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1 | Introduction

If we look through a telescope at the stars, we see their magnified ancient light. This magnifica-
tion is one of the many technological achievements enabled by the lens – a piece of glass shaped
so that it refracts light to do our bidding. Depending on their surface curvature, lenses can
converge or diverge light and in combination create something like a Galilean telescope [1]. How
does this happen? After all, glass is transparent – but not as transparent as air or vacuum. The
molecules comprising glass interact with the electromagnetic waves which we perceive as visible
light. They respond to it differently then the surrounding air molecules [2]. This gives rise to
optical effects such as dispersion and refraction. Whereas dispersion is a result of frequency
dependent propagation through a material, refraction arises from the discontinuity between two
different materials [1]. Dispersion is the physical mechanism that ”spreads” light into different
colors or frequencies. Refraction enforces the continuity of electromagnetic fields at an interface
depending on the angle of incidence, while changing the propagation direction in the adjacent
medium according to Snell’s law [1]. It is extraordinary that we can manipulate these effects
just by changing the type and geometry of the material in the path of light, like in the Galilean
telescope, and thereby manipulate its properties to our advantage.

While optics is the physics of light as a whole, the mechanization of light for technological
applications is called photonics [3]. This, clearly, necessitates a precise understanding of light-
matter interaction [4]. For classical materials such as glasses or metals macroscopic models are
sufficient. This relates to the macroscopic treatment of the electromagnetic fields interacting
with a medium. While we can characterize solids by their electronic band structure and the
presence of acoustic effects like phonons, treating the microscopic interaction of light with
the vast ensemble of atoms and molecules would be rather unpractical [1, 4]. As long as we
can model the macroscopic interaction of the ensemble homogeneously, the field interaction
can be reduced to a scalar or tensorial factor, encompassing isotropic or anisotropic media,
respectively [1, 5].

This thesis describes the propagation of light through stacked metasurfaces – layered, nano-
structured media with generally microscopic field interactions. In order to treat these correctly,
we need to adhere to strict physical principles, which are not immediately obvious [6].
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4 CHAPTER 1. INTRODUCTION

Artificial optical materials Traditionally, chemistry grants us engineering access to ma-
terial properties of optical media. Atomic or molecular orbitals vary the availability of bound
and free electrons, therefore resulting in varied band structures [7, 8]. Emerging frequency de-
pendent charge displacements and induced currents produce polarization fields that respond to
the presence of changing electromagnetic fields. This entire concept is contingent upon macro-
scopic field relations and averaged microscopic interactions [9–11]. Indeed, we can easily find
frequency ranges where most solid materials become transparent and chemical attributes are of
little consequence. Radar and radio waves, for example, can be several centimeters to kilome-
ters long. Here, large scale charge distributions like the earths ionosphere or interstellar clouds
possess the necessary scale for macroscopic field interaction to take effect [12,13]. On the other
hand, artificial structures like antennas at about half-wavelength scale permit induced currents
that produce a field response as well. Could we engineer an artificial radar or radio ”material”
based on an arrangement of antennas?

If we arrange several antennas in a periodic grid their combined dipolar response [14] mimics
that of oscillating atomic or molecular dipoles in the Lorentz model of optical media [4, 15].
As such, exciting the antenna array in its resonance band would make it highly reflective [16].
Similarly, we could imagine a sheet of metal with periodically arranged slots – inverted antennas.
Whereas dipole-antennas would serve as a transmission band-stop filter in resonance, the slot
array operates as a band-pass filter [14,17]. This concept of an artificial electromagnetic material
is fittingly called frequency selective surface (FSS) [14]. In the past, FSS have been explored
quite extensively [16–20] with research still ongoing [21–24].

Could we transfer the FSS concept to visible or infrared wavelengths as well? Certainly,
there are limits to the classical approach of optical design that would benefit from artificial
materials [25]. For instance, miniaturization and multifunctionalization [26–29] are prime tar-
gets in the continued development of photonics [30]. This idea of artificially enhanced optical
materials was pioneered by John Pendry [31, 32]. Inspired by the work of Viktor Vese-
lago [33], Pendry calculated the properties of a lens with negative refractive index. The
resultant lens showed perfect imaging qualities [34]. Pendry suggested the plasmonic behav-
ior [35] of implanted metallic inclusions as the perpetrators of the necessary negative index of
refraction. This launched an area of research into what is now known as metamaterials [36].
Very similar to the engineering of antennas and circuits for FSS [37], metamaterials are cen-
tered around the design of nanoscopic inclusions in a medium. By designing the multipolar
microscopic response of micro- or nano-structures in a given arrangement, macroscopic field
effects can be engineered [38–44].

But we are faced with a dilemma. Precise taxonomy is required in order to properly explain
the physics of these artificial optical materials [36]. Here, our use of the word material is
somewhat vague. Classically, optical material in photonics means a solid composed of bound
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chemical elements, being anywhere between crystalline and amorphous [4, 45]. If we use the
prefix meta, we imply some new type of material beyond what is naturally possible. However,
as Ari Sihvola pointed out [36], this is not exactly true. All metamaterials are based on
naturally occurring materials [28, 30, 46–50] and the physics governing classical field-matter
interactions are always legislated by Maxwell’s equations [38–43].1 Instead, metamaterial could
emphasize artificial materials. Of course, this is problematic in its own right because most
technically applied materials are human made and, thus, artificial.

Looking back at FSS the structured components are key. A simplistic definition of this was
given by Sergei Tretyakov, defining a metamaterial as “[...] an arrangement of artificial
structural elements, designed to achieve advantageous and unusual electromagnetic properties
[...].” [51]. Similarly, Tretyakov defined a metasurface as an ”optically thin layer [...] formed
by engineered meta-atoms,” [51] where the word meta-atoms is another terminology for artificial
structural elements. In both cases an engineering goal is implied in the definition, circumventing
the physical definition of a material. Why is that important? As motivated at the beginning,
the use of optical materials is that of manipulating light, which necessitates control over certain
physical parameters.

An understanding of metamaterials requires a sound physical concept of wave propagation
inside a bulk metamaterial or through a metasurface. For optical physics this means finding a
refractive index n for modes propagating in the medium. This in turn necessitates a permittivity
ε that can be extracted from the medium. However, all metamaterials are composites of
some arrangement of particles (or structures) that are embedded in a homogeneous material
matrix [10, 28, 30, 50]. Naively, it could be argued that one could find an effective material
parameter like εeff with a resulting effective refractive index neff leading, for instance, to the
desired negative refractive index suggested by Pendry [52–55]. This is, unfortunately, not
always the case [56–60]

A historical perspective Historically, effective parameters in optical materials are con-
nected to the concept of homogenization. The underlying question was first discussed at the
beginning of the 20th century, asking whether a medium could be considered homogeneous de-
spite thermal molecular motion within the medium [61]. Here, the term “homogeneous” implies
that wave propagation through the medium is described by a homogeneous wave equation.

At that time, a long dispute was fought around the scattering of light and dissipation of
energy in homogeneous media between Max Planck [62] and Leonid Mandelstam [63].
It eventually led to the conclusion that light scattering in a homogeneous medium depends on
the uniformity of the distribution of oscillators in it [5] - or as H. A. Lorentz put it in 1910:

1Here, we delibrately exclude quantum optical phenomena because this work deals with purely classical field
theory.
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“[...] scattering can only take place when the molecules are irregularly distributed, as they are
in gases and liquids; in a body whose molecules have a regular geometrical arrangement, a beam
of light is propagated without any diminution of its intensity.” [5]

Keeping Lorentz’s quote in mind, we have to ask what homogeneity means for metamate-
rials. The structures of most metamaterials are regularly arranged [64,65], comprising periodic
arrays [66], quasi-crystalline or disordered configurations [67–69], as well as patterns resembling
lenses and holograms [70–75]. So, following Lorentz’s argument, one could reason that these
metamaterials should, on average, behave homogeneously. However, in the same manuscript
Lorentz also pointed out that “[...] a consideration of the resistances2 will be incomplete if
one does not keep in view the mutual action between the molecules.” [5].

If the distances between structures in a medium become small with respect to their indi-
vidual size, it is easy to imagine that field interactions between the structures quickly become
relevant. Indeed, Lord Rayleigh already identified the issue in 1892 [76], where he discussed
the properties of media interspersed with cylinders or spheres in a rectangular lattice. By
deriving approximations for the medium’s refractive index and conductivity (both heat and
electric) he found a connection between the properties of the microscopic inclusions and the
macroscopic medium. In essence, his treatise was one of the first approaches to finding effective
parameters and thereby homogenizing a structured medium [9].

With the emergence of optical metamaterials about 100 years later, the treatment of ho-
mogeneity was, in a sense, reversed. Instead of starting from a microscopic level and deriving
the macroscopic properties, like Lorentz and Rayleigh did, material parameters were re-
trieved from macroscopic responses [58–60, 77–79]. The basic procedure entailed measurement
(numerical or experimental) of the Fresnel transmission and reflection coefficients (or S param-
eters) [77, 77]. By inverting Fresnel equations the effective refractive index of the medium was
retrieved and transformed into the material’s effective permittivity by virtue of the dispersion
relation of an homogeneous medium [52–54].

However, Konstantin Simovski formally showed that many of the retrieved parame-
ters [52–55] were physically meaningless [80], although mathematically correct. Reflecting the
discussion at the beginning of the 20th century and, especially, Lorentz’s point on the impor-
tance of ”mutual action between the molecules” [5], structural properties of the metamaterial as
well as the frequency band operated in are key to unlocking meaning behind effective parame-
ters. Otherwise metamaterials can not be treated as homogeneous media.

In summary, metamaterials only present effective physical materials if they are homoge-
neous. Recalling our previous perspective on taxonomy, we have to differentiate between engi-
neering artificial structures for specific effects and designing materials with targeted parameters.

2Resistance in this context is equivalent to the impedance a field experiences when propagating through the
medium. Scholars at the time sometimes even used the term ”field friction” [61].



7

Properties and capabilities of metasurfaces In this work we follow Tretyakov’s defi-
nition of metasurfaces [51] and treat thin layers with laterally arranged nano-structures. These
promise flat designer photonics for a large diversity of applications [81–87]. As motivated
in the very first paragraph the main objective is that of light manipulation including phase,
polarization, and amplitude as well as dispersion control [65,88–91]. Furthermore, for applica-
tions in non-linear and quantum optics metasurfaces can achieve precisely engineered photon
states [92–95]. Similarly, modern sensor development benefits from the miniaturization gained
from nano-photonic multi- and hyperspectral filters [71, 96–102]. Arranging meta-atoms con-
centrically produces a phase profile comparative to that of a lens [70,74,75]. Here, the modern
paradigm shifted from designing material parameters for a perfect lens to engineered wave-
fronts [103–105].

There are even cases where structural design and the right assortment of materials expand
the boundary of known optical effects. A quite prominent and recent example are so-called
bound states in the continuum [106–109]. They are non-radiative modes, i.e. eigen-solutions
of the material, that exist in a continuum of radiative modes. They are a direct result of
structurally engineered dispersion that creates the right interference conditions so that a small
subset of the radiative modes vanishes [109, 110].

Of particular interest is the design of anisotropy. Classical anisotropic media are crystalline
materials such as sapphire, diamond or lithium niobate [111, 112], leading to the well-known
effect of birefringence or double-refraction [1, 4]. Anisotropy also creates changes in the ori-
entation and oscillation direction of the electromagnetic field vector, known as polarization.
Similarly, the structural symmetry of metasurfaces can be broken to achieve different kinds of
polarization [113–115]. The symmetry class and orientation of meta-atoms produce tensorial
field interactions that can lead to effects such as dichroism [116, 117] and in combination with
strong near-field effects optical activity [118, 119]. Dichroism of linearly or circularly polarized
light describes a different response for different incident polarization. Optical activity, on the
other hand, rotates the input polarization.

A very special case of asymmetry is that of chirality. Originating from ancient greek, chiral
means handed, which refers to the mirror-asymmetry of the human hand. It is impossible to map
one hand onto to the other by any rotation, although both hands look very much alike. The same
asymmetry can be created in meta-atoms [120]. First and foremost, all meta-atoms of a chiral
metasurface have to be mirror asymmetric. If that is the case, they will exhibit both polarization
rotation and magneto-electric coupling [120]. The latter describes an interdependence of the
electric and magnetic field, created by the anisotropy. Materials with this property are also
called bi-anisotropic.3 Many examples of bi-anisotropic and chiral metasurfaces involve three-
dimensional meta-atoms [121–124], which are laterally arranged on a thin sheet and intrinsically,

3There are also bi-isotropic materials [36] but we will exclude them here for brevity.
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geometrically chiral [125]. A prominent example of an intrinsically chiral structure is the
helix [85,126]. Concerning fabrication, it seems obvious that such intricate structures are much
more challenging to realize than, say, planar structures with only a two-dimensional in-plane
asymmetry [127]. One alternative are asymmetric split ring resonators [114, 128, 129], which
extrinsically create chiral effects through symmetry broken near-field interactions [130–132].
Nevertheless, the small gaps required for the split rings make them, still, rather unpractical to
fabricate at the scale of optical wavelengths. Recently, it was demonstrated that optical chirality
can be accomplished with planar nano-structures by using multiple types of meta-atoms in one
unit cell [133].

