 
which C. albicans exerted negative effects on gut bacteria. C. albicans is a common gut member in 52 
the majority of the human population. Therefore, our findings support the hypothesis that the 53 
colonisation success of C. albicans is the result of adapting to life in the intestine and avoiding 54 
competitive interactions with other gut microbes. 55 

Most attempts to identify specific species of gut bacteria that inhibit or promote the growth of 56 
Candida species were conducted in murine models. However, in contrast to human gut communities, 57 
adult murine gut communities naturally prevent Candida species colonisation [11], showing 58 
substantial differences with humans in immune system regulation [12] and microbial composition [13–59 
15], and challenging the translatability of the findings to humans. Gnotobiotic mouse models overcome 60 
some of these challenges [16] and were applied to study colonisation by Candida species [17]. Yet, 61 
limitations persist. A recent study demonstrated that colonisation is still incomplete, and some key 62 
bacteria genera (Faecalibacterium, Bifidobacterium) did not engraft at all [18]. Nevertheless, the 63 
realisation that the gastrointestinal tract is a major source of systemic candidiasis [1] has propelled 64 
efforts beyond animal models to identify predisposing factors that may lead to microbiome engineering 65 
strategies aimed at preventing candidiasis. This shift in focus has been further supported by evidence 66 
from human studies that gut bacterial dysbiosis triggered by broad-spectrum antibiotics is associated 67 
with increased colonisation of Candida species in the gut by [19]. However, antibiotics are not the 68 
only drugs associated with an elevated risk of Candida species overgrowth. Initial findings in animal 69 
models and humans suggest that chemotherapeutic agents lead to a reduced total number of gut bacteria 70 
and alterations in gut microbiota composition [20–22], which may contribute to the increased risk of 71 
systemic candidiasis in cancer patients. While most studies on systemic candidiasis and cancer have 72 
focused on haematological malignancies, recent epidemiological studies suggest that the risk for 73 
patients with solid tumours, such as head and neck and lung cancer, is equally high [23]. 74 

Recently, an analysis of a small cohort of allogeneic haematopoietic cell transplantation patients 75 
that included 11 candidiasis patients and 7 controls indicated that an expansion of Candida species in 76 
the gut occurs before bloodstream infection [24]. However, gut mycobiome analyses of both healthy 77 
individuals [25] and individuals with a variety of diseases [10,26] revealed that Candida species can 78 
also be the dominant fungi of the mycobiome without the host showing any signs of systemic infection. 79 
Therefore, overgrowth and systemic infection may be independent processes. Elucidating the role of 80 
Candida species as commensals and revealing the intestinal ecological context that leads to their 81 
expansion in the human gut is critical to designing prophylactic strategies for life-threatening systemic 82 
candidiasis. Therefore, we performed an integrative analysis of the mycobiome, microbiome, and 83 
phageome of 75 lung cancer patients to determine an intestinal ecological signature associated with 84 
Candida species overgrowth (Figure 1a), which we confirmed in an independent cohort of 11 85 
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individuals. We further provided experimental evidence for a competitive advantage of Candida over 86 
Saccharomyces species, the other main fungal residents in the human gut, while exploring alternative 87 
carbon sources under dysbiotic conditions characterised by increased oxygen availability. 88 

 89 

Results 90 
High variability of Candida levels among infection-free lung cancer patients 91 
We recruited 75 patients at the National Koranyi Institute of Pulmonology (Budapest, Hungary) and 92 
County Hospital of Pulmonology (Torokbalint, Hungary) with advanced-stage lung cancer (Table 1; 93 
adenocarcinoma n=40, squamous cell carcinoma n=28, others n=7). No patients had any signs of 94 
fungal infection during the recruitment period. Faecal samples were collected for analysis of fungal, 95 
bacterial, and viral biomes after the initiation of single-agent anti-PD-1 antibody immunotherapy 96 
(nivolumab, n=44; pembrolizumab, n=31). The majority of patients received chemotherapy prior to 97 
immunotherapy (n=59). We built ribosomal DNA internal transcribed spacer 2 (ITS2) libraries for 98 
estimating fungal genera and species relative abundance in all 75 patients. On average, we generated 99 
78,332 (mean absolute deviation [MAD] 43,056) high-quality, non-chimeric reads per sample. 100 
Amplicon sequencing variants (ASVs) were estimated using DADA2 [27] resulting in 76 fungal 101 
genera (18 ± 10 per sample) and 113 fungal species (25 ± 15 per sample) (Figure 1a). Investigating 102 
genus-level fungal profiles showed that Candida and Saccharomyces were the highest contributing 103 
genera in 17 and 44 samples, respectively (Figure 1b). Fungal co-abundance networks revealed a 104 
strong, significant negative correlation between Candida and Saccharomyces at the genus (Spearman's 105 
coefficient; P<0.05; |r|>0.25; Figure S1) and species level (Spearman's; P<0.05; |r|>0.25; Figure S2). 106 

We subsequently investigated the fungal genera that were the main drivers of variation in 107 
composition-aware mycobiome beta diversity (Aitchison distance; Figure 1c-e). Stepwise distance-108 
based redundancy analysis (dbRDA) revealed that a large fraction (robust R2=18.5%) of non-redundant 109 
fungal species diversity was explained by the two dominating fungal genera, Saccharomyces and 110 
Candida (Figure 1c), while other fungal genera explain an additional 20%. We subsequently examined 111 
anthropometric and lifestyle characteristics among the patients for significant correlation to ordination 112 
axes, including age, gender, body mass index (BMI,) diet, and antibiotic use (P<0.05; Figure 1e). 113 
Interestingly, ‘antibiotic use’ prior to anti-cancer treatment (3-6 months before stool sampling) 114 
correlated significantly with ordination results (P<0.05; Figure 1e), consistent with our previous 115 
findings in healthy individuals that antibiotic use can have a longer-lasting impact on the mycobiome 116 
compared to the microbiome [25]. Antibiotic use was also weakly correlated with higher levels of the 117 
Candida genus, similar to our previous observation [26]. 118 

We compared different mycobiome normalisation methods and observed high correlations between 119 
the normalised abundance estimates of the Candida genus (Pearson r ≥ 0.87; P<0.001; Figure S3). To 120 
properly account for compositional data, all downstream analyses used fungal abundances normalised 121 
by the centred log-ratio (CLR) [28–30]. For Candida CLR abundances, the median separated Candida 122 
abundance symmetrically (Figure S3). Therefore, we grouped patients in two clusters: high-Candida 123 
(HC, n=38) and low-Candida (LC, n=37) for above or below the median Candida CLR normalised 124 
abundance (Figure S3). This grouping correlated significantly with high and low Candida ITS reads 125 
(Rfit P<0.001; Figure 1f), but not with the number of total ITS copies (Rfit P>0.05; Figure 1g) 126 
indicating that the sequencing depth did not affect the grouping. We further confirmed the grouping 127 
by testing for significant differences in fungal relative abundance between the two groups (Table S2). 128 
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As expected, Candida genus abundance was increased in the HC group (log2 fold change 129 
[log2FC]=5.1; q=2E-12), whereas at the species level, C. albicans (log2FC=5.5; q=1E-7) and 130 
C. tropicalis (log2FC=2.1; q=0.04) drove the observed genus abundance differences. 131 

Although the beta diversity was significantly different between the HC and LC groups 132 
(PERMANOVA P=0.001; R2=5.7%; Figure 1h), we did not find significant differences in the fungal 133 
genera and species alpha diversities (by Shannon, Simpson, Pilou’s Evenness indices; P>0.05; 134 
Table S1). We further examined if the classification of patients into HC and LC groups was explained 135 
by differences in basic patient characteristics such as gender, age, BMI, antibiotic use, alcohol 136 
consumption, tumour histology, chronic obstructive pulmonary disease, or anti-cancer treatment drug. 137 
None of these factors except for BMI was significantly different between the groups. Despite recent 138 
findings in mice and humans that Candida species may promote weight gain [31,32], we found BMI 139 
significantly decreased in our cohort in the HC group (Table 1; U-Test P=0.006). Therefore, in 140 
subsequent statistical comparisons between the HC and LC groups, we adjusted for differences in 141 
BMI. 142 

 143 

 144 

Distinct microbiome signature associated with the high Candida group 145 
We then shifted our focus on the gut bacterial community, specifically taxonomic and functional 146 
properties that might be pivotal in supporting the growth of Candida species in the human gut. We 147 
performed whole-metagenomic sequencing on the same stool samples used for the mycobiome 148 
analysis, generating an average of 26,106,952 (MAD 3,876,437) reads per sample. We used 149 
HUMAnN2 [33] to compute bacterial species and function abundance profiles. After applying a 10% 150 
prevalence filter, we estimated the relative abundance of 234 bacterial species (98 ± 18 per sample), 151 
84 bacterial genera (46 ± 7), 394 MetaCyc pathways (339 ± 21), 1688 Enzyme Commission (EC) 152 

 
Variable N High  

N = 381 
Low  

N = 371 
p-

value2 
 Variable N High  

N = 381 
Low  

N = 371 
p-

value2 

Gender 75   0.7  Alcohol 75   0.5 

Female  17 
(45%) 

14 
(38%) 

  Never  19 
(50%) 

16 
(43%) 

 
Male  21 

(55%) 
23 

(62%) 
  Current  3 

(7.9%) 
6 

(16%) 
 

Age 75 69 
(64, 74) 

65 
(63, 69) 

0.2  Former  2 
(5.3%) 

4 
(11%) 

 

Body Mass Index 75 24.1 
(21.4, 
28.3) 

28.7 
(25.9, 
32.8) 

0.006  Occasionally  14 
(37%) 

11 
(30%) 

 

Antibiotic Use 
Before therapy 

74   0.3  Histology 75   0.7 

No   34 
(92%) 

30 
(81%) 

  Adenocarcinoma  22 
(58%) 

18 
(49%) 

 
Yes   3 

(8.1%) 
7 

(19%) 
  Squamous  13 

(34%) 
15 

(41%) 
 

Unknown  1 0   Other  3 
(7.9%) 

4 
(11%) 

 

Antibiotic Use 
After therapy 

72   0.14  Immunotherapy 
Drug 

75   0.7 

No   28 
(76%) 

32 
(91%) 

  nivolumab  21 
(55%) 

23 
(62%) 

 

Yes   9 
(24%) 

3 
(8.6%) 

  pembrolizumab  17 
(45%) 

14 
(38%) 

 
Unknown  1 2   Responder 75   0.3 

Line of Treatment 75   0.8  Yes   33 
(87%) 

28 
(76%) 

 

1  9 
(24%) 

7 
(19%) 

  No   5 
(13%) 

9 
(24%) 

 
2  19 

(50%) 
23 

(62%) 
  COPD 75   0.7 

3  9 
(24%) 

6 
(16%) 

  Without  16 
(42%) 

18 
(49%) 

 
4  1 

(2.6%) 
1 

(2.7%) 
  With  22 

(58%) 
19 

(51%) 
 

    1Statistics presented: n (%); Median (IQR) 
    2Statistical tests performed: chi-square test of independence; Wilcoxon rank-sum test; Fisher's exact test 

  

Table 1 Anthropometric, clinical and lifestyle data for High (N=39) and Low (N=37) Candida groups. 
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numbers (1361 ± 83), 5120 KEGG orthology (KO) terms (3943 ± 340), and 155 KEGG pathways (120 153 
± 3) (Figure 1a). To ensure that only bacterial information was used in further analyses, we removed 154 
features with unknown or non-bacterial origin from functional abundance profiles using the species-155 
stratified output of HUMAnN2. 156 

Procrustes analysis revealed a significant correlation between beta diversity for fungal and bacterial 157 
species (P=0.046, r=0.53; Table S1). Bacterial species explained around 13% of fungal species beta 158 
diversity and dbRDA using bacterial species suggested Clostridium, Lactobacillus, Eubacterium, and 159 
Citrobacter species had the highest explanatory power for mycobiome variation (Figure 1d). 160 
Interestingly, a biplot of bacteria species abundances onto fungal species diversity indicated positive 161 
correlations between higher Candida genus abundance and several Lactobacillus species (Figure 1e), 162 
which was further confirmed in a crosskingdom network of fungal genera and bacterial species 163 
(Spearman's P<0.05; r < -0.25; Figure S2). In contrast, Citrobacter and Eubacterium species 164 
correlated negatively with Candida abundance.  165 

We also observed significant separation between the HC and LC groups in bacterial species and 166 
functional beta diversity (Figure 2a-c; PERMANOVA; P<0.05; Table S1). For explaining variance, 167 
the functional properties of the bacteria community (MetaCyc, KOs, and ECs) showed the largest 168 
between-group differences (Figure S1, R2=2.5%±0.5%). Bacterial species alpha diversity (by 169 
Shannon, Simpson, Pilou’s Evenness, and Chao1 indices) was not significantly different between the 170 
HC and LC groups (Rfit P>0.05; Table S1). Surprisingly, functional alpha diversity (by MetaCyc 171 
pathways) showed higher diversity in the HC than the LC group (Figure 2e; P=0.02). In contrast, the 172 
contributional diversity of bacterial species to pathways (contributional alpha diversity) was 173 
significantly lower in many HC enriched pathways (Rfit; n=23; P<0.05; Figure 2f) and significantly 174 
lower overall (Rfit; P<0.05; Figure 2g). Together, these findings implied that the bacterial community 175 
in the HC group had greater metabolic potential, but the LC group had greater functional redundancy, 176 
a property exhibited by robust microbiota [34]. 177 

We then stratified bacteria based on their metabolic tolerance to oxygen. Species capable of growing 178 
under low oxygen level, including facultative anaerobes, were labelled 'aerobes'. We found 179 
significantly fewer obligate anaerobes in HC compared to LC (Figure 2h; ∆R2=8%, P=0.017) and a 180 
trend for an increased aerobe/anaerobe ratio in the HC group (Figure 2i; ∆R2=5%, P=0.058). This 181 
result was consistent with a comparison of 8 patients with candidemia and 7 controls where the 182 
expansion of Candida species was associated with a substantial loss of anaerobes diversity [24] as well 183 
as a previous study in mice in which antibiotic treatment with sufficient depletion of anaerobic bacteria 184 
was related to increased Candida species colonisation [11]. An increase in aerobes in the HC group, 185 
with their aerobic respiration, might explain the observed increase in metabolic diversity. 186 

