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PREFACE

SUMMARY

Humans represent a complex ecosystem colonized not only by our cells but trillions of
other microbes such as bacteria, archaea, fungi, and viruses. This microbiome gains
increasing interest due to its involvement in human health and disease. While we live in
symbiosis with most of these travelers, dysbiosis can lead to the growth of pathogens.
Pathobionts are commensal microbes and harmless in healthy individuals until specific
circumstances occur. There is increasing interest in studying this pathobiome due to the
rise in infections with high mortality rates and stagnant treatment options. Due to the
complexity of possible interactions between the host and microbes, studies on microbial
interactions are conducted at varying scales. In this thesis, we start to study interactions in
small, well-controlled model systems in vitro and then at the community level in vivo. The
key technology used to identify, quantify, and characterize microbes and study host-
microbe interactions throughout my studies is whole-genome and transcriptome
sequencing.

A standard tool to study interactions of and with the immune system is RNA-Seq. This
method quantifies the expression of genes, the transcriptome. To study mechanisms of
infection in vitro, dendritic cells (DCs) are commonly co-cultured with pathogens.
Aspergillus fumigatus airway infections are associated with high mortality rates in
immunocompromised patients. DCs are recognized as critical immune cells for the
detection of and response to 4. fumigatus infections. Historically, technical limitations
allowed the simultaneous sequencing of two different organisms (dual) at most. We
expanded on this concept by performing the first triple RNA-Seq ([1], Cell Reports).
Thereby, we investigated triangular effects between two pathogens (A. fumigatus and
Cytomegalovirus [CMV]) and DCs. Previous works suggested that CMV may increase the
successful invasion of Aspergillus, but experimental evidence was lacking. Triple RNA-
Seq allowed us to investigate the crosstalk of DC during co-infection of human DC. In
contrast to expectations, the response of DCs was a mixture of fungi and viral defense but
also included other reactions that were not observed during single infections. In the
presence of CMV, A. fumigatus stopped expressing many genes, implying a potential to
save energy when the virus already challenges DCs. In a follow-up study, we studied the
genomes of 300 clinical and environmental isolates of A. fumigatus ([2], Nature
Microbiology). We observed an underappreciated level of genomic diversity and showed
how clinical isolates differ from environmental.

To date, the complex ecosystems present in the human body cannot be replicated in the
lab. Hence, we used cultivation-free methods to study human microbiota-host interactions
at the community level. We focused on the influence of the host’s health status and
environmental stressors, e.g., antibiotics, on human gut bacteria and fungi. A common,
non-invasive approach to studying the gut microbiota of living organisms is the extraction
of nucleic acids such as DNA from host feces. Such samples serve as a proxy for the
microbiome of the lower gastrointestinal tract. Gut bacteria are the most abundant and
intensely studied part of the microbiome, but fungi were mostly neglected despite their
possible roles in health and disease. In four studies, we performed community-level
analyses of both bacteria and fungi concomitantly, with the focus on evaluating the risk of
severe infections.
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One major risk factor for overgrowth of opportunistic gut pathogens — such as the
commensal fungus Candida albicans — 1s antibiotic drugs. Antibiotics are used to kill or
stop the growth of bacterial pathogens. However, bacteria positively associated with the
host’s health are often targeted as well, which can allow other pathobionts to proliferate in
turn. In  two  studies, we investigated the influence of antibiotics.
First, we assessed the temporal dynamics of bacteria-fungal interactions in healthy subjects
up to 90 days after treatment ([3], Microbiome). While some level of recovery was
observed in the bacterial community, the effects on the fungal community seemed more
stochastic and lasting. Candida abundance also increased shortly after treatment but was
effectively inhibited later on. Overall, we describe several bacteria with the potential to
inhibit or promote Candida albicans in vivo. In a follow-up study, we compared healthy
against critically ill patients with or without antibiotic treatment ([4], Gut Microbes). Again,
we found Candida to increase in abundance under antibiotic treatment in critically ill
patients. More importantly, we found that antibiotic therapy in critically ill patients leads
to an infection vulnerable microbiome composition characterized by extremely low levels
of short-chain fatty acids. In the 5" study that focused on human infections ([5], in
preparation), 1 studied the microbiome differences contributing to varying levels of
Candida abundance in lung cancer patients undergoing anti-cancer antibody therapy. Using
the knowledge acquired from the previous studies, we found a non-trivial connection
between decreased gut anaerobes, increased lactate production by lactic acid bacteria, and
high Candida abundance levels. A key component linking all the above was oxygen
availability within the gut lumen. Our findings challenge the current perception that
Lactobacilli and lactate always inhibit Candida species’ overgrowth in the human gut.

In the last manuscript of my thesis ([6], PLoS One), I studied the gut microbiota
associations with lung function recovery one year after tumor resection. Longitudinal data
revealed associations between specific gut bacteria, fungi, and their metabolic pathways
with the recovery of lung functions. Interestingly, an increase in VO2 coincides with an
increase in certain species and the GABA shunt pathway, suggesting that treatment
outcomes might improve by enriching butyrate-producing species. Overall, our data
suggested a link between loss of anaerobes and tumor recurrence. We contribute evidence
to the hypothesis that anaerobes have beneficial effects on positive treatment outcomes.

In summary, while an extensive body of work has focused on understanding the
virulence factors of common pathogens, such as Aspergillus and Candida species, very
little work has been done on understanding the interplay of those pathogens with the host’s
symbionts or other pathogens at the start of my Ph.D. In my Ph.D. project, I used next-
generation sequencing, advanced statistical approaches, and machine learning to
significantly expanded our knowledge of the life of pathogens from an ecological point of
view.

v



PREFACE

ZUSAMMENFASSUNG

Der Mensch stellt ein komplexes Okosystem dar, das nicht nur von unseren Zellen,
sondern auch von Billionen anderer Mikroben (Bakterien, Archaeen, Pilzen, und Viren)
besiedelt wird. Dieses so genannte "Mikrobiom" gewinnt aufgrund seiner Beteiligung an
der menschlichen Gesundheit und Krankheiten zunehmend an Interesse. Mit den meisten
dieser Mikroben leben wir in Symbiose. Jedoch kann eine Dysbiose zum Wachstum von
Krankheitserregern fithren. Diese ,,Pathobionten” sind kommensale Mikroben, die fiir
gesunde Menschen harmlos sind, bis bestimmte Umsténde eintreten. Das Interesse diesen
,,Pathobiomen® nimmt durch die Zunahme von Infektionen mit hoher Sterblichkeitsrate
und stagnierenden Behandlungsmoglichkeiten zu. Aufgrund der Komplexitit der
Interaktionen zwischen Wirt und Mikroben erfolgt die Erforschung mikrobieller
Interaktionen auf verschiedenen Skalen. In der vorliegenden Dissertation beginnen wir mit
der Untersuchung von Interaktionen in kleinen, gut kontrollierten Modellsystemen in vitro
und dann auf der Gemeinschaftsebene in vivo. Die Schliisseltechnologie zur
Identifizierung, Quantifizierung und Charakterisierung von Mikroben und zur
Untersuchung von Wirt-Mikroben-Interaktionen wihrend meiner Studien sind
Gesamtgenom und -transkriptom Sequenzierung.

Ein gingiges Instrument zur Untersuchung der Interaktionen von und mit dem Wirts-
Immunsystem ist ,,RNA-Seq*“. Diese Methode quantifiziert die Expression von Genen, das
,»Iranskriptom®. Zur Untersuchung von Infektionen in vitro werden haufig dendritische
Zellen (DCs) mit Krankheitserregern ko-kultiviert. Atemwegs-infektionen mit Aspergillus
fumigatus sind bei immungeschwichten Patienten mit einer hohen Sterblichkeitsrate
verbunden. DCs gelten als essenziell fiir die Erkennung von und Reaktion auf A. fumigatus
Infektionen. In der Vergangenheit war es aus technischen Griinden nicht moglich mehr als
zweil verschiedenen Organismen gleichzeitig zu sequenzieren (dual). Wir haben dieses
Konzept erweitert, indem wir den ersten "triple RNA-Seq" durchgefiihrt haben ([1], Cell
Reports). Dabei untersuchten wir trilaterale Effekte zwischen zwei Pathogenen
(4. fumigatus und Cytomegalovirus [CMV]) und DCs. Man nahm bereits an, dass CMV
den Erfolg von A4. fumigatus Infektionen erh6hen konnte, aber experimentelle Beweise
fehlten. Mit Hilfe des triple RNA-Seq konnten wir den Crosstalk von DCs wéhrend einer
Koinfektion von menschlichen DCs untersuchen. Die Reaktion der DCs stellte sich als eine
Mischung aus Pilz- und Virusabwehr und zusdtzlichen Reaktionen heraus, die bei
Einzelinfektionen nicht beobachtet wurden. In Gegenwart von CMV hat 4. fumigatus die
Expression einiger Gene eingestellt. Dies deutet darauf hin, dass der Pilz Energie sparen
kann, wenn CMV die DCs attackieren. In einer Folgestudie haben wir die Genome von 300
klinischen und Umweltisolaten von A. fumigatus untersucht ([2], Nature Microbiology).
Wir fanden ein unterschétztes Ausmall an genomischer Vielfalt vor und zeigen, inwieweit
sich klinische von Umweltisolaten unterscheiden.

Bislang lassen sich die komplexen Okosysteme des menschlichen Korpers nicht im
Labor nachbilden. Daher haben wir kultivierungsfreie Methoden verwendet, um die Inter-
aktionen zwischen Mikrobiota und dem menschlichen Wirt auf der Gemeinschaftsstufe zu
untersuchen. Wir konzentrierten uns dabei auf den Einfluss (a) des Gesundheitszustands
des Wirts und (b) der Umweltstressoren, z. B. Antibiotika, auf das menschliche Darm-
mikrobiom. Dabei quantifizierten wir die Nukleinsduren, die wir aus Fakalien extrahieren
konnten. Die darin enthaltenen Mikroben repréasentieren das Mikrobiom des unteren gastro-
intestinal Trakts. Bakterien sind der am haufigsten vorkommende und am meisten unter-
suchte Teil des Darmmikrobioms, wéhrend Pilze trotz ihrer moglichen Rolle fiir Gesund-
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heit und Krankheit weitgehend ignoriert wurden. In drei Studien haben wir Bakterien- und
Pilzgemeinschaften analysiert, wobei der Schwerpunkt stets auf der Risikobewertung fiir
schwere Infektionen lag. Ein Hauptrisikofaktor fiir das tiberméfige Wachstum von oppor-
tunistischen Darmpathogenen - wie etwa dem kommensalen Pilz Candida albicans - sind
Antibiotika. Antibiotika werden eingesetzt, um das Wachstum von bakteriellen Krankheits-
erregern zu bekdmpfen. Haufig werden jedoch auch Bakterien attackiert, die mit der Ge-
sundheit des Wirts in Verbindung gebracht werden, was wiederum die Vermehrung anderer
Pathobionten ermoglichen kann. In zwei Studien haben wir daher den Einfluss von Anti-
biotika untersucht.

Zuerst untersuchten wir die zeitliche Dynamik der Interaktionen zwischen Bakterien und
Pilzen bei gesunden Probanden bis zu 90 Tage nach der Behandlung ([3], Microbiome).
Waihrend sich die bakterielle Gemeinschaft in gewissem Umfang erholte, schienen die Aus-
wirkungen auf die Pilzgemeinschaft eher stochastisch und dauerhaft zu sein. Die Abundanz
von Candida nahm fiir kurze Zeit nach der Behandlung zu. Wir identifizierten mehrere
Bakterien, die das Potenzial haben, das Candida Wachstum in vivo zu hemmen oder zu
fordern. In einer Folgestudie verglichen wir gesunde mit schwerkranken Patienten mit und
ohne Antibiotikabehandlung ([4], Gut Microbes). Erneut stellten wir fest, dass die Haufig-
keit von Candida nach Antibiotikabehandlung bei kranken Patienten zunahm. Insbesondere
fanden wir heraus, dass die Antibiotikabehandlung bei schwerkranken Patienten zu einer
"infektionsanfilligen" Mikrobiomzusammensetzung fiihrt, die durch extrem niedrige
Mengen an kurzkettigen Fettsduren gekennzeichnet war. In der fiinften Studie {iber Infek-
tionen im Menschen (Erstautor, in Vorbereitung) [5] wurden Lungenkrebspatienten mit
Immunotherapie behandelt. Dabei untersuchte ich welche Unterschiede im Mikrobiom die
verschiedenen Mengen an Darm Candida erkldren. Unter Verwendung der Erkenntnisse
der vorangegangenen Studien fanden wir einen wichtigen Zusammenhang zwischen der
Verringerung von Anaeroben im Darm, erh6hten Laktat produzierenden Milchséurebak-
terien, und erhohter Candida Menge. Eine Schliisselkomponente, die all diese Faktoren
miteinander verbindet, ist die Menge an Sauerstoff im Darmlumen. Die Ergebnisse meiner
letzten Studie stellen die gingige Auffassung in Frage, dass Laktobazillen und Laktat das
Uberwachstum von Candida spp. im menschlichen Darm grundsitzlich verringern.

Im letzten Manuskript meiner Dissertation (Erstautor, PLoS One) [6] untersuchte ich
den Zusammenhang zwischen Darmmikrobiota und der Wiederherstellung der Lungen-
funktion von Patienten einem Jahr nach Tumorresektion. Longitudinaldaten zeigten Zu-
sammenhdnge zwischen Darmbakterien, -pilzen, und deren Stoffwechselwegen, mit der
Lungenfunktion. Interessanterweise ging ein Anstieg in VO2 mit einem Anstieg bestimmter
Spezies und des "GABA-Shunt"-Stoffwechselwegs einher, was darauf hindeutete, dass sich
die Behandlung durch die Anreicherung von Butyrate-produzierender Spezies verbessern
konnten. Unsere Daten deuten auf einen Zusammenhang zwischen dem Verlust von
Anaeroben und dem Wiederauftreten von Tumoren hin, was die Hypothese einer positiven
Wirkung von Anaeroben auf positive Behandlungsergebnisse untermauert.

Zusammenfassend ldsst sich sagen, dass sich zwar zahlreiche Arbeiten auf das Verstiand-
nis der Virulenzfaktoren haufiger Krankheitserreger wie Aspergillus- und Candida Spezies
konzentriert haben, dass aber zu Beginn meiner Doktorarbeit nur sehr wenig liber das Zu-
sammenspiel dieser Erreger mit den Symbionten des Wirts oder anderen Krankheits-
erregern bekannt war. In meiner Promotion habe ich Next-Generation Sequenzierung, fort-
schrittliche statistische Ansitze, und maschinelles Lernen eingesetzt, um unser Wissen iiber
das Leben von Erregern aus 6kologischer Sicht erheblich zu erweitern.
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Abbreviation
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DNA
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NCBI
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Short-chain fatty acid

second generation sequencing

single nucleotide polymorphism
Single-nucleotide variant

third generation sequencing

total-sum scaling

universal database of proteins

database of non-redundant proteins; based on UniProt
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whole meta-transcriptome sequencing
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I. INTRODUCTION

1. The Human Host and its Bugs — The Holobiont

Microbes represent the most successful form of life. They are omnipresent in every
environment and adapted to any niche, including water, soil, plants, and animals. Many
microbes co-evolved with their host, thereby forming synergies by complementing
metabolism and protecting each other from potentially dangerous pathogens. Formally, the
term microbiota refers to the collection of all bacteria, fungi, archaea, and viruses within a
habitat. Microbiome refers to their genes [7]. Microbial-host interactions are complex. Over
the last two decades, research has found many associations between health, disease states,
and microbiota. Many human-associated microbes are commensal, but some of them —
opportunistic pathogens — may attack or invade their host under — often unknown —
circumstances such as weakened host-immune defense. It was even suggested that every
human disease could be related to the microbiome [8]. While this is likely an exaggeration,
microbes are understood to be an integral part of our bodies - an additional organ. In the
following sections, I will introduce terminologies and concepts used to characterize
microbial communities.

1.1.  Essentials in Ecology Research

Ecology is the study of relationships between living organisms. While many concepts
evolved from observing and counting visible organisms in relatively large ecosystems,
many concepts were proven useful in microbial research.

Biological Taxonomy

In biology, taxonomy is a scheme used to classify organisms into coherent units called
“taxa” [9]. It is mostly based on morphological, physical, or genetic properties.
“Phylogeny” is the evolutionary history of species assuming common ancestors of
organisms and is commonly used to create taxonomies [9]. There are seven generally
agreed taxonomic levels from broad to increasing precision: Kingdom, Phylum, Class,
Order, Family, Genus, and Species (Figure 1). The catalogue of Life [9] currently separates
Kingdoms into Bacteria, Archaea, Protozoa, Chromista, Plantae, Fungi and Animalia.
Viruses are often considered as separate kingdom because viruses are not cells and may not
share a common ancestor with cellular life.

Ecological Diversity

Diversity aims to describe the complexity of ecosystems. Diversity indices are often used
in metagenomic research to compare habitats and as basic indicators of biotic and dysbiotic
habitats. Diversity is defined in three general levels (Figure 2) [10]. Because diversity
indices give complementary information, we chose them on a case-to-case basis. I used all
the following indices in my work (manuscripts ITI-VI).

Alpha diversity can be measured by the number of distinct species detected (richness),
by the distribution of taxon abundances (Shannon- and Simpson-indices), and by
phylogeny-aware indices (Faith’s PD) [10]. Assuming closely related organisms have
similar functions or roles, phylogeny-aware diversity indices give similar diversity scores
to taxa profiles with distinct but phylogenetically close organisms. Beta-diversity is
commonly estimated as Bray -Curtis dissimilarity, even though its application to



INTRODUCTION

sequencing data has been heavily criticized [11]. I expand on some technical challenges in
section 3.1. One appropriate alternative is the log-ratio-based Aitchison index which
compensates for compositionality bias [11]. Another index is UniFrac, which integrates
phylogenetic relationships of taxa [11,12].

Figure 1. Taxonomic ranks of life from low resolution (left) to high resolution (right).
Creative Commons license.

Landscape AB Landscape CD
a- Diversity
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Figure 2. Three levels of ecological diversity. a-diversity describes diversity within a site (sample,
habitat), B-diversity describes the diversity between two sites, and y-diversity describes the
diversity between two landscapes. Created with BioRender.com.

1.2. The Human Microbiome

The human body provides a nutrient-rich habitat for various microorganisms, many of
which are essential for the host’s homeostasis. The typical human body of a 70kg male is
composed of 3103 somatic cells and, according to current estimation, an extra 3.8.10'3
microbial cells [13]. While the human genome encodes roughly 20,000 protein-coding
genes, the bacterial metagenome carries at least 100 times more genes and is therefore
coined the "second genome" [14]. The gastrointestinal tract contains over 90% of these
microbial cells, but there are still roughly 10'2 on the skin and a modest amount in the lungs
[13,15]. Together with these microbes, we form a holobiont, whose health depends on
symbiotic interactions between the residents — microbes — and host [8].

Microbes are masters at sensing and responding to their environment. Host-associated
microbes cover diverse roles. On epithelial surfaces, they act as physical barriers against
foreign pathogens [16-18], degrade and modify compounds, and have roles in the
maturation and function of the immune system. Resident strains have evolved mechanisms
to break down antimicrobial peptides produced by the human host, utilize low-energy
sources such as free lipids for growth, and improve adherence to specific surfaces. Low-
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energy compounds are frequently broken down in ways that benefit us: especially gut
microbiota convert indigestible food into nutrients, release vitamins, peptides, and immune
regulatory compounds, to name a few. Microbes also create complex natural products such
as macrolides and polyketides, many of which have antimicrobial and immunomodulatory
activities [19].

The human gut represents a unique, complex, and heterogeneous environment. Because
most of the manuscripts in this thesis are studies on the gut microbiota of the large intestine,
[ will briefly introduce the structure of the gastrointestinal tract and the conditions microbes
encounter therein.

Mouth

Palate —
Uvula

Tongue —__ II
Teeth

.— Pharynx

Salivary
glands
Subllngual
Submandibular |

Parotid —
| -,—— Esophagus

.l Microbial
| Load per ml

),,-— Stomach J10% to 107
— Pancreas

Liver
Gallbladder —_

Commaon ___ Pancreatic
duct
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Microbial : Sma." : Lar?-e > 90% of cells
Load per ml intestine intestine
__Transverse
2 105[ Duodgnum colon
A Jelnum Ascending | microbial
10% to 1070 lleum colon Load per ml
Cecum 107 to 10'2
Descending
! colon
Appendix — Sigmoid
colon
B Rectum

Figure 3. Basic anatomy of the human gastrointestinal system. The majority of microbial
cells (>90%) is found in the large intestine [18]. Creative Commons license, Marina Ruiz.

The Human Gastrointestinal Tract

The human gastrointestinal system (GI) is a complex organ with many different sites and
functions. While the overall role of the GI is the extraction of nutrients and removal of
indigestible waste, it also represents a unique environment for microbes to thrive and the
largest compartment of the immune system [18]. Thus, it is constantly exposed to antigens,
commensal bacteria, and pathogens. The GI tract (Figure 3) begins in the mouth, with the
esophagus carrying fluids and food to the stomach. The lower GI tract starts with the small
intestine, connecting the stomach outlet and the large intestine. The small and large
intestines form a tube of column-shaped epithelial cells and end in the anus.

The small intestine plays a role in dietary component digestion and absorption and the
synthesis of antimicrobial peptides [18]. The large intestine, on the other hand, performs
little digestion and is physiologically primarily responsible for absorbing water and
eliminating undigested food [18]. Only a few immune cells are enriched, including
macrophages, [gA+ plasma cells, and Treg cells [18]. However, because the gut’s distal
regions are also home to billions of commensal human bacteria, it’s an important target for
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research into host-microbe interactions [13,18]. The lower GI can directly influence
microbes via crosstalk between colonocytes, immune cells, antimicrobial peptides,
exchange of metabolites, limiting carbon sources, and gut movement. Analogously,
microbes can interact with the GI by exchanging metabolites and binding mucosal surfaces.

Proximal regions of the GI are still challenging to access non-invasively. Instead, fecal
samples were used as proxies for most studies on the large intestinal microbiota of humans
and mice [10,20] and in the microbiome studies presented in this thesis (manuscripts
ITI-VI).

The Human Gut Bacteriome

The bacteriome is the most abundant and frequently studied part of the gut microbiome
[21,22]. Bacterial composition varies over the different parts of the GI, but most notably
between upper and lower GI tracts [23]. Molecular techniques estimate 500-1000 different
species in the GI of healthy adults, most of which are harmless [24,25]. Gut microbes have
major roles in maintaining host homeostasis [26], extracting nutrients and energy from food
[25,27], host immune function [22,28] and defense against pathobionts [26,29]. They also
have important roles in several diseases such as obesity [30,31], malnutrition, inflammatory
bowel disease [22,32], metabolic disorders [22], type 2 diabetes [30,33], neurological
disorders and cancer treatment [25,34,35].

Despite large-scale projects such as the Human Microbiome Project [7,36], defining a
“healthy” microbiome remains a challenging and ongoing topic. In healthy adults, 98% of
bacterial species are from the phyla Firmicutes, Bacteroides, Actinobacteria, and
Proteobacteria [26]. However, at increased resolution, the composition of gut communities
and functions is highly personalized and dynamic over time [26]. An ensemble of factors
with significant influence on the composition was identified, including age, gender, diet,
alcohol and lifestyle, hyper immunity, and host genetics [26]. Furthermore, metabolic and
structural patterns consistent across healthy human individuals were identified [37,38].
These structural patterns are often described in terms of stability, resilience, perturbation,
resistance, redundancy, and differences in the abundance of specific taxonomic clades.

The Role of Gut Strict Anaerobes

While microbes produce a variety of compounds, one group of microbes consistently
showed differences in abundance in the manuscripts in this thesis: obligate anaerobes[18].
These microbes are an exciting example of co-evolution between microbes and their host.
Obligate anaerobes — microbes that cannot survive in the presence of oxygen — are the main
colonizers of the large intestine [18]. Many anaerobes ferment non-digestible fiber from
food, thereby creating small molecules called short-chain fatty acids (SCFA), such as
acetate, propionate, lactate, and butyrate [22,39]. SCFAs are abundant in stool samples [40]
and have antimicrobial, immunoregulatory, and homeostasis properties [22]. In addition,
some SCFAs are critical to maintaining gut hypoxia: Colonocytes consume microbial
butyrate as a major energy source [40] to perform aerobic respiration [41], using up most
of the cells’ oxygen. The resulting hypoxia, in turn, selects for obligate anaerobe bacteria,
creating a positive feedback look selecting for SCFA-producing bacteria. However, some
of these compounds can also be harmful in dysbiotic communities. For example, in autistic
spectrum disorder, subjects show increased bacterial diversity alongside higher
concentrations of SCFAs and ammonia [42].
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The Human Gut Mycobiome

Fungi are the most abundant group of eukaryotes in the gut [43]. However, gut mycobiota
remain understudied due to technical challenges, including their lower abundance,
differences in the cell wall and DNA extraction, larger and more complex genomes, and
lack of reference genomes required for comparative genomics [44]. In addition, while
fungal cells and genomes are much larger than bacterial cells, fungi are vastly outnumbered
by bacteria in stool samples (10° compared to 10'! [45,46]). I address some solutions to
these issues in section 2.3. These notwithstanding, gut fungi were often associated with
disease development [47]. Therefore, mycobiota were an important part of microbiomes to
study during my Ph.D.

Mycobiota composition is even more dynamic than bacterial. Still, many fungal genera
are commonly detected: around 50 fungal genera are typically reported in stool samples,
although only about 10 explain most of the community compositions [48,49]. Commonly
detected genera include Saccharomyces, Candida, Malassezia, Cryptococcus, Penicillium,
Fusarium, and Yarrowia [47,49-51]. What factors and how they affect fungal communities
are not well established. A recent study reported significant, systematic differences by host
age and diet [47]. Interestingly, dairy consumption was positively correlated with
Saccharomyces and negatively with Candida.

Little is known about the positive health impacts of fungi. Saccharomyces is generally
considered harmless to humans, and some selected species (S. cerevisiae) are even used as
probiotics. In addition, fungi are likely involved in conditioning the immune system, as
evident by their involvement in inducing and preventing allergies [49]. Therefore, my work
aimed to identify affecters of mycobiome diversity and composition.

1.3.  Pathobiosis

Environmental stressors can drive some commensal microbes from mutualistic or harmless
states into pathogenic states [52]. Such microbes are called “opportunistic pathogens” [53].
The prime example of an opportunistic pathogen is Escherichia coli, one of the most
prevalent gut bacteria [54]. E. coli is a facultative anaerobic bacterium. While prolonged
exposure to oxygen is toxic, most strains can utilize aerobic respiration for short amounts
of time, which can help them outcompete other microbes [54]. Incidentally, an expansion
of facultative anaerobes in the gut was frequently observed in inflammatory diseases and
dysbiotic communities [55—57]. Another concept is the induction or increase of virulence
by horizontal gene transfer between microbes [53]. Thereby, commensal strains may turn
pathogenic on accident, or already virulent strains spread their virulence factors. The exact
mechanisms of pathogenesis are often complex and likely context-dependent (temporally
and locally) [53]. It was thus suggested to use the term pathobiome, which describes a set
of circumstances, microorganisms, and their interactions, that result in a diseased state of
the host [8]. Pathobiome is often defined or identified by dysbiotic gut communities.

Markers of Dysbiosis

Dysbiosis of bacterial communities in the large intestine is not well-defined. Due to the
complexity and dynamics of microbial communities, microbiomes from healthy subjects
are typically used to describe a balanced or biotic microbiome [58,59]. In this sense,
dysbiosis is identified by microbial communities sowing significant structural differences
from those of healthy individuals [58,59]. This is possible because microbiomes of healthy
individuals often demonstrate higher similarity than dysbiotic ones, following the idea:
“There are many ways to be sick, but only a few ways to stay healthy”. Typical dysbiosis
markers include low taxonomic and functional diversity, reduced abundance of strict
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anaerobes, presence of pathogens in host blood due to loss in the gut barrier integrity, or
substantial changes in metabolic states [53,58].

Perturbation

Perturbation is an external event that causes a distinct selective pressure on the ecosystem
[60]. Microbiota demonstrate a certain capacity to revert perturbations (resilience).
However, resilience works in both directions: perturbations can result in resilient unhealthy
states, some of which are associated with diseases such as obesity [60]. Perturbations were
identified in most diseases linked with microbiota [19]. Many factors influence microbial
composition in potentially harmful ways, including age, diet, treatment with antimicrobial
agents, pharmaceutical proton-pump inhibitor drugs, xenobiotics, environmental toxicants,
pet exposure, and birth delivery mode [19].

A powerful source of perturbation is antibiotics, a broad group of compounds with
typically antibacterial effects [60]. Some diseases, such as antibiotic-induced colitis or
inflammatory bowel disease, are directly linked to antibiotic treatment [19]. Even though
bacteria are the main target of these drugs, there is evidence of a profound influence of gut
fungi as well. Some studies on the gut of mice indicated a substantial increase in the
colonization of pathogenic fungi such as Candida at multiple body sites in the early
aftermath of antibiotics treatment [3,4,61-64]. However, how much this applies to humans
is unclear and therefore addressed in manuscripts III-1V.

The fungal pathobiont C. albicans

C. albicans is a dimorphic, opportunistic, facultative anaerobic fungus [65] and one of the
most prevalent in the human gut [66]. While harmless to healthy hosts, it often infects
patients with immunocompromised immunity, causing an often lethal disease systemic
candidiasis [66,67]. In its commensal form, it resides in ball-shaped yeast cells, but on
contact with surfaces, it forms tube-shaped hyphae [65]. This morphological switch is
considered a key virulence factor [65,66]. While the circumstances enhancing its virulence
and allowing the translocation of the fungus through the epithelial lumen are not entirely
clear, the intestinal microbiota are considered a key regulator to prevent fungal overgrowth
[66].

1.4. Fungal Infection

The human body represents an attractive environment for many microbes, both beneficial
and detrimental. While human pathogenic fungi are an increasing cause of dangerous
diseases [68], the conditions that allow fungal infection are complex and not fully
understood. Host immune dysfunction is a key requirement for fungal infection [69], and
the bacteriome is likely to have substantial roles in promoting and inhibiting opportunistic
fungi. Bacteria can limit fungal colonization by producing antifungal compounds,
competing for nutrients, cellular contract, chemotaxis, or physiochemical changes to the
local environment [70,71]. Likewise, bacteria may promote fungal growth by exchanging
metabolites, creating biofilms, and adherence to the pathogen [70]. But findings for the
latter are sparse due to the difficulty of studying microbes directly in their native
environment.

Host Immunity
The host can adopt three main strategies to deal with microbes: avoidance, resistance, and
tolerance. A simplified view of the human immune system describes three levels of
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complementary systems: (1) anatomic and physiological barriers, (2) innate immunity, and
(3) adaptive immune system [72].

Physiological barriers include intact skin, low stomach pH, and bacteriolytic enzymes
in several body fluids [72]. In the intestine, a set of diverse microbes residing on the
mucosal surface act as an integral part of host defense. On breaching this first defense,
microbes encounter cells of the innate immune system [72]. These cells have invariant
receptors that detect conserved components presented by pathogens [72]. The system lacks
specificity but responds fast and will activate pro-inflammatory responses, including
mobilizing the more specific but slower adaptive immune system [72]. One type of innate
cell (dendritic cell) was of particular interest in my studies.

The innate immune system consists of a group of specialized, “professional” cells that
perform phagocytosis with high efficiency [73]: Monocytes that differentiate into
macrophages and dendritic cells (DC), granulocytes (neutrophils, eosinophils, basophils,
mast cells) and specific lymphocytes (natural killer cells) [73,74]. Pattern recognition
receptors (PRRs) in professional cells recognize pathogen-associated molecular patterns
(PAMPs) that are present in microbial cell walls and foreign to the host [75]. While the
overall mechanism is understood, the recognition mechanisms of PAMPs are mostly
unknown [75].

Aspergillus fumigatus infections

On a daily basis, every human inhales thousands of airborne conidia of the fungus
Aspergillus fumigatus [75]. While harmless to healthy human individuals, 4. fumigatus
frequently infects the respiratory systems of immunocompromised patients, especially after
treatment with immune-suppressant drugs used during stem-cell or organ transplantation
[75]. Upon infection, A. fumigatus causes Invasive aspergillosis (1A), a life-threatening
disease associated with high mortality rates and insufficient treatment options [76]. Anti-
fungal prophylaxis, including azole drug treatment, works only in a fraction of patients,
and drug-resistant 4. fumigatus strains were already detected [76,77]. In one of our studies,
we investigated the potential origins of azole resistance across many A. fumigatus isolates
(manuscript II).

A. fumigatus is a dimorphic fungus, i.e., it exists in non-pathogenic states (conidia) but
can also form hyphae (germ tubes) [75]. Infections start by conidia reaching lung surfaces
such as alveoli which are protected by innate immune cells [75]. Without successful
clearance, the fungus germinates hyphae and forms a colony. It degrades the surrounding
tissue to acquire nutrients, which can obstruct lung function [75]. While innate immune
cells are generally poor at recognizing conidia [75], antigen-presenting cells, especially
DCs, recognize hyphae well [75]. Upon detection of the pathogen, DCs release pro- and
anti-inflammatory cytokines, present antigens of the detected pathogens to T cells, and
release cytokines to promote B cell activation [74,75]. Consequently, DCs act as an
essential regulator of innate and adaptive immune systems [74,75].

The virulence of A. fumigatus may further be enhanced during simultaneous infection
by other microbes or viruses [78]. To address the latter, I conducted a study on the
transcriptome changes of a human herpes virus, 4. fumigatus, and human dendritic cells
during co-infection by both pathogens (manuscript I).
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2. Quantification of Host and Microbes by Genome Sequencing
In the past, the study of microbiota was limited to the cultivation of microbes in Petri dishes.
But many, if not most, gut microbes are strict anaerobes and challenging to cultivate [44].
But around the year 2000, things began to change. Advancements in genomics technology
allowed faster and cheaper sequencing of large portions of genomic material from
biological samples, resulting in a new approach: Comparative Genomics. Cultivation
methods were replaced mainly by DNA sequencing of marker genes or entire
metagenomes, revealing an enormous number of new organisms, microbial functions, and
biodiversity [79]. The following section will describe sequencing technology and its use in
genomic research, as used throughout my studies.

2.1. Next-Generation Sequencing

Genomics evolved around the concept of a reference genome, which is a roadmap for a
typical individual of a species [80]. In its most simple form, it is a consensus nucleotide
sequence and an annotation of functional regions [81]. Such references are used together
with genomic sequences acquired from new samples. Many companies offer kits and
services to extract nucleic acids (RNA or DNA) from biological samples such as stool,
blood, and cell cultures and perform sequencing. However, it is still essential to understand
how this quantification works, as it affects downstream analyses. For all current sequencing
technologies, cells are first isolated from the sample, then lysed, and their nucleic acids
extracted.

1%-generation sequencing (FGS) methods are based on Sanger sequencing [82]. Long
nucleic acid molecules were broken down into many random fragments (shotgun). For
RNA sequencing (RNA-Seq), RNA molecules were converted before or after
fragmentation into complementary DNA (cDNA) by a reverse transcriptase enzyme [83].
DNA or cDNA were then amplified (cloned) in vivo using a host bacterium (Escherichia
coli) or in vitro using polymerase chain reaction (PCR) to acquire enough material for the
sequencing [82—84]. The final readout of cDNA sequences are reads, a term used for DNA
readouts from newer technology as well.

Next-generation, or 2"-generation sequencing (SGS), methods reduced cost and
increased speed of sequencing. This was achieved by (a) combining amplification and
sequencing and (b) the parallel sequencing of thousands to millions of colonies of single-
DNA fragments [84]. Compared to FGS, the sequencing output increased by five orders of
magnitude [85]. While the latest FGS technology produces sequences of up to 1000nt [86],
modern Illumina machines can sequence fragments of up to 600nt [87]. While there are
different commercial technologies, Illumina platforms became the de facto standard for
SGS due to high—throughput, low-error readout, relatively low cost, and excellent protocols
for DNA extraction and filtering [87].

Next-next-generation sequencing - 3™ generation - will enable the sequencing of single
molecules of even longer length and without amplification [84]. Current technology allows
sequencing of fragments up to 13kb [88] and some even 150kb [86]. Furthermore, RNA
does not need to be converted to cDNA, removing some of the biased caused by the
conversion process. However, while these technologies offer some advantages (which I
discuss on page 203), they have higher base-calling error rates [86]. Especially
technologies aiming for over 30kb may exhibit up to 20% [86]. This elevated error rate and
the high volume of genomic material required for sequencing made this technology
impractical for many quantitative analyses (e.g., transcriptomics).
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The choice of sequencing machines depends on the main objectives of the study. The
following section will introduce the most important methods in the downstream processing
of SGS data to quantify genes and microbes. A general overview is given in Figure 4. Again,
only DNA fragments of close to 600nt can be sequenced with high quality [89], exceeding
the average length of protein-coding genes and genomes. This major limitation was dealt
with in two general ways: (a) extraction and amplification of small, specific genomic
regions — amplicons or (b) deep metagenome sequencing with binning techniques.

Quality control, Genome assembly and Read mapping

The first step in processing read libraries involved trimming low-quality read segments and
the removal of low-quality reads and contaminants (e.g., PCR primers or foreign DNA)
[90]. A position-wise quality score (Phred Score) indicates read quality [87]. Commonly,
base-call error rates of 1 in 100bp (Q20; 99%) to 1 in 1000bp (Q30; 99.9%) are chosen
[87]. I performed trimming-related tasks with the program Trimmomatic in all
manuscripts included in this thesis [90]. The next typical steps tasks involve the
reconstruction of genomes (assembly), identification of homologous sequences
(alignment), or quantification of enriched segments (mapping).

Reads originating from the same chromosome may be identical, aside from a few
mutations, and have significant degrees of overlapping regions. To reconstruct a genome,
reads are assembled based on these overlapping sequence sections into progressively longer
sequences (contigs) [84].

Sequence alignment is the process of matching two or more sequences to identify
regions of high similarity. The alignment tool BLAST [91] is often employed to predict the
functions of genes (query) by sequence homology and allows low sequence identity to the
reference gene (<80%). Alternatively, the aligner DIAMOND gained popularity in
metagenomic research [92]. DIAMOND is 1.000-10.000 times faster than BLAST+ but has
lower sensitivity and is limited to amino acid sequences [92]. Notably, the new
ultrasensitive mode of DI AMOND achieves BLAST-level accuracy at an 80-fold faster speed
[92].

Sequence mapping is a particular type of alignment but involves assigning billions of
short sequences (i.e., reads) against a few reference sequences. Mapping is used to quantify
genomic regions (e.g., genes), create coverage profiles, or identify short mutations
(section 2.7). Mapping approaches are high-speed but require a high similarity between
reads and reference segments. While RNA-Seq research uses mapping tools such as
HiSat2 with increased speed and accuracy [93] (manuscript I), metagenomic studies use
older tools such as BWA or Bowtie2 because these programs allow more mismatches
between a read and a target region (manuscripts ITI-VI).

2.2.  Single and Dual RNA-Seq

While infection studies involve two or more organisms, transcriptome sequencing was
limited to only one organism at a time [94]. Cells from different organisms had to be
separated and sequenced independently, leading to substantial biases in gene quantification
down the line [94,95]. But one decade ago, laboratory and in silico improvements allowed
for the first dual RNA-Seq experiments of human cells and one pathogenic species,
significantly decreasing sequencing costs and bias [96]. So far, mammalian host cells have
been challenged with one viral, bacterial, fungal, or eukaryotic pathogen [94]. In this thesis,
we go one step further to perform the first “triple RNA-Seq” to study triangular interactions
between human cells and two pathogens (manuscript I).
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2.3.  Fungal ITS Amplicon Sequencing

To date, most microbiome studies focused on characterizing community compositions
(Figure 4) [97]. A cost-effective, high-throughput, and common approach involves
sequencing of marker genes amplicons, i.e., genes that can be used to delineate taxa [98].
Standard marker genes are the highly conserved ribosomal RNA (rRNA) genes (16S for
bacteria; 18S and 23S for eukaryotes) or the variable regions between them [99]. A
common technique to create amplicons uses polymerase chain reaction (PCR) and small
DNA template molecules (primers) to define and extract the region of interest from a pool
of DNA [99].

Species-Level
Functional

Microbiome
1 Samples '

Amplicon RNA Extraction
Extraction DNA Extraction rRNA Depletion

| |

Sequencing

¥

DNA Reads RNA Reads

Decontamination
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Species Pathways
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Figure 4. An overview of our microbiome analysis workflows. Amplicon-based approaches are mostly
limited to taxonomic profiling. Whole shotgun genome sequencing approaches can be applied to derive
bacterial species and functional profiles. Reads are decontaminated in silico (e.g., host-reads).
Metatranscriptomics requires additional filtering steps pre- and post-sequencing. High-level analyses
such as diversity, differential abundance, or co-abundance network analysis are required to gain
biological insights. This figure is based on figures from [10,137].
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Figure 5. Internal transcript spacer regions (ITS) of the eukaryotic IRNA gene (small subunit — SSU;
5.8S; large subunit - LSU). Each ITS region can be fully sequenced by merging the overlapping
regions of paired-end reads.
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Fungal ITS Sequencing

The eukaryotic 23S rDNA region is over 1500 nt long and exceeds the effective length of
SGS technology [44,89,100]. Instead, DNA fragments are extracted based on highly
conserved regions within the rDNA gene (5.8S) and sub-sequent variable regions internal
transcribed spacers (ITS) are sequenced (Figure 5) [44,89,99,101]. Thereby, conserved
regions are used to capture as many species as possible, while variable regions discriminate
taxa [89,102]. Choosing ITS1 or ITS2 is important due to amplification-specific bias across
different species [44,103]. Sequencing both regions would be best in theory but is
impossible with SGS technology [44,103]. In our studies, we used ITS2 as it is more
generic [50,103], has a more consistent length (186 bp on average, but up to 730 bp)
[50,103], and captures more diversity of human gut fungi [44].

Next, taxonomic abundance profiles are created from the amplicon reads. The short
length of ITS2 fragments results in, on average, sequence overlaps between paired-end
reads (Figure 5). Reads are merged based on these segments before or during the
quantification process [104—-106]. Due to mutations and sequencing errors, we expect some
divergence between reference ribosomal DNA sequences and amplicons reads.
Furthermore, we expect reads from unknown organisms. To resolve these, the following
steps involve read clustering, taxonomic assignment of clusters, and cluster quantification.
Iused two evolved concepts in my work: orthologous taxonomic units (OTUs) or amplicon
sequencing variants (ASVs), both of which were used in manuscripts of this thesis.

Amplicon Profiling

In OTU clustering, amplicon sequences of high similarity (e.g., 97%) are clustered together
to form a unit (OTU) [89,107]. A representative sequence is chosen for each OTU and used
for taxonomic assignment. Additionally, reference sequences of known taxa can be
included to improve accuracy and speed-up taxonomic assignment of clusters. These OTU
picking procedures are thereby further divided based on the use of the reference sequence
collection. In open-reference picking, amplicons are first clustered against the reference
sequences. Clusters containing a reference sequence inherit the taxonomy of that reference.
Amplicons without a hit to the reference are then clustered de novo. In de novo picking, the
sequence with a median similarity between all cluster sequences is used as representative
of the cluster. We used a complete framework for read merging, ITS extraction and open-
reference OTU picking called PTPITS [105] in two manuscripts (III, VI).

A considerable drawback of OTU clustering is the need for an (often arbitrarily) chosen
similarity cut-off of 97% [107,108]. While justified historically, genomes from thousands
of species revealed many clades requiring higher (>99%) or lower (<97%) cutoffs for
delineation [102,107]. The new approaches amplicon sequencing variants (ASV) and zero-
radius OTUs are denoising procedures that aim to detect and correct for sequencing errors
so that each resulting ASV represents exactly one organism [89]. In contrast to OTU
clustering, denoising approaches do not require use-defined cutoffs, offer superior
sensitivity and precision, and can be directly compared across studies [108]. We used
DADA2 [104] to estimate ASVs in two manuscripts (IV, V).

Taxonomic Assignment

Taxonomic assignment is performed using ITS-optimized reference sequence databases
such as INSDC, Warcup ITS, and UNITE. UNITE [109] is the most favored and was also
suggested in a recent review [50]. Different alignment software is proposed in the literature
with large variations in prediction accuracy [110]. BLAST+, RDP, SINTAX, and Mothur
and commonly used [110]. In our studies [3,6] and others [110], Mothur often had superior
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taxonomic accuracy compared to the other common methods, but there is still considerable
room for further improvement [110].

2.4. Whole Metagenome Sequencing

While amplicon sequencing technology is cheap, it is limited to primarily genus-level
resolution and cannot reliably be used to estimate functional information (Table 1; Figure
4) [89,111-113]. While some tools like PICRUSt [112] offer a rough estimation of the
functional potential purely from a bacterial composition, they rely too heavily on
assumptions of functions of representative species. A more comprehensive solution uses
the entire collection of DNA within a sample, which allows for superior assessment of
diversity, functional quantification, growth-rate estimation, accurate species-level
quantification, and even strain identification [114]. However, this applies primarily to the
study of bacteria. Of note, fungi remain largely undetected in whole shotgun metagenome
samples due to low abundance and insufficient sequencing depth [44], making amplicon
sequencing a better approach for studies of this kingdom.

Table 1 Pros and Cons of genomic analyses for microbiome research [10].

Methods Advantages and Use Disadvantages
Marker-Gene | @ Cheap and amenable to low- | ¢ Amplification bias and results vary heavily
Sequencing biomass and high-host DNA on primers and amplification targets
samples e Requires a priori domain knowledge

¢ Many public datasets e Limited to mostly genus-level resolution

e Very limited functional resolution

Whole Meta- | e Quantifies genes, functions, species, | ® Expensive, laborious, and complex samples

genome and strains preparation
S\s:\;]l\l/llesncmg e Allows population-wide gene de | ® Host-DNA can influence downstream
( ) novo assembly and mining analysis

¢ Quantifies all kingdoms of life o Identifying dead cells is computationally

o Allows in situ growth rate | Intense

estimation e Inaccuracies in genome assemblies

Whole meta- | o Identifies active species when | ¢ Most complex sample preparation
Transcriptome | paired with metagenomes e RNA Degradation leads to strong bias in
Sequencing e Captures microbial activity to profiles

WTS
(WTS) treatment exposure the best e Host and microbe rRNA depletion is required

e Biases towards organisms with high
transcription rates

Formally, the metagenome is the collection of all genomes (or genes) present in a
sample, including the host. But in practice, host DNA is depleted before and after
sequencing to prevent hybrid assemblies, assembly errors, and the detection of spurious
microbes [114]. Host-depletion and the removal of other potential contaminants are done
in silico by filtering out reads that align with high identity to relevant sections of the human
reference genome (Figure 4) [114,115]. Metagenomes are acquired through whole meta-
genome sequencing (WMS) [10]. Analogously, the metatranscriptome is the collection of
all transcribed RNA molecules derived from whole meta-transcriptome sequencing (WTS)
[10]. Metatranscriptome studies of the microbiome gave vastly different results compared
to metagenomic results [38,116,117] due to various factors. (a) Only a fraction of genes
will be expressed by a microbe at any given time, (b) transcription rates vary across cells,
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and (c) essential genes are sometimes expressed primarily by relatively low abundant
species. In addition, it can be subject to additional sources of bias. RNA is also far less
viable than DNA [118]. Unless deep-frozen, RNA can degrade within a few days, which
leads to uneven degradation of fragments, amplification bias, and incorrect transcriptome
profiles [118]. Furthermore, host and microbial rRNA 1is usually removed before
sequencing (Figure 4). TRNA accounts for at least 90% of sequencing material without
giving much information, resulting in wasted resources [10,117]. RNA sequences may
further differ from their reference gene sequence due to post-transcriptional modifications.
Still, transcriptome profiling can separate alive from dead cells, identify key microbiota
members of otherwise low abundance, and quantify real-time microbiota response to
treatment [10,38,119,120]. Furthermore, DNA and RNA profiles can be combined by
normalizing RNA gene abundances with their DNA gene abundance, resulting in as
transcriptional activity [3,38,120] (used in manuscript III).

Whole Metagenome Profiling

The next step is assigning or grouping high-quality reads into taxa, genes, and functions
(Figure 4). This is not a trivial task considering that reads from metagenomic stool samples
originate from hundreds to thousands of species [24]. In addition, the shortness of SGS
technology comes at the cost of precision: assigning reads to specific genomes, organisms,
or even genes, is challenging. Within the last two decades, a myriad of methods (a) defined
marker genes to distinguish microbes, (b) created comprehensive references and
pangenomes, (¢) proposed new concepts of species and strains, or (d) focused on functional
quantification and annotation. The following section describes different strategies for
transforming read sequences into interpretable units. [ will thereby focus on quantifying (a)
taxonomic composition, (b) functional composition, and (¢) joined taxonomic-functional
composition.

Microbial Composition by Marker-gene Quantification

To estimate microbial composition directly from reads, three main strategies exist: DNA to
marker (e.g., MetaPhlan2, mOTU2), DNA to protein sequence (e.g., KATJU), or DNA to
reference DNA (e.g., Kraken) [121]. In most manuscripts (manuscripts III-VI), we used
MetaPhlAn [122,123], a DNA-to-marker method that maps reads to a database of clade-
specific marker genes and quantifies relative abundance at each taxonomic rank [121]. The
marker genes were identified from reference genomes of many human gut samples [121].
While some “DNA to reference DNA” tools such as Kraken claimed superior
performance, the choice of tools depends on a trade-off between sensitivity (number of
distinct species) and specificity (accuracy of their estimated abundance) [121].
Furthermore, a recent review addressed the difference between estimating (a) the number
of reads per taxon and (b) taxonomic abundance [121]. Taxonomic abundance estimation
(e.g., by MetaPhlAn) includes bias correction against varying genome sizes and marker-
gene copy-numbers. At the time of writing, MetaPhlAn and mOTU2 were found to be
accurate estimators of taxonomic abundance with comparable resolution [121].

Reference-based approach: gene family catalogues

Identifying correlations between taxonomic clades and specific traits is insightful, but
associations at this level are often difficult to confirm. It can therefore be more informative
to look at genomic information. However, constructing complete and accurate genomes
from complex biological samples is challenging because reads originate from a diverse set

13



INTRODUCTION

of often closely-related organisms [124]. Instead, gut metagenomes are usually a collection
of genes [84,125]. Therefore, genes with high sequence similarity (e.g., 90%) are grouped
into gene families. The resulting representative reference genomes and unified gene family
catalogs can serve as a common ground for data analysis, interpretation, discussion, and
cross-study comparison [120,125,126].

Gene catalogs can be built from reference genomes of public databases such as the
National Centre for Biotechnology Information (NCBI) [127,128] or by merging all
potentially relevant genes from de novo assemblies [125]. An example of the latter is the
integrated gene catalog of the human gut microbiome (IGC). IGC comprises 9.8 million
non-redundant genes reconstructed from thousands of de novo gut metagenome assemblies
[125]. A more sophisticated procedure is presented by the HUMANnN pipeline [120,123].
First, MetaPhlAn identifies microbial species in the sample. Then, the species’
pan-genomes (ChocoPh1An) are merged and used as the reference genome for high-speed
read mapping with bowtie2. Lastly, reads not assigned to genes of known species are
mapped with DIAMOND to a universal database of protein-coding genes (UniRef90). A
unique advantage of HUMANN lies in quantifying microbial functions per species but is
limited to (a) the knowledge of bacterial genomes and (b) requires more computational
resources. We used HUMANN in most studies included in this thesis (manuscripts III-VI).

2.5. Growth Rate Estimation from metagenomic data

Metagenomics captures the DNA of living, stationery, and dead cells [129]. Therefore, the
state and origin of many microbes (e.g., microbes found in food) cannot be determined.
However, the replication rate of microbial species can be estimated from metagenomic
sequencing data to identify proliferating species [129]. The core idea relies on the
assumption that bacterial replication starts bidirectionally from one region (ori) and
proceeds until a terminal region (ter) [130]. Therefore, species replicating faster would
have a stronger genome coverage at ori compared to ter [129]. This is reflected in the gene
coverage, which can therefore be used to estimate the replication rate of microbes. We
estimated bacterial growth rates using “Growth Rate index” (GRiD) [129] (manuscripts
I1, I1I) to verify that species with significant differential abundance were replicating despite
antibiotic drugs’ inhibitory effects.

2.6. Metagenomic Species

Metagenomic species (MGS) is a concept produced by Nielson et al. in 2014 to identify
novel microbial species in metagenomic samples [131] and was used to assess the functions
of both known and unknown microbial species. Conceptually, genes are clustered by high
linear co-abundance of genes (CAGs), assuming that genes have highly correlated DNA
abundance across different samples if they originate from the same source (organism)
[131]. Instead of computing all pair-wise gene abundance, the heuristic canopy clustering
algorithm is used to make this computation feasible for dozens of millions of genes [131].
Original work defined CAG abundance as either (a) the median abundance of clustered
genes [131] or (b) the sum of the 50 most-correlated genes within a cluster [132]. MGS are
CAGs with many genes (at least 500-700) [131]. Taxonomic assignment is based on the
consensus taxonomy assigned to each gene, i.e., If at least 50% of genes in an MGS are
assigned to one species, that MGS is assigned to that species [131,132]. Furthermore, MGS
can be computed directly from gene family catalogs, as demonstrated in manuscripts (II1,
IV) and by others [56]. Furthermore, I enabled strain-level annotation of MGS utilizing the
concept of pan-genomes as required for follow-up experiments (manuscript I1II).
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2.7.  Strain Analysis

While genomes from different isolates of the same species are very similar (by definition),
they represent only snapshots of continuously evolving organisms. To identify the genomic
changes turning a commensal into a pathobiont or how pathogens adapted to humans, we
used two methods to describe genetic variations in the manuscripts of this thesis: genome-
wide association study (GWAS) and pan-genomics [80].

Coverage profiles of mapped reads [81] can be used to identify short insertions,
deletions, and substitutions. Changes at a singular position are called single nucleotide
variants (SNVs) [133]. An SNV found in at least 1% of the study population is a single
nucleotide polymorphism (SNP). A common tool to analyze SNPs is GWAS. GWAS
performs association tests between each SNP and a phenotype of interest [134]. However,
due to the fast evolution time of microbes, phenotypic variations can also result from
duplications or deletions of larger genomic regions, so-called copy number variations
(CNVs) [134]. Because of that, many methods use SNPs in gene coding regions [135] or
selected marker genes [136].

Pan-genome analysis, in contrast, deals with the presence and absence of entire genes
and genomic regions [80]. The pan-genome is the whole set of genes from all strains of a
clade. It comprises a core genome — genes found in all or most genomes, a shell genome or
accessory genome — genes found in at least two genomes, and unique genes found in only
one isolate [80]. Importantly, this definition works well for prokaryotes but not eukaryotes.
Especially for eukaryotes with large genomes (>500 Mb), exons explain only a fraction of
genetic diversity. Instead, all genomic sequences should be considered, including
intergenic ones [80]. Our studies used pan-genome analysis to expand our understanding
of A. fumigatus diversity across different environments (manuscript II) and to annotate
MGS at the strain level (manuscript III).

2.8. Functional Annotation

To better understand the functions of genes, they can be grouped based on a higher
functional context, such as enzymic classes, cellular compartments, metabolic reactions,
and pathways. Functional categories of novel genes are often inferred in silico. Approaches
are based on the sequence and structural information of genes with known or putative
functions [137]. Annotation approaches fall into four major categories: homology-based
(e.g., alignment), motif-based (e.g., Hidden Markov Models, neural networks), context-
based and specialized approaches [137]. Public databases encompass our collective
knowledge of verified and predicted functions for genes. The grouping of genes can be
achieved through gene-set enrichment tests [138] or by accumulating gene profiles into
functional profiles [90]. In the following, I will introduce the databases most important in
my studies.

Enzyme Commission (EC) annotation is a strict classification hierarchy used to organize
reactions catalyzed by enzymes [139] and is one of the most important resources for
functional annotation. It was originally invented by the Nomenclature Committee of the
International Union of Biochemistry and Molecular Biology in order to assign consistent
naming schemes to enzyme functions [140]. Unlike other functional annotations, EC
groups enzymes by common functions instead of sequence similarity. EC is maintained by
ExPASY, which performs manual curation of protein functions [141].

T The Gene Ontology (GO) Consortium provides structured, controlled vocabularies of
biological terms that can be used to summarize and analyze functional knowledge of gene
products [142]. GO annotations are used because they describe a gene’s role in a process,
a location in a cell, or molecular function, even if the gene’s activity is still being
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investigated or changed in the future [142,143]. GO terms are thereby organized in a
hierarchy of major domains: Molecular Functions, Biological Processes, and Cellular
Components [142]. A gene can therefore be assigned to multiple GO terms with
complementary information.

MetaCyc and KEGG are large metabolic pathway databases with similar aims and scope
and are used across all projects involving sequencing data [144,145]. In contrast to GO,
KEGG and MetaCyc provide precise information about the molecular function of genes
and do not include genes whose function is not identified [146].

KEGG, founded in 1995, was one of the first public annotation resources, including
tools to assign higher-order functionality to gene sequences. KEGG defined so-called
KEGG orthologs (KOs), a set of manually curated orthologous gene groups based on public
reference genomes. KOs form the base for multiple types of annotation within the database,
including EC numbers, KEGG modules, KEGG pathways, and KEGG compounds.

MetaCyc [145] is considerably newer and more curated but did not supersede KEGG
yet. A direct comparison between the two databases is difficult, but some concrete numbers
were published in 2013 [144] and 2019 [145]. MetaCyc super pathways are roughly
equivalent to KEGG pathway maps, while MetaCyc base pathways relate to KEGG
modules [144]. At the time of writing, MetaCyc has fewer super pathways than KEGG (382
vs. 548) but substantially more base pathways (2,980 vs. 457) [147,148]. MetaCyc has
more substantially more metabolic reactions (17,509 vs 11,741). KEGG still covers more
compounds (18,905 vs. 17,490), but this difference has decreased significantly since the
last major comparison in 2013 [144]. Importantly, MetaCyc contains more database
attributes, which allows for finding more relations between compounds, reactions,
pathways, and species. Both databases should be considered complimentary. KEGG has
advantages in the number of compounds, a more robust user API, and a more robust
functional hierarchy. Functional associations can then further be stratified with MetaCyc’s
more curated reactions. Soon, MetaCyc is likely to become the main resource the
metagenomic research.