We can find yet another route towards bi-anisotropy by using planar nano-structures sand-
wiched as strongly coupled bi-layers [115, 134–136]. Here, one uses simple geometries such as
wires (i.e. antennas) or crosses which are then rotated with respect to each other in two very
close layers [137–139]. This creates the conditions for the polarization of an incident field to be
broken by the enhancement of the geometrical asymmetry through near-field coupling [140,141].
This, however, requires perfect alignment of the individual meta-atoms of each layer.

Layer alignment is an easily underestimated fabrication challenge that could be avoided by
increasing the distance between layers, albeit weakening the near-field coupling. Interestingly,
as Zhao et al. showed [142,143], one can achieve a chiral polarization response in the absence
of near-field coupling by combining multiple layers of successively rotated nano-wires. Whereas
each individual layer is achiral, the concert of repeated rotations twists light just like a helix
would. We call this process of combining multiple individual metasurfaces stacking.

Stacked metasurfaces Although few, there are other examples of stacked metasurfaces be-
side Zhao’s twisted metasurfaces [142] in the literature [144]. Recent studies demonstrated
how stacking can combine properties of individual metasurfaces and retain their separate char-
acteristics [145–151], rather than merging them into a complex amalgamation [140,141]. Here,
the lack of strong near-field effects is compensated for by simplified design in a multiplicative
fashion, while benefiting from less demanding fabrication. An exceptional example of this is
the multi-wavelength meta-lens design proposed by Zhou et al. [74]. Taking three meta-lenses
comprised of concentric rings of dielectric cylinders, each was designed to process the light of
the one before. Because they avoided near-field coupling, the meta-lenses could be constructed
as individual elements based solely on the input provided by incident far-fields.

Meta-lensing is an example of complex stack configurations. In principle, the category of
stacked metasurfaces also includes combinations with homogeneous dielectric layers, such as
nano-structures embedded in Fabry-Pérot cavities. Here, Fabry-Pérot resonances [152] are
enhanced by the presence of a metasurface sandwiched between two mirrors, e.g. Bragg-
reflectors [153].
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The scheme of stacking individual metasurfaces relies on an understanding of inter-layer in-
teractions, which are controlled by the thickness of the spacer layer separating the metasurfaces.
Rigorous simulations of the fields surrounding the involved structures can show which type of
coupling occurs [74,147,154]. However, the results are always case-dependent and full numerical
treatment is needed for each stacked metasurface design. If we look at periodic metasurfaces,
there is a possible generalization regarding homogeneity. Basically, we can categorize inter-
layer coupling into three mechanisms: evanescent coupling, diffractive coupling and far-field
coupling. Evanescent fields resemble what we previously called near-fields [155]. In periodic
arrays of meta-atoms they incorporate non-propagating diffraction orders. These will start to
propagate if the propagation constant of the respective modes becomes real-valued [145, 156],
transitioning to diffractive coupling. To avoid this, periods have to be kept smaller than the
wavelength of incident light, which also limits the size of nano-structures comprising the unit
cells [11,145]. If higher diffraction orders are non-existent and evanescent coupling is negligible,
far-field coupling dominates. Then, each individual metasurface operates like a homogeneous
interface for all modes in the far-field regime [58,156–158]. Borrowing from the terminology of
photonic crystals these modes are called fundamental modes [159–162]. Assuming the sufficient
decay of evanescent fields the reduction to only the fundamental mode is fittingly called the
fundamental mode approximation (FMA) [145, 156].

Parametric blind spots As a prerequisite and touchstone for semi-analytic modeling, simu-
lations of individual metasurfaces can be computationally demanding tasks. Parameterization
of the geometries, materials, and scale of metasurfaces creates parameter spaces that grow
quickly in dimension and combinatoric possibility [163–165]. This can be beneficial as it in-
creases the chances of finding a parameter combination that would suit a targeted applica-
tion [166–169]. Application driven metasurfaces for color filtering [83,101,170] and polarization
manipulation [142, 171, 172] are immediate examples of this. Weighing the achievable degrees
of freedom against parameter space complexity [165], we can reach limits where searches for
optimal parameter combinations lead to non-intuitive solutions [164, 173, 174]. For very high-
dimensional problems it becomes necessary to employ optimization algorithms [164, 165, 168]
or train suitable neural networks [105, 175–178].

Each approach has its place in nano-photonic research. Regardless of the method, we
can identify a utilitarian simplification in the concept of stacking. Indeed, stacking multiple
metasurfaces naturally increases the degrees of freedom with each added layer [74,147,179–181].
Then, parameter spaces of individual layers could be optimized independently with the target
functionality of the stack as a boundary condition. Considering periodic metasurfaces, physical
limits are presented by the FMA [146, 148, 151]. On the other hand, computational bounds
arise from the period ratios of metasurfaces’ lattices. Unequal periods will necessitate super-
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cell simulations that incorporate the smallest common period multiple of each layer [145]. The
most extreme case of this are incommensurable period ratios, i.e. non-rational ratios. These
produce infinitely large super-cells, making rigorous simulations impossible. Obviously, large
rational ratios and those close to incommensurability present computational challenges as well.
This presents a so far unresolved parametric blind spot in stacked metasurfaces design.

Scope of this thesis This thesis expands upon the body of work on stacked metasurfaces
by offering a thus far unexplored but highly promising approach to semi-analytic modeling of
such systems. It is centered around the FMA as its theoretical foundation. Therefore, the
FMA’s validity for stacked metasurfaces is a prime target of our investigation. Moreover, it
is not entirely certain at what spacer thickness two metasurfaces will sufficiently transition
to the far-field regime necessary for the FMA. Consequently, it is a task of this thesis to
derive a critical stacking distance at which the FMA holds true for different stacks [145].
Awareness of these validity conditions will allow us to judge the homogeneity of metasurfaces
and formally distinguish stacked metasurfaces from bulk metamaterials. This conceptual divide
will provide precise taxonomy, leading to methodical physical interpretations beyond brute force
numerics. Resting on this framework is the main objective of this thesis: to develop, verify, and
experimentally apply a semi-analytic model of stacked metasurfaces, based on the principles of
the FMA, while expanding on its applicability.

If we look at chiral metasurface stacks like the one demonstrated by Zhao et al. [142,143], we
can identify subtle questions concerning anisotropy and stacking. How is it, that chiral asymme-
try emerges from achiral components in the absence of near-field coupling? If the layers are inde-
pendent of each other, does their relative distance influence the total asymmetry? Potentially,
these questions could be answered using semi-analytic models based on the FMA. However, we
need to investigate how and to what extent such models can provide sufficient information to
produce reliable answers. This entails describing the relation between stacking and the symme-
try of electromagnetic fields [146]. More generally, we ought to consider the period of metasur-
faces and their combined ratios in stacks. It is particularly important to inquire about ratios
that present boundaries to the semi-analytic treatment. This includes the question whether in-
commensurable ratios in metasurface stacks can be realized numerically or experimentally [151].

For a full grasp of transmitted and reflected fundamental modes, including their polariza-
tion, we aim to employ a scattering matrix (S-matrix) formalism [145, 182]. S-matrices can be
considered a class of matrix methods in optics, that treats the propagation of light through var-
ious media algebraically [152,179,183–186]. Comparable methods include the adapted transfer
matrix formalism by Berkhout and Koenderink [149, 150]. Furthermore, rigorous Jones
calculus [187, 188] was shown to be equivalent to the S-matrix formalism [189–191], albeit less
mathematically compact. Particularly, the PhD thesis by Xavier Romain [192] theoreti-



11

cally demonstrated an extended Jones matrix calculus that regarded the presence of evanescent
fields. Here, we aim to incorporate FMA principles into an S-matrix formalism to develop a
semi-analytic modeling approach that is applicable to a variety of periodic metasurfaces and
is transferable to experimental results. Finally, we aim to expand upon the model’s analytical
potential by investigating inter-layer interaction processes which are unresolvable in rigorous
numerical simulations [148].

Thesis structure We will introduce the reader to theoretical concepts most necessary for this
thesis in chapter 2. Here, we emphasize on fundamental physical ideas and derive conventions
and notation used throughout this work. Additionally, we will briefly introduce the Fourier
modal method (FMM) in sec. 2.4 as our simulation method of choice.

The first half of chapter 3 presents an extension to theory chapter 2 and will derive the FMA
based on plane wave and Bloch mode expansions, which ties directly into the ideas behind the
FMM. Furthermore, the second half of chapter 3, starting with sec. 3.3, is committed to the
proper conceptualization of metasurface stacks and validity conditions for the FMA. These will
be applied directly in chapter 4, where we derive an FMA-based scattering matrix formalism
which leads to a semi-analytic stacking algorithm (SASA) for arbitrary stacks of periodic meta-
surfaces. Then, sec. 4.2 will put SASA through a series of rigorous numerical tests, comparing to
full FMM-simulations as well as to a unique finite difference time domain (FDTD) calculation.

With SASA established, we apply it to design and analyze experimentally realized stacks
in chapter 5. First, we will employ SASA to explain the polarization response of a chiral meta-
surface stack (sec. 5.1). Then, we demonstrate the realization of a pseudo-incommensurable
metasurface stack, while analyzing FMA-validity in a sequence of comparable stacks, transi-
tioning between different coupling regimes (5.2). In the final research chapter 6 we draw a
comparison between mesoscopic electron transport and nano-optics, transferring the concept of
Feynman paths to stacked metasurfaces. Applying this to a specifically designed sample as well
as the previously realized stacks from chapter 5, we present a series expansion of interferometric
layer interactions.



2 | Theoretical and computational concepts

This chapter establishes necessary elements of electromagnetic theory underlying the theoretical
and numerical concepts in this thesis. It aims to give the reader a summary of basic equations,
notation schemes, and physical concepts on which later chapters are built upon. First, we will
introduce Maxwell’s equations in the frequency domain, which is the operational domain of
all models derived in this thesis. Then, we will describe light-matter interaction based on the
Drude-Lorentz model of optical materials. Furthermore, we will establish plane waves as
the basis of all our simulations. This includes a short discussion on the classical boundary
problem between two homogeneous media and an introduction of the Fresnel equations.

Being of great importance for later chapters, starting with chapter 4, we take a closer look
at vector field symmetry represented by different states of polarization. The main method of
describing the change of polarization will be Jones calculus, which ties in perfectly with this
thesis’ main algebraic tool: the scattering matrix (S-matrix). We will introduce the S-matrix as
a result of compact notation from the Fourier modal method (FMM). The FMM is a numerical
method for simulating nano-optical phenomena in periodic materials. Here, we introduce the
core concepts of the FMM as it will later be used mainly as a rigorous solver.

All concepts introduced in this chapter present a point of reference for derivations of the
semi-analytic approach presented in chapters 3 and 4.

2.1 Electrodynamics of continuous media

2.1.1 Electromagnetic fields in homogeneous media

The propagation of light in optical media involves the interaction of electromagnetic waves with
matter in a given frequency range. The relation between the charges and currents in a medium
and electromagnetic fields is governed by a set of field equations known as macroscopic Maxwell
equations [193, 194]. As both the fields and their electronic response are time dependent, the
rate at which interactions occur is determined by the angular frequency ω of the fields which are
present in a medium [4, 35]. For the coupled electric and magnetic fields at a point in space r,

12
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E(r, ω) and H(r, ω), we can write the macroscopic Maxwell equations in the frequency domain,

∇× E(r, ω) = iωB(r, ω), (2.1)
∇× H(r, ω) = j(r, ω)− iωD(r, ω), (2.2)
∇ · D(r, ω) = 0, (2.3)
∇ · B(r, ω) = 0. (2.4)

They are a set of eight coupled partial differential equations that form a relation between
E(r, ω) and H(r, ω) in the presence of the current density j(r, ω). Importantly, using macro-
scopic Maxwell’s equations implies an absence of external charges and, thus, a charge density
ρ(r, ω) = 0. The field equations can be interpreted as the current density influencing the prop-
agation of electromagnetic fields, while the fields themselves shape the current density during
the interaction. The effect of this mutual interaction inside a material is described by two
auxiliary fields, the electric flux density or displacement D(r, ω) and the magnetic flux density
or induction B(r, ω). They are related to E(r, ω) and H(r, ω) via the material equations,

D(r, ω) = ε0E(r, ω) + P(r, ω), (2.5)
B(r, ω) = µ0H(r, ω) + M(r, ω), (2.6)

where the constants ε0 and µ0 are called the vacuum permittivity and permeability, respectively.
When an electric field is present in matter, it perturbs the distribution of charges within and
produces a dipole polarization P(r, ω). Similarly, the presence of a magnetic field induces a
magnetization M(r, ω) [155]. However, for macroscopic optics, i.e. for continuous homogeneous
media in optical frequency ranges, M(r, ω) can be neglected. In this work, we consider light
in the visible (VIS), near-infrared (NIR), and up to the short wavelength infrared (SWIR)
regime, with wavelengths λlight ∈ [400 nm, 1800 nm]. For the corresponding frequencies νlight ∈
[167 THz, 750 THz] the displacement of electrons with an approximate velocity in the order of
ve ≈ O

(
106 m/s

)
[7] has a magnitude of ve/ω = ve/(2πνlight) ≈ O(10−10m). This is three orders

of magnitude smaller than the atomic scale ∼ O(10−7m). We can conclude that the induced
magnetic polarization M(r, ω) can be considered to be negligible with respect to the external
electromagnetic fields and, therefore, B(r, ω) = µ0H(r, ω) [155, 195].1

2.1.2 Description of optical materials

Above, we have only estimated the displacement of bound electrons in an arbitrary material
to gauge the scale of field-matter interactions. However, in order to properly calculate the

1At the moment of writing this thesis a very recent publication showed, for the first time, a naturally
occurring magnetic polarization in a multi-layered, crystalline semi-conductor [196].
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optical properties of a material we have to model its macroscopic electronic behavior. As a
preliminary step we need to categorically introduce the types of optical materials we could
encounter. These are, glasses, metals, semiconductors, crystalline insulators, molecular mate-
rials and doped glasses or insulators [4]. Relevant for this thesis are glass (fused silica) and
metals, i.e. the noble metal gold. Whereas metals posses both bound and free electrons, glasses
are dielectric and, thus, characterized by bound electrons only. The former are shiny and ab-
sorptive in the VIS, contrasting the latter which are transparent and without significant losses.
These properties can be influenced by different physical aspects, which include electronic bands,
vibrational bands, and the density of states [4].