To complement our study on the ecological context associated with Candida species expansion in 187 
the human gut, we also quantified phage abundance using the recent release of the Metagenomic Gut 188 
Virus (MGV) catalogue. We used quasi-mapping for fast estimation of phage contig and viral 189 
operational taxonomic unit (vOTU) relative abundance using Salmon in metagenomic mode [35,36]). 190 
On average, 2.4% of metagenomic reads were assigned to prevalent viral contigs, with some samples 191 
reaching 4.7% (Figure S5). We did not observe a significant difference in the percentage of assigned 192 
phage reads between the HC and LC groups (Figure S5) or vOTU beta diversity (Figure 2e; P>0.10). 193 
However, a closer look into diversity-generating retroelements (DGRs) [37,38] revealed a substantial, 194 
significant reduction in DGRs phage genes in the HC group (two-sided Fisher test; P=7e-5; odds 195 
ratio=0.3; Figure 2j). DGR elements use error-prone reverse transcriptase to induce random mutations 196 
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into the genomes of their host at specific target genes, creating population-wide hypervariability 197 
[39,40]. Since DGRs have beneficial effects (e.g., adaption advantage) on their targeted host [39,40], 198 
the enrichment in these phages may imply a more robust microbiome in LC. 199 

 200 

Abundance of lactic acid bacteria and SCFA producers accurately predicted Candida 201 
levels  202 
We performed supervised machine learning (ML) to investigate if members of our cohort could be 203 
classified as HC or LC solely based on bacterial taxonomic or functional relative abundances. We 204 
applied SIAMCAT for model training and evaluation [41] but adopted data augmentation training to 205 
the default algorithm [42]. We tested our models in an additional validation cohort of 11 206 
immunotherapy-treated lung cancer patients. In the validation cohort, HC and LC were defined using 207 
the same abundance thresholds used for the main cohort. Bacterial species abundance classified 208 
patients as HC or LC with high accuracy in both our main cohort (Figure 3a; crossvalidation area 209 
under the receiver operating characteristic [CV auROC]=77.9%) and validation cohort (Figure 210 
3a; auROC=78.6%). With bacterial functional abundances (by EC), we achieve slightly higher 211 
accuracy (Figure 3a; CV auROC=80.4%; additional auROC=82.1%). We further investigated if we 212 
could predict high vs. low abundance levels for the species C. albicans, C. sake, and C. glabrata, 213 
which were the most prevalent and abundant species in our cohort. High and low abundance groups 214 
for each of the species were formed based on mean species CLR abundances and ML models were 215 
built analogous to the HC vs. LC genus models. The identified microbiome signatures classified 216 
patients as having high or low abundance well for  C. albicans, C. glabrata, and C. sake and in both, 217 
our main cohort (Figure 3a; CV auROC: C. albicans=77.5%, C. sake: 77.0%, C. glabrata: 73.9%) and 218 
test cohorts (Figure 3a; Test auROC: C. albicans=86.7%, C. sake: 86.7%, C.  glabrata: 79.2%). 219 
Interestingly, phage vOTU abundance showed a potential to predict Candida genus and species levels 220 
in the main cohort (Figure 3b; CV auROC: 73%±1%) but had less potential for the independent cohort 221 
(Figure 3b; Test auROC: 53%-75%). C. albicans levels were predicted robustly in both the main and 222 
validation cohorts (auROC=73%) using solely phage composition. This result was interesting 223 
considering recent evidence of inhibition of C. albicans by bacteriophages [43]. 224 

We then inspected bacterial species predictive of Candida genus levels and crosschecked those 225 
species with results from differential abundance analysis (by Maaslin2). We found that many of the 226 
bacterial species predictive of LC with high robustness (at least 80%; P<0.05; false discovery rate 227 
[FDR]<0.2; Figure 3c) were short-chain fatty acid (SCFA) producers [44–49], including Actinomyces 228 
odontolyticus, Bifidobacterium adolescentis, Eubacterium rectale, Anaerotruncus colihominis, 229 
Alistipes ihumii AP11, several Lachnospiraceae species, Pseudoflavonifractor capillosus, and 230 
Odoribacter splanchnicus. We retrieved genome-scale metabolic models of the bacteria species 231 
enriched in the LC group from the AGORA repository [50] and simulated growth on different diets 232 
using flux balance analysis (FBA; Table S3). We monitored the potential to produce SCFAs and 233 
confirmed that many of the bacterial species enriched in the LC group can secrete at least one of 234 
acetate, propionate, or butyrate at varying levels (see Methods and Table S3). The importance of 235 
SCFAs in suppressing C. albicans colonisation has been reported by us [25,26] and others [11]. 236 
However, the suppressive function of SCFAs appears to be towards all Candida species in general. 237 
Several mechanisms by which propionate and butyrate suppress Candida species colonisation have 238 
been suggested, including regulation of the immune system [51]  and direct inhibition  [52,53]. 239 
However, SCFAs also have a major impact on oxygen availability [54,55]. Therefore, a decrease in 240 
SCFA producers in the HC group should be accompanied by an expansion of facultative aerobes. 241 
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Incidentally, we noticed an increase in oxygen-tolerant bacteria in the HC group (Figure 3c). 242 
Interestingly, several lactic acid bacteria were significantly higher in the HC group and consistently 243 
selected as top features in the ML models (for example, Lactobacillus gasseri and Lactococcus lactis) 244 
(Figure 3c). We also observed an increased abundance of Enterobacteriaceae species (Escherichia 245 
species, Klebsiella pneumoniae). A crossdomain correlation analysis between fungal genera and 246 
bacterial species abundance confirmed positive correlations between Candida genus, Lactobacillus, 247 
Lactococcus, Klebsiella and Escherichia species in our study cohort (Figure S2). Similar to the LC-248 
enriched species, FBA analysis suggested that in addition to the lactic acid bacteria enriched in the HC 249 
group, K. pneumoniae and E. coli also secrete lactate (Table S3). 250 

Microbial set enrichment analysis (MSEA) [56] revealed that bacterial genera that were 251 
significantly increased in the HC group (P<0.05; Lactobacillus, Lactococcus, Streptococcus, 252 
Bacteroides and Odoribacter; Table S4) were associated with multiple human disease genes (n=280) 253 
suggesting a dysbiotic microbiome. In contrast, bacteria highly abundant in the LC patients showed 254 
no enrichment in disease genes despite covering more genera (n=12). These results were also 255 
qualitatively the same at P<0.10. Further functional enrichment analysis of the 280 human disease 256 
genes based on the KEGG pathway database, indirectly linked HC-associated bacterial species to 257 
cytokine and chemokine responses (Figure S6; Table S4). IL-17 signalling was of special interest 258 
because it is associated with gut inflammation and Candida species colonisation [57]. IL-17 also has 259 
a role in immune cell recruitment after bacterial invasion [58] and is a key role in stimulating host 260 
immunity upon Candida infection [58]. 261 

We then examined bacterial metabolic functions by analysing MetaCyc pathway abundance (Figure 262 
3d; Table S2). In total, 78 pathways were more abundant in HC compared to only 11 in LC (P<0.05; 263 
q<0.15), matching the observation of increased functional alpha diversity in HC. One of the abundant 264 
pathways in the HC group produces lactate from hexitols (P461-PWY). In agreement with the 265 
observation of decreased anaerobes, aerobic respiration (fatty acid and beta oxidation pathways, TCA-266 
bypass, TCA cycle II) and synthesis pathways for compounds in cell membranes of aerobic bacteria 267 
(menaquinol and ubiquinone synthesis) increased in the HC group. Notably, bby slightly relaxing the 268 
P-value to 0.07, we obtained 5 additional TCA cycle pathways with higher abundance in the HC group 269 
(TCA cycle I, IV, V, VII and partial TCA cycle in obligate autotrophs), effectively covering 6 of 9 270 
TCA pathways in the MetaCyc database (Figure 3d; Table S2). Gene-set enrichment analysis 271 
confirmed the elevated levels of aerobic respiration in the HC group (q<0.05; Table S2). 272 

Based on the increased abundance of lactate producers, we examined functions related to lactate 273 
utilisation. We found D-lactate dehydrogenase (D-LDH) was significantly increased in the HC group 274 
by gene family (UniRef90; P=0.029; Figure 3e) and EC levels (EC:1.1.1.28; log2FC=1.09; P=0.053; 275 
q=0.23; Table S2). We also found a significant increase in (S)-2-hydroxy-acid oxidase (EC:1.1.3.15; 276 
log2FC=0.99; P=0.048; q=0.23) which reduces aliphatic hydroxy acids, including lactate, using flavin 277 
mononucleotide and oxygen. In contrast, L-LDH genes and enzymes did not show significant changes 278 
(P>0.10). We used the Metabolic Analysis of Metagenomes using fBA and Optimization (MAMBO) 279 
algorithm [59] to predict the metabolic flux of the complete bacterial community and found a 280 
significant increase in D-lactate secretion in the HC compared to the LC group (P=0.051; Figure 3f). 281 

In summary, we identified a distinct gut microbial signature predictive of high Candida genus 282 
abundance in infection-free lung cancer patients. This signature describes a dysbiotic gut microbiome 283 
state characterized by a systematic decrease in SCFA producers, which results in increased oxygen-284 
tolerant microbes, including certain lactic acid-producing bacteria. 285 
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 286 

C. albicans has a competitive advantage using lactate under microaerobic conditions  287 
Our data suggested a possible link between microbial lactate production, higher availability of 288 
molecular oxygen and increased Candida species abundance in the gut. To test the hypothesis that 289 
Candida species may outgrow other fungi, specifically the Saccharomyces species that are their main 290 
competitors in our study cohort, we selected C. albicans and S. cerevisiae var. boulardii for further 291 
experiments. Since our ITS2 data could not reliably separate species from the Saccharomyces in situ 292 
stricto group [60], we selected S. boulardii as the best proxy. A fluorescently labelled strain available 293 
in our laboratory facilitated competition experiments with C. albicans. We used two strains of C. 294 
albicans (BWP17, RM1000) that showed significant alterations in morphology, drug resistance, and 295 
host-cell stimulation depending on the main carbon source [58]. In individual in vitro growth assays 296 
with C. albicans BWP17 and RM1000 and S. boulardii-GFP on different carbon sources (lactate, 297 
glucose, or lactate + glucose) with varying oxygen levels (anaerobic, microaerobic, or aerobic) 298 
(Figure 4a-b; Table S5) only C. albicans was able to use lactate as a sole carbon source in aerobic and 299 
microaerobic conditions. All three yeast were unable to grow on lactate under fully anaerobic 300 
conditions (Figure 4b). The most significant growth of C. albicans compared to other oxygen levels 301 
and carbon sources was on lactate as the sole carbon source in microaerobic conditions (t-test; P<0.05; 302 
Figure 4a-b). In fully aerobic conditions, growth on solely lactate was strain dependent but generally 303 
lower than in combined media (Figure 4a-b). These observed differences in growth on lactate were 304 
more pronounced for BWP17 than RM1000. In microaerobic conditions, all species showed significant 305 
reductions in growth rate in glucose+lactate compared to growth on at least one sole carbon source (t-306 
test; P<0.05). When glucose was present, S. boulardii growth was unaffected by additional lactate in 307 
microaerobic and aerobic conditions (t-test; P<0.05; Figure 4a-b). However, both C. albicans strains 308 
showed a slight growth reduction in glucose+lactate (t-test; P<0.05; Figure 4a). 309 

Together, these findings demonstrate the importance of oxygen for C. albicans growth in lactate as 310 
a carbon source. To evaluate a direct competition between Candida and Saccharomyces species, we 311 
co-cultured them under the same conditions as individual growth assays (Figure 4c). The growth of 312 
both C. albicans strains was consistently higher than S. boulardii-GFP on lactate as the sole carbon 313 
source in microaerobic or aerobic conditions. Since oxygen levels in the lower gastrointestinal tract 314 
are unlikely to be normoxic (aerobic), the results in microaerobic conditions are more representative 315 
of the true competitive landscape in the human gut for the two yeasts, at least during gut inflammation. 316 

Last, we evaluated if the main lactic acid producing-bacteria identified in our study could be 317 
involved in the translocation of Candida species through intestinal walls. We focused on the impact 318 
of Lactobacillus and Lactococcus species on gut integrity, which is a critical factor in systemic 319 
candidiasis [61]. We evaluated the impact of L. gasseri and L. lactis by measuring transepithelial 320 
electrical resistance (TEER; Figure 4d). As positive controls, we used L. rhamnosus (LGG ) a well-321 
known probiotic, and B. adolescentis and O. splanchnicus, which were enriched in the LC group. B. 322 
adolescentis had the largest negative fold-change when comparing LC vs. HC groups (Figure 3c). It 323 
is an important microbe associated with health [62], and enhances gut barrier function [63]. O. 324 
splanchnicus produces an array of diverse SCFAs [64] and its absence is associated with various 325 
inflammatory diseases [46,65]. Both L. gasseri and L. lactis showed protective effects (as increased 326 
area under the curve in TEER), comparable to LGG , higher than O. splanchnicus but lower than B. 327 
adolescentis (Figure 4d).  328 
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We found strong evidence that C. albicans strains have growth advantages compared to 329 
Saccharomyces species in utilizing lactate, and this effect is dependent on the levels of molecular 330 
oxygen available in the environment. However, although the lactate producers supported Candida 331 
species growth by creating a metabolic niche, they might also contribute positively to the integrity of 332 
the gut barrier. These findings align with our initial hypothesis that microbiome factors that support 333 
overgrowth are not necessarily involved in the dissemination of Candida. 334 

 335 

Discussion 336 
Colonisation resistance is a crucial function of the gut microbiota in infectious disease. In addition to 337 
protecting the host from external pathogens, local microbiota also prevent expansion and invasion of 338 
intestinal pathobionts [66]. Microbial resistance in gastrointestinal infections have both direct and 339 
indirect mechanisms. Infections can be limited directly via metabolic by-products (bacteriocins, acids, 340 
peptides) of the gut microbiota [67], or by outcompeting pathogens for space, metabolites, and 341 
nutrients [68]. Intestinal pathogens can also be inhibited indirectly when the local microbiota calibrate 342 
host immune responses to them [69] or induce the formation of a protective mucin layer that covers 343 
the gut epithelium. Perturbation of the resident microbiota is thus a risk for infection by a pathobiont 344 
infection that is ordinarily held at bay by these mechanisms. Candida species are gut symbionts that 345 
can become an aggressive pathogen under specific circumstances. Despite Candida species being the 346 
fourth most common cause of nosocomial bloodstream infections [70] the number of human studies 347 
investigating their interplay with the gut microbiota is surprisingly low compared to studies on 348 
bacterial pathogens such as Clostridium, Enterococcus, Salmonella and Enterobacteriaceae [71]. 349 