The Pfam database is a protein-centric database for classifying protein sequences into
families and domains [149]. Pfam is useful to get first insights into protein-coding genes
for which little to no functional annotation is present or if a particular class (e.g., antibiotics)
is of interest.

UniProt knowledge database is another essential resource used to identify and annotate
protein families. It contains around 190 million protein sequences submitted from projects
across the globe [142]. UniProt supplies several sub-databases with different levels of
annotation, curation, and redundancy. To reduce the enormous amount of often redundant
gene sequences, the “UniRef” databases were created and are routinely updated [142].
Therefore, proteins are clustered by their homology, starting with 100% (UniRef100) and
further clustering by 90% (UniRef90) down to 50% (UniRef50). The UniRef90 database is
frequently used as a reference to annotate de novo gene family catalogs. UniRef90 genes
often contain EC, GO, Pfam, KEGG, and other annotations that can also serve as quick
approximations of novel genes’ functions. The HUMAnNN pipeline uses UniRef90 as the
primary reference for genome annotations, gene catalogs, and subsequent higher-level
annotations.
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3. Downstream Data Analysis

After quantifying genomic material into abundance profiles, the next step is the
identification of associations between features (genes, microbes) and host traits (e.g., age,
host disease, treatment, genetics). Approaches used in my work can be divided roughly into
(a) univariate methods, which infer associations of only one feature with one or more traits,
and (b) multivariate methods, which associate multiple features with one or more traits.
Examples of univariate methods are simple linear regression (including Pearson
correlation) and generalized linear models (GLMs). Regression is often used to determine
the differential abundance of one species between two genders (f ~ group). A typical
example of multivariate estimation is a test for significant differences in B-diversity
between groups. The standard method (Permutational analysis of variance —
PERMANOVA) estimates grouping related differences from pairs of samples
(Sampler + Sample> ~ group). Other examples include sophisticated machine learning
frameworks, which often integrate the abundance of multiple features to make predictions.
I will focus on the methodologies utilized in the included manuscripts, although I will
address common alternatives briefly where merited.

Absolute Abundance  Relative Abundance

Control Treatment Control Treatment

i}

Figure 6. Compositionality bias. While bacterium A changes, B does not. However, due to
sub-sampling and scaling effects, both species may appear differentially abundant. Figures
based on Matchado et. al [150].

3.1. Bias in Genomic Data

Many different analyses methods, from simple regression models to entirely new
algorithms, were developed in the past decade without reaching a clear consensus among
the scientific community working on microbiome [128,150]. A good overview of the
sources of bias is presented by Weiss [151] and Bharti and Grimm [137], and a
comprehensive overview of processing pipelines was published by Breitwieser [128], and
analysis methods by Matchado [150]. The three most significant sources of bias frequently
mentioned in the literature are compositionality, relative abundance, and sparsity.

Protocols for sequencing library preparation are optimized towards maximum yield,
regardless of the density of the original material [152]. While this maximizes sequencing
success, the link between cell density and sequencing depth is lost, resulting in a
proportional data structure [11]. One stark consequence is negative correlation bias, by
which the abundance increase of one feature requires an equal decrease of the remaining
features and vice versa (Figure 6) [11,152]. This “constraint sum problem” in high-
throughput sequencing data needs to be addressed to avoid spurious estimates of statistical
properties [11,153—-155].

We rarely know the real abundance of genes, cells, or microbes in samples because (a)
it is hard to precisely control the amount of DNA extracted from a sample and (b) due to
amplification bias [156]. As a consequence, sequencing data estimates only relative
abundance or relative observed abundance [156].
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Zero-inflation (sparsity) bias comes from uncertainty about the meaning of zero and
how to replace zeros before log-transformation. Zero abundance estimates have different
sources, including insufficient sample material, other high abundance taxa, and true
absence [157]. Workarounds involve (a) replacing zeros with a constant, positive value or
(b) modeling zeros as a statistical process [150].

Of note, many of these problems can be mitigated when data is analyzed within the
correct framework. In the following sections, I will introduce the most important in silico
solutions to these problems used throughout my Ph.D., but I will further address promising
technological advancements in the Discussion.

Normalization

Normalization aims to account for fechnical, non-biological effects that prevent count data
from accurately reflecting abundance differences. Common factors include gene length,
GC content, and sequencing depth [151]. Read length and GC-content are within-sample
effects: they affect comparisons between feature abundances within a sample. On the other
hand, sequencing depth is a between-sample effect: They can affect comparisons of the
same feature across samples. Bias is mitigated or removed by a mathematical
transformation that results in an invariant: a data property that is identical (within or
between samples) after a specific transformation was applied.

3.2. Differential Abundance Testing

We consider a feature differentially abundant if its’ group-wise mean differs significantly
between at least two conditions [158]. Significance relates to P-values, a statistical concept
used to deal with randomness in scientific measurements. The P-value is defined as the
probability of observing an outcome at least as high (or higher) than expected by chance
assuming the Null-Hypothesis to be true [159]. Such a P-value is valid if we can make
reasonable assumptions about the expected distribution of the measurement under
experiment conditions. Indeed, we rarely know the true distribution of data in the real
world, but we can often either approximate it or transform data to fit a distribution better.

We can generally differ between differential abundance estimators that make minimal
assumptions about the distribution of data (non-parametric) and those that make additional
assumptions in order to increase statistical power (parametric) [90]. Non-parametric tests
such as the Wilcoxon rank-sum or Kruskal-Wallis test perform statistical inference on data
transformed into ranks [90] (manuscript I'V). In addition, they can often be applied to data
without known distributions. While less common, non-parametric generalized linear
models exist as well [160,161]. In contrast to many other non-parametric methods, these
models support the control of additional covariates and confounders. I used such a model
(Rfit [161]) in my work to control for additional covariates such as gender. Parametric
methods, in contrast, are more diverse and their applicability context specific.

Parametric tools — RNA-Seq

RNA-Seq data generated by high-throughput sequencing machines follows a Poisson
distribution with over-dispersion, also known as a negative binomial distribution [158].
This distribution is commonly assumed in generalized linear regression models fit to gene
expression data [151,158,162]. This assumption is also made by the leading methods for
estimating differential gene expression in bulk RNA-Seq experiments, DESeg2 and edgeR
[158]. However, in stark contrast to metagenome studies, only 4-6 biological replicates per
group are sufficient to control the false-discovery rate (FDR) at the desired level (e.g., 5%)
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for typical case-control RNA-Seq experiments [158]. This power is achieved because (a)
gene expression data of one organism is described well by negative binomial distributions
and (b) by further assuming insignificant differences in gene expression between treatment
groups for most genes. The latter assumption makes between-group normalization
procedures very robust against violations of all the assumptions made. [ used DESeg2 and
edgeR in manuscript 1.

Parametric tools — Metagenomics

DESeq2 and edgeR were also applied in metagenome investigations [90]. However, their
applicability has been doubted due to statistical disparities in metagenomic data [151,156].
Furthermore, microbiome abundance profiles (metagenomics and metatranscriptomics)
have substantially different properties: (a) Zero-inflation is usually high at genus and lower
levels. (b) The constant-sum constraint is stronger because the number of species in a
taxonomic composition is much smaller than in gene compositions. (¢) The majority of
species or genes— or even all —can be differentially abundant between traits [163], which
violates the central assumption of most (RNA-Seq) scaling normalization methods [156].

Early solutions that addressed these problems involved (a) generalized linear mixed-
models with zero-inflation components [164], (b) normalizing abundances by assessing
library size factors derived from only some taxa across samples [156], and (c¢) by making
further assumptions on parametric distributions of data [156]. For example, Maaslin?2
[165] is a general regression framework that applied a GLM to log-transforms total-sum
scaled data (manuscript V). Another example is metagenomeSeq [156,164], which uses a
log-normal mixture model with a zero-inflation component (manuscript III). While
powerful, this tool was later shown to have inflated FDR with certain types of complex
microbiome data, indicating the need for further methodological improvements [163]. Still,
both methods yielded consistent results in my study but showed differences in statistical
power between projects.

Enrichment Tests

Once a set of differentially abundant genes or microbes is determined, it can be helpful to
identify their common functional processes or properties. This is often done using
overrepresentation analysis (ORA) methods [138]. Thereby, a contingency table of
features and their membership is used (e.g., gene identifies to GO terms) together with a
set of features (e.g., DA or network clusters). Hypergeometric (Fisher) or chi-square tests
are commonly used to determine significant enrichments in membership [138]
(manuscript I-VI). For protein-protein interactions and enrichments, the STRING
platform provides comprehensive analysis and visualization tools (manuscript I) [166].
For microbes, specialized tools like microbe-set enrichment analysis (MSEA; manuscript
V) were developed [167]. MSEA categorized all published microbe-host-gene interactions
and performs tests on enrichments for host-disease genes.

3.3.  Correlation Network Analysis

Network-based analytical approaches have proven useful to study complex systems with
many interactions, such as gene-regulatory or gene abundance networks [168]. Given the
complex interactions between thousands of individual species found in microbiome
samples, such network analysis methods are also helpful in the microbiome field [169],
including cross-kingdom associations. A key feature of network analysis is that structural
elements of networks appear to be ubiquitous to most complex systems. Network biology
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approaches range from correlation methods to complex graph-based modeling approaches
[168].

Co-Abundance Methods

A network is formally a graph in which features (genes, microbes, traits) are nodes, and
edges between these nodes represent their interactions. The correlation of feature
abundances (co-abundance) is a common approach to generating hypotheses about feature
dependencies and networks. Estimating naive Pearson and Spearman correlation
coefficients is popular in many microbiome fields [150]. However, Weiss et al. [15] and
others [170,171] discussed the strengths and weaknesses of different approaches. Since
naive methods do not address sparsity and compositionality, they can create many spurious
(false-positive) correlations. Matchado et al. compiled a comprehensive yet not exhaustive
list of alternative approaches in metagenomics [150]. More sophisticated methods often
rely on some form of sparsity assumption (e.g., SparCC, SPTEC-EAST, BAnOCC) and infer
quantities relating to the log-transformed unobserved counts (SPIEC-EASI, BAnOCC)
[170]. The sparsity assumption increases statistical power when studying thousands of
interactions from only dozens or hundreds of samples [171,172]. To mitigate bias, log-ratio
transformations such as the centered log-ratio (CLR) [150] (manuscript V) or Median-by-
ratio (MED) [162,163] (manuscript I) are applied to raw read counts as a pre-processing
step. Alternatively, a Dirichlet multinomial model can be used to directly account for
compositionality (BAn0oCC) [150] (manuscript III) but at the cost of high runtime.

Most methods address only the compositionally or library size bias but not zero-inflation
bias. Workarounds involve (a) replacing zeros with a constant, positive value or (b)
modeling zeros as a statistical process. An example of the latter is BAnOCC, a Bayesian
framework method to fit a log-normal prior and therefore does not require zero-replacement
[170].

Ultimately, none of the existing methods is fully satisfying. Their applicability must be
considered on a case-to-case basis, which was the case for manuscripts included in this
thesis. Still, many tools yield complementary results, which could be combined for more
robust conclusions [173].

Trans-Kingdom Correlation Analysis

Most network-based tools and models are designed for intra-kingdom interactions and may
create spurious correlations in trans-kingdom estimations [150]. Regardless, sparsity-based
methods such as SparccC were also applied in cross-kingdom studies [169,174]. However,
an adaption of SPTEC-EAST enabled trans-kingdom correlation analysis [175]. It was
thereby demonstrated that log-ratio transformations allow the study of bacterial-fungal
correlation in lung microbiome data with a smaller bias [175]. Thereby, the composition of
each kingdom is log-ratio transformed separately, allowing for a direct comparison of the
resulting abundance ratios within and between samples. It is worth noting that
SPIEC-EAST adds 1 to abundances to remove zeros, introducing considerable bias in data
with high-sparsity or low abundance samples [11,176]. However, log-ratio transformations
can be applied easily, and the resulting data can be analyzed using simpler or naive
correlation methods. For example, zeros can be replaced with Bayesian-multiplicative
replacement (BM) [177] to replace zeros, the result log-ratio transformed with CLR, and
then analyzed using Pearson or Spearman-based methods. For longitudinal data, I used a
Bayesian framework (BAn0CC) due to its higher robustness (manuscript I1I). For data with
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even greater dimensionality, SparCC (manuscript IV) and log-ratio-based approaches
(manuscripts V, IV) were more suitable because these methods were fast and had
sufficient statistical power.

3.4. Microbial Source Tracking

Microbial source tracking refers to statistical methods quantifying microbial
contaminants in a metagenomic sample [178]. Thereby, they use the microbial abundance
profiles from potential contaminant samples (sources) to estimate their species abundances
in the observed microbial community (sink) [179]. However, the methodology is also
helpful to quantify the divergence of microbial communities in longitudinal studies [180].
Fast Expectation-maximization for microbial Source Tracking (FEAST) [179] superseded
previous approaches, including more robust estimations of unknown sources of taxa. FEAST
was an integral part in manuscript IV.

3.5. Machine Learning

Machine learning is a vast area with a scope beyond this thesis. But since it was an
essential part of the manuscripts of this thesis, I will briefly introduce the most important
concepts. Machine learning is a form of artificial intelligence that uses statistical methods
to identify predictors (features) of outcomes (classes). Learning can be supervised, in
which samples are labeled (e.g., treatment groups) and unsupervised (no labels) [181]. An
example of supervised learning is predicting host disease from the corresponding
microbiome composition. Examples of unsupervised learning are several clustering
approaches (e.g., k-nearest neighbor) and ordination techniques (e.g., non-metric
dimensional scaling). In the field of microbiome, machine learning is applied for a wide
range of tasks, including the creation of patient-status classifiers [182], annotation of gene
functions [183], and predicting metabolite profiles from microbiome compositions [184],
just to name a few. One critical source of error is overfitting: A model that memorized the
data but cannot make accurate predictions on new data. To assess the robustness and
accuracy of machine learning models, the predictive power of models is evaluated using
cross-validation [182]. Thereby, iteratively, a fixed number of samples is held out from
both feature selection and model training and used only to make predictions.
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I1. OBJECTIVES OF THIS THESIS

Microbiome research emerged as an attractive field to study due to the involvement of
microbiota in host homeostasis and disease. Research on host-pathogen interactions is
essential for developing new diagnostics and therapeutics. A remarkably flexible tool for
the study of microbiota is genome sequencing technology. In this thesis, I use several types
of genome and transcriptome sequencing to assemble and quantify genes, estimate
microbial abundance across distinct kingdoms, and apply advanced statistical methods to
predict differences in microbial functions and interactions. Throughout this thesis, I focus
on interactions between host, bacteria, fungi, and viruses and demonstrate how multi-omics
technology can be used to create verifiable hypotheses.

The first two papers of my thesis are focused on one specific human pathogen, Aspergillus
fumigatus. Since fungal infections are on the rise and mortality rates remain high despite
improvements in antifungal therapy, understanding host-pathogen interactions between the
human immune system and human pathogenic fungi is of major interest.

After breaching physiological barriers, innate immune cells are the first line of defense
against invaders. Even though patients are often co-infected by human viruses in addition
to A. fumigatus, previous studies were limited to the analysis of only one pathogen and one
host cell. The latter is clinically relevant because some viruses, such as human
cytomegalovirus (CMV), were hypothesized to enhance the infectious potential of A.
fumigatus. However, hard evidence was lacking.

To address this hypothesis, we surpassed existing dual RNA-Seq approaches by
developing the first triple RNA-Seq. It enabled the study of transcriptome changes between
human monocyte-derived dendritic cells (moDCs) with simultaneous co-infection by two
pathogens. Furthermore, we reconstructed and analyzed the pan-genomes of 300 A.
fumigatus isolates to better comprehend strain diversity. My work addresses the following
questions:

1. What mechanistic changes occur in the transcriptome of moDCs and each pathogen
during co-infection by A. fumigatus and CMV?

2. Do clinical 4. fumigatus strains differ from environmental strains, and are their
consequences for infection studies?

In a broader context, and instead of focusing on specific pathogens, we also need to
investigate the native environments of microbes such as the human gut. Many opportunistic
microbes — “pathobionts” — such as certain members of Enterococcus, Streptococcus,
Escherichia, and Candida, are commensal to the lower gastrointestinal tract of humans and
harmless unless specific circumstances occur. It is still not sufficiently understood how the
host, its’ immune system, and commensal microbes control the pathogenesis of other
microbes. However, a fair amount of research has identified several essential microbial
mechanisms, host conditions, and drug interventions that are frequently associated with the
promotion or inhibition of pathogenesis. In this regard, antibiotic administration, critical
illness, and cancer are of strong interest.
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Again, | used and adapted sophisticated pipelines to improve our understanding of
microbial interactions. However, my focus here is on community-wide changes in human
gut bacteriomes and mycobiomes. In particular, I address the following questions:

1.

What changes in interactions occur between gut bacteria and fungi during oral
antibiotic administration, and are the observed effects reversible?

Which findings from antibiotic drug administration studies on healthy humans
translate to critically ill patients?

Are there microbial functions encoded in metagenomes that are resilient to various
diseases and treatments, and what are they?

Can we identify bacteria that limit or promote the growth of common human
pathogens such as Candida under various conditions in the gut of asymptomatic
patients?
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MANUSCRIPT 1

I. Manuscript:
Triple RNA-Seq to Study Host Co-Infection
FORM 1
Manuscript No. 1

Manuscript title: Triple RNA-Seq Reveals Synergy in a Human Virus-Fungus Co-
infection Model

Authors: Seelbinder B., Wallstabe J., Marischen L., Weiss E., Wurster S., Page L.,
Loffler C., Bussemer L., Schmitt A. L., Wolf T., Linde J., Cicin-Sain L., Becker J., Kalinke
U., Vogel J., Panagiotou G., Einsele H., Westermann A. J., Schauble S., Loeffler J.

Bibliographic information: Cell Reports 33 (2020), pp. 108389,
10.1016/J.CELREP.2020.108389

The candidate is
Co-first author
Status: Published

Authors’ contributions (in %) to the given categories of the publication

Author Conceptual Data analysis | Experimental | Writing the | Provision of
manuscript | material

Seelbinder | 10% 90% 35%

Wallstabe 10% 40% 20%

Marischen 5% 40% 25%

Westermann | 25% 5% 30%

Schéuble 25% 10% 5% 30%

Loeffler J. 25% 30%

Others 0% 0% 20% 10% 10%

Total: 100% 100% 100% 100% 100%
Overview:

Together with my co-authors from Wiirzburg, we developed a new methodology termed
“triple RNA-Seq” to investigate the transcriptome of both pathogens and host cells
simultaneously. We studied the interactions between a fungal (Aspergillus fumigatus) and
a viral pathogen (human cytomegalovirus) during co-infection of human monocyte-derived
dendritic cells. I created the pipelines for RNA-Seq data processing and analysis, including
differential gene expression and gene co-expression network analyses to decipher cross-
kingdom communication. We deliver strong evidence for synergistic effects of both
pathogens during co-infection and identified a surprisingly large, distinct gene expression
cascade during co-infection compared to single infections.
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SUMMARY

High-throughput RNA sequencing (RNA-seq) is routinely applied to study diverse biological processes; how-
ever, when performed separately on interacting organisms, systemic noise intrinsic to RNA extraction, library
preparation, and sequencing hampers the identification of cross-species interaction nodes. Here, we
develop triple RNA-seq to simultaneously detect transcriptomes of monocyte-derived dendritic cells
(moDCs) infected with the frequently co-occurring pulmonary pathogens Aspergillus fumigatus and human
cytomegalovirus (CMV). Comparing expression patterns after co-infection with those after single infections,
our data reveal synergistic effects and mutual interferences between host responses to the two pathogens.
For example, CMV attenuates the fungus-mediated activation of pro-inflammatory cytokines through NF-«B
(nuclear factor kB) and NFAT (nuclear factor of activated T cells) cascades, while A. fumigatus impairs viral
clearance by counteracting viral nucleic acid-induced activation of type | interferon signaling. Together, the
analytical power of triple RNA-seq proposes molecular hubs in the differential moDC response to fungal/viral
single infection or co-infection that contribute to our understanding of the etiology and, potentially, clearance
of post-transplant infections.

INTRODUCTION

Allogenic stem cell transplantation (alloSCT) has advanced the
therapy of hematological malignancies and is potentially curative
for a spectrum of nonmalignant hematological disorders (Singh
and McGuirk, 2016). The first successful solid organ transplanta-
tion (SOT) took place in 1954; today, transplant statistics are
steadily increasing, with over 36,500 organ transplants in the
United States in 2018 (based on OPTN data as of January 9,
2019; Harrison et al., 1956). Reduced-intensity conditioning re-
gimes, novel therapeutic strategies to combat graft-versus-

host disease, and tailored supportive care have improved al-
1o0SCT and SOT outcomes. However, opportunistic infections
are still a clinical challenge and a major source of post-transplant
complications (Ullmann et al., 2016).

Invasive aspergillosis (IA), predominantly causing pulmonary
infections, is responsible for significant post-transplant
morbidity, mortality, and incremental cost burdens (Drgona
et al., 2014). In addition, human cytomegalovirus (CMV)-associ-
ated infections, including CMV pneumonia, remain the most
common infectious complications in alloSCT recipients (Ca-
margo and Komanduri, 2017), and CMV viremia is associated
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with increased early overall mortality after alloSCT (Green
et al., 2016). CMV-disease-related mortality has significantly
declined with improved prophylactic medication, PCR-based
diagnostics, and pre-emptive antiviral treatment, yet indirect
CMV effects continue to adversely impact alloSCT outcomes
(de la Camara, 2016; Duarte and Lyon, 2018). Notably, CMV in-
fections pose an independent risk factor for development of IA in
alloSCT recipients (Garcia-Vidal et al., 2008; Marr et al., 2002),
and invasive mycoses are a frequent cause of mortality in pa-
tients surviving CMV disease (de la Camara, 2016; Nichols
et al., 2002).

Ample evidence indicates that CMV alters the human immune
response to escape host surveillance and establish latent persis-
tence (Cheung et al., 2009; Hahn et al., 1998; Kaminski and Fish-
man, 2016; Kotenko et al., 2000; Taylor-Wiedeman et al., 1991).
Several proteins encoded by CMV broadly modulate the magni-
tude and quality of host immune cell functions (Miller-Kittrell and
Sparer, 2009). For example, CMV-secreted immunosuppressive
cytokine homologs inhibit dendritic cell maturation and survival
as well as dendritic cell-mediated T-helper (Th) cell activation
and Th1 differentiation (Chang et al., 2004; Raftery et al,
2004), which are crucial mechanisms for linking innate and adap-
tive immunity to fungal pathogens. Vice versa, Aspergillus fumi-
gatus, the most frequent cause of IA, suppresses human T cell
activation in response to CMV (Stanzani et al., 2005). However,
the molecular events underlying the differential impact of CMV
and A. fumigatus on human mononuclear cell functions and the
reciprocal immune defense in co-infections are largely unex-
plored (Grow et al., 2002; Martino et al., 2009; Mikulska et al.,
2009; Solak et al., 2013; Upton et al., 2007).

High-throughput RNA sequencing (RNA-seq) has greatly
advanced our understanding of infections (Saliba et al., 2017;
Colgan et al., 2017) and even allows simultaneous studies of
host and pathogen transcriptomes (Westermann et al., 2012).
These “dual RNA-seq” approaches concurrently isolate host
and pathogen RNA, convert it into cDNA libraries for sequencing,
and separate the transcriptomes at the computational level by
mapping sequencing reads to the respective reference ge-
nomes. To date, dual RNA-seq has been applied to diverse
infection models to study virulence mechanisms of—and
mammalian immune responses to—viral (Juranic Lisnic et al.,
2013; Wesolowska-Andersen et al., 2017), bacterial (Wester-
mann et al., 2017), and fungal (Wolf et al., 2018) pathogens as
well as eukaryotic parasites (Choi et al., 2014; Pittman et al.,
2014). However, multi-organism RNA-seq has not previously
been applied to co-infection settings.

Here, we advanced the concept of multi-organism RNA-seq
by developing triple RNA-seq, which we applied to human
monocyte-derived dendritic cells (moDCs) challenged with the
two pulmonary pathogens CMV strain TB40 and A. fumigatus.
The identified modulations of the host’s immunological state
upon single infection and co-infection were independently
validated by flow cytometry and multiplex cytokine secretion
assays. Our collective findings suggest unique interdepen-
dencies of CMV and A. fumigatus during co-infection that add
to our molecular understanding of the synergy between CMV
infection and the development of invasive mold infections in
immunocompromised patients.
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RESULTS

Triple RNA-Seq of Viral/Fungal Co-infections to
Simultaneously Study Host and Pathogen Gene
Expression

Infection assays of human immune cells with either CMV or
A. fumigatus were previously established (Paijo et al., 2016;
Lother et al., 2014). Here, we built upon these protocols and
challenged moDCs with A. fumigatus germ tubes or CMV, either
separately (single infection) or in combination (co-infection). Host
cell viability (Figure S1A), infection rates (Figures S1B and S1C),
and morphology (Figure S1D), analyzed by flow cytometry and
fluorescence microscopy, demonstrated sustained infections
with the pathogens in both single- and co-infection settings.
No prominent changes in fungal morphology or infection rate
were observed between the two infection settings (Figures
S1Cand S1D). In contrast, we observed an increased virus infec-
tion rate in the presence of A. fumigatus as compared to CMV
single infection (Figure S1B).

As a prerequisite for multi-organism RNA-seq analysis, several
parameters—including lysis conditions, multiplicities of infec-
tions (MOls), and efficient removal of ribosomal RNA (rRNA)—
need to be empirically determined for a given infection system.
Here, we first established these parameters for single-infection
settings of moDCs with either CMV or A. fumigatus (Figures
S2A-S2C; Data S1). Application of dual RNA-seq to the resulting
RNA samples led to the detection of the presumed infection-
specific host expression patterns (Figures S2D and S2E),
including an induction of pro-inflammatory host marker genes
IL1A/B, CCL3, and TLR2 upon A. fumigatus infection (Braedel
et al., 2004; Lass-Florl et al., 2013; Walsh et al., 2005) and
IFNB and CCL2 activation after CMV infection (Loewendorf
and Benedict, 2010; McNab et al., 2015). In addition, altered
fungal expression levels in the presence of moDCs (Figure S2D),
e.g., of the gliotoxin mRNA (gliF) that encodes a mycotoxin
known to be produced during host infection, as well as induced
expression of immunomodulatory viral mRNAs (Figure S2E),
further supported the reliability of our approach.

To characterize all three transcriptomes in sequential or simul-
taneous co-infection settings, we expanded the method toward
triple RNA-seq (Figure 1A). MoDCs were either first infected with
CMV and, after 4.5 h, additionally with A. fumigatus, or first in-
fected with A. fumigatus followed by CMV challenge 2 h later,
or simultaneously infected with both pathogens. Since dual
RNA-seq data indicated that major gene expression changes
occurred during the first hours after fungal and viral exposure,
co-infection samples were harvested after 9 h and subjected
to triple RNA-seq. Co-infection data were compared with tran-
scriptome data from single infections (harvested in parallel with
co-infections) and with data from uninfected moDCs or
A. fumigatus mono-cultures.

We extrapolated sequencing depth requirements for triple
RNA-seq to sufficiently cover all three transcriptomes. Since
dual RNA-seq indicated host transcriptome coverage to be
rate limiting (Figures S2A and S2B), we increased the
sequencing depth for triple RNA-seq by ~5-fold, yielding ~15
million non-ribosomal human reads, a threshold above which
further increases in sequencing depth have diminishing returns
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Figure 1. Triple RNA-Seq Outline

(A) Triple RNA-seq pipeline. Setup and time frame for controls, single infection, and co-infection are indicated; n = 4.

(B) Percentages of sequencing reads that mapped to the annotated reference genome of the three studied organisms. Reads per organism were further assigned to
the indicated transcript classes. Afu, Aspergillus fumigatus; moDC, monocyte-derived dendritic cell; CMV, cytomegalovirus; mitoRNA, mitochondrial RNA; miRNA,
microRNA; IncRNA, long noncoding RNA; snoRNA, small nucleolar RNA; snRNA, small nuclear RNA; ncRNA, noncoding RNA; miscRNA, miscellaneous RNA.
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(Ching et al., 2014; Liu et al., 2014). Between 67% and 95% of
the quality-filtered reads (Data S1; Data S2) were successfully
aligned to the reference genomes. While the vast amount of
reads mapped to the human genome, A. fumigatus contributed
up to 24% and CMV contributed up to 1.6% of mapped reads
in single-infection and co-infection samples (Figure 1B). As ex-
pected, the majority of human (55%) and fungal (55%-75%)
reads derived from mRNA. Albeit that ribosomal depletion was
less efficient for the fungal than for the human transcriptome,
rRNA-derived reads did not exceed 25% in the A. fumigatus
data subset, allowing for differential gene expression analyses.
Other noncoding RNA classes were adequately represented in
the two eukaryotic transcriptomes, whereas CMV-annotated
genes all encode mRNAs (Figure 1B).

Collectively, these data confirmed the high technical quality of
the triple RNA-seq data, with relative proportions of host-to-
pathogen read ratios and assignment to major RNA classes
matching the predictions extrapolated from the dual RNA-seq
pilot (Data S1).

Transcriptomes during Co-infection Differ Globally from
Single Infections

Although principal-component analysis (PCA) of moDC tran-
scriptomes revealed no time-point-specific segregation (Fig-
ure 2A), distinct clusters were obtained for single-infection
conditions with A. fumigatus or CMV and co-infection. Similarly,
A. fumigatus samples failed to cluster according to infection time
point yet globally differed between fungal mono-culture and (co-)
infection samples (Figure 2B). Finally, CMV transcriptome pro-
files formed clusters for single infection and co-infection despite
the compact size of the CMV genome (166 genes; Figure 2C). In
the following, due to the absence of time-point-specific segrega-
tion, we disregard temporal information and analyzed infection
samples based on etiology (i.e., uninfected, single viral or single
fungal infection, and co-infection).

The triple RNA-seq approach potentially reduces systemic
noise that may impede cross-species gene expression correla-
tions when separately sampling host and pathogen transcrip-
tomes (Westermann et al., 2017). To globally investigate inter-
species co-expression, we calculated node betweenness
and degree, two metrics to quantify co-expression network
complexity and identify hub genes (Figure 3; Data S3). Focusing
on innate immunity-associated effects, we restricted the
network analysis to human genes contained within InnateDB
(Breuer et al., 2013). The first two networks depicted in Figure 3
show host-pathogen gene-gene correlations present in the inter-
section of the respective single- and co-infection networks,
whereas the remaining networks refer to correlations in the set
differences between infection settings. Co-infection networks
shared only few cross-species correlations with single-infection
networks, whereas co-infection exclusive correlations exhibited
a high degree of connectivity and were mostly based on positive
correlations. Very few correlations were specific to single
A. fumigatus infection, but fungus-host connectivity increased
during co-infection, suggesting the fungus to adapt to—and
maybe benefit from—the presence of CMV. In contrast, the
single CMV infection network consisted of many unique, mostly
positive, inter-species correlations. This implies a specialized
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CMV response to human target cells largely ignoring the pres-
ence of the fungus.

Cross-species expression correlation analysis can pinpoint
host factors with potential as future biomarkers or drug targets.
CXCL11, for example, showed considerable network impor-
tance specifically during co-infection without any obvious corre-
lations in single-infection settings (Data S3). Similarly, TNF
showed high node degree and betweenness, specifically during
co-infection, but occupied a hub position also in the intersection
correlation network of fungal single- and co-infection (Data S3).
This hints toward a generally important role for tumor necrosis
factor (TNF) in the response to A. fumigatus, regardless of the
additional presence of CMV. RELA, in contrast, possesses cen-
tral network importance in the intersection of CMV single- and
co-infection (Data S3), suggesting a particular relevance of this
factor in the immune response against CMV.

Differential Gene Expression Profiles in the Three
Interacting Organisms
Relative to uninfected moDCs, there was an increased number of
differentially expressed human genes upon co-infection as
compared to either single infection (Figure S3A). Moreover, we
identified specific moDC gene sets with distinct expression
patterns between, but low variance within, different infection eti-
ologies (Figure 4A). For example, TNF, IL1A, and CXCL8 were
specifically upregulated upon the sensing of A. fumigatus as pre-
viously reported (Balloy et al., 2008; Caffrey-Carr et al., 2017; Caf-
frey et al., 2015; Cortez et al., 2006; Mehrad et al., 1999; Roilides
et al.,, 1998). On the other hand, induction of IFNB (encoding a
first-line defense type | interferon [IFN] to CMV infection; Marshall
and Geballe, 2009), CXCL10, and CXCL11 (associated with im-
mune clearance in CMV viremia; Cheeran et al., 2003; Knoblach
etal.,, 2011; Murayama et al., 2012) was specific to CMV infection.
The majority of A. fumigatus genes differentially expressed in
the presence of moDCs compared with the fungal mono-culture
were shared between single infection and co-infection (Fig-
ure S3B). For example, the cat? mRNA that encodes a fungal
catalase to break down host-derived hydrogen peroxide was
equally highly expressed by A. fumigatus during single- and
co-infection. This suggests that moDCs were the primary driver
of fungal transcriptional reprogramming. This notwithstanding, a
greater total number of fungal genes were regulated during
single infection than during co-infection, thereby defining an
A. fumigatus gene set whose regulation might be dispensable
for infection in the presence of CMV. CMV expression analysis,
on the other hand, revealed largely overlapping sets of differen-
tially expressed viral genes during single infection and co-infec-
tion (Figure S3B).

The Host Response to Co-infection Suggests Synergy
among A. fumigatus and CMV

Closer inspection of moDC expression data identified a subset of
key immune pathways whose activity differed markedly between
infection settings, including Toll-like receptor (TLR) signaling, nu-
cleic acid sensing, and C-type lectin receptor signaling (Fig-
ure S4). In co-infected moDCs, expression levels of AIM2 and
CCL5, factors involved in cytosolic DNA sensing (Figure S5)
and with known roles in the defense against both fungal and viral
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Figure 2. PCA ldentifies Co-clustering Transcriptomes
(A-C) PCA for all three organisms after median-by-ratio normalization. Ellipses depict 95% confidence intervals for conditions. PCA for genes associated with (A)

Homo sapiens, (B) Aspergillus fumigatus, or (C) cytomegalovirus (CMV) reference genome. Left: PCAs for all conditions. Right: (A) infection conditions grouped
independent of infection time point, (B) data for single infection and co-infection grouped and compared to single-culture A. fumigatus, and (C) data for single
infection versus co-infection independent of time point. Abbreviations are as explained in the Figure 1 legend.
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infections (Huang and Levitz, 2000; Man et al., 2016; Tyner et al.,
2005), matched their cumulative induction after single infections
(Figure 4A). However, a number of immune-related moDC genes
did not display such additive expression patterns. For instance,
the expression of nuclear factor kB (NF-«kB)-dependent genes
was mainly driven by A. fumigatus through TNF signaling (Fig-
ure 4B). Co-infection with CMV, however, reduced the expres-
sion of those genes as compared to fungal single infection.
Similar expression patterns were detected for IL70 and IL1B.
Vice versa, RIG-I and ZBP1 signaling (previously associated
with type | IFN responses; Onomoto et al., 2010; Yang et al,,
2020), as well as expression of IFNB, CXCL10, and TLR3, dis-
played strong activation upon CMV single infection, which was
counteracted by the additional presence of A. fumigatus (Fig-
ure 4B). The gene for apoptosis-associated speck-like protein
(ASC), which is critical for host cell survival upon viral infection
(Kumar et al., 2013), was highly expressed in uninfected and
CMV-infected moDCs. In contrast, expression of ASC was
downregulated in the presence of A. fumigatus, thereby mirror-
ing the expression pattern of Dectin-1, encoding an important
fungal infection sensor (Taylor et al., 2007). This points at a
disparate role for ASC in response to viral and fungal infections,
suggesting an inhibiting effect upon fungal infection that is domi-
nant over the induction upon viral challenge. This hypothesis was
further supported by the fact that IL1B, despite its functional
connection to ASC (Martinon and Tschopp, 2007), was not co-
expressed with ASC. Finally, cGAS and STING, both encoding
receptors for foreign nucleic acids, and STING also functioning
as an IFN-stimulating factor associated with the viral glycopro-
tein US9 (Choi et al., 2018), were induced upon single CMV infec-
tion but downregulated upon co-infection (Figure 4B).

Taken together, these expression data support the existence
of two distinct host response patterns to A. fumigatus or CMV
infection (Figure 4C). Expression of IL1B, IL10, and NF-kB-asso-
ciated genes peaked in A. fumigatus-infected moDCs, whereas
cGAS, STING, and RIG-I signaling and expression of IFNB,
CXCL10, TLR3, and ZBP1 showed maximal expression upon
CMV single infection. Relative to their induction upon the respec-
tive single infections, expression levels for all those host genes
dropped in co-infected cells, suggesting mutual interfering ef-
fects between the two host responses with possibly synergistic
effects for the two pathogens.

Independent Validation of Expression Changes
Quantitative real-time PCR measurement of genes from the
three organisms that were differentially expressed in the triple
RNA-seq data supported the sequencing-derived expression
changes (Figure 5A; Figure S5). For instance, differential expres-
sion of human ZBP1, fungal cat1, and the mRNA for the viral
envelope glycoprotein UL4 in single infection and co-infection
settings could be confirmed in this way (Figure 5A).

We next traced the expression of selected host factors, which
were called as differentially expressed in the RNA-seq analysis,
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on the protein level. For instance, as shown by flow cytometry of
antibody-stained moDCs, expression of the surface marker
CCRY7 was highest after co-infection, which was in line with
mRNA levels in the triple RNA-seq dataset (Figure S6). Addition-
ally, altered secretion levels of key cytokines produced from
genes that showed pathogen-specific expression patterns
were confirmed by multiplex ELISA (Figure 5B; Figure S7). For
example, the secreted levels of interleukin (IL)-18 and IFN-B
differed between fungal and viral infections (Figure 5B), echoing
the differential expression of their cognate mRNAs in the
sequencing data.

Altogether, these results underpin the sequencing data,
confirm some of the key transcriptomic changes in the infected
host cells to extend to the protein level, and provide further sup-
port of the notion that pulmonary pathogens differentially affect
their host at a global level during co-infection (Reese et al., 2016).

DISCUSSION

Cross-kingdom interactions in polymicrobial infections are
increasingly recognized as crucial virulence determinants that
shape the outcome of life-threatening infectious diseases (Arva-
nitis and Mylonakis, 2015; Bergeron et al., 2017). In addition to
direct physical interaction and inter-kingdom signaling, altered
immunopathology is considered to foster co-infections (Arvanitis
and Mylonakis, 2015). Specifically, viral pathogens associated
with long-term persistence such as CMV have evolved an
armamentarium of counter-strategies to shape-shift the host
environment, allowing for immune surveillance evasion and
establishment of latent infection (Freeman, 2009; Picarda and
Benedict, 2018). Although evidence is limited, previous studies
reported broad alterations of host immunity elicited by CMV in
immunocompromised patients, entailing the predisposition to
subsequent opportunistic fungal diseases (Yong et al., 2018).
To improve our understanding of this co-occurrence, we here
set out to dissect the molecular interplay of A. fumigatus, CMV,
and their shared host cells during co-infection.

Establishment of the Triple RNA-Seq Approach

To study the complex interplay of different pathogen classes
with their human host and among each other, we implemented
the previously proposed concept of multi-organism triple RNA-
seq (Westermann et al., 2017). We selected moDCs—being at
the border of innate and adaptive immunity—as a host model
to establish this technology for a variety of both biological and
technical aspects. Myeloid precursors form a reservoir for latent
CMYV infection and their differentiation into dendritic cells can
trigger virus reactivation (Hahn et al., 1998; Jarvis and Nelson,
2002), while moDCs represent a well-studied surrogate model
in the context of fungal infection (Hsieh et al., 2017; Mezger
et al.,, 2008; Morton et al., 2011). Additionally, moDCs can be
generated in large quantities by well-standardized protocols
for the upfront optimization of infection and RNA processing

organisms. The asterisk indicates that correlations between CMV and A. fumigatus were removed. Node betweenness and degree are measures of network
complexity. Higher degree indicates increased (local) connectivity. Higher betweenness indicates density. Corresponding boxplots show network-wise median
(center line), confidence interval (boxes), and quantile (25% and 75%) values. # Genes and # Correlations display numbers of genes and correlation types,

respectively.
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Figure 4. Detailed Differential Gene Expression Analysis of Monocyte-Derived Dendritic Cells

(A) Genes selected for high variance across all conditions and low variance within individual conditions regardless of infection time point. Left: differentially
expressed genes (DEGs) with distinct expression patterns across experimental conditions (no stimulation, single infection, and co-infection). Right: examples of
innate immune-relevant genes allowing for clear separation of infection types (inferred from innateDB; https://www.innatedb.com/).

(B and C) Selection of host factors involved in monocyte-derived dendritic cell response to cytomegalovirus (CMV), Aspergillus fumigatus infection, or
co-infection is depicted based on the clustering of similar expression profiles (B) and in topological context (C). Topological analyses are based on Kyoto
Encyclopedia of Genes and Genomes reference signaling maps (Figure S4). Abbreviations are as explained in the Figure 1 legend.
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protocols and can be analyzed by a variety of phenotypic as-
says. Despite these advantages, the ex vivo transcriptional
events described in our study harbor some limitations. These
include the fact that a single cell type under well-defined infec-
tion conditions in cell culture cannot capture the complex and
diverse microenvironments present in, e.g., blood or lung spec-
imens. In consequence, part of the observed transcriptional
response might be different in actually co-infected patients, de-
pending again on a large variety of patient-specific factors.

However, the described triple RNA-seq approach potentially
provides several advantages over conventional, single-species
host or pathogen transcriptomics. Multi-organismal RNA-seq
is more resource efficient, reducing costs for cDNA library
preparation—the most expensive step in current RNA-seq pro-
tocols. Moreover, batch effects may occur during RNA isolation,
rRNA depletion, reverse transcription, library generation, or
sequencing and can divergently affect host and pathogen tran-
scriptomes when they are treated separately. Batch effects,
however, would affect all transcriptomes equally when they are
processed in the same reaction. Therefore, subtle interspecies
correlations in gene expression that may be masked by technical
noise in conventional RNA-seq approaches might be uncovered
in multi-organism RNA-seq. This analytical advantage, although
not systematically evaluated in this study, was exemplified by
the notable number of significant correlations in gene expression
across species (Figure 3) and minimal intra-group variance for
different infection conditions despite human donor variability
(Figure 4A).

Molecular Aspects Underlying the Synergy between
Viral and Fungal Pulmonary Infections
Triple RNA-seq recapitulated previously described functional al-
terations of CMV- and A. fumigatus-infected moDCs. Globally,
our findings are in line with in vivo data showing A. fumigatus
to drive dendritic cells directly (and indirectly, via polynuclear
monocytes) toward a Th17-type immune response (Figure 6A)
and showing CMV infection to result in cGAS-STING signaling,
leading to an initial production of IFN-o/B, CXCL10, and
CXCL11, as well as a subsequent Th1 response (Figures 6A
and 6B) (Lio et al., 2016; Paijo et al., 2016; Shankar et al.,
2018). Moreover, our results confirmed the CMV-mediated in-
duction of TLR3 signaling and type | IFNs (Mezger et al., 2009)
and recapitulated the known upregulation of genes activated
through A. fumigatus-induced pattern-recognition receptor
(PRR) signaling, such as TNF, IL8, and IL1B (Figures 6A and 6C).
Besides, we found several novel mutual interferences within
the host response to both pulmonary pathogens under co-infec-
tion settings. Specifically, CMV repressed critical PRRs and
downstream effectors, including targets essential for mounting
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a protective anti-Aspergillus immune response in high-risk pa-
tients (e.g., CARDQ; Figure 6C). Further, CMV co-infection coun-
teracted A. fumigatus-induced upregulation of NF-xkB and NFAT
(nuclear factor of activated T cells) cascades, resulting in lower
induction levels of key proinflammatory cytokines such as IL1B
(Figure 6C). This antagonizing effect was particularly pro-
nounced in a scenario when CMV infection preceded
A. fumigatus exposure (Figure 5B). Thus, whereas most
previously described interferences between virus- and fungus-
induced host responses were attributed to post-translational
alterations caused by CMV proteins (Gredmark-Russ and Soder-
berg-Nauclér, 2012), our findings showcase the impact of
viral co-infection on early transcriptional programs of fungus-
exposed dendritic cells.

Conversely, A. fumigatus co-infection hampered the induction
of viral nucleic-acid-sensing cascades (RIG-I, cGAS, and ZBP1),
resulting in reduced expression of IFNB and CXCL10 (Figure 6B),
key mediators that are considered predictive for spontaneous
CMV clearance in transplant recipients (Lisboa et al., 2015).
This may contribute to the increased viral infection rate in
A. fumigatus co-infected dendritic cells (Figure S1B). Collec-
tively, these observations suggest that A. fumigatus and CMV
cooperate by mutual interference with host inflammasome acti-
vation via downregulation of pathogen-associated molecular
patterns by evolutionarily conserved host receptors and
signaling cascades. Although not the primary focus of this study,
the uncovered transcriptional interferences provide a foundation
for guiding future targeted studies in transplant recipients aiming
to functionally characterize the clinical implications of these
interdependencies.

Exploiting the unique potential of multi-organism RNA-seq,
our data simultaneously provide insight into the mutual impact
of co-infection on gene expression of the two pathogens. We
observed CMV-moDC co-expression networks that were exclu-
sive to single-infection but absent from co-infection settings, and
we report correlations between A. fumigatus and moDC gene
expression that occurred selectively during co-infection (Fig-
ure 3). These analyses highlighted human innate immunity-asso-
ciated genes such as CXCL10, CXCL11, AIM2, and TLR3 that
occupied hub-like positions in the resulting inter-species corre-
lation networks (Figure 3; Data S8). These central positions are
exemplified by elevated connectivity to further genes within the
correlation networks, suggesting an important role of these
genes in information transduction of the immune response to
the introduced pathogens. Next to the pathogen-specific
expression signature of these genes, the additional network
relevance adds to their particular suitability as biomarker candi-
dates to pinpoint viral or fungal presence, but requires further
investigation.

Figure 5. Validation on RNA and Protein Level

(A) Comparison of RNA-seqg-based and quantitative real-time PCR-based relative expression levels for selected genes. Quantitative real-time PCR-based
abundance values normalized to delta-aminolevulinate synthase mRNA (see also Figure S5 for further quantitative real-time PCR validations). RNA-seqg-based
and quantitative real-time PCR-based gene expression values relative to maximum value per gene per replicate; n = 4.

(B) Relative cytokine concentrations in culture supernatants derived from multiplex ELISA (see also Figure S7 for further measured cytokines). Cytokine levels are

relative to co-infection for 9 h. n = 4.

(A and B) Error bars indicate SEM. Asterisks indicate significance level after multiple test correction (false discovery rate; FDR): “p < 0.1; *p < 0.05; *p < 0.01;

***p < 0.001.
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Figure 6. Concerted Defense and Mutual Interference during Co-infection of Monocyte-Derived Dendritic Cells with Fungal and Viral

Pathogens

(A) moDC response to fungal and viral challenge. Blue arrows indicate A. fumigatus-affected host factors; yellow arrows indicate CMV-affected host factors.

(B) Influence of A. fumigatus co-infection on the host response to CMV.
(C) Influence of CMV co-infection on the response to A. fumigatus.

PMN, polymorphonuclear leukocytes; NK, natural killer cell; T, lymphocyte T cell; Th, T helper cell; CTL, cytotoxic T cell; CARD9, caspase recruitment domain
family member 9; CCR7, C-C motif chemokine receptor 7; cGAS, cyclic GMP-AMP synthase; COX2, cyclooxygenase 2; CXCL, C-X-C motif chemokine ligand;

(legend continued on next page)
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The presented triple RNA-seq data represent a rich resource
for future exploration. That is, a systematic analysis of expres-
sion patterns of human non-immune genes might reveal novel in-
terferences of pulmonary infections with host metabolism, cell
cycle, or apoptosis. Moreover, a detailed dissection of differen-
tially expressed fungal or viral genes may lead to the discovery of
novel virulence mechanisms in each pathogen.

Perspective

State-of-the-art dual RNA-seq protocols use as few as 10,000
infected cells (Westermann et al., 2017) for ~100-200 ng total
RNA, and a similar sensitivity can be expected for the described
triple RNA-seq method. This would allow for substantial down-
scaling of cell samples in the future, allowing for expansion of
the analysis to less abundant primary immune cell types such
as macrophage and dendritic cell subsets, or alveolar macro-
phages from bronchoalveolar lavage fluid. Further feasible re-
finements combining multi-organism RNA-seq and cell sorting
or tissue dissection could shift research from the bulk level
to phenotypically defined cell populations, for example, to
comparatively evaluate transcriptome signatures of infected
and uninfected neighboring cells (Westermann and Vogel,
2018). Additionally, triple RNA-seq may be harnessed to inves-
tigate the influence of immunosuppressive drugs on co-in-
fected cells or to test how co-infection affects the dendritic
cell’s ability to cross-present antigens from each pathogen to
T cells. Finally, multi-organism RNA-seq holds great promise
for expanding our understanding of immune dysregulation in
other polymicrobial infections, including post-influenza asper-
gillosis (Lacoma et al., 2019; Vanderbeke et al., 2018), multifac-
eted microbial interactions in patients with cystic fibrosis (Sass
et al., 2019), or—up-to-the-minute—invasive fungal infections
of critically ill coronavirus disease 2019 (COVID-19) patients
(Koehler et al., 2020).

In summary, this study established triple RNA-seq to profile
transcriptional networks in A. fumigatus and CMV infection and
to investigate routes of mutual host-pathogen interferences in
a co-infection setting. Cost-effectiveness, reproducibility in spite
of donor variability, depth, and accuracy propose triple RNA-seq
as a powerful tool to probe the emerging concept of direct and
immune cell-mediated cross-kingdom inter-dependencies of
pathogens in high-risk patients.
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Other

H. sapiens reference genome https://www.ncbi.nlm.nih.gov/ GRCH 38 v89
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Juergen
Loeffler (loeffler_j@ukw.de).

Materials Availability
All primary material generated in this study will be made available upon request following publication. A completed Materials Transfer
Agreement might be necessary, especially if there is potential for commercial application.

Data and Code Availability
All primary sequencing data and processed data described in this manuscript have been deposited in the NCBI Gene Expression
Omnibus under the accession numbers GEO: GSE134344, GSE135450 and GSE136217.

Code for preprocessing RNA sequencing data and analysis is deposited and available at https://github.com/SchSascha/
manuscript_tripleRNAseq.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Healthy blood donors were exclusively in the age between 18-59 years and otherwise excluded from providing blood samples. Both
sexes were included in the study equally and at random; the sex of the blood donors was anonymised and represents the normal
distribution within this population.

Ethics Statement
The processing of human peripheral venous blood from healthy adult donors was approved by the Ethical Committee of the Univer-
sity Hospital Wirzburg (#302/12).

METHOD DETAILS

Primary cell isolation and differentiation

To generate moDCs, monocytes were isolated from leukoreduction system chambers containing blood from healthy volunteers and
standard density-gradient centrifugation followed by positive selection using magnetic-activated cell sorting (CD14 MicroBeads, hu-
man, Miltenyi Biotec). Monocytes were cultured in CellGenix GMP dendritic cell medium (serum-free, CellGenix) supplemented with
120 pg gentamicin (Refobacin, Merck) in 24-well plates with 1 x 108 cells/ml. Cells were differentiated for 6 days by addition of
1,000 U/ml granulocyte macrophage-colony stimulating factor (Miltenyi Biotec) and 1,000 U/ml interleukin (IL)-4 (Miltenyi Biotec)
(Mezger et al., 2008; Paijo et al., 2016; Sallusto and Lanzavecchia, 1994).
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Pulmonary pathogens

Reporter strain human CMV TB40/E-mNeonGreen and CMV TB40/SE (non-fluorescent) were generated according to published
protocols (Kasmapour et al., 2017; Paijo et al., 2016; Sampaio et al., 2017). A. fumigatus (ATCC 46645) germ tubes were prepared
overnight in RPMI (Invitrogen) and used for dual or triple RNA-seq. For flow cytometry and microscopy (see below), dTomato- or
GFP-expressing A. fumigatus germ tubes were used.

moDC infection assays

Primary human cells were infected with CMV at a multiplicity of infection (MOI) 3 and with subsequent centrifugal enhancement at 300
x g for 30 min. A. fumigatus germ tubes, which represent an invasive immunogenic morphotype of the fungus, were added at MOI 0.5.
For co-infections, pathogens were added simultaneously or subsequently (Figure 1A). After harvesting, cells were centrifuged and
pellets collected in HBSS (Invitrogen) or RNAprotect Cell Reagent (QIAGEN), and cell-free supernatants were stored at —80°C.
For flow cytometry and microscopy, (see below) moDCs were infected with CMV for 24 h before adding germ tubes, because
detection of NeonGreen fluorescence in infected cells requires sufficient replication of the virus.

Flow cytometry analysis

CMV and A. fumigatus infection rates were determined by flow cytometry, measuring fluorescent signals of moDCs positive for
mNeonGreen (CMV) or GFP (A. fumigatus), respectively (Figures S1B and S1C). Viability of moDCs was determined by staining
with Viobility 405/520 Fixable Dye (Miltenyi Biotec), defining negative populations as viable. Additionally, cells were stained with
anti-CD40-PE-Vio770 (REA733, Miltenyi Biotec), anti-CD80-APC (REA661, Miltenyi Biotec), anti-CD209-VioBlue, (REA617, Miltenyi
Biotec), anti-CCR7-VioBlue (REA546, Miltenyi Biotec), anti-TLR2-PE-Vio770 (REA109, Miltenyi Biotec) or anti-TLR3-APC (TLR3.7,
Miltenyi Biotec). Mean fluorescence intensities of these surface markers were measured and isotypes subtracted. Data
were acquired on a FACSCalibur using CellQuest Software (Becton & Dickinson) or FACSCanto Il using FACSDiva software
(Becton & Dickinson). Data analysis was done with FlowJo (Treestar/Becton & Dickinson, version 10) or FCS Express 7 (De Novo
Software).

Microscopy

Morphology and fluorescence signals for CMV (mNeonGreen) or A. fumigatus (dTomato) were analyzed in 48-well cell culture plates
using a Nikon Eclipse Ti microscope (Nikon) with an Okolab incubator set at 37°C. Images were obtained at 20-fold magnification and
processed using NIS Elements Imaging software (Nikon, version 5.02.00).

Establishment of optimized RNA-seq conditions for single infections

As a prerequisite for multi-organism RNA-seq analysis in our infection model, lysis conditions should be sufficiently harsh to disrupt
cellular membranes of all interacting organisms, but sufficiently mild to maintain high RNA integrity. Additionally, multiplicities of
infection (MOls) must be adjusted to ensure homogeneous coverage of individual transcriptomes in the resulting sequencing
data. That is, the relative proportions of transcriptomes in isolated RNA samples should match the ratio of the respective genome
sizes. Therefore, we first evaluated yield and quality of RNA isolated from moDCs infected with either A. fumigatus or CMV at different
time points and MOls, and observed high RNA integrity (RIN > 7) for all conditions (Figures S2A and S2B).

While highly abundant in any organism (> 90% of total cellular RNA), ribosomal RNA (rRNA) provides little informative value about
cellular physiology. Therefore, ribosomal transcripts are typically depleted from sequencing libraries, either by active rRNA pull-out
(e.g., Ribo-Zero technology) or enrichment of polyadenylated transcripts. In principle, both options are suitable for our infection
model, since MRNAs of all three interacting organisms are polyadenylated. We found that both approaches efficiently depleted
human ribosomal reads (Figure S2C). However, to retain potentially interesting non-polyadenylated transcripts (e.g., microRNAs
[miRNAs], small nucle(ol)ar RNAs [snRNAs, snoRNAs] and polyA- long noncoding RNAs [IncRNAs]; Figure S2C), we employed
Ribo-Zero technology for further RNA-seq experiments.

After rRNA removal from single-infection samples, cDNA libraries were prepared and sequenced to shallow depth (~5-8 million
reads/library) for initial quality assessment. Obtained sequencing reads aligned to their parental reference genome with little
cross-mapping observed (Figures S2A and S2B). In fact, the vast majority of cross-mapped reads derived from mitochondrial genes
present in both Aspergillus and human cells, and all of these reads were removed from further analyses. As expected, the fungal-to-
human read ratio in Aspergillus-infected samples increased with MOI. In line with the high proportions of fungal reads (~20% of total
mapped reads), human exon coverage was the rate-limiting factor (Figure S2A), thus favoring the low-dose infections (MOI 0.5) for
further experiments. While the vast majority of reads in CMV-infected moDCs mapped to the human genome, viral read proportion
and exon coverage increased time-dependently, indicative of viral replication (Figure S2B).

Even with the low sequencing depth used in this pilot experiment, the induction of marker genes for human dendritic cell activation
and pathogenicity-related fungal genes was detected (Figure S2D). For example, upregulation of /L-1, CCL3, and TLR2 indicated
activation of well-described pro-inflammatory cascades in moDCs infected with Aspergillus (Braedel et al., 2004; Lass-Florl et al.,
2013; Walsh et al., 2005). Fungal cells also showed elevated expression of genes for toxic molecules such as the gliotoxin GliF (Latgé,
1999). Similarly, expression profiles during virus infection reflected expected patterns (Figure S2E) as CMV-infected moDCs upregu-
lated IFN-y and CCL2 (Loewendorf & Benedict, 2010; McNab et al., 2015), whereas viral gene expression was generally induced over
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time (Figure S2E displays viral expression at two later stages relative to an early infection stage) indicating active proliferation (Dunn
et al., 2003; Moutaftsi et al., 2002; Wiertz et al., 1996).