For glasses and metals at optical wavelengths it is sufficient to model both bound and free
electrons as an ensemble of oscillating dipoles and current densities, respectively. Other effects,
emerging from the specific solid state physics of the medium, such as intraband transitions, can
be included in phenomenological constants [4]. Free electrons, which characterize many metals,
adhere to the Drude model [197], which describes the displacement s(r, ω) of electrons with
an effective mass me and elementary charge e using the (frequency domain) oscillator equation

ω2sf (r, ω) + iγfωsf (r, ω) =
e

mf,e
E(r, ω), (2.7)

where γ denotes the dampening rate and the subscript f the specific properties of free electrons.
Bound electrons, on the other hand, are characteristic to dielectrics and are described by the
Lorentz model [15], given by a driven harmonic oscillator with an additional restoring force
term,

ω2sb(r, ω) + iγbωsb(r, ω)− ω2
0sb(r, ω) =

e

mb,e
E(r, ω), (2.8)

where the subscript b denotes bound electrons. The restoring force is characterized by the
resonance frequency ω0. The characteristic of the free electron gas in the Drude model does
not require a restoring force and so there ω0 = 0 [4]. In both models the displacement is driven
by the external electric field E(r, ω).

The displacement of bound charges induces a dipole moment pb(r, ω) = −esb(r, ω). For
Nb bound electrons per unit volume it produces the electric polarization density Pb(r, ω) =

−Nbesb(r, ω). In contrast, a displacement of free charges produces, a conductive current density
jcond(r, ω) = iωNfes(r, ω), for Nf free electrons per unit cell. Solving eqs. (2.7) and (2.8) for
the displacement and inserting Pb(r, ω) and jcond gives us

jcond(r, ω) = i
Nfe

2

mf,e

ω

ω2 + iγfω
E(r, ω) and Pb(r, ω) =

ε0f

ω2
0 − ω2 − iγbω

E(r, ω). (2.9)

Here, we introduced the oscillator strength f = Nbe
2

ε0mb,e
. Phenomenologically, there can be

multiple oscillators in a material, each with a different strength, emerging from the specific
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solid state physics of the medium. The resulting polarization density is, thus, best described
by a sum of oscillators,

Pb(r, ω) =
∑
j

fj(
ω2
0,j − ω2 − iγjω

)E(r, ω) = χ(ω)E(r, ω), (2.10)

where each fj is a phenomenological constant. We can interpret eq. (2.10) as the susceptibility
of the medium χ(ω) producing the polarization field Pb(r, ω).

Likewise, the conduction current density jcond(r, ω) can be interpreted to emerge from the
surface conductivity σ, defined as

σ(ω) = i
ε0ωω

2
p

ω2 + iγfω
, with jcond(r, ω) = σ(ω)E(r, ω), (2.11)

introducing the plasma frequency ω2
p :=

Ne2

ε0mf,e

, representing the eigenfrequency of the free

electron gas charge density. As the conduction current density is representative of a temporal
variation of the polarization density of the free electron gas, we can substitute in the frequency
domain jcond(r, ω) = −iωPf (r, ω) in eq. (2.9) to get Pf (r, ω) = iσ(ω)ω−1E(r, ω).

If we assume that optical materials are generally characterized by the combined properties of
both bound and free electrons, their optical response is described by the joint Drude-Lorentz
model. This enables us to substitute the polarization density in the material equation (2.5)
with P(r, ω) = Pb(r, ω) + iω−1 jcond(r, ω), which results in

D(r, ω) =
(
ε0 +

∑
j

fj(
ω2
0,j − ω2 − iγjω

) − ε0ωp
ω2 + iγf

)
E(r, ω)

= ε0

(
1 + χ(ω) + i

σ(ω)

ω

)
E(r, ω) := ε0ε(ω)E(r, ω). (2.12)

The overall material property that produces the displacement D(r, ω) in the presence of E(r, ω)
is described by the complex valued relative permittivity ε(ω), as defined above. Examples for
gold and also glass are shown in appendix A.1. Any linear, homogeneous medium can be
fully characterized, at optical frequencies, by ε(ω). Hence, any discussion on optical material
properties needs to be lead by a well defined ε(ω). This will become important in the discussion
of effective material parameters in sec. 3.1.

Lastly, we can use the complex permittivity to define a complex refractive index for fields
propagating in the medium,

n(ω) = n′(ω) + in′′(ω) =
√
ε′(ω) + iε′′(ω). (2.13)
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Here, the imaginary part of the refractive index n′′ characterizes the field dampening due to
the dampening force of the material parameter ε(ω). Using the Poynting theorem it can be
shown that the imaginary part of ε(ω) relates to energy loss inside the medium [4, 155].

2.1.3 Plane waves

For the purpose of this thesis it is necessary to find propagating solutions of Maxwell’s equations.
Adhering to the material model described in the previous section, we use the constitutive
relations eqs. (2.11) and (2.12). Upon inserting Maxwell equation (2.2) into (2.1), we arrive at
a homogeneous wave equation for the electric field,

∇×∇× E(r, ω)− ω2

c2
ε(ω)E(r, ω) = 0, (2.14)

where c = (ε0µ0)
−1/2 defines the vacuum speed of light.

For brevity we will restrict ourselves to the electric field from now on, as the magnetic
field follows from Maxwell’s equations. Using the identity ∇ × ∇× = −∇2 + ∇ · ∇· and
recalling the absence of external charges, we can further simplify for homogeneous materials
with ∇·∇·E(r, ω) = 0. A transformation to the spatial frequency domain, i.e. k-space, yields
the eigenvalue equation (

−k2 +
ω2

c2
ε(ω)

)
E(k, ω) = 0. (2.15)

It relates the k-vector with the permittivity via the dispersion relation,

k2 =
ω2

c2
ε(ω). (2.16)

With this, a solution to the wave equation (2.14) is presented to us in the form of so-called
plane waves,

E(k, ω) = |E(k, ω)|ei(kr−ωt) = |E(k, ω)|ei(ϕ−ωt), (2.17)

where planes of equal (temporal) phase are perpendicular to the k-vector. The propagation
direction is given by k with E(k, ω) · k = 0. We will remain in k-space and the frequency
domain throughout this thesis. Therefore, we omit the dependencies of the field, E(k, ω) → E.
Furthermore, we will always assume a harmonic time dependence exp(−iωt) and quietly omit
it as well from now on.
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Figure 2.1: (a) Illustration of reflection and refraction (transmission) at an interface between
two media with refractive indices n1 and n2. The electric field is split into transverse electric
and transverse magnetic components, perpendicular and parallel to the plane of incidence. (b)
Definition of the medium of incident fields as the cladding and the medium of transmitted fields
as the substrate and their respective k-vectors.

2.2 Boundary conditions and energy flux

2.2.1 Plane waves at interfaces

So far, we have described the propagation of electromagnetic waves in a continuous homo-
geneous medium. If light passes from one medium to another, the field is presented with a
discontinuity at the interface between the media (fig. 2.1). Although the material parameters
may change abruptly, Maxwell’s equations demand continuity relations for fields at the bound-
ary. This is a well known problem in the classical theory of electrodynamics [198] that can be
solved using the integral representation of Maxwell’s equations.

Constructing a cylinder with faces parallel to the boundary surface between medium 1 and
2, we can apply the Gauss divergence theorem to the integral form of (2.3) and (2.4). As the
cylinder height approaches zero the integral reduces to the cylinder’s end surfaces, leading to

n · (D2 − D1) = ρ̃, and n · (B2 − B1) = 0, (2.18)

where the surface charge density ρ̃ vanishes in absence of surface charges, as is the usual case
in optics [155]. The vector n denotes the surface normal of the interface. In similar fashion
we can draw a rectangular contour with its long sides parallel to the boundary and apply
Stokes theorem to the integral form of eqs. (2.1) and (2.2) [198]. As the width of the rectangle
approaches zero the integral reduces to its long sides, leading to

n × (E2 − E1) = 0, and n × (H2 − H1) = j̃, (2.19)
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where the surface current density j̃ vanishes in the absence of sources.
In summary, at the boundary the longitudinal components of the D and B fields are con-

tinuous, whereas for the E and H fields the tangential components are continuous.
If a plane wave propagates at an arbitrary angle θ1 through an interface (fig. 2.1), parts of

it will be refracted at angle θ2 and other parts reflected by θ1, according to Snell’ law [152]. The
parts that are reflected or transmitted (refracted) follow from applying the boundary conditions
to the incident plane wave, which yields the well known Fresnel formulas [1]. If we define the
plane of incidence as the x-z-plane (fig. 2.1.a), the transversal components of the electric and
magnetic field become Ex, Ey and Hx, Hy. Placing the interface in the x-y-plane (z = 0) then
fixes the tangential components.

It is convenient to split the field vectors into components parallel and perpendicular to the
plane of incidence. The ones perpendicular to the plane of incidence, ETE = Eyey, we call
the transverse electric (TE) field vector, with the magnetic component HTE = Hxex + Hzez.2

Similarly, the vector ETM = Exex+Ezez lies parallel to the plane of incidence, while HTM = Hyey
is perpendicular. This component is thus called transverse magnetic (TM). The tangential
component of the electric field in TE and TM are then Ey and Ex.

Consider a plane wave incident from medium 1 with refractive index n1 and transmitted
into medium 2 with n2 (fig. 2.1.a). Demanding continuity at the interface the respective
transmitted and reflected components are related to the incident field by transmission and
reflection coefficients such that,

TTE =
Ey,T
Ey,in

, TTM =
Ex,T
Exin

and RTE =
Ey,R
Ey,in

, RTM =
Ex,R
Ex,in

. (2.20)

Following textbook derivations, these lead to the Fresnel formulas [1, 152],

TTM =
2n1 cos θ1

n1 cos θ2 + n2 cos θ1
RTM =

n1 cos θ2 − n2 cos θ1
n1 cos θ2 + n2 cos θ1

(2.21)

TTE =
2n1 cos θ1

n1 cos θ1 + n2 cos θ2
RTE =

n1 cos θ1 − n2 cos θ2
n1 cos θ1 + n2 cos θ2

. (2.22)

For normal incidence the difference between TE and TM vanishes and we simply get

T =
2n1

n1 + n2

and R =
n1 − n2

n1 + n2

. (2.23)

Throughout this thesis we use a strictly Cartesian coordinate system and always propagate
forward in positive z-direction. Regarding eq. (2.20), we will use a Cartesian nomenclature,
thus TTE → Ty, TTM → Tx, RTE → Ry, and RTM → Rx.

The medium from which a plane wave impinges at an interface will consistently be called
2Here, ex, ey, ez and are the Cartesian unit vectors
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the cladding and the medium in which it transmits the substrate. The k-vectors in these are
named accordingly, as defined in fig. 2.1.b).