Most of the work to identify specific bacterial promoters or inhibitors of Candida species 350 
colonisation has been performed in mouse models. Fan et al. [11] demonstrated how Bacteroides 351 
thetaiotamicron can protect mice from C. albicans colonisation by activating innate immune effectors 352 
and the antimicrobial peptide LL-37. The bacteria taxonomic annotation was based on 16S rRNA, 353 
therefore the changes in the metabolic capacity of the gut microbiome associated with the C. albicans 354 
colonisation remained unclear. Tan et al. [7] used mice to show that several gram-positive bacteria, 355 
including Staphylococcus aureus, shed peptidoglycan units that trigger hyphae formation of C. 356 
albicans. The only human study to concomitantly examine the mycobiome and microbiome to find 357 
common colonisation patterns between Candida species and the gut microbiome was presented 358 
recently by Zhai et al. [24]. The authors concluded that systemic candidiasis begins with expansion of 359 
Candida species in the human gut. Using 16S rRNA, they observed a reduction in the levels of 360 
anaerobes in patients with systemic candidiasis compared to non-infected cohorts. However, the small 361 
number of patients (8) in this study and the lack of functional characterisation of the microbiome left 362 
many questions unanswered.  363 

Using shotgun metagenomics of stool samples from 75 lung cancer patients combined with ITS 364 
sequencing, we substantially expanded our knowledge on the ecology of Candida species inhibition 365 
and overgrowth. Some studies suggest that immunotherapy limits Candida overgrowth. Although all 366 
lung cancer patients in our study received immunotherapy, we observed high variation in Candida 367 
genus levels. The mycobiome of several patients was completely dominated by Candida species. In 368 
some other samples, these fungi were virtually absent. No patients, including those with extremely 369 
high levels of the Candida in the gut, showed any sign of infection. However, we do not know if any 370 
of those patients were diagnosed with systemic candidiasis after the completion of our study.  371 
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Our relatively large study cohort allowed us to develop a machine learning model based solely on 372 
bacterial taxa or functional abundance. The model had high accuracy in classifying patients from an 373 
external cohort into groups with high abundance or low gut abundance of the Candida genus. Some 374 
bacterial species or functions are suggested to affect the growth of individual Candida species [11,72]. 375 
We mostly focused on C. albicans and demonstrated general properties of the gut microbiome that are 376 
associated with the successful colonisation of Candida species. We also developed ML models to 377 
predict the levels of individual Candida species. These models showed high accuracy but did not 378 
significantly improve classification over the genus-based model. A  phage-based machine learning 379 
model showed a high predictive power for C. albicans and requires further attention in the future in 380 
light of recent evidence [43]. 381 

What we found particularly intriguing in our human study was the enrichment of several potential 382 
lactic-acid producing bacteria in the HC group. Lactobacillus species such as L. gasseri are 383 
particularly interesting as recent in vitro experiments show they prevent hyphae formation without 384 
reducing the growth of C. albicans [73]. The exact role of lactate on Candida species growth is unclear. 385 
For C. albicans, the change from glucose to lactate as the main carbon source is tightly linked to 386 
changes in cell wall composition. Ene et al., and Ballou et al., independently demonstrated in vitro 387 
that a lactate-rich environment assists C. albicans in hiding from the innate immune system by 388 
stimulating interleukins [58] or by beta-glucan masking [74]. In contrast, Gutierrez et al. found lactate 389 
inhibited the growth of C. albicans at higher concentrations [75], while MacAlpine et al. reported no 390 
impact on growth at physiological levels of lactate [73]. Notably, the oxygen status of the experiments 391 
is unclear and C. albicans was grown at 30°C or 42°C, which are not physiologically relevant in the 392 
gut. However, the ecology of the human gut is more complex. The growth response of Candida species 393 
to increased levels of lactate depends on both the growth of other fungi and on environmental 394 
conditions. We used human metagenomics data and in vitro competition experiments to demonstrate 395 
that under low oxygen conditions, induced by a reduction of SCFA producers [55], Candida species 396 
may gain a competitive advantage due to growth on lactate as the primary carbon source in the gut. 397 
Our observations bring to light another possible mechanism by which SCFA producers inhibit Candida 398 
overgrowth in addition to mechanisms in the literature such as direct inhibition [52] and immune 399 
regulation [51,66,76]. However, although lactate producers may promote Candida species growth in 400 
the human gut under microaerobic conditions, they also increase protection of the human host from 401 
systemic candidiasis by increasing gut barrier integrity. 402 

Limitations of our study are that we did not monitor oxygen levels in the gut of patients and provide 403 
only indirect evidence in the form of signs of dysbiosis, increased ratios of aerobes to anaerobes and 404 
microbial functional pathways related to aerobic respiration in the HC group. No patient in this group 405 
developed systemic candidiasis during our study. However, a longer follow up would be necessary to 406 
delineate the ecological context associated with overgrowth and dissemination of Candida species. 407 
Nevertheless, human studies with many participants like ours are needed to evaluate which findings 408 
from in vitro experimentation are relevant to the human gut and to design prophylactic, microbiome-409 
driven strategies for patients at high risk of candidiasis. 410 
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 453 
Figure 1. Explanatory factors of mycobiome diversity. (a) Study design. Indicated are the total number of 454 
taxonomic and functional features annotated in our study and in parentheses, their average per sample. 455 
(b) Fungal genus relative abundance profile (by total-sum scaling, TSS). The top 10 genera by highest median 456 
abundance are indicated by colour, with grey indicating abundance of the remaining fungi. (c-d) Distance-based 457 
redundancy analysis (dbRDA) of fungal species beta diversity (Aitchison distance). Explanatory factors are (c) 458 
fungal genera and (d) bacterial species relative abundance. Only significant terms are shown (P<0.05). 459 
Displayed are cumulative explained variances of full, non-redundant models (black) and single-term statistics 460 
(grey). Important fungal and bacterial taxa are coloured red or green, respectively. (e) Principal coordinate 461 
analysis (PCoA) biplot of fungal species beta diversity (Aitchison). Samples are coloured by Candida centre 462 
log ratio-normalised abundance. Top features by ordination correlation (t-test; P<0.05) are bacterial (green), 463 
fungal (red) and patient characteristic (blue) arrows indicating the direction of covariance between feature 464 
abundances and the first two ordination axes. Samples are in a gradient from high (red) to low (green) Candida 465 
abundance. Axes show explained variance. (f-g) Notched boxplots showing (f) total number of Candida internal 466 
transcribed spacer (ITS) reads and (g) the total number of ITS reads. Significance was assessed using non-467 
parametric generalized linear models (Rfit) controlled for body mass index and gender. (h) PCoA of fungal 468 
genera beta diversity. Candida grouping (High vs. Low) shows significant separation (P=0.001; 469 
PERMANOVA). Within-group diversity differences were insignificant (dispersion P>0.05). Circles indicate 470 
95% confidence interval of within-group diversity. 471 
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 472 
Figure 2. Microbiome contribution to high and low Candida groups. (a-d) Principal coordinate analysis 473 
(PCoA) of beta diversity (Aitchison distance) using (a) bacterial species, (b) bacterial metabolic pathways, (c) 474 
bacterial enzyme functions (EC, Enzyme Commission) or (d) viral orthologous taxonomic unit (vOTU) 475 
abundance profiles. Bacterial function profiles were stratified for bacteria-only abundances. Diversity was 476 
significantly different between Candida groups (High vs. Low; p<0.05; PERMANOVA; betadisper P>0.05). 477 
(e) Notched boxplots of bacterial function (MetaCyc pathway) alpha diversity (Simpson). (f) MetaCyc pathways 478 
with significant contributional Simpson diversity (Rfit drop-test; P<0.05). Centre lines indicate the median 479 
Simpson diversity (y-axis) of a pathway (x-axis). Ribbons indicate the 25% and 75% quantiles. Colours indicate 480 
High or Low Candida group. (g) Notched boxplots show the median contributional diversity per pathway 481 
(P=1e-5; paired Wilcoxon test). For each pathway (point), grey lines indicate change in diversity from High to 482 
Low group. (h-i) Notched boxplots summarizing the abundance of bacterial taxa stratified by tolerance to 483 
molecular oxygen. Only strict and obligate anaerobes were considered anaerobes. Significance was assessed 484 
using non-parametric generalised linear models (Rfit) controlled for body mass index and gender. Effect sizes 485 
are indicated as ∆R2. (j) Number of phages contigs with (blue) or without (red) diversity-generating retro-486 
elements (DGRs). DGRs were significantly enriched in samples of the low Candida group (P<0.05; two-sided 487 
Fisher test). 488 

  489 
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Figure S1. Crosskingdom co-abundance networks of bacterial species and fungal genera abundances. 522 
Correlations were assessed using Spearman's coefficients on centre log ratio (CLR)-normalized (left) or total-523 
sum scaled (TSS)-normalized abundance data (right). Only significant correlations with P<0.05 and |r|>10% 524 
are shown. Red, solid edges show positive correlations; blue-dashed edges show negative correlations. Colour 525 
strength indicates estimated correlation strength. (a) CLR-based networks capture microbial abundance 526 
correlations better, especially when comparing features between distinct compositions. However, strong 527 
changes in observed relative abundance (TSS) were lost. (b) TSS networks revealed correlations between 528 
dominant species but were less reliable for low-abundance species. (a-b) Lactobacillus species such as L. 529 
gasseri and L. lactis and Escherichia species correlated positively with Candida regardless of normalization, 530 
and short-chain fatty acid producers like Lachnospiraceae and Actinomyces odontolyticus were found to 531 
correlate negatively. 532 

Figure S2. Candida albicans correlated negatively with Yarrowia lipolytica and Saccharomyces paradoxus 533 
abundance. (a) Fungal co-abundance networks of significant correlations (P<0.05; |r|>0.10; Spearman's 534 
coefficient) with C. albicans. Solid, red lines indicate positive correlations. Dashed, blue lines indicate negative 535 
correlations. (b) Fungal species abundance profile indicating the top 10 most abundant fungal species based on 536 
total-sum scaling. Species are shown in colours. Other fungi are grey. 537 

Figure S3. Normalised Candida abundance correlates across methods. In normalised space (a), all methods 538 
except rarefaction showed acceptable linear correlation (cumulative sum scaling [CSS]; centralized log-ratio 539 
[CLR]; balance-based CLR [bal-CLR]). Rarefaction differs were resolved using a simple rank transformation 540 
(b), implying at least a non-linear relationship among all methods. The strongest agreement was seen for CSS 541 
and CLR. Rarefaction was a poor normalisation choice, as it accounted only for differences in sequencing depth 542 
and not for compositionality effects in relative abundance data. (c) Candida CLR-normalised abundance (y-543 
axis) per sample (x-axis). Samples are ordered from low to high CLR abundance. Dashed lines indicate median 544 
sample and median abundance thresholds. 545 

Figure S4. Principal coordinate analysis (PCoA) of beta diversity for bacterial species and functional, 546 
fungal genus and species, and viral operational taxonomic unit abundances (vOTU). R2 describes estimated 547 
explained variance by Candida High vs. Low grouping (Adonis2; PERMANOVA). MetaCyc and KEGG 548 
Orthology had the largest effect sizes. 549 

 550 

Figure S5. Metagenomic gut virus (MGV) Pphage mapping rate. (a) Percentage of reads per sample that 551 
passed (blue) or did not pass (red) a 10% prevalence filter. More than 30% of reads were assigned to low 552 
prevalence contigs in a few samples. (b) Percentage of reads assigned to phage contigs by Candida High or 553 
Low abundance. Statistical significance was assessed by unpaired Wilcoxon rank-sum tests. The median 2.5% 554 
of reads were assigned to prevalent viral contigs. 555 

Figure S6. Species enriched in the High Candida (HC) group were related to human-disease genes. 556 
Microbial Set Enrichment Analysis revealed that bacterial genera with significant differential abundance in the 557 
HC group (bottom) were frequently associated with human disease genes (n=280) in contrast to the low Candida 558 
(LC) group (n=0). Green nodes indicate human disease-associated genes that were tested for significant 559 
enrichment in KEGG pathways (red nodes). Grey edges indicate an association between either (1) bacteria and 560 
host genes or (2) host genes and pathways. Red edges indicate associations with interleukins and chemokines. 561 
IL-17 signalling is of interest because of strong roles in immune cell recruitment after bacterial invasion and in 562 
tumour response. 563 

 564 
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with default parameters. Since HUMAnN2 does not directly support paired-end reads, paired-end sample mates were 615 
merged as suggested by the HUMAnN2 authors. HUMAnN2 assigns pathways and gene families based on MetaCyc [83] 616 
and UniRef90 [84] databases, respectively. Abundances of gene families in each sample were reported in reads per kilobase 617 
(RPK) and further normalised by copies per million (CPM), effectively yielding transcript per kilobase million (TPKM). 618 
To remove fungi-related abundances, we kept only functional abundances that were directly assigned to bacterial taxa (i.e., 619 
excluding other kingdoms and unclassified abundances). The resulting bacteria-only abundances were summed for each 620 
feature category (MetaCyc pathways, Enzyme Commission (EC), KEGG orthology terms (KO), KEGG pathways). A 10% 621 
prevalence filter was applied to bacterial species, bacterial genera, MetaCyc pathways, EC, KO, and KEGG pathways. 622 
Summaries are reported as the median ± median absolute deviation (MAD). 623 

Co-abundance networks 624 
Spearman's correlation analyses of microbial abundances within and between kingdoms were performed by abundance 625 
profiles normalized (TSS or CLR) for each kingdom separately. Only significant correlations were considered further 626 
(P<0.05; |r|>0.10). Networks were transformed and analysed using the R package TidyGraph [85] and visualised using 627 
GGraph [86]. 628 