RNA extraction, rRNA depletion, cDNA library preparation, and triple RNA-seq

For extraction of human, fungal and viral RNA, RiboPure RNA Purification Kit yeast (Thermo Fisher Scientific) was used according to
the manufacturer’s instructions. Total RNA was treated with 0.13 U/ul DNase | (Thermo Fisher Scientific) for 30 min at 37°C to remove
contaminating genomic DNA. The integrity of DNase-treated RNA was assessed on a bioanalyzer (Agilent). All samples had RNA
integrity numbers (RIN) > 7.0. Where explicitly indicated (as polyA*), total RNA was directly converted into first-strand cDNA using
an oligo(dT).5 primer, fragmented (four 30 s ultrasound pulses), and processed as outlined below. Otherwise, ribosomal transcripts
were actively removed using Ribo-Zero Gold rRNA removal kits (human, mouse, rat) (lllumina) following manufacturer’s instructions
for 500 ng DNase-treated RNA as input for rRNA depletion.

The cDNA libraries for lllumina sequencing were generated by Vertis Biotechnologie AG, Freising-Weihenstephan, Germany, with
rRNA-free RNA sheared via ultrasound sonication (four 30 s pulses, 4°C) to generate 200- to 400-nucleotide fragments, on average.
Fragments < 20 nucleotides were removed using Agencourt RNAClean XP kits (Beckman Coulter Genomics), and lllumina TruSeq
adapters were ligated to the 3’ ends of remaining fragments. First-strand cDNA synthesis was performed using M-MLYV reverse tran-
scriptase (NEB) with 3’ adapters used as primer target sites. First-strand cDNA was purified, and 5 lllumina TruSeq sequencing
adapters were ligated to 3’ ends of antisense cDNA. Resulting cDNA was PCR-amplified to about 10 to 20 ng/ul using high-fidelity
DNA polymerase. TruSeq barcode sequences were included in 5’ and 3’ TruSeq sequencing adapters. The cDNA libraries were pu-
rified using Agencourt AMPure XP kits (Beckman Coulter Genomics) and analyzed by capillary electrophoresis (Shimadzu MultiNA
microchip).

For sequencing, cDNA libraries were pooled in approximately equimolar amounts. Pools were size-fractionated to 200-600 bp us-
ing differential cleanup with Agencourt AMPure kits (Beckman Coulter Genomics). Aliquots of cDNA pools were analyzed by capillary
electrophoresis (Shimadzu MultiNA microchip). Sequencing was performed on a NextSeq 500 platform (lllumina) at Vertis Bio-
technologie AG, Freising-Weihenstephan, Germany (single-end mode, 75 cycles).

Quantitative reverse transcription PCR-based validation of differential gene expression

RNA of untreated moDCs or moDCs after infection with CMV, A. fumigatus or both was reverse transcribed into cDNA using Thermo
Fisher cDNA First Strand Synthesis Kits. Primers (Sigma-Aldrich) were designed using Primer-Blast (Ye et al., 2012) and The Asper-
gillus Genome Database (Cerqueira et al., 2014), avoiding the occurrence of target sequences in the other two organisms (Table S1).
Quantitative reverse transcription (qRT)-PCR was conducted using SYBRGreen Master Mix from (BioRad) in a Step One System
(Applied Biosystems). Primer specificity was confirmed by agarose (Roth) gel electrophoresis (Serva) of PCR amplicons using
ethidium bromide (Thermo Fisher). Gel images were documented in a Multi-lImage Light Cabinet (Alpha Innotech).

Multiplex cytokine secretion assays

Cell culture supernatants were analyzed by multiplex cytokine secretion assays according to the manufacturer’s instructions using
16-plex ProcartaPlex Immunoassays (Thermo Fisher Scientific) including IFN-a, IFN-B, IFN-vy, IL-1¢, IL-1B, IL-2, IL-6, IL-8, IL-10,
IL-12p70, IL-17A, IL-23, CXCL10, CXCL11, CCL5, and TNF-a.

Cytokines with concentration levels above measurement range were set to 1.05 times the maximum. Concentration levels below
measurement range or negative concentrations were set to 0. Significant changes in the concentration of cytokines were determined
using pairwise two-sided Wilcoxon rank-sum tests. P values for each test were adjusted for multiple testing using FDR. We rejected
the null hypothesis for FDR < 0.1.

QUANTIFICATION AND STATISTICAL ANALYSIS

RNA-seq data processing

Preprocessing of raw reads including quality control and gene abundance estimation was done with GEO2RNaseq pipeline version
0.9.12 in R version 3.5.1 (Seelbinder et al., 2019). Quality analysis was done with FastQC version 0.11.8 before and after trimming.
Read-quality trimming was done with Trimmomatic version 0.36. Adaptor sequences were removed, window size trimming per-
formed (15 nucleotides, average Q < 25) including 5" and 3’ per-base trimming for Q < 3 and removal of sequences shorter than
30 nucleotides. The reference genome in FASTA format was created by combining references Homo sapiens (GRCH 38 v89),
A. fumigatus Af293 (s03-m05-r09) and human herpesvirus 5 strain TB30/E clone TB40-BAC4 (EF999921.1). Reference annotation
was created by extracting and combining exon features from corresponding annotation files. The reference genome was indexed
with exon information using HiSat2 version 2.1.0. Paired-end read alignment used HiSat2 on the created reference genome. Only
concordantly aligned pairs of reads were used. Mapping statistics per organism were calculated using the “calc_triple_mapping_
stats” function of GEO2RNaseq. SAMtools version 1.7 with the “flagstat” subcommand was used to deduce alignment quality.
Gene abundance estimation was done with featureCounts (R package Rsubread version 1.28.0) in paired-end mode with default pa-
rameters. MultiQC version 1.5 was used to summarize the output of FastQC, Trimmomatic, HiSat, featureCounts and SAMtools (Data
S1). In addition to the count matrix with gene abundance for all three species, species-specific gene count matrices were extracted
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from the complete count matrix. For nonstatistical analyses, count matrices were normalized using median-by-ratio normalization
(MRN) as described before (Anders and Huber, 2010). Correlation analysis, principal component analysis, and clustering were per-
formed per species based on MRN gene-abundance data. Clustering between samples used the complete linkage (farthest
neighbor) method. Raw files are accessible under the Gene Expression Omnibus accession number GSE134344, GSE135450
and GSE136217.

Differential gene expression analysis
Differential gene expression was analyzed by GEO2RNaseq per species. Pairwise tests were performed between control, single-
infection, and co-infection groups with and without consideration of infection time. Four statistical tools (DESeq 1.30.0, DESeq2
1.18.1, limma voom 3.34.6 and edgeR 3.20.7) were used, and p values were corrected for multiple testing using the false-discovery
rate method q = FDR(p) for each tool. In addition, mean MRN, transcripts per kilobase million (TPKM) and reads per kilobase million
(RPKM) values were computed per test per group including corresponding log, fold-changes. Gene expression differences were
considered significant if they were reported significant by all four tools (q < 0.01 and |logo MRN| > 1 for H. sapiens; q < 0.05 for
A. fumigatus and CMV).

To compare RNA-seq and qRT-PCR derived relative differences, expression values were scaled by the maximum value per repli-
cate. To keep statistical analysis comparable, significance was assessed based on pairwise t tests. Resulting p values were cor-
rected for multiple testing using FDR. Tests were performed individually for RNA-seq and gRT-PCR per gene (Figure 5; Figure S5).

Interspecies and intraspecies gene expression analyses

Abundances of genes with nonzero coverage from all three species and all samples were MRN normalized. Spearman’s correlations
between gene abundances were calculated per treatment group (moDC, moDC + A. fumigatus [Afu], moDC + CMV, moDC + CMV +
Afu) for infection time 0 h. Only significant correlations with p < 0.01 and absolute correlation > 30% were used for further analysis.
R package iGraph version 1.2.4.1 was used to create, compare, analyze (node degree and betweenness) and plot significant
correlations as networks. Node degree centrality describes the number of edges incident to a node. Node betweenness centrality
describes the number of shortest paths through a node for all pairs of nodes. For cross-species analysis, correlations between genes
of the same species were ignored. For additional immune system relevant gene correlation analysis, genes from H. sapiens were
retained only if they were present in the curated database InnateDB (https://www.innatedb.com/). moDC gene set analysis with
distinct expression patterns between, but low variance within different infection etiologies yielded 160 genes that were further filtered
for immune system-relevant genes (Figure 4).
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Supplementary Figure S1: Infection of monocyte-derived dendritic cells (moDCs) challenged with Aspergillus
fumigatus (Afu) and cytomegalovirus (CMV) in single- or co- infection settings. (A) moDCs were stained with a
live/dead marker and cells were analyzed by flow cytometry. Viability of moDCs is depicted as mean + SEM. n
= 4. Asterisks indicate significance values after multiple test corrected (FDR) pairwise Dunns test. ****: p <
0.0001, ***: p<0.001; *: p <0.05; ns: not significant.. (B) Quantification of CMV-infected moDCs during single-
or fungal co-infection. Virus-infected cells were distinguished from uninfected bystander cells by flow cytometric
measurement (CMV constitutively expresses the fluorescence reporter mNeonGreen). Boxplots show median and
interquartile range. n = 6. (C) moDC infection rate with A. fumigatus in presence or absence of CMV as
determined using a non- fluorescent CMV strain and GFP-expressing A. fumigatus germ tubes. Phagocytosis of
A. fumigatus was measured 3 h after addition of germ tubes by flow cytometry (quantification of cells positive
for GFP). Boxplots show median and interquartile range. n = 3. (D) Infections of moDCs with CMV
(mNeonGreen) and A. fumigatus (expressing dTomato) were analyzed by fluorescence microscopy at 9 h after
addition of A. fumigatus germ tubes. Images illustrate one representative result out of three independent
experiments. Scale bars indicate 100 um. Related to Figure 1.
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Supplementary Figure S4: Gene expression fold-changes from left to right in each rectangle:
Co-infection vs. no stimulation, co-infection vs. single-infection with cytomegalovirus (CMV)
at time point 0 h, co-infection vs. single-infection with Aspergillus fumigatus at time point 0
h. Red color indicates an upregulation in the left hand side condition of comparisons. To
visualize also small fold-changes, color-code for expression changes beyond -1.5 and 1.5 were
capped to the maximum intensity. A: Toll-like receptor signaling pathway, B: Cytosolic DNA-
sensing pathway, C: C-type lectin receptor signaling pathway. Related to Figure 4.
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Supplementary Figure S5: Relative gene expression and quantitative qRT-PCR-derived
values for selected genes. qRT-PCR-derived values were normalized against delta-
aminolevulinate synthase mRNA. n = 4. Mean and SEM are shown. Afu: Aspergillus
fumigatus, DC: monocyte-derived dendritic cell, CMV: cytomegalovirus. Asterisks indicate
significance level after multiple test correction (FDR): ***: p <0.001; **: p <0.01; *: p <0.05.
Related to Figure 5.
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Supplementary Figure S6: Surface marker expression on monocyte-derived dendritic cells
(moDCs). moDCs were infected with cytomegalovirus (CMV, mNeonGreen) for 24 h or left
uninfected. Then, Aspergillus fumigatus (Afu) germ tubes were added for 9 h in a single- or
co- infection setting. Cells were stained for CD40, CCR7, CD80, TLR2, CD209, and TLR3.
Histograms show fluorescence signal intensities subtracted by isotype controls for one
representative result out of three independent experiments. Bar plots refer to the mean and SEM
of relative surface marker expression over the three replicates. Asterisks indicate significance
after multiple test corrected (FDR) pairwise Dunns test: *: p < 0.05; (*): p < 0.01. Related to
Figure 5.
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Supplementary Figure S7: Multiplex cytokine secretion assays. Relative concentrations of
cytokines in culture supernatants were normalized to their mean in moDC + CMV 0Oh + Afu
Oh. n = 4. Mean and SEM are given. Afu: Aspergillus fumigatus, DC: monocyte-derived
dendritic cells, CMV: cytomegalovirus. Asterisks indicate significance level after multiple test
correction (FDR): *: p <0.05; (*): p <0.1. Related to Figure 5.
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Aspergillus fumigatus pan-genome analysis
identifies genetic variants associated with
human infection

Amelia E. Barber'®°, Tongta Sae-Ong?°, Kang Kang ®?, Bastian Seelbinder
Grit Walther®, Gianni Panagiotou?¢® and Oliver Kurzai'>”

2, Jun Li©34,

Aspergillus fumigatus is an environmental saprobe and opportunistic human fungal pathogen. Despite an estimated annual
occurrence of more than 300,000 cases of invasive disease worldwide, a comprehensive survey of the genomic diversity pres-
ent in A. fumigatus—including the relationship between clinical and environmental isolates and how this genetic diversity con-
tributes to virulence and antifungal drug resistance—has been lacking. In this study we define the pan-genome of A. fumigatus
using a collection of 300 globally sampled genomes (83 clinical and 217 environmental isolates). We found that 7,563 of the
10,907 unique orthogroups (69%) are core and present in all isolates and the remaining 3,344 show presence/absence of
variation, representing 16-22% of the genome of each isolate. Using this large genomic dataset of environmental and clinical
samples, we found an enrichment for clinical isolates in a genetic cluster whose genomes also contain more accessory genes,
including genes coding for transmembrane transporters and proteins with iron-binding activity, and genes involved in both car-
bohydrate and amino-acid metabolism. Finally, we leverage the power of genome-wide association studies to identify genomic
variation associated with clinical isolates and triazole resistance as well as characterize genetic variation in known virulence
factors. This characterization of the genomic diversity of A. fumigatus allows us to move away from a single reference genome
that does not necessarily represent the species as a whole and better understand its pathogenic versatility, ultimately leading

to better management of these infections.

major cause of human morbidity and mortality”. Invasive

aspergillosis is particularly problematic in immunocom-
promised patients, resulting in a mortality rate of up to 50%™".
Treatment of infections caused by A. fumigatus relies on triazole
antifungal drugs. However, resistance to these frontline therapies
is increasing, and the mortality rate for resistant infections is 25%
higher than susceptible infections>*. Although the most frequently
identified resistance mutations occur in the cellular target of the tri-
azoles—that is, cyp51a—up to 30% of the resistant isolates have no
identifiable resistance mechanisms’, complicating the recognition
and treatment of these problematic infections.

While the host immune status is an important determinant in
the development of aspergillosis, the substantial phenotypic vari-
ability observed among A. fumigatus isolates indicates that intra-
species diversity also plays a role in the disease®'*. This includes
marked differences in virulence in animal models®'**, fitness under
hypoxia’, growth under chemical stress(es)'!, nutritional heteroge-
neity'” and induction of host inflammatory mediators®. As an indi-
cator of the genomic diversity underlying the phenotypic variability
observed in A. fumigatus, genomic comparisons between the refer-
ence strains Af293 and A1163 reveal tracts of variable gene content

D iseases caused by the mould Aspergillus fumigatus are a

between the two'*, and 7% of Af293 genes are not present in A1163
(FungiDB). Despite this variation, previous studies of A. fumiga-
tus have largely only analysed genomic information in the context
of the reference genome and were limited to the genetic material
present in Af293 due to the technical challenges of de novo eukary-
otic genome analysis'®". In addition, most of the isolates that have
been sequenced to date are of clinical origin, thereby obscuring the
genomic relationship between environmental isolates and those
causing human disease.

In this study we constructed de novo genome assemblies of
300 A. fumigatus genomes (n=217 environmental isolates and
n=83 clinical isolates) and used them to define the pan-genome
of this important human fungal pathogen as well as the relation-
ship between environmental and clinical isolates. We also leveraged
the power of genome-wide association studies (GWAS) to identify
genomic variation associated with human infection and triazole
resistance, revealing a new range of therapeutic targets to combat
these life-threatening infections.

Results
De novo assembly of 300 A. fumigatus genomes. In this study we
used reference-guided and de novo assembly methods to analyse
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the genomes of 300 A. fumigatus isolates, representing environmen-
tal and clinical isolates from different locations across the globe.
Among these, 188 samples were novel environmental and clinical
isolates from Germany that were sequenced as part of this study. The
remaining 112 isolates, including 64 isolates that were sequenced
by us in a previous study”, were pulled from public data reposito-
ries as raw sequence data. Our overall dataset was comprised of 217
environmental isolates and 83 clinical isolates from Europe, Asia,
North America, South America and the International Space Station
(Supplementary Data 1). Forty-three of 294 isolates were resis-
tant to one or more medical triazoles, as determined by European
Committee on Antimicrobial Susceptibility Testing (EUCAST)
broth microdilution®’. Azole susceptibility data were not available
for six isolates. We generated de novo genome assemblies of these
300 isolates using paired-end Illumina sequencing to facilitate the
unrestricted analysis of genomic diversity in A. fumigatus. The mean
number of contigs in our assemblies was 948 and the mean N50, a
marker of genome contiguity representing the weighted median con-
tig length, was 145,494 base pairs (bp; Supplementary Table 1 and
Supplementary Data 1). The mean genome size of our assemblies
was 28.6 Mb (range, 26.9-30.8 Mb), with an average of 9,408 open
reading frames (ORFs) per isolate and a range of 9,169 to 11,231.
Using BUSCO as a measure of genome completeness, we found that
an average of 97% of the expected single-copy orthologues were
found and present as single copies in our genome assemblies.

To perform population genomic analyses, we aligned reads
against the Af293 reference genome. We observed an average
of 78,692 single nucleotide variants (SNVs) per isolate (range,
23,029-149,537) or approximately three SNVs per kilobase
(Supplementary Data 1). We also detected an average of 7,383
short insertions or deletions (indels) per isolate (range, 2,528-
16,134). Of the 329,405 non-redundant SNVs identified among
our isolates, 33% (107,779) were not described in FungiDB, release
39. Together, this reveals a pronounced level of genetic diversity in
A. fumigatus at the nucleotide level and considerably extends the
previously recognised diversity.

The A. fumigatus pan-genome contains 7,563 core and 3,344
accessory genes. To examine the full genomic diversity of A. fumig-
atus, we used our de novo genome assemblies to define and char-
acterize its pan-genome. The pan-genome is the collective gene set
of a species and is composed of core genes found in all individu-
als and accessory genes that are not shared between all members of
the species. We identified a total of 12,798 gene clusters that con-
densed into 10,907 non-redundant orthogroups. The A. fumigatus
pan-genome was composed of a core genome of 7,563 orthogroups
in all 300 isolates (69% of the pan-genome), 935 softcore ortho-
groups in >95% of the isolates (9% of the pan-genome), 1,367 shell
genes in 5-95% of the isolates (13% of the pan-genome) and a cloud
genome of 1,043 genes present in less than 5% of the isolates (10% of
the pan-genome; Fig. 1a). Each isolate contained an average of 9,199
orthogroups (range, 8,987-9,629) and an average of 1,636 ortholo-
gous accessory-gene clusters (range, 1,424-2,066), correspond-
ing to 16-22% of the total genome of the isolate. The pan-genome
was closed—that is, the number of pan-genes did not substantially
increase after the addition of approximately 250 genomes (Fig. 1b).
Gene association analysis identified 53 co-occurring gene modules
containing 2-251 genes (Fig. 1¢).

The protein sequences of the core genes were significantly lon-
ger than the softcore or accessory genomes. The geometric mean
of the length of the core genes was 436 amino acids compared
with 310 amino acids for the softcore genes and 191 for the shell/
cloud genes (Fig. 1d). To examine the evolutionary forces work-
ing on the core and accessory genomes, we calculated the rate of
non-synonymous-to-synonymous substitutions (dy/ds). The geo-
metric mean of the dy/dg ratio among all 10,907 pan-genes was
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0.53, with significant differences between the genome compart-
ments. The core genome showed the strongest evidence of nega-
tive or purifying selection (dy/ds=0.49), whereas the softcore and
accessory genomes had dy/d; ratios of 0.68 and 0.69, respectively
(Fig. 1e). The lower dy/d; values for the core genes relative to the
accessory genes indicate that they are under a higher degree of puri-
fying selection—although neither genome compartment is evolving
neutrally, as indicated by ratios of less than one.

The core genome contained a higher proportion of proteins
with annotated domains, as 85% of the core genes contained at
least one annotated InterPro domain compared with 71% of the
softcore genes and 51% of the accessory genes (Fig. 1f). The core
genome was enriched for 3,140 Pfam domains—including protein
kinase domains, transcription factor domains and ABC transport-
ers—whereas the accessory genome was enriched for 546 Pfam
domains—including short-chain dehydrogenases and cytochrome
P450 enzymes (Extended Data Fig. 1a). For Gene Ontology (GO)
annotations, the core genome was enriched for protein binding,
ATP binding, carbohydrate metabolic functions, signal transduc-
tion and 1,497 total annotations (Supplementary Data 2). The
accessory genome was enriched for haem binding, response to oxi-
dative stress and 244 total GO annotations (Supplementary Data 2).

Many of the shell and cloud genes were located on the subtelo-
meric ends of chromosomes 1 and 7, as measured by their posi-
tion in Af293 (Extended Data Fig. 1b). Of the 10,907 orthologous
gene clusters (homologous genes identified in different isolates)
identified in the A. fumigatus pan-genome, 87% were present in
Af293 (Supplementary Data 3). Overall, we identified an average
of 494 genes per isolate that were absent in Af293 and a cumula-
tive 1,934 unique ORFs were not present in Af293. In summary, the
core genome of A. fumigatus represented 69% of the total identified
orthogroups and was distinct from the accessory genome in length,
function and the strength of purifying selection.

Chronic disease isolates are more genetically diverse than iso-
lates from invasive disease and the environment. We examined
the population genomics of isolates from the environment, invasive
disease and chronic aspergillosis. Due to the lower number of iso-
lates in the chronic disease group, the environmental and clinical
samples were downsampled to match the number of chronic dis-
ease isolates (n=19). Interestingly, the isolates from chronic disease
group were significantly more diverse at the nucleotide level than
isolates from invasive disease or the environment, as measured by
the nucleotide diversity () calculated across overlapping 5kb win-
dows (Extended Data Fig. 2). In contrast, isolates from the invasive
disease group showed less nucleotide diversity than isolates from
the environment and chronic disease. The geometric mean of the
genome-wide nucleotide diversity was 1.3X107° for the isolates
from the chronic disease group, 8.3 X 10~¢ for the environmental iso-
lates and 6.9 x 10~° for the isolates from the invasive disease group.

The Af293-containing genetic cluster is enriched for clinical iso-
lates. In a phylogeny built from the coding nucleotide sequences
of 5,380 single-copy orthologues, all 300 isolates formed a mono-
phyletic group that was clearly distinct from the related outgroups
of Aspergillus oerlinghausenensis and Aspergillus fischeri (Fig. 2
and Extended Data Fig. 3a). Isolates from Germany, collected and
sequenced by us, intermixed with the globally sampled isolates from
publicly available repositories, with no strong geographic cluster-
ing observed. We also found a high degree of congruence between
the phylogeny built from the core genome sequence from de novo
genome assemblies and phylogenies built using reference-guided
SNV data from whole-genome SNVs and neutral loci (Extended
Data Fig. 3b-d). Based on genome coverage at the MAT locus,
we found an equal split of isolates of both mating types (n=148
MAT1-1 isolates and n=149 MAT1-2 isolates; Fig. 2).
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Fig. 1| The pan-genome of A. fumigatus. a, Presence/absence matrix of 10,907 orthologous gene clusters identified from 300 A. fumigatus genomes.

The pan-genome is subdivided into core (orthogroups present in all isolates), softcore (orthogroups present in >95% of the isolates), shell (orthogroups
present in 5-95% of the isolates) and cloud (orthogroups present in less than 5% of the isolates) genomes. b, Pan and accessory (softcore, cloud and shell)
genome size as the number of genomes included increases. Darker hues represent the 25th and 75 percentiles, while the lighter hues represent the range.
¢, Co-occurring gene modules (n=53) of the A. fumigatus accessory genome. Each circle indicates a gene and its association with other genes indicated
by edges (lines). The module significance was identified using two-sided binomial exact tests with Bonferroni's correction (P < 0.05). Only positive
associations are illustrated. The colour indicates module membership. d, Amino-acid-sequence lengths of core, softcore and accessory (cloud and shell)
genes. The exact P values were <2 x 107 for all of the indicated comparisons. e, Ratio of the non-synonymous substitutions to synonymous substitutions
in core, softcore and accessory genes. Genes with ratios greater than one are under positive selection, whereas genes with ratios less than one are under
purifying selection. The exact P values were: core versus softcore, P=1.2x1077; core versus accessory, P<2 x107'%; and softcore versus accessory, P=0.15.
c-e, n=7,563 core, 935 softcore and 2,410 accessory orthogroups. d,e, In the box-and-whisker plots, the horizontal line in the box indicates the 50th
percentile and the box extends from the 25th to the 75th percentile. The whiskers encompass the lowest and highest values within 1.5x the interquartile
range. Statistical significance was determined using a two-sided Mann-Whitney U-test with Bonferroni's correction; ***P < 0.001 and NS, not significant.
f, Number (indicated in the bars) and fraction of core, softcore and accessory genes containing an annotated InterPro domain.

To look for evidence of genomic recombination in A. fumigatus,
we performed a neighbour-net analysis, a phylogenetic method that
allows for the representation of conflicting genetic signals that result
from sexual recombination or gene conversion. The neighbour-net
tree built from core genes had a highly reticulated centre, which
indicates a marked degree of conflicting genetic information in the
phylogenetic network and is suggestive of abundant genetic recom-
bination in the species (Fig. 3a).

Discriminant analysis of principle components™ was used to
identify seven as the best supported number of genetic clusters in our
dataset based on our de novo, reference and pan-gene count-based
approaches (Extended Data Fig. 4a—c). Cluster 6 had the largest
number of isolates (1= 80), followed by cluster 2 (n=53), cluster 5
(n=48), cluster 7 (n=43), cluster 3 (n=35), cluster 4 (n=22) and
cluster 1 (n=19; Fig. 4a). Interestingly, cluster 5 was enriched for
clinical isolates (Fisher’s exact test with Benjamini-Hochberg cor-
rection, P=0.02). This cluster also contained the reference strain
Af293, which is a clinical isolate from a patient who died of inva-
sive aspergillosis®. Together, we observed an enrichment for clinical
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isolates in one cluster as well as evidence of abundant genetic
recombination in A. fumigatus.

Genetic cluster 5 contains more accessory genes and a distinct
genomic profile. As genetic cluster 5 was statistically enriched for
clinical isolates, we examined the genomes of each cluster to iden-
tify differences that might predispose the genetic background of
cluster 5 towards human infection as well as characterize potential
functional differences between the genetic clusters. Interestingly,
clusters 5 and 2 contained significantly more accessory genes than
the other clusters (Fig. 4a). The median number of accessory genes
for cluster 5 was 1,965 compared with 1,895, 1,842, 1,882, 1,814 and
1,790 for clusters 2, 3, 1, 7 and 6, respectively (Fig. 4a). Cluster 4
had the smallest number of accessory genes, with a median of 1,749.

To predict the functional differences between the clusters, we
calculated the abundance of Pfam domains and the frequency of
GO annotations in the different clusters and compared the variance
between clusters. A total of 170 GO annotations showed significant
variation in their relative frequency between clusters (Fig. 4b and
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Fig. 2 | Whole-genome phylogeny of environmental and clinical A. fumigatus. Phylogenetic tree constructed from coding nucleotide sequences of 5,380
single-copy orthologues shared by A. fumigatus, A. fischeri and A. oerlinghausenensis. The phylogeny is rooted with A. oerlinghausenensis and the branch
length was shortened for illustration. The coloured symbols at the end of branches represent the country where the sample was isolated. The red dots

in the tree structure indicate nodes with ultrafast bootstrap values of less than 0.96. The metadata rings on the outside of the tree indicate the Azole
phenotype (where resistance is defined as a minimum inhibitory concentration above the EUCAST breakpoint for one or more triazoles), source of the
isolate and the mating type. Mutations in the cyp57a gene relative to the Af293 reference genome are also indicated on the outside of the tree.

Supplementary Data 4). Among these were an increased frequency
of genes involved in oxidation-reduction processes, iron-ion bind-
ing, carbohydrate metabolic processes and proteolysis in cluster 5
(Fig. 4c and Supplementary Data 4). Significant variation between
clusters was observed for the abundance of 269 Pfam domains
(Supplementary Data 4). Cluster 5 had an increased abundance of
major facilitator superfamily transporters, amino-acid permeases
and chitin-recognition proteins (Fig. 4d and Supplementary Data 4).

For the GO categories and Pfam domains that did not show a
significant difference in copy number between the genetic clusters,
we reasoned that there could still be functional differences due to
the presence of high-impact variants such as frameshifts or the gain/
loss of stop codons. To examine this, we calculated the fraction of
genes containing a high-impact variant(s) for each functional anno-
tation and compared the incidence across the clusters. A total of 945
GO annotations contained significant differences in the incidence
of high-impact variants between the clusters (Supplementary Data
4). Among these were a reduced number of high-impact variants
in chromatin organization and mismatch repair-annotated genes
in clusters 5 and 2 (Fig. 4e). We also quantified the incidence of
high-impact variants in Pfam domain-containing genes and iden-
tified 482 domains with significant differences between the clus-
ters (Supplementary Data 4). These included a reduced number of
high-impact variants in cytochrome P450 enzymes and bZIP tran-
scription factors in clusters 2 and 5. In summary, we observed dis-
tinct genomic profiles between the genetic clusters of A. fumigatus,
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including a larger number of accessory genes in clusters 2 and 5 in
addition to copy-number variation and incidence of high-impact
variants in functional annotations such as Pfam domains and
GO categories.

A. fumigatus exhibits variation in virulence-associated genes.
Using a database of 360 virulence- or fitness-associated genes for
A. fumigatus'*=** (Supplementary Data 5), we examined our 300
genomes for the presence/absence of these genes, changes in copy
number relative to Af293 and the incidence of high-impact vari-
ants (for example, frameshifts and nonsense mutations). This list
includes genes involved in metabolism, signalling, cell-wall biol-
ogy, secondary metabolism, stress responses and antifungal drug
resistance. Overall, these virulence-associated factors were well
conserved. No variation in copy number, presence/absence of genes
or genetic alterations anticipated to have a high functional impact
was detected in 57% (205/360) of the genes. The remaining 155
virulence-associated genes had some degree of genetic variation
expected to affect gene function among our 300 genomes, which
can be visualized in Fig. 5 (full summary in Supplementary Data 5).
Underscoring the fundamental role of these genes for the fitness of
A. fumigatus in the environment and the human host, most cases
of gene loss or high-impact genetic variation were uncommon and
observed in less than 5% of the isolates (1 =121 genes). However,
the remaining 34 genes displayed more pervasive genetic variation,
including 76% of the isolates (229/300) showing frameshifts in the
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serine protease prl (Afu7g04930) and 71% of the isolates (213/300)
showing high-impact variants in the putative sensor histidine kinase
tesB (Afu2g00660).

Overall, secondary metabolism genes showed the highest vari-
ability among the virulence-associated genes, with 59 genes either
being absent or showing a predicted loss of function among the 300
isolates. Interestingly, 97% of the isolates (292/300) possessed exten-
sively degraded copies of the non-ribosomal peptide synthetase
nrps8 (also known as pes3 or Afu5g12730), a gene whose deletion
showed increased virulence in a murine model of invasive aspergil-
losis®. We also observed variability in the biosynthetic gene cluster
encoding fumagillin, including absence of the fumagillin tailoring
enzyme fmaG in 89% of the isolates (267/300), the absence of fumR
in 49% of the isolates (146/300) and a complete loss of the clus-
ter in three isolates (1%). Finally, we observed variants predicted to
impact the biosynthesis of the immunosuppressive virulence factor
gliotoxin in 6% of the isolates (17/300). These included high-impact
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variants in gliZ (n=11 isolates); gliA (n=5 isolates); gliP and gliF
(n=3isolates each); glil, gliT and gli] (n =2 isolates each); and glicC
and gliG (n=1 isolate each).

In addition to cases of gene loss, we observed cases of gene
amplification in virulence-associated genes relative to Af293 and
A1163. A total of 53 genes showed gene amplification, including
5% of the isolates (n=16) with increased copy number of the puta-
tive catalase-peroxidase cat2 (Afu8¢01670), which is upregulated in
response to neutrophils®. In addition, 5% of the isolates (n = 14) had
increased copy numbers of the zinc transporter zrfC (Afu4g09560)
and 3% (n=10) had increased copy numbers of the putative ABC
multidrug transporter Afu5¢12720. In summary, although roughly
half of the virulence-associated genes described to date were
well conserved among the 300 genomes examined, we observed
high-impact genetic variation in many virulence-associated genes,
which could perhaps explain the wide range in virulence observed
among A. fumigatus isolates.
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GWAS-identified fungal genetic variation associated with clini-
cal isolates. To better understand how the environmental saprobe
A. fumigatus can cause disease in the non-native niche of the human
lung, we performed a GWAS study to identify fungal variants asso-
ciated with clinical isolates relative to environmental isolates as
well as fungal variants associated with the specific disease states of
invasive and chronic disease (Extended Data Fig. 5a). Using a linear
mixed model and a minor allele frequency (MAF) > 0.05, we iden-
tified 68 genomic positions with genetic variants associated with
clinical isolates relative to environmental isolates (Supplementary
Data 6). These variants included hits in 27 protein-coding genes,
comprising both genes with established roles in virulence as well as
uncharacterized ORFs (Supplementary Table 2). Among the genes
previously implicated in the virulence of A. fumigatus were the
sterol regulatory element binding protein srbA, which is involved
in both growth in hypoxia and iron homeostasis’>*, the global
transcriptional regulator pacC required for fungal invasion dur-
ing pulmonary infection’>** and the transcription factor acuK that
regulates gluconeogenesis and iron acquisition”. The analysis also
identified variants in genes whose role in virulence is less estab-
lished, including a microtubule spindle protein (Afu2g16260), a heat
shock-responsive protein (Afu4g04680), a putative polyketide syn-
thase (Afu6¢13930) and histone H1 (Afu3g06070), which is upregu-
lated in conidia exposed to neutrophils (AspDB).

The virulence potential of A. fumigatus is influenced by the host
and its underlying disease status. The factors critical for the estab-
lishment of invasive infection in a neutropenic lung are probably
not the same as those required for long-term survival in the human
lung, as in the case of chronic diseases such as cystic fibrosis and
allergic bronchopulmonary aspergillosis. We thus performed asso-
ciation analysis for genetic variants associated with isolates from
both invasive (acute) and chronic aspergillosis. There was a high
degree of overlap between the genetic variants identified in this
analysis and those from the analysis of all clinical isolates, regardless
of the disease status of the host, but fewer variants and genes were
identified for each underlying clinical disease (Extended Data Fig.
5b). We identified 21 genomic positions with SNV and short indels
significantly associated with invasive aspergillosis (Supplementary
Table 2 and Supplementary Data 6). Nine of the ten variants located
in coding genes that were associated with invasive disease were
shared with isolates from all clinical origins and included the tran-
scription factors acuK and pacC as well as the tubulin beta-2 sub-
unit tub2. Chronic disease had variants at five genomic positions,
two of which were within coding genes: Afu2g03540, an orthologue
of GPI-anchored cell protein cspA (Afu3g08990) and a L-cytosine
transmembrane transporter (Afu6g14530; Supplementary Table 2
and Supplementary Data 6).

Triazole target genes display distinct phylogenetic networks and
imbalanced levels of stabilizing selection. The paralogous genes
cyp51a (Afud4g06890) and cyp51b (Afu7g03740) encode the molecu-
lar targets of the triazoles. Despite this, most resistance mutations
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and mechanisms have been described in cyp51a. Triazole-resistant
isolates were distributed throughout the phylogeny (Fig. 2).
However, most isolates carrying the TR,,/L98H allele of cyp5la
were clustered near each other. The close genetic relationship
between isolates carrying TR,,/L98H is in agreement with previous
work suggesting a single origin of this allele®.

To investigate the evolutionary features of the triazole targets, we
built neighbour-net trees from the coding sequence of cyp51a and
cyp51b plus 1,000 bp of the up- and downstream flanking sequences.
A phylogenetic network built from cyp51a sequences showed multi-
ple splits (parallel bands), indicating conflicting genetic information
among our isolates that could arise from recombination (Fig. 3b).
Genetic recombination by isolates carrying the TR,,/L98H allele is
supported by its presence in isolates of both mating types (Fig. 2).
By comparison, a neighbour-net tree of cyp51b, which is located on
a different chromosome, did not show any conflicting genetic infor-
mation, as demonstrated by the lack of reticulation in the phyloge-
netic network (Fig. 3c). We also observed a reassortment of cyp51a
genotypes in the tree constructed from cyp51b sequences relative
to that constructed from cyp51a (Fig. 3b,c). In the tree constructed
from cyp51a sequences, isolates carrying the TR,,/L98H allele of
cyp51a were located at five distinct points on the phylogenetic net-
work at positions that did not overlap with the positions of other
cyp51a mutant alleles. In the network of cyp51b sequences, strains
carrying the TR,,/L98H allele were found only at two positions in
the network that also contained other cyp51a mutant alleles.

To assess the selective forces working on cyp51a and cyp51b, we
examined the dy/d; ratios of each gene. The d\/d; ratios of cyp51b
were significantly lower than cyp51a (mean value of 0.01 and 0.27
for cyp51b and cyp51, respectively), indicating that cyp51b is under
a stronger degree of stabilization selection than cyp51a (Fig. 3d).
Together, our results demonstrate higher levels of genetic disagree-
ment in the isolate sequences of cyp51a compared with cyp51b and
that cyp51a is under less stabilizing selection than cyp51b.

GWAS-identified genetic changes associated with triazole resis-
tance. We subsequently performed variant-based GWAS to identify
genomic changes associated with triazole resistance. Among the
294 samples with available susceptibility data, 44 were resistant to
one or more triazole. Of these, 15 contained mutations in cyp5la
that have been previously shown to confer triazole resistance (for
example, TR,,/L98H and TR,/Y121F/T289A/G448S) and 29 were
resistant by unknown mechanisms. When we performed a linear
mixed-model GWAS using a MAF > 0.01, we identified 16 genomic
positions associated with triazole resistance (Supplementary Table
3 and Supplementary Data 6). These included the known TR;, and
L98H variants in the triazole target enzyme cyp51a. However, we
repeated our analysis using a MAF>0.05 to give a more robust
variant list with fewer false positives given that association studies
with smaller datasets such as ours are underpowered for the detec-
tion of true associations with rare variants (Extended Data Fig. 5¢).
Using this more stringent criterion, we condensed our variant list

>
>

Fig. 4 | Pan-genomic differences between the clusters of A. fumigatus. a, Number of accessory genes (right) present in the genomes of isolates belonging
to each genetic cluster (left). Statistical significance was determined using a one-way analysis of variance and Tukey's honest significance test (one-sided).
The letters denote significances as a compact letter display where groups that are not significantly different from each other are indicated with the same
alphabet letter; P<0.05. The bold line in the box-and-whisker plot indicates the 50th percentile, and the box extends from the 25th to the 75th percentiles.
The whiskers denote the lowest and highest values within 1.5x the interquartile range. b, Heatmap showing the normalized abundance of GO annotations
exhibiting significant variance in frequency between the clusters (bottom; n=127 GO annotations). Statistical significance was determined using one-way
analysis of variance with Bonferroni's correction (P < 0.05). The mean number of genes containing each GO annotation across the 300 genomes is shown
(top). Note the graph is on a log;, scale but the y-axis shows actual values. €, Genome copy number for select GO annotations from b across the clusters.
d, Genome copy number for select Pfam annotations across the clusters. e, The incidence of high-impact variants (for example, frameshift and loss of
start) relative to Af293 was analysed for GO annotations that did not contain significant copy-number variation between the clusters. A selected subset of
GO categories with significant variation in the incidence of high-impact variants between the genetic clusters is shown. c-e, The boxes denote the mean
(crossbar) +s.e.m. for the isolates of each cluster.
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(Afu4g04680) and its adjacent, uncharacterized ORF Afu4g04690.
The role of these genes in triazole resistance is an exciting area to
follow up on.

to variants in three protein-coding genes (Extended Data Fig. 5d
and Supplementary Table 3). These included a microtubule bundle
protein (Afu2g16260), a FGGY-family kinase induced by heat shock
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Virulence-associated factors

Genomic change
M Gene amplificiation, additional copies present
Il Single copy, no high-impact variants
High-impact variants
M Gene loss

Clinical . Environmental

Fumagillin biosynthetic cluster
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Fig. 5 | Genomic variation among known A. fumigatus virulence-associated factors. Heatmap of 155 virulence-associated genes where variation in copy
number (gene loss or amplification) or the presence of high-impact variants (for example frameshift, loss or gain of stop codon) was observed relative to
Af293 (bottom). The source of the isolate is indicated (top). Gene names for select virulence-associated factors are annotated (right).

Discussion

In this study we defined the pan-genome of A. fumigatus using
300 genomes, including a large number of environmental isolates
largely absent from previous analyses'*-"*. Compared with A. fumig-
atus, the human commensal and opportunistic pathogen Candida
albicans was shown to have a lower level of pan-genomic diversity,
with 91% of pan-genes present in all isolates”. In the same study,
a proof-of-concept pan-genome for A. fumigatus was also built
using genomic data from 12 isolates and 83% of the pan-genome
was found to be conserved in all isolates””. By contrast, our find-
ings indicate that A. fumigatus has a much larger pan-genome and
only 69% of the genes identified are present in all isolates; this dis-
crepancy in results is likely to be due to the limited number of iso-
lates included in the former study. In addition, the average BUSCO
genome completeness of the assemblies used for their analysis
was below 85%, suggesting that notable genetic content was unac-
counted for”. Future work utilizing chromosome-level assemblies
of A. fumigatus isolates will allow for a finalized pan-genome of the
species with additional information on the evolutionary dynamics
of chromosomal organization.

Through pan-genomic analyses we discovered notable genetic
variation in virulence factors that have largely only been studied
in one or two reference strains. Although most of these cases were
infrequent and observed in fewer than 5% of the isolates, some,
such as pseudogenization of the non-ribosomal peptide synthetase
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nrps8 (or pes3), was observed in 97% of the isolates. The largest
virulence-associated genetic variation was in secondary metabo-
lism genes, an observation in line with a previous study of 66
isolates™. Both studies observed low-incidence variation in the glio-
toxin and fumagillin/pseurotin biosynthetic gene clusters as well
as high-incidence variation in the fumigermin biosynthetic gene
cluster. In addition, although our analysis quantified high-impact
genetic changes in virulence determinants, there is almost certainly
additional genetic variation that impacts fungal virulence that is dif-
ficult to predict on the global scale. The genomes generated here
provide a valuable resource for addressing how intraspecies vari-
ability in virulence determinants affects infection.

We observed an enrichment for clinical isolates in genetic clus-
ter 5, suggesting that this genetic background might be more fit in
the human environment. However, clinical isolates were distributed
throughout the phylogeny, highlighting the overall fitness of A.
fumigatus. In addition, this organism can take advantage of numer-
ous, diverging clinical diseases to establish an infection. We thus
performed a genome-wide association study (GWAS) to identify
fungal variants associated with clinical disease in general as well as
acute and chronic disease, and identified largely overlapping gene
sets. However, information on the underlying clinical disease was
not available for all samples and the isolates from chronic disease
represented a small fraction of the dataset. Future genomic analyses
including additional samples from specific underlying diseases will
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further illuminate the complex interplay between A. fumigatus and
specific host disease environments.

The rising incidence of resistance to first-choice antifungals, the
triazoles, is a major challenge for the management of A. fumiga-
tus infections. This problem is further complicated by up to 30%
of the isolates having no identifiable resistance mechanism. We
performed GWAS and identified 12 genes associated with triazole
resistance. These hits included previously identified variants in the
triazole target gene cyp51a as well as genes that had not been pre-
viously linked to triazole resistance. As a caveat, association stud-
ies are underpowered at detecting associations with rare variants.
Accordingly, we only screened for association of genetic variants
present in at least 1% and 5% of samples. Thus, there are potentially
additional resistance-associated variants that were not identified by
our analysis. This is perhaps the case for the HMG-CoA demeth-
ylase hmgl. Clinically observed mutations in this gene conferred
triazole resistance to A. fumigatus following reconstruction in an
isogenic background”. Although our analysis did not identify any
variants of this gene associated with triazole resistance, manual
examination uncovered three triazole-resistant isolates containing
single non-synonymous substitutions in hmgl (E306D, P309L and
C369R). These variants were not considered in the GWAS due to
their low prevalence in the dataset. However, the exact role these
substitutions play in the resistance of this isolate is unclear, particu-
larly for one isolate that also contained cyp51a alterations associated
with resistance (TR,/G448S). No variants were observed in hapE
and cyp51b, two additional genes linked to triazole resistance.

In summary, this study provides a comprehensive view of
the genetic diversity in this important human fungal pathogen.
Characterization of the intraspecies diversity and moving away
from a single reference genome that does not necessarily represent
A. fumigatus as a whole will ultimately help us understand its meta-
bolic and pathogenic versatility.

Methods

A. fumigatus isolates analysed in this study. Of the 300 isolates analysed, 188 (49
clinical and 139 environmental isolates) were newly sequenced as part of this study.
The 49 clinical isolates sequenced were collected by the German National Reference
Center for Invasive Fungal Infections between 2014 and 2018. Bronchial alveolar
lavage was the most frequent form of sample collection, representing 31% (15/49) of
clinical isolates. The remaining clinical samples were isolated from other pulmonary
sources, such as sputum or bronchial secretions, and the exact site of isolation

was unavailable for 10% (5/49) of the samples. The 139 environmental isolates
sequenced as part of this study were obtained from soil sampling of 11 farms in
Germany between 2016 and 2018. Sixty-four of the remaining 112 isolates had been
previously sequenced by us as part of a previous study” (BioProject PRINA595552),
while 48 had been previously sequenced by other groups and data downloaded

from the NCBI Sequence Read Archive. In total, the dataset was comprised of 213
environmental isolates and 87 clinical isolates from Europe, Asia, North America,
South America and the International Space Station. A detailed list of the isolates and
their metadata characteristics can be found in Extended Data Fig. 1.

Antifungal susceptibility testing. The 188 novel isolates included in this

study were screened for azole resistance using the agar-based VIPcheck Assay
(Mediaproducts BV) based on EUCAST E.DEF 10.1 following the manufacturer’s
protocol. Isolates that showed distinguishable germination and hyphal growth on
any of the azole-containing wells were subjected to EUCAST broth microdilution
(protocol E.DEF 9.3.2; ref. ') to define the minimum inhibitory concentrations.
Antifungal susceptibility in the clinical isolates was also assessed following
EUCAST protocol E.DEF 9.3.2 and resistance was defined in both isolate sets
using the EUCAST-established clinical breakpoints. Antifungal susceptibility data
from published isolates were obtained from the source publications detailed in
Supplementary Data 1.

Genome sequencing and quality assessment. Genomic DNA was extracted
from isolates (cultured in Sabouraud Glucose broth at 37 °C with shaking) using
a Quick-DNA fungal/bacterial miniprep kit (Zymo Research) following the
manufacturer’s suggested protocol. Library preparation and Illumina 2 X 150 bp
paired-end sequencing were performed on a NextSeq 500 v.2 by LGC Genomics
(environmental isolates) and GeneWiz (clinical isolates). Raw FASTQ files were
filtered for quality using the following steps: adaptor sequences were removed,
bases with an overall quality score of <20 were trimmed and reads shorter than

1534

30bp were removed. The remaining sequences were verified for quality using
FastQC v.0.11.5 (Babraham Institute).

Reference-guided genome analysis. High-quality sequencing reads were aligned
to the A. fumigatus Af293 reference genome v.2015-09-27 using BWA-MEM
v.0.7.8-r779-dirty". PCR duplicates were marked using MarkDuplicate from
Picard v.2.18.25. Variant calling to detect SNV's and short indels was performed
using the GATK Toolkit (v.4.1.0.0)*'. Briefly, before variant calling, BAM files were
recalibrated using GATK BaseRecalibrator, ApplyBSQ and an in-house dataset

of known SNVs generated from the Af293 reference genome and SNVs present

in FungiDB, release 39, with >80% read frequency and base call >20. Variant
detection was performed using HaplotypeCaller and high-quality variants were
identified using GATK best practices (SNP: QD <2.0|| MQ <40.0 || FS>60.0 [| MQ
RankSum < —12.5 || ReadPosRankSum < —8.0; indel: QD <2.0||FS>

200.0 || ReadPosRankSum < —20.0). For downstream analyses, individual VCF
files were combined into a single file using bcftools v.01.1.1. Variant function

was predicted using SnpEff v.4.3t"” and 1,000 bp as the cutoff for upstream

and downstream flanking of the ORFs. To balance the analysis of high-quality
variants with the potential bias introduced by true variants being discarded due

to insufficient support, individual variants that failed the quality filter in a sample
were included in the variant dataset if at least 95% of the total samples with a
variant at that position passed the quality control. This hybrid-filtered variant
dataset was used as the input for GWAS and genetic diversity analyses.

A. fumigatus has two mating types (MAT1-1 and MAT1-2), which are encoded
within idiomorphic loci on chromosome 3 (refs. ***). The mating type was
assigned by calculating the genomic coverage at Afu3g06160 and Afu3g06170 using
the knowledge that MAT1-2 isolates, including the reference strain Af293, contain
a truncated copy of the HMG box mating-type transcription factor (Afu3g06170)
and an additional gene (MAT1-2-4; also known as Afu3g06160) that are absent
in MAT1-1 isolates. Isolates showing zero coverage in the genomic region of
Afu3g06160 following alignment to Af293 were assigned the mating type MAT1-1.
Samples that were not assigned the mating type MAT1-1 were confirmed to be the
mating type MAT1-2 through calculation of the genomic coverage at MAT1-2-1
and MAT1-2-4. The ratio of coverage for MAT1-2-1 and MATI-2-4 relative to the
genome-wide depth of coverage was between 0.75 and 1.25 for all samples that
were assigned the mating type MAT1-2.

Analysis of genomic diversity. Genomic diversity statistics were calculated based
on SNV data generated as described earlier. The nucleotide diversity () was also
calculated using VCFtools* with a window size of 5,000 bp and a 500 bp step size. To
ensure that differences in sample sizes between the isolate populations did not skew
the results, environmental and clinical samples from the acute disease group were
downsampled to match the number of isolates from chronic disease in the dataset.

De novo genome assembly and annotation. Genomes were assembled de novo
using IDBA-hybrid v.1.1.3 with the Af293 reference genome as a guide™. The
quality of the genome assembly was assessed using QUAST v.5.0.2 (ref. 7).

Contigs that were shorter than 500 bp or possessing >95% identity and coverage
overlap with other contigs were removed. Gene prediction and functional
annotation were performed using Funannotate pipeline v.1.5.2-4cfc7f8 (ref. ),
integrating the following steps. Assemblies were masked for repetitive elements
using RepeatMasker (v.4.0.8)* using Dfam and RepBase repeat libraries™. Gene
prediction was performed using EvidenceModeler v.1.1.1 (ref. *'), incorporating
evidence data generated using GeneMark-ES* (minimum gene length, 120 bp;

and maximum intron length, 3,000bp) and Augustus™ (training set, A. fumigatus).
Gene models predicted to encode peptides shorter than 50 amino acids or
transposable elements, or to include span gaps were removed. Transfer-RNA
prediction was performed using tRNAscan-SE v.2.0 (ref. **). Functional annotation
was predicted using PFAM v.43 (ref. ), MEROPS v.12 (ref. **), dbCAN2 release 7.0
(ref. °”) and BUSCO v.4.1.4 (ref. **). KofamScan v.1.2.0-0 (ref. **) was used to assign
Kyoto Encyclopedia of Genes and Genomes orthologues to predicted protein
sequences and InterProScan v.5.19 (ref. ©°) was used to identify the protein families.

Pan-genome analysis. OrthoFinder was used to identify and cluster orthologous
genes’'. Clustering was performed on the protein sequences of the 300 A. fumigatus
genomes analysed in this study. In addition, protein sequences from the reference
strains Af293 and A1163 were added to improve the identification of the cluster
functions. Orthologous gene clusters were assigned a gene identifier from Af293 if
they grouped with a single sequence of Af293. If a cluster was not assigned a Af293
gene identifier, but a single A1163 sequence was present, the cluster was assigned the
gene identifier from A1163. Orthologous clusters that could not be grouped with a
single Af293 or A1163 gene were queried against the NCBI RefSeq non-redundant
protein database using DIAMOND using the following criteria: E-value cutoff of
1% 10%, percent identity >70%, minimum query coverage > 50% and minimum
subject coverage > 50%. If at least 70% of the protein sequences in the cluster were
assigned to any protein in the NCBI non-redundant protein database, the cluster
name was assigned to the name of the RefSeq with the highest contribution. If only
50-70% of the protein sequences in a cluster were assigned to the same protein,

the matching sequences were assigned the name of the RefSeq match and the
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remaining sequences were left unassigned. The remaining clusters without a match
in Af293, A1163 or the non-redundant database were considered novel clusters

and had putative functions assigned based on their Funannotate (KofamScan and
InterProScan) prediction. For these clusters that were not present in Af293 or the
non-redundant database, only clusters present in at least 5% of samples were included
to limit false gene predictions. The pan-genome was defined based on gene presence/
absence variation in the approved cluster meeting the above criteria. Enrichment
analysis was performed using a Fisher’s exact test with Bonferroni’s correction.

Whole-genome phylogeny. The core genome phylogeny (Fig. 2) was inferred from
5,380 single-copy orthologous genes shared by the two reference strains Af293 and
A1163, the 300 A. fumigatus genomes analysed in this study, the related species A.
oerlinghausenensis and A. fischeri, which was used to root the tree. Orthologues
were identified and clustered using OrthoFinder®'. Cluster peptide sequences were
aligned using MUSCLE v.3.8.1551 (ref. **). The resulting peptide alignment was
back-translated to a nucleotide sequence using PAL2NAL® and concatenated. The
phylogeny was inferred from this core nucleotide alignment using IQ-TREE 2 (ref.
). The ModelFinder Plus module of IQ-TREE 2 was used to identify GTR+F +R8
as the best fitting substitution and site heterogeneity models for phylogeny
construction. Branch support was computed using UFBoot2 ultrafast bootstraps*.
ClonalFrameML® was then used to account for recombination in the phylogeny
and rescale branch lengths accordingly.

The SNV-based phylogenies (Extended Data Fig. 4c,d) were constructed by
first filtering out loci that showed zero coverage in any sample. For the phylogeny
constructed from neutral loci, fourfold degenerate sites were used. For both the
non-zero coverage and neutral loci phylogenies, SNVs were concatenated and used
as the input for IQ-TREE 2. As with the core nucleotide phylogeny, ModelFinder
was employed and identified GTR + F + ASC + R8 as the best fitting model for the
non-zero coverage phylogeny and TVM 4+ F+ ASC + R8 as the best fitting model
for the neutral loci phylogeny. Branch supports were calculated using UFBoot2.

Genetic clusters were identified using discriminant analysis of principle
components™. To create phylogenetic network trees with clearly visible branches
and network structure, the genomes were downsampled by randomly selecting ten
genomes per cluster, resulting in a total of 70 samples. Neighbour-net phylogenies
were inferred and visualized using the R package phangorn (v.2.5.5)"" based on
a similarity matrix of core nucleotide sequences for the whole-genome network
phylogeny and nucleotide sequence alignment for the cyp51a and cyp51b genes with
network phylogenies. The phylogenies were visualized using the R package Ggtree®*.

Estimation of dy/d;. The protein-coding sequences of each gene cluster were
aligned using MUSCLE v.3.8.1551 (ref. ?). PAL2ZNAL® was then used to convert
the resulting amino-acid alignment to a nucleotide alignment that records whether
a base-pair substitution resulted in a synonymous or non-synonymous change.
Finally, the CODEML package of PAML® was used to calculate the d\/d; value of
each orthogroup. Median values were used for comparison.

Gene co-occurrence in the pan-genome. Gene co-occurrence networks were
computed using Coinfinder’® using a presence/absence matrix of the pan-genome
and a significance cutoff of 0.05 by binomial exact test with Bonferroni’s correction.
Networks were visualized using the R package igraph.

SNV-based GWAS and pan-GWAS. Before analysis, variant classes were assigned
as follows: C, SNVs; G, insertions; D, deletions; and A, reference base. VCF files
were converted to plink format using VCFtools" and filtered using a MAF of 0.05,
which resulted in 352,306 SNVs and 24,726 indels for analysis. Positions with a
missingness, or the number of individuals where there was SNV information was
available, of >1% were removed from the analysis. The GWAS was performed
using the EMMA eXpedited (EMMAX) software package”, applying a linear mixed
model with azole resistance (susceptible/resistant), source (environmental/clinical)
or clinical disease (chronic/acute infection) as the phenotypic traits. The GEMMA,
treeWAS and ECAT software packages were also tested in the framework of this
project. EMMAX was ultimately selected over these tools because it accounted

for sample structure the best, providing the least-inflated Q-Q plots (Extended
Data Fig. 5a,c). Significant variants were determined using a cutoff of P<0.01

with false-discovery-rate correction. The pan-GWAS was performed using a
presence/absence matrix of the orthologous gene clusters, where zero denoted
absent gene clusters and one represented gene clusters that were present in the
genome. Associations between pan-gene presence/absence, isolate source and azole
resistance were calculated using Scoary v.1.6.16 (ref. 7).