2.2.2 Reflectance and transmittance

While we can describe how the electric field and the k-vector of a plane wave behave at an
interface, the question remains how much energy is transported from the incident field into
reflection and transmission. The direction of energy flux of an electromagnetic wave is given
by the Poynting vector S = E × H, orthogonal to the electromagnetic vector field [198]. As
optical frequencies are comparatively large (between 1014 and 1015 Hz) rapidly oscillating quan-
tities cannot be observed and measurements will always produce time averaged results. It is,
therefore, sensible to use the time average of the Poynting vector in the frequency domain [1],

⟨S⟩ = 1

2
Re(E × H∗), with H∗ =

1

2ωµ0

(k∗ × E∗). (2.24)

For a plane of incidence in the x-z-plane, as defined in fig. 2.1.b), the energy flux transmitted
through the interface at z = 0 and into the substrate follows as

⟨Ssubs⟩ez =
1

2ωµ0

Re(ksubs
z ) |ET |2 . (2.25)

Similarly, the energy flux in backward direction, i.e. negative z, into the cladding is given by

⟨Sclad⟩ez =
1

2ωµ0

kclad
z

(
|Ein|2 − |ER|2

)
. (2.26)

Here, we assume kclad
z to be real-valued because the plane wave, originating from infinity,

impinges within the cladding and would, otherwise, be completely absorbed. The total flux is
restrained by the law of energy conservation and, hence, bounded by the input flux. Thus, eqs.
(2.25) and (2.26) lead to

|Ein|2 = |ER|2 +
Re(ksubs

z )

kclad
z

|ET |2 . (2.27)

For perpendicular incidence, using ksubs
z = k0nsubs and kclad

z = k0nclad, we define

τ :=
Re(nsubs)

nclad

|ET |2

|Ein|2
and ρ :=

|ER|2

|Ein|2
(2.28)

as the transmittance and reflectance, respectively.3 These represent the transmitted and re-
flected intensities that would be measured by a detector. The case of oblique incidence involves
the continuity of the tangential k-vector components at the interface, which produces different

3Alternatively, these quantities are called transmissivity and reflectivity.
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energy flux in TE and TM. In Cartesian notation this leads to

τx,y =
Re
(√

n2
subs − n2

clad sin2 θ1

)
nclad cos θ1

|ET ;x,y|2 and ρx,y = |ER;x,y|2 (2.29)

If the interface represents itself a medium that is absorptive we can define the absorbtance αx,y
as the total intensity absorbed in the medium. Normalizing the input energy, the total energy
balance at the interface reads

1 = τx sin2 ψ + τy cos2 ψ + ρx sin2 ψ + ρy cos2 ψ + αx sin2 ψ + αy cos2 ψ, (2.30)

where ψ is the polarization angle of the field vector with respect to the TE component, i.e. Ey.

2.3 Polarized light

2.3.1 Polarization ellipse

If we define the propagation direction of light parallel to the z-axis, the plane waves’ property
E·k = 0 demands that the z-component of the electric field E vanishes. This leaves two complex
field components transversal to the propagation direction,

E =

Exe
iϕx

Eye
iϕy

0

 . (2.31)

Each component has an amplitude Ex,y and a phase ϕx,y. They are complex values who’s real
parts, E ′

x,y := Re(Ex,y) = Ex,y cosϕx,y describe an ellipse based on their relative phase shifts
and amplitudes [199], (

E ′
x

Ex

)2

+

(
E ′
y

Ey

)2

− 2
E ′
x

Ex

E ′
y

Ey
cos δ = sin2 δ, (2.32)

where δ = ϕx − ϕy is the relative phase shift. As the field propagates, E ′
x and E ′

y produce a
resultant vector that describes the evolution of the optical field at any instant of time. This
behavior is known as polarization. The corresponding ellipse is thus called polarization ellipse
and its shape and orientation define the state of polarization of the optical field.

Generally, light is elliptically polarized. Certain parameter combinations produce special
kinds of polarization. If either E ′

x = 0 or E ′
y = 0 the ellipse reduces to a line parallel to the x-

or y-axis along which the field then oscillates. This we call linear x- or y-polarization. Linearly
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polarized light is also created for phase shifts δ = 0 and δ = π. In that case(
E ′
x

Ex
±
E ′
y

Ey

)2

= 0, (2.33)

where the sign depends on δ. This represents a line rotated about the coordinate center de-
pending on the ratio of Ex and Ey.

Another extreme of the ellipse is the circle. For equal amplitudes Ex = Ey a phase shift of
δ = ±π/2 produce what is called left or right circularly polarized light.4 In this case, the field
vector draws a circle as it propagates rotating in one or the other direction. Interestingly, this
implies a handedness of the symmetry of electric field. Borrowing from the Greek language this
property is called chirality. The word suggest a broken symmetry, such as for the human hand,
which cannot be mapped back onto itself by a mirror operation in any plane [120]. Henceforth,
light with this symmetry property will be called chiral light. In that regard, also elliptically
polarized light fulfills the criteria for chirality.

2.3.2 Jones matrix calculus and symmetry

Based on our understanding of the polarization ellipse we can formalize the treatment of po-
larized light using Jones calculus [187]. For propagation in z-direction we reduce the three-
dimensional electric field to only its transversal components, which we call the Jones vector,

E =

(
Tx

Ty

)
=

(
Exe

iϕx

Eye
iϕy

)
. (2.34)

In some cases the Jones vector is denoted by the symbol J. In our case it will be more convenient
to simply redefine E as the Jones vector, as it will be used frequently throughout this thesis.
The complex coefficients Tx,y are composed of the real-valued amplitudes Ex,y and complex
phases exp(iϕx,y) of the transversal electric field components.5 The norm of the Jones vector,

|E| = E† · E = (T ∗
x , T

∗
y ) ·

(
Tx

Ty

)
, (2.35)

gives the total intensity of the electric field and is by definition set to |E| = 1 [199], where
superscripts † and ∗ denote the complex transpose and complex conjugate. To give a few

4Other naming conventions are clockwise or counterclockwise and plus or minus circularly polarized light
5Note that we stay consistent in our notation regarding Fresnel equations. At the interface of an isotropic

medium Tx and Ty take the form of Fresnel equation.
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examples, the Jones vectors for linearly and circularly polarized light read as

Elin,x =

(
1

0

)
, Elin,y =

(
0

1

)
, and Ecirc,R =

1√
2

(
1

i

)
, Ecirc,L =

1√
2

(
1

−i

)
, (2.36)

which are precisely the (complex) field components resulting from the parameterization of the
polarization ellipse (2.32).

The norm is, furthermore, motivated by the fact that E is usually taken as an input field
vector interacting with a polarizing medium. Such is the case for anisotropic materials with
tensorial material parameters. Generally, this would entail solving the wave equation (2.15) with
a permittivity tensor. Nevertheless, if we assume a plane wave emerging from an anisotropic,
polarizing medium the Cartesian field components will, to some degree, mingle,

E =

(
TxxTx,0 + TxyTy,0

TyxTx,0 + TyyTy,0

)
=

(
Txx Txy

Tyx Tyy

)(
Tx,0

Ty,0

)
= T̂E0, (2.37)

where E0 is the input Jones vector. The 2×2 matrix T̂ is called the Jones matrix and its complex
coefficients Tij, with i, j = x, y describe the coupling between the Cartesian components.6 For
instance, the contributing factor of Ty,0 to the new Tx is given by Txy. This we call cross-
polarization. The coupling in the same coordinate Txx we call co-polarization.

To give two examples, the Jones matrix of a linear y-polarizer and a circular polarizer read

T̂lin,y =

(
0 0

0 1

)
, and T̂circ,L =

(
1 1

i −i

)
. (2.38)

The latter transforms x- or y-polarized light into right- and left-handed circularly polarized
light [200]. Generally speaking, a Jones matrix describes the effect of transmission through a
polarizing medium and can, therefore, be called a transmission matrix, which will be common
place throughout this thesis. Note that from here on we will always assume linearly polarized
light to be impinging in a medium.

We can discern polarization symmetry of a material by looking at it from positive and
negative z-direction‚ which we call front and back and the light incident from one of these
sides forward or backward propagating, respectively. Taking the complex norm of E in forward
direction and subtracting it from its backward counterpart leads to

∆x = |T fxx|2 + |T fxy|2 − |T bxx|2 − |T bxy|2, (2.39)

where superscripts f and b denote forward and backward direction. Since optical materials

6In this work all quantities with hat denote 2× 2 matrices.
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are usually reciprocal [201], the forward and backward co-polarization Jones matrix coefficients
have to be identical. Thus, (2.39) reduces to [200]

∆x = |T fxy|2 − |T bxy|2 = |T fxy|2 − |T fyx|2. (2.40)

The quantity ∆x = ∆y is called asymmetric transmission [89]. A non-zero ∆x means there
is an unequal transfer between x- and y-polarization that hints at a distortion from a linear
polarization ellipse to elliptical or circular states. As we mentioned before, this is an indicator
for chirality. Therefore, an anisotropic material described by such a Jones matrix must have,
at least partially, a chiral asymmetry [89, 146].

To characterize how the state of polarization changes after propagation through the medium
we can analyze the shape of the polarization ellipse via its ellipticity ϵ. For incident x-
polarization (analogously for y-polarization) ϵx is defined as the ratio of the major and minor
half axis of the polarization ellipse produced by multiplication with the Jones matrix,

ϵx =
2|T fxx||T fyx|

|T fxx|2 + |T fyx|2
sin δx, (2.41)

where δx = arg(Txx)−arg(Tyx) is the phase difference between the elements of the outgoing field.
If ϵ is equal to ±1 we have circular polarization and if it goes to 0 we get linear polarization.

2.4 Elements of the Fourier modal method

Thus far, we have derived plane waves in a continuously homogeneous medium and established
boundary conditions at an interface to a different homogeneous medium. Now, we confront the
case of a distribution of discontinuities. This could mean a multilayered system with a series
of consecutive interfaces [152,202,203]. Moreover, what if an interface itself is discontinuous in
the transversal plane? Facing these questions is paramount if we wish to successfully simulate
the optical properties of structured media, such as nano-scale metasurfaces [204–206]. To limit
the range of possibilities, we will concentrate on transversely periodic structures of limited
height, where the periodically repeating discontinuities are themselves homogeneous materials.
Our task is to describe the interaction of an incident plane wave with a periodically structured
interface and derive the resulting reflected and transmitted fields. Such periodic, computational
problems are ideally solved with the well established Fourier modal method (FMM) [182,207–
211,211–217].

The theoretical foundation of the FMM is essentially based on the works by Eero Noponen
and Jari Turunen [218] and Lifeng Li [182, 207–210]. To attempt a full derivation of
the method would require a chapter in its own right. A comprehensive description of the
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Figure 2.2: (a) Coordinate system of the FMM defining the azimuthal angle θ, polar angle
ϕ, and polarization angle ψ of the incident field vector k0, with k∥ =

√
k2x,0 + k2y,0. (b) Sketch

of a periodic layer with periods Λx and Λy and height h.

FMM can be found in the book Fourier Modal Method and Its Applications in Computational
Nanophotonics by Kim, Park, and Lee [219]. Here, we are going to introduce only the essential
ideas and equations necessary to understand the simulations presented in later chapters.

2.4.1 Fourier modal expansion

The FMM transforms the differential problem of Maxwell’s equations to an eigenvalue problem
and applies modal expansions to all fields involved. Previously, we restricted the plane of
incidence for convenience to the x-z-plane. Now, the plane of incidence and the direction of
propagation are variable, while assuming a linear polarization basis. Then, the field vector of
an incident electric field is written [218]

Ein(r) = ueik0r, with k0 = kx,0ex + ky,0ey + kz,0ez. (2.42)

The k-vector components kx,0 = n1k0 sin θ cosϕ, ky,0 = n1k0 sin θ sinϕ, and kz,0 = n1k0 cos θ
are projections from spherical coordinates onto the Cartesian axes, depending on the azimuthal
angle of incidence θ and the polar angle ϕ. Here, k0 = 2π/λ is the vacuum propagation constant.
The unit amplitude vector u also depends on the polarization angle ψ, as shown in fig. 2.2a).
Involving all three angles, u reads as

u = (cosψ cos θ cosϕ− sinψ sinϕ)ex + (cosψ cos θ sinϕ+ sinψ cosϕ)ey − cosψ sin θez. (2.43)

Assuming periodic discontinuities in the x-y-plane at z = 0 and with a z-height h (fig. 2.2.b),
the fields in the substrate and the cladding can be expanded in a Rayleigh series [220], i.e. a
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plane wave expansion [218],

ET (r) =
∑
m,n

EmnT exp(ikmnT (r − hez)), (2.44a)

ER(r) =
∑
m,n

EmnR exp(ikmnR r), (2.44b)

where EmnT and EmnR are the complex vectorial transmission and reflection amplitudes of each
order m,n. Similarly, kmnT and kmnR are their respective k-vectors, giving the direction of each
constituent plane wave,

kmnT = kx,mex + ky,ney + kT,mnez, (2.45a)
kmnR = kx,mex + ky,ney − kR,mnez, (2.45b)

with kx,m = kx,0 + 2πm/Λx and ky,n = ky,0 + 2πn/Λy. Λx and Λy are the grating periods in
x- and y-direction. As the periodic layer is invariant in z-direction, the z-components of the
k-vector can be written

kT,mn =
√
(n1k)2 − (kx,m)2 − (ky,n)2 (2.46a)

kR,mn =
√
(n2k)2 − (kx,m)2 − (ky,n)2. (2.46b)

For now, we assume the square roots to be real.7 Together eqs. (2.42) – (2.46) fully describe
the electric field in the half-spaces surrounding the structured layer. The magnetic field follows
from Maxwell’s equations.