Statistical analysis 629 
To assess the significance of univariate measurements while correcting for confounders such as body mass index (BMI) 630 
and gender, we used a rank-based generalised linear model (GLM) as implemented in Rfit [87,88]. In contrast to simple 631 
linear models or GLMs, the rank-based GLMs assess unspecific, non-linear trends in data. This test was applied to 632 
taxonomic and functional alpha diversity, and contributional alpha diversity. To test for significant differences in bacterial 633 
and functional abundances, we used Maaslin2 [89]. In addition to the default settings (total-sum scaling, log-transform, 634 
GLM), we set a minimum prevalence filter of 20% (15 samples) with 1e-6 minimum abundance. Tests are corrected for 635 
differences in BMI and gender. P-values were adjusted for multiple testing using false discovery rate (FDR). 636 

Cohort stratification 637 
Samples were stratified into two groups (High and Low Candida) based on median CLR-normalised Candida genus 638 
abundance. CLR normalisation was performed by (i) removing features with less than 10% sample prevalence but summing 639 
counts of low prevalence taxa into a new ‘LOW_PREV’ feature to preserve the proportions of the remaining features, (ii) 640 
Bayesian zero replacement to maintain log-ratios [90,91] and (iii) applying CLR transform as suggested for compositional 641 
data [30,90–92]. Samples higher than median Candida levels were classified as the High group; others as the Low group. 642 

Diversity analysis 643 
Diversity calculations were performed using the R package vegan [93]. The alpha diversity indices of bacterial and fungal 644 
communities were calculated using Shannon, Simpson, observed amplicon sequencing variants, and Pilou’s evenness index 645 
[93]. For beta diversity, analyses were performed using the Aitchison index and Bayesian-zero replacement as suggested 646 
[28,29,91,94] to overcome compositionally related biases. Between-group significance was estimated using 647 
PERMANOVA as implemented in the Adonis (vegan [95]) using 1000 permutations. Beta-dispersion (within-group 648 
diversity) was assessed using betadisper (vegan). 649 

Aerobe and anaerobe annotation 650 
Culture conditions of bacterial species annotated with MetaPhlAn2 were manually searched in DSMZ 651 
(https://www.dsmz.de/collection/catalogue/microorganisms/catalogue/bacteria) and ATTC bacterial collection 652 
(https://www.lgcstandards-atcc.org/Products/Cells_and_Microorganisms/Bacteria). Strict or obligate anaerobes were 653 
annotated as anaerobes. Facultative anaerobes and obligate aerobes were classified as aerobes. Uncultured bacteria were 654 
not annotated. 655 

Machine learning 656 
We performed logistic regression based on GLMnet models as implemented in the R package SIAMCAT [41]. We screened 657 
several model normalisations (rank-unit, log-unit, CLR), feature selection (receiver operating curve (ROC)-based with 658 
n=20-100) and model (elastic Net, Lasso, Ridge, Lasso-LL, Ridge-LL) settings. Zeros were imputed by dividing the 659 
smallest non-zero abundances value by 10. Models were trained with feature abundances from only one category at a time 660 
(bacterial taxa, MetaCyc pathways, KEGG orthology terms, KEGG pathways). A 30% prevalence filter was applied in the 661 
main cohort of this study. The test cohort was filtered for features prevalent in the main cohort. BMI and gender were 662 
included as additional, fixed covariates in the models. 663 
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Colony-forming units (CFU)·ml-1 were determined at the end of growth experiments. Cultures were serially diluted 10-763 
fold in an 8-step dilution series and 5 µL of the dilution series were spotted on YPD agar plates and incubated aerobically 764 
for 48 hours at 37°C. To determine CFUs·ml-1, single colonies were counted from the highest dilutions, divided by spot 765 
volume (5 µL) and multiplied by the dilution factor. Technical replicates were made of all experiments. 766 

References 767 
1. Miranda LN, van der Heijden IM, Costa SF, Sousa API, Sienra RA, Gobara S, et al. Candida colonisation as a source for candidaemia. 768 
J Hosp Infect. W.B. Saunders; 2009;72:9–16.  769 
2. Pappas PG, Lionakis MS, Arendrup MC, Ostrosky-Zeichner L, Kullberg BJ. Invasive candidiasis. Nat Rev Dis Prim 2018 41. Nature 770 
Publishing Group; 2018;4:1–20.  771 
3. Cesaro S, Tridello G, Blijlevens N, Ljungman P, Craddock C, Michallet M, et al. Incidence, Risk Factors, and Long-term Outcome 772 
of Acute Leukemia Patients With Early Candidemia After Allogeneic Stem Cell Transplantation: A Study by the Acute Leukemia and 773 
Infectious Diseases Working Parties of European Society for Blood and Marrow Transplantation. Clin Infect Dis. Oxford Academic; 774 
2018;67:564–72.  775 
4. Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. https://doi.org/104161/viru22913. Taylor & Francis; 776 
2013;4:119–28.  777 
5. Gunsalus KTW, Tornberg-Belanger SN, Matthan NR, Lichtenstein AH, Kumamoto CA. Manipulation of Host Diet To Reduce 778 
Gastrointestinal Colonization by the Opportunistic Pathogen Candida albicans. mSphere. Amer ican Society for Microbiology; 2016;1.  779 
6. Asbeck EC van, Clemons K V., Stevens DA. Candida parapsilosis: a review of its epidemiology, pathogenesis, clinical aspects, typing 780 
and antimicrobial susceptibility. https://doi.org/103109/10408410903213393. Taylor & Francis; 2009;35:283–309.  781 
7. Tan CT, Xu X, Qiao Y, Wang Y. A peptidoglycan storm caused by β-lactam antibiotic’s action on host microbiota drives Candida 782 
albicans infection. Nat Commun. Springer US; 2021;12.  783 
8. Lopes JP, Stylianou M, Backman E, Holmberg S, Jass J, Claesson R, et al. Evasion of immune surveillance in low oxygen 784 
environments enhances candida albicans virulence. MBio. American Society for Microbiology; 2018;9.  785 
9. Ueno K, Matsumoto Y, Uno J, Sasamoto K, Sekimizu K, Kinjo Y, e t al. Intestinal Resident Yeast Candida glabrata Require s Cyb2p-786 
Mediated Lactate Assimilation to Adapt in Mo use Intestine. PLoS One . Public Library of  Science; 2011;6:e24759.  787 
10. Mirhakkak MH, Schäuble S, Klassert TE, Brunke S, Brandt P, Loos D, et al. Metabolic modeling predicts specific gut bacteria as 788 
key determinants for Candida albica ns colonization levels. ISME J 2020 155. Nature Publishing Group; 2020;15:1257 –70.  789 
11. Fan D, Coughlin LA, Neubauer MM, Kim J, Kim MS, Zhan X, et al. Activation of HIF-1α and LL-37 by commensal bacteria inhibits 790 
Candida albicans colonization. Nat Med 2015 217. Nature Publishing Group; 2015;21:808–14.  791 
12. Sellers RS. Translating Mouse Models: Immune Variation and Efficacy Testing. Toxicol Pathol. SAGE Publications Inc.; 792 
2017;45:134–45.  793 
13. Sovran B, Planchais J, Jegou S, Straube M, Lamas B, Natividad JM, et al. Enterobacteriaceae are essential for the modulation of 794 
colitis severity by fungi. Microbiome. BioMed Central Ltd.; 2018;6:152.  795 
14. Zhang L, Bahl MI, Roager HM, Fonvig CE, Hellgren LI, Frandsen HL, et al. Environmental spread of microbes impacts the 796 
development of metabolic phenotypes in mice transplanted with microbial communities from humans. ISME J. Nature Publishing Group; 797 
2017;11:676–90.  798 
15. Staley C, Kaiser T, Beura LK, Hamilton MJ, Weingarden AR, Bobr A, et al. Stable engraftment of human microbiota into mice with 799 
a single oral gavage following antibiotic conditioning. Microbiome. BioMed Central; 2017;5:87.  800 
16. Shultz LD, Brehm MA, Victor Garcia-Martinez J, Greiner DL. Humanized mice for immune system investigation: progress, promise 801 
and challenges. Nat Rev Immunol 2012 1211. Nature Publishing Group; 2012;12:786–98.  802 
17. Bratburd JR, Keller C, Vivas E, Gemperline E, Li L, Rey FE, et al. Gut microbial and metabolic responses to salmonella enterica 803 
serovar typhimurium and candida albicans. MBio. American Society for Microbiology; 2018;9.  804 
18. Lundberg R, Toft MF, Metzdorff SB, Hansen CHF, Licht TR, Bahl MI, et al. Human microbiota-transplanted C57BL/6 mice and 805 
offspring display reduced establishment of key bacteria and reduced immune stimulation compared to mouse microbiota-transplantation. 806 
Sci Reports 2020 101. Nature Publishing Group; 2020;10:1–16.  807 
19. Zaborin A, Smith D, Garfield K, Quensen J, Shakhsheer B, Kade M, et al. Membership and behavior of ultra-low-diversity pathogen 808 
communities present in the gut of humans during prolonged critical illness. MBio. American Society for Microbiology; 2014;5.  809 
20. van Vliet MJ, Harmsen HJM, de Bont ESJM, Tissing WJE. The Role of Intestinal Microbiota in the Development and Severity of 810 
Chemotherapy-Induced Mucositis. PLOS Pathog. Public Library of Science; 2010;6:e1000879.  811 
21. Zwielehner J, Lassl C, Hippe B, Pointner A, Switzeny OJ, Remely M, et al. Changes in Human Fecal Microbiota Due to 812 
Chemotherapy Analyzed by TaqMan-PCR, 454 Sequencing and PCR-DGGE Fingerprinting. PLoS One. Public Library of Science; 813 
2011;6:e28654.  814 
22. Lin XB, Dieleman LA, Ketabi A, Bibova I, Sawyer MB, Xue H, et al. Irinotecan (CPT-11) Chemotherapy Alters Intestinal Microbiota 815 
in Tumour Bearing Rats. PLoS One. Public Library of Science; 2012;7:e39764.  816 
23. Tang HJ, Liu WL, Lin HL, Lai CC. Epidemiology and Prognostic Factors of Candidemia in Cancer Patients. PLoS One. Public 817 
Library of Science; 2014;9:e99103.  818 
24. Zhai B, Ola M, Rolling T, Tosini NL, Joshowitz S, Littmann ER, et al. High-resolution mycobiota analysis reveals dynamic intestinal 819 
translocation preceding invasive candidiasis. Nat Med. Springer US; 2020;26:59 –64.  820 
25. Seelbinder B, Chen J, Brunke S, Vazquez-Uribe R, Santhaman R, Meyer AC, et al. Antibiotics create a shift from mutualism to 821 
competition in human gut communities with a longer-lasting impact on fungi than bacteria. Microbiome. BioMed Central Ltd; 2020;8:1–822 
20.  823 
26. Marfil-Sánchez A, Zhang L, Alonso-Pernas P, Mirhakkak M, Mueller M, Seelbinder B, et al. An integrative understanding of the 824 
large metabolic shifts induced by antibiotics in critical illness. Gut Microbes. Taylor & Francis; 2021;13.  825 
27. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina 826 