Availability of isolates. The isolates that were sequenced in this study were
submitted to and are publicly available in the Jena Microbial Resource Collection.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
Raw FASTQ files for the isolates sequenced in this study were uploaded to
the NCBI Sequence Read Archive and are publicly available under BioProject
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PRJNAG697844. The accession numbers for the publicly available sequence data are
listed in Extended Data Fig. 1. Annotated genome assemblies for sequence data
generated in this study and for 64 isolates sequenced by us in a previous study”’
were submitted to NCBI GenBank and are available under the NCBI BioSample
numbers listed in Extended Data Fig. 1. Datasets from FungiDB, release 39, are
available at https://fungidb.org/fungidb/app/downloads/release-39/. The NCBI
RefSeq non-redundant protein database v.22.01.08 is accessible at https://ftp.ncbi.
nlm.nih.gov/blast/db/cloud/2018-01-22/. Source data are provided with this paper.
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Extended Data Fig. 1| The pan-genome of A. fumigatus. (A) Most frequently occurring Pfam domains among the core and accessory genomes. Values
represent the total sum of domain-containing proteins among all 300 genomes. (B) Conservation of Af923 genes in the A. fumigatus pan-genome, arranged
by chromosomal location in Af293. Each gene in Af293 is represented by a uniform-sized band that is coloured according to its prevalence among the 300
isolates analysed. Genes not in Af293 and their relative frequency are depicted at the bottom.
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Extended Data Fig. 2 | Nucleotide diversity () of A. fumigatus isolates from the environment, invasive disease and chronic disease. 7 was calculated
using 5kb sliding windows across with genome with a 500 bp step size. Due to the underrepresentation of isolates from chronic disease in the dataset,
isolates from the environment and invasive disease were downsampled to match the number of isolates from chronic disease (n=19 isolates per group).
The bold line in the box-and-whisker plot indicates the 50" percentile, and the box extends from the 25t to the 75 percentiles. The whiskers denote the
lowest and highest values within 1.5 interquartile range. Statistical significance determined by two-sided Mann-Whitney U test with Bonferroni correction.
*** represents P< 0.001. Exact P-values are: chronic vs. environmental: P=97e-39; chronic vs invasive: P=1.6e-78; invasive vs. environmental: P="5.6e-14.
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Extended Data Fig. 3 | Phylogenies constructed from the of 300 A. fumigatus using de novo assembled genomes and reference-base analyses.
(a-b) Core genome phylogeny built from nucleotide coding sequence of 5,380 single-copy orthologous genes shared by all 300 A. fumigatus isolates,

A. oerlinghausenensis and A. fischeri (alignment length = 9,178,893 bp). Panel a shows the phylogeny rooted with A. fischeri and depicts the scaled
relationship between the two outgroups and the A. fumigatus samples. Panel b depicts this phylogeny unrooted and with outgroups removed for comparison
to the other phylogenies. (c) Phylogeny from concatenated SNVs following read alignment to Af293 and variant calling (n=341,031 base pair). Genomic
positions with zero coverage in any sample were removed from the alignment. (d) SNV-based phylogeny constructed from 4-fold degenerate (neutral) loci
(n=35,052 base pair).
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criteria (BIC) was used to assess the best supported number of genetic clusters for the dataset. The input for analysis was either (a) a non-gapped core
nucleotide alignment from 5,830 single-copy orthologous genes (b) a gene count matrix from orthogroup-based clustering of pansequences or (c) or

whole-genome SNV data with of positions with zero genomic coverage in any isolate in the dataset excluded.

68

a b
s s
8 8
? ]
H H
® P ® s
' 4
e e !
° -
¥ [ ¥
8 8
2 ]
& H
© ©
e 2 =
of o o d/
T [ T
c d
© ©
e e
- -
K} T ] T

15

15

Invasive

Chronic

MAF 0.01
9

Extended Data Fig. 5 | GWAS for variants associated with clinical isolates and triazole resistance. (a & c¢) Q-Q plots for association with isolate source
(a; clinical vs. environmental) and triazole resistance (c; resistance to one or more triazole vs. susceptible to all examined; c). Four software were utilized:
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produced outputs where the expected p-value distribution (x-axis) best matched the observed p-values (y-axis). (b) Venn diagram showing the gene
overlap between GWAS for all clinical strains relative to environmental and significant genes specific to acute and chronic disease. (d) Venn diagram
showing the gene overlap for association with triazole resistance when minor allele frequencies (MAF) of 0.01and MAF 0.05 were used.
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Overview:

Here, I studied within- and cross-kingdom interactions between gut bacteria and fungi in
healthy human individuals longitudinally. I investigated how these interactions are shaped
under external perturbation by oral antibiotic administration over 4 different time points. A
combination of metagenomics, metatranscriptomics, ITS sequencing, and advanced
statistical approaches (MGS, comparative genomics, co-abundance network analysis)
allowed me to assess the resilience of the microbiome in terms of functional potential and
expression. Strict anaerobe bacteria suffered the most from treatment. However, while
some level of recovery was observed in the bacterial community, the effects on the fungal
community seemed more stochastic and lasting. The fungal opportunist Candida
abundance increased shortly after treatment but was effectively inhibited later.
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Abstract

Background: Antibiotic treatment has a well-established detrimental effect on the gut bacterial composition, but
effects on the fungal community are less clear. Bacteria in the lumen of the gastrointestinal tract may limit fungal
colonization and invasion. Antibiotic drugs targeting bacteria are therefore seen as an important risk factor for
fungal infections and induced allergies. However, antibiotic effects on gut bacterial-fungal interactions, including
disruption and resilience of fungal community compositions, were not investigated in humans. We analysed stool
samples collected from 14 healthy human participants over 3 months following a 6-day antibiotic administration.
We integrated data from shotgun metagenomics, metatranscriptomics, metabolomics, and fungal ITS2 sequencing.

Results: While the bacterial community recovered mostly over 3 months post treatment, the fungal community
was shifted from mutualism at baseline to competition. Half of the bacterial-fungal interactions present before drug
intervention had disappeared 3 months later. During treatment, fungal abundances were associated with the
expression of bacterial genes with functions for cell growth and repair. By extending the metagenomic species
approach, we revealed bacterial strains inhibiting the opportunistic fungal pathogen Candida albicans. We
demonstrated in vitro how C. albicans pathogenicity and host cell damage might be controlled naturally in the
human gut by bacterial metabolites such as propionate or 5-dodecenoate.

Conclusions: We demonstrated that antibacterial drugs have long-term influence on the human gut mycobiome.
While bacterial communities recovered mostly 30-days post antibacterial treatment, the fungal community was
shifted from mutualism towards competition.
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Background

The human gut microbiome is a complex ecosystem of
bacteria, fungi, archaea, and phages [1]. The majority of
research has focused on the bacterial part of the gut
microbiome and their role in health and disease [2-4].
However, the critical role of fungi in host homeostasis
remains is less well studied. Fungal dysbiosis may in-
crease symptoms of inflammation, especially in the gut
lumen [5]. Treating mice with fluconazole, an antifungal
drug, increases the immune response and severity of ex-
perimentally induced colitis [6] but also induced allergic
airway disease [7]. Fluconazole seems to substantially
impact only certain types of fungi such as Candida, but
not Aspergillus species [6].

Antibiotic treatment has a well-established detrimental
effect on the composition of gut bacteria [8—11], but the
effect on the fungal community is less clear. Neverthe-
less, antibiotic use is linked to overgrowth of particular
fungi at multiple body sites [7, 8, 12]. Noverr et al. used
a murine model to induce development of airway aller-
gies by enriching for Candida and Aspergillus species in
the gut followed by antibiotic treatment [10]. Theoretic-
ally, commensal bacteria may limit fungal colonization
by production of antifungal compounds [13], competi-
tion for available nutrients, cellular contact, chemotaxis,
or physiochemical changes to the local environment [14,
15]. Fungi defend themselves by secreting molecules,
forming biofilms or forming mutualistic bonds with
other bacteria. Candida albicans, for example, secretes
the metabolite farnesol which interferes with the
quorum-sensing of Pseudomonas aeruginosa [14, 15].
However, C. albicans can also enhance biofilm forma-
tion by Staphylococcus aureus in vitro. Pseudomonas
fluorescens promotes the growth of the mycorrhizal fun-
gus Laccaria bicolor in soil. Which bacterial-fungal in-
teractions take place in the gastrointestinal tract of
humans remains to be investigated. To date, the com-
plex community of gut microbes is thought to be coe-
volved to maintain relative homeostasis in healthy
humans [16].

Defining gut fungal consortia and their stability, resili-
ence, and dynamics may reveal cause-effect relationships
with bacteria. Although evidence is available on
bacterial-fungal interactions in the gut at the taxonomic
level [13-15], we do not have a comprehensive under-
standing of how bacterial functions influence the growth
of particular fungi. Bacterial microbiome studies were
often performed by amplifying the DNA of the riboso-
mal 16S gene. However, metagenome shotgun sequen-
cing allows species- and sometimes even strain-level
taxonomic classification, as well as the estimation of
gene functions [17-19]. Furthermore, gene expression in
microbial communities is not strictly matched with
metagenomic potential [20]. Often, studies neglect the

Page 2 of 20

high transcriptional activity of some less-abundant spe-
cies to metabolic functions.

In order to better understand the microbiome, we pro-
vide data to follow both, the bacterial and fungal com-
munities of the lower human gastrointestinal tract over
3 months after antibiotic treatment concomitantly. We
provide an overview of how the mycobiome and its in-
teractions with the bacterial microbiome change and we
reveal dependencies of specific fungal species from bac-
terial functions at DNA and RNA levels.

Results

Antibiotic treatment triggers long-lasting dynamics at
fungal species level

We included 14 healthy human participants, 12 receiving
the antibiotic intervention and 2 controls. Stool samples
were collected at 4—6 time points per participants. We
used 5 different antibiotics (one for each pair of treated
participants). Samples were collected 15 days before ad-
ministration of antibiotics (baseline), at 4 and 6 days of
treatment (during treatment [DT]), 15 and 30 days after
(early post treatment [EPT]), and 90 days after treatment
(late post treatment [LPT]). We built high-quality librar-
ies for ITS2 sequencing for 59 of 74 available stool sam-
ples. We estimated the fungal relative abundance using
the PIPITS pipeline [21]. ITS sequences were clustered
into operational taxonomic units (OTU) and taxonomic-
ally annotated using Mothur [22]. Antibiotic treatment
led to a significant increase in species-level fungal alpha
diversity during early post treatment compared to base-
line (Fig. la; two-sided Wilcoxon rank-sum test, p =
0.016, g = 0.094). Controls showed a considerable in-
crease as well, although statistical significance could not
be estimated due to the number of subjects (n = 2). At
the level of individual antibiotic drugs (Suppl. Fig. 1),
Augmentin and ciprofloxacin more than doubled base-
line diversity. In contrast, changes for doxycycline and
azithromycin were mild. Beta diversity using Bray-Curtis
was not significantly different between time points in
treated samples (Fig. 1b; PERMANOVA, p > 0.05).

We subsequently investigated differences in fungal
genera relative abundance over time. Candida genus in-
creased 15-fold from baseline to treatment (g = 0.004;
Suppl. Table 1). Candida increase was observed for all
antibiotics except Augmentin (Suppl. Fig. 2). At the spe-
cies level, results were more distinct (Suppl. Table 2)
and for this analysis, we considered only prevalent fungal
species (defined as present in 15% of samples). Compar-
ing relative abundance changes from baseline to during
treatment, only Saccharomyces sydowii decreased signifi-
cantly (g < 0.05). However, the opportunistic pathogen
Candida albicans tended to increase 7-fold (g < 0.07)
and was affected the most by Augmentin and doxycyc-
line (Suppl. Fig. 3). Furthermore, C. albicans was
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Fig. 1 Antibiotic treatment induces fungal competition. Statistical testing by Wilcoxon signed-rank tests with p values adjusted for multiple testing
using false discovery rate (FDR) (g = FDR[p]). Not significant, ns: g 2 0.05; *q < 0.05; ¥*q < 0.01; **g < 1e— 3; *¥**q < le—4; ¥**¥*q < Te—5. a, b Diversity
analysis of samples from treated participants using PIPITS operational taxonomic units (OTU) relative abundances. a Boxplots showing Shannon (left)
and Gini-Simpson indexes (middle) and species richness (right) with median (centerlines), first and third quartiles (box limits), and 1.5x interquartile
range (whiskers). No significant changes were observed (g < 0.05). b Non-metric dimensional scaling of Bray-Curtis distance as a measure of beta
diversity. No significant differences (p < 0.05) were found between time points using PERMANOVA. ¢, d Co-abundance network analysis using BANOCC.
Only OTUs with prevalence 10% and significant correlations (95% credibility interval) with || 2 0.3 were used for network construction. Networks were
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Fungal networks. Node colour indicates fungal phyla. Blue, Ascomycota; red, Basidiomycota; green, Mucoromycoting; grey, unknown. Edge colour
indicates correlation type. Red, positive; blue, negative. d Network properties. Bar plots show number of nodes that increased and decreased in node

degree centrality

detected in nine participants after treatment even  which were not present before or after treatment. Many
though in only five at baseline. common fungi like Saccharomyces spp., opportunistic

Twenty-three species changed significantly from treat-  pathogens such as C. albicans, C. parapsilosis, and
ment to early post treatment periods (g < 0.05), many of  Malassezia restricta—a fungus recently connected to
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pancreatic cancer [23]—decreased in abundance,
whereas less common fungi such as Candida boidinii in-
creased in abundance. A minor decrease in abundance
of C. albicans was also observed in controls, but not
nearly as much.

To test for long-lasting changes, we compared relative
abundances at baseline to late post treatment and found
six species with significant changes. We further noticed
that only 14 fungal species passed the prevalence filter at
baseline and late post treatment, whereas up to 44 were
observed during and early post treatment, suggesting
that antibiotics temporarily created a niche for less com-
mon fungal species. In summary, the number of de-
tected, prevalent species more than doubled during
treatment and early post treatment, but these species
had not successfully colonized 3 months later. Most
changes were found within the first month after treat-
ment, implying a delayed response of the fungal commu-
nity to the treatment. Over one third of the fungal
species present before treatment showed significant
changes even 90 days after treatment.

Antibiotic treatment increases co-exclusion in fungal
communities

We evaluated changes induced in the mycobiome from
antibiotic administration by creating co-abundance net-
works based on ITS abundances. Networks were created
for baseline and for during, early, and late post treat-
ment periods (Fig. 1d). Only significant edges (95% cred-
ibility) with absolute correlation of at least 0.3 were
retained. Generally, we found significant correlations
within and between Ascomycota, Basidiomycota, and
Mucoromycotina species. At baseline, we found mostly
positive correlations (240 positive and 10 negative)
among 57 fungal species. During treatment, the number
of correlations almost doubled (406 positive, 17 nega-
tive), whereas at early post treatment, correlation num-
bers doubled again. In contrast to the previous
networks, more than half of the significant correlations
were negative (399 negative, 550 positive), implying a
major switch from mutualistic relationships at baseline
and during treatment to competition between fungal
species as they try to re-establish a stable community.
We also observed these negative correlation patterns
within and between fungal phyla. At late post treatment,
this conflict persisted. Most co-abundance patterns had
disappeared—only 25 correlations among 15 fungal spe-
cies remained. We confirmed these trends by testing for
significant changes in node degree centrality (Fig. le;
Suppl. Table 3).

In conclusion, based on diversity, abundance, and net-
work analysis, we observed that gut fungal communities
started to change alongside the bacterial communities
during treatment. Many fungi failed to colonize
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successful and competition emerged during early post
treatment, leading to changes that lasted 90 days after
treatment. The human mycobiome became more sto-
chastic, leading to strikingly less co-abundance patterns
among fungal species. These findings indicated that the
gut mycobiome was not resilient enough to recover from
the influence of antibiotics within 3 months.

Changes in functional metagenomic diversity from
antibiotics are not strictly followed by changes in
metatranscriptomic diversity

We characterized the subjects’ microbiomes at baseline
(Suppl. Fig. 4) and found that bacterial communities
were dominated by bacteria from the Bacteroidetes and
Firmicutes phyla but with strong variation in ratio, as ex-
pected in healthy individuals [16, 24]. In line with previ-
ous studies, we observed a significant decrease in
bacterial species alpha diversity (Suppl. Fig. 5). Cipro-
floxacin had the strongest (-40%) and cefuroxime the
weakest negative effect (- 5%), whereas controls only an
insignificant increase (2%) (Suppl. Fig. 6). Beta diversity
was significantly different during antibiotic treatment,
but not in controls. In addition, we found that antibiotic
treatment had the strongest influence on moderately
abundant bacterial species (Suppl. Fig 5). We then esti-
mated bacterial growth using GRiD [25] (Suppl. Table
4). In antibiotic-treated subjects, median growth of spe-
cies decreased significantly during treatment compared
to baseline as expected (p = 0.009, r = — 0.56, Suppl. Fig.
7). Interestingly, the number of species with growth rate
greater 1 increased significantly (p = 0.0016, r = 0.68).

We subsequently investigated functional changes
based on bacterial gene family abundance in the meta-
transcriptome and the metagenome. Alpha diversity of
relative DNA gene family abundance was significantly
reduced during treatment compared to baseline (Fig. 2a;
q < 0.05), but not in controls (Suppl. Fig. 8). Despite the
changes at the DNA level, the alpha diversity for relative
RNA gene family abundance did not change significantly
between time points (Fig. 2b; g > 0.05).

We investigated differences in beta diversity of gene
family abundances based on Bray-Curtis dissimilarity (Fig.
2¢, d). We performed ordination and statistical testing
using distance-based redundancy analysis (dbRDA) using
“subject id” as a constrained variable and “sample time” as
an independent variable. In treated subjects, both DNA
and RNA functional abundances showed significant differ-
ences in centroids between timepoints (Fig. 2c, d; DNA: F
=2, p =0.002, Df = 5; RNA: F = 1.6, p = 0.037, Df = 5).
This was not observed in controls (Suppl. Fig. 9). Pairwise
dbRDA revealed a significant difference from baseline to
treatment in DNA functional abundance (F = 3.13, g =
0.014, Df = 1; Suppl. Table 5). For RNA abundance, we
observed only a trend (F = 1.6, p = 0.085, Df = 1). Overall,
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Fig. 2 Metagenomic contributional alpha diversity of metabolic function is severely reduced by antibiotic treatment. Diversity analysis of metagenomic
and metatranscriptomic samples from participants using HUMANN?2 relative abundances. a, b Alpha diversity of gene family relative abundances using
a metagenomic and b metatranscriptomic data. Boxplots show species richness (left), Shannon (middle), and Gini-Simpson indexes (right) at 15 days
before treatment (baseline), during (DT), and 30 days (EPT) and 90 days post treatment (LPT). Median (centerlines), first and third quartiles (box limits),
and 1.5x interquartile range (whiskers) are shown. Lines between boxes connect same-donor samples. Statistical testing was by Wilcoxon signed-rank
test with p values adjusted for multiple testing using false discovery rate (g; ¥0.01 < p < 0.05). ¢, d Constrained ordination of Bray-Curtis dissimilarity
based on gene family abundances measured using principle coordinate analysis (PCoA). We used distance-based redundancy analysis to show the
explained variance by sample time points while accounting for participant-specific influence. e-g Contributional Shannon diversity of MetaCyc
pathways of baseline and treatment samples. e Top, metagenomic and bottom, metatranscriptomic contributions. Mean (solid lines) and first and third
quartiles (transparent ribbons) are shown. f Mean contributional diversity per participant per time point for DNA (top) and RNA (bottom). g Species with
—) contribution to pathways based on two-sided Wilcoxon signed-rank test adjusted for

these findings implied that the genetic potential of the
bacterial community was reduced during treatment as ex-
pected. However, gene expression changes were consider-
ably less compared to the metagenome and not as
consistent among participants. Similarly, antibiotic

treatment had no significant effect on the transcriptional
activity of the core and variable metabolic pathways (as
defined in [20]; Suppl. Fig. 10). In agreement with previous
findings [20], the metatranscriptome was much more dy-
namic than the metagenome.
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Diversity of bacterial contribution to metabolic pathways is
systematically reduced by antibiotics

We investigated if the contribution of species to a given
pathway changed significantly over time [26] (Fig. 2g, h;
Suppl. Fig. 11). By DNA, the median contributional
alpha diversity of antibiotic-treated participants de-
creased significantly from baseline to treatment (Shan-
non: log, fold-change [If2] = - 0.4; ¢ = 0.015; Simpson:
If2 = - 0.24; ¢ = 0.015). Controls showed no significant
changes (g > 0.05). In contrast, we did not observe sig-
nificant changes in alpha diversity measures for RNA (g
> 0.05). We further investigated if the contribution of
single bacterial species to metabolic pathways changed
significantly between time points. We implemented a
compositionality test as described in Palleja et al. [27],
considering all pathways, and found 9 bacterial species
whose contribution significantly changed (¢ < 0.1; Fig.
2i). Important gut commensal bacteria including Akker-
mansia muciniphila, Faecalibacterium prausnitzii, Odor-
ibacter splanchnicus, and Bifidobacterium adolescentis
contributed less during treatment. A decline of such
butyrate-producing species following antibiotic treat-
ment has been observed before [11, 27]. In contrast, the
multiantibiotic-resistant bacterium Clostridium bolteae
[28] contributed more.

Antibiotic treatment lastingly reduced bacterial-fungi
interactions

We increased the functional resolution of bacterial species
using the metagenomic species (MGS) concept [29],
which allows identification of taxonomically unidentified
bacterial species. We further improved the method to
identify some bacteria at the strain level based on their
genetic potential. In contrast to previous studies, we used
HUMAnNN?2 [19] gene family profiles as references in ac-
cordance with a published protocol [30]. HUMAnN2-
derived profiles allowed us to retrieve MGS with high pur-
ity (i.e. more than 95% of genes in an MGS group origi-
nated from the same species; Suppl. Table 6). We then
identified 26 MGS with significant change in relative
abundance during treatment compared to baseline (Suppl.
Fig. 12; Suppl. Table 7), which was not observed in con-
trols. Six of these had species-level annotation and were
consistently decreased independent of the antibiotic drug
used (Ruminococcus lactaris, Dialister invisus, Odoribacter
splanchnicus, Bacteroidetes bacterium ph8, Akkermansia
muciniphila, Bifidobacterium adolescentis; full list in
Suppl. Figs. 13 and 14).

We combined MGS and ITS relative abundance data
and used BAnOCC [31] to infer intra- and cross-
kingdom associations among bacterial and fungal spe-
cies. We created co-abundance networks at the species
level for baseline and for during, early post and late post
treatment periods independently as described above
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(Suppl. Fig. 15). In order to find significant changes in
the structure of co-abundance networks, we compared
differences in node degree. The degree of a node is de-
fined by the number of significant correlations with that
node. Hence, an increase in node degree implies an in-
crease of potential interactions, i.e. an increase of poten-
tially relevant effects. To study changes in bacterial-
fungal interactions, we tested for significant differences
in node degree centrality considering only cross-
kingdom correlation (Fig. 3a, c¢; Suppl. Table 8). We
observed a temporal increase in node degree during
treatment compared to baseline (g = 0.055). From
during to early post treatment, this degree dropped (g =
0.0185) and decreased further at late post treatment (g =
0.0185). To find lasting changes, we compared baseline
against late post treatment and found significantly re-
duced degree (g = 0.00134). Considering these results in
addition to the loss of correlations observed in the fun-
gal network, we conclude that antibiotic treatment was a
triggering event for disturbances in bacterial-fungal in-
teractions. These disturbances ultimately drove gut bac-
teria and fungi towards independence.

We looked more closely at co-abundance patterns in-
volving bacterial species with significant changes in
abundance or pathway contribution during treatment
(Fig. 3c; all significant correlation in Suppl. Table 9). C.
bolteae increased in relative abundance during treatment
and correlated positively with many fungal species dur-
ing treatment, such as the opportunistic pathogen C.
albicans, or the mycotoxin producers Aspergillus penicil-
lioides and Penicillium glandicola. In contrast, O.
splanchnicus was persistently negatively correlated with
opportunistic pathogens from the genera Candida,
Aspergillus, and Alterna. O. splanchnicus is part of the
healthy gut community but rarely investigated in terms
of its role. Roseburia inulinivorans was negatively associ-
ated to opportunistic pathogens C. albicans, C. sake, and
P. glandicola. Low Roseburia abundance was associated
with higher glucose levels and ulcerative colitis [32, 33].
Likewise, Eubacterium rectale was negatively associated
with C. albicans and P. glandicola. Depending on the
diet, Eubacterium rectale decreased glucose and insulin
levels [34]. Notably, butyrate-producing species were
negatively associated with at least one opportunistic fun-
gal pathogen.

At last, we considered bacterial-fungal correlations to-
gether with MGS abundance changes during treatment
and fungal abundance changes in early post treatment.
Bacterial species with decreased relative abundance and
negative correlation to a fungus that showed an increased
abundance were considered competitors. For example, O.
splanchnicus was decreased during treatment, and showed
negative correlation to C. albicans. A list of possible
bacterial-fungal competitors is shown in Suppl. Table 10.
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(See figure on previous page.)

Fig. 3 Cross-kingdom interactions among fungi, bacteria species, and pathway expression. a, b Co-abundance networks at indicated time points
using BANOCC with a 25% and b 50% prevalence filter. Only significant edges are shown (based on 95% credibility interval) with || = 0.3.
Negative correlations (blue), positive correlations (red). Networks are left (baseline) to right (late post treatment). a Correlations among fungal and
bacterial species based on metagenomic species (MGS) and internal transcribed spacer (ITS) relative abundance. b Correlations among fungal
species and pathway expression based on HUMANN2 RNA pathway and internal transcribed sequence relative abundance. Superpathways and
other pathways that did not fit into the six major categories were grouped as "other”. ¢ Estimated correlation between bacterial and fungal
species during treatment. Positive (red), negative (blue). Error lines show 95% confidence intervals. d Effect size of node degree change. r values
change from — 1 (100% decrease) to 1 (100% increase). (Top) MGS and ITS relative abundances. (Bottom) RNA-PWY and ITS relative abundances.
Statistical testing for significant changes in node degree was performed using a two-sided Wilcox signed-rank test. P values were adjusted for
multiple testing using FDR. Node degree was determined independently for baseline, during (DT), early post (EPT), and late post treatment (LPT).
Significance is indicated by symbols (ns, g = 0.05; *g < 0.05; **q < 0.01; ***q < le—3; ¥**q < le—4; *****q < Te-5)

Prevalent fungi correlated with pathway expression during
treatment

We investigated relationships among metabolic pathway
expression levels (MetaCyc database—PWY; metatran-
scriptomic abundance) and fungal ITS abundance (Fig.
3b) by creating co-abundance networks analogous to the
bacteria-fungi network. We tested for significant changes
in node degree considering only correlations between
fungal OTUs and pathway expression. From baseline to
treatment, node degree increased (g = 0.0185; Fig. 3d).
Most correlations were positive (146 of 189) during
treatment in contrast to baseline (82 of 153). Hence, and
despite the increase of variance of metatranscriptome di-
versity during treatment, we still observed co-abundance
with fungal species during treatment. This observation
suggested a mutual influence between the fungal com-
munity and expression of bacterial metabolic pathways.
About one third of correlations at baseline involved C.
albicans and one third involved Saccharomyces. After
treatment, node degree dropped significantly to below
baseline levels (during vs. early post: ¢ = 4e— 11; early vs.
late post: ¢ = 0.0185; baseline vs. late post: g = 3e- 15).
Almost all C. albicans co-abundance patterns were lost
at 90 days post treatment, with Saccharomyces genus ac-
counting for over 70% of remaining correlations (24 of
31). Overall, Saccharomyces appears to be more resilient
with respect to bacterial metabolic pathways expression
than other prevalent fungi.

We then increased our resolution by focusing on
correlations between fungal OTU abundance and
pathways in broader functional categories (Suppl. Fig.
16; Suppl. Table 11). We observed a significant
increase in node degree from baseline to treatment
for pathway functions in nucleotide metabolism (g =
0.026) and biosynthetic pathways (e.g. for vitamins,
tetrapyrroles, NAD) (g = 0.043). Almost all correla-
tions were positive. We found no significant changes
in remaining categories (g < 0.1; metabolism of amino
acids, carbohydrates, fatty acids and lipids, secondary
metabolites). Node degree dropped significantly after
treatment in all categories except secondary metabol-
ite metabolism (g < 0.05).

Since our treatment targeted bacteria, we expected the
bacterial community to respond to the selective pressure
with strong, directed changes in pathway expression. Most
metatranscriptomic changes appeared to be stochastic.
Yet we still observed mostly positive co-abundance
patterns between fungal abundance and bacterial pathway
expression during treatment, especially with functions re-
quired for bacterial growth. Even though correlations do
not imply causations, when performed on multiple differ-
ent levels, they can still offer significant insights. The re-
sults suggested a common origin for changes in the
mycobiome and pathway expression: if gut fungi generally
take advantage of reduced complexity in the bacterial
community, we would expect an increase in fungal diver-
sity. However, we observed no systematic change. Highly
abundant and adapted fungi may still overgrow. In both
scenarios, we would expect an increase in negative corre-
lations between fungal and bacterial abundances during
treatment but found mostly positive correlations. Gener-
ally, antibiotics drove the mycobiome alongside the micro-
biome, leading to a temporal increase in fungal richness,
but also increased fungal competition subsequently. On
the long run, antibiotic treatment broke down most of the
inferred relationships between bacteria and fungi, as
shown by diverging mycobiomes 3 months after
treatment.

Key bacterial species and molecular mediators of Candida
albicans colonization

Our ITS data showed at least one C. albicans read per
participant over 112 days but with varying relative abun-
dance from 0 to 42%. C. albicans was detected during
treatment even if it was not detected at baseline, as in
other studies [12, 35], confirming antibiotic treatment as
risk factor for colonization and overgrowth of this fun-
gus. Furthermore, C. albicans significantly decreased 2
weeks after treatment, implying the indirect impact on
its growth by the microbiome. We searched for metabo-
lites detected in the human gut that may inhibit or pro-
mote C. albicans growth. We performed metabolomics
analyses on a subset of 15 stool samples and calculated
Spearman’s correlations for the relative abundance of
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each metabolite and relative abundance of C. albicans by
ITS (Suppl. Fig. 17). Based on these findings, we per-
formed C. albicans growth assays in defined medium
containing serial dilutions of selected metabolites. With
several metabolites, including 4-hydroxybenzoic acid and
8,11,14-eicosatrienoic acid, we observed only minor
growth reductions at the highest concentrations (Suppl.
Fig. 18). More pronounced growth reduction occurred
with adipic acid, aminoadipic acid, and ornithine, but
fungi still grew with high concentrations of these metab-
olites. In contrast, propionic acid, acetic acid, and cis-5-
dodecenoic acid fully inhibited growth at a range of con-
centrations. We then tested if the substances directly
damaged human cells. Using a human vaginal cell line
(A431) without C. albicans, the bile acid lithocholate
(LCA) and cis-5-dodecenoic acid showed limited cyto-
toxicity (Suppl. Fig. 19). No other substances caused de-
tectable cell damage.

Next, we assayed the effect on human cells by C. albi-
cans in presence of the same metabolites. At higher con-
centrations, when in vitro fungal growth was reduced,
human cell damage decreased with the short-chain fatty
acids (SCFAs) propionic (p < 0.05) and acetic acid (p <
0.001). Acetic or cis-5-docenoic acid (p < 0.01) almost
fully abolished cell damage by C. albicans. Benzoic acid
reduced damage to a lesser extent (p = 0.051). Since the
morphology (yeast or hyphal cells) is critical for its dam-
aging potential, we investigated if the substances also led
to morphological changes in C. albicans (Fig. 4e). On
high concentrations, hyphae formation and growth were
almost completely suppressed by 5-dodecenoic and
acetic acid. 5-dodecenoate also reduced hyphae forma-
tion under growth-permitting concentration. Glutathi-
one only allowed formation of chains elongated yeasts
resembling pseudohyphae. LCA partially suppressed hy-
phal growth at the high concentration, resulting in high
numbers of pseudohyphae and yeast cells.

These metabolites that affect C. albicans growth nega-
tively may also promote the growth of its fungal competi-
tors, such as Saccharomyces spp., Penicillium spp. and
Aspergillus spp. Therefore, we repeated the correlation
analysis with the corresponding OTUs (Suppl. Table 12).
For each fungal species, we found several metabolites with
positive correlation. Considering metabolites negatively af-
fecting C. albicans, only 2-methyl butanoic acid and 3-
hydroxy butyric acid were found to be significantly posi-
tively correlated with Penicillium spinulosum and LCA
with Aspergillus flavus. Still, promotive effects on other
fungal species need to be verified in future work.

Bacterial supernatant inhibits C. albicans growth

We investigated which gut bacteria might be the main
direct or indirect producers or contributors of these
compounds in our human participants. We correlated
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metabolite concentrations with MGS relative abun-
dances (Suppl. Fig. 20) and focused on positive associa-
tions. We looked at species that correlated with
multiple, different metabolites. Bacteroides coprophilus
correlated with aminoadipic acid and acetate; C. comes
with 4-hydroxybenzoic acid, 5-dodecenoate, and gluta-
thione; F. prausnitzii with 4-hydroxybenzoic acid; E.
lenta with 5-dodecenoate and eicosatrienoic acid; B.
eggerthii with 5-dodecenoate and eicosatrienoic acid;
and O. splanchnicus with acetate. All six species corre-
lated with LCA or its derivates.

Our correlation methods helped us to pinpoint bacteria
that may promote or inhibit C. albicans growth (Fig. 4a).
For testing these predicted associations in vitro, we
selected bacterial strains based on sufficient confidence in
our strain-level inference in addition to significant correl-
ation to C. albicans. We performed the strain identifica-
tion directly from the MGS profiling. Instead of strain
detection methods using single-nucleotide polymorphisms
(e.g. StrainPhlAn [18], metaSNV [36], ConStrains [37]),
we adopted a strategy based on gene content as in PanPh-
1An [38]. We therefore analysed reads corresponding to a
specific MGS. For example, gene coverage for O. splanch-
nicus strains for two participants (N, E; Fig. 4b; Suppl. Fig.
21) showed that both subjects had the highest coverage
for strain DSM 20712, so we selected DSM 20712 for
in vitro assays. In the end, we were interested in bacterial
strains for which we found significant correlation with in-
hibitory metabolites, significant correlation with C. albi-
cans, and high confidence from the strain inference. Based
on these results, we selected Bacteroides eggerthii and
Odoribacter splanchnicus for further in vitro experiments.

We determined the antifungal effect of metabolites
produced by selected bacterial strains using their steril-
ized culture supernatants as growth medium for C. albi-
cans. We measured C. albicans growth using 100% or
50% supernatant diluted in modified Gifu anaerobic
media (mGAM) (Fig. 4c). Percentage inhibition was
compared to optimal growth conditions in fresh
medium. C. albicans growth was significantly inhibited
by supernatants from B. eggerthii (50% growth) or O.
splanchnicus (40%). Using 100% bacterial supernatants
had stronger effects, showing that inhibition was propor-
tional to supernatant dilution (Suppl. Fig. 22). We tested
two additional C. albicans strains to exclude that ob-
served effects were strain specific but saw no differences
(Suppl. Fig. 22). B. eggerthii and O. splanchnicus also
inhibited C. albicans growth in pairwise in vitro co-
culturing experiments (Suppl. Fig. 23).

Finally, we analysed the supernatant of these species to
characterize their metabolic capabilities that may relate
to C. albicans growth (Suppl. Fig. 24-25). We included
the supernatant from Ruminococcus [Blautia] torques as
positive control, since this species was shown to have
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Fig. 4 Candida albicans growth promotors and inhibitors. a Bacterial species co-abundant with C. albicans. Line colours and type indicate correlation
coefficients. b Example using Odoribacter splanchnicus for genomic strain inference from metagenomic species (MGS) reads. Strains were inferred for
each time point (x-axis) from number of genes with 0.5 reads per base (y-axis) per-reference genome. Data are from the antibiotic-treated participant
N and untreated subject E. The number of genes coverage for each tested O. splanchnicus strains are shown. DSM 20712 was identical with another
strain labelled NCTC10825. ¢ Growth rate inhibition of C. albicans strain SC5314 cultivated with 50% and 100% bacterial supernatant (from Bacteroides
eggerthii and Odoribacter splanchnicus) compared to control of medium (MGAM) only. d Damage of human vaginal epithelial cells (A431) based on
release of lactate dehydrogenase (LDH) with metabolites at inhibitory concentrations. Grey lines, zero effect. Positive values imply cell damage. (Top)
Human cells cultured without C. albicans. Effect compared to untreated cells. (Bottom) Cells co-cultured with C. albicans. Values are relative to damage
caused by C. albicans without additional metabolites. Negative values imply less cell damage. e Composition of morphology of C. albicans cultures
quantified by concentration of morphological types. Some metabolites cause atypical formation of hyphae-like structures (“Pseudohyphae/elongated
yeast chains”). Some inhibited the formation of filaments or disrupted growth in general ("Yeast/no growth”)

positive effect on C. albicans growth previously (Mirhak-
kak et al., 2020, under review) and correlated positively
with C. albicans in our study. Compared to quality con-
trol samples, O. splanchnicus supernatant contained high
concentrations of butyric acid (7-fold relative conc.),

which suppresses C. albicans growth in vitro [39]. But
we also measured elevated levels of the growth suppress-
ing metabolites adipic and aminoadipic acid, and orni-
thine. In contrast, B. eggerthii supernatant contained
elevated levels of acetic acid (1.6-fold), formic acid (3-
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fold), and hexanoic acid (2-fold). The full growth-
inhibiting metabolites 2-methyl-propanoic acid and pro-
panoic acid were also found in supernatants of O.
splanchnicus and B. eggerthii, but roughly 3-times higher
in B. eggerthii. In contrast, R. torques produced only for-
mic acid in higher abundance (1.25-fold), but almost
none of the strong inhibitory SCFA. Altogether, the
supernatant analysis shows that propionate, ornithine,
and benzoic acid are effective inhibitors of C. albicans
growth, and these compounds were likely produced by
B. eggerthii and O. splanchnicus also in the human gut.

Discussion

Mouse models can offer some advantages for studying
competitive relationships between gut bacteria and fungi.
Previous studies have shown that antibiotics induce fun-
gal overgrowth in the murine gut lumen [12, 35, 40].
However, antibiotic doses used in mice experiments cre-
ate an almost germ-free environment after treatment,
which is unlikely to apply to the human gut with clinical
use of antibiotics. Furthermore, the mice gut micro-
biome and human gut microbiome differ considerably
[41-43]. For example, many Firmicutes spp., which rep-
resent major colonizers of the human gut, cannot effi-
ciently colonize the murine gut. Sovran et al. showed
that Enterobacteriaceae play an important role for
bacteria-fungi interactions in the murine gut [44]. In
their study, Enterobacteriaceae accounted for 40 to 65%
of reads in Vancomycin treated mice. We investigated
the relative abundance of Enterobacteriaceae spp. in our
human subjects. However, the accumulated relative
abundance of Enterobacteriaceae spp. for most samples
was below 1% before, during and after treatment (me-
dian 0.02%; except for Augmentin with 13%), making it
difficult to assess whether Enterobacteriaceae were rele-
vant for bacterial-fungal interactions in the human gut
(Suppl. Fig. 26).

In this study, we investigated if fungal overgrowth was
induced in the human gastrointestinal tract under
physiological conditions. We present evidence that
changes on fungal abundance at the species level are
highly dynamic in the lower human gastrointestinal
tract. Even though gut bacteria and fungi successfully
prevented several temporarily detected fungi from
colonization the lumen lastingly, we found significant
alternations to the relative abundance of several fungi
even 90 days after antibiotic treatment.

We used 5 different broad-spectrum antibiotics which
are commonly used to treat human diseases [45]. Recent
work by Maier et al. [46] addresses the issue that most
knowledge of antibiotic drugs and their bacterial targets
is based on pathogens and not the commensal micro-
biome. In a large screening of 144 different antibiotics
and the 40 most common gut microbial strains, most
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antibiotics inhibited growth of all tested bacterial strains.
Only Clostridium showed consistent resistance to many
drugs. Indeed, some bacterial species are stronger or less
affected depending on the antibiotic used. We investi-
gated how much these expected differences apply to our
data. Effect sizes varied, but overall, most of the signifi-
cant changes were independent of specific antibiotic
drugs. Because of our small cohort size, we cannot assess
if the differences in effect sizes are due to differences in
baseline communities or differential inhibition of the
drugs. More work is required by using bigger cohorts as
well as other antibiotic drugs with narrower targets.

Co-abundance networks inferred mutual relationships
between fungal species at baseline and during treatment.
Post treatment, however, competition emerged. Further-
more, we observed far fewer co-abundance patterns be-
tween fungi and bacteria in early and late post treatment
periods, indicating profound decline in bacterial-fungal
interactions. Overall, we found the fungal community to
be less resilient than the bacterial. Based on these data,
we hypothesize that the dominant gut fungi of healthy
individuals were in balance with gut bacteria. Antibiotic
administration induced profound changes to gut bacteria
that translated into changes in fungal abundance that
lasted until the end of our study period. Indeed, these
results must be considered with caution, as we did not
perform quantitative estimations of bacterial and fungal
abundances. In most cases, relative abundance estima-
tion does not allow inference of true direction of change
[47]. For quantification, bacterial cells are counted by
flow cytometry in addition to DNA sequencing or qPCR
[47, 48]. However, broad-spectrum antibiotics decrease
bacterial cell counts by 3 orders of magnitude [47]. We
estimated bacterial growth in situ to show that bacterial
growth was significantly impaired at the community
level. Hence, significant decrease in relative abundance
of species will likely be reflected in true abundance as
well. In future work, increasing the number of study
subjects will help to increase certainty in and resolution
of the findings.

One of the largest knowledge gaps about the basic
biology of gut microbial balance is the lack of compre-
hensive functional analyses. Metatranscriptome studies
have found both more [20] and less [49] uniformity in
individual participants’ profiles compared to respective
metagenomes. Despite minor changes in beta diversity,
we found no significant changes induced by antibiotic
treatment in gene family alpha diversity, species contri-
bution, or transcriptional activity of metabolic pathways.
This result was most likely due to high variability in the
metatranscriptome, as observed previously in healthy
humans [20]. However, fungal abundance and bacterial
growth may have influenced one another because mu-
tual relations between fungal abundances and expression
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of bacterial functions for growth were inferred, especially
during treatment. Because these patterns were not as
pronounced before and after treatment, we identified
antibiotic administration as the main driver of this
change.

Understanding and finding microbial mediators of fun-
gal pathogens may help to improve antifungal treat-
ments. We focused our study on C. albicans, testing
in vitro if growth was affected by compounds produced
by two bacterial species, B. eggerthii and O. splanchnicus.
Although the supernatant of each bacterium was used in
combination with optimal C. albicans growth medium,
the supernatants inhibited C. albicans growth consider-
ably. Such a condition is plausible for the lower human
intestine, because we expect most easily metabolizable
compounds, e.g. carbohydrates, to be absorbed by the
small intestine. Furthermore, the two species may be
physically separated in the gut lumen. Some of the me-
tabolites with clear growth reduction to C. albicans were
found in bacterial supernatants. However, we cannot ex-
clude potential promoting effects of other bacteria that
could occur in the same vicinity.

A decline in gut bile acids and SCFA is linked to dis-
ease states [50, 51], but cause-effect mechanisms are less
understood. We identified five metabolites that naturally
occur in the human gut to effectively inhibit growth
and/or lower hyphae formation, a key attribute of C.
albicans virulence [52]. Acetate is a prototypical SCFA
that dampens the immune response at higher concentra-
tions [53]. The SCFA propionate plays an important role
in immune regulation [54]. Lithocholate is a secondary
bile acid and such secondary bile acids may inhibit C.
albicans growth [50]. Glutathione is an antioxidant that
dampens cell damage [55]. Cis-5-dodecenoic acid sup-
pressed hyphae formation entirely. A similar compound,
cis-2-dodecenoic acid, is produced by Burkholderia ceno-
cepacia and strongly interferes with C. albicans growth
[56, 57]. In contrast to previous studies [39, 51] we also
show that acetate, 5-dodecenoic acid, and propionate
also significantly reduced C. albicans-mediated host cell
damage in vitro. These compounds could also support
the growth of fungal C. albicans competitors. However,
a correlation analysis between these metabolites and
multiple different Saccharomyces, Penicillium, and As-
pergillus spp. did not indicate that. Nevertheless, this
needs to be experimentally verified in future work.

Several limitations should be highlighted. Observing
gut bacterial and fungi concomitantly is difficult as long
as bacterial and fungal abundances are estimated using
two independent sequencing technologies. Improve-
ments in correlation methods mitigate some of the
resulting problems. Still, our correlation results regard-
ing inter-kingdom species-species correlation could be
improved in the future. Estimating cell counts per
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kingdom would further help to improve correlation esti-
mates. Our findings are further limited to just the 5 anti-
biotic drugs used. Even though many significant findings
seemed consistent across the drugs, increasing the num-
ber of patients for each drug would help to get more dif-
ferentiated results. When studying mechanistic effects
with respect to C. albicans growth, we could not simu-
late the complexity of the gut community. We aimed to
find metabolic regulators, but the growth of fungi and
bacteria in the gut is certainly based on a combination
of several metabolic factors and environmental condi-
tions. We looked at a variety of aspects from host cell
damage to morphology, but these were still in vitro
findings.

Our results indicated that antibiotic treatment has a
longer-lasting impact on gut fungi than bacteria, driving
fungal communities from mutualism to competition.
This work also advanced MGS methods for resolving
microbiome compositions and interactions. Of potential
clinical relevance, we demonstrate how particular SCFAs
and bile acids produced by gut bacteria restricted human
cell damage from C. albicans but also show other com-
pounds with considerable effects.

Conclusions

Theoretically, bacteria and fungi compete for resources
available on the gut lumen, but they may also support one
another. In this study, we investigated the temporal, con-
comitant changes of gut bacteria and fungi in humans.
We demonstrate that antibacterial drugs have long-term
influence on the human gut mycobiome, driving fungal
communities from mutualism to competition. We further
show how metabolites produced by bacteria such as cis-5-
dodecenoic acid may actively suppress pathogenicity of
opportunistic fungi such as C. albicans. We thereby show
that gut bacterial-fungal interactions are an important
consideration for antibacterial treatment.

Methods

Study design

Human participants

Stool samples were gathered from 14 healthy adults,
aged 18-65 years, from Denmark and Hong Kong. Sam-
ples were collected over 3—4 months. The Danish study
was approved by the local ethics committee in Region
Zealand, Denmark (SJ-383), and the Hong Kong study
was approved by the Institutional Review Board of The
University of Hong Kong/Hospital Authority Hong Kong
West Cluster (UW 17-042). All work was performed in
accordance with the Good Clinical Practice principles
and the Helsinki Declaration. Written informed consent
was obtained from all participants. Patient characteristics
are described in (Suppl. Table 13). Subjects with any of
the exclusion criteria below were not eligible for entry
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into the present study: (i) history of taking antibiotics
over the last 6 months, (ii) receiving systemic antifun-
gals/antifungal mouthwashes or probiotics concurrently,
(iii) patients suffering from immunosuppressive condi-
tions or taking immunosuppressants, and (iv) severe
medical comorbidities requiring frequent hospitalization.
Another cohort of six healthy, untreated individuals
from Canada was acquired from a previous study from
Raymond et al. [58].

Treatment

Of the participants, 12 were treated for 6 days with 1
antibiotic drug out of 5: doxycycline (tetracycline class),
azithromycin (macrolide class), Augmentin (B-lactam
class), ciprofloxacin (quinolone class), and cefuroxime
(B-lactam class). Two untreated participants were used
as controls.

Sampling

From each participant in the clinical study in Denmark,
6 stool samples were obtained: one 15 days before treat-
ment (+1day), two during treatment (days 3 and 5 of
treatment * 1 day), and three at 15, 30, and 90 days after
treatment (+ 1 day). From each participant in the clinical
study in Hong Kong, four stool samples were obtained
at 7 days before treatment (+ 1 day), day 6 of treatment,
and 30 and 90 days after treatment. Collected samples
were aliquoted and stored at — 80° immediately after col-
lection until DNA extraction. Stool samples of control
patients treated with placebo [58] were acquired before,
7 days, and 90 days after treatment.

Metagenomics and metatranscriptomics sequencing

For participants in the clinical study in Denmark, bacter-
ial metagenomics and metatranscriptomics raw data
were obtained from Kang et al. (in preparation). Briefly,
DNA was extracted using a MO BIO PowerMax Soil
DNA Extraction Kit (MO BIO Laboratories, Inc) and
purified with PowerClean Pro DNA Clean-Up Kits (MO
BIO Laboratories, Inc.) according to the manufacturer’s
protocol. For RNA, rRNA was depleted using a Ribo-
Zero Gold rRNA removal kit—Epidemiology (Illumina).
The remaining total RNA was extracted using a MO
BIO PowerMicrobiome™ RNA Isolation Kit (MO BIO
Laboratories, Inc.). RNA and DNA sequencing were per-
formed on an Illumina HiSeq 2000 (PE125). For partici-
pants in the clinical study in Hong Kong, bacterial DNA
and RNA were extracted from 200 mg aliquots of frozen
stool by Beijing Genome Institute (BGI). DNA was ex-
tracted using an E.ZN.A.° Stool DNA Kit according to
the manufacturer’s protocol. For RNA, rRNA was de-
pleted using a Ribo-Zero™ Magnetic Kit. The remaining
total RNA was extracted using a RiboPure-Yeast Kit. All
samples were sequenced on an Illumina HiSeq 4000
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platform (Illumina, San Diego, California, USA; paired-
end, insert size 350 bp, read length 150 bp for DNA and
100 bp for RNA).

Internal transcribed spacer sequencing

All stool samples from both cohorts were processed by
Novogene for internal transcribed spacer (ITS) sequen-
cing. DNA was extracted using the following protocol:
Stool samples were thoroughly mixed with 900 uL of
CTAB lysis buffer. All samples were incubated at 65°C
for 60 min before being centrifuged at 12000xg for 5 min
at 4°C. Supernatants were transferred to fresh 2-mL
microcentrifuge tubes and 900 uL of phenol:chloroform:
isoamyl alcohol (25:24:1, pH = 6.7; Sigma-Aldrich) was
added for each extraction. Samples were mixed thor-
oughly prior to being incubated at room temperature for
10 min. Phase separation occurred by centrifugation at
12,000xg for 15min at 4°C, and the upper aqueous
phase was re-extracted with a further 900 uL of phenol:
chloroform:isoamyl alcohol. Next, samples were centri-
fuged at 12,000xg for 10 min at 4°C, and the upper
aqueous phases were transferred to fresh 2-mL micro-
centrifuge tubes. The final extraction was performed
with 900 uL of chloroform:isoamyl alcohol (24:1), and
layer separation occurred by centrifugation at 12,000xg
for 15 min at 4 °C. Precipitation of DNA was achieved by
adding the upper phase from the last extraction step to
450 pL of isopropanol (Sigma-Aldrich) containing 50 uL
of 7.5M ammonium acetate (Fisher). Samples were in-
cubated at -20°C overnight, although shorter incuba-
tions (1h) produced lower DNA yields. Samples were
centrifuged at 7500xg for 10 min at 4°C, and superna-
tants were discarded. Finally, DNA pellets were washed
three times in 1 mL of 70% (v/v) ethanol (Fisher). The
final pellet was air-dried and re-suspended in 200 uL of
75 mM TE buffer (pH = 8.0; Sigma-Aldrich). The result-
ing fungal sequences were amplified using ITS2-F: 5
GCATCGATGAAGAACGCAGC-3" and ITS2-R: 5’
TCCTCCGCTTATTGATATGC-3" primers [59, 60].
ITS2 amplicons were generated in three steps by PCR
with 38cycles: 98°C 10s, 59°C 10s, and 72°C 30s
followed by sequencing on the Illumina HiSeq platform
(2 x 250 bp, Novogen, China).

Metabolomics

For 4 participants, bile acid profiles and MicrobioMET
profiles were assessed by Metabo-Profile (Shanghai,
China) using aliquots of frozen stool. For bile acid pro-
files, bile acid-free matrix (BAFM) was obtained using
the charcoal-stripping protocol. Calibrators and quality
controls were prepared for the BAFM and processed as
for extraction of bile acids from stool samples. About 10
mg prechilled zirconium oxide beads were added to 10
mg stool with 15 pl ultrapure water. To each sample, a
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200-pl aliquot of prechilled acetonitrile/methanol con-
taining 10 internal standards was added for
homogenization. After centrifugation at 13,500 rpm and
4.°C for 20 min, 50 pul supernatant was transferred to 96-
well plates. Acetonitrile/water (150 ul) was added for
gentle shaking for 5 min before injection into an ultra-
performance liquid chromatography column coupled to
tandem mass spectrometry (UPLC-MS/MS) system to
quantitate bile acids.

MicrobioMET profiles including aromatic phenols and
indoles, phenolic acids, short-chain fatty acids and
branched-chain amino acids, amino acids, and organic
acids were quantitated using gas chromatography
coupled to time-of-flight mass spectrometer (GC-
TOEMS). Stool aliquots (50 mg) were homogenized with
300 ul NaOH (1 M) solution using a homogenizer and
centrifuged at 13,500 rpm and 4 °C for 20 min. Superna-
tants (200 pl) were transferred into autosampler vials
and residue extracted with 200 pl cold methanol. After a
second homogenization and centrifugation, 167 ul super-
natant was combined with the first supernatant in the
autosampler vial. Extracts were capped and used for au-
tomated sample derivatization by a robotic multipurpose
sample MPS2 with dual heads (Gerstel, Muehlheim,
Germany). Samples pre-treated with sodium sulfate were
shaken at 1500 rpm and 4 °C for 20 min and transferred
to capped empty autosampler vials for the GC-TOFMS.

Data processing

Quality control of sequence data

Quality control of raw reads (DNA, RNA) used a previ-
ously described pipeline [61]. Adapter sequences, low-
quality bases (Q < 20), duplicated reads, reads shorter than
75 bp and reads mapping to the human genome with 95%
coverage were filtered out. Computational scripts are at
https://github.com/TingtZHENG/VirMiner/.

In situ bacterial growth rate estimation

Quality controlled FASTQ samples were sub-sampled to
2 million reads per sample. GRiD version 1.3 [25] was
used with the corresponding stool database on sub-
sampled samples to assess the growth bacterial strains.
Default parameters were used but with minimum cover-
age threshold of 0.5 in order to investigate growth rates
for different thresholds. After investigating the results,
and as suggested by the GRiD authors, we continued
with the growth estimates for strains with coverage 1.0
or higher. Statistical testing of (a) median growth rates
and (b) the number of growing species was performed
with a Wilcoxon signed-rank test. Normalized effect size
r was estimated using the R package “rcompanion” and
its function “wilcoxonPairedR”.
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Abundance profiling

HUMANN2 [19] version 0.11.1 was used to estimate
gene family abundances in metagenomic DNA and RNA
samples. Resulting reads per kilo-base (RPK) for gene
family abundances at species level (including unclassified
taxa) were further normalized by counts per million
(CPM), resulting in a transcripts per kilo-base million
(TPKM) like normalization.

PIPITS pipeline [21] version 1.4.5 was used for ITS
with default parameters including quality filtering,
read-pair merging, ITS2 filtering, and chimaera re-
moval. Remaining reads were binned based on 97%
similarity as operational taxonomic unit and aligned
to the UNITE fungi database using Mothur classifier
[22]. For further downstream analysis, all samples
were normalized by cumulative sum scaling using
MetagenomeSeq [62].

For bile acid profiles, raw data from UPLC-MS/MS
were processed using QuanMET software (v1.0, Metabo-
Profile) for peak integration, calibration and quantitation
for each bile acid. The analyte concentration of un-
known bile acid was calculated using a calibration curve.

For MicrobioMET profiles, raw data from the GC-
TOFMS were processed using proprietary software
XploreMET (v2.0, Metabo-Profile) for automatic base-
line denosing, smoothing, peak picking, and peak signal
alignment. MS-based quantitative metabolomics deter-
mined the concentration of unknown metabolites by
comparing the unknown to a calibration curve. Abun-
dance of MirobioMET profiles was calculated to
minimize large individual variations in metabolites.

Metagenomic sequences from HUMAnN?2 profiles
TPKM-normalized gene family abundances from DNA
were clustered using mgs-canopy version 1.0 software
(https://anaconda.org/bioconda/mgs-canopy). We used
standard parameters except for a Pearson correlation co-
efficient cut-off of 0.95 instead of the default 0.9. Gene
family clusters with at least 700 genes were considered
metagenomic sequences (MGS). Taxonomic annotation
of MGS used species annotation information available
for each gene family. We calculated contributions of
each species to an MGS (including unclassified taxa). An
MGS was annotated to species level using the largest
gene family distribution if the gene contribution of that
species was at least 51% and the second largest species
(a) was “unclassified” or (b) contributed at most 10%.
MGS with more than 90% gene contribution from the
same species were considered “pure” or “unambiguous”.
Using a more stringent species assignment than the ori-
ginal method [29], from a total of 213 MGS, we obtained
80 with species-level assignment (Suppl. Table 6).
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Genomic strains from MGS

MGS with species assignments were processed independ-
ently. Reads that (1) contributed to the abundance of an
MGS, and (2) mapped to the inferred species (based on
ChocoPhlAn reference [19]) were extracted. We used
PanPhlAn [38] version 1.2.1.3 to create species-specific
pangenomes based on reference genomes from the
National Center for Biotechnology Information (Suppl.
Table 14), mapped reads against the species pangenome,
and calculated per-gene per-reference profiles. Gene
abundance was normalized to reads per base. A gene was
covered sufficiently if it had at least 0.5 reads per base. We
accepted a strain reference if: (1) at least 90% of genes in
the MGS were found to have sufficient coverage, and (2)
the reference had the highest number of covered genes.
For experimental verification, we considered using a com-
mercially available strain if the number of covered genes
was at most 1% less than the best-fitting strain.

Diversity analysis

Diversity analysis of fungal and bacterial communities was
performed in R version 3.6.1 using the package vegan [63]
version 2.5-5. Testing for significant differences in alpha
diversity between time points was performed using a two-
sided Wilcoxon signed-rank test. Resulting p values were
adjusted for multiple testing using FDR. UniFrac metrics
measured beta diversity by accounting for phylogenetic
similarities of different species. Weighted UniFrac gives
the most importance to dominant species. Unweighted
UniFrac does not consider abundance. Generalized
UniFrac with & = 50% gives the most weight to moderately
abundant species [64] and the generalized UniFrac with a
= 75% to species with abundance between median and
dominant levels.

Transcriptional activity

Relative abundances using DNA and RNA were normal-
ized to transcripts per million. Let f denote a gene or
pathway. The transcriptional activity of f is defined as
the TPKM-normalized RNA abundance of f divided by
the TPKM-normalized DNA abundance of f.