Inside the periodic layer the fields are pseudo-periodic Bloch vectors [221].8 Because of that
we can expand the fields in the doubly periodic medium in pseudo Fourier series [80,218,222],

E(r) =
∑
m,n

Emn exp(i(kx,mx+ ky,ny + γmnz)), (2.47)

where γmn is the propagation constant inside the periodic layer. Furthermore, the permittivity
ε(x, y) is now a periodic function of the transversal coordinates. It can be written as the Fourier
series

ε(x, y) = ε0
∑
m,n

εmn exp
(
i2π(

m

Λx
x+

n

Λy
y)

)
, (2.48)

with the Fourier coefficients of the permittivity εmn. By applying Maxwell’s equations to the
E field to get the H field we introduce coefficients of the inverse permittivity and, therefore,

7Later, in chapter 3 we will look at the emergence of evanescent modes when the square root becomes
imaginary.

8The corresponding Bloch theorem will be applied and explained in greater detail in sec. 2.1.1.
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another Fourier expansion [218]. Here, we mathematical caution is in order. An ad hoc insertion
of the Fourier expanded ε and its inverse into Maxwell’s equations will result in computational
issues [208]. As Lalanne showed numerically [211] and Li proved mathematically with his
Fourier factorization rule [208, 209], the problem can be circumvented by writing the inverse
coefficients of a Toeplitz matrix of the Fourier coefficients εmn.9

If we reduce, for a moment, the problem to a one-dimensional grating, the coupled field
equations of the Bloch coefficients in the Fourier domain take the form [208,218]

ωµ0γHy,n = −k20
M∑

m=−M

[[
1

ε

]]−1

mn

Ex,m (2.49a)

ωε0γEx,n = k20Hy,n − kx,n

M∑
m=−M

[[ε]]−1
mn kx,mHy,m, (2.49b)

with Ex,n denoting the y-component of En from eq. (2.47) in the one-dimensional case and
analogouslyHy,n. Here, we used Li’s notation denoting a Toeplitz matrix coefficient [[.]] [208]. For
numerical calculation the series have to be truncated at some order M , which also determines
the truncation of the Rayleigh expansion (2.44). Including the full two-dimensional periodicity,
we get the full double sums as in eq. (2.47) and a second truncation order N . Lastly, we
must also obey the boundary conditions at the interfaces to substrate and cladding [218]. This
relates the Rayleigh transmission and reflection coefficients with the Bloch coefficients of the
internal fields. Together, they present an algebraic eigenvalue problem who’s solution gives us
the interaction of plane waves with a periodically structured interface [219]. This is the core
concept of the FMM.

Its precision depends on the number of Fourier orders M,N taken into account. This affects
the accuracy of the Fourier expansion of the permittivity, given as a distribution in a unit cell of
size Λx×Λy. Once the eigenvalue problem is solved the total energy flux through the structured
layer is the sum of all modal energy fluxes in forward and backward direction.

2.4.2 Scattering matrix formalism

Once the eigenvalue problem is solved and the fields are obtained it would be practical to
express the interface problem in a compact mathematical form. Whereas we used Fresnel
equations to express the transmission and reflection at the interface, our task is now to connect
the multitude of modes of the periodic layer with adjacent layers. Similar to the idea of Jones
matrices we can map the fields from both sides of the periodic layer using a scattering matrix
(S-matrix) [182]. We distinguish between forward and backward propagating fields, Ef and Eb,

9A Toeplitz matrix has equal entries along each of its diagonals. If A is a Toeplitz matrix, then its coefficients
are Ai,j = Ai+1,j+1 = ai−j , where aj are its unique entries.
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Figure 2.3: (a) Illustration of the four-port structure of the S-matrix. The output port in
forward direction of S1 produces the block vector in layer 2 Ef

2 which is incident on the forward
input port of S3. The opposite in backward direction: the output of S3 is input to S1. (b)
Two S-matrices connected as a single layer by the star product. (c) Graphical representation
of mapping of input diffraction orders onto output orders. The numbers in parentheses denote
coefficient indices (m,n) for N =M = 1 orders.

in positive and negative z-direction, respectively. If Sp is the S-matrix of the pth layer in some
multi-layered system, the fields in the adjacent layer are connected by[

Ef
p+1

Eb
p−1

]
= Sp

[
Ef
p−1

Eb
p+1

]
=

[
T fp Rb

p

Rf
p T bp

][
Ef
p−1

Eb
p+1

]
. (2.50)

There are several things to unwrap. First, the expanded fields are written as block vectors,
denoted by square brackets [.], distinguishing forward and backward propagating fields Ef and
Eb. On the left-hand side of the equation are the output fields and on the right-hand side the
input fields (fig. 2.3.a). Notice that the layer indices reflect the respective layer of incidence.
Accordingly, the S-matrix S is a 2 × 2 block matrix constituting reflection and transmission
matrices for each direction. The block vectors Ef

p−1 and Eb
p+1 each include 2(2M+1) ·2(2N+1)

Rayleigh coefficients, indicating an equal number of diffraction orders (fig. 2.3.c).10 The factor
2 represents the x- and y-polarization in a linear polarization basis. Correspondingly the sub-
matrices of the S-matrix are of size 2(2M + 1)(2N + 1) × 2(2M + 1)(2N + 1). So, the total
number of elements of a 2×2 S-matrix is 16(2M +1)2(2N +1)2. For example, for M = N = 11

orders we get approximately 4.5 · 106 complex coefficients, requiring about 72 MB of computer
memory. This means that FMM simulations can require large amounts of memory.

Looking at the transmission and reflection matrices it becomes apparent that they encode
polarization in similar fashion as Jones matrices, albeit including higher orders. Indeed, each
sub-matrix reverts to a 2 × 2 Jones matrix at zeroth order. More abstractly speaking, the
S-matrix represents a four-terminal network [182] with each block-element symbolizing a scat-

10Whether a diffraction order is propagating or evanescent depends on the propagation constant kz,mn. This
is discussed in detail in sec. 3.3.1
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tering port (fig. 2.3.a). Here, each port also handles the coupling between different orders (fig.
2.3.c). This is a very practical concept because we can use these ports to connect multiple
layers to get their common response as a whole (fig. 2.3.b).

Furthermore, we can stack any number of S-matrices using a binary operation ∗ called the
star product [182]. Let S1 and S2 be arbitrary S-matrices of equal Fourier order and with
sub-matrices aij and bij. Then, the combined S-matrix results from the star product

S1 ∗ S2 =

(
a11 a12

a21 a22

)
∗

(
b11 b12

b21 b22

)

=

(
b11 (I− a12b21)

−1 a11 b12 + b11a12 (I− b21a12)
−1 b22

a21 + a22b21 (I− a12b21)
−1 a11 a22 (I− b21a12)

−1 b22

)
, (2.51)

where I is an appropriately sized identity matrix. This can be applied to accommodate a full
system of N layers, condensed to a single S-matrix,

S = S1 ∗ S2 ∗ S3 ∗ · · · ∗ Sk−1 ∗ Sk ∗ Sk+1 ∗ · · · ∗ SN . (2.52)

Furthermore, it can be shown that the star product is associative [182],

S1 ∗ (S2 ∗ S3) = (S1 ∗ S2) ∗ S3, (2.53)

which is of great utility for numerical applications and is exploited in chapter 4.
As a final remark, the star product was formally introduced by Raymond Redheffer to

show a linear fractional transformation of a quadrupel of linear operators [223]. The thus called
Redheffer star product is a map of two quadrupels onto a single quadrupel. In that regard, the
S-matrix formalism treats transmission and reflection matrices as operators on incident fields,
mapping complex coefficients of diffraction orders, including their polarization symmetry. The
latter will be of great importance for the semi-analytic analysis presented in chapters 4–6.



3 | Fundamental mode approximation (FMA)

In this chapter we will derive the theoretical foundation which is at the core of this thesis. In
order to minimize the necessity for rigorous numerical simulations it is essential to correctly
simplify or refine physical models of metasurfaces. For that purpose, this chapter introduces the
fundamental mode approximation (FMA) - a reduction of a metasurface’s far-field interaction
and next-neighbor-coupling to only fundamental modes. We will properly define the meaning
of fundamental in the context of Bloch modes in periodic metasurfaces. This is a prerequisite
because the physical interpretation of the FMA ties into the important question of homogeneity
in describing metamaterials, generally.

3.1 Principles of local field interaction
A first step in the direction of introducing effective parameters for periodic metamaterials is
a limit on the size of the inclusions (independent on their geometry). According to Maxwell-
Garnett theory [224], if a represents the size of the unit cell or the diameter of a particle then
the incident wavelength λ should be much larger, so a ≪ λ. Additionally, the average volume
fraction of the inclusions has to be small with respect to the enclosing volume [9]. However, in
metamaterials structure sizes are usually in the order of the wavelength [36,225], although still
smaller, typically a/λ < 0.5.

It is especially important to note that λ inside the medium has an effective length λeff = λ/n,
where, generally, the refractive index n is dispersive (see sec. 2.1.2). Furthermore, for resonant
frequencies the introduced additional phase shift changes the optical path length [35, 155].
Roughly speaking, this can be incorporated into an effective (dispersive) refractive index neff(λ),
and thus λeff = λ/neff(λ). This leads to an adapted size limit of

aneff(λ)

λ
< 0.5. (3.1)

Relation 3.1 is a rough estimate that ignores complex field interactions with neighboring
structures and relies on the existence of effective parameters. Yet, simple mixing theories [9,226]
are not suitable at this point since they are only valid for size ratios up to a/λ = 0.01 [226].

We have to identify under which conditions effective parameters can have any physical

29
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Condition Definition
I. Passivity A harmonic time dependence e−iωt implies Im(εloc) > 0

and Im(µloc) > 0.
II. Causality ∂(ωεloc)/∂ω > 1, ∂(ωµloc)/∂ω > 1 if losses are negligible

and ∂ Re(εloc)/∂ω > 0, ∂ Re(µloc)/∂ω > 0 outside of the
resonant band of inclusions.

III. Absence of radiation
losses

The medium is in thermodynamic equilibrium in the
absence of incident fields [195] and scattering losses are
small or non-existent [5, 61].

IV. Independence from
wave propagation direction

Material parameters are independent from the angle of
incidence for a given frequency.

Table 3.1: Conditions for local material parameters [80, 157]

meaning and how else to describe the optical properties of a metamaterial [10,157]. Fundamen-
tally, the question of effective material parameters boils down to that of locality [195]. Local
material parameters εloc and µloc relate the field vectors D and B with the averaged macroscopic
fields ⟨E⟩ and ⟨H⟩ [80], such that

P = D − ε0 ⟨E⟩ = ε0(εloc − 1) ⟨E⟩ (3.2)
M = B − µ0 ⟨H⟩ = µ0(µloc − 1) ⟨H⟩ , (3.3)

defining the bulk electric and material polarizabilities P and M. As per standard Maxwell theory
the averaged macroscopic fields at the center, r, of a unit cell are calculated by integrating over
the unit cell volume V ,

⟨E⟩ (r) := 1

V

∫
V

E(r + r′)d3r′ (3.4)

⟨H⟩ (r) := 1

V

∫
V

H(r + r′)d3r′. (3.5)

This presents us with a very simple definition of locality in Maxwell theory: the relationship
of the fields D, B and E, H can be expressed at any point r of a lattice [195]. However, there
are strict physical conditions for material parameters εloc and µloc to be considered local.

As summarized in table 3.1, local parameters have to be passive, meaning there is no
optical activity [157, 195]. Furthermore, the condition of causality implies that their response
is retarded. In addition, radiation losses from non-equilibrium thermodynamics and scattering
cross-sections need to be negligible. These would imply field interactions not purely determined
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Figure 3.1: Conceptual map of physical interpretations of optical material parameters.

by the average field of a unit cell and thus be non-local. Lastly, material parameters only have
physical meaning if they are independent on the direction of propagation and are invariant with
respect to the angle of incidence.

From this we can deduce that there are two general classes of effective parameters: either
local or non-local, fig. 3.1. While the former implies a genuinely homogeneous medium, the
latter has to be interpreted carefully. The regime of non-local parameters can be divided into
those which are homogenizable via suitable retrieval models and those that have no meaningful
interpretation at all [57]. Each subset of effective parameters depends on the frequency regime
(see table 3.1). A metamaterial can transition between regimes across different frequency
intervals [6, 79, 227]. The idea of transitioning between conceptual regimes will be taken up
again in sec. 3.4.

At its core, the entire discussion around the meaning of optical material parameters aims
at a concise description of wave propagation in structured media. If a metamaterial can be
homogenized, wave propagation through it follows the classical theory of electrodynamics in ho-
mogeneous media [1,195]. If, however, a metamaterial would be completely non-local, rigorous
numerical simulations are the only way of determining its optical behavior [6, 227].

Analytic solutions allow us to grasp the metamaterial intuitively in terms of refractive indices
and concepts such as Snell’s law, Fresnel formulas or Jones calculus. In contrast, rigorous
simulations always require detailed consideration of field-field and field-matter interactions in
order to understand their outcome. Both approaches are of course perfectly valid when it
comes to determining optical behavior. While numerical simulations are always possible1,
the necessity for effective parameters comes into play when an application demands specific
macroscopic properties. Beyond that, homogeneity and locality are physical attributes that
can be employed as conceptual foundations to derive and simplify theoretical methods.