MANUSCRIPT V 
 

 164 

 22 

amplicon data. Nat Methods. Nature Publishing Group; 2016;13:581.  827 
28. Luz Calle M. Statistical anal ysis of metagenomics data. Genomics and Inf ormatics. Korea Genome O rganization; 2019.  828 
29. Rivera-Pinto J, Egozcue JJ, Pawlowsky-Glahn V, Paredes R, Noguera-Julian M, Calle ML. Balances: a New Perspective for 829 
Microbiome Analysis. mSystems. American Society for Microbiology; 2018 ;3:53–71.  830 
30. Gloor GB, Macklaim  JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome datasets are compositional:  and this is not optional.  Front 831 
Microbiol. Frontiers; 2017;8:222 4.  832 
31. García-Gamboa R, Kirchmayr MR, Gradilla-Hernández MS, Pérez-Brocal V, Moya A, González-Avila M. The intestinal mycobiota 833 
and its relationship with overweight, obesity and nutritional aspects. J Hum Nutr Diet. John Wiley & Sons, Ltd; 2021;34:645 –55.  834 
32. Sun S, Sun L, Wang K, Qiao S, Zhao X, Hu X, et al. The gut commensal fungus, Candida parapsilosis, promotes high fat-diet induced 835 
obesity in mice. Commun Biol 2021 41. Nature Publishing Group; 2021;4:1–11.  836 
33. Franzosa EA, McIver LJ, Rahnavard G, Thompson LR, Schirmer M, Weingart G, et al. Species-level functional profiling of 837 
metagenomes and metatranscriptomes. Nat Methods. Springer US; 2018;15:962–8.  838 
34. Moya A, Ferrer M. Functional Redundancy-Induced Stability of Gut Microbiota Subjected to Disturbance. Trends Microbiol. 839 
Elsevier Current Trends; 2016;24:402–13.  840 
35. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. 841 
Nat Methods 2017 144. Nature Publishing Group; 2017;14:417–9.  842 
36. Corchete LA, Rojas EA, Alonso-López D, De Las Rivas J, Gutiérrez NC, Burguillo FJ. Systematic comparison and assessment of 843 
RNA-seq procedures for gene expression quantitative analysis. Sci Reports 2020 101. Nature Publishing Group; 2020;10:1–15.  844 
37. Ye Y. Identification of Diversity-Generating Retroelements in  Human Microbiomes. Int J Mol Sci 2014, Vol 15, Pages 14234-845 
14246. Multidisciplinary Digital Publishing Institute; 2014;15:14234 –46.  846 
38. Liu M, Deora R, Doulatov SR, Gingery M, Eiserling FA, Preston A, et al. Reverse transcriptase-mediated tropism switching in 847 
Bordetella bacteriophage. Science (80- ). 2002;295:2091–4.  848 
39. Medhekar B, Miller JF. Diversity-generating retroelements. Curr Opin Microbiol. Elsevier Current Trends; 2007;10:388 –95.  849 
40. Wu L, Gingery M, Abebe M, Arambula D, Czornyj E, Handa S, et al. Diversity-generating retroelements: natural variation, 850 
classification and evolution inferred from a large -scale genomic survey. Nucleic Acids Res. Oxford Academic; 2018;46:11–24.  851 
41. Wirbel J, Zych K, Essex M,  Karcher N, Kartal E, Salazar G, et al. Microbiome meta-analysis and cross-disease comparison enabled 852 
by the SIAMCAT machine learning toolbox. Genome Biol 2021 221. BioMed Central; 2021;22:1–27.  853 
42. Lo C, Marculescu R. MetaNN: accurate classification of host phenotypes from metagenomic data using neural networks. BMC 854 
Bioinforma 2019 2012. BioMed Central; 2019;20:1–14.  855 
43. Nazik H, Joubert LM, Secor PR, Sweere JM, Bollyky PL, Sass G, et al. Pseudomonas phage inhibition of Candida albicans. Microbiol 856 
(United Kingdom). 2017;163:1568–77.  857 
44. Eeckhaut V, van Immerseel F, Croubels S, de Baere S, Haesebrouck F, Ducatelle R, et al. Butyrate production in phylogenetically 858 
diverse Firmicutes isolated from the chicken ca ecum. Microb Biotechnol. Wiley -Blackwell; 2011;4:503.  859 
45. Gotoh A, Nara M, Sugiyama Y, Sakanaka  M, Yachi H, Kitakata A, et al. Use of Gifu Anaer obic Medium for culturing 32 dominant 860 
species of human gut microbes and its evaluation based on short-chain fatty acids fermentation profiles. Biosci Biotechnol Biochem. 861 
Oxford Academic; 2017;81:2009–17.  862 
46. Hiippala K, Barreto G,  Burrello C, Diaz-Basabe A, Suutarinen M,  Kainulainen V, et al. Novel Odoribacter splanchnicus Strain and 863 
Its Outer Membrane Vesicles Exert Immunoregulatory Effects in vitro. Front Microbiol. Frontiers Media S.A.; 2020;11.  864 
47. Baxter NT, Schmidt AW, Venkatara man A, Kim KS, Waldron C, Schmidt TM. Dynamics of human gut microbiota  and short-chain 865 
fatty acids in response to dietary interventions with three fermentable fibers. MBio. American Society for Microbiology; 2019;10.  866 
48. Parker BJ, Wearsch PA, Veloo ACM, Rodriguez-Palacios A. The Genus Alistipes: Gut Bacteria With Emerging Implications to 867 
Inflammation, Cancer, and Mental Health. Front Immunol. 2020;11:906.  868 
49. Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS 869 
Microbiol Lett. Oxford Academic; 2009;294:1–8.  870 
50. Magnúsdóttir S, Heinken A, Kutt L, Ravcheev DA, Bauer E, Noronha A, et al. Generation of genome-scale metabolic reconstructions 871 
for 773 members of the human gut microbiota. Nat Biotechnol 2016 351. Nature Publishing Group; 2016;35:81–9.  872 
51. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, et al. The microbial metabolites, short-chain fatty acids, 873 
regulate colonic T reg cell homeostasis. Science (80- ). American Association for the Advancement of Science; 2013;341:569–73.  874 
52. Guinan J, Wang S, Hazbun TR, Yadav H, Thangamani S. Antibiotic-induced decreases in the levels of microbial-derived short-chain 875 
fatty acids correlate with increased gastrointestinal colonization of Candida albicans. Sci Rep. Nature Publishing Group; 2019;9:8872.  876 
53. Nguyen LN, Lopes LCL, Cordero RJB, Nosanchuk JD. Sodium butyrate inhibits pathogenic yeast growth and enhances the functions 877 
of macrophages. J Antimicrob Chemother. 2011;66:2573 –80.  878 
54. Rigottier-Gois L. Dysbiosis in inflammatory bowel diseases: the oxygen hypothesis. ISME J 2013 77. Nature Publishing Group; 879 
2013;7:1256–61.  880 
55. Litvak Y, Byndloss MX, Bäumler AJ. Colonocyte metabolism shapes the gut microbiota. Science (80- ). NIH Public Access; 881 
2018;362.  882 
56. Kou Y, Xu X, Zhu Z, Dai L, Tan Y. Microbe-set enrichment analysis facilitates functional interpretation of microbiome profiling 883 
data. Sci Rep. Nature Resear ch; 2020;10:1–12.  884 
57. Kumamoto CA. Inflammation and gastrointestinal Candida colonization. Curr  Opin Microbiol. NIH Public Access; 2011;14:386.  885 
58. Ene I V., Cheng S-C, Netea MG, Brown AJP. Growth of Candida albicans Cells on the Physiologically Relevant Carbon Source 886 
Lactate Affects Their Recognition and Phagocytosis by Immune C ells. Deepe GS, editor. Infect Immun. 2013;81:238–48.  887 
59. Chowdhury S, Fong SS. Computational Modeling of the Human Microbiome. Microorganisms. Multidisciplinary Digital Publishing 888 
Institute; 2020;8:197.  889 
60. Stewart GG. Saccharomyce s: Introduction. Encycl Food Microbiol Se cond Ed. 2014;3:297–301.  890 
61. Zangl I, Pap IJ, Aspöck C, Schüller C. The role of Lactobacillus species in the control of Candida via biotrophic interactions. Microb 891 
Cell. Shared Science Publishers; 2020;7:1.  892 
62. Rivière A, Selak M, Lantin D, Leroy F, De Vuyst L. Bifidobacteria and butyrate-producing colon bacteria: Importance and strategies 893 



MANUSCRIPT V 
 

 165 

 23 

for their stimulation in the human gut. Front. Microbiol. Frontiers Research Foundation; 2016. p. 979.  894 
63. Krumbeck JA, Rasmussen HE, Hutkins RW, Clarke J, Shawron K, Keshavarzian A, et al. Probiotic Bifidobacterium strains and 895 
galactooligosaccharides improve intestinal barrier function in obese adults but show no synergism when used together as synbiotics. 896 
Microbiome. BioMed Central Ltd.; 2018;6:1–16.  897 
64. Oh BS, Choi WJ, Kim JS, Ryu SW, Yu SY, Lee JS, et al. Cell-Free Supernatant of Odoribacte r splanchnicus Isolated From Human 898 
Feces Exhibits Anti-colorectal Cancer Activity. Front Microbiol. Frontiers Media S.A.; 2021;12:3454.  899 
65. Xing C, Wang M, Ajibade AA, Tan P, Fu C, Chen L, et al. Microbiota regulate innate immune signaling and protective immunity 900 
against cancer. Cell Host Microbe. Elsevier Inc.; 2021;29:959-974.e7.  901 
66. Buffie CG, Pamer EG. Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol 2013 1311. 902 
Nature Publishing Group; 2013;13:790–801.  903 
67. Rea MC, Sit CS, Clayton E, O’Connor PM, Whittal RM, Zheng J, et al. Thuricin CD, a posttranslationally modified bacteriocin with 904 
a narrow spectrum of activity against Clostridium difficile. Proc Natl Acad Sci U S A. National Academy of Sciences; 2010;107:9352–905 
7.  906 
68. Abt MC, Pamer EG. Commensal bacteria mediated de fenses against pathogens. Curr Opin Immunol. Elsevier Ltd; 2014;29:16 –22.  907 
69. Kamada N, Núñez G. Regulation of the Immune System by the Resident Intestinal Bacteria. Gastroenterology. W.B. Saunders; 908 
2014;146:1477–88.  909 
70. Koehler P, Stecher M, Cornely OA, Koehler D, Vehreschild MJGT, Bohlius J, et al. Morbidity and mortality of candidaemia in 910 
Europe: an epidemiologic meta-analysis. Clin Microbiol Infect. Elsevier B.V.; 2019;25:1200–12.  911 
71. Harris VC, Haak BW, Boele van Hensbroek M, Wiersinga WJ. The Intestinal Microbiome in Infectious Diseases: The Clinical 912 
Relevance of a Rapidly Emerging Field. Open Forum Infect Dis. Oxford Academic; 2017;4.  913 
72. Pradhan A, Avelar GM, Bain JM, Childers DS, Larcombe DE, Netea MG, et al. Hypoxia promotes immune evasion by triggering β-914 
glucan masking on the candida albicans c ell surface via mitochondrial and cAMP-protein kinase A signaling. MBi o. American Society 915 
for Microbiology; 2018;9.  916 
73. MacAlpine J, Daniel-Ivad M, Liu Z, Yano J, Revie NM, Todd RT, et al. A small molecule produced by Lactobacillus species blocks 917 
Candida albicans filamentation by inhibiting a DYRK1-family kinase. Nat Commun 2021 121. Nature Publishing Group; 2021;12:1–918 
16.  919 
74. Ballou ER, Avelar GM, Childers DS, Mackie J, Bain JM, Wagener J, et al. Lactate signalling regulates fungal β-glucan masking and 920 
immune evasion. Nat Microbiol 2016 22. Nature Publishing Group; 2016;2:1–9.  921 
75. Gutierrez D, Weinstock A, Antharam VC, Gu H, Jasbi P, Shi X, et al. Antibiotic-induced gut metabolome and microbiome alterations 922 
increase the susceptibility to Candida albicans colonization in the gastrointestinal tract. FEMS Microbiol Ecol. Oxford Academic; 923 
2020;96.  924 
76. Bhaskaran N, Quigley C, Paw C, Butala S, Schneider E, Pandiyan P. Role of short chain fatty acids in controlling Tregs and 925 
immunopathology during mucosal infection. Front Microbiol. Frontiers Media S.A.; 2018;9:1995.  926 
77. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: open software development for 927 
computational biology and bioinformatics. Genome Biol 2004 510. BioMed Central; 2004;5:1–16.  928 
78. Nilsson RH, Larsson K-H, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, et al. The UNITE database for molecular 929 
identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. Oxford Academic; 2019;47:D259–930 
64.  931 
79. Abarenkov K, Nilsson RH, Larsson K-H, Alexander IJ, Eberhardt U, Erland S, et al. The UNITE database for molecular identification 932 
of fungi – recent updates and future perspectives. New Phytol. John Wiley & Sons, Ltd; 2010;186:281–5.  933 
80. Caporaso JG, Kuczynski J, Stombaugh  J, Bittinger K, Bushman  FD, Costello EK, et al. QIIME  allows analysis of high - throughput 934 
community sequencing data. Nat Publ Gr. Nature Publishing Group; 2010;7:335–6.  935 
81. Clarke EL, Taylor LJ, Zhao C, Connell A, Lee JJ, Fett B, et al. Sunbeam: An extensible pipeline for analyzing metagenomic 936 
sequencing experiments. Microbiome. Microbiome; 2019;7:1–13.  937 
82. Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, et al. MetaPhlAn2 for enhanced metagenomic taxonomic 938 
profiling. Nat Methods. 2015;12:902 –3.  939 
83. Kothari A, Kubo A, Fulcher CA, Weaver DS, Weerasinghe D, Foerster H, et al. The MetaCyc database of metabolic pathways and 940 
enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res. 2013;42:D459–71.  941 
84. Suzek BE, Wang Y, Huang H, McGarvey PB, Wu CH, Consortium U. UniRef clusters: a comprehensive and scalable alternative for 942 
improving sequence similarity searches. Bioinformatics. 2014/11/13. Oxford University Press; 2015;31:926–32.  943 
85. Thomas M, Pedersen L. Package ‘tidygraph’ - A Tidy API for Graph Manipulation. 2020;  944 
86. Thomas Lin Pedersen. Package ‘ggraph’ - An Implementation of Grammar of Graphics for Graphs and Networks. 2021;  945 
87. Robust Nonparametric Statistical Methods - Thomas P. Hettmansperger, Joseph W. McKe an - Google Books [Internet]. [cited  2021 946 
Apr 30]. Available from: 947 
https://books.google.de/books?hl= de&lr=&id=6w3LBQAAQBAJ&oi=fnd&pg=PP1&dq=Hettmansperger,+T.P.+and+McKean+J.W.+948 
(2011),+Robust+Nonparametric+Statistical+Methods,+2nd+ed.,+New+York:+Chapman-949 
Hall.&ots=r7W8u49KFE&sig=h1iuYnC752P5ej75VcLaNYBG-PU#v=onepage&q&f=false 950 
88. CRAN - Package Rfit [Internet]. [cited 2021 Apr 30]. Available from: https://cran.r-project.org/web/packages/Rfit/index.html 951 
89. Tipton L, Müller CL, Kurtz ZD, Huang L, Kleerup E, Morris A, et al. Fungi stabilize connectivity in the lung and skin microbial 952 
ecosystems. Microbiome 2018 61. BioMed Central; 2018;6:1–14.  953 
90. Schwager E, Mallick H, Ventz S, Huttenhower C. A Bayesian method for detecting pairwise associations in compositional data. 954 
PLoS Comput Biol. Public Library of Science; 2017;13:e1005852.  955 
91. Martín-Fernández J-A, Hron K, Templ M, Filzmoser P, Palarea-Albaladejo J. Bayesian-multiplicative treatment of count zeros in 956 
compositional data sets. Stat Model An Int J. SAGE Publications Ltd; 2015;15:134–58.  957 
92. Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and Compositionally Robust Inference of Microbial 958 
Ecological Networks. 2015;  959 
93. Oksanen J, Blanchet G, Kindt R, Legendre P, O’Hara RB, Simpson G, et al. vegan: Community Ecology Package. 2011.  960 



MANUSCRIPT V 
 

 166 

 
  

 24 

94. Kaul A, Mandal S, Davidov O, Peddada SD. Analysis of microbiome data in the presence of excess zeros. Front Microbiol. Frontiers 961 
Media S.A.; 2017;8:2114.  962 
95. Dixon P. VEGAN, a package of  R functions for community ecology. J Veg Sci. Wiley Online Library; 2003;14:927 –30.  963 
96. Machado D, Andrejev  S, Tramontano M, Patil KR. Fast automated reconstruction of genome -scale metabolic models for  microbial 964 
species and communities. Nucleic Acids Res. Oxford Aca demic; 2018;46:7542–53.  965 
97. Garza DR, Van Verk MC, Huynen MA, Dutilh BE. Towards predicting the environmental metabolome from metagenomics with a 966 
mechanistic model. Nat Microbiol 2018 34. Nature Publishing Group; 2018;3:456–60.  967 
98. Cplex IBMI. V12. 1: User’s Manual for CPLEX. Int Bus Mach Corp. 2009;46:157.  968 
 969 



MANUSCRIPT V SUPPLEMENT 
 

 167 

Figure S1. 

a b

Figure S2. 