Core metatranscriptome

The core metatranscriptome was described in [20].
Briefly, we used MetaCyc pathway relative abundances
as generated by HUMANN2 for both DNA and RNA.
We calculated transcriptional activity for each pathway.
The core metatranscriptome was defined as the set of
pathways with a sample prevalence of at least 80% with
variable metatranscriptome having prevalence of 30 to
80%. Pathways with less than 30% prevalence were
ignored.
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Contributional alpha diversity

We followed the procedure in [26], with some excep-
tions. For each MetaCyc pathway (PWY), the contribu-
tion of species to the pathway was determined.
Ecological alpha diversity measures (Shannon and Simp-
son) were applied per sample and separately using DNA
and RNA data. Mean diversity per sample was used to
test for significant differences between time points using
pairwise two-sided signed Wilcoxon tests. Resulting p
values were corrected for multiple testing using false dis-
covery rate (FDR).

Statistics for MGS and ITS abundance

We used MetagenomeSeq [62] version 1.22.0 with a
zero-inflated Gaussian mixture model. Following the
MetagenomeSeq vignette, CSS normalization was ap-
plied on relative abundance data. All possible pairwise
tests between the different sampling time points were
performed (baseline, DT, EPT, and LPT time points).
We controlled for patient-wise differences when pos-
sible. For MGS, D2 and D4 were excluded to improve
signal quality. A 15% prevalence filter was used for each
test independently. Controlling for multiple testing was
performed on p values using FDR.

Two-way PERMANOVA testing

Stool samples from the same participant were statisti-
cally dependent. To test for significant differences in
means of beta diversity between different time points,
two-way permutational analyses of variance (PERM
ANOVA) were performed using “subject id” as covariate
and “sample time point” as second independent variable.
We performed tests on beta diversity matrices using the
function “adonis” as implemented in R package vegan
with 9999 permutations. We reported F values, R, and p
values for “sample time point”. P values from pairwise
PERMANOVA tests were corrected for multiple testing
using FDR.

Compositionality tests

We implemented a compositionality test from Palleja
et al. [27]. Briefly, we used the test to address the issue
of false-positive and false-negative findings in compos-
itional data [65]. We accepted significant findings for a
species based on relative abundance only if they would
still be significant if other species were removed from
the abundance table. Therefore, if one species was re-
moved, the data were total-sum normalized and p values
calculated. The procedure was repeated for all species.
The final p value for a species was determined using the
highest calculated p value. Thus, a species could not be-
come significant because of depletion or inflation of an-
other dominant species. Since this test was very
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conservative, we used a higher g value of 0.1 to decide
significance to avoid overlooking potential findings.

Correlation analyses using stool metabolite abundance
To identify metabolites with a potential effect on Candida,
Saccharomyces, Penicillium, and Aspergillus spp., we cal-
culated Spearman’s correlations for total-sum scaling
(TSS) ITS abundance and both bile acid and MicroMET
profiles. To account for zero-inflation, we considered only
samples with nonzero abundance of Candida albicans (5
samples). We then considered all significant correlations
(p < 0.05) with an absolute correlation of at least 60%.

To identify direct or indict bacterial producers of the
metabolites, total-sum scaled MGS abundances were
correlated with log2 transformed metabolites abun-
dances. Correlation was inferred using sparse partial
least squared analysis (sPLS) by utilizing relevance vec-
tors (R package mixOmics [30]).

Co-abundance networks

Co-abundance networks were created based on total-
sum-normalized data using BAnOCC [31]. Significance
of an edge was determined as described [20]. For poster-
ior inference, we used the 95% credible interval. An edge
was therefore considered significant if the corresponding
95% credible interval did not contain zero. Only signifi-
cant correlations with an absolute estimated coefficient
of at least 30% were used for analysis. Significant
changes in network structure between any two time
points were determined using Wilcoxon signed-rank
tests on node degree. Effect sizes are reported in terms
of a standardized effect size analogous to the one used
for the Mann-Whitney test, r = z/\/n, where z is the z-
statistic of the paired test and # is the number of obser-
vations. r values are analogous to Pearson correlation
coefficients. Hence, r ranges from — 1 (100% decrease) to
1 (100% increase). Formula and implementation can be
found in the R package “rcompanion”.

Fungal species co-abundance network

TSS-normalized operational taxonomic unit (OTU) abun-
dances based on ITS2 data were used. OTUs detected in
less than 10% of samples were removed. BAnOCC was ex-
ecuted with 5 chains, 5000 iterations, and 1000 warmup
cycles to reach convergence. BANOCC was used as de-
scribed above.

MGS-ITS network with BAnOCC

MGS and ITS relative abundances were independently
total-sum normalized. Only species measured in 25% of
samples were used further. Abundances of less prevalent
species were summed per sample into a group called
“other” to maintain library sizes. MGS and ITS features
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abundances were combined and

BAnOCC as described above.

analysed using

RNA-PWY-ITS network with BAnOCC

RNA abundances of PWY and ITS were independently
total-sum normalized. A 50% samples prevalence filter
was applied to make this computation feasible and de-
crease false-positive rate. Abundances of less prevalent
features were summed per sample into a group called
“other”. BAnNOCC was used as described above.

Supernatant experiments

Strains and culture conditions

Odoribacter splanchnicus (DSM20712), Bacteroides
eggerthii (DSM20697), C. albicans (SC5314/ ATCC
MYA-2876), C. albicans (ATCC 10231), and C. albicans
(ATCC 18804) were grown at 37 °C under anaerobic
conditions (anaerobic gas mixture, 95% N5, and 5% H,)
in pre-reduced modified Gifu anaerobic media (mGAM;
Nissui Pharmaceutical Co. Ltd.) broth for liquid cultures
or mGAM broth supplemented with agar (Nissui
Pharmaceutical Co. Ltd.) for growth on plates.

Sterile bacterial supernatants

Bacterial strains grown for 48 h in mGAM broth were
subcultured 1:50 in fresh mGAM broth and grown for
48 h in anaerobic conditions at 37 °C. Bacterial cultures
were spun down at 11,000xg for 5min. Supernatants
were carefully removed and filtered through 0.2-uM syr-
inge filters to remove bacteria in suspension.

Supernatant growth inhibition assays

C. albicans growth rates were analysed in 200 ul liquid
mGAM with 50% or 100% sterile bacterial supernatant
added. C. albicans inoculations were at 1:1000 from an
overnight culture grown in aerobic conditions at 37 °C.
Cultures were in 96-well microtiter plates at 37 °C with
orbital shaking 365cpm (2mm). Cell densities were
measured every 10min at optical density 600 nm
(OD600) using a microtiter reader (BioTek ELx800).
Growth rates were calculated by plotting the log OD
measurements in log phase and calculating slopes for
timepoints in log phase where r* was closest to 1, using
at least 12 time points (2 h apart).

Supernatant metabolite assays

Analysis of SCFA in samples was carried out by MS-
Omics as follows. Samples were acidified using hydro-
chloride acid, and deuterium labelled internal standards
where added. All samples were analysed in a randomized
order. Analysis was performed using a high polarity col-
umn (Zebron™ ZB-FFAP, GC Cap. Column 30 m x 0.25
mm x 0.25um) installed in a GC (7890B, Agilent)
coupled with a quadropole detector (5977B, Agilent).
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The system was controlled by ChemStation (Agilent).
Raw data was converted to netCDF format using
Chemstation (Agilent), before the data was imported
and processed in Matlab R2014b (Mathworks, Inc.)
using the PARADISe software described by Johnsen
et. al [68].

Other compounds such as bile acids were analysed
using MS/MS. The analysis was carried out using a
Thermo Scientific Vanquish LC coupled to Thermo Q
Exactive HF MS. An electrospray ionization interface
was used as ionization source. Analysis was performed
in negative and positive ionization mode. The UPLC was
performed using a slightly modified version of the proto-
col described by Catalin et al. (UPLC/MS Monitoring of
Water-Soluble Vitamin Bs in Cell Culture Media in Mi-
nutes, Water Application note 2011, 720004042en). Peak
areas were extracted using Compound Discoverer 2.0
(Thermo Scientific). Identification of compounds were
performed at four levels: level 1—identification by reten-
tion times (compared against in-house authentic stan-
dards), accurate mass (with an accepted deviation of 3
ppm), and MS/MS spectra; level 2a—identification by re-
tention times (compared against in-house authentic
standards), accurate mass (with an accepted deviation of
3 ppm); level 2b—identification by accurate mass (with
an accepted deviation of 3 ppm), and MS/MS spectra;
level 3—identification by accurate mass alone (with an
accepted deviation of 3 ppm).

C. albicans growth inhibition by metabolites

Metabolites were acquired from the companies Sigma-
Aldrich, Merck KGaA, and Roth. More specific details
can be found in Suppl. Table 15.

C. albicans growth curves

Dilution series of metabolites in water were started at
concentrations approximately 10-fold below maximum
solubility in water where applicable (Suppl. Table 16).
Dilutions were in synthetic SD medium (1x yeast nitro-
gen base, 2% glucose, 0.5% NH4SO,). C. albicans was
grown overnight in YPD (1% yeast extract, 2 % peptone,
2 % glucose), washed 3x in sterile water, and inoculated
at 1:100 (ODggo = 0.2). Absorbance was measured every
15 min with an infinite M200pro microwell plate reader
(Tecan, Austria) set to 30°C with intermittent shaking
(10's orbital shaking before each measurement). Gener-
ation times were calculated from the obtained triplicate
growth curves.

Host cell damage assays

To determine the influence of metabolites on the general
capacity of C. albicans to cause host cell damage, we
used an established epithelial cell model based on the
vaginal epithelial cell line A431. A431 were grown in
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RPMI media containing 10% foetal bovine serum (FBS),
and 200 pl cells at 10° cells/ml were seeded into 96-well
plates and incubated at 37 °C, 5% CO,. After 48 h, cells
were washed with 1x PBS, and 100 gl compound at indi-
cated concentrations was added, followed by 100 pl Can-
dida cells at multiplicity of infection 1. Incubation
continued under the same conditions for 24 h. Basal lac-
tate dehydrogenase (LDH) release (low control) was de-
termined with 200 pl RPMI, and maximum LDH release
(high control) determined by addition of 100 ul 0.5 %
Triton X-100 to cells in 100 ul RPMI. Plate were centri-
fuged at 250xg for 10 min and supernatants were re-
moved and diluted 1:10 and mixed with 100 pl freshly
prepared LDH assay mix (Roche). After 25 min at room
temperature in the dark, LDH activity was determined
with a microplate reader (Tecan infinite M200) as ab-
sorbance (A) at 492 nm, with 660 nm as a reference.
Damage was calculated as (Asampte = Alow)/ (Anigh = Alow)-

C. albicans morphology

The effect of metabolites on C. albicans morphology
was tested at all concentrations used in cell damage as-
says. Metabolites were diluted in 250 pl RPMI medium
with 10% FBS and added to 250 ul C. albicans in RPMI
in 24-well plates to indicated concentrations. Plates were
incubated at 37 °C and 5% CO, for 4 h to induce hyphae
formation. Medium was removed and cells fixed with
Histofix 4% formaldehyde solution. Morphology was
evaluated using an inverse microscope (Axio Zeiss Vert.
Al) to differentiate yeasts, hyphae, and pseudohyphae.

Pairwise co-cultivation experiments

Interactions between C. albicans and B. eggerthii and O.
splanchnicus were assayed via pairwise cultivations. C.
albicans cell counts were compared to control condi-
tions of cultivation without bacteria.

Fungal and bacterial cells were grown anaerobically at
37°C for up to 48 h in mGAM and used as inocula for
pairwise experiments. Inocula biomasses were estimated
via OD600 and adjusted to 1.0 by diluting in appropriate
media. Inocula were transferred to microplates contain-
ing the same media to a final OD600 of 0.01. Ratios of
fungal to bacteria cells were 1:1. Microplates were incu-
bated at 37 °C statically under anaerobic conditions. Cell
counts from inocula were resolved, prior to the co-
cultivation experiments, via flow cytometry (BD LSRFor-
tessa, BD Biosciences, Franklin Lakes, NJ, USA).

Five microplates were prepared using the same inocu-
lum. Microplates were removed from the anaerobic
chamber every 5h (0, 5, 10, 15, and 20 h cultivation).
Cells were immediately fixed in 2% formaldehyde for 15
min at room temperature by mixing an equal amount of
sample volume and 4% formaldehyde (Sigma-Aldrich,
Saint Louis, MI, USA) [66, 67]. After fixing, total C.
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albicans cells were counted via flow cytometry (BD
LSRFortessa, BD Biosciences, Franklin Lakes, NJ, USA).
Experiments were performed in triplicate.
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Suppl. Fig. 1: Fungal species alpha diversity per antibiotic. Lines show average values. Error lines show
standard error. Alpha diversity was measured by Shannon index, Simpson 1-D, and the number of observed OTUs.
We focus on Shannon index in the following. Baseline diversity was similar between subjects, ranging from 0.2-
0.5 (one outlier with 1.4). In many cases, diversity increased already during treatment (DT). Augmentin showed
high variation between subjects and Cefotaxime a slight decrease. In most cases, we observed a spiked increase
30d post treatment (EPT), including controls. Doxycycline exhibited an increase, but overall flatter response.
Augmentin showed the strongest peak increase by far. Diversity at 90d post treatment (LPT) was diverse, but
indices fell within the range of controls. Overall, Augmentin and Cefotaxime induced a considerable gain in fungal
diversity compared to controls. Ciprofloxacin induced higher than control change in one patient as well. Only
Azithromycin and Doxycycline showed variation in alpha diversity within the same range as observed for controls.
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Suppl. Fig. 2: Mean relative abundance per antibiotic of fungal genera for Baseline and DT. Only Candida
had significant increase in relative abundance (15-fold). At the level of individual antibiotic drugs, we also
observed increased relative abundance except for AUG (almost no change).

91



MANUSCRIPT 111 SUPPLEMENT

Candida albicans Candida albicans Candida albicans Candida albicans Candida albicans Candida albicans
none AUG AzY CFX . ciP DOX
003 0.004 0.00012 0.12
46-06 0.025 0.09
0.02 0.003 0.00008
206 0.002 0,000 0.06
et 001
0.001 000004 -0.025 0.03
06400 0.00 0.000 0.00000 o 0.00
Candida parapsiosis. Candida parapsilosis. Candida parapsiosis. Candida parapsiosis. Candida parapsilosis. Candida parapsiosis.
none AUG AzY oFX ciP DOX
8e-05 0,005 e 00020 o o -
6e-05 0.004 0.00015 0.025 0025 0025
4e-05 0003 0.000 0.000 0.000
0002 0.00010 . !
26-05 0.001 - 0.00005 0025 0025 -0.025
00400 0.000 0.00000 2 o
3 Hanseniaspora uvarum Hanseniaspora uvarum Hanseniaspora uvarum Hanseniaspora uvarum Hanseniaspora uvarum Hanseniaspora uvarum
£ none AUG AzY . CFX ciP DOX
b
€ — 30-06
3 oo 0.025 Bo-06 0.025 2004
— 2e-06
2 0000 0.000 4e-06 0.000 1ot
£ o
S -0025 ~0.025 2e-06 ~0.025 1e=06
&
< y 02400 o 0e+00 0e+00
g ‘Saccharomyces bayanus b b bayanus be
none AUG AzY . oFX ciP DOX
! L 40-06
16e-05 4e-05 3e-06
0025 0.025 30-06
1.0e-05 3e-05 20-06
0.000 20-05 0.000 20-06
-0.025 50206 1e-05 -0.025 1e-06 1e-06
0.06+00 00400 o 06+00 00400
Kadriavzevi udriavzevi i adr kudriavzevii Saccharomyces kudriavzevi
none AUG AzY CFX ciP DOX
0.00015 1 ®» 40-04 30-04
0.00075
3e-04
000010 000050 2e-04 3e-04 20-04
20-04 - pec04
0.00005 1o08 000025 - 1e-04 oo 10-04 -
0.00000 _,_,_- 0e+00 _,_,_- 0.00000{ T B [ g0 { I s | g0 { ST BRI | oo { ST PR AR |
& & & & & & N & & & $ &

Suppl. Fig. 3: Mean relative abundance per antibiotic of fungal species with significant change from DT to
EPT. Displayed are five fungal species. Candida albicans was measured in each group except in CIP. In the
remaining cases, its abundance decreased consistently. AUG and DOX had the strongest effect, especially with
respect to the initiate abundance levels > 10%. A minor reduction in growth was also observed in controls, but
not as much. Candida parapsiloses was measured in at most halve of the patients. In decreased profoundly in
relative abundance at EPT in both, treated and untreated patients. The other 3 fungi had less consistent patterns at
the level of individual antibiotic drugs.
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Suppl. Fig. 4 (left): Bacterial phylum composition of baseline samples. Patients (x-axis) were ordered by the
level of the highest contributing phylum (Bacteroides). Phyla were ordered by their average contribution across
samples. Most patients were dominated by Bacteroides and Firmicutes spp. These two phyla together accounted
for 75-98% of sample-wise abundances. In patient M, we observed an unusual strong contribution by
Proteobacteria (30%), which are otherwise the 3rd most abundant phylum on average. Remaining contributions
were from Actinobacteria, Verrucomicrobia and Fusobacteria. An insignificant fraction was contributed by
Candidatus Saccharibacteria and Tenericutes.

Suppl. Fig. 4 (right): Bacterial family composition of baseline samples. Patients (x-axis) were ordered by the
level of the highest contributing phylum (Bacteroidaceae). The 12 most abundant families across samples are
shown. Abundance from other families were summed up as “other”. Families were ordered by their average
contribution across samples. Overall, we observed a strong difference between Bacteroidaceae spp. (from <1%
to 75%) and the remaining bacterial spp. contributions. Bacteroidaceae, Rikenellaceae, Eubacteriaceae,
Porphyromonoadaceae, Ruminococcaceae, Prevotellaceae and Lachnospiraceae accounted for most
contributions across samples. Enterobacteriaceae accounted for only 0.02% on average, except patients M (30%),
L (5%) and N (9%), which are all control patients.
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Suppl. Fig. 5: Antibiotics induced severe changes in bacterial community 6 days after treatment. (a-c)
Diversity analysis of samples from subjects using MetaPhlAn2 relative abundances. (a) Boxplots showing Species
Richness (right), Shannon (left) and Gini-Simpson Index (middle). First row shows diversity for antibiotic treated
samples. Second row show alpha diversity for control samples. The median (centerlines), first and third quartiles
(box limits) and 1.5x interquartile range (whiskers) are shown. Lines between boxes connect same-donor samples.
Statistical testing was performed using a Wilcoxon signed-rank test and p values were adjusted for multiple testing
using FDR (q). Signs indicates significance level (**: q<0.01; .: 0.05<q<0.1). (b) Principle coordinate analysis of
generalized UniFrac distance (a = 0.5) as a measure of beta diversity. (b-¢) We tested for differences between
times in treated subjects while controlling for subjects using a pairwise two-way PERMANOVA. (¢) R? values of
covariate “Time” from pairwise PERMANOVA. Five different measures of beta diversity were tested
independently. R? values for consecutive samples are shown.
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Suppl. Fig. 6: Proportional change of bacterial species alpha diversity compared to Baseline. Proportional
change of bacterial alpha diversity at species level based on MetaPhlAn2 OTU profiling. In untreated patients, we
observed a drop in species richness during after treatment. However, Shannon and Simpson diversity remained
mostly unchanged, implying changes due to sequencing depth or other technical artifacts. In antibiotic treated
patients, alpha diversity changes the most for Shannon diversity. It decreased by 5%-40% during treatment, except
for CFX treated patients. One CFX treated patient showed a monotonous increase in diversity compared to
baseline. The strongest, negative impact was observed using CIP. In most patients, alpha diversity was increased
90d post treatment compared to their respective DT and EPT time points. This implies that most of the original
diversity was regained after treatment, but not all. Furthermore, the difference between LPT and Baseline alpha
diversity range from +18% to -21%. Some of difference in late-post treatment diversity might be explained with
natural variation we observed in controls (left-most panel; roughly +/- 5%).
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Suppl. Fig. 7: Proportional change of DNA gene family alpha diversity compared to Baseline. Gene family
abundance was estimated by HUMANN?2 pipeline. In untreated patients, we observed a drop in gene richness after
treatment (EPT). However, Shannon and Simpson had contrasting differences to that (mixed for Shannon, increase
for Simpson), implying changes due to sequencing depth or other technical artifacts. In antibiotic treated patients,
richness decreased by 19%-49% during treatment, except for CFX treated patients. One CFX treated patient
showed a monotonous increase in diversity compared to baseline. Differences in Shannon diversity were less
severe, ranging from 0.02% to 0.18%. These two findings together imply that many genes lost during treatment
(as measured by richness) were in relatively low abundance (and hence did not affect Shannon diversity much).
So overall, the changes observed for bacterial species diversity were qualitatively like those for gene family
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diversity. The major exceptions were the control samples, which exhibited bigger variance in diversity at the
functional level compared to the species level
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Suppl. Fig. 8: Principle coordinate analysis of DNA bacterial function beta diversity between time points.
Beta-diversity was measured as Bray-Curtis index. We separate between treated samples (left) and untreated
controls (right). Time points were pre-treatment (Baseline, B; red), treatment (DT; green), 30d post treatment
(EPT; blue) and 90d post treatment (LPT; violette). In treated samples, we observe a significant difference
between Baseline and DT, q=0.014). Control samples did not show significance differences across time points.
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Suppl. Fig. 9: Core- and Variable Metatranscriptome of MetaCyc pathways (PWY). (a) Up-regulated core
with RNA/DNA > 1 and prevalence >= 80%. (b) Down-regulated core with RNA/DNA < 1 and prevalence >=
80%. (¢) Variable metatranscriptome with prevalence between 30% and 80%, ordered by mean RNA/DNA ratio.
There were no significant differences in RNA/DNA ratio of PWY's between time points.
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Suppl. Fig. 10: Contributional alpha diversity of MetaCyc pathways using Simpson (g; 1-D) and Shannon (h)
diversity indices. Pathways are ordered by the sum of the mean DNA and mean RNA Shannon diversity. RNA
diversity was generally lower than DNA diversity. Shannon diversity dropped more gradual compared to Simpson.
A Shannon diversity of 2 implies that only 4 species are truly relevant for the contribution to the corresponding
pathway. A Simpson diversity of 75% implies that (in addition) 1 species accounts for 75%.

|____Untreated | INEN D N Treated
(NN (NN AR e Treatment
I L Time

| | ;, Clostridium bolteae
B i L %
n
| |

n : Odoribacter spianchnicus
I:. H L 'ENEE
[ | | | A
[ | | |

"y iy i V' wipd F

oseburia inuljnivorans
g teroi’oia’gs [)acte(al J:hs
ermans:a mucmlp

CQUS Ectans

fﬁs §ac erl um ?dolescentls
Feteriiim

Egbacferéum rect,
oprococcus Comes

: Faecalibacterium prausnitzii

78
%1 Ruminococcus sp 5_1_39BFAA
i
1
1
1
2

! ' ek
e LU U e i Sy
_ - e S "

: Eubacterium hallii

Treatment Type
3 2 1 o0 1 b 3 Untreated Cefuroxime
B | Augmentin Ciprofloxacin
I Azithromycin Doxycycline

Suppl. Fig. 11: 26 MGS were sign. diff. abundant during treatment. Heatmap of z-transformed, cumulative
sum scaled relative abundances of significantly differentially abundant MGS between baseline and treatment time
(Z1G model; Time and Patient as covariate; rime < 0.05).
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Suppl. Fig. 12: Fold-change of named MGS.
Out of 26 MGS with sign. change during
treatment, 14 had species level annotation.
Here, log, fold-changes relative to baseline
levels are shown per treatment group.
Observation with 0 counts before and after
treatment were ignored. Fold-changes of +/-
infinity were set to 110% of the strongest non-
infinite value to presence/absent observations.
Whiskers show minimum and maximum
values. Colours indicate if fold-changes were
positive (red), negative (blue) or both (black) at
a given time in each treatment group.
6 of these were consistently decreased
independent of the antibiotic drug used:
Ruminococcus lactaris, Dialister invisus,
Odoribacter  splanchnicus,  Bacteroidetes
bacterium ph8, Akkermansia muciniphila,
Bifidobacterium adolescentis.
Among the other species (8), 7 had negative
fold change in 4 out of 5 drugs:
Bifidobacterium longum, Coprococcus comes,
F. prausnitzii A2-165, Eubacterium hallii,
Roseburia inulinivorans, Ruminococcus sp.
5 1 39BFAA, Eubacterium rectale.
Clostridium bolteae had positive fold change in
4 out of 5 drugs.
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Suppl. Fig. 13: Mean relative abundance of species with possible differential effect by

specific antibiotic classes. Maier et al. (https://doi.org/10.1101/2020.01.09.893560) reported that broad-
spectrum antibiotics targeted all measured - the 40 most common - gut bacteria. However, beta-lactams may have
a different influence on Bacteroides (a) compared to other species. Here, this would apply to Augmentin (AUG)
and Cefuroxime (CFX). In all treated samples, Bacteroidetes increased in relative proportion during (DT) or early-
post treatment (EPT). Despite the expectation, the effect seems to be rather low in CFX treated samples, which
had comparatively high levels of Bacteroidetes at baseline. Likewise, Doxycycline (tetracycline class) showed an
effect equal to Augmentin. So overall, we only noticed a slight delay in response for CIP and AZY, but not
qualitative difference.
Analogous, macrolides may have a different influence on Proteobacteria. Here, this would apply to Azithromycin.
In most subjects, Proteobacteria have less than 1% contribution, making it hard to assess if relative abundance
changes are due to colonization difficulties or antibiotic effect. We noticed that Augmentin lead to a severe decline
in abundance for this phylum even though it belongs to an entirely different class. In contrast, CIP lead to an
increase. Since we have relative abundance, we cannot assess if abundance increase relates to an actual increase
in abundance. An increase can be the result of a severe decrease of the remaining community. Such could be the
case for CIP.
So all together, we cannot find a selective difference in targets by the different antibiotics used.
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N L4 :
Suppl. Fig. 14: interactions between fungi, bacteria species and
networks of different time points using BAnOCC with (a) 25% and (b) 50% prevalence filter. Only significant
edges (based on 95% credibility interval) with |[r] >= 0.3 are shown. Negative correlations (blue), positive
correlations (red). Networks are ordered from left (Baseline) to right (Late-Post-Treatment). (a) Correlations
between fungal and bacterial species based on MGS and ITS relative abundances. Node colors indicate phyla.
Unclassified MGS are black. (b) Correlations between fungal species and pathway expression based on
HUMAnNN2 RNA pathway and ITS relative abundances. Node colors indicate fungi (green) and functional groups.
Superpathways and other pathways which did not fit into the six major categories were grouped into “other”.
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Suppl. Fig. 15: Node degree centrality of RNA-PWY-ITS network based on correlations between fungal species
and MetaCyc pathway groups. Bar plots showing the number of nodes which increased and decreased in centrality
between time points. Statistical testing for significant changes in centrality was performed using a two-sided
Wilcox signed-rank test. P values were adjusted for multiple testing. Significance is indicated by symbols (ns: q
>0.05; *: 9 <0.05; **: q <0.01; ¥**: q < 1e-3; ¥*¥**: q < le-4; ¥****: q <le-5).
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Suppl. Fig. 16: Metabolites significantly correlated with C. albicans OTU abundance levels (Spearman |rho| >
0.3; p <0.05).

4 - Hy droxy benzoic acid 5-Dodecenoic acid 8,11, 14-Eicosatrienoic acid gahivdroxybenzpiofacid Sabodecenoiclackd ulfhE cosatienoiect
0.5 20
6 0.4 e
- 15
03 1.0
4 10
0.2
iy . = ) 05
0.5
5 0.1
0.0 0.0 0.0
0 160 75 50 25 160 75 50 25 160 75 50 25
Acetic acid Adipic acid Aminoadipic acid Acetic acid Adipic acid Aminoadipic acid
120 2 0.100
© 90 1.5 0.075
4 > 60 1.0 0.050
£
c2 5§ 0.5 0.025
< £
‘2 £ o 0.0 0.000
£o 5 160 75 50 25 160 75 50 25 160 75 50 25
= 8
& control Glutathione Lithocholic acid § ‘control Glutathione Lithacholic acid
g L 12. .
6
3 § 0025 100
© 4 2 75 2
3 0.000{ ——— 8
® 5.0
S 1
o ~ N R i 8 -0.025 25
00 0.0 0
o .
100 75 50 25 160 75 50 25 100 75 50 25
Ornithine Propionic acid 10078028
P! Omithine Propionic acid
6 40
30 90
4 2 60
NETTSE 23 o w
0 0 0
oo 75 o 25 oo 75 50 25 100 75 50 25 100 75 50 25
) well well

Suppl. Fig. 17: C. albicans growth inhibition by metabolites. (left) Generation times of C. albicans in h over
varying degrees of substance concentrations. Substances were diluted (from left to right). For some compounds,
measurements failed at higher concentrations. (right) Substance concentration per well in g/1.
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Suppl. Fig. 18: Inhibition of C. albicans growth and host cell damage. We tested the effect of the metabolites
on a human vaginal cell line (A431) at two concentrations each: the lowest concentration where C. albicans
growth was significantly inhibited and the highest without any significant effect on growth (table 1; top-left;
bottom-left). There was some limited cytotoxicity observed for lithocholic acid and cis-5-dodecenoic acid, but
all other substances did not elicit any detectable host cell damage. Glutathione, however, interfered with our
assay and was therefore excluded from these studies. Next, we assayed the effect of the same concentration on
cell damage by C. albicans. None of the substances affected the host-pathogen interactions at the lower
concentration (top-right). The notable exception is cis-5-dodecenoic acid, with severely reduced the damage by
C. albicans to the host cells, albeit not at a statistically significant level. At the higher concentrations (bottom-
right), where fungal growth was reduced in vitro, we also observed lower host cell damage in presence of the
short-chain fatty acids propionic and acetic acid, where damage by C. albicans was nearly fully abolished, and
again of cis-5-docenoic acid. To lesser extent and not statistically significant there was a tendency to lower
damage also with ornithine (p=0.087) and benzoic acid (p=0.051) in the medium.

Suppl. Table 1
Ccis-5- 8,11,24-
Lithocholic Benzoic Dodecenoic Eicosa- Aminoadipic Propionic Acetic Adipic
[ug/ul] Acid Acid Acid trienoic Acid Acid Acid Ornithine Acid Acid
| Subinhibitory 0.103 0.25 0.263 0.85 0.05 0.0004 1.27 0.0004 0.95
| Inhibitory 0.413 1.00 1.05 3.40 0.20 1.70 5.05 7.29 3.82
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Suppl. Fig. 19: Correlations of bile acid and metabolite abundance with MbS abundance. Cell colour
indicates correlation strength (blue: negative; red: positive). Absolute correlation below 0.3 and insignificant
correlations (p > 0.05) are coloured white.
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Suppl. Fig. 20: Number of genes contributing to each MGS. For each sample, the number of genes with at
least 1 gene (first row of each panel) and at least 50% coverage (2. Row) per strain. Different strains are indicated
by colour and line type. For Faecalibacterium prausnitzii, we have 2 MGS with exactly 1 matching strain for each
(CAGO155 with A2-165 and CAG0198 with L2/6)
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Suppl. Fig. 21: C. albcians growth rate on bacterial supernatant. (a) Growth curves for C.albicans strain
SC5314 mGAM media with 50% or 100% sterile bacterial supernatant added. (b) Growth curves for three

C.albicans strains; SC5314, ATCC10231 and ATCC 18804 in mGAM media with 100% sterile bacterial
supernatant added.
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Suppl. Fig. 22: Co-cultivation of C. albicans with bacterial species. Cell counts of C. albicans was measured
using FACS. When co-cultured with B. eggerthii or O. splanchnicus, no growth occurred.
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Suppl. Fig. 25: Mean relative abundance of Enterobacteriaceae spp. per ATB. We investigated the relative
abundance of Enterobacteriaceae spp. and the impact of antibiotics [ATB] treatment. In most samples, the
accumulated relative abundance of Enterobacteriaceae spp. (blue) at baseline was below 1%, implying only a
minor role for the overall community. The exception were patients treated with AUG, which had roughly 14%
Enterobacteriaceae. Enterobacteriaceae relative abundance in AUG treated patients decreased profoundly at EPT
and also LPT compared to baseline levels. In CIP, we observed a strong increase of up to 27% during treatment,
but far below 1% for time points before and after treatment.
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Overview:

In this follow-up, we used a similar framework to study tri-partite communication between
bacteria, fungi, and the human host during critical illness. We elucidated how antibiotic
treatment could induce detrimental effects on the health of the patients in addition to the
effects caused by infection. Again, we found Candida to increase in abundance under
antibiotic treatment in critically ill patients. More importantly, we found that antibiotic
therapy in critically ill patients leads to an “infection vulnerable” microbiome composition
characterized by extremely low levels of short-chain fatty acids. Together with Manuscript
III, our studies deliver consistent evidence for the growth of opportunistic fungi such as
Candida in the human gut during oral antibiotic administration and generated several
further hypotheses for control mechanisms of Candida by gut microbiota.
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ABSTRACT

Antibiotics are commonly used in the Intensive Care Unit (ICU); however, several studies
showed that the impact of antibiotics to prevent infection, multi-organ failure, and death in
the ICU is less clear than their benefit on course of infection in the absence of organ
dysfunction. We characterized here the compositional and metabolic changes of the gut
microbiome induced by critical illness and antibiotics in a cohort of 75 individuals in con-
junction with 2,180 gut microbiome samples representing 16 different diseases. We revealed
an “infection-vulnerable” gut microbiome environment present only in critically ill treated with
antibiotics (ICU*). Feeding of Caenorhabditis elegans with Bifidobacterium animalis and
Lactobacillus crispatus, species that expanded in ICU* patients, revealed a significant negative
impact of these microbes on host viability and developmental homeostasis. These results
suggest that antibiotic administration can dramatically impact essential functional activities in
the gut related to immune responses more than critical illness itself, which might explain in
part untoward effects of antibiotics in the critically ill.
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Introduction are responsible for nearly 60% of deaths

in ICUs and account for approximately 40% of
ICU costs.”

Critical illness leads to the admission of more than
5 million patients per year to intensive care units

(ICUs) in the United States alone. Intensive or
invasive monitoring of ICU patients accounts for
approximately 20% of the total US hospital cost,
while the worldwide death rates for critically ill
patients are increasing at a higher rate than any
other common cause of death '. Almost half of
ICU patients show symptoms related to an initial
systemic inflammatory response syndrome (SIRS).>
However, besides inflammation, signs of im-
mune exhaustion or ‘paralysis§ might occur
simultaneously.” A disbalance of pro- and anti-
inflammatory responses can lead to an increased
risk of infection * and related sepsis, which

Vincent et al. ° reported that while only 54% of ICU
patients had suspected or proven infection, as many as
70% received at least one antibiotic, reflecting a rather
“liberal use” within contemporary ICUs. This reflects
an early antibiotic treatment - in order to avoid the
deleterious impact of a missed or delayed antibiotic
therapy if infection triggers organ dysfunction.”
However, several studies showed that the benefits of
antibiotics for prevention of infection, multi-organ
failure, and death in the ICU are unclear.® Evidence
suggests that approximately 37% of antibiotic treat-
ments are unnecessary or not compliant with
guidelines.” Infections and antibiotics can cause
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a rapid loss of commensal gastrointestinal
microbiota,'® which can result in metabolic and
immune disturbances in the critically ill. An impor-
tant role of gut bacteria is the fermentation of dietary
fiber into short-chain fatty acids (SCFAs), which play
an important role in preserving gut integrity."
A decrease in SCFAs concentrations may result in
colonization by pathogenic species. For example, sev-
eral Bacteroides and Bifidobacteria species secrete
SCFAs inhibiting pathogen growth.">" Similarly,
Clostridium scindens and Ruminococcus obeum pro-
duce secondary bile acids (BAs) that prevent the
growth of Clostridium difficile '* and Vibrio
cholerae,” respectively. Gut bacteria also play an
important role in the activation of host immunity
against infections, both through innate and adaptive
mechanisms.'®

With advent of the concept of the human being as
a “holobiont” and the perception of the gut micro-
biome as being highly relevant in the regulation of the
immune system, attention to interventions affecting
the microbiome is now given also in critical illness.
Previous studies have focused predominantly on taxo-
nomic information using 16S rRNA gene sequencing
to identify differences between health and disease.'”'®

Fungal constituents of the microbiome represent
an overlooked but very important kingdom.
Research is beginning to show that fungi are critical
for maintaining systemic immunity and intestinal
homeostasis.'® The mycobiome of skin,?° gut,21
oral cavity,”” and lungs,”> among other anatomical
sites, in healthy individuals has been characterized
in previous studies. Based on these studies, it seems
that between individuals and anatomic sites there is
high variability in the human mycobiome
diversity,”* which is consistent with what we know
from the Human Microbiome Project (HMP, 2012)
for the bacterial microbiome. Most of the anatomic
sites in humans are dominated by members of the
Basidiomycota phylum, such as Cryptococcus spp.,
Malassezia spp. and Filobasidium spp., and the
Ascomycota phylum including Saccharomyces cere-
visiae, Candida spp., and Cladosporium spp.”>>°
Despite the recent findings showcasing the fungal
role on host health, host-microbe and microbe-
microbe interactions, only less than 0.5% of the
published microbiome papers investigate or refer
to the fungal population.'” The mycobiota is
increasingly recognized as a critical player in the

development of human diseases, including inflam-
matory bowel disease, allergic airway diseases, skin
disease, alcoholic liver disease, autoimmunity, neu-
rological disorders, and metabolic syndrome.>’ >
In relation to microbe-microbe interactions, exist-
ing studies indicate that a competitive association
between bacteria and fungi exists in the human gut.
This was shown in antibiotic-treated subjects and
germ-free mice, where an overgrowth of particular
fungi in the gut and/or susceptibility to fungal
infection was observed.”’ In addition, overgrowth
of fungi due to antibiotics treatment has been asso-
ciated with the development of allergic airway
responses to Aspergillus fumigatus mold spores.*
Part of the chemical warfare between bacteria and
fungi is also the secretion of antifungal peptides
from epithelial cells, which can be induced by com-
mensal bacteria such as Blautia producta and
Bacteroides thetaiotaomicron.”® Previous research
related to critically ill patients and mycobiome is
very limited.”*” One recent study characterized
the mycobiome of the lower respiratory tract of
patients in ICU showing that Candida spp. domi-
nated the fungal community in both with and with-
out antibiotic therapy patient groups.”* Another
prospective pilot study showed an increase of
C. albicans in the oral mycobiome after an admis-
sion to the ICU.”® However, systematic investiga-
tion of the interactions between the gut mycobiome
of critically ill patients and the bacteria functional
activity is currently lacking.

Here, by a comprehensive characterization of the
microbiome, mycobiome, and functional potential
of the gut community and individual species, we
demonstrate that even though antibiotics do not
significantly disturb the bacterial and fungal com-
position of critically ill patients, as observed in
healthy individuals,” they cause abundance
changes in a handful of species that are highly
connected with the production of SCFAs and BAs,
allowing the expansion of pathogenic species.

Results
Highly distinct microbiome in ICU patients

To investigate the gut microbiome composition of
critically ill patients, we initially included 70 criti-
cally ill patients. Of these, 54 were diagnosed with
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probable or microbiologically confirmed infection
as defined by Calandra et al. *' (respiratory tract
(n = 37), abdominal (n = 6), bones/soft tissue
(n = 3), chest (n = 2), catheter associated (n = 1),
urogenital (n = 1), and unknown (n = 4)). These 54
received antibiotic treatment, whereas 16 did not
presented an infection and did not receive antibio-
tic treatment. Of those, we collected stool samples
from 49 patients receiving antibiotic treatment
(broad spectrum beta-lactam antibiotics; n = 19
meropenem and n = 30 piperacillin/tazobactam)
and 14 patients without antibiotic treatment, as
well as from 12 healthy human volunteers. Basic
anthropometric and clinical characteristics of the
participants are displayed in Supplementary File 1.
There were no significant differences between the
two ICU groups in gender, age, BMI, type of admis-
sion or surgery and length of ICU or hospital stay
(continuous data were compared by the Student’s
t-test, dichotomous variables by the chi-squared
test, a p-value < 0.05 was considered significant).
Similarly, there were no significant differences
between the healthy volunteers and ICU patients
in the basic demographic characteristics.

We assessed the structure of the gut microbiome
via shotgun metagenomics generating 39 million
high-quality reads per sample on average
(Supplementary Table 1). We used MetaPhlan2 **
for taxonomic profiling, and we identified 428 spe-
cies in total. Alpha-diversity measured as Shannon,
Simpson, and Chaol index dropped significantly in
both antibiotics treated (ICU") (Wilcoxon rank-
sum test, P = 8.6e-6, P = 5.3e-6, P = 3.8e-5,
Shannon, Simpson and Chaol indices, respectively)
and untreated subjects (ICU™) (Wilcoxon rank-
sum test, P = .0037, P = .0025, P = .0054,
Shannon, Simpson and Chaol indices, respectively)
compared to healthy individuals (Figure 1(a)). In
contrast to what has been observed in healthy
volunteers,***> antibiotics administration had no
significant impact on the alpha diversity when com-
paring the ICU" against the ICU™ patients
(Wilcoxon rank-sum test, P = .79, P = .79, P = .64,
Shannon, Simpson and Chaol indices, respec-
tively). The type of beta-lactam used had no sig-
nificant impact either (Supplementary Figure 1).

We subsequently investigated the variation in
the microbiome structure of the three groups by
calculating the distance to centroid (Figure 1(b)).

GUT MICROBES (&) e1993598-3

The gut microbiome of the ICU" group had sig-
nificantly higher structural variation compared to
both healthy individuals (Wilcoxon rank-sum test,
P =1.1e-12) and the ICU™ group even though it did
not reach statistical significance (Wilcoxon rank-
sum test, P = .056). Next, we calculated the beta-
diversity (Bray-Curtis distance) of the three
groups, which showed that although there was
a high community dissimilarity between ICU" and
Healthy (PERMANOVA, P = .001) and between
ICU™ and Healthy (PERMANOVA, P = .001), the
ICU" and ICU" groups did not show significant
differences (PERMANOVA, P = .104) (Figure 1
(c), Supplementary Figure 9(a)). Similarly, to
alpha diversity, when we examined the two beta-
lactam groups (meropenem and piperacillin/tazo-
bactam) separately, we did not observe any signifi-
cant difference (Supplementary  Figure 1,
Supplementary Figure 9(b)). To further evaluate
our findings, we repeated the taxonomic analysis
using the Metagenomic Species method (MGS) *
and we observed the same patterns as above
(Supplementary ~ Figure 2,  Supplementary
Figure 9(c)).

As evident from both, the alpha- and beta-
diversity comparisons, the similarities in the
structure of the gut microbiome of the ICU"
compared to the ICU™ group triggered our inter-
est to examine our cohort in relation to another,
small publicly available dataset of critically ill
patients.'® In that study, the authors performed
a longitudinal sampling of critically ill patients
with and without antibiotics administration to
study abundance changes in the resistome profile
of known pathogens. For the comparative analy-
sis, we applied a microbial source tracking algo-
rithm, namely FEAST.*> When using our cohort
as a sink we noticed how progressively the public
ICU" group becomes more taxonomically similar
with our ICU" group, as well as the composi-
tional similarities between the two ICU™ groups
(Figure 1(d)). From the methodological point of
view, this analysis confirms that FEAST 3 s
a relatively sensitive method but also that despite
the non-significant overall differences between
ICU" and ICU" groups there is still
a characteristic microbiome signature due to the
antibiotic administration. Considering the rela-
tively small differences between the ICU" and
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Figure 1. Distinct gut microbiota signatures in ICU patients. (a — b, d) Box plots showing the median (centerlines), first and third
quartiles (box limits) and 1.5x interquartile range (whiskers) measurements. A comparison was considered significant if P < .05.(a)
Alpha diversity of bacterial species using Shannon (left), Simpson (middle), and Chao1 (right) indices. Significant differences were
determined using Wilcoxon rank-sum test.(b) Beta dispersion of bacterial species measured as the distance of the samples from one
group to the group centroid in multivariate space. Significant differences were determined using Wilcoxon rank-sum test.(c) Principal
component analysis (PCoA) of Bray-Curtis dissimilarity between bacterial species abundance profiles. Significant differences were
determined using PERMANOVA and were considered significant if P < .05.(d) FEAST ** estimation of microbial source contribution for
each “sink”. Here, sinks are species level relative abundances from samples from a publicly available ICU cohort.'® For sources, we used
species level relative abundances of our Healthy, ICU™ and ICU* groups. Significant differences were determined using Kruskal-Wallis
test (*P < .05; **P < .01, ***P < .001, ****P < .0001).(e) Receiver operating characteristic curve (ROC) of a cross-validated random forest
classifier. The model was trained on taxonomic and functional profiles from 63 samples from the ICU™ and ICU* groups. Model
performance was summarized as area under ROC (AUC). The average AUC value and confusion matrix (threshold 0.5) are calculated

based on a 5-fold cross validation results.
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Figure 2. Comparative analysis of the microbiome of critically ill patients with other diseases. (a — b) FEAST ** estimation of microbial
source contribution for each “sink”. Here, sinks are taxonomic and functional compositions from a panel of diseases. Source are
taxonomic and functional compositions of samples from our Healthy, ICU™ and ICU"* groups. Box plots show the median (centerlines),
first and third quartiles (box limits) and 1.5x interquartile range (whiskers), source contributions to sinks. (a) cancer, inflammatory and
metabolic diseases and (b) infectious diseases. (a — b) Significant differences were determined using Kruskal-Wallis test (*P < .05;

*¥P < .01, ***P <001, ****P < .0001).

ICU™ groups, we next investigated whether these
subtle differences in microbial signatures could be
integrated into an algorithm to correctly classify
the patients. To this end, a random forest classi-
fier integrating species and pathways was devel-
oped and achieved an area under the receiver
operating characteristic (ROC) curve (AUC) of
0934  (Figure 1(e)) using 20 features
(Supplementary Figure 3). Enterococcus faecalis,
a known pathogen*® whose abundance has been
associated to an increase in susceptibility to
V. cholerae infection,'® and several amino acid
pathways that can serve as precursors for the
synthesis of short-chain fatty acids (SCFAs) were
among the selected features.

Critically ill patients treated with antibiotics show
an “infection-vulnerable” gut microbiome

We subsequently used HUMAnN2 * for functional
profiling of the microbial communities and identi-
fied 483 pathways in total. To further evaluate the
community taxonomic and functional characteris-
tics of the critically ill patients, we compared our
cohort with a panel of publicly available datasets.
For that, we retrieved 2,180 taxonomically and
functionally annotated samples from 16 human
diseases using the curatedMetagenomicData *°
package in R and we applied FEAST,* treating
our samples as sources and the disease panel as
sinks. In these settings, FEAST * revealed that
there is a significantly lower similarity
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Figure 3. Differential abundance analysis reveals changes in bacteria with important functional properties in critically ill. (a) Taxonomic trees
visualized using R package metacoder.*” Only taxa differentially abundant between Healthy, ICU* or ICU™ (P < .05, Wilcoxon rank-sum
test) are highlighted in the tree by color. Color of the taxa reflects the group with higher abundance. Bar plots show the relative
abundances of significantly different (FDR<0.05, Wilcoxon rank-sum test) short-chain fatty acid producers (green circles), bile acid
producers (red circles), disease-associated species (purple circles) or differentially abundant species identified in all pairwise compar-
isons (yellow circles).(b) Co-abundance networks of differentially abundant bacterial species (P < .05, Wilcoxon rank-sum test) between
Healthy and ICU* and between ICU™ and ICU™. Only significant correlations (P < .05) with absolute correlation coefficient >0.4 were
used for network construction. Nodes are colored based on their affiliated phyla. Node sizes reflect the mean abundance of the species.
Edge colors reflect either negative correlation (blue) or positive correlation (red). Edge widths reflect the strength of the correlation.
(c-d) Germ-free L1 larval stage C. elegans worms were populated with depicted bacterial strains in the anoxic chamber for indicated
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times, followed by transfer to normoxia and UV-killed OP50 E. coli diet. In (C) host survival was measured after 24 h of normoxic culture
and in (D - left panel) the timely development was assessed after 48 h of normoxic culture; (D - right panel) depicts reproductive aging

of nematodes following anoxic reconstitution with B. animalis.

(Kruskal-Wallis, P < .0001) between the micro-
biome structure and function of individuals in the
critically ill patients group with patients with cancer
(colorectal cancer,”’™>® melanoma®”"®), inflamma-
tory (ankylosing spondylitis,”” atherosclerosis,”
Behcet’s disease,’’ hypertension,62 inflammatory
bowel disease’®), and metabolic diseases
(cirrhosis,®® metabolic syndrome,64 nonalcoholic
fatty-liver disease,” obesity,°*®” Type-1-Diabetes,-
0899 Type-2-Diabetes’””") compared to Healthy
individuals (Figure 2(a)). Due to this unexpected
association, we expanded the range of diseases as
sinks using infectious diseases and specifically 66
samples from patients with acute diarrhea,”
C. difficile infection” and V. cholerae infection.”*
In contrast to what we observed with noninfectious
diseases, the taxonomic composition of the criti-
cally ill patients is significantly more similar
(Kruskal-Wallis, P < .0001) to infectious diseases
than the gut composition of healthy individuals
(Figure 2(b)). At the functional level, this difference
is even more profound with the ICU" group having
the highest similarity (Kruskal-Wallis, P < .0001)
with all three infectious diseases, suggesting that
critically ill patients may be at a risk of severe
infections by gut pathogens and that antibiotic
treatment increases significantly that risk.

Immunomodulatory metabolites and their microbial
producers are depleted from critically ill patients
exposed to antibiotics

We subsequently focused on the impact of antibiotic
administration in the ICU in relation to abundance
changes in microbes with a potential role in immune
regulation and host-immune homeostasis. Significant
differences were observed at the phylum level among
the three groups. The Healthy group had, on average,
higher abundance of Bacteroidetes (17.9%, Kruskal-
Wallis, P = .0063), Actinobacteria (9.9%, Kruskal-
Wallis, P = .035), and Verrucomicrobia (4.7%,
Kruskal-Wallis, P = .0098) (Supplementary
Figure 4(a)). At the genus level, a striking difference

in the abundance of Enterococcus was found, with the
ICU" group having the highest abundance compared
to the other two groups (Kruskal-Wallis, P = 3.6e-6).
In contrast, the relative abundance of Blautia was
significantly higher in ICU™ (Kruskal-Wallis,
P =.029) (Supplementary Figure 4(a)).

At the species level, we found 106 and 80
species  significantly differentially abundant
(Wilcoxon rank-sum test, P < .05) between the
Healthy and ICU" and Healthy and ICU"
groups, respectively. The species enriched in
the Healthy group include known SCFAs and
BAs producers, such as Ruminococcus bromii,”®
Faecalibacterium  prausnitzii,”  Eubacterium
eligens,”® Eubacterium hallii ’® and Eubacterium
rectale,”””® among others (Figure 3(a) and
Supplementary Figure 4(b)). On the contrary,
species enriched in ICU" and ICU" included
known  pathogens such as  Klebsiella
pneumoniae,” Klebsiella oxytoca,”” E. faecalis,*®
and Enterococcus faecium 8 (Figure 3(a) and
Supplementary Figure 4(b)). Comparing ICU"
and ICU™ groups, we found 12 species signifi-
cantly differentially abundant (8 enriched in
ICU" and 4 in the ICU"). R. gnavus,
Clostridium symbiosum, and Veillonella parvula,
known SCFAs and BAs producers,go’83 were
enriched in ICU”, whereas from the species
enriched in ICU" (Figure 3(a)) Bifidobacterium
animalis has been indicated as a SCFAs
producer.*® Since B. animalis was the only
SCFA producer enriched in ICU", we retrieved
the genome-scale metabolic model of B. animalis
from the AGORA repository *° and we simu-
lated growth on an ICU media using flux bal-
ance analysis. We monitored the potential of
B. animalis to produce SCFAs, including acetate,
propionate, and butyrate; however, none of
these compounds was predicted to be produced
in our in silico simulations (data not shown).

We used the enriched species to reconstruct the
species co-abundance network using all samples
from our cohort. We observed a much more
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intense within group communication between the
Healthy-enriched species (vs. ICU") with 162 posi-
tive and 19 negative correlations (absolute correla-
tion coefficient >0.4) compared to the species
enriched in ICU" (vs Healthy and/or ICU") that
showed 43 positive and no negative correlations
(Figure 3(b) and Supplementary Table 2). Alistipes
putredinis, F. prausnitzii, and Bacteroides uniformis
were interconnected healthy-enriched species
showing negative correlations with Klebsiella and
Staphylococcus species, common sources of serious
infections in ICU.*® From the species enriched in
ICU" compared to Healthy, E. faecium,
Staphylococcus  epidermidis, and Lactobacillus
rhamnosus showed the highest number of correla-
tions, suggesting that these may be important spe-
cies to maintain the community structure. From
the species enriched in ICU" compared to ICU",
Lactobacillus crispatus showed positive correlations
with known pathogens such as Enterococcus and
Klebsiella species, as well as negative correlations
with Healthy-enriched SCFAs and BAs producers
including F. prausnitzii, E. rectale, and A. shahii.
To examine in vivo host effects of the species
enriched in ICU" patients compared to ICU", we
utilized nematode C. elegans as a model host.
C. elegans recently emerged as a suitable simple
model for discovering conserved host-microbiome
interactions.”” The experiments were conducted by
reconstituting germ free L1 nematodes with the
two, sufficiently annotated, bacterial strains
enriched in ICU" (B. animalis and L. crispatus).
We found that both strains had a strong negative
impact on the host homeostasis: L. crispatus exerted
direct toxicity in the model host (Figure 3(c)), and
B. animalis instigated a delay in the C. elegans
development indicative of the physiological stress
(Figure 3(d)). By including heat-killed bacteria as
an additional control and performing OD normal-
ization across conditions, we found that host toxi-
city of L. crispatus requires live bacteria, while
B. animalis rather acts as a passive stressor
(Supplementary Figure 5). Interestingly, the nema-
todes, which overcame the developmental hin-
drance by B. animalis, displayed a delay in
reproductive aging (Figure 3(d)) consistent with
the putative probiotic effect of B. animalis in the
animals that were able to conquer the initial stress
caused by this bacterium. To probe the potential

probiotic effect of B. animalis at the mechanistic
level, we tested its ability to induce nuclear translo-
cation of DAF-16/FOXO transcription factor -
a conserved mediator of stress resistance and long-
evity extension.”’ > We found that live B. animalis
indeed had the strongest capacity to induce DAF-
16 activation among all conditions tested
(Supplementary Figure 6). Our results are thus in
line with the previously reported ability of
B. animalis to cause disease in immunocompro-
mised human patients, while it acts as a probiotic
in healthy humans,” demonstrating the physiolo-
gical relevance of our nematode findings.
Collectively, our in vivo tests indicate that the rar-
efication of the microbiome, which is exacerbated
by antibiotics exposure in ICU" patients, facilitates
the enrichment of microbes with potential of exert-
ing direct detrimental effects on the host.

Functional shifts in the microbiome

Next, we compared MetaCyc pathway abundance
to explore the gut microbiome functionality in the
three groups. As shown in the ordination plot
(Figure 4(a)), the differences between ICU" com-
pared to the other 2 groups at the functional level
are driven by SCFA biosynthesis, AA biosynthesis,
and fermentation to SCFA, whereas the abundance
of pathways related to nucleotide and nucleoside
degradation and vitamin biosynthesis are the main
drivers in the comparison of Healthy vs ICU".
Therefore, we then focused on AAs, SCFAs, and
BAs due to their important role in the regulation of
the immune system and their influence in diseases
associated with dysbiosis."' In total, we identified
117 significantly differentially abundant pathways
related to the metabolism of AAs, SCFAs, and BAs
(Wilcoxon rank-sum test, P < .05). Even though the
majority of these pathways had a higher relative
abundance in the Healthy compared with ICU~
group, only a few pathways reached statistical sig-
nificance. On the contrary, the differences in the
relative abundances between the ICU" with the
Healthy group were striking (Figure 4(b)). The
relative abundance of 98 of the 117 unique path-
ways was significantly lower in ICU". Despite the
small number of significantly differentially abun-
dant species between ICU" and ICU", there were
more differences in the metabolic pathways
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Figure 4. Functional shifts contributed by the microbiome. (a) Multidimensional scaling (MDS) plot of the samples based on the
pathway abundances. The top 15 pathways with the strongest significant correlation with the overall ordination (FDR<0.05 with
function envfit from the R package vegan ”°) are highlighted with arrows where the length of the arrows reflects the strength of the
association.(b) Numbered heatmaps showing the relative abundances of differentially abundant bacterial MetaCyc pathways.
Additional heatmaps indicate significance (blue tiles, P < .05, Wilcoxon rank-sum test). Only pathways related to short-chain fatty
acid, bile acid and amino acid metabolism, as identified by manual curation, are shown.
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between the two groups than between Healthy and
ICU", suggesting that antibiotic treatment has
a stronger effect in the metabolism of AAs,
SCFAs, and BAs than critical illness. Several of
these pathways were selected in the random forest
model to classify the two groups of ICU patients
(Figure 1(e) and Supplementary Figure 3).

Metabolomics analysis

We then performed targeted metabolomic analysis
and quantified the levels of 10 SCFAs and 27 BAs in
38 stool samples (see Methods). Consistently with
the results from the MetaCyc pathway analysis, we
observed a significant decrease in the abundance of
SCFAs and BAs in the ICU" group compared to the
Healthy and ICU™ groups (Figure 5(a)). Of 10 iden-
tified SCFAs, 6 were significantly different between
the groups (Figure 5(a)). Acetic acid, propionic acid,
butyric acid, and valeric acid were significantly lower
in the ICU" group compared to both the Healthy
and ICU™ groups (Wilcoxon rank-sum test, P < .05).
The levels of these SCFAs were not found to differ
significantly between the ICU™ and Healthy groups.
A similar pattern was observed with the BAs; keto-
lithocholic acid, deoxycholic acid, glycolithocholic
acid, hyodeoxycholic acid, isolithocholic acid, litho-
cholic acid, and ursodeoxycholic acid were all found
significantly lower in abundance in ICU" patients
(Wilcoxon rank-sum test, P < .05) compared to
both Healthy and ICU™ patients (Figure 5(a)).
Among them, ursodeoxycholic acid is increasingly
used in the clinical setting for a treatment of a variety
of conditions.”**> Ketolithocholic acid, lithocholic
acid, and ursodeoxycholic acid have been also
found to provide resistance against C. difficile infec-
tions and to modulate the host inflammatory
response during the infection.”® The BA profiling
of ICU" patients may also explain the high similarity
at the functional level revealed by FEAST with the
C. difficile cohort (Figure 2(b)).