In the following, we will describe the propagation of waves in periodic metamaterials and

1Within their mathematical bounds and physical applicability.
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show how the ideas discussed above lead to a simplified understanding of such metamaterials.

3.2 Wave propagation in periodic metamaterials

Assuming periodicity in all three spatial dimensions we can borrow from the theory of photonic
crystals [159–162] and describe the propagation of light inside the metamaterial using a Bloch
mode formalism [80, 222]. Let us take a moment and introduce the concept of Bloch modes,
which we only briefly mentioned in the introduction to the FMM (sec. 2.4).

In a periodic medium the inhomogeneous permittivity (and similarly the permeability) is a
periodic function with respect to the lattice periodicity a = (Λx,Λy,Λz)

T

ε(r, ω) = ε(r +Dna, ω), (3.6)

where Dn is a diagonal matrix corresponding to a vector of integers n = (nx, ny, nz)
T . According

to the Bloch theorem [221] the electromagnetic fields E(r) and H(r) become quasi-periodic
functions that are separated into a periodic Bloch mode E(r) and H(r) and a phase term
describing spatial evolution2, yielding

E(r) = eik·rE(r), with E(r) = E(r +Dna), (3.7)
H(r) = eik·rH(r), with H(r) = H(r +Dna). (3.8)

Inserted in Maxwell’s equations, Bloch-wave propagation (of the H(r)-field) is then described
by the eigenvalue equation

k ×
[

1

ε(r)k ×H(r)
]
− ω2

c2
H(r) = 0. (3.9)

Together with the longitudinal Bloch k-vector component

kz(kx, ky, ω) = kz(Ω), with Ω := {kx, ky, ω}, (3.10)

we can describe the electric field inside the metamaterial as a superposition of Bloch modes,

2Reminder: throughout this thesis we assume monochromatic fields with a time dependence exp(−iωt.)
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z

x

Figure 3.2: Illustration of an interface between two periodic metamaterials. Black arrows
represent Bloch modes with energy flux in positive z-direction and red ones in negative z-
direction. Dashed arrows indicate adjoint fields (marked by the symbol †). Figure adapted
from fig. 1 in [156].

where

E(r; Ω) =
∑
p

Ep(r; Ω)eikp,z(Ω)z

=
∑
p

[∑
l,m,n

E l,m,np (r; Ω) exp
{
i

[(
kx +

2π

Λx
l

)
x+

(
ky +

2π

Λy
m

)
y +

(
2π

Λz
n

)
z

]}]
eikp,z(Ω)z,

(3.11)

where kp,z is the longitudinal wave vector of the Bloch mode p. The triple sum in the second part
of the equations constitutes a plane wave expansion of each mode.3 Hence, light propagation
in periodic media, including metamaterials, can be described using a generally infinite set of
Bloch modes [229–231].

Naturally, one might ask how we could describe the interface between two metamaterials.
Suppose we have two (semi-infinite) periodic metamaterials left and right of an interface (fig.
3.2). Following the notation style introduced by Paul et al. in [156], we can describe the
interaction at the interface with two sets of modes on each side of the interface.

Using Dirac notation, we define a Bloch vector |Bp⟩ that includes all tangential field com-
ponents, i.e. |Bp⟩ := (Ep,x, Ep,y, Hp,x, Hp,y)

T . Accordingly, we define |Lm+⟩ and |Lm−⟩ as
the two sets of modes of the left metamaterial, propagating in positve (+) and negative (−)
z-direction. Similarly, the right metamaterial is populated by the modes |Rm+⟩ and |Rm−⟩.
For each set of modes there is an adjoint set, ( |L†

m+⟩, |L†
m−⟩ and |R†

m+⟩, |R†
m−⟩), for which

the tangential wave vector components k∥ = (kx, ky)
T are reversed (−kq) [232]. Additionally,

the energy flow of the adjoint fields is reversed (see dashed arrows in fig. 3.2). Whereas |Lm+⟩

3It is no coincidence that this expansion is analogous to the mathematical approach used to describe fields
of a modulated region in the FMM. Compare, for instance, to eq. (19) in [228].
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fulfills Im(ki,z) > 0 the energy of the adjoint fields |L†
m+⟩ flows in negative z-direction4.

Each set of Bloch modes in a metamaterial fulfills orthogonality relations [156] based on the
generalized inner product [233]

⟨B†
m|Bn⟩ :=

∫ ∫
cross section

(
En × E†

m − E†
m × En

)
ez dx dy , (3.12)

while integrating over the cross section of a unit cell. Because we propagate along the z-axis we
consider tangential cross sections. Hence, the integrand solely depends on the tangential field
components. With this, the orthogonality relations for the Bloch modes of the left medium
read as

⟨L†
m+|Ln+⟩ = L+

mδmn, (3.13a)
⟨L†

m−|Ln−⟩ = −L−
mδmn, (3.13b)

⟨L†
m+|Ln−⟩ = 0, (3.13c)

⟨L†
m−|Ln+⟩ = 0, (3.13d)

and analogously for the right medium. Here, δmn is the Kronecker symbol and L±
m are the

normalization constants of the left side modes. Similarly, the right side modes will have the
normalization constants R±

m. With these we have the orthogonality relations within each set
of Bloch modes. At the interface we have to obey boundary conditions in order to apply the
orthogonality relations (3.13a) - (3.13d).

Assuming light propagation in positive z-direction, light impinges from the left to the right
at the interface. Intuitively, both reflected ( |Lm−⟩) and transmitted ( |Rm+⟩) modes will be
excited. Using the continuity of the tangential field components at the interface we can find a
relation similar to the energy conservation introduced in sec. 2.2,∑

m

Im |Lm+⟩+
∑
m

Rm |Lm−⟩ =
∑
m

Tm |Rm+⟩ . (3.14)

In conjunction with the decomposition in the FMM (sec. 2.4), Tn and Rn are transmission
and reflection coefficients, with In representing amplitude and phase of an impinging field. We
can then calculate the transmission and reflection coefficients by projecting ⟨R†

n−| and ⟨L†
n+|

onto eq. 3.14. Furthermore applying orthogonality relations 3.13a through 3.13d creates two

4In an absorbing material.
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separate equations [156], ∑
m

⟨R†
n−|Lm+⟩ Im = −

∑
m

⟨R†
n−|Lm−⟩Rm, (3.15)∑

m

L+
mδmnIm =

∑
m

⟨L†
n+|Rm+⟩Tm. (3.16)

Using the matrix coefficients

Onm := ⟨R†
n−|Lm−⟩ , (3.17a)

Pnm := ⟨R†
n−|Lm+⟩ , (3.17b)

Qnm := ⟨L†
n+|Rm+⟩ , (3.17c)

Lnm := L+
n δnm (3.17d)

we can rewrite eqs. 3.15 and 3.16 into matrix from and invert them to solve for the transmission
and reflection coefficients of the Bloch modes,

ÔR = P̂I =⇒ R = Ô−1P̂I, (3.18)
Q̂T = −L̂I =⇒ T = −Q̂−1L̂I. (3.19)

The coupling matrices Ô, P̂, Q̂, and L̂ are populated by the respective elements 3.17a–3.17d.
T and R are vectors of the transmission and reflection coefficients Tn and Rn, representing the
interface interaction of the complete set of Bloch modes. Since we assume that an arbitrary
field |I⟩ impinges from left to right, the coefficients Im are given simply by projection with
⟨L†

m+|, resulting in Im = ⟨L†
m+|I⟩ /L+

m.

If both media were identical, the matrix elements 3.17a–3.17d would simplify to eqs. 3.13a–
3.13d. Consequently, for very similar metamaterials the Bloch modes at the interface will match
to great extent. As a result the matrices Ô, P̂, and Q̂ will become sparse. With this, we can
move towards formulating homogeneity conditions of these metamaterials.

If the metamaterials behaved like genuine homogeneous media, the coupling between modes
at their interface would be Fresnel-like. Just determined by one reflected and one transmitted
mode on the left and right. In the present case this can be achieved if only one of the im-
pinging left-side modes dominates the interaction at the interface and, furthermore, only one
Bloch mode of the right-side set is excited. Returning to eq. 3.11 we can sort the series with
increasing imaginary part of the propagation constant kp,z(Ω). Then, the 0th order mode with
E0(r) exp(ik0,z(Ω)z) will dominate if all higher orders (p > 0) decay at a faster rate or are only
weakly excited. With respect to the projected left and right propagating modes 3.15 and 3.16
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we can directly determine the 0th order reflection and transmission coefficients

R0 = −
⟨R†

0−|L0+⟩
⟨R†

0−|L0−⟩
, (3.20)

T0 =
L+

0

⟨L†
0+|R0+⟩

. (3.21)

We will call the 0th order modes fundamental modes. Under the assumption that the off-
diagonal elements of the (sparse) coupling matrices Ô, P̂, and Q̂ are negligible and that the
amplitude of all higher orders (left or right) is sufficiently small while decaying faster,

| ⟨B†
0|B0⟩| ≫ | ⟨B†

p>0|Bp>0⟩| , (3.22)

R0 and T0 can sufficiently describe wave propagation. This defines the fundamental mode
approximation (FMA).

3.3 Fundamental mode interaction between metasurfaces

3.3.1 Defining metasurfaces via fundamental modes

We now look at the case where the right-hand-side medium of fig. 3.2 is not a metamaterial but
a homogeneous dielectric medium5. Assuming the fundamental Bloch mode, E0 exp(ik0,z(Ω)z),
to be dominant in the periodic medium, we can write the transmitted field ET ≡ Ef in the
adjacent homogeneous dielectric as a Rayleigh expansion [145, 220, 228],

ET (r) =
∑
l,m

tlm exp
{
i

[
2πl

Λx
x+

2πm

Λy
y

]}
exp
(
iklmz z

)
, (3.23)

where tlm are the transmitted diffraction orders of the electric field. The propagation constant
in the homogeneous medium klmz is defined as

klmz =

√
k20n

2 −
(
2πl

Λx

)2

−
(
2πm

Λy

)2

, (3.24)

with the refractive index n and the vacuum wavenumber k0. Within the FMA, the boundary
conditions (3.14) simply relate the fundamental mode of the metamaterial with diffracted fields
(3.23) in the adjacent medium. Vice versa, this also applies to the excitation of a fundamental
mode when impinging onto the metamaterial.

5Infinitely extended in positive z-direction.
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Figure 3.3: Conceptual transition from bulk metamaterial (a) to stacked metasurfaces (c).
The intermediate step (b) considers the z-periodicity as a layered system of individual meta-
materials with x-y-periodicity. To consider each layer as an individual metasurface, the inho-
mogeneity due to higher order modes (d) has to be contained in the metamaterial’s unit cell
(e) by including spacer layers for sufficient decay of evanescent fields. A homogeneous meta-
surface emerges if the considered layer thickness hz conceptually approaches 0, transforming
the metasurface into a 4-port interface or gate of fundamental modes. Figures (d)–(f) adapted
from fig. 1 in [145].

Here, we can start a conceptual transition from a bulk metamaterial to multiple layers of
stacked metasurfaces. We can imagine a 3D-periodic metamaterial (fig. 3.3.a) to be comprised of
repeating layers in propagation direction (fig. 3.3.b). If we interpret each layer as an individual
metamaterial that is periodic only in the x-y plane and unchanging in z-direction, eq. (3.11)
reduces to

E(r; Ω) =
∑
p

[∑
l,m

E lmp (r; Ω) exp
{
i

[(
kx +

2π

Λx
l

)
x+

(
ky +

2π

Λy
m

)
y

]}]
eikp,z(Ω)z, (3.25)

dropping the z-periodicity.6 Then the interaction between the fundamental mode with p = 0

6In principle Λz → ∞.
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and surrounding fields yields the excitation of both transmitted and reflected plane waves (fig.
3.3.d),

∑
l,m

E lm0 (r; Ω) exp
{
i

[(
kx +

2π

Λx
l

)
x+

(
ky +

2π

Λy
m

)
y

]}
eik0,z(Ω)z

+
∑
l,m

rlm exp
{
i

[
2πl

Λx
x+

2πm

Λy
y

]}
exp
(
−iklmz z

)
=
∑
l,m

tlm exp
{
i

[
2πl

Λx
x+

2πm

Λy
y

]}
exp
(
iklmz z

)
, (3.26)

where rlm are the reflected diffraction orders of the electric field. The first sum of the equation
above represents the incident field in a metamaterial layer. This is equivalent to the structure
of eq. (3.14) if we demand p = m = 0,

⟨L†
0+|I⟩ |L0+⟩
L+
0

+R0 |L0−⟩ = T0 |R0+⟩ . (3.27)

Obviously, this shows the self-consistency of our formulation of the boundary condition. As
the FMA demands, only a zeroth order Bloch mode is excited in each metamaterial layer (fig.
3.3.b), which in turn is converted into a superposition of plane waves at the interface. (fig.
3.3.d). Vice versa, eqs. (3.26) and (3.27) also suggest that the incident field should only carry
a zeroth order mode when in-coupling at the interface.