0.00

0.25

0.50

0.75

1.00

Samples

C
an

di
da

 T
S

S
 A

bu
nd

an
ce

Genus

s__Candida_albicans

s__Saccharomyces_paradoxus

s__Pichia_sporocur iosa

s__Penicillium_aethiopicum

s__Yarrowia_lipolytica

s__Mycosphaerella_tassiana

s__Hyphopichia_burtonii

s__Dipodascus_australiensis

s__Alternaria_alternata

Other

25



MANUSCRIPT V SUPPLEMENT 
 

 168 

b c

Figure S3. 

Figure S4. 

0.0

2.5

5.0

7.5

10.0

12.5

Samples

C
a

n
d

id
a

 C
L

R
 A

b
u

n
d

a
n

c
e

Group

High

Low

26



MANUSCRIPT V SUPPLEMENT 

169 

a b

Figure S5. 

Figure S6. 

27



MANUSCRIPT VI 

 170 

VI. Manuscript:
Gut Microbiota and Lung Recovery 

FORM 1 

Manuscript No. 6 

Manuscript title: Gut microbiome functionality might be associated with exercise 
tolerance and recurrence of resected early-stage lung cancer patients 

Authors:  Marfil-Sánchez A., Seelbinder B., Varga J., Berta J., Hollosi V., Dome B., 
Megyesfalvi Z., Dulka E., Galffy G., Panagiotou G., Lohinai Z. 

Bibliographic information: PLoS One. 16 (2021), pp. e0259898, 
10.1371/JOURNAL.PONE.0259898 

The candidate is 

 First author,  Co-first author,  Corresponding author,  Co-author.

Status: Published 

Authors’ contributions (in %) to the given categories of the publication 
Author Conceptual Data analysis Experimental Writing the 

manuscript 
Provision of 
material 

M.-Sánchez 30% 60% 55% 
Seelbinder 30% 40% 20% 
Panagiotou 20% 10% 50% 
Lohinai 10% 10% 50% 
Others 10% 0% 100% 5% 0% 
Total: 100% 100% 100% 100% 100% 

Overview: 
I continued studying the role of bacteriomes and mycobiomes in human diseases. Here, we 
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bacteria, fungi, and their metabolic pathways with the recovery of lung functions. 
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S1 Fig. Study design of surgically resected lung cancer patient cohort. 
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S2 Fig. Comparison of the gut microbiota composition pre- and post-surgery. (A, B) 
Principal Coordinate Analysis plot based on Bray-Curtis distances of (A) the different stages 
and (B) chemotherapy treatment. (C) Boxplots, with median (centrelines), first and third 
quartiles (box limits) and 1.5x interquartile range (whiskers), showing alpha diversity Shannon, 
Simpson, and Chao1 indices of recurrent and non-recurrent patients. (D) Principal Coordinate 
Analysis plot based on Bray-Curtis distances pre- and post-surgery of recurrent and non-
recurrent patients. 
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S3 Fig. Correlations between taxonomic and functional profiles and CPET. (A) Heatmap of partial 
Spearman’s rank correlation analysis between the fold-change of bacterial species and bacterial 
MetaCyc pathways versus the fold-change lung function parameters adjusting for COPD and cancer 
type. Only differentially abundant species and pathways (P<0.05, Wilcoxon signed-rank test) were 
used. (B) Heatmap of partial Spearman’s rank correlation analysis between fungal species versus the 
fold-change of lung function parameters adjusting for COPD and cancer type. (A-B) Cell color indicates 
either negative correlation (blue) or positive correlation (red). Only species and pathways with 
significant correlations (P<0.05) are shown (*P<0.05, **P<0.01, ***P<0.001). 

 
S4 Fig. Prediction of VO2, tumour recurrence, and overall survival (OS). Prediction of VO2, 
tumour recurrence, and overall survival (OS) from bacterial species (left), bacterial phyla (middle) or 
MetaCyc pathways (right) relative abundances. 
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S5 Fig. Abundance of aerobic and anaerobic species. (A, B) Boxplots, with median (centrerelines), 
first and third quartiles (box limits) and 1.5x interquartile range (whiskers), showing the abundance of 
aerobic and anaerobic species. Gray lines connect samples of the same patient from before and after 
surgical resection. 
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IV.  DISCUSSION 
 
Not long ago, we believed that determining the DNA sequence of the entire human 

genome would be the key to understanding human biology [72]. However, our genomes 
are far more complex than anticipated and are insufficient to explain many common human 
conditions, including the development of immune system, diseases, and the success of drug 
treatments. Human microbiota is now recognized as a key factor in health and disease 
development and a critical expansion to the human system. To understand the role of 
microbiota, we need to identify and comprehend the conditions and mechanisms by which 
certain microbes switch from commensalism or mutualism to parasitism – the pathobiome. 
Within the last two decades, the number of described microbial species that live in and on 
humans increased by orders of magnitude. While uncommon, studies on archaea and 
bacteriophages are emerging, too. Since all biological life is based on DNA or RNA, all 
organisms can be detected, quantified, and analyzed using the same underlying technology. 

The technologies used throughout my Ph.D. to study biological systems involve a 
combination of different sequencing technologies, including metagenomics, 
transcriptomics, amplicon-based sequencing, but also other OMICS data such as 
metabolomics. With the manuscripts included in this thesis, I have demonstrated the use of 
several complementary frameworks for the analysis of high-dimensional sequencing data 
to address different biological scientific research questions. Non-linear regression, machine 
learning, and co-abundance network analyses were frameworks that I applied consistently 
throughout my Ph.D. to identify possible interactions between microbes and their host, and 
how these interactions change over time or due to environmental stimuli. 

This cumulative dissertation encompasses six manuscripts studying pathogens, 
microbial communities, and the host with increasing complexity. The first part of the 
discussion is about my research on the virulence mechanisms of one specific pathogen, A. 
fumigatus (manuscripts I, II). The second part of the discussion is about the intestinal 
ecology of gut microbiota, especially the community-level interactions between bacteria 
and fungi (manuscripts III-VI). In all my research work, even when the focus was on 
understanding the virulence and drug resistance of a specific pathogen, I considered the 
ecological context.
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Aspergillus fumigatus Infection and Diversity 
 
A. fumigatus is a human pathogenic fungus that causes a life-threatening infection in 
immunocompromised patients called invasive aspergillosis (IA). IA is one of the most 
common post-transplantation complications and therefore subject to intense research 
worldwide. In addition, IA treatment with azole drugs is limited due to mostly unknown 
but increasing azole resistance mechanisms [185]. In two manuscripts (I, II), I addressed 
general questions concerning host cell immune defense against A. fumigatus and A. 
fumigatus diversity. 
 
Adapting RNA-Seq to the simultaneous sequencing of three distinct organisms 
The adaption of pathogens to the host, and the defense against invasion, involves a cascade 
of altered gene expression pathways in the interacting organisms. Before SGS technology, 
these investigations were limited to relatively few virulence factors. Then, microarrays 
enabled the quantification of transcriptomes, leading to new insights into virulence factors 
and the detection of novel pathogen-associated molecular patterns (PAMPs). In principle, 
this microarray technology could have been adapted to the simultaneous quantification of 
two organisms but was technically difficult and too expensive [95]. Soon after, RNA-Seq 
quickly overturned micro-array technology due to higher precision, greater resolution, 
flexibility and sensitivity, and ultimately lower cost. Still, dual-organism RNA-Seq 
approaches remained challenging. Technical limitations, especially in cell lysis and RNA 
extraction, required the separation of all organisms prior to sequencing, leading to 
considerable bias in organism-wise gene abundance profiles from cell isolation, DNA 
extraction, and sequencing [94,95]. But ultimately, dual RNA-Seq experiments were 
successful and applied to gain a deeper understanding of infection processes by creating 
single-infection models. So far, dual RNA-Seq was used to study mammalian host cells 
challenged with viral, bacterial, fungal, or eukaryotic pathogens [94]. Furthermore, dual-
organism RNA-Seqs reduced experimental costs considerably because extraction and 
sequencing could be done together. Still, further technological improvements are required. 
 

In clinical settings, humans are likely exposed to more than one pathogen at any given 
time [78]. During A. fumigatus infection, human CMV was suspected to frequently co-
infect patients as well. To address this hypothesis, we developed the first triple-organism 
RNA-Seq that enabled the identification of crosstalk mechanisms between human 
monocyte-derived DCs and the two pathogens during single- and co-infections 
(manuscript I). This setup required a fine-tuned investigation of infection parameters (wet-
lab side) and sequencing-related parameters (bioinformatics side).  

At the wet-lab side, the amounts of pathogenic and host cells, as well as infection 
durations had to be identified. The latter was additionally addressed by sampling at varying 
infection durations. Sequencing parameters included the selection of RNA extraction and 
rRNA depletion protocols, sequencing depth requirements, and optimizing reference 
genomes for triple RNA-Seq mapping. Furthermore, I established the bioinformatic 
processing pipeline, including read processing, gene expression quantification, general 
visualizations, and differential abundance estimation. One of the primary results of the 
established pipeline is one RNA gene abundance matrix of all organisms that can be used 
for trans-species correlation networks and differential abundance testing. The profile can 
also be separated by species to investigate within-species effects. In both cases, subsequent 
analyses involved data ordination (e.g., principal component analyses), differential gene 
expression analyses, functional enrichments, and network analyses. 
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Triple RNA-Seq enables a tri-partite view on DC, CMV, and A. fumigatus  
The triple RNA-Seq (manuscript I) allowed the concurrent investigation of the 
transcriptome of each pathogen and host cells under varying conditions. We used dendritic 
cells (DCs) in my work because DCs are understood as the main bridge between (a) 
recognition of pathogens by innate immune cells and (b) adequate adaptive immunity 
response (clearance of pathogen) [75]. DCs are also considered a key element in successful 
defense against IA because they are exceptionally good at detecting A. fumigatus hyphae 
[75]. It was known that DC response to fungi differs substantially from those to viruses, 
and our work agreed largely with those expectations. Upon detecting proteins exposed in 
the cell wall of Aspergillus (especially their hyphae), DCs release predominantly 
Interleukins and TNF-𝛼. This signaling cascade mobilizes the adaptive immune system, by 
which naïve T cells differential into TH17 cells. In stark contrast, detection of CMV 
antigens leads to the release of chemokines and the differentiation of naïve T cells into TH1 
cells. 

Interestingly, our study revealed that the co-infection phenotype of DCs is vastly distinct 
from either of the single infections and is likely the result of synergistic effects by both 
pathogens. A greater number of genes was significantly expressed during co-infection 
compared to single-infections. We also noticed that some PPRs critical for Aspergillus 
detection by DCs (and the subsequent anti-fungal response) were repressed in the presence 
of CMV. This might be because human CMV evolved mechanisms to modulate host-cell 
responses to increase the change for its’ successful invasion. Vice versa, A. fumigatus 
hampered viral sensing cascades, leading to an overall greater rate of virus-infected DCs. 
Overall, we give evidence for the “synergy during co-infection” hypothesis and 
demonstrate that the knowledge gained from single-infection models may not translate well 
to co-infection conditions. 

This new technology also allowed us to switch the perspective towards each pathogen. 
Under co-infection, we found that A. fumigatus had fewer differentially expressed genes 
compared to single infections. Most of the differentially expressed genes were the same 
between co-infection and single infection. This lower response could originate from several 
factors, including decreased host defense by DCs or lower colonization requirements. 
CMV, in contrast, did not show many differences between single- and co-infection. Since 
CMV is a virus with only around 280 genes, it may not have evolved mechanisms to change 
its behavior in the presence of other pathogens. 

 
Gene co-expression networks to compare infections 
The triple RNA-Seq approach potentially reduces systemic noise that may impede cross-
species gene expression correlations when separately sampling host and pathogen 
transcriptomes [94]. I computed inter-species gene co-expression networks and 
investigated differences and commonalities in network topologies. In particular, I used set 
operations on nodes or edges to identify shared and unique correlations. 

Co-infection networks shared only few cross-species with single-infection networks. 
Interestingly, very few correlations were specific to single A. fumigatus infection, but many 
CMV induced many unique cross-species correlations. Again, A. fumigatus seemed to 
benefit from CMV infection, but CMV did not benefit from A. fumigatus infection. 
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Perspectives – Clinical Relevance 
The triple RNA-Seq (manuscript I) was used to study a clinically relevant co-infection 
and delivered hard evidence for the existence of synergistic effects between two human 
pathogens. However, our in vitro observations need further experimental confirmation in 
more complex models and in vivo. In patients, DCs and pathogens would be surrounded by 
a complex mixture of tissue (e.g., alveoli), metabolites, peptides, and other immune cells, 
all of which may influence the behavior of host cells and pathogens.  

Studying A. fumigatus lung infections under physiological conditions in humans and 
mice in vivo is very challenging due to variations in (a) the source of immunosuppression, 
(b) pathogen exposure, (c) co-infection status, (d) host genetics, and (e) treatment drug 
dosage doing and timing [185]. While studies on humanized mouse models are common, 
translating results from mouse models to humans requires caution [185]. Instead, we used 
an in vitro model system in which host cells were directly exposed to pathogens. While this 
setup is easier to replicate and insightful, host and pathogen cells may behave differently 
without other host-cells or their native conditions. An interesting next step would be ex vivo 
models on alveolar or other lung tissue. Such lung-on-a-chip models of human cells are 
being developed [186] could enable the study of human lung infection under more 
controlled infection parameters. 
 
Perspectives - Further Improvements 
The computational part of dual and triple RNA-Seq approaches is based on classical 
mapping approaches. It is worth noting that some recently developed quasi-mapping tools 
(e.g., Kallisto) offer faster quantification and higher accuracy with more redundant 
reference genomes [187]. However, their accuracy in multi-organisms RNA-Seq was not 
evaluated thus far but will be interesting to investigate in future studies. 
 
Aspergillus fumigatus demonstrates underappreciated diversity with potential 
consequences for future infection studies  
Using one singular reference genome for comparative genomics in infections is common, 
but this approach is blind to the true genomic diversity observed in microbes. Due to low 
generation times, beneficial genomic changes (such as drug resistance) are acquired and 
distributed fast over microbial populations. While drug resistant A. fumigatus were 
observed in clinical settings, it is unclear if these are mechanisms are present in type-strains 
or wild-type strains. 