To identify which species were mainly responsible
for the differences in the levels of the measured
SCFAs and BAs in ICU" compared to the other
two groups, we performed growth rate analysis *
and Spearman’s correlation between the 13 metabo-
lites and 38 species. The species selected were either
having (i) significantly higher abundance in the
Healthy group compared to ICU" but not compared

to the ICU™ group or (ii) significantly higher abun-
dance in the ICU™ compared to the ICU" group
(Figure 5(b)). As shown in Figure 5b, A. putredinis,
Lachnospiraceae  bacterium 2 1 58FAA and
Lachnospiraceae bacterium 1 1 57FAA showed posi-
tive correlations with SCFAs and/or BAs and were
predicted through Flux Variability Analysis (FVA) *®
to secrete SCFAs. Several Bacteroides species, includ-
ing B. uniformis, were actively growing (GRiD
851, they showed positive correlations with the
measured SCFAs and they were predicted through
FVA *® to secrete SCFAs supporting the identified
correlation (Figure 5(b)). Since BA metabolism is
not included in these metabolic models, we analyzed
the BA biosynthesis potential of the species showing
high correlation with BAs using differential analysis
of enzymes involved in the BA biosynthesis pathway.
The enzymes cbh and baiN were found in the gen-
omes of Bacteroides xylanisolvens, L. bacterium 2 1
58FAA, R. obeum, and R. gnavus. The abundance
levels of B. xylanisolvens and R. obeum cbh and the
abundance levels of R. obeum baiN were found sig-
nificantly higher in the Healthy group compared to
the ICU" (Wilcoxon rank-sum test, P < .05, data not
shown). R. obeum has been previously shown to have
an inhibitory effect on V. cholerae due to its capacity
to degrade virulence-activating signals in the gut
through the synthesis of bile salt hydrolases."

Candida species and resistant genes flourish in
critically ill patients

Since the microbiome composition and functional
profile of critically ill patients appeared to be dys-
biotic, we investigated next if this leads to systema-
tic changes in the structure of the fungal
community, with emphasis on Candida species
and the antibiotic resistance gene (ARG) levels in
the three groups. We built high-quality libraries for
ITS2 sequencing of 74 available stool samples from
the Healthy, ICU" and ICU™ groups. We estimated
the fungal relative abundance using the DADA2
pipeline.”” The taxonomic profiling revealed that
Ascomycota (85.63%) was the most abundant fun-
gal phyla, followed by Basidiomycota (9.84%) and
Muromycota (3.44%) (Figure 6(a)). There was no
significant difference in the alpha diversity
(Shannon, Simpson, Chaol) between any of the
two groups and the type of beta-lactam
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Figure 5. Associations between gut microbiome and short-chain fatty acids and bile acids. (a) Content of SCFAs and BAs (log,) in three
groups are plotted as bar plots. Wilcoxon rank-sum test, *P < .05, **P < .01, ***P < .001, ****P < ,0001, ns: not significant.(b) Heatmap
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administrated in the ICU" group did not appear to
influence this pattern (Wilcoxon rank-sum test,
P > .05) (Supplementary Figure 7). However,
when we calculated the Bray-Curtis distance of
the three groups we observed a high community
dissimilarity ~between ICU" and Healthy
(PERMANOVA, P = .001) and between ICU™ and
Healthy (PERMANOVA, P = .001), whereas the
ICU" and ICU™ groups did not show significant
differences (PERMANOVA, P = .703) (Figure 6
(a), Supplementary Figure 10(a)). We subsequently
investigated differences in fungal species relative
abundance between the three groups. In total 19,
11, and 3 fungal species were found significantly
different (Wilcoxon rank-sum test, P < .05) in the
comparisons between Healthy vs ICU", Healthy vs
ICU7, ICU" vs ICU, respectively (Figure 6(b)). The
Candida genus, which includes species that are
opportunistic pathogens, was found to have the
greatest number of differentially abundant species
between the three groups. Candida albicans,
Candida glabrata, Candida pseudolambica, and
Candida tropicalis were all found to have the high-
est abundance in ICU" patients (Figure 6(b)).

To determine whether antibiotic treatment exerts
selective pressure on the resistome as a whole, we
analyzed the change in Pfams related to the resistome
and mobilome, as well as the abundance differences
of ARGs between the three groups. In the abundance
comparison between the Healthy and the ICU"
groups, there were 71 statistically significant Pfams
(Wilcoxon rank-sum test, P < .05) related to the
resistome and/or mobilome, with 48 of them being
more abundant in the ICU" and 23 in the Healthy
group (Supplementary Figure 8(a)). Interestingly, the
differences between ICU™ and Healthy groups were
also large with 30 and 16 Pfams being more abundant
in the ICU™ and the Healthy group, respectively
(Supplementary Figure 8(a)). In the comparison
between ICU" and ICU™ there were 19 significant
Pfams with 14 being more abundant in the ICU"
and 5 in the ICU  group (Supplementary
Figure 8(a)).

Subsequently, we annotated the ARGs in the
three groups using deepARG.”® The overall ARG
abundance profile of the ICU" and ICU~ groups
using the Bray-Curtis distances indicates that there
is no substantial perturbation during antibiotic
treatment (PERMANOVA, P = .261), but there

are significant differences between ICU" and
Healthy (PERMANOVA, P = .001) and between
ICU" and Healthy (PERMANOVA, P = .001)
(Supplementary Figure 8(b), Supplementary
Figure 10(b)). Comparing the total accumulative
relative ARGs abundance led to the same conclu-
sion; critically ill patients have already a unique
resistome profile compared to healthy individuals,
which is only marginally disturbed by antibiotics
administration (Wilcoxon  rank-sum test,
P = 597e-8, Supplementary Figure 8(c)).
Considering the polypharmacology approaches
often applied in ICU, our observation is in agree-
ment to recent studies suggesting that human tar-
geted drugs can significantly impact on the gut
resistome proﬁle.99 Nevertheless, an abundance
comparison of the individual ARGs revealed 24
ARGs, including 3 beta-lactams (SHV, PENA,
AMPC), significantly higher in the ICU" group
and only 1 in the ICU  group (dabestr,
Confidence Interval (CI) = 95%, Supplementary
Table 3). Among the ARGs that exhibit the highest
abundance differences (dabestr, 95%) between the
ICU" and ICU™ groups were AAC(6')-I (aminogly-
coside), ADEC (multidrug), ERMB (macrolide, lin-
cosamide and streptogramin), VANS
(glycopeptide), and MSRC (macrolide, lincosamide
and streptogramin) (Supplementary Figure 8(d)).

Discussion

Sepsis, acute respiratory distress syndrome (ARDS),
and multi-organ failure represent common condi-
tions most frequently driven by an inappropriate
host response to pathogens of the critically ill.
These conditions are responsible for immense global
mortality accompanied by a tremendous economic
burden '. While breakthroughs of molecular medi-
cine have revolutionized treatment in oncology and
rheumatology, in critical illness research endeavors
of decades have not resulted in any targeted thera-
pies. In practice, intensive care can be considered
mostly as supportive and antibiotics are
a cornerstone of care for patients with sepsis, i.e.
infection-driven organ dysfunction.”

The off-target effects of antibiotics on the micro-
biome are, however, also particularly obvious in the
ICU population. Antibiotics often fail to resolve

118



MANUSCRIPT IV

a
Healthy vs ICU+
§ 0.2
g Group
~
2 00 Healthy
~N
< & Icu+
8 -02
a
-0.4
-04 -0.2 00 02 04
PCOA 1 (19.68%)
Ascomycota
A Group
— # Healthy
g 02 A ICU-
g " ICU+
S 00
~ “ i Apundance
< 2
S _ Ay 075
g 0.2 ’ 050
. 025
044" = =000
-04 -02 00 02 04
PCOA 1 (19.68%)
Group
Healthy
M icu-
W cu+ I
Abundance
20
15 [
10 il |

l 4 _.
0
Significance

Yes
No

Debaryomyces

Others

Healthy vs ICU-

_. 02 =
g g 02
© oM
© Group 9
~ ~
g 00 Heathy <L 0.0
~N o~
< e IcuU- <
8 -0.2 8 -0.2
a a

-0.4 -0.4

-04 -02 00 02 04
PCOA 1 (19.68%)
Basidiomycota
q-= " Group
—_ L ® Healthy —_
g 02 ‘ LS g 02
g = ICU+ 8
S 00 % S 00
~ L Abundance &
< o . 1.00 <
S _ " 0.75 S -
g 02 0.50 g 0.2
" o2s
-0.4 =000 -0.4
-04 -02 00 02 04

PCOA 1 (19.68%)

GUT MICROBES €1993598-13

ICU-vs ICU+

Group
e ICU-
e Icu+
-04 -02 00 02 04
PCOA 1 (19.68%)
Mortierellomycota
lx a L Group
;I“‘. ® Healthy
. 4 ICU-
ald .|\. = ICU+
& W
%
= - " Abundance
o . i 1.00
A 0.75
< o A 0.50
. S o2s
.-y = 0.00
-04 -02 00 02 04

PCOA 1 (19.68%)

Group

Candida albicans*
Candida glabrata*
Saccharomyces sp*
Candida tropicalis*
Candida pseudolambica*

Dipodascus geotrichum*
Debaryomyces hansenii*
Pichia sp*

Saitozyma podzolica*
Chaetomium sp*
Geminibasidium sp*
Aspergillus amstelodami*
Alternaria alternata
Gibberella intricans
Trichosporon sp
Vishniacozyma victoriae
Holtermanniella takashimae*
Schizothecium miniglutinans*
Serendipita indica

Arxiella dolichandrae*

Aspergillus niger*
Debaryomyces sp*

(o
Candida albicans Candida glabrata Candida tropicalis Candida pseudolambica
0.066 30 0.85 25 0.49 0.28
—
0.18 0.03 0.047 0.065
0.00088 0.0011 0.0021 20 0.0026
20 — : .
20 20 *
@ 3 3 @
o o C 15 Q15
< 1= < 1=
I < I <
-] k-] ° °
5 5 510 310
<10 <10 ] 2
5 5
0 . . 0 . 0 . . 0
Healthy ICU- ICU+ Healthy ICU- ICU+ Healthy ICU- ICU+ Healthy ICU- ICU+
Group Group Group Group

Figure 6. ICU patients have distinct mycobiome profiles. (a) Upper — PCoA plots of the gut mycobiome based on species-level Bray-
Curtis distances. Color indicates the groups. Significant differences were determined using PERMANOVA (P < .05). Lower — the same
PCoA plots as upper panel highlighting the top 3 most abundant fungal phyla (Ascomycota, Basidiomycota and Mortierellomycotina).
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left indicate the comparisons in which the species was found to be significant. The names of species are colored according to their
affiliated genera. Differentially abundant species in ICU* vs Healthy comparison after FDR correction (FDR<0.25) are marked with *.(c)
Boxplots comparing the normalized abundances of specific Candida species (Wilcoxon rank-sum test).
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organ failure despite evidence of infection and,
even more concerning, are frequently administered
not to miss an occult infection. While the resulting
increase of multi-resistant bacteria is an obvious
problem, the negative impact on the “holobiont”
in the ICU have largely been ignored. More to the
point, considerations in intensive care are more
dwelling around the early days of introduction of
antimicrobial therapy when Paul Ehrlich propa-
gated the concept of “therapia sterilisans magna”
where only “parasitotropic” effects in the absence of
“organotropic* effects of drugs were envisioned.'*
Thus, molecular therapies for these common and
lethal diseases are desperately needed and depend
on a better understanding of systems biology of the
host metabolome-microbiome interplay.'"”* Up to
now, the downstream consequences, such as host
inflammation and cellular damage, and not the
upstream sources, in particular the complex micro-
bial ecosystems that reside in and on the human
body, have been the priority of research.
Nevertheless, two recent studies in mice °*'*” indi-
cate that Fecal Material Transplantation (FMT) and
specific species in the gut microbiome could pre-
vent sepsis opening up new clinical research
avenues.

Here, we present evidence from a human study
that the selective pressures to which critically ill
patients are exposed (parenteral nutrition, poly-
pharmacy, including e.g., proton pump inhibitors,
shock states requiring invasive life support mea-
sures, such as catecholamine treatment) shape the
microbiome of these patients in a unique way with
highly distinct characteristics compared to healthy
or other disease states, including metabolic, inflam-
matory, or malignant diseases. As we have shown,
the microbiome structure and function of critically
ill patients resembles signatures mainly observed in
severe infections such as C. difficile and V. cholerae.
This already “infection-vulnerable” microbiome
structure in critical illness becomes severely dysbio-
tic after antibiotic treatment with an observed
depletion of SCFAs, including propionate, butyrate,
and acetate, and BAs. Similarly, in an elegant mice
study Kim et al., ' demonstrated using FMT from
healthy littermates that high levels of butyrate (and
potentially also propionate), provided mainly by
Bacteroidetes, can rescue from lethal sepsis caused
by a pathogenic mixture of K. oxytoca, E. faecalis,

Serratia marcescens and C. albicans isolated from
a septic patient. Three of these pathogenic species,
K. oxytoca, E. faecalis and C. albicans, were found
in significantly higher abundance in our critically ill
patients compared to healthy individuals. However,
the poor similarity in gut microbial taxonomic
abundances between human and mice '** high-
lights the importance of investigating the relation-
ship between critical illness and gut microbiota in
human clinical samples. For example, while Kim
et al., '°* hypothesized that critical illness itself may
result in the depletion of gut butyrate. In our
human study, this was not the case and only after
antibiotics administration we observed a dramatic
decrease in the SCFA levels. Nevertheless, we
observed a significant change in taxonomy also in
ICU™ compared to Healthy related to inflamma-
tion, such as a significant increase in the abundance
of Staphylococcus and Enterococcus, which have
been reported as key factors for the development
of signs of systemic inflammation, nosocomial
infection and complications in the ICU course.***°

Our study has several limitations. Critically ill
patients represent a heterogeneous patient group
characterized by comorbidities, past infections
and age, leakage of alveolar, and intestinal barriers
as well as impaired defense and repair
mechanisms.'*>'% Low flow states up to overt
shock, autonomic dysfunction, and lack of suffi-
cient options for enteral feeding, e.g., due to dys-
phagia or impaired consciousness affect gut
function, transit time, and defecation.'"” Many
drugs that are applied routinely in addition to anti-
biotics, such as proton pump inhibitors or catecho-
lamines can affect gut function substantially.”
Nevertheless, while rodent studies allow to control
many of the aforementioned confounders, only
clinical studies allow to address the impact of anti-
biotics on the gut microbiome as it relates to clini-
cally meaningful outcomes. Thus, we aimed at
control of confounders through inclusion of patient
cohorts requiring critical care but not receiving
antibiotics.

Patients in ICUs represent a relatively small sub-
group of hospitalized patients, but they reflect
a specific at-risk population that accounts for
approximately 25% of all hospital-acquired
infections.'® Infection as a typical complication
of critical illness increases length of ICU stay,
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morbidity, mortality, and costs.'” Moreover, the

rise in multidrug-resistant strains prompts atten-
tion on nonantibiotic strategies in the prevention
and treatment of nosocomial infections, such as
pro- or synbiotics. However, mechanisms of action
in the vulnerable population of critically ill patients
requires further investigation into the mechanisms
that shape the gut microbiome. From our study we
suggest that the loss of a handful of species, that are
highly connected with the production of SCFAs
and BAs, during antibiotic administration in the
ICU allows the expansion of pathogenic species,
which exhibit potential to cause direct hindrance
of host homeostasis. Despite the availability of
more advanced antibiotics in ICUs death rates
from sepsis following nosocomial infections keep
increasing, indicating that these antibiotics do not
increase survival but instead they produce a highly
dysbiotic gut ecosystem that allows more aggres-
sively resistant and lethal pathogens to thrive.'
These changes are likely associated with or even
to promote a state of “protracted critical illness”,
a frequent observation in patients discharged after
prolonged intensive care and characterized by per-
sistent systemic infection. It seems warranted to
design studies that aim to restore the gut micro-
biome or replace key metabolites, such as SCFAs or
BAs, in this vulnerable patient population to restore
homeostasis of the “metaorganism” after discharge
from intensive care.

Materials and methods
Study design

A prospective observational study was undertaken
from May 2018 until January 2019 at the Jena
University Hospital. Adult critically ill patients
either treated with systemic antimicrobial therapy
(piperacillin/tazobactam or meropenem) for at
least 2 days or without any systemic antimicrobial
therapy within the last 7 days were eligible for this
study. Patients with inflammatory bowel disease,
major bowel resection, selective decontamination
of the oral and digestive tract, oral vancomycin
therapy, immunocompromised patients, history of
chemotherapy during the last 6 months, or known
travel history to areas of high antimicrobial resis-
tance within the last 4 weeks were excluded from

GUT MICROBES €1993598-15

this study. The need for informed consent was
waived by the IRB, since this investigation did not
involve any intervention at the patient. The col-
lected basic data were used only for calculating
mean values per group and were not linked to the
individual metagenomic profiles. Stool samples
from healthy volunteers (>50 years old) with no
antimicrobial therapy within the last 6 months
served as a control group. Healthy volunteers inter-
ested in participating were invited for
a consultation with medical doctors in the Jena
University Hospital. Their health status and prior
antibiotic use was self-reported. The basic demo-
graphic data for the healthy cohort is provided in
Supplementary File 1. We collected up to 100 ml
feces which were sampled immediately after natural
defecation. Fecal specimens were transferred into
two sterile containers, one that was mixed with
liquid thioglycolate medium supplemented with
catalase and 10% glycerol and one without buffer
solution. Both containers were stored at -80°C.
Each patient contributed with only one stool
sample.

DNA extraction from stool samples

All stool samples were processed by Novogene
(UK). DNA was extracted using the following
protocol: Stool samples were thoroughly mixed
with 900 pL of CTAB lysis buffer. All samples
were incubated at 65°C for 60 min before being
centrifuged at 12000 x g for 5 min at 4°C.
Supernatants were transferred to fresh 2-mL
microcentrifuge tubes and 900 pL of phenol:
chloroform:isoamyl alcohol (25:24:1, pH = 6.7;
Sigma-Aldrich) was added for each extraction.
Samples were mixed thoroughly prior to being
incubated at room temperature for 10 min. Phase
separation occurred by centrifugation at
12,000 x g for 15 min at 4°C, and the upper
aqueous phase was re-extracted with a further
900 pL of phenol:chloroform:isoamyl alcohol.
Next, samples were centrifuged at 12,000 x g for
10 min at 4°C, and the upper aqueous phases were
transferred to fresh 2-mL microcentrifuge tubes.
The final extraction was performed with 900 pL of
chloroform:isoamyl alcohol (24:1), and layer
separation occurred by centrifugation at
12,000 x g for 15 min at 4°C. Precipitation of
DNA was achieved by adding the upper phase

121



MANUSCRIPT IV

€1993598-16 A. MARFIL-SANCHEZ ET AL.

from the last extraction step to 450 uL of isopro-
panol (Sigma-Aldrich) containing 50 pL of 7.5 M
ammonium acetate (Fisher). Samples were incu-
bated at - 20°C overnight, although shorter incu-
bations (1 h) produced lower DNA yields. Samples
were centrifuged at 7500 x g for 10 min at 4°C,
and supernatants were discarded. Finally, DNA
pellets were washed three times in 1 mL of 70%
(v/v) ethanol (Fisher). The final pellet was air-
dried and re-suspended in 200 pL of 75 mM TE
bufter (pH = 8.0; Sigma-Aldrich).

Library preparation and sequencing for
metagenomics

Sequencing library was generated based on
[lumina technologies and following manufactures’
recommendations. Index codes were added to each
sample. Briefly, the genomic DNA was randomly
fragmented to a size of 350 bp, then DNA frag-
ments were narrowly size selected with sample pur-
ification beads. The selected fragments were then
end polished, A-tailed, and ligated with adapter.
These fragments were filtered with beads again
and amplified by PCR reaction. At last, the library
was analyzed for size distribution and quantified
using real-time PCR. The library was then to be
sequenced on an Illumina platform Novaseq 6000
(Novogene) with paired-end reads of 150 bp.

Internal transcribed spacer sequencing

The concentration of genomic DNA was determined
by Qubit, and the DNA quality was checked on the
gel. 200 ng of DNA was used as input for PCR
reaction with corresponding primer set specifically
binding to different hypervariable regions. Each pri-
mer set had a unique barcode. PCR product was then
run on the gel and DNA fragment with the proper
amplification size was cut and purified. The purified
PCR product was then used as template for library
preparation. The PCR products were pooled
together with equal amount and then end polished,
A-tailed, and ligated with the adapter. These frag-
ments were filtered with beads again. After PCR
reaction (to make library fully double strand), the
library was analyzed for size distribution and quan-
tified using real-time PCR. The library was then to be
sequenced on Hiseq2500.

Metabolomics analysis
We performed targeted metabolomics analysis for
38 of the 75 available samples. The remaining sam-
ples were destroyed during a prolonged stay in the
customs during the COVID-19 pandemic.
Quantification of SCFAs: SCFAs were extracted
by addition of 2 mg ultra-pure water pr. mg of
sample. The samples were vortex mixed for 1-
2 min until suspension is reached, and centrifuged
at max speed for 10 min at 4°C. The supernatant
was transferred to a spinX centrifuge filter and
centrifuged for additional 5 min at 4°C. The filtrate
was collected and stored at -20°C until analysis.
Sample analysis was carried out by MS-Omics as
follows. Samples were acidified using hydrochloric
acid, and deuterium labeled internal standards
where added. All samples were analyzed in
a randomized order. Analysis was performed
using a high polarity column (ZebronTM ZB-
FFAP, GC Cap. Column 30 m x 0.25 mm
x 0.25 pm) installed in a GC (7890B, Agilent)
coupled with a quadrupole detector (59778,
Agilent). The system was controlled by
ChemsStation (Agilent). Raw data was converted to
netCDF format using Chemstation (Agilent),
before the data was imported and processed in
Matlab R2014b (MathWorks, Inc.) using the
PARADISe software described by Johnsen et al.'"
Quantification of BAs: Bile acids were extracted
by addition of 4 mg methanol pr. mg of sample. The
samples were vortex mixed for 1-2 min until sus-
pension is reached, and centrifuged at max speed for
10 min at 4°C. The supernatant was transferred to
a spinX centrifuge filter and centrifuged for addi-
tional 5 min at 4°C. In a HPLC vial, 285 pL filtrate is
mixed with 15 pL internal standard. The final
volume of filtrate of CS10768 and CS10798 where
below 285 ul. Therefore, 200 ul were combined with
85 ul Methanol and 15 pl internal standard. Sample
analysis was carried out by MS-Omics as follows.
The analysis was carried out using a Thermo
Scientific Vanquish LC coupled to Thermo
Q Exactive HF MS. An electrospray ionization inter-
face was used as ionization source. Analysis was
performed in negative ionization mode. The chro-
matographic separation of bile acids was carried out
on a Waters Acquity HSS T3 1.8 pm 2.1 x 150 mm
(Waters). The column was thermostated at 30°C.
The mobile phases consisted of (A) ammonium
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acetate 10 mmol/l, and (B) methanol:acetonitrile
(1:1, v/v). Bile acids were eluted by increasing B in
A from 45% to 100% for 16 min. Flow rate was
0.3 min. Peak areas were extracted using
Tracefinder 4.1 (Thermo Scientific). Identification
of compounds were based on accurate mass and
retention time of authentic standards.

Data processing

Quality control of sequence data

Quality control to remove low-quality reads was
performed as described previously.''" Briefly, all
[Mlumina primer/adapter/linker sequences were
removed. Subsequently, low-quality regions (con-
secutive regions with Phred quality <20) were
trimmed. Finally, all reads were mapped to the
human genome with BWA version 0.7.4 ''* and
reads with >95% identity and 90% coverage were
removed as human DNA contamination.

Taxonomic profiling

Taxonomic annotation of the high-quality reads
was performed using MetaPhlAn2** version 2.7.7
with default settings, generating taxonomic relative
abundances. Bacterial community profiles were
constructed at phylum, genus and species level for
further analyses.

Taxonomic annotation of fungal ITS was per-
formed using the DADA2 pipeline”’” version 1.14
with default parameters including adapter removal,
quality filtering and trimming, dereplication of iden-
tical reads, read-pair merging, ITS2 extraction and
chimera removal. Remaining reads were binned as
operational taxonomic units and aligned to the
UNITE fungi database using RDP classifier.'"> All
samples were then normalized by cumulative sum
scaling using R package metagenomeSeq.'"*

Functional annotation

The HUMAnN?2 pipeline * version 0.11.2 was used
for functional annotation of the high-quality reads
after the quality control. The quantified pathway and
gene family abundances in the units of RPKs (read per
kilobase) were then normalized to copies per million
(CPM) units by the providled HUMAnN2 script,
resulting in transcript-per-million-like (TPM) nor-
malization. Gene families were then regrouped to
Pfam domains for further analyses.
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Abundance comparisons
Species, pathways, and Pfams were filtered by 10%
prevalence across all samples and their relative
abundances were used for statistical comparisons
between the three groups. Differentially abundant
features were identified by the Wilcoxon rank-sum
test and were considered significantly differentially
abundant if the P-value was less than 0.05.
Differentially abundant phyla and genera were
identified by the Kruskal-Wallis test and were con-
sidered significantly differentially abundant if the
P-value was less than 0.05.

Metagenomics sequences from HUMANnN2 profiles
Gene family abundances were clustered using mgs-
canopy*® version 1.0 software with standard para-
meters. Gene family clusters were considered meta-
genomic sequences (MGS) if they had at least 700
genes. Taxonomic annotation of MGS was done
using species annotation information available for
each gene family.

We calculated contributions of each species to an
MGS. An MGS was annotated to the species with the
largest contribution if: the gene contribution of that
species was more than 50% and the second largest
species was “unclassified” or contributed less
than 10%.

Diversity analysis

Alpha diversity indices Shannon, Simpson, and
Chaol were calculated using the R packages
vegan”® and fossil''> based on relative species
abundance. Wilcoxon rank-sum test was used
to test for significant differences in alpha diver-
sity. For estimating community dissimilarities,
Bray-Curtis distances were calculated using the
R package vegan’® based on the relative species
abundance. To test for significant differences in
the microbial composition, permutational multi-
variate analysis of variance (PERMANOVA), as
implemented in the function adonis from
R package vegan,””> was used to analyze beta-
diversity.

Co-abundance networks

The relative abundance table for significantly dif-
ferent species was processed using SparCC ''° for
co-abundance network inference. Species-species
correlation coeflicients were estimated as the
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average of 20 inference iterations and 100 permuta-
tions were used for the pseudo P-value calculation.
For the visualization of the co-abundance network,
only interactions with an absolute correlation coef-
ficient >0.4 were used.

Metabolic modeling

To estimate the availability and composition of
metabolites in ICU patients, the nutrition fed in
ICU (https://www.fresenius-kabi.com/de/ernaeh
rung/fresubin-original) was considered.
Metabolic composition of complex products
such as fish oil was described by vmh diet
designer (https://www.vmbh.life/#nutrition/dietde
signer). The human genome-scale metabolic
model Recon3D 3.01 ' simulated based on the
ICU specific diet (Supplementary File 2) was used
to predict metabolites that can potentially be
secreted by the host. Flux Variability Analysis
(EVA) % was used to determine feasible exchange
reaction flux bounds that support metabolite
secretion  alongside optimal growth rate.
Identified metabolites were assumed to be avail-
able for the bacterial species and strains to be
consumed. Genome-scale metabolic models of
the studied species and strains were collected
from two different gut model repositories,
AGORA 1.03 (https://www.vmh.life) 8 and
CarveMe.''® Taking into account the availability
of ICU diet compounds and potential host-
secreted metabolites in the gut, the maximum
amount of SCFAs (acetic acid, propionic acid,
and butyric acid) production by bacterial species
and strains were predicted by applying FVA
again alongside achieving maximum ATP yield as
objective for the available bacterial metabolic
models.

Abundance of ARGs

The metagenomic reads were analyzed using the
deepARG pipeline,”® which uses deep learning to
identify and quantify ARGs. Reads were compared
to the provided DeepARG-DB database using
a prediction model to evaluate sequence similarities
and predict antibiotic resistance. The pipeline was
run in short sequence mode with a minimum prob-
ability cutoff of 0.8, an identity cutoft of 80%, an
E-value cutoff of le-10 and a minimum coverage
of 50%.

Testing for significant differences in ARG abun-
dance was performed using R package dabestr '"’
with a confidence interval of 95%.

Bacterial growth rate estimation

Bacterial growth rate was calculated using the
growth rate index (GRiD) * version 1.2. The algo-
rithm first calculates the coverage of all contigs of
a reference genome in the sample, sorts them from
high to low, and reorders them to two groups, pla-
cing an ori-containing contig at start and a fer-
containing contig at the mid-region of the genome.
Next, it calculates coverage drops across a sliding 10
Kb window, with values representing the coverage
ratio of the peak and trough of the curve. High values
represent faster growth rates.

Random forest model

A Random Forest classifier was built to classify ICU
patients into ICU™ and ICU" based on bacterial taxo-
nomic profiles and pathways. The model was imple-
mented using R package caret '*° with all bacterial
species and pathway abundances as input features.
The model was trained after centering and scaling the
data and removing variables with near zero variance,
using a tune length of 10 and fivefold cross-validation
as resampling method, the rest of the parameters
were left as default. Feature importance were calcu-
lated using function varImp from R package caret.'*
A random forest model was then built using only the
20 most important features. R package PRROC '*!
was used for ROC calculation and plot.

Bacterial exposure and survival assay in C. elegans
Bacterial strains used were Escherichia coli OP50,
Lactobacillus ~ crispatus  (DSM  20356), and
Bifidobacterium animalis (DSM 20104). All strains
except E. coli were acquired from the German
Collection of Microorganisms and Cell Cultures
and cultured following the supplier guidelines.
Bacterial stocks were kept at -80°C until use.
C. elegans strain used was N2 wild-type isolate
obtained from the Caenorhabditis Genetics Center.
Bacterial stocks were inoculated in anoxic broth
(MRS for L. crispatus and BSM for B. animalis) and
incubated at 37°C for 72 h. 150 uL of each bacterial
culture was spread onto medium sized NGM agar
plates (5,5 cm diameter) and incubated for 24 h at
37°C in an anaerobic container (BD GasPak™ EZ
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container systems) prior to worm addition. E. coli
was grown on NGM in normoxia. UV-killed OP50
was produced by exposing NGM plates to UV light
(320 nm) in a Chemi-Doc XRS+ transilluminator
(BioRad) for 10 min.

Age-synchronized germ-free worms  were
obtained by collecting eggs from gravid adults
upon treatment with alkaline hypochlorite solution
(composition per liter: 200 mL 1 M KOH, 250 mL
bleach, and 500 mL ddH20) and letting the eggs
hatch overnight at 20°C in M9 buffer. Synchronized
L1 larvae were seeded onto NGM plates containing
respective bacterial strains (4 plates per strain).
Approximately 150 worms were seeded per plate.
Plates were incubated at 20°C in an anaerobic con-
tainer for 5 h or 24 h. After incubation worms were
washed with M9 buffer and transferred to UV-killed
OP50 plates. UV-killed OP50 plates were incubated
at 20°C in normoxic conditions for 24 h prior to
survival assessment. Heat-killed bacteria was
obtained by submerging bacterial cultures at 80°C
for 60 min and OD600 was normalized to 0,2 before
placing the cultures onto NGM plates. Live bacteria
was also subjected to OD600 normalization in all
tests, which involved heat-killed control conditions.

Survival rate was assessed by screening all the
worms present in each plate. A worm was regarded
as dead if it did not respond to gentle touch with
a platinum wire. Survival was expressed as percen-
tage of the total number worms. Each experiment
was performed 3 times.

Developmental fitness and reproductive aging assays
in C. elegans

Bifidobacterium animalis was grown for 72 h on
anoxic BSM broth at 37°C. Afterward, 150 uL of
bacterial culture was spread onto medium-sized
NGM plates (4 plates) and incubated for 24 h at
37°C in an anaerobic container (BD GasPak™ EZ
container systems) prior to worm addition. E. coli
OP50 was grown on NGM at normoxic conditions.
C. elegans N2 population was synchronized as
described above and approximately 150 worms
were seeded on either B. animalis or OP50 plates.
Plates were incubated for 24 h at 20°C in the anae-
robic container. Developmental assay was carried
out as previously described.'** In brief, 30 worms
per bacterium were put individually onto small
UV-killed OP50 plates and incubated for 48 h at
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20°C before developmental stage of each worm was
visually assessed. Reproductive aging assay was car-
ried out as described previously.'** In brief, after
incubation with B. animalis or OP50 the worms
were washed with M9 and let to develop until L4
stage on UV-killed OP50 plates at 20°C, normoxia.
At this moment 25 randomly picked worms (per
condition) were transferred individually onto
small-sized UV-killed OP50 plates. Every day the
brood size of each worm was determined (sum of
eggs and L1s) and parent worm was transferred to
new plate until egg laying ceased. These experi-
ments were performed 3 times.

DAF-16 nuclear translocation assay
Nematodes expressing DAF-16::GFP fusion protein
were obtained from the Caenorhabditis Genetics
Center (strain TJ356). Bacterial strains used were
the same as described above. Anoxic broth was
inoculated with an aliquot of actively growing bac-
terial culture and incubated at 37°C for 48 h.
OD600 of all living cultures was normalized to 0,1.
150 uL of each bacterial culture was spread onto
medium sized NGM agar plates (5,5 cm diameter)
and incubated for 24 h at 37°C in an anaerobic
container (BD GasPak™ EZ container systems)
prior to worm addition. E. coli was grown on
NGM in normoxia. Heat-killed bacteria was gener-
ated as described above and OD600 was normalized
to 0,2 prior to seeding onto NGM plates.
Age-synchronized germ-free worms
obtained as described above and grown until L4
stage on UV-killed OP50. L4 worms were washed
with M9 buffer and transferred to NGM plates
containing bacteria. Approximately 150 worms
were seeded per plate. Plates were incubated at
20°C in an anaerobic container (BD GasPak™ EZ
container systems) on either live or heat-killed bac-
teria for 5 h. Control plates were incubated in
normoxia on live bacteria only. After incubation,
30 worms were picked from each condition and
transferred to empty NGM plates for imaging.
Imaging was carried out using a ZEISS Axio
Zoom.V16 microscope equipped with fluorescence
light. Imaged worms were sorted into three cate-
gories (nuclear, intermediate, cytosolic) depending
on the localization of the GFP tagged DAF-16 tran-
scription factor. This experiment was performed
three times.

were
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Statistical analysis

To determine differential abundance of taxonomic,
functional, and metabolic features between groups
Wilcoxon two-tailed rank-sum test was applied
when analyzing the differences between two
groups, whereas Kruskal-Wallis test was used
when more than two groups were compared.
Correlation between microbial taxa and metabo-
lites was assessed by Spearman’s correlation. The
R package dabestr''” was used to test differential
abundance of ARGs. Significant differences in
source contributions to sinks using FEAST** were
assessed using Wilcoxon two-tailed rank sum test.
To assess differences in alpha diversity and beta
dispersion, Wilcoxon two-tailed rank sum test was
used, whereas PERMANOVA was used for beta
diversity.
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Supplementary File 1

ICU+ group ICU- Healthy P-value P-value
Characteristic N =54 > group,N= group,N= (ICU+vs (Healthy
16 9 ICU-) vs ICU)
male sex 38 (70%) 11 (69%) 5(56%) 1.0000 0.6197
Age [years] 66 72(65,78) 63 (57,70)  0.1321 0.1786
(58, 76)
BMI [kg/m?] 27.5 26.8(24.2, 252(21.9, 0.3088 0.0705
(25.9, 30.1) 29.1) 26.5)
type of admission
medical 20 (37%) 7 (44%) 0.8476
elective surgery 19 (35%) 6 (38%) 1.0000
surgical emergency 15 (28%) 3 (19%) 0.6891
type of surgery
none 20 (37%) 7 (44%) 0.8476
cardiac surgery 17 (31%) 6 (38%) 0.8830
neurosurgery 8 (15%) 2 (12%) 1.0000
abdominal surgery 5(9.3%) 0 (0%) 0.4774
trauma surgery 1 (1.9%) 0 (0%) 1.0000
other 3 (5.6%) 1 (6.2%) 1.0000
COPD 6 (11%) 2 (12%) 1.0000
cardiovascular disease 35 (65%) 10 (62%) 1.0000
renal disease 13 (24%) 3 (19%) 0.9152
diabetes mellitus 17 31%) 8 (50%) 0.2888
focus of infection
none 0 (0%) 16 (100%) 9.93E-16
respiratory tract 37 (69%) 0 (0%) 5.70E-06
Abdominal 6 (11%) 0 (0%) 0.3756
bones/soft tissue 3 (5.6%) 0 (0%) 0.7941
Chest 2 (3.7%) 0 (0%) 1.0000
catheter associated 1 (1.9%) 0 (0%) 1.0000
infection
urogenital 1 (1.9%) 0 (0%) 1.0000
unknown 4 (7.4%) 0 (0%) 0.6114
origin of infection
none 0 (0%) 16 (100%) 9.93E-16
nosocomial (ICU) 40 (74%) 0 (0%) 6.66E-07
nosocomial (non-ICU) 9 (17%) 0 (0%) 0.1855
community acquired 5(9.3%) 0 (0%) 04774
antibiotics
piperacillin/tazobactam 32 (59%) 0 (0%) 0.0001
meropenem 22 (41%) 0 (0%) 0.0055
none 0 (0%) 16 (100%) 9.93E-16
mechanical ventilation 31 (57%) 6 (38%) 0.2644
vasopressor therapy 37 (69%) 5 (31%) 0.0172
dialysis 18 (33%) 0 (0%) 0.0186
ICU length of stay [days] 16 (10,27) 21 (14,29) 0.3073
ICU mortality 14 (26%) 2 (12%) 0.4328
hospital length of stay [days] 31 (24,45) 29(19,47) 0.7873
hospital mortality 16 (30%) 2 (12%) 0.2931
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Continuous data are expressed as median and interquartile range. BMI: body mass index, COPD:
chronic obstructive disease, ICU: intensive care unit. Continuous data were compared by the t-test,
dichotomous variables by the chi-squared test.
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Figure S1. Distinct gut microbiota composition in ICU patients
(A — B) Box plots showing the median (centerlines), first and third quartiles (box limits) and 1.5x

interquartile range (whiskers) measurements. Significant differences were determined using Wilcoxon
rank-sum test. A comparison was considered significant if P<0.05.
(A) Alpha diversity of bacterial species using Shannon (left), Simpson (middle), and Chaol (right)
indices.
(B) Beta dispersion of bacterial species measured as the distance of the samples from one group to the

group centroid in multivariate space.
(C) Principal component analysis (PCoA) of Bray-Curtis dissimilarity between bacterial species
abundance profiles. Significant differences were determined using PERMANOVA and were

considered significant if P<(.05.
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Figure S2. Distinct gut microbiota composition in ICU patients
(A - B) Box plots showing the median (centerlines), first and third quartiles (box limits) and 1.5x
interquartile range (whiskers) measurements. Significant differences were determined using Wilcoxon

rank-sum test. A comparison was considered significant if P<0.05.
(A) Alpha diversity of Metagenomic Species using Shannon (left), Simpson (middle), and Chaol

(right) indices.
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(B) Beta dispersion of Metagenomic Species measured as the distance of the samples from one group

to the group centroid in multivariate space.
(C) Principal component analysis (PCoA) of Bray-Curtis dissimilarity between Metagenomic Species
abundance profiles. Significant differences were determined using PERMANOVA and were

considered significant if P<0.05.
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Figure S3. Most important features for ICU* and ICU" classification. Plot showing the top 20
most important features at the taxonomic and functional level for the classification of ICU" and ICU",
based on the Random Forest classifier.
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Figure S4. ICU patients have a distinct taxonomic composition
(A) Box plots showing the median (centerlines), first and third quartiles (box limits) and 1.5x
interquartile range (whiskers), of the relative abundance of significantly different phyla and the most
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abundant significant genera. Significant differences were determined using Kruskal-Wallis test. A
comparison was considered significant if P<0.05.

(B) Taxonomic tree visualized using R package metacoder [1]. Only taxa differentially abundant
between Healthy and ICU" (P<0.05, Wilcoxon rank-sum test) are highlighted in the tree by color.
Color of the taxa reflects the group with higher abundance. Bar plots show the relative abundances of
significantly different (FDR<0.05, Wilcoxon rank-sum test) short-chain fatty acid producers (green
circles), bile acid producers (red circles) or disease-associated species (purple circles).

Supplementary Fig. 5
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Figure SS5. The distinct impact of live bacteria on the host toxicity of L. cripatus and B.
animalis. Germ-free L1 larval stage C. elegans worms were populated with depicted bacterial
strains (live and heat-killed) in the anoxic chamber for indicated times, followed by transfer to
normoxia and UV-killed OP50 E. coli diet. Host survival was measured after 24 h of normoxic
culture.
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Supplementary Fig. 6
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Figure S6. Live B. animalis is the strongest inducer of the protective DAF-16/FOXO
nuclear translocation in the host.

Age-synchronized germ-free transgenic worms were grown until L4 stage on UV -killed OP50.
L4 worms were populated with depicted bacterial strains (live and heat-killed) and incubated
for 5h in the anoxic chamber. DAF-16::GFP localization was assessed microscopically with 30
animals measured for each condition. Representative images of three localization types are
shown in (A) and quantification is provided in (B).
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Supplementary Fig. 7
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Figure S7: Comparison of gut mycobiome alpha diversity and species abundances.

(A) Box plots, with median (centerlines), first and third quartiles (box limits) and 1.5x interquartile
range (whiskers), showing mycobiome alpha diversity (indices of Shannon, Simpson, and Chaol) in
different categories. Accordingly, significant differences were measured using the Kruskal-Wallis or

Wilcoxon rank-sum test.

(B) Comparison of fungal species' abundance. Significant differences were measured using Wilcoxon
rank-sum test (*P<0.05; **P<0.01, ***P<0.001). The color of species name indicates whether its
median abundance is higher in the ICU/ICU" group (pink) or the Healthy group (blue)
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Supplementary Fig. 8
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Figure S8: ICU patients harbor a very different resistome compared to healthy individuals.

(A) Dot plot showing the differentially abundant bacterial Pfams (P<0.05, Wilcoxon rank-sum test)
related to the resistome and/or mobilome. The size of the dots represents the strength of statistical
significance. The color of the dots reflects the group with the higher abundance.

(B) PCoA plots based on Bray-Curtis distances for antibiotic resistance genes (ARGs) in each
pairwise comparison. Significant differences were determined using PERMANOVA.

(C) Comparison between the 3 groups of total cumulative relative ARG abundance for ARGs
(Wilcoxon rank-sum test). In the corresponding samples for individuals from different classes (ICU",
ICU" and Healthy), the relative abundance of ARGs was standardized by the content of 16S rRNA.
(D) Representative significantly different ARGs between ICU" and ICU" (dabestr, 95% confidence
interval (95% CI)). ARGs with the top difference in ICU" vs ICU" comparisons are included. All data
points are plotted. The mean difference (the effect size) and its 95% confidence interval are displayed
as a point estimate and vertical bar respectively, on a separate but aligned axis. Adjacent to the plots
are thorough annotations of the ARG term, category, mean difference and its 95% confidence interval.
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Supplementary Fig. 9
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Figure S9. Distinct gut microbiota signatures in ICU patients.
Principal Component Analysis (PcoA) of Bray-Curtis dissimilarity between (A-B) bacterial species

abundance profiles, and (C) Metagenomic Species (MGS) abundance profiles. Significant differences
were determined using PERMANOVA and were considered significant if P<0.05.
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species abundance profiles, and (B) ARGs. Significant differences were determined using
PERMANOVA and were considered significant if P<0.05.
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Abstract

The overgrowth of Candida species in the human gut is considered a prerequisite for invasive
candidiasis [1]. However, the reason that many individuals with high levels of gastrointestinal Candida
do not develop systemic candidiasis is unclear. Positive and negative interactions have been observed
between individual Candida species and gut bacteria. These observations are from studies that were
mainly conducted in mice or in vitro. Few large-scale human studies aimed to identify intestinal
ecological signatures associated with Candida genus expansion in the gut. We integrated mycobiome
and shotgun metagenomics data from 75 patients with lung cancer to determine the role of gut bacteria
in shaping mycobiome composition. In addition, we developed machine learning models that used
only bacterial taxa or functional relative abundances to predict the levels of Candida genus in an
external validation cohort with an area under the curve of 78.6-81.1%. Last, we proposed an intriguing
mechanism for Candida species overgrowth based on a decrease in short-chain fatty acid producing-
bacteria resulting from increased oxygen levels. These conditions favour the growth of oxygen-tolerant
lactic acid-producing bacteria, creating a metabolic niche for Candida species to use lactate as a carbon
source and overtake their fungal competitors (especially Saccharomyces) in the human gut. We
experimentally demonstrate that lactate supports the overgrowth of Candida species and show that
lactate producing-bacteria also have a positive impact on gut barrier integrity. These observations
emphasise the complex ecological interaction between multiple microbiome-gut epithelium factors
that are involved in Candida species overgrowth and dissemination.
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Introduction

Candida species, predominantly C. albicans, C. glabrata, C. tropicalis, and C. parapsilosis, are among
the most common causes of bloodstream infections. These infections result in high rates of mortality
for patients in intensive care units or who have a dysfunctional epithelial barrier or compromised
immunity [2,3]. Although the pathogenicity of different Candida species has been extensively studied
[4-9], only a handful of studies focused on understanding the commensal lifestyle of the fungus in the
human gut. We recently performed a systematic evaluation of the interactions between human gut
bacteria and C. albicans using genome-scale modelling and pairwise growth simulations [10]. We
showed that 81% of C. albicans interactions with approximately 900 gut bacteria species were
mutualistic (positive growth effects for both C. albicans and bacteria) or parasitic (negative growth
effect on C. albicans, positive growth effect on bacteria), with only a few examples of parasitism, in
which C. albicans exerted negative effects on gut bacteria. C. albicans is a common gut member in
the majority of the human population. Therefore, our findings support the hypothesis that the
colonisation success of C. albicans is the result of adapting to life in the intestine and avoiding
competitive interactions with other gut microbes.

Most attempts to identify specific species of gut bacteria that inhibit or promote the growth of
Candida species were conducted in murine models. However, in contrast to human gut communities,
adult murine gut communities naturally prevent Candida species colonisation [11], showing
substantial differences with humans in immune system regulation [12] and microbial composition [13—
15], and challenging the translatability of the findings to humans. Gnotobiotic mouse models overcome
some of these challenges [16] and were applied to study colonisation by Candida species [17]. Yet,
limitations persist. A recent study demonstrated that colonisation is still incomplete, and some key
bacteria genera (Faecalibacterium, Bifidobacterium) did not engraft at all [18]. Nevertheless, the
realisation that the gastrointestinal tract is a major source of systemic candidiasis [1] has propelled
efforts beyond animal models to identify predisposing factors that may lead to microbiome engineering
strategies aimed at preventing candidiasis. This shift in focus has been further supported by evidence
from human studies that gut bacterial dysbiosis triggered by broad-spectrum antibiotics is associated
with increased colonisation of Candida species in the gut by [19]. However, antibiotics are not the
only drugs associated with an elevated risk of Candida species overgrowth. Initial findings in animal
models and humans suggest that chemotherapeutic agents lead to a reduced total number of gut bacteria
and alterations in gut microbiota composition [20—22], which may contribute to the increased risk of
systemic candidiasis in cancer patients. While most studies on systemic candidiasis and cancer have
focused on haematological malignancies, recent epidemiological studies suggest that the risk for
patients with solid tumours, such as head and neck and lung cancer, is equally high [23].

Recently, an analysis of a small cohort of allogeneic haematopoietic cell transplantation patients
that included 11 candidiasis patients and 7 controls indicated that an expansion of Candida species in
the gut occurs before bloodstream infection [24]. However, gut mycobiome analyses of both healthy
individuals [25] and individuals with a variety of diseases [10,26] revealed that Candida species can
also be the dominant fungi of the mycobiome without the host showing any signs of systemic infection.
Therefore, overgrowth and systemic infection may be independent processes. Elucidating the role of
Candida species as commensals and revealing the intestinal ecological context that leads to their
expansion in the human gut is critical to designing prophylactic strategies for life-threatening systemic
candidiasis. Therefore, we performed an integrative analysis of the mycobiome, microbiome, and
phageome of 75 lung cancer patients to determine an intestinal ecological signature associated with
Candida species overgrowth (Figure 1a), which we confirmed in an independent cohort of 11
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individuals. We further provided experimental evidence for a competitive advantage of Candida over
Saccharomyces species, the other main fungal residents in the human gut, while exploring alternative
carbon sources under dysbiotic conditions characterised by increased oxygen availability.

Results

High variability of Candida levels among infection-free lung cancer patients

We recruited 75 patients at the National Koranyi Institute of Pulmonology (Budapest, Hungary) and
County Hospital of Pulmonology (Torokbalint, Hungary) with advanced-stage lung cancer (Table 1;
adenocarcinoma n=40, squamous cell carcinoma n=28, others n=7). No patients had any signs of
fungal infection during the recruitment period. Faecal samples were collected for analysis of fungal,
bacterial, and viral biomes after the initiation of single-agent anti-PD-1 antibody immunotherapy
(nivolumab, n=44; pembrolizumab, n=31). The majority of patients received chemotherapy prior to
immunotherapy (n=59). We built ribosomal DNA internal transcribed spacer 2 (ITS2) libraries for
estimating fungal genera and species relative abundance in all 75 patients. On average, we generated
78,332 (mean absolute deviation [MAD] 43,056) high-quality, non-chimeric reads per sample.
Amplicon sequencing variants (ASVs) were estimated using DADA2 [27] resulting in 76 fungal
genera (18 + 10 per sample) and 113 fungal species (25 + 15 per sample) (Figure 1a). Investigating
genus-level fungal profiles showed that Candida and Saccharomyces were the highest contributing
genera in 17 and 44 samples, respectively (Figure 1b). Fungal co-abundance networks revealed a
strong, significant negative correlation between Candida and Saccharomyces at the genus (Spearman's
coefficient; P<0.05; |r[>0.25; Figure S1) and species level (Spearman's; P<0.05; |+[>0.25; Figure S2).

We subsequently investigated the fungal genera that were the main drivers of variation in
composition-aware mycobiome beta diversity (Aitchison distance; Figure 1c-e). Stepwise distance-
based redundancy analysis (JbRDA) revealed that a large fraction (robust R>=18.5%) of non-redundant
fungal species diversity was explained by the two dominating fungal genera, Saccharomyces and
Candida (Figure 1c), while other fungal genera explain an additional 20%. We subsequently examined
anthropometric and lifestyle characteristics among the patients for significant correlation to ordination
axes, including age, gender, body mass index (BMI,) diet, and antibiotic use (P<0.05; Figure le).
Interestingly, ‘antibiotic use’ prior to anti-cancer treatment (3-6 months before stool sampling)
correlated significantly with ordination results (P<0.05; Figure le), consistent with our previous
findings in healthy individuals that antibiotic use can have a longer-lasting impact on the mycobiome
compared to the microbiome [25]. Antibiotic use was also weakly correlated with higher levels of the
Candida genus, similar to our previous observation [26].

We compared different mycobiome normalisation methods and observed high correlations between
the normalised abundance estimates of the Candida genus (Pearson r > 0.87; P<0.001; Figure S3). To
properly account for compositional data, all downstream analyses used fungal abundances normalised
by the centred log-ratio (CLR) [28-30]. For Candida CLR abundances, the median separated Candida
abundance symmetrically (Figure S3). Therefore, we grouped patients in two clusters: high-Candida
(HC, n=38) and low-Candida (L.C, n=37) for above or below the median Candida CLR normalised
abundance (Figure S3). This grouping correlated significantly with high and low Candida ITS reads
(Rfit P<0.001; Figure 1f), but not with the number of total ITS copies (Rfit P>0.05; Figure 1g)
indicating that the sequencing depth did not affect the grouping. We further confirmed the grouping
by testing for significant differences in fungal relative abundance between the two groups (Table S2).
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As expected, Candida genus abundance was increased in the HC group (log2 fold change
[log2FC]=5.1; ¢=2E-12), whereas at the species level, C. albicans (log2FC=5.5; ¢=1E-7) and
C. tropicalis (log2FC=2.1; g=0.04) drove the observed genus abundance differences.

Although the beta diversity was significantly different between the HC and LC groups
(PERMANOVA P=0.001; R*=5.7%; Figure 1h), we did not find significant differences in the fungal
genera and species alpha diversities (by Shannon, Simpson, Pilou’s Evenness indices; P>0.05;
Table S1). We further examined if the classification of patients into HC and LC groups was explained
by differences in basic patient characteristics such as gender, age, BMI, antibiotic use, alcohol
consumption, tumour histology, chronic obstructive pulmonary disease, or anti-cancer treatment drug.
None of these factors except for BMI was significantly different between the groups. Despite recent
findings in mice and humans that Candida species may promote weight gain [31,32], we found BMI
significantly decreased in our cohort in the HC group (Table 1; U-Test P=0.006). Therefore, in
subsequent statistical comparisons between the HC and LC groups, we adjusted for differences in
BML.

Table 1 Anthropometric, clinical and lifestyle data for High (N=39) and Low (N=37) Candida groups.

Variable NN ?8‘ 'gh N ;70‘W i Variable N N ;l 8‘ e N ;_70‘w i
Gender 75 0.7 Alcohol 75 0.5
Female 17 14 Never 19 16
Male 21 23 Current 3 6
Age 75 6 65 0.2 Former 2 4
Body Mass Index 75 241 287 0.006 Occasionally 14 1
@14, (25.9, (37%) (30%)
Antibiotic Use 74 0.3 Histology 75 0.7
Before therapy
No 34 30 Adenocarcinoma 2 18
Yes 3 7 Squamous 13 15
Unknown 1 0 Other 3 4
Antibiotic Use 7 0.14 Immunotherapy 75 0.7
After therapy Drug
No 28 2 nivolumab 21 23
Yes 9 3 pembrolizumab 17 14
Unknown 1 2 Responder 75 0.3
Line of Treatment 75 0.8 Yes 33 28
1 9 7 No 5 9
2 19 23 coPp 75 0.7
3 9 6 Without 16 18
4 1 1 With » 19

'Statistics presented: n (%) Median (IQR)

*Statistical tests performed: chi-square test of i Wilcoxon rank-sum test; Fisher's exact test

Distinct microbiome signature associated with the high Candida group

We then shifted our focus on the gut bacterial community, specifically taxonomic and functional
properties that might be pivotal in supporting the growth of Candida species in the human gut. We
performed whole-metagenomic sequencing on the same stool samples used for the mycobiome
analysis, generating an average of 26,106,952 (MAD 3,876,437) reads per sample. We used
HUMAnNN?2 [33] to compute bacterial species and function abundance profiles. After applying a 10%
prevalence filter, we estimated the relative abundance of 234 bacterial species (98 + 18 per sample),
84 bacterial genera (46 £ 7), 394 MetaCyc pathways (339 + 21), 1688 Enzyme Commission (EC)
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153 numbers (1361 + 83), 5120 KEGG orthology (KO) terms (3943 + 340), and 155 KEGG pathways (120
154  +3) (Figure 1a). To ensure that only bacterial information was used in further analyses, we removed
155  features with unknown or non-bacterial origin from functional abundance profiles using the species-
156  stratified output of HUMAnN2.

157 Procrustes analysis revealed a significant correlation between beta diversity for fungal and bacterial
158  species (P=0.046, r=0.53; Table S1). Bacterial species explained around 13% of fungal species beta
159  diversity and dbRDA using bacterial species suggested Clostridium, Lactobacillus, Eubacterium, and
160  Citrobacter species had the highest explanatory power for mycobiome variation (Figure 1d).
161  Interestingly, a biplot of bacteria species abundances onto fungal species diversity indicated positive
162  correlations between higher Candida genus abundance and several Lactobacillus species (Figure le),
163  which was further confirmed in a crosskingdom network of fungal genera and bacterial species
164  (Spearman's P<0.05; r<-0.25; Figure S2). In contrast, Citrobacter and Eubacterium species
165  correlated negatively with Candida abundance.

166 We also observed significant separation between the HC and LC groups in bacterial species and
167  functional beta diversity (Figure 2a-c; PERMANOVA; P<0.05; Table S1). For explaining variance,
168  the functional properties of the bacteria community (MetaCyc, KOs, and ECs) showed the largest
169  between-group differences (Figure S1, R?=2.5%+0.5%). Bacterial species alpha diversity (by
170 Shannon, Simpson, Pilou’s Evenness, and Chaol indices) was not significantly different between the
171  HC and LC groups (Rfit P>0.05; Table S1). Surprisingly, functional alpha diversity (by MetaCyc
172 pathways) showed higher diversity in the HC than the L.C group (Figure 2¢; P=0.02). In contrast, the
173 contributional diversity of bacterial species to pathways (contributional alpha diversity) was
174  significantly lower in many HC enriched pathways (Rfit; n=23; P<0.05; Figure 2f) and significantly
175  lower overall (Rfit; P<0.05; Figure 2g). Together, these findings implied that the bacterial community
176  in the HC group had greater metabolic potential, but the LC group had greater functional redundancy,
177  aproperty exhibited by robust microbiota [34].