Under this condition each layer of the metamaterial can be conceptualized as an individual
metasurface. On a microscopic level, we now define the dimensions of a metasurface’s unit
cell such that its evanescent fields are enclosed in it (fig. 3.3.e) [145]. Consequently, from
a macroscopic field perspective, each metasurface becomes a homogeneous and conceptually
infinitely thin interface (fig. 3.3.f). In other words: if we exclude near-fields from coupling
between layers, only the far-field interaction matters. That is the FMA.
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3.3.2 Conditions for exclusive fundamental mode interaction

Based on the discussion above, it seems reasonable to demand that all higher diffraction orders
of the incident field are evanescent. Consequently, the propagation constant of higher order
modes klmz (eq. (3.24)) has to be imaginary. Generally, we need to differentiate three cases

(i) k20n
2 <

(
2πl

Λx

)2

+

(
2πm

Λy

)2

=⇒ klmz ∈ C : evanescent modes (3.28a)

(ii) k20n
2 =

(
2πl

Λx

)2

+

(
2πm

Λy

)2

=⇒ klmz = 0 : Wood anomaly (3.28b)

(iii) k20n
2 >

(
2πl

Λx

)2

+

(
2πm

Λy

)2

=⇒ klmz ∈ R : propagating modes. (3.28c)

Case (i) is a necessary condition for FMA validity. If we reach (ii), the Wood anomaly of order
(l,m) will mark the emergence of propagating diffracted modes of that order [234, 235]. All
modes that fulfill (iii) propagate to the far-field and can interact with adjacent metamaterial
layers.

Even though evanescent modes are non-propagating their interaction as near-fields is signif-
icant. As suggested in fig. 3.3.e) near-fields can be contained by including spacer layers around
a metasurface. So, even if condition (i) is fulfilled, there exists a critical distance dcrit, a minimal
layer separation, at which evanescent fields have decayed sufficiently. Below this dcrit higher
order modes will start to couple [145], disrupting homogeneity [77, 222].

We can estimate dcrit by looking at the decay rate of the first diffraction order. Without
loss of generality we restrict ourselves to x-polarization in the absence of cross-polarization
(isotropic case), so tlm → T lmxx

7. Assuming that the decay rate increases with each consecutive
order, we choose l = 1 and m = 0. For an upper estimate we approximate the amplitude as
|T 1,0
xx | ≈ 1, ignoring its imaginary part as it will benefit the decay through absorption. For a

metasurface with a physical interface in positive z-direction at z = 0 we are looking for the
distance z = d at which the first order has decayed below an upper estimate σ. Inserting our
assumptions into eq. (3.23) and using eq. (3.24) 8 we can deduce the following inequality,x

exp

−d

√(
2π

Λx

)2

−
(
2πn

λ

)2
 ≤ σ =⇒ d

√(
2π

Λx

)2

−
(
2πn

λ

)2

≥ ln
(
1

σ

)
. (3.29)

For an arbitrary polarization we can omit the subscript and define the critical distance dcrit

7The first element of the Jones matrix.
8Obeying the condition for evanescent modes (3.28a).
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based on the estimate σ as

dcrit = σ̃Λ

/√
1− n2Λ2

λ2
, with σ̃ :=

ln(1/σ)
2π

. (3.30)

The factor σ̃ can be considered as an attenuation coefficient to the critical distance. Note that
the necessary precision of σ is contingent upon the accuracy of either measured or simulated
data the estimate might be compared to [146,151]. Hence, appropriate values of σ can be chosen
that fit the circumstances. For instance, we can control the order of magnitude by choosing
σ = e−2π ≈ 2‰ with σ̃ = 1, σ = 1% with σ̃ = ln(10)/π, or σ = 10% with σ̃ = ln(10)/2π.

Regardless of the chosen precision we can make an observation similar to eqs. (3.28a) -
(3.28c). For given period Λ, the wavelength λ can be divided in three cases for the physical
behavior of higher diffraction orders,

λ > nΛ =⇒ dcrit ∈ R : evanescent higher orders (3.31a)
λ = nΛ =⇒ dcrit → ∞ : Wood anomaly (3.31b)
λ < nΛ =⇒ dcrit ∈ C : propagating higher orders. (3.31c)

Thus, the validity of the FMA depends on both λ and dcrit for a given metasurface. Obviously,
for two adjacent metasurfaces, the larger period Λ determines the necessary critical distance.
The argument on the scale of λ ties in nicely with the discussion of effective media in sec.
3.1 and eq. (3.1). Finally, we can collect a set of necessary conditions for the validity of the
FMA and, thus, the homogeneity of a metamaterial comprised of multiple layers of stacked
metasurfaces:

(i) Structure or particle sizes a are of subwavelength scale, a · n/λ ≲ 0.5.

(ii) Higher diffraction orders are evanescent, λ > nΛ or k0n < 2π/Λ.

(iii) Adjacent metasurfaces have to be separated by at least a critical distance dcrit at which
higher orders have decayed below an upper limit σ.

3.3.3 Oblique fundamental modes

In many experimental scenarios the considerations for perpendicular incidence suffice. How-
ever, for the sake of completeness it is important to consider conditions of fundamental modes
for oblique angles. Indeed, the same principles as before apply. The difference now is the pro-
jection of the k-vector onto the metasurface lattice that determines the tangential components.
Regarding that, FMA condition (i) is unchanged but (ii) and (iii) need to be adapted.
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Using the same spherical coordinate system the FMM employs (sec. 2.4) we get for the
propagation constant in transmission

klmz =

√
k20n

2 −
(
k0n sin θ cosϕ+

2πl

Λx

)2

−
(
k0n sin θ sinϕ+

2πm

Λy

)2

, (3.32)

with the polar angle ϕ ∈ [0, 2π) and azimuth angle θ ∈ [0, π/2]. To derive dcrit the same scheme
as in eq. (3.29) can be used. However, in this instance we ought to distinguish positive and
negative diffraction orders. Thus, dcrit becomes an angular dependent matrix with entries9

dlmcrit(θ, ϕ) = σ̃Λ

/√
l2 +m2 + 2

nΛ

λ
Γlm(θ, ϕ)− n2Λ2

λ2
cos2 θ , (3.33)

with Γlm(θ, ϕ) = sin θ (l cosϕ+m sinϕ).

The limit θ, ϕ→ 0 with l = 1 and m = 0 reverts eq. (3.33) to the perpendicular incidence dcrit.
On the other hand, dlmcrit(θ, ϕ) can reach a maximum if light impinges in the x-z or y-z-plane,
i.e. ϕ = 0 or ϕ = π/2, respectively. Then the sign of Γlm(θ, ϕ) reveals that, among all possible
tuples (l,m), the negative first diffraction order requires the largest critical distance. So, for
ϕ = 0 and (l,m) = (−1, 0) or ϕ = π/2 and (l,m) = (0,−1) the upper estimate for oblique
incidence is given by

dcrit(θ) = σ̃Λ

/√
1− 2

nΛ

λ
sin θ − n2Λ2

λ2
cos2 θ . (3.34)

Thus, the generalizations of the FMA conditions (ii) and (iii) are

(ii∗) Higher diffraction orders are evanescent for λ > (1 + sin θ)nΛ.

(iii∗) Adjacent metasurfaces have to be separated by at least an angular dependent critical
distance dcrit(θ).

3.4 Coupling phases

To conclude this chapter we will give an interpretation of the FMA in the context of homog-
enization and locality discussed in sec. 3.1. If the FMA is valid the far-field of a metasurface
is comparable to that of any other (natural) homogeneous medium. Within the bounds of
eqs. (3.30) and (3.34) the FMA replicates locality condition IV. in table 3.1. Furthermore, by

9For simplicity we assume Λx = Λy = Λ. In the case of dissimilar periods an additional degree of freedom
has to be taken into account for dcrit(θ).
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Figure 3.4: Coupling phase diagram (CPD): plot of the critical distance dcrit. The blue
solid line represents dcrit with an accuracy σ = 1 %. The dashed blue lines show dcrit with
alternative choices of σ. The thin red line marks dS = Λ = 400 nm, to which dcrit with σ = 1 ‰
asymptotically converges. The colored areas identify different regimes of coupling to adjacent
layers, annotated in the figure. The Wood anomaly marked by a vertical red line marks an
asymptotic limit to which dcrit converges for small λ regardless of σ.

restricting the periodicity Λ the FMA implicitly limits the size of structures or particles com-
prising a metasurface. Assuming a general state of thermodynamic equilibrium, this translates
to fulfilling locality condition III (absence of radiation losses). Passivity and causality depend
on the chosen particle materials and are assured by a suitable retrieval procedure for µloc and
εloc [58, 77].

Interestingly, the FMA allows us to interpret a metasurface as a homogeneous medium
without considering µloc and εloc. Wave propagation as such can be described by the trans-
mission and reflection coefficients of an infinitely thin interface conceptually representing the
metasurface (sec. 3.3.1) [145]. Then, FMA conditions (i), (ii∗), and (iii∗) suffice to consider the
metasurface as a homogeneous interface-medium. Moreover, if material and wave parameters
are peripheral, conditions I and II in table 3.1 can be neglected.10

Finally, we can describe the different validity regimes of the FMA similarly to the concep-
tual map discussed in fig. 3.1, sec. 3.1. Instead of distinguishing different types of effective
parameters we switch to coupling regimes defined by FMA conditions (i), (ii∗), and (iii∗) and
the critical distance dcrit. For simplicity we assume perpendicular incidence in the following.11

If we plot (3.30) versus the wavelength λ for a given period Λ, the inverse square root

10It can be argued phenomenologically that they are fulfilled automatically in the FMA as long as the material
comprising particles does not itself produce extraordinary effects such as optical activity.

11The oblique case follows the same scheme.
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of dcrit separates the parameter space in three distinct areas. Fig. 3.4 shows a plot for an
arbitrary metasurface with period Λ = 400 nm surrounded by glass with dispersive refractive
index n(λ).12 Moving along the horizontal axis, the critical distance becomes imaginary for
wavelengths λ < Λn and produces a visible singularity that marks the Wood anomaly [234,235].
On the left side of that singularity (where the root would become imaginary; red area of the
plot) the metasurface behaves like a grating with propagating diffraction modes. In contrast,
on the right side of the singularity an individual metasurface can in principle behave like an
effective medium.

Moving vertically, we change the distance from the metasurface dS, which we call spacer
or stacking distance with regard to possible adjacent layers. In a stacked configuration the
coupling to adjacent layers depends on the presence of evanescent fields. This is represented
by the area below the critical distance (dS < dcrit). Here, the FMA is invalid and coupling
includes evanescent diffraction orders. Above the critical distance (dS > dcrit) the FMA is valid
and the metasurface behaves like an effective medium even with respect to adjacent layers.

Because dcrit is an upper estimate that represents a soft boundary and the change between
coupling regimes is akin to a phase transition, we term this type of plot coupling phase diagram
(CPD). A CPD maps the FMA conditions for a given metasurface geometry. As we will
show in the following chapters, it can be used to both design and analyze different stacks of
metasurfaces. Meanwhile, the CPD also tells us what mathematical formalism to use. In the
fully FMA-valid case simplifications can be made that lead to a semi-analytic formalism which
will be derived in the next chapter.

12Calculated using the Sellmeier equation (A.2) in the appendix.



4 | Semi-analytic stacking algorithm

This chapter establishes a framework for modeling and simulating metasurface stacks semi-
analytically. The underlying model is based on the fundamental mode approximation (FMA).
We will derive the necessary calculus for our semi-analytic approach and formulate an algorithm
with which to semi-analytically simulate arbitrary stacks that are within the FMA coupling
regime. An important hallmark of semi-analytic modeling is the capability to reduce compu-
tational cost by only performing numerical calculations of certain individual layers of a stack.
Furthermore, the mathematical structure of S-matrices can be manipulated and analyzed for
closer insight into symmetries and polarization. Necessarily, we will check the numerical accu-
racy of the FMA, while demonstrating the use of our semi-analytic stacking algorithm (SASA),
compared to rigorous simulations. This is based on our publication “Efficient treatment of
stacked metasurfaces for optimizing and enhancing the range of accessible optical functionali-
ties” [145].