Phenotypic variations in A. fumigations are expected to have consequences on disease 
development [188] and likely also for azole resistance [185]. However, thorough 
comparative genome analyses on isolates of different environments were lacking. To 
address this, we used whole-genome sequencing to assemble, annotate, and compare the 
genomes of 300 A. fumigatus isolates from different environmental and hospital sources 
(manuscript II). We have shown that A. fumigatus genomes are much more diverse than 
previously anticipated, with a core genome comprised of only 69% of pan-genes. I 
contributed to this work primarily by performing cluster enrichment tests. A. fumigatus did 
not cluster by country, which could result from frequent genomic exchange between fungal 
populations. This is quite likely because we had observed a high degree of genomic 
recombination events.  

Importantly, clinical isolates formed a single cluster together with the Af293 type strain 
based on genetic variation in single-copy orthologous genes. This implies that (a) it could 
be the most representative reference for studying clinical infections under laboratory 
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conditions and (b) that human-associated A. fumigatus may require additional but common 
genomic adaptations to survive. However, clinical isolates were distributed over the entire 
phylogeny, reaffirming the ability of A. fumigatus to adapt to distinct environments.  

 
Our study thereby indicates the need for further considerations in selecting specific 

A. fumigatus strains for infection studies. For the study of infection, A. fumigatus strains 
were primary selected based on their observed virulence. To identify and understand drug-
resistance mechanisms, it will be crucial to study the structural and functional differences 
among different A. fumigatus strains in future studies. The triple RNA-Seq study 
(manuscript I) was based on the standard A. fumigatus Af293 reference genome, which 
was also used as comparator in our pan-genome study (manuscript II). While this genome 
represented clinical isolates well (manuscript II), it contained only 87% of pan-genes, 
indicating that analyses using Af293 could be blind to many genes and strain diversity. In 
addition, our infection study (manuscript I) involved A. fumigatus strain ATCC 46645, a 
strain very similar to Af293 but with differences in pan-genes. 

A solution for future studies could be the creation and use of a general-purpose A. 
fumigatus pan-genome reference, as is already the case for homo sapiens [80]. 
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Gut Microbiota in Health and Disease 
 
In this thesis, I have shown multiple ways in which metagenomics can be used to 
investigate complex microbial systems and their interactions with the host. Our initial 
understanding of microbiota was largely supported by large-scale projects such as the 
Human Microbiome Project [7,36], which reported high temporal and spatial variation in 
gut microbiomes of humans and raised questions like: How can this variation be explained? 
What constitutes a healthy microbiome? A large body of studies associated changes in 
microbiota with many common diseases, including type 2 diabetes, inflammatory bowel 
diseases, heart disease, cancer, and autism spectrum disorder [22,25,30–35]. Genome 
sequencing technology enabled the investigations of complex microbiota and will likely 
continue to be a key technology for microbiome studies. 
 

Defining gut fungal consortia and their stability, resilience, and dynamics may reveal 
cause-effect relationships with bacteria. Although evidence is available on bacteria-fungal 
interactions in the gut at the taxonomic level, we do not have a comprehensive 
understanding of how bacterial functions influence the growth of particular fungi. To better 
understand the entire microbiome, we provided data to follow both the bacterial and fungal 
communities of the lower human gastrointestinal tract (manuscripts III-VI). In the 
manuscripts included in this thesis, I analyzed large amounts of sequencing data, 
metabolomics, and phenotypes. I presented sophisticated pipelines to quantify whole 
metagenome, whole metatranscriptome, and ITS2 rDNA amplicon sequencing data to 
profile bacterial species, functional potential, functional expression, and fungal 
compositions. I presented methods to efficiently integrate this compositional data to 
improve our understanding of the underlying biological processes, which I will discuss 
further below. 
 
Next-Generation Sequencing enables the study of microbial interactions 
Most studies investigating the influence of gut microbiota used 16S rDNA amplicon 
sequencing to characterize bacterial communities [89]. While these studies generated many 
exciting hypotheses, the taxonomic resolution was limited to family and genus level 
abundances and could not elucidate microbial functions from the sequencing data. Higher 
taxonomic and functional resolutions are required to identify and understand microbiota-
associated diseases and drug-resistance mechanisms (introduced in sections 2.4ff). 

There are many ways in which genomic sequence data was analyzed, starting with 
analyzing diversity indices and structural differences in compositions (manuscripts 
III-VI). Species and functional information were combined into microbe-wise functional 
abundance profiles to estimate contributional alpha diversity [38,120] (manuscripts 
III, VI). Other concepts included transcriptional activity (manuscript III), machine 
learning (manuscripts IV-VI), and co-abundance network analysis (manuscripts III-VI). 

 
Antibiotics drove fungal communities from mutualism to competition 
Since the discovery of Penicillin in 1928 by Alexander Fleming, antibiotic treatment has 
emerged as a universal solution to the treatment and prevention of bacterial infections. 
However, the off-target effects on health-associated gut microbiota are still an ongoing 
debate and may not have a straightforward answer. Opportunistic bacteria are becoming 
increasingly resistant to antibiotics as a result of their widespread – and often pre-emptive 
– administration [189]. This resistance is a growing concern in the treatment of infectious 
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diseases and invasive procedures. Both intravenous and oral antibiotic administration have 
an impact on the largest reservoir of genetic diversity in the human body: the gut 
microbiome. In this thesis, I presented two studies (manuscripts III, IV) in which we 
studied the effects of antibiotic treatment on microbiota using joined quantification of gut 
bacteria and fungi. We identified several bacterial mechanisms promoting and inhibiting 
the overgrowth of fungal pathogens. 
 

While the dynamics of bacterial abundance were documented well, fungal stability and 
resilience are mostly unclear [48]. Previous studies using mice models suggested a link 
between oral use of antibiotics and the overgrowth of opportunistic gut fungi, in particular, 
Candida [64,190,191]. This appears to be consistent with many, but not all, types of 
antibiotics [190,191]. However, it has yet to be understood if these effects are indirect – the 
changes in gut microbes result in the changes of the mycobiome – or if antibiotics can 
directly affect gut fungi. Microbiota can control the levels of other microbes in multiple 
ways, including the release of metabolic by-products such as bacteriocins, acids, and 
peptides [192] or by outcompeting other microbes for space, metabolites, and nutrients 
[193]. Intestinal microbes may also modulate host immune responses against other 
pathobionts [194] or induce the formation of the protective mucin layer that covers the gut 
epithelium. 
 

In manuscript III, we followed healthy human subjects up to 90 days post treatment to 
assess community changes before, during, and after oral antibiotic administration. The 
short-term effects on the bacterial community were as expected. I observed a strong 
reduction in (a) bacterial taxonomic and functional alpha-diversity and (b) health-
associated short-chain fatty acid (SCFA)-producing bacteria [195,196], but with variations 
dependent on the antibiotic class. I introduced the role of such anaerobes in section 1.2 on 
page 4. My findings were consistent with previous studies on human gut microbiota of 
similar design but different antibiotic drugs (Raymond et al. [197]) or the most potent 
antibiotic drug mix (Palleja et al. [56]). But unlike these two studies, we also characterized 
(a) microbial gene expression and (b) fungal composition. 
 

Fungal communities exhibited a much higher degree of taxonomic variance compared 
to bacterial. However, we were able to attribute a significant part of that variation to 
antibiotic treatment. First, the number of observed fungal species almost doubled short-
term (within one month post treatment). Second, by analyzing the topology of fungal co-
abundance networks, I observed a shift from stable communities (mostly positive 
correlations) before treatment to a large increase in negative associations in the first month 
after treatment. At 90 days post treatment, most correlations disappeared. These 
observations support the idea of indirect antibiotic effects: since many bacterial taxa were 
effectively inhibited, several fungal species gained a chance to colonize the gut. We 
observed this as an increase in species numbers. However, during the recovery of gut 
bacteria, competition for space and nutrients reemerged, which puts more pressure on 
fungal species than bacterial species. 
 
Gut Candida increased after antibiotic administration in healthy and diseased humans 
Confirming the observation from mouse models [64,190,191], human gut levels of Candida 
increased in relative abundance shortly after antibiotic administration (manuscript III). 
However, Candida did not prevail in high abundance by the end of our study (90d), 
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confirming that the gut microbiota of healthy humans were resilient against pathogenic 
fungal overgrowth. 

While microbiota of healthy patients showed resilience against adverse antibiotic 
effects, diseased peoples’ may not, and treatment may do more harm than good. We thus 
investigated the robustness of gut microbiota in critically ill patients with and without 
antibiotic treatment and compared them to healthy subjects (manuscript IV). Critical 
illness revealed microbiota that differed significantly from those of healthy people, with 
some alterations accentuated by antibiotic therapy. In critically ill patients, antibiotic 
administration led to an “infection vulnerable” microbiome composition characterized by 
extremely low levels of SCFAs. 

In both studies (manuscripts III, IV), we observed reduced relative abundance in short-
chain fatty acid- and secondary bile acid-producing bacterial species during antibiotic 
administration, species essential for maintaining host homeostasis [195,196]. On the fungal 
side, Candida species’ relative abundance increased in the critically ill but even further 
under additional antibiotic administration (manuscript IV). Together, the results of both 
manuscripts (III, IV) pointed to systematic and potentially detrimental effects on human 
gut microbiota as a direct consequence of antibiotic administration and support the idea 
that a decrease in anaerobe gut bacteria could allow enhanced colonization of gut fungi. 
 
Perspectives - Counter-acting adverse antibiotic effects 
The solution to (a) the increased incidence of microbial infections [198] and (b) stagnating 
progress in the development of new antibiotic drugs [199] could be the identification of 
new drug types and targets. Antimicrobial peptides [198], for example, are proteins 
produced by commensal microbes to combat pathogens. Gut microbiota, especially 
bacteria, are believed to be a rich reservoir for such compounds because of (a) their 
competitiveness against constantly invading microbes and (b) a large number of genes 
without known functions [198]. Another approach could be bacteriophage therapy [200]. 
Therefore, phages with high specificity to a pathogen are selected (and modified) to kill 
specific pathogens. The recent release of a metagenomic gut virus catalog indicates that 
over 90% of assembled viruses show no similarity to existing phylogenies [201], showing 
just how much more room for future studies is left. 
 
Microbial Growth Rate Estimations separate dead wate from proliferators 
One intrinsic issue of current metagenomic research is our inability of DNA-based 
abundance data to differentiate between living, stationary or dead cells [126]. Non-
replicating cells can substantially influence relative abundance profiles [126]. This needs 
to be considered in studies using antibiotics. If the drug kills bacteria or inhibits their 
growth (as expected), the DNA of bacteria affected by the drug can still be abundant. To 
mitigate this issue, we have used in silico growth rate estimation (GRiD) in manuscripts 
III and IV (introduced in section 2.5). Due to high runtime requirements, we applied it 
only to species that showed differential abundance changes after antibiotic treatment. GRiD 
estimates were then used to (a) exclude species with low estimated growth from further 
analyses and (b) identify bacteria proliferating after treatment. It should be stressed that 
such GRiD can only make approximations of bacterial growth and does not present strain-
level resolution. Furthermore, the high runtime of GRiD may hinder its widespread use. 
Still, in silico growth rate estimations are helpful in cases where microbial growth cannot 
easily be assessed, such as in vivo gut microbiota studies. 
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Subspecies quantification using MGS 
Early work on whole metagenome studies was challenged by the huge number of novel 
genes originating from uncultured organisms and new strains. Several approaches to 
accommodate the unknown were introduced, from comprehensive protein-coding gene 
family reference libraries such as the IGC or HUMAnN (on page 13) to new species concepts 
such as MGS (introduced in section 2.6 on page 14). While the HUMAnN offers 
quantification of gene family abundances per species, it is not a complete solution. HUMAnN 
is based on a fixed pool of non-redundant pan-gene catalogs, which is difficult to expand 
with additional genes from de novo genome assemblies or specialized databases. For 
example, identifying and annotating antibiotic resistance genes (ARG) [183] was crucial to 
investigate the effects of antibiotic drugs on gut microbiota (manuscripts III, IV). 
Likewise, most gene family references offer very limited taxonomic information. 

To identify the microbial species possessing ARG genes, we grouped genes by their co-
abundance into MGS [131] (manuscripts III, IV). While the annotation of MGS usually 
stops at the species level [131,202], I demonstrated in manuscript III that an MGS could, 
in some cases, be annotated to the subspecies level by adapting the concept of pan-genomes 
[123]. Thereby, species were delineated based on MGS genes’ presence/absence pattern 
compared to a pan-genome reference of the species assigned to the MGS. The approach 
could identify if an MGS represented a species core (genes shared by all strains), a strain 
(genes found in exactly one reference strain out of multiple), or a sub-species (genes present 
in some strains but not all). 
 
Metatranscriptomes of microbes during antibiotic perturbation 
Previous studies on human gut microbe gene expression found substantial differences in 
taxonomic and genomic profiles compared to those derived from metagenomics [38,203]. 
While a common narrative considers highly abundant species to have high impacts on 
microbial communities, it does not explain how species of low DNA abundance (e.g., many 
SCFA producers) could have significant roles in host homeostasis. It was suggested that 
only a subset of species within a gut community might express essential genes 
[38,117,204]. In addition, metatranscriptomes of human gut bacteria were not investigated 
during antibiotic administration. To address some of these ideas, I have characterized and 
analyzed microbial the temporal properties of metatranscriptomes during antibiotic 
administration (manuscript III). On several occasions, I observed striking differences 
between metagenomic and metatranscriptomic data. For example, functional bacterial 
diversity (estimated from DNA) was reduced during antibiotic treatment, whereas 
transcriptomic diversity of bacterial function showed overall greater variance and greater 
resilience. In addition, my analysis of metabolic core pathways indicated many pathways 
whose transcriptional activity was virtually unchanged even under antibiotic treatment.  
 
Perspectives - Resolution of metatranscriptomics needs further improvements 
Studies using transcriptional activity resulted in conclusions that were different from results 
obtained using both types of sequencing data separately. However, it is vital to consider the 
qualitative differences between RNA and DNA data. In my study (manuscript III), RNA 
reads did not yield the same species-level resolution as DNA. While 60-80% of DNA reads 
were assigned to species-level contributions per sample, only 10-20% of RNA reads were. 
This could have been the result of three major factors: (a) post-transcriptional 
modifications, which lead to larger divergence between reference gene sequences and their 
reads, and (b) nucleotide degradation, which is often non-linear and leads to major 
distortions in profiling unless accounted for [118], and (c) insufficient resolution of the 
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HUMAnN2 reference. Point (b) could potentially be addressed using RNA integrity number 
(RIN) as a covariate for linear regression, which was suggested to correct the resulting bias 
in single organism RNA-Seq [118]. Point (c) could be verified in future projects using 
updated gene-family catalogs such as the recent HUMAnN3 release, which contains more 
than double the number of reference genes [123]. 
 