178 We then stratified bacteria based on their metabolic tolerance to oxygen. Species capable of growing
179  under low oxygen level, including facultative anaerobes, were labelled 'aerobes'. We found
180  significantly fewer obligate anaerobes in HC compared to LC (Figure 2h; AR?>=8%, P=0.017) and a
181  trend for an increased aerobe/anaerobe ratio in the HC group (Figure 2i; AR?>=5%, P=0.058). This
182  result was consistent with a comparison of 8 patients with candidemia and 7 controls where the
183  expansion of Candida species was associated with a substantial loss of anaerobes diversity [24] as well
184  asaprevious study in mice in which antibiotic treatment with sufficient depletion of anaerobic bacteria
185  was related to increased Candida species colonisation [11]. An increase in aerobes in the HC group,
186  with their aerobic respiration, might explain the observed increase in metabolic diversity.

187 To complement our study on the ecological context associated with Candida species expansion in
188  the human gut, we also quantified phage abundance using the recent release of the Metagenomic Gut
189  Virus (MGV) catalogue. We used quasi-mapping for fast estimation of phage contig and viral
190  operational taxonomic unit (vOTU) relative abundance using Salmon in metagenomic mode [35,36]).
191  On average, 2.4% of metagenomic reads were assigned to prevalent viral contigs, with some samples
192 reaching 4.7% (Figure S5). We did not observe a significant difference in the percentage of assigned
193 phage reads between the HC and LC groups (Figure S5) or vOTU beta diversity (Figure 2e; P>0.10).
194  However, a closer look into diversity-generating retroelements (DGRs) [37,38] revealed a substantial,
195  significant reduction in DGRs phage genes in the HC group (two-sided Fisher test; P=7e-5; odds
196  ratio=0.3; Figure 2j). DGR elements use error-prone reverse transcriptase to induce random mutations
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into the genomes of their host at specific target genes, creating population-wide hypervariability
[39,40]. Since DGRs have beneficial effects (e.g., adaption advantage) on their targeted host [39,40],
the enrichment in these phages may imply a more robust microbiome in LC.

Abundance of lactic acid bacteria and SCFA producers accurately predicted Candida
levels

We performed supervised machine learning (ML) to investigate if members of our cohort could be
classified as HC or LC solely based on bacterial taxonomic or functional relative abundances. We
applied SIAMCAT for model training and evaluation [41] but adopted data augmentation training to
the default algorithm [42]. We tested our models in an additional validation cohort of 11
immunotherapy-treated lung cancer patients. In the validation cohort, HC and LC were defined using
the same abundance thresholds used for the main cohort. Bacterial species abundance classified
patients as HC or LC with high accuracy in both our main cohort (Figure 3a; crossvalidation area
under the receiver operating characteristic [CV auROC]=77.9%) and validation cohort (Figure
3a; auROC=78.6%). With bacterial functional abundances (by EC), we achieve slightly higher
accuracy (Figure 3a; CV auROC=80.4%; additional auROC=82.1%). We further investigated if we
could predict high vs. low abundance levels for the species C. albicans, C. sake, and C. glabrata,
which were the most prevalent and abundant species in our cohort. High and low abundance groups
for each of the species were formed based on mean species CLR abundances and ML models were
built analogous to the HC vs. LC genus models. The identified microbiome signatures classified
patients as having high or low abundance well for C. albicans, C. glabrata, and C. sake and in both,
our main cohort (Figure 3a; CV auROC: C. albicans=77.5%, C. sake: 77.0%, C. glabrata: 73.9%) and
test cohorts (Figure 3a; Test auROC: C. albicans=86.7%, C. sake: 86.7%, C. glabrata: 79.2%).
Interestingly, phage vOTU abundance showed a potential to predict Candida genus and species levels
in the main cohort (Figure 3b; CV auROC: 73%=1%) but had less potential for the independent cohort
(Figure 3b; Test auROC: 53%-75%). C. albicans levels were predicted robustly in both the main and
validation cohorts (auROC=73%) using solely phage composition. This result was interesting
considering recent evidence of inhibition of C. albicans by bacteriophages [43].

We then inspected bacterial species predictive of Candida genus levels and crosschecked those
species with results from differential abundance analysis (by Maaslin2). We found that many of the
bacterial species predictive of LC with high robustness (at least 80%; P<0.05; false discovery rate
[FDR]<0.2; Figure 3c) were short-chain fatty acid (SCFA) producers [44—49], including Actinomyces
odontolyticus, Bifidobacterium adolescentis, Eubacterium rectale, Anaerotruncus colihominis,
Alistipes ihumii AP, several Lachnospiraceae species, Pseudoflavonifractor capillosus, and
Odoribacter splanchnicus. We retrieved genome-scale metabolic models of the bacteria species
enriched in the LC group from the AGORA repository [50] and simulated growth on different diets
using flux balance analysis (FBA; Table S3). We monitored the potential to produce SCFAs and
confirmed that many of the bacterial species enriched in the LC group can secrete at least one of
acetate, propionate, or butyrate at varying levels (see Methods and Table S3). The importance of
SCFAs in suppressing C. albicans colonisation has been reported by us [25,26] and others [11].
However, the suppressive function of SCFAs appears to be towards all Candida species in general.
Several mechanisms by which propionate and butyrate suppress Candida species colonisation have
been suggested, including regulation of the immune system [51] and direct inhibition [52,53].
However, SCFAs also have a major impact on oxygen availability [54,55]. Therefore, a decrease in
SCFA producers in the HC group should be accompanied by an expansion of facultative aerobes.
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242  Incidentally, we noticed an increase in oxygen-tolerant bacteria in the HC group (Figure 3c).
243 Interestingly, several lactic acid bacteria were significantly higher in the HC group and consistently
244 selected as top features in the ML models (for example, Lactobacillus gasseri and Lactococcus lactis)
245  (Figure 3c). We also observed an increased abundance of Enterobacteriaceae species (Escherichia
246  species, Klebsiella pneumoniae). A crossdomain correlation analysis between fungal genera and
247  bacterial species abundance confirmed positive correlations between Candida genus, Lactobacillus,
248  Lactococcus, Klebsiella and Escherichia species in our study cohort (Figure S2). Similar to the LC-
249  enriched species, FBA analysis suggested that in addition to the lactic acid bacteria enriched in the HC
250  group, K. pneumoniae and E. coli also secrete lactate (Table S3).

251 Microbial set enrichment analysis (MSEA) [56] revealed that bacterial genera that were
252 significantly increased in the HC group (P<0.05; Lactobacillus, Lactococcus, Streptococcus,
253 Bacteroides and Odoribacter; Table S4) were associated with multiple human disease genes (n=280)
254 suggesting a dysbiotic microbiome. In contrast, bacteria highly abundant in the LC patients showed
255  no enrichment in disease genes despite covering more genera (n=12). These results were also
256  qualitatively the same at P<0.10. Further functional enrichment analysis of the 280 human disease
257  genes based on the KEGG pathway database, indirectly linked HC-associated bacterial species to
258  cytokine and chemokine responses (Figure S6; Table S4). IL-17 signalling was of special interest
259  because it is associated with gut inflammation and Candida species colonisation [57]. IL-17 also has
260  arole in immune cell recruitment after bacterial invasion [58] and is a key role in stimulating host
261  immunity upon Candida infection [58].

262 We then examined bacterial metabolic functions by analysing MetaCyc pathway abundance (Figure
263  3d; Table S2). In total, 78 pathways were more abundant in HC compared to only 11 in LC (P<0.05;
264  ¢<0.15), matching the observation of increased functional alpha diversity in HC. One of the abundant
265  pathways in the HC group produces lactate from hexitols (P461-PWY). In agreement with the
266  observation of decreased anaerobes, aerobic respiration (fatty acid and beta oxidation pathways, TCA-
267  bypass, TCA cycle II) and synthesis pathways for compounds in cell membranes of aerobic bacteria
268  (menaquinol and ubiquinone synthesis) increased in the HC group. Notably, bby slightly relaxing the
269  P-valueto 0.07, we obtained 5 additional TCA cycle pathways with higher abundance in the HC group
270  (TCA cycle I, IV, V, VII and partial TCA cycle in obligate autotrophs), effectively covering 6 of 9
271  TCA pathways in the MetaCyc database (Figure 3d; Table S2). Gene-set enrichment analysis
272 confirmed the elevated levels of aerobic respiration in the HC group (¢<0.05; Table S2).

273 Based on the increased abundance of lactate producers, we examined functions related to lactate
274 utilisation. We found D-lactate dehydrogenase (D-LDH) was significantly increased in the HC group
275 by gene family (UniRef90; P=0.029; Figure 3e) and EC levels (EC:1.1.1.28; log2FC=1.09; P=0.053;
276  ¢=0.23; Table S2). We also found a significant increase in (S)-2-hydroxy-acid oxidase (EC:1.1.3.15;
277  1logaFC=0.99; P=0.048; g=0.23) which reduces aliphatic hydroxy acids, including lactate, using flavin
278  mononucleotide and oxygen. In contrast, L-LDH genes and enzymes did not show significant changes
279  (P>0.10). We used the Metabolic Analysis of Metagenomes using fBA and Optimization (MAMBO)
280  algorithm [59] to predict the metabolic flux of the complete bacterial community and found a
281  significant increase in D-lactate secretion in the HC compared to the LC group (P=0.051; Figure 3f).

282 In summary, we identified a distinct gut microbial signature predictive of high Candida genus
283  abundance in infection-free lung cancer patients. This signature describes a dysbiotic gut microbiome
284  state characterized by a systematic decrease in SCFA producers, which results in increased oxygen-
285  tolerant microbes, including certain lactic acid-producing bacteria.
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C. albicans has a competitive advantage using lactate under microaerobic conditions
Our data suggested a possible link between microbial lactate production, higher availability of
molecular oxygen and increased Candida species abundance in the gut. To test the hypothesis that
Candida species may outgrow other fungi, specifically the Saccharomyces species that are their main
competitors in our study cohort, we selected C. albicans and S. cerevisiae var. boulardii for further
experiments. Since our ITS2 data could not reliably separate species from the Saccharomyces in situ
stricto group [60], we selected S. boulardii as the best proxy. A fluorescently labelled strain available
in our laboratory facilitated competition experiments with C. albicans. We used two strains of C.
albicans (BWP17, RM1000) that showed significant alterations in morphology, drug resistance, and
host-cell stimulation depending on the main carbon source [58]. In individual in vitro growth assays
with C. albicans BWP17 and RM1000 and S. boulardii-GFP on different carbon sources (lactate,
glucose, or lactate + glucose) with varying oxygen levels (anaerobic, microaerobic, or aerobic)
(Figure 4a-b; Table S5) only C. albicans was able to use lactate as a sole carbon source in aerobic and
microaerobic conditions. All three yeast were unable to grow on lactate under fully anaerobic
conditions (Figure 4b). The most significant growth of C. albicans compared to other oxygen levels
and carbon sources was on lactate as the sole carbon source in microaerobic conditions (t-test; P<0.05;
Figure 4a-b). In fully aerobic conditions, growth on solely lactate was strain dependent but generally
lower than in combined media (Figure 4a-b). These observed differences in growth on lactate were
more pronounced for BWP17 than RM1000. In microaerobic conditions, all species showed significant
reductions in growth rate in glucose+lactate compared to growth on at least one sole carbon source (t-
test; P<0.05). When glucose was present, S. boulardii growth was unaffected by additional lactate in
microaerobic and aerobic conditions (t-test; P<0.05; Figure 4a-b). However, both C. albicans strains
showed a slight growth reduction in glucose+lactate (t-test; P<0.05; Figure 4a).

Together, these findings demonstrate the importance of oxygen for C. albicans growth in lactate as
a carbon source. To evaluate a direct competition between Candida and Saccharomyces species, we
co-cultured them under the same conditions as individual growth assays (Figure 4c). The growth of
both C. albicans strains was consistently higher than S. boulardii-GFP on lactate as the sole carbon
source in microaerobic or aerobic conditions. Since oxygen levels in the lower gastrointestinal tract
are unlikely to be normoxic (aerobic), the results in microaerobic conditions are more representative
of the true competitive landscape in the human gut for the two yeasts, at least during gut inflammation.

Last, we evaluated if the main lactic acid producing-bacteria identified in our study could be
involved in the translocation of Candida species through intestinal walls. We focused on the impact
of Lactobacillus and Lactococcus species on gut integrity, which is a critical factor in systemic
candidiasis [61]. We evaluated the impact of L. gasseri and L. lactis by measuring transepithelial
electrical resistance (TEER; Figure 4d). As positive controls, we used L. rhamnosus (LGG ) a well-
known probiotic, and B. adolescentis and O. splanchnicus, which were enriched in the LC group. B.
adolescentis had the largest negative fold-change when comparing LC vs. HC groups (Figure 3c). It
is an important microbe associated with health [62], and enhances gut barrier function [63]. O.
splanchnicus produces an array of diverse SCFAs [64] and its absence is associated with various
inflammatory diseases [46,65]. Both L. gasseri and L. lactis showed protective effects (as increased
area under the curve in TEER), comparable to LGG , higher than O. splanchnicus but lower than B.
adolescentis (Figure 4d).
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We found strong evidence that C. albicans strains have growth advantages compared to
Saccharomyces species in utilizing lactate, and this effect is dependent on the levels of molecular
oxygen available in the environment. However, although the lactate producers supported Candida
species growth by creating a metabolic niche, they might also contribute positively to the integrity of
the gut barrier. These findings align with our initial hypothesis that microbiome factors that support
overgrowth are not necessarily involved in the dissemination of Candida.

Discussion

Colonisation resistance is a crucial function of the gut microbiota in infectious disease. In addition to
protecting the host from external pathogens, local microbiota also prevent expansion and invasion of
intestinal pathobionts [66]. Microbial resistance in gastrointestinal infections have both direct and
indirect mechanisms. Infections can be limited directly via metabolic by-products (bacteriocins, acids,
peptides) of the gut microbiota [67], or by outcompeting pathogens for space, metabolites, and
nutrients [68]. Intestinal pathogens can also be inhibited indirectly when the local microbiota calibrate
host immune responses to them [69] or induce the formation of a protective mucin layer that covers
the gut epithelium. Perturbation of the resident microbiota is thus a risk for infection by a pathobiont
infection that is ordinarily held at bay by these mechanisms. Candida species are gut symbionts that
can become an aggressive pathogen under specific circumstances. Despite Candida species being the
fourth most common cause of nosocomial bloodstream infections [70] the number of human studies
investigating their interplay with the gut microbiota is surprisingly low compared to studies on
bacterial pathogens such as Clostridium, Enterococcus, Salmonella and Enterobacteriaceae [71].

Most of the work to identify specific bacterial promoters or inhibitors of Candida species
colonisation has been performed in mouse models. Fan et al. [11] demonstrated how Bacteroides
thetaiotamicron can protect mice from C. albicans colonisation by activating innate immune effectors
and the antimicrobial peptide LL-37. The bacteria taxonomic annotation was based on 16S rRNA,
therefore the changes in the metabolic capacity of the gut microbiome associated with the C. albicans
colonisation remained unclear. Tan ef al. [7] used mice to show that several gram-positive bacteria,
including Staphylococcus aureus, shed peptidoglycan units that trigger hyphae formation of C.
albicans. The only human study to concomitantly examine the mycobiome and microbiome to find
common colonisation patterns between Candida species and the gut microbiome was presented
recently by Zhai et al. [24]. The authors concluded that systemic candidiasis begins with expansion of
Candida species in the human gut. Using 16S rRNA, they observed a reduction in the levels of
anaerobes in patients with systemic candidiasis compared to non-infected cohorts. However, the small
number of patients (8) in this study and the lack of functional characterisation of the microbiome left
many questions unanswered.

Using shotgun metagenomics of stool samples from 75 lung cancer patients combined with ITS
sequencing, we substantially expanded our knowledge on the ecology of Candida species inhibition
and overgrowth. Some studies suggest that immunotherapy limits Candida overgrowth. Although all
lung cancer patients in our study received immunotherapy, we observed high variation in Candida
genus levels. The mycobiome of several patients was completely dominated by Candida species. In
some other samples, these fungi were virtually absent. No patients, including those with extremely
high levels of the Candida in the gut, showed any sign of infection. However, we do not know if any
of those patients were diagnosed with systemic candidiasis after the completion of our study.
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Our relatively large study cohort allowed us to develop a machine learning model based solely on
bacterial taxa or functional abundance. The model had high accuracy in classifying patients from an
external cohort into groups with high abundance or low gut abundance of the Candida genus. Some
bacterial species or functions are suggested to affect the growth of individual Candida species [11,72].
We mostly focused on C. albicans and demonstrated general properties of the gut microbiome that are
associated with the successful colonisation of Candida species. We also developed ML models to
predict the levels of individual Candida species. These models showed high accuracy but did not
significantly improve classification over the genus-based model. A phage-based machine learning
model showed a high predictive power for C. albicans and requires further attention in the future in
light of recent evidence [43].

What we found particularly intriguing in our human study was the enrichment of several potential
lactic-acid producing bacteria in the HC group. Lactobacillus species such as L. gasseri are
particularly interesting as recent in vitro experiments show they prevent hyphae formation without
reducing the growth of C. albicans [73]. The exact role of lactate on Candida species growth is unclear.
For C. albicans, the change from glucose to lactate as the main carbon source is tightly linked to
changes in cell wall composition. Ene et al., and Ballou et al., independently demonstrated in vitro
that a lactate-rich environment assists C. albicans in hiding from the innate immune system by
stimulating interleukins [58] or by beta-glucan masking [74]. In contrast, Gutierrez ef al. found lactate
inhibited the growth of C. albicans at higher concentrations [75], while MacAlpine et al. reported no
impact on growth at physiological levels of lactate [73]. Notably, the oxygen status of the experiments
is unclear and C. albicans was grown at 30°C or 42°C, which are not physiologically relevant in the
gut. However, the ecology of the human gut is more complex. The growth response of Candida species
to increased levels of lactate depends on both the growth of other fungi and on environmental
conditions. We used human metagenomics data and in vitro competition experiments to demonstrate
that under low oxygen conditions, induced by a reduction of SCFA producers [55], Candida species
may gain a competitive advantage due to growth on lactate as the primary carbon source in the gut.
Our observations bring to light another possible mechanism by which SCFA producers inhibit Candida
overgrowth in addition to mechanisms in the literature such as direct inhibition [52] and immune
regulation [51,66,76]. However, although lactate producers may promote Candida species growth in
the human gut under microaerobic conditions, they also increase protection of the human host from
systemic candidiasis by increasing gut barrier integrity.

Limitations of our study are that we did not monitor oxygen levels in the gut of patients and provide
only indirect evidence in the form of signs of dysbiosis, increased ratios of aerobes to anaerobes and
microbial functional pathways related to aerobic respiration in the HC group. No patient in this group
developed systemic candidiasis during our study. However, a longer follow up would be necessary to
delineate the ecological context associated with overgrowth and dissemination of Candida species.
Nevertheless, human studies with many participants like ours are needed to evaluate which findings
from in vitro experimentation are relevant to the human gut and to design prophylactic, microbiome-
driven strategies for patients at high risk of candidiasis.
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Figure 1. Explanatory factors of mycobiome diversity. (a) Study design. Indicated are the total number of
taxonomic and functional features annotated in our study and in parentheses, their average per sample.
(b) Fungal genus relative abundance profile (by total-sum scaling, TSS). The top 10 genera by highest median
abundance are indicated by colour, with grey indicating abundance of the remaining fungi. (c-d) Distance-based
redundancy analysis (d(bRDA) of fungal species beta diversity (Aitchison distance). Explanatory factors are (c)
fungal genera and (d) bacterial species relative abundance. Only significant terms are shown (P<0.05).
Displayed are cumulative explained variances of full, non-redundant models (black) and single-term statistics
(grey). Important fungal and bacterial taxa are coloured red or green, respectively. (e) Principal coordinate
analysis (PCoA) biplot of fungal species beta diversity (Aitchison). Samples are coloured by Candida centre
log ratio-normalised abundance. Top features by ordination correlation (t-test; P<0.05) are bacterial (green),
fungal (red) and patient characteristic (blue) arrows indicating the direction of covariance between feature
abundances and the first two ordination axes. Samples are in a gradient from high (red) to low (green) Candida
abundance. Axes show explained variance. (f-g) Notched boxplots showing (f) total number of Candida internal
transcribed spacer (ITS) reads and (g) the total number of ITS reads. Significance was assessed using non-
parametric generalized linear models (Rfit) controlled for body mass index and gender. (h) PCoA of fungal
genera beta diversity. Candida grouping (High vs. Low) shows significant separation (P=0.001;
PERMANOVA). Within-group diversity differences were insignificant (dispersion P>0.05). Circles indicate
95% confidence interval of within-group diversity.
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Figure 2. Microbiome contribution to high and low Candida groups. (a-d) Principal coordinate analysis
(PCoA) of beta diversity (Aitchison distance) using (a) bacterial species, (b) bacterial metabolic pathways, (c)
bacterial enzyme functions (EC, Enzyme Commission) or (d) viral orthologous taxonomic unit (vVOTU)
abundance profiles. Bacterial function profiles were stratified for bacteria-only abundances. Diversity was
significantly different between Candida groups (High vs. Low; p<0.05; PERMANOVA; betadisper P>0.05).
(e) Notched boxplots of bacterial function (MetaCyc pathway) alpha diversity (Simpson). (f) MetaCyc pathways
with significant contributional Simpson diversity (Rfit drop-test; P<0.05). Centre lines indicate the median
Simpson diversity (y-axis) of a pathway (x-axis). Ribbons indicate the 25% and 75% quantiles. Colours indicate
High or Low Candida group. (g) Notched boxplots show the median contributional diversity per pathway
(P=1e-5; paired Wilcoxon test). For each pathway (point), grey lines indicate change in diversity from High to
Low group. (h-i) Notched boxplots summarizing the abundance of bacterial taxa stratified by tolerance to
molecular oxygen. Only strict and obligate anaerobes were considered anaerobes. Significance was assessed
using non-parametric generalised linear models (Rfit) controlled for body mass index and gender. Effect sizes
are indicated as AR (j) Number of phages contigs with (blue) or without (red) diversity-generating retro-
elements (DGRs). DGRs were significantly enriched in samples of the low Candida group (P<0.05; two-sided
Fisher test).
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Figure 3. Gut bacterial signatures predictive of Candida levels. (a-b) Machine learning performance for
predicting High and Low levels of all Candida genus and species (C. albicans, C. sake, C. glabrata).
Performance is shown as area under the receiver operator characteristic (auROC) using (a) bacterial feature
abundance or (b) viral operational taxonomic unit abundance (vOTU). auROC in the main cohort (train) was
assessed using prediction on hold-out samples during 10-fold cross validations. The resulting model was used
to predict Candida High vs. Low in an independent set of patients (test; n=11). For Candida genus, three models
are shown (red, brown, orange). (¢) Differential abundance of bacterial species. Significance was assessed using
MaasLin2 (default) controlled for body mass index and gender. Significance is indicated as *P<0.10, *P<0.05,
**p<0.01, ***P<0.001 and *FDR(p)<0.2, #FDR(p)<0.1 (FDR, false-discovery rate). Right, species tolerance
to oxygen (0O.), machine learning importance (Imp) and robustness (Freq). Importance indicates the contribution
of a species towards predicting High (positive; yellow) or Low (negative; blue) Candida. Robustness is the
number of times a feature was included in a model during cross validation. (d) Significantly enriched functional
classes of significant MetaCyc pathways (Gene Set Enrichment test). Metabolic functions related to aerobe
metabolism are red. (e-f) Boxplots summarising (e) centre log ratio-normalized gene family abundance
(UniRef90) of D-lactate dehydrogenase (D-LDH) and (f) metabolite (D-lactate) flux predicted by MAMBO
from bacterial profiles. Significance was assessed using non-parametric generalised linear models (Rfit)
controlled for body mass index and gender.
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Figure 4. Bacterial transepithelial electrical resistance and yeast growth under varying levels of oxygen
and carbon sources. (a-d) Histograms showing means and standard deviations. Significance was assessed
using two-sided t-tests and indicated as *P<0.10, *P<0.05, **P<0.01, ***P<0.001. (a) Growth rates of yeast
(Candida albicans BWP17, C. albicans RM1000, Saccharomyces boulardii) under carbon sources (glucose,
lactate, or both) and oxygen levels (0%, 1%, and 21%). (b) Colony-forming units (CFU)-ml" were determined
at the end of growth experiments. (¢) Co-culture competition of C. albicans against S. boulardii. Species were
added 1:1 and growth tracked for 24 hours. Green fluorescent protein (GFP)-labelled S. boulardii were used to
differentiate S. boulardii from C. albicans cells. The ratio of final optical density (OD) to GFP (S. boulardii)
indicates C. albicans abundance. Higher values indicate more C. albicans. (d) Transepithelial electrical
resistance (TEER) to assess protective effects of bacteria. Results are area under the curve (AUC) of TEER
curves over time. Values greater than 0 imply protection compared to control (no bacteria).
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Figure S1. Crosskingdom co-abundance networks of bacterial species and fungal genera abundances.
Correlations were assessed using Spearman's coefficients on centre log ratio (CLR)-normalized (left) or total-
sum scaled (TSS)-normalized abundance data (right). Only significant correlations with P<0.05 and |r[>10%
are shown. Red, solid edges show positive correlations; blue-dashed edges show negative correlations. Colour
strength indicates estimated correlation strength. (a) CLR-based networks capture microbial abundance
correlations better, especially when comparing features between distinct compositions. However, strong
changes in observed relative abundance (TSS) were lost. (b) TSS networks revealed correlations between
dominant species but were less reliable for low-abundance species. (a-b) Lactobacillus species such as L.
gasseri and L. lactis and Escherichia species correlated positively with Candida regardless of normalization,
and short-chain fatty acid producers like Lachnospiraceae and Actinomyces odontolyticus were found to
correlate negatively.

Figure S2. Candida albicans correlated negatively with Yarrowia lipolytica and Saccharomyces paradoxus
abundance. (a) Fungal co-abundance networks of significant correlations (P<0.05; [r}>0.10; Spearman's
coefficient) with C. albicans. Solid, red lines indicate positive correlations. Dashed, blue lines indicate negative
correlations. (b) Fungal species abundance profile indicating the top 10 most abundant fungal species based on
total-sum scaling. Species are shown in colours. Other fungi are grey.

Figure S3. Normalised Candida abundance correlates across methods. In normalised space (a), all methods
except rarefaction showed acceptable linear correlation (cumulative sum scaling [CSS]; centralized log-ratio
[CLR]; balance-based CLR [bal-CLR]). Rarefaction differs were resolved using a simple rank transformation
(b), implying at least a non-linear relationship among all methods. The strongest agreement was seen for CSS
and CLR. Rarefaction was a poor normalisation choice, as it accounted only for differences in sequencing depth
and not for compositionality effects in relative abundance data. (¢) Candida CLR-normalised abundance (y-
axis) per sample (x-axis). Samples are ordered from low to high CLR abundance. Dashed lines indicate median
sample and median abundance thresholds.

Figure S4. Principal coordinate analysis (PCoA) of beta diversity for bacterial species and functional,
fungal genus and species, and viral operational taxonomic unit abundances (vOTU). R? describes estimated
explained variance by Candida High vs. Low grouping (Adonis2; PERMANOVA). MetaCyc and KEGG
Orthology had the largest effect sizes.

Figure S5. Metagenomic gut virus (MGV) Pphage mapping rate. (a) Percentage of reads per sample that
passed (blue) or did not pass (red) a 10% prevalence filter. More than 30% of reads were assigned to low
prevalence contigs in a few samples. (b) Percentage of reads assigned to phage contigs by Candida High or
Low abundance. Statistical significance was assessed by unpaired Wilcoxon rank-sum tests. The median 2.5%
of reads were assigned to prevalent viral contigs.

Figure S6. Species enriched in the High Candida (HC) group were related to human-disease genes.
Microbial Set Enrichment Analysis revealed that bacterial genera with significant differential abundance in the
HC group (bottom) were frequently associated with human disease genes (n=280) in contrast to the low Candida
(LC) group (n=0). Green nodes indicate human disease-associated genes that were tested for significant
enrichment in KEGG pathways (red nodes). Grey edges indicate an association between either (1) bacteria and
host genes or (2) host genes and pathways. Red edges indicate associations with interleukins and chemokines.
IL-17 signalling is of interest because of strong roles in immune cell recruitment after bacterial invasion and in
tumour response.
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Materials and methods

Ethics statement

This study was conducted according to the guidelines of the Helsinki Declaration of the World Medical Association. The
national-level ethics committee (Hungarian Scientific and Research Ethics Committee of the Medical Research Council,
ETTTUKEB/EKU) approved the study. Patients gave consent to participate in this study. After clinical information was
collected, patient identifiers were removed so patients cannot be identified directly or indirectly.

Study participants and faecal collection

Faecal samples from 75 lung cancer patients were collected for analysis of fungal, viral, and bacterial microbiomes. All
faecal samples were collected at the National Koranyi Institute of Pulmonology, Budapest, Hungary, and the County
Hospital of Pulmonology, Torokbalint, Hungary. Patients received a combination therapy of chemotherapy and
immunotherapy. An additional cohort of 11 patients from the same hospital was recruited to provide stool samples for
validation of the machine learning models. These patients were treated with immunotherapy drugs only.

Faecal DNA extraction

Stool samples were kept frozen at —80°C before being sent to Novogene (UK) for DNA extraction and sequencing. Stool
samples were thoroughly mixed with 900 uL. CTAB lysis buffer. All samples were incubated at 65°C for 60 min before
being centrifuged at 12 000 g for 5 min at 4°C. Supernatants were transferred to fresh 2 mL microcentrifuge tubes and 900
pL phenol: chloroform: isoamyl alcohol (25:24:1, pH = 6.7; Sigma-Aldrich) was added for extraction. Samples were mixed
thoroughly before incubation at room temperature for 10 min. Phase separation occurred by centrifugation at 12 000 g for
15 min at 4°C, and the upper aqueous phase was re-extracted with 900 puL phenol:chloroform:isoamyl alcohol. Samples
were then centrifuged at 12 000 g for 10 min at 4°C, and the upper aqueous phases were transferred to 2 mL microcentrifuge
tubes. Final extraction was with 900 puL chloroform: isoamyl alcohol (24:1) and centrifugation at 12 000 g for 15 min at
4°C. DNA was precipitated by adding the upper phase to 450 pL isopropanol (Sigma-Aldrich) containing 50 puL 7.5 M
ammonium acetate (Fisher). Samples were incubated at —20°C overnight. Shorter incubations (1 h) produced lower DNA
yields. Samples were centrifuged at 7500 g for 10 min at 4°C, and DNA pellets were washed three times in 1 mL 70%
(v/v) ethanol (Fisher). Pellets were air-dried and re-suspended in 200 uL 75 mM TE buffer (pH = 8.0; Sigma-Aldrich).

Fungal ITS2 sequencing

The concentration of extracted genomic DNA was determined by Qubit 2.0 and DNA quality was checked using gel
electrophoresis. PCR reactions used 200 ng DNA with primer sets specific to hypervariable regions (ITS3-2024F, ITS4-
2409R). Primer sets had unique barcodes. PCR products was separated on gels and fragment with the proper amplification
size were extracted and purified. Purified PCR product was used as a template for library preparation. PCR products were
pooled in equal amounts and then end polished, A-tailed, and ligated with adapters. Fragments were filtered with beads.
After 1 PCR cycle (to make the library double-stranded), libraries were analysed for size distribution and quantified using
real-time PCR. Paired-end sequencing of the library was performed on an Illumina Hiseq2500 (2x250bp).

Fungal ITS2 annotation

ITS2 raw reads were quality controlled, merged and filtered for chimeric reads using DADA?2 in R 4.1, BioConductor 3.13
[77]. The median, high-quality, non-chimeric 78,332 ITS2 reads were extracted. From these, amplicon sequencing variants
(ASVs) were estimated. Representative sequences of ASVs were aligned to the fungal UNITE database (2017-12-01)
[78,79] using the Mothur classifier [80] to improve classification accuracy. ASV counts were summed at species and genus
levels and a 10% prevalence filter applied. Normalisation was by applying Bayesian zero-replacement and subsequent
centred log ratio (CLR) transformation.

Whole metagenomics sequencing

After DNA extraction, a sequencing library was generated based on Illumina technology and following manufacturers’
recommendations. Index codes were added to each sample. Briefly, genomic DNA was randomly fragmented to 350 bp
and fragments narrow-size-selected with sample purification beads. Fragments were polished, A-tailed, and ligated to
adapters, filtered with beads, and amplified by PCR. Libraries were analysed for size distribution and quantified using real-
time PCR. Paired-end sequencing of the library was on an Illumina HiSeq2500 (2x150bp).

Bacterial taxonomic and functional profiling

Quality control of raw reads was performed using Sunbeam [81], including removal of low-quality reads (Phred score >
25 over 10 nucleotides), adaptors, and human-host related reads. Bacterial taxonomic profiling was performed using
MetaPhlAn2 [82] with default parameters. For bacterial functional annotation, the HUMAnN2 pipeline was employed [33]
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with default parameters. Since HUMAnNN2 does not directly support paired-end reads, paired-end sample mates were
merged as suggested by the HUMAnNN2 authors. HUMANN?2 assigns pathways and gene families based on MetaCyc [83]
and UniRef90 [84] databases, respectively. Abundances of gene families in each sample were reported in reads per kilobase
(RPK) and further normalised by copies per million (CPM), effectively yielding transcript per kilobase million (TPKM).
To remove fungi-related abundances, we kept only functional abundances that were directly assigned to bacterial taxa (i.e.,
excluding other kingdoms and unclassified abundances). The resulting bacteria-only abundances were summed for each
feature category (MetaCyc pathways, Enzyme Commission (EC), KEGG orthology terms (KO), KEGG pathways). A 10%
prevalence filter was applied to bacterial species, bacterial genera, MetaCyc pathways, EC, KO, and KEGG pathways.
Summaries are reported as the median = median absolute deviation (MAD).

Co-abundance networks

Spearman's correlation analyses of microbial abundances within and between kingdoms were performed by abundance
profiles normalized (TSS or CLR) for each kingdom separately. Only significant correlations were considered further
(P<0.05; |r>0.10). Networks were transformed and analysed using the R package TidyGraph [85] and visualised using
GGraph [86].

Statistical analysis

To assess the significance of univariate measurements while correcting for confounders such as body mass index (BMI)
and gender, we used a rank-based generalised linear model (GLM) as implemented in Rfit [87,88]. In contrast to simple
linear models or GLMs, the rank-based GLMs assess unspecific, non-linear trends in data. This test was applied to
taxonomic and functional alpha diversity, and contributional alpha diversity. To test for significant differences in bacterial
and functional abundances, we used Maaslin2 [89]. In addition to the default settings (total-sum scaling, log-transform,
GLM), we set a minimum prevalence filter of 20% (15 samples) with le-6 minimum abundance. Tests are corrected for
differences in BMI and gender. P-values were adjusted for multiple testing using false discovery rate (FDR).

Cobhort stratification

Samples were stratified into two groups (High and Low Candida) based on median CLR-normalised Candida genus
abundance. CLR normalisation was performed by (i) removing features with less than 10% sample prevalence but summing
counts of low prevalence taxa into a new ‘LOW_PREV” feature to preserve the proportions of the remaining features, (ii)
Bayesian zero replacement to maintain log-ratios [90,91] and (iii) applying CLR transform as suggested for compositional
data [30,90-92]. Samples higher than median Candida levels were classified as the High group; others as the Low group.

Diversity analysis

Diversity calculations were performed using the R package vegan [93]. The alpha diversity indices of bacterial and fungal
communities were calculated using Shannon, Simpson, observed amplicon sequencing variants, and Pilou’s evenness index
[93]. For beta diversity, analyses were performed using the Aitchison index and Bayesian-zero replacement as suggested
[28,29,91,94] to overcome compositionally related biases. Between-group significance was estimated using
PERMANOVA as implemented in the Adonis (vegan [95]) using 1000 permutations. Beta-dispersion (within-group
diversity) was assessed using betadisper (vegan).

Aerobe and anaerobe annotation

Culture conditions of bacterial species annotated with MetaPhlAn2 were manually searched in DSMZ
|https://www.dsmz.de/collection/catalogue/microorganisms/catalogue/bacteria) and ATTC  bacterial  collection
[https://www lgcstandards-atcc.org/Products/Cells_and_Microorganisms/Bacteria)). Strict or obligate anaerobes were
annotated as anaerobes. Facultative anaerobes and obligate aecrobes were classified as aerobes. Uncultured bacteria were
not annotated.

Machine learning

We performed logistic regression based on GLMnet models as implemented in the R package SIAMCAT [41]. We screened
several model normalisations (rank-unit, log-unit, CLR), feature selection (receiver operating curve (ROC)-based with
n=20-100) and model (elastic Net, Lasso, Ridge, Lasso-LL, Ridge-LL) settings. Zeros were imputed by dividing the
smallest non-zero abundances value by 10. Models were trained with feature abundances from only one category at a time
(bacterial taxa, MetaCyc pathways, KEGG orthology terms, KEGG pathways). A 30% prevalence filter was applied in the
main cohort of this study. The test cohort was filtered for features prevalent in the main cohort. BMI and gender were
included as additional, fixed covariates in the models.
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Data augmentation was applied to each training slot of the SIAMCAT model analogous to previous work [42]. Specifically,
train-test splits were initiated in the SIAMCAT model object. For each fold, new samples were generated from the training
samples per class so that any class imbalance was removed after adding augmented samples. Therefore, training samples
were used to fit a negative binomial distribution and the fitted distribution used to sample a fixed number of samples
(between 10 and 40). The resulting training cohort had both original and generated samples; test samples remained
unchanged. Class labels of generated samples were never used for performance evaluation (i.e., prediction performance)
and were relevant only for feature selection and model fitting.

Transepithelial electrical Resistance (TEER)

Bacterial growth conditions

The following strains were assessed: probiotic strain Lactocaseibacillus rhamnosus GG (DSM 33156, formerly known as
Lactobacillus rhamnosus GG, referred to by use of the trademark LGGP), provided by Chr. Hansen A/S, Denmark and
four type strains; Lactobacillus gasseri (DSM20243), Lactococcus lactis subsp. lactis (DSM20481), Bifidobacterium
adolescentis (DSM20083) and Odoribacter splanchnicus (DSM20712). LGG” (DSM33156), L. gasseri (DSM20243) and
B. adolescentis (DSM20083) were inoculated from frozen stock and cultured overnight at 37°C in De Man, Rogosa and
Sharpe broth (MRS) broth, pH 6.5 (Difco™, 288110) with 0.05% cysteine hydrochloride monohydrate under anaerobic
conditions in 7L anaerobic boxes with 2 sachets of 3.51. AnaeroGen™ Sachets (Thermo Scientific™ ANO0035). L. lactis
(DSM20481) was grown in M17 broth (Biokar BKO88HA) supplemented with 0.5% lactose aerobically at 30°C. Ten-fold
dilution series were prepared from the overnight cultures of these 4 strains and incubated under the same conditions as
mentioned above. Late exponential/early stationary phase were selected based on measures of optical density at 600nm
(OD6oonm)- O. splanchnicus (DSM20712) was inoculated from freeze-dried stocks and cultured overnight at 37°C in Gifu
Anaerobic Medium broth (GAM; HyServe Code 05422) anaerobically using sealed N»-gas flushed Hungate tubes
(Glasgeritebau Ochs Laborfachhandel, Art. No. 1020471). O. splanchnicus (DSM20712) was off-gassed twice per day as
the strain is a gas producer. Overnight cultures were subcultured once, and the overnight culture was used for the
experiment.

Caco-2 cell Culture

The human colon adenocarcinoma Caco-2 cell line (DSMZ ACC 169, Leibniz-Institut DSMZ-Deutsche Sammlung von
Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany) was cultured in T75 Nunc™ EasYFlask™
(ThermoFisher 156499) in Dulbecco’s Modified Eagle’s Medium (DMEM; Gibco™ 21885-025) supplemented with 20%
Fetal Bovine Serum (FBS; Gibco™ 10270) and 1% MEM Non-essential amino acids (Biowest; X0557-100), and 1% Pen-
Strep-Amp B (Biological Industries, Israel, 03-033-1B) in 5% CO; at 37°C.

Transepithelial electrical resistance (TEER)

When the cells were approximately 80% confluent the medium was removed and cells were washed twice in Hanks
balanced salt solution (HBSS; Gibco, 14175). Cells (passage no.22) were dissociated by adding 2mL of TrypLE Express
Enzyme (Gibco, 12604) and left for 4 min in the incubator at 37°C. Approximately 10 mL of medium was added to
dissociated cells and 10° cells/well were seeded onto 12-well, 12 mm Transwell® inserts with 0.4 pm pore polyester
membrane insert (Corning; 3460). Growth media was renewed twice per week and cells were cultured for 21 days to obtain
a monolayer. The day prior to the TEER experiment, transwells were transferred to the CellZscope2 (Nanoanalytics,
Munster, Germany) and the medium was changed to antibiotic-free medium (DMEM supplemented with 20% FBS and
1% MEM non-essential amino acids). The CellZscope2 was maintained in a humidified atmosphere at 37°C with 5% CO»
and in order to stabilize electrical resistance, overnight measurements of TEER before Caco-2 cells stimulation allowed
determination of a baseline and served as a quality control.

Each of the bacterial cultures was washed twice in Phosphate Buffered Saline pH 7.4 (PBS; Sigma 806552) before
adjusting the ODgoonm to 4.0 in antibiotic-free medium. When adding the bacterial solutions to the transwells the bacterial
suspensions were diluted 8-fold resulting in a final ODeoonm Of 0.5. To stimulate the Caco-2 cells with bacteria, TEER
measurements were paused, the CellZscope2 was removed from the CO; incubator, and 100 pL of apical medium was
replaced by bacterial suspension or controls. LGG” and DMEM medium served as positive and negative control,
respectively. The CellZscope2 was transferred back to the CO, incubator, and the TEER measurements were resumed and
continued overnight for a total of 18 hours. Changes in TEER during bacterial stimulation were calculated relative to the
latest value recorded immediately prior to the stimulation (baseline measurement, set to 100%) and mean area under curve
(AUC) was calculated for each condition.
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Genome-scale metabolic modelling

We detected and downloaded matched bacterial Genome-scale metabolic models (GEMs) from the AGORA
(https://vmh.life) [50] and CarveMe collections (https://github.com/cdanielmachado/embl gems/tree/master/models) [96].
As participants were not restricted to a specific diet, we downloaded 12 different diets (https://vmh.life/#nutrition) for
simulations. These were DACH (a healthy diet for people between 19 and 51 years old), EU average, gluten-free, high-
protein, ketogenic, low-carbohydrate, Mediterranean (with abundant fresh plant foods, minimally processed food, and olive
oil as the principal fat source), type 2 diabetes, unhealthy (very low amounts of fibers and very high sugars and fats), vegan,
vegetarian, and high fiber diets.

All analyses were done in COBRApy (v0.17.1) using Python (v3.6.8) and optimisation solvers provided by IBM
CPLEX (v12.8.0.0). To make models viable for each diet, essential metabolite concentrations were determined by running
COBRApy’s minimum_medium function. Simulations were done in the presence of very limited oxygen (1 unit) to mimic
the gut environment. Flux variability analysis (FVA) for short-chain fatty acids and lactic acid exchange reactions
supporting growth were determined by running flux_variability analysis functions. These functions were run in loopless
mode (loopless=True), allowing 10% deviation from the optimal objective function value (biomass) and minimum overall
flux (fraction_of optimum=0.9, pfba_factor=1.1).

The Metabolic Analysis of Metagenomes using FBA and Optimization (MAMBO) algorithm was used to associate the
most likely metabolite abundance profile with our metagenomic samples [97]. MAMBO is based on semi-Markov chains
that optimize for a high correlation between a metagenomic relative abundance profile and a predicted metabolic profile.
Prediction was based on bacterial GEMs associated with the given metagenomic sample. IBM ILOG CPLEX [98] was
used as a solver and run in a Python environment (v3.7).

Fungal co-culture and in vitro assays

Candida albicans-RM 1000, C. albicans-BWP17, and Saccharomyces boulardii-GFP were cultured in yeast extract-
peptone-dextrose (YPD) agar plates containing 10 g-L! yeast extract, 20 g-L"! casein peptone and 20 g-L™! glucose at 37°C
in aerobic conditions. Overnight liquid cultures were prepared by picking a single colony from a YPD agar plate and
inoculating synthetic complete (SC) minimal media containing 6.7 g-L"! yeast nitrogen base supplemented with 1%
glucose. For aerobic growth conditions, overnight liquid cultures were incubated at 37°C and 200 RPM for ~16 hours. For
microaerobic (1% oxygen, 94% N2 and 5% H) or anaerobic (95% N2 and 5% H2) growth conditions, liquid broth was
prereduced in anaerobic conditions 24 hours before inoculation. Next, strains were inoculated from YPD agar plates into
prereduced SC minimal media supplemented with glucose, and cultures were incubated at 37°C in microaerobic or
anaerobic conditions for ~16 hours without shaking.

Growth and competition experiments of C. albicans and S. boulardii in different carbon sources and

oxygen availability

To determine the effect of L-lactate and glucose on C. albicans and S. boulardii growth, overnight cultures were diluted to
optical density (OD),,, 0f 0.1 in 100 pL fresh SC medium supplemented with 1% carbon source (1% glucose, 1% L-lactate,
or glucose plus L-lactate each at 0.5%), and incubated in aerobic, microaerobic, or anaerobic conditions, respectively.
Cultures were performed in flat-bottom, 96-well plates, sealed to prevent evaporation using BreathEasy film (Sigma-
Aldrich). Plates were incubated for 24 hours at 37°C, with continuous orbital shaking at 900 rpm. The ttemperatures used
(37°C) did not induce notable hyphae formation in growth assays and therefore did not perturb growth measurements. Cell
densities were measured every 10 min at ODggo using a microtiter plate reader (BioTek Synergy H1). Growth rates were
calculated by plotting log of ODgo in log phase and calculating the slope of time points where r? was closest to 1, using at
least 24 time points over a 4-hour log phase period. The plate reader could not be adapted to strict anaerobic conditions;
therefore, determining growth rates of anaerobic experiments was not possible and only final time points were determined
for these experiments.

Competition growth experiments were performed by diluting overnight cultures to OD,, of 0.1 and inoculating both
at 1:1 in a final volume of 100 uL fresh SC medium supplemented with the corresponding 1% carbon source. Cultures
were incubated for 24 hours in 96-well plates using the same growth conditions as described for the single-strain cultures.
ODq,, and GFP signals (excitation A 485, emission A 510) were measured at intervals of 10 minutes. Since GFP requires
oxygen to emit a fluorescent signal, anaerobic samples were incubated aerobically for 1 hour on ice before measuring the
final ODg,, and GFP. GFP signal from anaerobic samples was measured as a single time point after 24 hours.
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Colony-forming units (CFU) ml! were determined at the end of growth experiments. Cultures were serially diluted 10-
fold in an 8-step dilution series and 5 pL of the dilution series were spotted on YPD agar plates and incubated aerobically
for 48 hours at 37°C. To determine CFUs-ml"!, single colonies were counted from the highest dilutions, divided by spot
volume (5 pL) and multiplied by the dilution factor. Technical replicates were made of all experiments.
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Abstract

Impaired exercise tolerance and lung function is a marker for increased mortality in lung
cancer patients undergoing lung resection surgery. Recent data suggest that the gut-lung
axis regulates systemic metabolic and immune functions, and microbiota might alter exer-
cise tolerance. Here, we aimed to evaluate the associations between gut microbiota and
outcomes in lung cancer patients who underwent lung resection surgery. We analysed
stool samples, from 15 early-stage lung cancer patients, collected before and after surgical
resection using shotgun metagenomic and Internal Transcribed Spacer (ITS) sequencing.
We analysed microbiome and mycobiome associations with post-surgery lung function
and cardiopulmonary exercise testing (CPET) to assess the maximum level of work
achieved. There was a significant difference, between pre- and post-surgical resection
samples, in microbial community functional profiles and several species from Alistipes and
Bacteroides genus, associated with the production of SCFAs, increased significantly in
abundance. Interestingly, an increase in VO, coincides with an increase in certain species
and the "GABA shunt" pathway, suggesting that treatment outcome might improve by
enriching butyrate-producing species. Here, we revealed associations between specific
gut bacteria, fungi, and their metabolic pathways with the recovery of lung function and
exercise capacity.
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Introduction

The ethology or progression of lung cancer has been linked to numerous factors, including the
gut microflora [1]. The microbiome can control epithelial cell proliferation/ differentiation,
nutrition, detoxification, metabolism, and hormonal homeostasis. Gut microbiota has been
implicated in tumour development in cancers [2, 3]. It has been shown that several chronic
lung diseases, including cancer may be linked to a dysbiotic airway microbiota and frequently
occur in conjunction with gastrointestinal disorders [4].

Previous studies showed that exercise training can alter the abundance of butyrate in the
gut through an increase in the relative abundance of butyrate-producing species [5, 6]. Buty-
rate is a short-chain fatty acid (SCFA) that can regulate proliferation of epithelial cells in the
gut, improve the integrity of the gut barrier, and alter the immune system and gene expression
of the host [6]. A decrease in the abundance of Firmicutes has been repeatedly reported in
lung cancer patients [2, 7] and has been previously associated with dysbiosis of gut metabo-
lism, resulting in lower SCFAs concentration [2]. In contrast, a higher ratio of Firmicutes to
Bacteroidetes bacteria has been show to correlate with maximal oxygen uptake during exercise
(VO,) [8]. Barton et al. [9] showed that athletes have greater faecal SCFA concentrations and
altered abundance of bacterial pathways related to the biosynthesis of amino acids and the
metabolism of carbohydrates. Others found that exercise training can alter the gut microbiota,
at the taxonomic and functional level, in obese and non-obese humans [10] and reduce the
expression of genes associated to metabolism of fructose and amino acids [11]. Moreover,
exercise training may affect the gut mucus layer integrity, which is involved in the prevention
of microbial adherence to the gut epithelium and acts as a substrate for bacteria of the mucosa-
associated microflora. Increased heat shock protein response that prevents tight junction
breakdown between epithelial cells [12] and improves resilience of the gut barrier [13, 14] has
been observed in trained athletes. Others showed that physical activity decreases the risk for
colorectal cancer by 24% [15].

Cardiopulmonary exercise testing (CPET) is a non-invasive, physiological test that provides
a comprehensive overview of the pulmonary response to exercise and allows for the evaluation
of the body’s metabolic state, functional capacity, and impairment, through the assessment of
submaximal and peak exercise responses. The metabolic changes that characterize health sta-
tus and tumour recurrence have a stronger correlation with exercise tolerance, as measured by
CPET, than with resting pulmonary and cardiac function testing, thus resulting in an increase
in the use of CPET in patient management. Among many parameters, CPET measures the
oxygen uptake (VO,) peak that is used in predicting postoperative overall condition and pul-
monary complications [16, 17].

In this study, our primary aim was to characterize the taxonomy and functionality of the
gut microbiomes’ metabolic interaction in lung cancer patients who underwent lung resection
surgery. Our secondary aim was to describe the taxonomy changes in the same setting accord-
ing to postoperative disease recurrence. We focus on the alterations of microbiome functional-
ity to understand the complex gut-lung axis’ metabolic interactions.

Materials and methods
Study population

From 2018 to 2019, we initially screened a cohort of 98 lung cancer patients from the National
Koranyi Institute of Pulmonology and County Hospital of Torokbalint. From these, 20 were in
early-stage and had their tumours surgically resected. Ultimately, 15 cases were suitable for the
CPET testing and underwent pulmonary rehabilitation. A flow chart of study participants and
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excluded patients is shown in S1 Fig. Baseline and followed-up samples were collected from
those patients. Clinicopathological data collected included gender, age, smoking history,
chemo- and radiotherapy treatments, type of operation, and overall survival (OS) or disease-
free survival. Tumour, node, metastases stage according to the Union for International Cancer
Control (8th edition [18]), and age at the time of diagnosis were recorded. The study and all
treatments were conducted in accordance with the guidelines of the National Comprehensive
Cancer Network and the Helsinki Declaration of the World Medical Association. The study
was approved by the national level ethics committee (Hungarian Scientific and Research Ethics
Committee of the Medical Research Council (ETTTUKEB- 50302-2/2017/EKU)). Informed
consent was obtained for all patients. Stool samples were collected before (prior to surgery
within 14 days) and 12 months after lung resection surgery. To assess a patient’s overall condi-
tion, we performed a CPET test one year post-surgical resection to coincide with the time of
follow-up stool sample collection. Major characteristics of the patient cohort are displayed in
S1 Table. Patients received no neo-adjuvant therapy, and selected cases were treated with post-
operative systemic chemotherapy with a platinum-based doublet regimen therapy (S1 Table).

Pulmonary function (PF) and CPET testing

We used spirometry at rest one year after surgery to assess key lung function parameters
including {percentage of reference value} (Forced Expiratory Volume (FEV1) {%}), total Lung
Capacity (TLC{%}), residual volume (RV{%}).

We performed CPET that begins with mild followed by intense exercise on an upright bicy-
cle. Patients breathing through a mouthpiece. We measured the ventilation and respiratory gas
parameters during exercise using oxygen and carbon dioxide gas analysers. Respiratory vol-
umes were computed by integrating the air flow signals over the time of inspiration and expi-
ration. The CPET test lasted until the maximal effort workload achieved for approximately 10
minutes.

We performed an incremental exercise test on an electronically braked cycle ergometer
(Ergoline-900, Marquette) that begin with 3 minutes rest and 3 minutes constant pedalling at
20 W, work rate was increased from 5, 10, or 15 W/min in ramp profile. Patient pedalling
speed was 60 rpm. Pulmonary ventilation (VE) and gas exchange (VO, and carbon dioxide
output (VCO,)) were measured breath-by-breath by a mass flow sensor and exercise metabolic
measurement system (Vmax 29¢, SensorMedics). During the test, we monitored heart rate
(HR) using a 12-lead ECG (Cardiosoft, SensorMedics) and oxygen saturation by pulse oxime-
try (SatTrak, SensorMedics). We measured CPET parameters and lung function parameters
including forced expiratory volume in one-second workload (Watt), maximal ventilation dur-
ing exercise (VE max), ventilatory equivalents for oxygen (VE/VO,), Oxygen pulse (O,/HR),
ventilatory equivalents for carbon dioxide (VE/VCO,).

DNA extraction from stool samples

All samples were processed by Novogene. DNA extraction, library preparation and sequencing
was done as described previously [19]. Stool samples were thoroughly mixed with 900 pL of
CTAB lysis buffer. All samples were incubated at 65°C for 60 min before being centrifuged at
12000xg for 5 min at 4°C. Supernatants were transferred to fresh 2 mL microcentrifuge tubes
and 900 pL of phenol:chloroform:isoamyl alcohol (25:24:1, pH = 6.7; Sigma-Aldrich) was
added for each extraction. Samples were mixed thoroughly prior to being incubated at room
temperature for 10 min. Phase separation occurred by centrifugation at 12,000xg for 15 min at
4°C, and the upper aqueous phase was re-extracted with a further 900 pL of phenol:chloro-
form:isoamyl alcohol. Next, samples were centrifuged at 12,000xg for 10 min at 4°C, and the
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upper aqueous phases were transferred to fresh 2 mL microcentrifuge tubes. The final extrac-
tion was performed with 900 uL of chloroform:isoamyl alcohol (24:1), and layer separation
occurred by centrifugation at 12,000xg for 15 min at 4°C. Precipitation of DNA was achieved
by adding the upper phase from the last extraction step to 450 pL of isopropanol (Sigma-
Aldrich) containing 50 uL of 7.5M ammonium acetate (Fisher). Samples were incubated at—
20°C overnight. Samples were centrifuged at 7500xg for 10 min at 4°C, and supernatants were
discarded. Finally, DNA pellets were washed three times in 1 mL of 70% (v/v) ethanol (Fisher).
The final pellet was air-dried and re-suspended in 200 pL of 75mM TE buffer (pH = 8.0;
Sigma-Aldrich).

Library preparation and sequencing

Sequencing library was generated based on Illumina technologies and followed manufacturer’s
recommendations. Index codes were added to each sample. Briefly, the genomic DNA was
randomly fragmented to a size of 350 bp, then DNA fragments were narrowly size selected
with sample purification beads. The selected fragments were then end polished, A-tailed, and
ligated with adapter. These fragments were filtered with beads again and amplified by PCR
reaction. At last, the library was analysed for size distribution and quantified using real-time
PCR. The library was then to be sequenced on an Illumina platform Novaseq 6000 (Novogene)
with paired-end reads of 150 bp.

The concentration of genomic DNA for ITS2 sequencing was determined by Qubit and the
DNA quality was checked on the gel. 200 ng of DNA was used as input for PCR reaction with
corresponding primer set specifically binding to different hypervariable regions. Each primer
set had a unique barcode. PCR product was then run on the gel and DNA fragment with the
proper amplification size was cut and purified. The purified PCR product was then used as
template for library preparation. The PCR products were pooled together with equal amount
and then end polished, A-tailed, and ligated with the adapter. These fragments were filtered
with beads again. After PCR reaction, the library was analysed for size distribution and quanti-
fied using real-time PCR. The library was then to be sequenced on Hiseq2500.

Quality control

Quality control of raw reads was performed using the Sunbeam 2.1 pipeline [20]. First, cuta-
dapt [21] version 2.8 was used to remove universal adapter sequences. Next, trimmomatic [22]
version 0.36 was used to perform Illumina-specific adapter trimming, window quality trim-
ming (Q5 over 25 nt), and 3’ and 5’ clipping (Q<6). Resulting reads shorter than 36nt were
removed. Decontamination of human reads was performed by mapping quality-controlled
reads with BWA [23] version 0.7.17 against a masked human reference genome (GRCh38-89).
Masking of low entropy regions was performed using BBmask. Reads with 99% coverage and
>97% identity to the human reference were removed.

Taxonomic and functional annotation

Taxonomic annotation was performed using MetaPhlAn2 [24] version 2.7.7 with default set-
tings, generating taxonomic relative abundances.

The PIPITS pipeline [25] version 2.4 was used for taxonomy annotation of fungal Internal
Transcribed Spacer (ITS) with default parameters including quality filtering, read-pair merg-
ing, ITS2 extraction and chimera removal. Remaining reads were binned based on 97% simi-
larity as operational taxonomic units and aligned to the UNITE fungi database using Mothur
classifier [26].