Perspectives – Co-abundance network analyses 
The integration of joined bacterial-fungal abundance data is not solved with satisfaction, 
and methodological progress in trans-kingdom correlation analysis using relative 
abundance data analysis is scarce [150]. In theory, sequencing all organisms together at 
sufficient depth could enable the use of simpler and existing approaches with less biased 
outcomes [169]. But practically, DNA extraction protocols are often optimized and thus 
biased towards either bacteria or fungi [46,205,206]. Some tools quantifying multiple 
kingdoms from metagenomic data were published in recent years [126,207,208], and the 
resulting abundance profiles were used for cross-domain correlation analyses [169]. 
However, the accuracy of multi-kingdom quantification is debatable [209]. In my studies, 
including unpublished pilot work, the abundance profiles created by multi-kingdom 
estimators contradicted amplicon-based results and reported several unreasonable fungal 
taxa. Therefore, it may be necessary to research the accuracy of these tools on sufficiently 
complex but well-known model communities. In my work, we quantified bacterial and 
fungal compositions using two independent sequencing approaches (ITS2 and WMS). I 
consider both (holistic and separate) profiling approaches justified until more sophisticated 
approaches of these methodological approaches are available. 
 

In my studies (manuscripts III, V), I performed trans-kingdom co-abundance network 
analyses using either (a) simple Spearman correlation on per-domain log-ratio transformed 
abundance data (e.g., with CLR), or (b) more complex models that assume sparsity to 
increase statistical power. In the case of the latter, I applied BAnOCC on joined bacterial-
fungi abundance data (manuscript III). The approach was robust against varying degrees 
of prevalence filtering. However, the number of features useable for analysis is very limited 
to, at most, a few hundred due to (a) quadratic growth in computational runtime and (b) 
very limited parallel computation options. Simpler approaches like Spearman correlations 
have the advantage that software optimized for speed and memory efficiency already exist. 
With these, correlations for thousands of features are easily estimated. Many sources of 
bias (section 3) were mitigated using data normalization such as log-ratio transformations 
(e.g., CLR in manuscript V). 
 

There are more approaches worth considering for future studies as well, most of which 
were summarized by Matchado et al. [150]. For example, FlashWeave was designed for 
studies with thousands of samples and features. It allows controlling for additional 
covariates, which is challenging with most existing correlation approaches [150]. Another 
method is an extension of sparse partial least square analyses, “DIABLO” [150]. DIABLO 
was used for multi-omics integration of microbiome, mRNA, and metabolomics data [210]. 
While an approach like DIABLO could have higher statistical power, the method requires a 
high degree of manual parameter tuning and considerations on data normalization, which 
again requires solutions to compositionality and zero-inflation bias. Another solution could 
be shifting from relative to absolute observed abundance through spike-in methods that I 
discuss on page 204. 
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Gut oxygen levels are important to understand Candida colonization 
One group of microbes consistently showed differences in abundance in the manuscripts 
(III-VI) of this thesis: obligate anaerobes [18]. Many of these precise ferment undigestible 
food into SCFAs, some of which are consumed by colonocytes and therefore believed to 
be the main drivers of gut hypoxia [22] [40] [41]. These microbes are also very susceptible 
to a wide range of common antibiotics, as shown by us (manuscripts III, IV) and others 
[202,211]. In addition, we associated a decrease in SCFA producers with lung tumor 
recurrence (manuscript VI) and an increase in Candida species abundance (manuscripts 
III-V). The latter is quite interesting given the different settings employed across these 
manuscripts. 

Theoretically, while bacteria and fungi compete for resources available in the gut lumen, 
they may also support one another. In manuscript V, we investigated gut microbial 
signatures explaining varying levels of gut Candida abundance. Again, we observed a 
systematic reduction in strict anaerobe abundance in samples with higher Candida levels 
but also an increase in several oxygen-tolerant bacteria. We proposed that increased gut 
oxygen (caused by a reduction in SCFAs) would allow Candida species to grow on lactate. 
Lactate would be produced by facultative anaerobe lactic acid bacteria such as 
Lactobacillus, many of which increased in relative abundance in samples with relatively 
high Candida levels.  

While a connection between gut oxygen levels and pathobiosis was hypothesized [59], 
the idea remains mostly unaddressed. We demonstrated in further experiments that 
Candida albicans grows efficiently on sole-lactate under microaerobic (1% O2) conditions, 
while Lactobacillus species enhance gut integrity. Together, our findings could explain one 
way in which Candida abundance could increase in the gut without becoming pathogenic. 

 
Identification of microbial balance using machine learning 
In manuscript VI, we shifted our attention to associations between treatment outcomes 
and microbiota. We used a longitudinal study design to characterize microbial changes 
related to lung function recovery one year after lung tumor resection. An intense testing 
procedure (cardiopulmonary exercise testing) was employed to assess several lung function 
parameters, alongside other patient characteristics such as blood CO2 volume. Our data 
suggested a link between a reduction in anaerobe abundance and tumor recurrence, 
contributing evidence to the hypothesis of beneficial effects of strict anaerobes. While our 
analysis strategy was similar to the studies presented thus far, we used an additional method 
for the identification of small sets of microbes (or functions) associated with host traits 
(e.g., VO2) – microbial balances [212]. 

To identify robust predictors of lung function, I calculated “balances” [156,212]. 
Conceptually, balances are based on the idea that the abundance of one or more specific 
species can be used to calibrate the abundance of the other taxa. However, gut microbiome 
data is sparse, of high variance, and localized. Hence, multiple such balances may exist 
across samples simultaneously. In manuscript VI, I used the machine learning tool 
selbal, which aims to identify a set of microbes whose balance is predictive of a trait 
[156,212]. Here, a balance is a real-valued number calculated as the log-ratio of the sum of 
nominator and sum of denominator species [156,212]. A generalized linear model is trained 
with these balances. I used this procedure to identify correlations between balances of 
microbial species or functions with lung function parameters. 
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Perspectives - Quantification of fungal compositions: ASVs vs OTUs 
Even with current sequencing technology, the quantification of fungal composition is still 
challenging and primarily achieved through ITS amplicon sequencing approaches 
(section 2.3) [50]. While ASVs are, in theory, superior to OTUs in every possible way 
[108], my experiences were both positive and negative. For sequencing data generated by 
older Illumina sequencing machines, ASVs performed best (manuscripts IV, V). 
However, some Illumina machines, especially newer models, perform additional quality 
binning to reduce file size1, which broke the error model of DADA2 and directly affected 
variant calling. Since the DADA2 ASV pipeline is easy to use, this problem can be missed 
because the tool does not report problems with the error model and relies on the visual 
inspection of the user. I did find a way to correct the error model to my satisfaction. 
However, I could confirm that denoising approaches are better than OTU clustering if the 
underlying error models are specified correctly. 
 
Perspectives - On the switch between transcriptomics and genomics  
Careful readers may have noticed that studies on a single or few organisms are often based 
on the transcriptomes of organisms (manuscript I). In contrast, microbiota studies are 
based on metagenomes of organisms (manuscripts III-VI). While large-scale reference 
genomes for gut microbiota became available in recent years, DNA-Seq-based analyses 
prevail in microbiota research. I can only speculate why this is the case, given my 
experience throughout my Ph.D. 

For rRNA marker-gene studies, RNA-Seq would indeed make little sense. The rate at 
which rRNA molecules are expressed by microbiota is highly variable and rarely of 
interest. It thus makes sense that DNA-Seq has become the de facto standard for SSU, LSU, 
and ITS amplicon-sequencing studies. 

But for studies on the genes and genomes of organisms, we should reevaluate our goals. 
The study of genomics of an organism starts with DNA-Seq to reconstruct the genomes of 
isolates. This is common practice and useful to study the functional potential of microbes 
(manuscripts II-VI). But once high-quality genomes are available, transcriptomes (and 
proteomes) are of gain greater interest because they give us more information about the 
actual processes happening within the organism (manuscript I, III). One key issue in my 
studies was the (expected) discrepancy between RNA-derived reads and reference genomes 
due to post-transcriptional modifications. While a few mismatches between sequences can 
be handled with non-redundant reference genomes (as in manuscript I), this is not the case 
when the reference describes hundreds of species or millions of reference genes. In my 
studies (manuscript III), including unpublished pilot studies, metatranscriptome accuracy 
was accurate only at the gene family level but had limited accuracy for species-level 
deconvolution. Still, metatranscriptome studies may gain popularity with the use of 3rd 
generation sequencing technology. The ability to quantify entire transcripts may improve 
the resolution problem in the near future. 
 
Perspectives - 3rd generation sequencing to improve amplicon-based studies 
3rd generation sequencing machines offer the sequencing of much longer DNA fragments 
of up to 150kb length but at the cost of increased sequencing errors. Long-read sequencing 
was predominantly used for improved reconstruction of genomes. However, advancements 
in error control are making this technology suitable for meta-barcoding, paving the way for 

 
1 https://www.illumina.com/documents/products/whitepapers/whitepaper_datacompression.pdf 
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full-length amplicon sequencing studies. Single-molecule real-time (SMRT) sequencing 
(PacBio) can sequence 13kb fragments with 99.8% accuracy, almost matching the quality 
of SGS with much greater reads lengths [88]. This applies to all types of rRNA gene 
amplicons, including 16S (bacteria), 18S (eukaryotes), and full size ITS (eukaryotes), all 
of which are less than 5kb long. Hence, it is becoming a suitable technology for whole 
metagenomic sequencing. This notwithstanding, the analysis of long reads with existing 
gene catalog approaches will require substantial changes in read quantification procedures. 
For example, algorithms need to handle (a) differences in lengths between consensus genes 
and query reads and (b) greater numbers of mismatches. But if successful, it will 
significantly improve the accuracy and resolution of gene abundance and species estimates. 

 
Perspectives - Microbial Spike-in to estimate the microbial load 
The fact that sequencing depth cannot give us meaningful information about samples 
densities and cell counts creates a considerable problem in studies using samples with 
largely varying microbial loads [152]. This especially includes studies with low biomass 
samples (tissue metagenomics, lung microbiome, skin) and studies using microbe-targeting 
drugs (e.g., antimicrobials) in which the microbial population density changes between pre- 
and post-treatment sampling points. One solution involves estimating bacterial load using 
qPCR of 16S genes [213]. While it is one of the simplest solutions, it has several drawbacks. 
In a complex ecosystem, qPCR is argued to introduce bias through the extraction, 
purification, and amplification of DNA, as well as variation in the 16S rRNA copy numbers 
and replication rates [214]. Furthermore, only one kingdom can be quantified in one 
process. Directly counting cells using flow cytometry is another option [214] but requires 
sufficient left-over material because cells used in this process cannot be used for 
sequencing. Ideally, cell count or density estimations are tied with the quantification of 
microbes. One emerging concept is the spiking of a fixed number of bacterial (or 
fungal) cells from one or more species that aren’t present in the samples. After sequencing, 
the proportion of spike-in bacteria can be compared to their expected numbers to derive a 
reasonable estimate of the total number of cells sequenced from the sample. Each spiked-
in bacterium serves as internal control – cell number estimates derived from either 
bacterium should be similar or indicate extraction bias otherwise. The latter is important 
because spike-in methods are still evolving, and some work from 2018 found striking 
differences in estimated cell numbers depending on the spike-in kit [213]. This should not 
discourage the use of this technology: it merely implies that experienced companies should 
do spike-ins until robust protocols are established. 
 
Perspectives - Spatial-aware Microbiome 
While stool samples are a non-invasive and accessible medium to characterize gut 
microbiota, they are not the best to capture gut microbiota. Due to the nature of our 
digestive tract, stool samples represent a mixture of microbiota from different parts of the 
gut. In addition, many disease-related differences (e.g., those related to bile acid 
metabolism) start in the upper parts of the GI, such as the small intestine. These differences 
are unlikely to be captured by stool samples due to (a) a much smaller number of microbes 
compared to distal parts and (b) all the metabolic processing that occurs in the stool on the 
way through the GI. In addition, differences in stool consistency can lead to profound 
differences in the extracted material and potentially misleading conclusions about their 
microbiota. 

One solution could be using small, programmable, collecting devices that are given to 
study subjects in pill form. One such technology is IntelliCap© which can take a small 
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sample of intestinal content when exposed to a well-defined combination of factors, 
including heat, pH, or reaching a specific position [215]. Such a device could substantially 
improve the way we study gut microbiota in vivo. While uncommon, I expect several 
devices to reach the market and academia in the following years. 
 
Concluding Remark 
In this thesis, several hypotheses on microbial interactions with themselves and the host 
were generated using next-generation sequencing technology that may serve as a basis for 
future experimental studies. Both RNA-Seq and metagenomic pipelines can be used to 
study microbial communication across varying scales. In the future, I expect a shift towards 
3rd generation sequencing, advanced tissue models, and RNA-based microbiome studies, 
all of which are fascinating technologies to develop, use, and improve. 
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triple RNA-Seq data, especially the downstream processing and analysis of RNA-Seq data. 
Further analyses included testing for differential gene abundance and co-abundance 
network analyses. 
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Figure(s) # 2 X Approximate contribution of the doctoral candidate to the figure: 70% 
Figure(s) # 3-4 X Approximate contribution of the doctoral candidate to the figure: 90% 
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Contribution of the doctoral candidate 
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Contribution of the doctoral candidate 

My work concerned the analysis of bacteriome data (including MGS analyses), trans-
kingdom network analyses, and manuscript writing. 
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Figure(s) # 2-3 X Approximate contribution of the doctoral candidate to the figure: 85% 
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Contribution of the doctoral candidate 
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methodological considerations in network analyses. 

Figure(s) # all  X Approximate contribution of the doctoral candidate to the figure:   5% 
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Contribution of the doctoral candidate 

My main work concerned the establishment of study groups, microbiome analyses, 
manuscript writing and figure creation. In particular, I performed all bioinformatic analyses 
with the exception of genome-scale metabolic modelling analyses (GSMM, MAMBO). 

Figure(s) # all X Approximate contribution of the doctoral candidate to the figure:  95% 
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