PLOS ONE | https://doi.org/10.1371/journal.pone.0259898 November 18, 2021 4/16

174



MANUSCRIPT VI

PLOS ONE

Gut microbiome and exercise tolerance of resected early-stage lung cancer patients

Functional annotation was performed using HUMAnN2 [27] version 0.11.2. In the pipe-
line, the reads were mapped to the MetaCyc database for pathway annotation, and the Uni-
Ref90 database to estimate gene family abundances. These abundances were aggregated into
MetaCyc pathway abundances using MinPath based on the MetaCyc database.

Microbial community diversity analysis

Alpha diversity indices detailing microbial community composition within samples were cal-
culated using the R packages vegan [28] and fossil [29]. For estimating beta diversity reflecting
community dissimilarities, Bray-Curtis distances were calculated using R package vegan [28].

Co-abundance network

For bacterial co-abundance network reconstruction, the species relative abundance table was
split into before and after surgical resection samples, and they were processed independently
with SparCC [30].

Correlation analyses with lung function parameters

Partial Spearman’s correlations adjusted for Chronic obstructive pulmonary disease (COPD)
and cancer type were determined between significantly different bacterial features (species and
pathways), fungal species abundances, and lung function parameters. For visualization only
bacterial features with significant correlations (P<0.05) and fungal species with significant cor-
relations (P<0.05) and absolute correlation coefficient > 0.65 were selected.

Prediction of VO,, recurrence and overall survival (OS)

Prediction of VO,, recurrence and OS was performed by calculating microbial balances [31].
A working implementation is available https://github.com/UVic-omics/selbal. A microbial
balance is a special kind of log-contrast. Briefly, let X = (X;,X,,. . .,X)) be a composition with k
components. For two disjoint subsets of k, and k_ parts, respectively, the balance B of the com-
ponent sets X, and X_ is determined by the formula:

1 1
B(X.,X ) k—ZIOgX, —k—Zlong

+ iel, - jel

Feature selection for X, and X_was performed using the function "selbal.cv", which imple-
ments an iterative cross-validation procedure to (i) identify the optimal number of compo-
nents (C,py) to be included in the balance and (ii) estimate the importance of the selected
components. Only features (bacterial species and MetaCyc pathways) that changed signifi-
cantly after surgery were used for feature selection.

Since “selbal.cv” is a forward selection process where components are included sequentially
at every step, we have a sequence of balances, ranging from C = 2 to C = 20 components. Once
Copt has been determined, we apply “selbal.cv” to the whole data set, with the number of taxa
Copts and obtain the global balance.

In order to estimate the robustness of the global balance and the importance of selected
components, all balances with C,,; components obtained in the cross-validation process are
retrieved and compared to the global balance, obtaining the relative frequencies of the different
balances and the proportion of times that each component was included in a balance. The
more often a component was selected, the higher its importance.
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Statistical analysis

Testing for significant differences in alpha diversity between before and after surgical resection
was performed using Wilcoxon signed-rank test. To test for significant differences in the
microbial composition between before and after surgical resection, beta-diversity was analysed
using permutational multivariate analysis of variance (PERMANOVA) as implemented in the
function adonis from R package vegan [28].

Bacterial species and MetaCyc pathways were filtered by 10% prevalence across all samples
and their relative abundances were used for statistical comparisons of before vs. after surgery.
Differentially abundant features were identified by the Wilcoxon signed-rank test and were
considered significantly different if P<0.05 after FDR correction using the Benjamini-Hoch-
berg procedure.

Species-species correlation coefficients were estimated as the average of 20 inference itera-
tions and 100 permutations were used for the pseudo P-value calculation. A correlation was
considered significant if pseudo P<0.05.

Partial Spearman’s correlations between lung function and CPET parameters with bacterial
and fungal features, adjusted for Chronic obstructive pulmonary disease (COPD) and cancer
type, were performed using R package ppcor [32] and were considered significant if P<0.05.

Results

Community taxonomic and functional diversity before and one year after
surgical resection

We analysed data from 15 lung cancer patients who underwent lung resection surgery. Our
cohort includes a balanced set of men (n = 7) and women (n = 8), and patients with stage I
(n = 4), stage IT (n = 8) and stage IIIA (n = 3) disease. Tumours recurred in six patients.
Detailed patients’ characteristics are shown in S1 Table.

These subjects had an overall good performance status (Eastern Cooperative Group Perfor-
mance Status 0) at diagnosis.

The structure and function of the gut microbiome were assessed using shotgun metage-
nomic sequencing. In total, 337 bacterial species were detected. First, we compared the overall
composition of the gut microbiome communities pre- versus post-surgical resection. There
were no significant changes in bacterial species alpha diversity over time (Shannon P = 0.98,
Simpson P = 0.56, Chaol P = 0.53; Wilcoxon signed-rank test) (Fig 1A). Bacterial species beta
diversity did not show significant differences either, but indicated a trend (Bray-Curtis dissim-
ilarity, P = 0.074, R? = 4.8%, PERMANOVA) (Fig 1B). We further compared the species’ beta
diversity taking into account the different stages of disease and chemotherapy treatment and
found no significant differences (S2A and S2B Fig). Alpha and beta diversity comparisons of
recurrent and non-recurrent patients showed no significant differences either, but indicated a
trend with non-recurrent patients having higher alpha diversity at both, pre- and post-surgical
resection (S2C and S2D Fig).

We used shotgun metagenomic sequencing to further examine the variation of gut bacterial
functions. In total, 498 MetaCyc pathways were retrieved. We did not observe significant dif-
ferences in MetaCyc alpha diversity evenness and richness after surgical resection (Shannon
P =0.28, Simpson P = 0.6, Chaol P = 0.49; Wilcoxon signed-rank test) (Fig 1C). However, we
found a significant difference in bacterial functional profiles (Bray-Curtis dissimilarity) from
post-surgical samples compared with pre-resection samples (P = 0.047, R* = 6.4%, PERMA-
NOVA) (Fig 1D).
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Fig 1. Comparison of the gut microbiota composition before and after surgical resection. (A, C) Boxplots, with median (centrelines), first and third
quartiles (box limits) and 1.5x interquartile range (whiskers), showing alpha diversity Shannon, Simpson, and Chaol indices at (A) bacterial species and
(C) bacterial MetaCyc pathways. Gray lines connect samples of the same patient from before and after surgical resection. (B, D) Principal Coordinate
Analysis plot based on Bray-Curtis distances before and after surgical resection at (B) bacterial species and (D) bacterial MetaCyc pathways. Gray lines
connect the measurement of a patient before and after surgical resection.

https://doi.org/10.1371/journal.pone.0259898.9001

Alterations of gut microbial species, co-abundance network and functions
one year after surgical resection

Next, we focused on taxonomic changes at the species level. We investigated which prevalent
species changed significantly in relative abundance post-surgical resection. Thirty-two bacte-
rial species showed significant changes after surgical resection compared to pre-surgical resec-
tion (P<0.05, Wilcoxon signed-rank test) (S2 Table). Of these, 15 were enriched pre-surgical
resection, and 17 were enriched post-surgical resection (Fig 2A). We observed a significant
decrease in the abundance of atypical opportunistic pathogens, such as Kiebsiella pneumoniae
[33], and Odoribacter splanchnicus [34]. These species are usually harmless within the gut of
their host, but cause infection outside this niche. Other opportunistic pathogens like Sutterella
wadsworthensis [35] decreased in abundance. Several species from Alistipes and Bacteroides
genus, related to a healthy microbiome, increased significantly in abundance. These species
have been associated with the production of SCFAs [36, 37].

We estimated relationships among gut microbes by constructing co-abundance networks
based on bacterial species relative abundance (using SparCC [30]) for pre- and post-surgical
resection groups, respectively. For evaluating the impact of surgery on the microbial commu-
nity structure, we focused only on correlations between significant species that changed either
from positive to negative or vice versa (Fig 2B). Overall, co-occurrence relationships were
observed within and between phylum Actinobacteria, Bacteroidetes, Firmicutes, and Proteo-
bacteria. We found more correlations changing from negative to positive post-surgical
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Fig 2. Taxonomic analysis of the gut microbiome in response to surgical resection. (A) Heatmap of differentially abundant bacterial species
(P<0.05, Wilcoxon signed-rank test) before and after surgical resection. Red and blue in the far-left column indicates increased and decreased relative
abundance, respectively. (B) Co-abundance network of bacterial species using SparCC [30]. Only correlations between differentially abundant bacterial
species (P<0.05, Wilcoxon signed-rank test) that changed direction were used for network construction. The nodes are coloured based on their
affiliated phyla. Edge colour indicates either correlations that changed from positive to negative (blue) or from negative to positive (red).

https://doi.org/10.1371/journal.pone.0259898.9002

resection (47) than from positive to negative (37). The species that showed the most changing
correlations were Gemella sanguinis, Adlercreutzia equolifaciens, Lachnospiraceae bacterium 5
1 57FAA, Parabacteroides merdae, K. pneumoniae and Barnesiella intestinihominis.

Furthermore, 78 MetaCyc pathways differed significantly post-surgical resection compared
to pre-surgical resection (P<0.05, Wilcoxon signed-rank test) (S3 Table) with 22 pathways
enriched pre-surgical resection and 56 pathways post-surgical resection. The pathways with
the highest increase were mostly related to the generation of precursor metabolites and energy
and the biosynthesis of cofactors, electron carriers, and vitamins, whereas the pathways with
the highest decrease were mostly related to core bacterial functions such as nucleoside and
nucleotide biosynthesis (Fig 3).

Associations of bacteria and their function with lung function and CPET
parameters

One year post-surgery, we investigated the significant associations between differentially abun-
dant taxonomic and functional features with lung function and CPET parameters (FEV1%,
TLC%, RV%, workload (Watt), VE, VO,, O,/HR, VE/VCO,, VE/VO,) adjusting for cofound-
ers such as COPD and cancer type. In total, 12 bacterial species were significantly correlated
(P<0.05) with lung function and CPET parameters. From these species, six were positively
correlated with parameters: Veillonella unclassified (O,/HR), P. merdae (RV%), L. bacterium 5
157FAA (TLC% and RV%), Granulicatella unclassified (VO,), G. sanguinis (VO,) and
Eggerthella unclassified (RV%), whereas four species showed negative correlations: Dorea long-
icatena (Specific Airway Conductance (sGaw%)), Coprobacillus unclassified (VE and O,/HR),
Bilophila unclassified (VE and O,/HR), and B. intestinihominis (workload and O,/HR). Para-
bacteroides distasonis was positively correlated with VE/VO, and negatively correlated with
workload while Alistipes onderdonkii was positively correlated with sGaw% and VE/VCO,
and negatively correlated with workload (Fig 4A). We also investigated the relations between
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Fig 3. Functional analysis of the gut microbiome in response to surgical resection. Heatmaps of the top 20 increased (top) and
decreased (bottom) differentially abundant bacterial MetaCyc pathways (P<0.05, Wilcoxon signed-rank test). Histogram (left panel)
shows the pathways ranked by variation (log2 fold-change after surgical resection).

https://doi.org/10.1371/journal.pone.0259898.9g003

post-surgery changes in the abundance of species with post-surgery changes in lung function
parameters (FEV, FEV1% and FEV/FVC). We identified 10 bacterial species, including species
correlated with CPET parameters, such as P. distasonis and B. intestinihominis significantly
correlated with changes in lung function parameters (S3A Fig).

Of the significantly differentially abundant MetaCyc pathways, four were positively associ-
ated with at least one of TLC%, sGaw%, VE, O,/HR, VE/VCO,, and VE/VO,, including path-
ways for generation of precursor metabolites and energy, nucleoside and nucleotide
degradation, and tetrapyrrole biosynthesis. Eighteen significantly differentially abundant
MetaCyc pathways showed a negative correlation with lung function parameters (RV%, sGaw
%, workload, and VE/VCO,), including pathways responsible for compound degradation, uti-
lization, and assimilation (N = 3), cofactor, electron carrier, and vitamin biosynthesis (N = 4),
amino acid biosynthesis (N = 2), compound biosynthesis (N = 4), and generation of precursor
metabolites and energy (N = 5) (Fig 4A) (S4 Table). Post-surgery changes in the abundance of
4 pathways, related to amino acid biosynthesis, cofactor, electron carrier, and vitamin biosyn-
thesis, and compound degradation, utilization and assimilation, were positively associated
with post-surgery changes in lung function parameters (S3A Fig). In contrast, post-surgery
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Fig 4. Correlations between taxonomic and functional profiles and CPET. (A) Heatmap of partial Spearman’s rank correlation analysis between
bacterial species and bacterial MetaCyc pathways versus lung function parameters adjusting for COPD and cancer type. Only differentially abundant
species and pathways (P<0.05, Wilcoxon signed-rank test) were used. (B) Heatmap of partial Spearman’s rank correlation analysis between fungal
species versus lung function parameters adjusting for COPD and cancer type. (A, B) Cell colour indicates either negative correlation (blue) or positive
correlation (red). Only species and pathways with significant correlations ((A) P<0.05; (B) P<0.05, absolute correlation coefficient > 0.65) are shown
(*P<0.05, **P<0.01, ***P<0.001).

https://doi.org/10.1371/journal.pone.0259898.g004

changes in the abundance of two pathways were negatively associated with post-surgery
changes in lung function parameters (S3A Fig).

We compared the abundance of aerobic and anaerobic species before and after surgery and
found a strong, significant decrease in the abundance of anaerobes after surgical resection
(r = 68.9%, P = 0.0054, Wilcoxon signed-rank test) (S4A Fig). When stratifying for recurrent
and non-recurrent patients separately, recurrent patients showed a very strong, significant
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decrease in the abundance of anaerobes (r = 89.9%, P = 0.031, Wilcoxon signed-rank test)
(S4B Fig). Non-recurrent showed only a trend (r = 54.5%, P = 0.15, Wilcoxon signed-rank
test). Given the difference in effect, these findings imply a potential role of anaerobe bacteria
in tumour suppression.

At last, we tried to predict VO,, tumour recurrence, and overall survival (OS) from either
(a) bacterial or (b) MetaCyc pathway relative abundances (S5 Fig, S5 Table). We only looked at
features with significant change post-surgical resection. We selected features whose microbial
balance [31] has a high linear correlation to target response. For VO,, the balance of only six
bacterial species positively correlates with a Pearson correlation coefficient of r = 0.78 (P = 6E-
4). Here, the balance was termined to be the ratio of A. equolifaciens and Alistipes abundances
(both increased significantly after surgery) to P. distasonis, P. merdae (both decreased signifi-
cantly after surgery) and G. sanguinis abundances. The balance of 7 MetaCyc pathways corre-
lates even better with = 0.85 (P = 7E-5). Functions for carbohydrate utilization, fatty acid
oxidation and arginine production were selected. Interesting, an increase in VO, coincides
with an increase in the pathway "GABA shunt", in which 4-aminobutyrate (GABA) is pro-
duced from glutamate and further metabolized to succinate. Improvements in exercise toler-
ance and treatment outcome were associated with butyrate producing species. Succinate is
involved in several metabolic processes. Importantly, it is involved in the control of reactive
oxygen species and tumorigenesis [38]. In contrast, functions for metabolizing glucose and
fucose may have a negative impact on VO,. In contrast to previous findings [8], the F/B ratio
was not correlated or predictive of VO,. However, the ratio of Proteobacteria against Eur-
yarchaeota and Actinobacteria correlated with r = 0.56 (p = 0.032), implying a potential link
between members of these phyla and VO,.

For prediction of tumour recurrence vs non-recurrence, patients can be accurately classi-
fied by a balance of three bacteria (CV-AUC = 95%, Acc: 100%). O. splanchnicus is hereby
associated with tumour free outcome, whereas G. sanguinis and Olsenella were associated with
tumour recurrence. A balance of two MetaCyc functions was also predictive of recurrence
(CV-AUC: 90%, Acc: 100%). Hereby, L-alanine biosynthesis was associated with positive out-
come. Arginine and polyamine biosynthesis were predicted to increase tumour recurrence.

For OS, a balance of 5 MetaCyc pathways correlated well (r = 87%, P = 2e-5). Interestingly,
guanosine nucleotide de novo synthesis pathways were associated with improved OS, while
adenosine and pyrimidine nucleotide de novo synthesis to decreased OS.

Associations of fungal species and lung function and CPET parameters

Besides the bacterial composition, we also attempted to associate the mycobiome with the lung
function parameters. We built high-quality libraries for ITS2 sequencing for samples collected
post-surgical resection (N = 15) and estimated the relative fungal abundance using the PIPITS
pipeline [25]. In total, we identified 124 genera and 189 species. From these, 16 fungal species
showed strong significant correlations (P<0.05, absolute correlation coefficient > 0.65) with
lung function and CPET parameters (FEV1%, TLC%, sGaw%, Workload, VE, VO,, and O,/
HR) (Fig 4B). Penicillium glandicola and Candida pseudolambica were positively correlated
with VO,, whereas Yarrowia lipolytica, Trichoderma spirale, and Saitozyma podzolica showed
negative correlations (S5 Table).

Discussion

CPET is a non-invasive method to test the overall condition of lung cancer patients who
underwent lung resection surgery. CPET provides a comprehensive assessment of the exercise
response and reflects the metabolic interactions of different organ systems. Shotgun
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metagenomic sequencing allows taxonomic and functional annotation of the microbiome,
thus it is the most comprehensive method for microbiome characterization.

Early metabolic changes might predict postoperative physical condition and outcome ear-
lier than radiographic changes. The gut-lung axis plays a critical role in metabolic functional
changes, and therefore, we hypothesized that the gut microbiome might be associated with dif-
ferent workloads and other CPET parameters.

Previous studies have shown that colorectal cancer patients have a disturbed gut microbial
composition with a low abundance of species producing butyrate, such as species from the
Roseburia and Lachnospiraceae genera, which may alter gene expression in healthy and cancer-
ous cells [39]. In colorectal cancer cells, a dysfunction of the mitochondria contributes to an
accumulation of butyrate in the cytosol and inhibition of histone deacetylases, resulting in the
downregulation of proliferation and apoptosis pathways [39]. These changes may contribute
to a decrease in tumour size and the probability of metastasis.

In our study, we observed post-surgical increases in (a) SCFA producing bacterial species
and (b) pathways involved in carbohydrate, alcohol metabolism, and vitamin B production.
These findings suggest a possible relationship between bacterial communities capable of
metabolizing carbohydrates and alcohols into chemical compounds. The compounds involved
in these pathways are considered important (a) to improve cell membrane barrier, (b) to act as
precursor metabolites for human hormones such as serotonin and melatonin, and (c) for vita-
min B; and B; production. Furthermore, we predicted a negative association between O.
splanchnicus and tumor recurrence. O. splanchnicus is a potent butyrate producing species
[40] by fermentation of L-Lysing (BioCyc P163-PWY [41]) and integral part of a healthy gut
microbiome [42]. To improve CPET VO, and supress tumour recurrence, enriching the host
microbiome with butyrate producing species and decreasing monosaccharide metabolizing
species may improve treatment outcome.

From our study, we conclude that A. equolifaciens, Alistipes, L. bacterium 5 1 57FAA and P.
merdae may be beneficial species for improved recovery of overall physical condition and lung
capacity. These species were positively correlated with several lung function parameters or pre-
dictive of VO,. In contrast, G. sanguinis was associated with decreased VO, and increased
tumor recurrence. D. longicatena was associated with a decrease in lung function parameters,
suggesting a negative impact of these two bacterial species on the recovery of lung capacity.
Both L. bacterium 5 1 57FAA and P. merdae were negatively correlated with D. longicatena,
implying that these two species may compete with D. longicatena for gut colonization and
could therefore improve health post-surgery. While O. splanchnicus was not directly associated
to improved lung function, a potential effect on tumour suppression should be worth further
investigation. We observed a significant decrease in relative abundance of this bacterial species
after resection. Like other SCFA producers, high fibber diets are required for the fermentation,
proliferation and hence SCFA production. In the future, it should be worth to investigate if
SCFA and other metabolites produced by O. splanchnicus are taken up by their human host
and how these may influence tumour tissue.

Our study’s limitation includes that in the real-life setting even though initial case numbers
of recruited patients were high, the final numbers of patients with overall good clinical condi-
tion and available samples were low. To our best knowledge, the sample size is comparable to
other studies of comparably unique conditions. Accordingly, this study did not allow us to
draw robust conclusions on outcome-related biomarkers; however, it enabled us to meet our
primary aim to study metabolic interactions. Another limitation is that the causality of meta-
bolic and microbiome changes is not clear and follow-up studies with larger cohorts are
needed.
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We conclude that there are bacterial metabolic pathways that might be associated to
increased oxygen uptake and exercise tolerance in patients one year after lung resection sur-
gery. To our knowledge, this is the first study on microbiome functionality correlations with
CPET, a highly specialized stress test with parameters that provide a unique detailed opportu-
nity to study not only taxa but also metabolic interactions. Also, restoring specific bacteria
might provide future therapeutic targets. Additionally, our findings highlight the potential of
examining dynamic function parameters compared with traditional static metrics such as
basic lung function and radiographic assessment in order to assess different organ systems’
metabolic interactions. In this unique setting, the gut microbiota provided useful information
on associations of exercise tolerance. We hypothesize that outcomes after lung resection sur-
gery might be associated with distinct metabolic pathways that need to be confirmed in larger
datasets. We offer critical postoperative metabolic and microbiome taxa and functional
changes that are associated with distinct patient physical conditions and hopefully provide a
reasonable basis for future studies aiming to increase patient outcomes.

Future studies in similar unique datasets are needed to confirm our findings and the modu-
lation of gut microbiota, including butyrate producing taxa to increase long-term benefit from
lung resection surgery.
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Supplements

Consecutive patients consented to
the gut microbiome study with
suspected lung cancer underwent
diagnostic procedure

(n=98)

We included stool samples from
patients with confirmed
adenocarcinoma (n=48), squamous
cell (n=24), SCLC (n=15), and NSCLC
(n=11)

Patients with
advanced or recurrent stage(n=78 )

and surgically resected patients
(n=20)

Inclusion criteria: patients underwent
pulmonary rehablitation, suitable for
CPET test and stool sample available
at one year follow-up for
metagenomic sequencing
(n=15)

S1 Fig. Study design of surgically resected lung cancer patient cohort.
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IV. DISCUSSION

Not long ago, we believed that determining the DNA sequence of the entire human
genome would be the key to understanding human biology [72]. However, our genomes
are far more complex than anticipated and are insufficient to explain many common human
conditions, including the development of immune system, diseases, and the success of drug
treatments. Human microbiota is now recognized as a key factor in health and disease
development and a critical expansion to the human system. To understand the role of
microbiota, we need to identify and comprehend the conditions and mechanisms by which
certain microbes switch from commensalism or mutualism to parasitism — the pathobiome.
Within the last two decades, the number of described microbial species that live in and on
humans increased by orders of magnitude. While uncommon, studies on archaea and
bacteriophages are emerging, too. Since all biological life is based on DNA or RNA, all
organisms can be detected, quantified, and analyzed using the same underlying technology.

The technologies used throughout my Ph.D. to study biological systems involve a
combination of different sequencing technologies, including metagenomics,
transcriptomics, amplicon-based sequencing, but also other OMICS data such as
metabolomics. With the manuscripts included in this thesis, I have demonstrated the use of
several complementary frameworks for the analysis of high-dimensional sequencing data
to address different biological scientific research questions. Non-linear regression, machine
learning, and co-abundance network analyses were frameworks that I applied consistently
throughout my Ph.D. to identify possible interactions between microbes and their host, and
how these interactions change over time or due to environmental stimuli.

This cumulative dissertation encompasses six manuscripts studying pathogens,
microbial communities, and the host with increasing complexity. The first part of the
discussion is about my research on the virulence mechanisms of one specific pathogen, 4.
fumigatus (manuscripts I, IT). The second part of the discussion is about the intestinal
ecology of gut microbiota, especially the community-level interactions between bacteria
and fungi (manuscripts III-VI). In all my research work, even when the focus was on
understanding the virulence and drug resistance of a specific pathogen, I considered the
ecological context.
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Aspergillus fumigatus Infection and Diversity

A. fumigatus is a human pathogenic fungus that causes a life-threatening infection in
immunocompromised patients called invasive aspergillosis (IA). IA is one of the most
common post-transplantation complications and therefore subject to intense research
worldwide. In addition, [A treatment with azole drugs is limited due to mostly unknown
but increasing azole resistance mechanisms [185]. In two manuscripts (I, IT), I addressed
general questions concerning host cell immune defense against 4. fumigatus and A.
fumigatus diversity.

Adapting RNA-Seq to the simultaneous sequencing of three distinct organisms

The adaption of pathogens to the host, and the defense against invasion, involves a cascade
of altered gene expression pathways in the interacting organisms. Before SGS technology,
these investigations were limited to relatively few virulence factors. Then, microarrays
enabled the quantification of transcriptomes, leading to new insights into virulence factors
and the detection of novel pathogen-associated molecular patterns (PAMPs). In principle,
this microarray technology could have been adapted to the simultaneous quantification of
two organisms but was technically difficult and too expensive [95]. Soon after, RNA-Seq
quickly overturned micro-array technology due to higher precision, greater resolution,
flexibility and sensitivity, and ultimately lower cost. Still, dual-organism RNA-Seq
approaches remained challenging. Technical limitations, especially in cell lysis and RNA
extraction, required the separation of all organisms prior to sequencing, leading to
considerable bias in organism-wise gene abundance profiles from cell isolation, DNA
extraction, and sequencing [94,95]. But ultimately, dual RNA-Seq experiments were
successful and applied to gain a deeper understanding of infection processes by creating
single-infection models. So far, dual RNA-Seq was used to study mammalian host cells
challenged with viral, bacterial, fungal, or eukaryotic pathogens [94]. Furthermore, dual-
organism RNA-Seqs reduced experimental costs considerably because extraction and
sequencing could be done together. Still, further technological improvements are required.

In clinical settings, humans are likely exposed to more than one pathogen at any given
time [78]. During A4. fumigatus infection, human CMV was suspected to frequently co-
infect patients as well. To address this hypothesis, we developed the first #riple-organism
RNA-Seq that enabled the identification of crosstalk mechanisms between human
monocyte-derived DCs and the two pathogens during single- and co-infections
(manuscript I). This setup required a fine-tuned investigation of infection parameters (wet-
lab side) and sequencing-related parameters (bioinformatics side).

At the wet-lab side, the amounts of pathogenic and host cells, as well as infection
durations had to be identified. The latter was additionally addressed by sampling at varying
infection durations. Sequencing parameters included the selection of RNA extraction and
rRNA depletion protocols, sequencing depth requirements, and optimizing reference
genomes for triple RNA-Seq mapping. Furthermore, I established the bioinformatic
processing pipeline, including read processing, gene expression quantification, general
visualizations, and differential abundance estimation. One of the primary results of the
established pipeline is one RNA gene abundance matrix of all organisms that can be used
for trans-species correlation networks and differential abundance testing. The profile can
also be separated by species to investigate within-species effects. In both cases, subsequent
analyses involved data ordination (e.g., principal component analyses), differential gene
expression analyses, functional enrichments, and network analyses.
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Triple RNA-Seq enables a tri-partite view on DC, CMV, and A. fumigatus

The triple RNA-Seq (manuscript I) allowed the concurrent investigation of the
transcriptome of each pathogen and host cells under varying conditions. We used dendritic
cells (DCs) in my work because DCs are understood as the main bridge between (a)
recognition of pathogens by innate immune cells and (b) adequate adaptive immunity
response (clearance of pathogen) [75]. DCs are also considered a key element in successful
defense against [A because they are exceptionally good at detecting A. fumigatus hyphae
[75]. It was known that DC response to fungi differs substantially from those to viruses,
and our work agreed largely with those expectations. Upon detecting proteins exposed in
the cell wall of Aspergillus (especially their hyphae), DCs release predominantly
Interleukins and TNF-a. This signaling cascade mobilizes the adaptive immune system, by
which naive T cells differential into TH17 cells. In stark contrast, detection of CMV
antigens leads to the release of chemokines and the differentiation of naive T cells into TH1
cells.

Interestingly, our study revealed that the co-infection phenotype of DCs is vastly distinct
from either of the single infections and is likely the result of synergistic effects by both
pathogens. A greater number of genes was significantly expressed during co-infection
compared to single-infections. We also noticed that some PPRs critical for Aspergillus
detection by DCs (and the subsequent anti-fungal response) were repressed in the presence
of CMV. This might be because human CMV evolved mechanisms to modulate host-cell
responses to increase the change for its’ successful invasion. Vice versa, A. fumigatus
hampered viral sensing cascades, leading to an overall greater rate of virus-infected DCs.
Overall, we give evidence for the “synergy during co-infection” hypothesis and
demonstrate that the knowledge gained from single-infection models may not translate well
to co-infection conditions.

This new technology also allowed us to switch the perspective towards each pathogen.
Under co-infection, we found that 4. fumigatus had fewer differentially expressed genes
compared to single infections. Most of the differentially expressed genes were the same
between co-infection and single infection. This lower response could originate from several
factors, including decreased host defense by DCs or lower colonization requirements.
CMV, in contrast, did not show many differences between single- and co-infection. Since
CMV is a virus with only around 280 genes, it may not have evolved mechanisms to change
its behavior in the presence of other pathogens.

Gene co-expression networks to compare infections

The triple RNA-Seq approach potentially reduces systemic noise that may impede cross-
species gene expression correlations when separately sampling host and pathogen
transcriptomes [94]. I computed inter-species gene co-expression networks and
investigated differences and commonalities in network topologies. In particular, I used set
operations on nodes or edges to identify shared and unique correlations.

Co-infection networks shared only few cross-species with single-infection networks.
Interestingly, very few correlations were specific to single 4. fumigatus infection, but many
CMV induced many unique cross-species correlations. Again, 4. fumigatus seemed to
benefit from CMV infection, but CMV did not benefit from 4. fumigatus infection.
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Perspectives — Clinical Relevance

The triple RNA-Seq (manuscript I) was used to study a clinically relevant co-infection
and delivered hard evidence for the existence of synergistic effects between two human
pathogens. However, our in vitro observations need further experimental confirmation in
more complex models and in vivo. In patients, DCs and pathogens would be surrounded by
a complex mixture of tissue (e.g., alveoli), metabolites, peptides, and other immune cells,
all of which may influence the behavior of host cells and pathogens.

Studying A. fumigatus lung infections under physiological conditions in humans and
mice in vivo is very challenging due to variations in (a) the source of immunosuppression,
(b) pathogen exposure, (¢) co-infection status, (d) host genetics, and (e) treatment drug
dosage doing and timing [185]. While studies on humanized mouse models are common,
translating results from mouse models to humans requires caution [185]. Instead, we used
an in vitro model system in which host cells were directly exposed to pathogens. While this
setup is easier to replicate and insightful, host and pathogen cells may behave differently
without other host-cells or their native conditions. An interesting next step would be ex vivo
models on alveolar or other lung tissue. Such lung-on-a-chip models of human cells are
being developed [186] could enable the study of human lung infection under more
controlled infection parameters.

Perspectives - Further Improvements

The computational part of dual and triple RNA-Seq approaches is based on classical
mapping approaches. It is worth noting that some recently developed quasi-mapping tools
(e.g., Kallisto) offer faster quantification and higher accuracy with more redundant
reference genomes [187]. However, their accuracy in multi-organisms RNA-Seq was not
evaluated thus far but will be interesting to investigate in future studies.

Aspergillus fumigatus demonstrates underappreciated diversity with potential
consequences for future infection studies

Using one singular reference genome for comparative genomics in infections is common,
but this approach is blind to the true genomic diversity observed in microbes. Due to low
generation times, beneficial genomic changes (such as drug resistance) are acquired and
distributed fast over microbial populations. While drug resistant A. fumigatus were
observed in clinical settings, it is unclear if these are mechanisms are present in type-strains
or wild-type strains.

Phenotypic variations in 4. fumigations are expected to have consequences on disease
development [188] and likely also for azole resistance [185]. However, thorough
comparative genome analyses on isolates of different environments were lacking. To
address this, we used whole-genome sequencing to assemble, annotate, and compare the
genomes of 300 A. fumigatus isolates from different environmental and hospital sources
(manuscript IT). We have shown that 4. fumigatus genomes are much more diverse than
previously anticipated, with a core genome comprised of only 69% of pan-genes. I
contributed to this work primarily by performing cluster enrichment tests. A. fumigatus did
not cluster by country, which could result from frequent genomic exchange between fungal
populations. This is quite likely because we had observed a high degree of genomic
recombination events.

Importantly, clinical isolates formed a single cluster together with the Af293 type strain
based on genetic variation in single-copy orthologous genes. This implies that (a) it could
be the most representative reference for studying clinical infections under laboratory
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conditions and (b) that human-associated 4. fumigatus may require additional but common
genomic adaptations to survive. However, clinical isolates were distributed over the entire
phylogeny, reaffirming the ability of A. fumigatus to adapt to distinct environments.

Our study thereby indicates the need for further considerations in selecting specific
A. fumigatus strains for infection studies. For the study of infection, A. fumigatus strains
were primary selected based on their observed virulence. To identify and understand drug-
resistance mechanisms, it will be crucial to study the structural and functional differences
among different A. fumigatus strains in future studies. The triple RNA-Seq study
(manuscript I) was based on the standard A. fumigatus Af293 reference genome, which
was also used as comparator in our pan-genome study (manuscript IT). While this genome
represented clinical isolates well (manuscript II), it contained only 87% of pan-genes,
indicating that analyses using Af293 could be blind to many genes and strain diversity. In
addition, our infection study (manuscript I) involved 4. fumigatus strain ATCC 46645, a
strain very similar to Af293 but with differences in pan-genes.

A solution for future studies could be the creation and use of a general-purpose A.
fumigatus pan-genome reference, as is already the case for homo sapiens [80].
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Gut Microbiota in Health and Disease

In this thesis, I have shown multiple ways in which metagenomics can be used to
investigate complex microbial systems and their interactions with the host. Our initial
understanding of microbiota was largely supported by large-scale projects such as the
Human Microbiome Project [7,36], which reported high temporal and spatial variation in
gut microbiomes of humans and raised questions like: How can this variation be explained?
What constitutes a healthy microbiome? A large body of studies associated changes in
microbiota with many common diseases, including type 2 diabetes, inflammatory bowel
diseases, heart disease, cancer, and autism spectrum disorder [22,25,30-35]. Genome
sequencing technology enabled the investigations of complex microbiota and will likely
continue to be a key technology for microbiome studies.

Defining gut fungal consortia and their stability, resilience, and dynamics may reveal
cause-effect relationships with bacteria. Although evidence is available on bacteria-fungal
interactions in the gut at the taxonomic level, we do not have a comprehensive
understanding of how bacterial functions influence the growth of particular fungi. To better
understand the entire microbiome, we provided data to follow both the bacterial and fungal
communities of the lower human gastrointestinal tract (manuscripts III-VI). In the
manuscripts included in this thesis, I analyzed large amounts of sequencing data,
metabolomics, and phenotypes. I presented sophisticated pipelines to quantify whole
metagenome, whole metatranscriptome, and ITS2 rDNA amplicon sequencing data to
profile bacterial species, functional potential, functional expression, and fungal
compositions. [ presented methods to efficiently integrate this compositional data to
improve our understanding of the underlying biological processes, which I will discuss
further below.

Next-Generation Sequencing enables the study of microbial interactions

Most studies investigating the influence of gut microbiota used 16S rDNA amplicon
sequencing to characterize bacterial communities [89]. While these studies generated many
exciting hypotheses, the taxonomic resolution was limited to family and genus level
abundances and could not elucidate microbial functions from the sequencing data. Higher
taxonomic and functional resolutions are required to identify and understand microbiota-
associated diseases and drug-resistance mechanisms (introduced in sections 2.4ff).

There are many ways in which genomic sequence data was analyzed, starting with
analyzing diversity indices and structural differences in compositions (manuscripts
ITI-VI). Species and functional information were combined into microbe-wise functional
abundance profiles to estimate contributional alpha diversity [38,120] (manuscripts
III, VI). Other concepts included transcriptional activity (manuscript III), machine
learning (manuscripts I'V-VI), and co-abundance network analysis (manuscripts ITI-VI).

Antibiotics drove fungal communities from mutualism to competition

Since the discovery of Penicillin in 1928 by Alexander Fleming, antibiotic treatment has
emerged as a universal solution to the treatment and prevention of bacterial infections.
However, the off-target effects on health-associated gut microbiota are still an ongoing
debate and may not have a straightforward answer. Opportunistic bacteria are becoming
increasingly resistant to antibiotics as a result of their widespread — and often pre-emptive
— administration [189]. This resistance is a growing concern in the treatment of infectious
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diseases and invasive procedures. Both intravenous and oral antibiotic administration have
an impact on the largest reservoir of genetic diversity in the human body: the gut
microbiome. In this thesis, I presented two studies (manuscripts III, IV) in which we
studied the effects of antibiotic treatment on microbiota using joined quantification of gut
bacteria and fungi. We identified several bacterial mechanisms promoting and inhibiting
the overgrowth of fungal pathogens.

While the dynamics of bacterial abundance were documented well, fungal stability and
resilience are mostly unclear [48]. Previous studies using mice models suggested a link
between oral use of antibiotics and the overgrowth of opportunistic gut fungi, in particular,
Candida [64,190,191]. This appears to be consistent with many, but not all, types of
antibiotics [190,191]. However, it has yet to be understood if these effects are indirect — the
changes in gut microbes result in the changes of the mycobiome — or if antibiotics can
directly affect gut fungi. Microbiota can control the levels of other microbes in multiple
ways, including the release of metabolic by-products such as bacteriocins, acids, and
peptides [192] or by outcompeting other microbes for space, metabolites, and nutrients
[193]. Intestinal microbes may also modulate host immune responses against other
pathobionts [194] or induce the formation of the protective mucin layer that covers the gut
epithelium.

In manuscript III, we followed healthy human subjects up to 90 days post treatment to
assess community changes before, during, and after oral antibiotic administration. The
short-term effects on the bacterial community were as expected. I observed a strong
reduction in (a) bacterial taxonomic and functional alpha-diversity and (b) health-
associated short-chain fatty acid (SCFA)-producing bacteria [195,196], but with variations
dependent on the antibiotic class. I introduced the role of such anaerobes in section 1.2 on
page 4. My findings were consistent with previous studies on human gut microbiota of
similar design but different antibiotic drugs (Raymond et al. [197]) or the most potent
antibiotic drug mix (Palleja et al. [56]). But unlike these two studies, we also characterized
(a) microbial gene expression and (b) fungal composition.

Fungal communities exhibited a much higher degree of taxonomic variance compared
to bacterial. However, we were able to attribute a significant part of that variation to
antibiotic treatment. First, the number of observed fungal species almost doubled short-
term (within one month post treatment). Second, by analyzing the topology of fungal co-
abundance networks, I observed a shift from stable communities (mostly positive
correlations) before treatment to a large increase in negative associations in the first month
after treatment. At 90 days post treatment, most correlations disappeared. These
observations support the idea of indirect antibiotic effects: since many bacterial taxa were
effectively inhibited, several fungal species gained a chance to colonize the gut. We
observed this as an increase in species numbers. However, during the recovery of gut
bacteria, competition for space and nutrients reemerged, which puts more pressure on
fungal species than bacterial species.

Gut Candida increased after antibiotic administration in healthy and diseased humans

Confirming the observation from mouse models [64,190,191], human gut levels of Candida
increased in relative abundance shortly after antibiotic administration (manuscript I1I).
However, Candida did not prevail in high abundance by the end of our study (90d),
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confirming that the gut microbiota of healthy humans were resilient against pathogenic
fungal overgrowth.

While microbiota of healthy patients showed resilience against adverse antibiotic
effects, diseased peoples’ may not, and treatment may do more harm than good. We thus
investigated the robustness of gut microbiota in critically ill patients with and without
antibiotic treatment and compared them to healthy subjects (manuscript IV). Critical
illness revealed microbiota that differed significantly from those of healthy people, with
some alterations accentuated by antibiotic therapy. In critically ill patients, antibiotic
administration led to an “infection vulnerable” microbiome composition characterized by
extremely low levels of SCFAs.

In both studies (manuscripts II1, IV), we observed reduced relative abundance in short-
chain fatty acid- and secondary bile acid-producing bacterial species during antibiotic
administration, species essential for maintaining host homeostasis [195,196]. On the fungal
side, Candida species’ relative abundance increased in the critically ill but even further
under additional antibiotic administration (manuscript I'V). Together, the results of both
manuscripts (II1, I'V) pointed to systematic and potentially detrimental effects on human
gut microbiota as a direct consequence of antibiotic administration and support the idea
that a decrease in anaerobe gut bacteria could allow enhanced colonization of gut fungi.

Perspectives - Counter-acting adverse antibiotic effects

The solution to (a) the increased incidence of microbial infections [198] and (b) stagnating
progress in the development of new antibiotic drugs [199] could be the identification of
new drug types and targets. Antimicrobial peptides [198], for example, are proteins
produced by commensal microbes to combat pathogens. Gut microbiota, especially
bacteria, are believed to be a rich reservoir for such compounds because of (a) their
competitiveness against constantly invading microbes and (b) a large number of genes
without known functions [198]. Another approach could be bacteriophage therapy [200].
Therefore, phages with high specificity to a pathogen are selected (and modified) to kill
specific pathogens. The recent release of a metagenomic gut virus catalog indicates that
over 90% of assembled viruses show no similarity to existing phylogenies [201], showing
just how much more room for future studies is left.

Microbial Growth Rate Estimations separate dead wate from proliferators

One intrinsic issue of current metagenomic research is our inability of DNA-based
abundance data to differentiate between living, stationary or dead cells [126]. Non-
replicating cells can substantially influence relative abundance profiles [126]. This needs
to be considered in studies using antibiotics. If the drug kills bacteria or inhibits their
growth (as expected), the DNA of bacteria affected by the drug can still be abundant. To
mitigate this issue, we have used in silico growth rate estimation (GRiD) in manuscripts
III and IV (introduced in section 2.5). Due to high runtime requirements, we applied it
only to species that showed differential abundance changes after antibiotic treatment. GRiD
estimates were then used to (a) exclude species with low estimated growth from further
analyses and (b) identify bacteria proliferating after treatment. It should be stressed that
such GRiD can only make approximations of bacterial growth and does not present strain-
level resolution. Furthermore, the high runtime of GRiD may hinder its widespread use.
Still, in silico growth rate estimations are helpful in cases where microbial growth cannot
easily be assessed, such as in vivo gut microbiota studies.
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Subspecies quantification using MGS

Early work on whole metagenome studies was challenged by the huge number of novel
genes originating from uncultured organisms and new strains. Several approaches to
accommodate the unknown were introduced, from comprehensive protein-coding gene
family reference libraries such as the IGC or HUMANN (on page 13) to new species concepts
such as MGS (introduced in section 2.6 on page 14). While the HUMANnN offers
quantification of gene family abundances per species, it is not a complete solution. HUMANN
is based on a fixed pool of non-redundant pan-gene catalogs, which is difficult to expand
with additional genes from de novo genome assemblies or specialized databases. For
example, identifying and annotating antibiotic resistance genes (ARG) [183] was crucial to
investigate the effects of antibiotic drugs on gut microbiota (manuscripts III, IV).
Likewise, most gene family references offer very limited taxonomic information.

To identify the microbial species possessing ARG genes, we grouped genes by their co-
abundance into MGS [131] (manuscripts III, IV). While the annotation of MGS usually
stops at the species level [131,202], I demonstrated in manuscript III that an MGS could,
in some cases, be annotated to the subspecies level by adapting the concept of pan-genomes
[123]. Thereby, species were delineated based on MGS genes’ presence/absence pattern
compared to a pan-genome reference of the species assigned to the MGS. The approach
could identify if an MGS represented a species core (genes shared by all strains), a strain
(genes found in exactly one reference strain out of multiple), or a sub-species (genes present
in some strains but not all).

Metatranscriptomes of microbes during antibiotic perturbation

Previous studies on human gut microbe gene expression found substantial differences in
taxonomic and genomic profiles compared to those derived from metagenomics [38,203].
While a common narrative considers highly abundant species to have high impacts on
microbial communities, it does not explain how species of low DNA abundance (e.g., many
SCFA producers) could have significant roles in host homeostasis. It was suggested that
only a subset of species within a gut community might express essential genes
[38,117,204]. In addition, metatranscriptomes of human gut bacteria were not investigated
during antibiotic administration. To address some of these ideas, I have characterized and
analyzed microbial the temporal properties of metatranscriptomes during antibiotic
administration (manuscript III). On several occasions, I observed striking differences
between metagenomic and metatranscriptomic data. For example, functional bacterial
diversity (estimated from DNA) was reduced during antibiotic treatment, whereas
transcriptomic diversity of bacterial function showed overall greater variance and greater
resilience. In addition, my analysis of metabolic core pathways indicated many pathways
whose transcriptional activity was virtually unchanged even under antibiotic treatment.

Perspectives - Resolution of metatranscriptomics needs further improvements

Studies using transcriptional activity resulted in conclusions that were different from results
obtained using both types of sequencing data separately. However, it is vital to consider the
qualitative differences between RNA and DNA data. In my study (manuscript I1I), RNA
reads did not yield the same species-level resolution as DNA. While 60-80% of DNA reads
were assigned to species-level contributions per sample, only 10-20% of RNA reads were.
This could have been the result of three major factors: (a) post-transcriptional
modifications, which lead to larger divergence between reference gene sequences and their
reads, and (b) nucleotide degradation, which is often non-linear and leads to major
distortions in profiling unless accounted for [118], and (c¢) insufficient resolution of the
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HUMANN? reference. Point (b) could potentially be addressed using RNA integrity number
(RIN) as a covariate for linear regression, which was suggested to correct the resulting bias
in single organism RNA-Seq [118]. Point (¢) could be verified in future projects using
updated gene-family catalogs such as the recent HUMAnN3 release, which contains more
than double the number of reference genes [123].

Perspectives — Co-abundance network analyses

The integration of joined bacterial-fungal abundance data is not solved with satisfaction,
and methodological progress in trans-kingdom correlation analysis using relative
abundance data analysis is scarce [150]. In theory, sequencing all organisms together at
sufficient depth could enable the use of simpler and existing approaches with less biased
outcomes [169]. But practically, DNA extraction protocols are often optimized and thus
biased towards either bacteria or fungi [46,205,206]. Some tools quantifying multiple
kingdoms from metagenomic data were published in recent years [126,207,208], and the
resulting abundance profiles were used for cross-domain correlation analyses [169].
However, the accuracy of multi-kingdom quantification is debatable [209]. In my studies,
including unpublished pilot work, the abundance profiles created by multi-kingdom
estimators contradicted amplicon-based results and reported several unreasonable fungal
taxa. Therefore, it may be necessary to research the accuracy of these tools on sufficiently
complex but well-known model communities. In my work, we quantified bacterial and
fungal compositions using two independent sequencing approaches (ITS2 and WMS). |
consider both (holistic and separate) profiling approaches justified until more sophisticated
approaches of these methodological approaches are available.

In my studies (manuscripts III, V), I performed trans-kingdom co-abundance network
analyses using either (a) simple Spearman correlation on per-domain log-ratio transformed
abundance data (e.g., with CLR), or (b) more complex models that assume sparsity to
increase statistical power. In the case of the latter, I applied BAnOCC on joined bacterial-
fungi abundance data (manuscript III). The approach was robust against varying degrees
of prevalence filtering. However, the number of features useable for analysis is very limited
to, at most, a few hundred due to (a) quadratic growth in computational runtime and (b)
very limited parallel computation options. Simpler approaches like Spearman correlations
have the advantage that software optimized for speed and memory efficiency already exist.
With these, correlations for thousands of features are easily estimated. Many sources of
bias (section 3) were mitigated using data normalization such as log-ratio transformations
(e.g., CLR in manuscript V).

There are more approaches worth considering for future studies as well, most of which
were summarized by Matchado et al. [150]. For example, FlashWeave was designed for
studies with thousands of samples and features. It allows controlling for additional
covariates, which is challenging with most existing correlation approaches [150]. Another
method is an extension of sparse partial least square analyses, “DIABLO” [150]. DIABLO
was used for multi-omics integration of microbiome, mRNA, and metabolomics data [210].
While an approach like DIABLO could have higher statistical power, the method requires a
high degree of manual parameter tuning and considerations on data normalization, which
again requires solutions to compositionality and zero-inflation bias. Another solution could
be shifting from relative to absolute observed abundance through spike-in methods that I
discuss on page 204.
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Gut oxygen levels are important to understand Candida colonization

One group of microbes consistently showed differences in abundance in the manuscripts
(III-VI) of this thesis: obligate anaerobes [18]. Many of these precise ferment undigestible
food into SCFAs, some of which are consumed by colonocytes and therefore believed to
be the main drivers of gut hypoxia [22] [40] [41]. These microbes are also very susceptible
to a wide range of common antibiotics, as shown by us (manuscripts III, IV) and others
[202,211]. In addition, we associated a decrease in SCFA producers with lung tumor
recurrence (manuscript VI) and an increase in Candida species abundance (manuscripts
III-V). The latter is quite interesting given the different settings employed across these
manuscripts.

Theoretically, while bacteria and fungi compete for resources available in the gut lumen,
they may also support one another. In manuscript V, we investigated gut microbial
signatures explaining varying levels of gut Candida abundance. Again, we observed a
systematic reduction in strict anaerobe abundance in samples with higher Candida levels
but also an increase in several oxygen-tolerant bacteria. We proposed that increased gut
oxygen (caused by a reduction in SCFAs) would allow Candida species to grow on lactate.
Lactate would be produced by facultative anaerobe lactic acid bacteria such as
Lactobacillus, many of which increased in relative abundance in samples with relatively
high Candida levels.

While a connection between gut oxygen levels and pathobiosis was hypothesized [59],
the idea remains mostly unaddressed. We demonstrated in further experiments that
Candida albicans grows efficiently on sole-lactate under microaerobic (1% O2) conditions,
while Lactobacillus species enhance gut integrity. Together, our findings could explain one
way in which Candida abundance could increase in the gut without becoming pathogenic.

Identification of microbial balance using machine learning

In manuscript VI, we shifted our attention to associations between treatment outcomes
and microbiota. We used a longitudinal study design to characterize microbial changes
related to lung function recovery one year after lung tumor resection. An intense testing
procedure (cardiopulmonary exercise testing) was employed to assess several lung function
parameters, alongside other patient characteristics such as blood CO2 volume. Our data
suggested a link between a reduction in anaerobe abundance and tumor recurrence,
contributing evidence to the hypothesis of beneficial effects of strict anaerobes. While our
analysis strategy was similar to the studies presented thus far, we used an additional method
for the identification of small sets of microbes (or functions) associated with host traits
(e.g., VO2) — microbial balances [212].

To identify robust predictors of lung function, I calculated “balances” [156,212].
Conceptually, balances are based on the idea that the abundance of one or more specific
species can be used to calibrate the abundance of the other taxa. However, gut microbiome
data is sparse, of high variance, and localized. Hence, multiple such balances may exist
across samples simultaneously. In manuscript VI, I used the machine learning tool
selbal, which aims to identify a set of microbes whose balance is predictive of a trait
[156,212]. Here, a balance is a real-valued number calculated as the log-ratio of the sum of
nominator and sum of denominator species [156,212]. A generalized linear model is trained
with these balances. I used this procedure to identify correlations between balances of
microbial species or functions with lung function parameters.
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Perspectives - Quantification of fungal compositions: ASVs vs OTUs

Even with current sequencing technology, the quantification of fungal composition is still
challenging and primarily achieved through ITS amplicon sequencing approaches
(section 2.3) [50]. While ASVs are, in theory, superior to OTUs in every possible way
[108], my experiences were both positive and negative. For sequencing data generated by
older Illumina sequencing machines, ASVs performed best (manuscripts IV, V).
However, some Illumina machines, especially newer models, perform additional quality
binning to reduce file size!, which broke the error model of DADA2 and directly affected
variant calling. Since the DADA2 ASV pipeline is easy to use, this problem can be missed
because the tool does not report problems with the error model and relies on the visual
inspection of the user. I did find a way to correct the error model to my satisfaction.
However, I could confirm that denoising approaches are better than OTU clustering if the
underlying error models are specified correctly.

Perspectives - On the switch between transcriptomics and genomics

Careful readers may have noticed that studies on a single or few organisms are often based
on the transcriptomes of organisms (manuscript I). In contrast, microbiota studies are
based on metagenomes of organisms (manuscripts III-VI). While large-scale reference
genomes for gut microbiota became available in recent years, DNA-Seq-based analyses
prevail in microbiota research. I can only speculate why this is the case, given my
experience throughout my Ph.D.

For rRNA marker-gene studies, RNA-Seq would indeed make little sense. The rate at
which rRNA molecules are expressed by microbiota is highly variable and rarely of
interest. It thus makes sense that DNA-Seq has become the de facto standard for SSU, LSU,
and ITS amplicon-sequencing studies.

But for studies on the genes and genomes of organisms, we should reevaluate our goals.
The study of genomics of an organism starts with DNA-Seq to reconstruct the genomes of
isolates. This is common practice and useful to study the functional potential of microbes
(manuscripts II-VI). But once high-quality genomes are available, transcriptomes (and
proteomes) are of gain greater interest because they give us more information about the
actual processes happening within the organism (manuscript I, III). One key issue in my
studies was the (expected) discrepancy between RNA-derived reads and reference genomes
due to post-transcriptional modifications. While a few mismatches between sequences can
be handled with non-redundant reference genomes (as in manuscript I), this is not the case
when the reference describes hundreds of species or millions of reference genes. In my
studies (manuscript IIT), including unpublished pilot studies, metatranscriptome accuracy
was accurate only at the gene family level but had limited accuracy for species-level
deconvolution. Still, metatranscriptome studies may gain popularity with the use of 3™
generation sequencing technology. The ability to quantify entire transcripts may improve
the resolution problem in the near future.

Perspectives - 3rd generation sequencing to improve amplicon-based studies

31 generation sequencing machines offer the sequencing of much longer DNA fragments
of up to 150kb length but at the cost of increased sequencing errors. Long-read sequencing
was predominantly used for improved reconstruction of genomes. However, advancements
in error control are making this technology suitable for meta-barcoding, paving the way for

L https://www.illumina.com/documents/products/whitepapers/whitepaper datacompression.pdf
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full-length amplicon sequencing studies. Single-molecule real-time (SMRT) sequencing
(PacBio) can sequence 13kb fragments with 99.8% accuracy, almost matching the quality
of SGS with much greater reads lengths [88]. This applies to all types of rRNA gene
amplicons, including 16S (bacteria), 18S (eukaryotes), and full size ITS (eukaryotes), all
of which are less than 5kb long. Hence, it is becoming a suitable technology for whole
metagenomic sequencing. This notwithstanding, the analysis of long reads with existing
gene catalog approaches will require substantial changes in read quantification procedures.
For example, algorithms need to handle (a) differences in lengths between consensus genes
and query reads and (b) greater numbers of mismatches. But if successful, it will
significantly improve the accuracy and resolution of gene abundance and species estimates.

Perspectives - Microbial Spike-in to estimate the microbial load

The fact that sequencing depth cannot give us meaningful information about samples
densities and cell counts creates a considerable problem in studies using samples with
largely varying microbial loads [152]. This especially includes studies with low biomass
samples (tissue metagenomics, lung microbiome, skin) and studies using microbe-targeting
drugs (e.g., antimicrobials) in which the microbial population density changes between pre-
and post-treatment sampling points. One solution involves estimating bacterial load using
qPCR of 16S genes [213]. While it is one of the simplest solutions, it has several drawbacks.
In a complex ecosystem, qPCR is argued to introduce bias through the extraction,
purification, and amplification of DNA, as well as variation in the 16S rRNA copy numbers
and replication rates [214]. Furthermore, only one kingdom can be quantified in one
process. Directly counting cells using flow cytometry is another option [214] but requires
sufficient left-over material because cells used in this process cannot be used for
sequencing. Ideally, cell count or density estimations are tied with the quantification of
microbes. One emerging concept is the spiking of a fixed number of bacterial (or
fungal) cells from one or more species that aren’t present in the samples. After sequencing,
the proportion of spike-in bacteria can be compared to their expected numbers to derive a
reasonable estimate of the total number of cells sequenced from the sample. Each spiked-
in bacterium serves as internal control — cell number estimates derived from either
bacterium should be similar or indicate extraction bias otherwise. The latter is important
because spike-in methods are still evolving, and some work from 2018 found striking
differences in estimated cell numbers depending on the spike-in kit [213]. This should not
discourage the use of this technology: it merely implies that experienced companies should
do spike-ins until robust protocols are established.

Perspectives - Spatial-aware Microbiome

While stool samples are a non-invasive and accessible medium to characterize gut
microbiota, they are not the best to capture gut microbiota. Due to the nature of our
digestive tract, stool samples represent a mixture of microbiota from different parts of the
gut. In addition, many disease-related differences (e.g., those related to bile acid
metabolism) start in the upper parts of the GI, such as the small intestine. These differences
are unlikely to be captured by stool samples due to (a) a much smaller number of microbes
compared to distal parts and (b) all the metabolic processing that occurs in the stool on the
way through the GI. In addition, differences in stool consistency can lead to profound
differences in the extracted material and potentially misleading conclusions about their
microbiota.

One solution could be using small, programmable, collecting devices that are given to
study subjects in pill form. One such technology is IntelliCap© which can take a small
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sample of intestinal content when exposed to a well-defined combination of factors,
including heat, pH, or reaching a specific position [215]. Such a device could substantially
improve the way we study gut microbiota in vivo. While uncommon, I expect several
devices to reach the market and academia in the following years.

Concluding Remark

In this thesis, several hypotheses on microbial interactions with themselves and the host
were generated using next-generation sequencing technology that may serve as a basis for
future experimental studies. Both RNA-Seq and metagenomic pipelines can be used to
study microbial communication across varying scales. In the future, I expect a shift towards
3 generation sequencing, advanced tissue models, and RNA-based microbiome studies,
all of which are fascinating technologies to develop, use, and improve.
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