4.1 Fundamental mode scattering matrix formalism

4.1.1 Zeroth order scattering matrices

The FMA as derived in chapter 3 reduces the diffraction coefficients used in the FMM, sec. 2.4.
The S-matrices, as defined by Li’s [236], then reduce from a total size of 4·(2M+1)2×4·(2N+1)2,
for M × N Fourier orders in an FMM, to 4 × 4 matrices for zeroth order output. Concerning
the propagation of modes, a zeroth order S-matrix is now, conceptually, a Jones-vector-port
with Jones matrices for reflection R̂f,b and transmission T̂ f,b in forward and backward direction.
Thus, the 2×2 block matrix form is preserved and we can write for electric fields of two adjacent
layers, p and p+ 1, [

Ef
p+1

Eb
p

]
= S

[
Ef
p

Eb
p+1

]
=

(
T̂ f R̂b

R̂f T̂ b

)[
Ef
p

Eb
p+1

]
. (4.1)

Here, the S-matrix maps fundamental modes from the front to the back of the interface, layer
or stack it represents, depending on the propagation direction. These modes can constitute

44
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Figure 4.1: Schematic of a stack with arbitrary layers.

incident fields as well as transmitted or reflected fields from other layers. Based on the general
form eq. (2.51), the FMA star product for two arbitrary layers S1 and S2 reads [145]

S1 ∗ S2 =

 T̂ f2

(
Î− R̂b

1R̂
f
2

)−1

T̂ f1 R̂b
2 + T̂ f2 R̂

b
1

(
Î− R̂f

2R̂
b
1

)−1

T̂ b2

R̂f
1 + T̂ b1 R̂

f
2

(
Î− R̂b

1R̂
f
2

)−1

T̂ f1 T̂ b1

(
Î− R̂f

2R̂
b
1

)−1

T̂ b2

 , (4.2)

where x∗ denotes the star product and Î the 2-by-2 identity.1 Any number of FMA-valid layers
can be expressed as a cascade of S-matrices using the star product. S-matrices of metasurface
layers can be constructed from measured phase and intensity values or calculated numerically.
For any type of homogeneous layer, such as spacers between the metasurfaces, the S-matrices
follow from analytical equations. In our S-matrix formalism homogeneous layers are a combi-
nation of interface S-matrices Snp,np+1 and propagation S-matrices Snp,dp . For instance, a glass
plate of thickness dglass between two half spaces of air has the S-matrix representation

Sslab = Snair,nglass ∗ Snglass,dglass ∗ Snglass,nair . (4.3)

Here, the Snair,nglass reads as: interface when propagating from air to glass in forward direction
and vice versa in backward direction. This way we can stack any number of metasurfaces
together with arbitrary combinations of homogeneous layers. If we define SMS as the S-matrix
of an arbitrary periodic metasurface, we could construct a stack as shown in fig. 4.1 that is
constructed by

Sstack = SMS1 ∗ Sn1,d1 ∗ Sn1,n2 ∗ (Sn2,d2 ∗ SMS2 ∗ Sn2,d3) ∗ Sn1,d4 ∗ Sn1,n3 ∗ Sn3,d5 ∗ SMS3 (4.4)

Notice that no interface S-matrices are needed for the metasurfaces SMS, as they are themselves
conceptual interfaces. However, this means that simulations of these layers need to incorpo-

1Recall that all quantities with a hat are 2× 2 matrices.
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rate the correct embedding. Otherwise, additional spacer layers are needed in order to add
FMA-valid extra interfaces. In eq. (4.4) such a case is indicated by the parenthesis around
SMS2 , incorporating the surrounding spacers with d2,3 > dcrit(ΛMS2), as previously indicated in
fig. 3.3.e). If the FMA is valid for each individual layer, the entire stack can be considered
homogeneous.

4.1.2 Analytical scattering matrices

Interfaces and propagators

Interface and propagation S-matrices of homogeneous layers, both isotropic and anisotropic,
follow analytical expressions. The propagation S-matrix Sn,d manages phase evolution over
distance d. For an isotropic, homogeneous layer with index n it is defined as

Sn,d = Pn,d · diag(1, 1, 1, 1), (4.5)

with Pn,d = exp(ik0nd) and k0 = 2π/λ0 [145]. Correspondingly, the S-matrix Sn1,n2 of an
interface between isotropic, homogeneous media, n1 and n2, is populated by Fresnel equations
(2.23),

Sn1,n2 =


2n1

n1+n2
0 n1−n2

n1+n2
0

0 2n1

n1+n2
0 n1−n2

n1+n2

−n1−n2

n1+n2
0 2n2

n1+n2
0

0 −n1−n2

n1+n2
0 2n2

n1+n2

 . (4.6)

Anisotropic media with n → n = (nx, ny) break the symmetry of eq. (4.6) and introduce
polarization effects. This includes, for instance, uniaxial crystals with their principal axes
aligned to the Cartesian coordinate system of the fields’ Jones vectors2 while propagating, per
definition, in z-direction. Hence, for linear polarization parallel to the principal axes (x and y)
the S-matrix phase propagator splits,

Sn,d = diag(Pnx,d,Pny ,d,Pnx,d,Pny ,d). (4.7)

Similarly, the interface between two anisotropic media additionally handles polarization,

Sn1,n2 =


2nx1

nx1+nx,2
0 nx1−nx2

nx1+nx2
0

0 2ny1

ny1+ny2
0 ny1−ny2

ny1+ny2

−nx1−nx2

nx1+nx2
0 2nx2

nx1+nx2
0

0 −ny1−ny2

ny1+ny2
0 2ny2

ny1+ny2

 . (4.8)

2And, thus, the S-matrix’s coordinate system.
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To give a quick example, a Fabry-Pérot cavity with a crystal layer characterized by n2 and
sandwiched between two different isotropic layers n1 and n3 can be written as

S = Snair,n1 ∗ Sn1,d1 ∗ Sn1,n2 ∗ Sn2 ∗ Sn2,n3 ∗ Sn3,d3 ∗ Sn3,nair . (4.9)

The interface between isotropic and anisotropic layers Sni,ni+1
can be constructed as a hybrid

of eqs. (4.6) and (4.8).

Propagating a scattering matrix

We can propagate any S-matrix S by star-product-multiplication of a propagator Sn,d. Given
the correct boundary conditions, i.e. propagating with the same refractive index as the substrate
or cladding of this specific S-matrix, we can propagate in front of S by

Sn,d ∗ S =


PxT fxx PxT fxy Rb

xx Rb
xy

PyT fyx PyT fyy Rb
yx Rb

yy

P2
xR

f
xx PxPyRf

xy PxT bxx PxT bxy
PyPxRf

yx P2
yR

f
yy PyT byx PyT byy

 , (4.10)

where we simplified the notation of the scalar factors Pnx,y ,d → Px,y for readability. As we
can see, the structure of S and, thus, its symmetry are preserved. The front reflection matrix
R̂f adds twice the phase because light takes a full round trip through the extra layer. If we
propagate S from the back with S ∗ SPn,d the squared factors are applied to R̂b.

4.1.3 Transformation rules for scattering matrices

Another important tool of our S-matrix formalism are transformations of S-matrices and their
block elements. In effect we can transform the constituent Jones matrices to any polarization
base. Additionally, there are transformations that map directly to the metasurfaces as geo-
metrical or symmetry operations. We will begin by introducing the general 2× 2 block matrix
transformation.

Block matrix transformation

In order for our formalism to be self-consistent, transformations have to be applied to both the
fields and the S-matrix handling the ports of a given layer. We investigate the interaction of
incident fields Ef,b

p,p+1 with an arbitrary S-matrix S of layer p + 1. Let Ω̂ be an arbitrary, well
defined 2× 2 transformation matrix, such that

Ef,b
p,p+1 = Ω̂Ēf,b

p,p+1. (4.11)
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Using the vector form of eq. (4.1) we get a basis transformation of the Jones matrices,

Ēf
p+1 = Ω̂−1T̂ f Ω̂Ēf

p + Ω̂−1R̂bΩ̂Ēb
p+1, (4.12)

Ēb
p = Ω̂−1R̂f Ω̂Ēf

p + Ω̂−1T̂ bΩ̂Ēb
p+1. (4.13)

Thus, the corresponding transformed S-matrix can be written as

S̄ =

(
ˆ̄T f ˆ̄Rb

ˆ̄Rf ˆ̄T b

)
:=

(
Ω̂−1T̂ f Ω̂ Ω̂−1R̂bΩ̂

Ω̂−1R̂f Ω̂ Ω̂−1T̂ bΩ̂

)
=: Ω−1SΩ, with Ω :=

(
Ω̂ 0̂

0̂ Ω̂

)
, (4.14)

where 0̂ is a 2 × 2 matrix of zeros. As defined above, Ω is a transformation block matrix
that can be applied to any 4 × 4 S-matrix. Inverting a block matrix such as Ω is the same
as inverting its comprising matrices. Note that Ω is defined within the forward coordinate
system of the S-matrix. Thus, all backward modes are generally seen in the forward coordinate
system. Allowing the backward Jones matrices to preserve their laboratory coordinate system
would translate to a flip (see below) of the entire stack and its coordinate system. Hence, the
Cartesian basis would transform as x

b

yb

zb

 =

 xf

−yf

−zf

 . (4.15)

For consistency and without loss of generality, all calculations will be performed in the forward
coordinate system.

Basis transformation: Cartesian to circular

As a first example we will demonstrate a transformation from a linear to a circular polarization
basis. In our formulation of the S-matrix formalism the standard basis is linear. To transform
to a circular basis we need to construct Ω̂ from circular eigenvectors [200],

Ω̂circ =
1√
2

(
1 1

i −i

)
. (4.16)

Plugging eq. (4.16) into (4.14) we get the S-matrix in a circular basis,

Scirc = Ω−1
circSΩcirc =

(
T̂ fcirc R̂b

circ

R̂f
circ T̂ bcirc

)
=

(
Ŝ11

circ Ŝ12
circ

Ŝ21
circ Ŝ22

circ

)
, (4.17)
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Figure 4.2: Illustration of the effect of symmetry operations on a metasurface. Each column
shows a different operation: rotation, mirror, and flip. For the latter, the exemplary metasurface
comprises Ls on one side and wires on the other to showcase the effect of the flip.

where each S-matrix Ŝijcirc element follows from

Ŝijcirc =
1

2

(
Sijxx + Sijyy + i(Sijxy − Sijyx) Sijxx − Sijyy − i(Sijxy + Sijyx)

Sijxx − Sijyy + i(Sijxy + Sijyx) Sijxx + Sijyy − i(Sijxy − Sijyx)

)
, (4.18)

with i, j ∈ {1, 2}. Staying in the forward coordinate system, all transformations of the Jones
matrices have the same structure.

Symmetry operations

Similar to the basis transformation demonstrated above, we can perform symmetry operations
on an S-matrix. These include: mirroring, rotation about the propagation (z) axis, and a flip
around the x- or y-axis. Each of these operations mimics a physical operation on the metasur-
face represented by the S-matrix. Fig. 4.2 gives a visual reference of the following.

Rotating an S-matrix in the transversal plane maps the counterclockwise rotation matrix
R̂φ onto each Jones matrix, while preserving the forward coordinate system. For mathematical
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rotation around φ of an arbitrary 2D matrix Â, R̂φ is defined by

Âφ = R̂−1
φ ÂR̂φ, with R̂φ =

(
cosφ − sinφ
sinφ cosφ

)
. (4.19)

Using eq. (4.14) with Ω̂φ := R̂φ the rotation of the S-matrix follows immediately,

Sφ = Ω−1
φ SΩφ =

(
R̂−1
φ T̂ fR̂φ R̂−1

φ iR̂bR̂φ

R̂−1
φ R̂fR̂φ R̂−1

φ T̂ bR̂φ

)
. (4.20)

Rotation is a symmetry operation on the relative coordinate system of the fields, represented
by the transformed Jones matrices or a rotation of the metasurface (fig. 4.2.a,b). Rotating
either has the same effect on the symmetry of the S-matrix and, thus, the polarization of the
fields. This will be important in the discussion of chiral metasurface stacks in sec. 5.1.

Mirroring an S-matrix applies the two-dimensional mirror matrix M̂ . For an arbitrary 2D
matrix Â the mirror operation with respect to a transversal coordinate axis is defined by

ÂM := M̂−1
± ÂM̂± , with M̂± :=

(
∓1 0

0 ±1

)
. (4.21)

The upper sign in M̂± denotes the operation with respect to the y-z-plane whereas the lower
one is with respect to the x-z-plane. For brevity we will use the latter as our standard mirror
plane. Since M =MT =M−1 the block transformation simply reads

SM = ΩMSΩM =

(
M̂T̂ fM̂ M̂R̂bM̂

M̂R̂fM̂ M̂T̂ bM̂

)
. (4.22)

The physical effect of mirroring the S-matrix is shown in figs. 4.2.c,d).

Flipping of an S-matrix means rotating it 180° about a transversal axis. This effectively
flips the front and back side of the metasurface (fig. 4.2.e,f). The operation on the S-matrix is,
therefore, slightly more complex as it entails swapping front and back Jones matrices. Addi-
tionally, the 180° longitudinal rotation mirrors the structures about the orthogonal axis of the
rotation axis. The flipped S-matrix is a combination of a point reflection of its block elements
and the mirror operation,

SF = ΩMΩISΩIΩM = ΩFSΩF =

(
M̂T̂ bM̂ M̂R̂fM̂

M̂R̂bM̂ M̂T̂ fM̂

)
,with ΩI :=

(
0̂ Î

Î 0̂

)
, ΩF :=

(
0̂ M̂

M̂ 0̂

)
.

(4.23)
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In the following we will summarize the effect of symmetry operations on isotropic and anisotropic
metasurfaces.

4.1.4 Symmetry operations on propagators and interfaces

It is obvious that symmetry operations will have varying effects on different types of S-matrices.
A structural overview of this would be helpful both for the understanding of asymmetric field
interaction and efficient computation later on. First, we apply the transformation block matrices
Ωφ, ΩM, and ΩF to the analytical S-matrices for propagation (eqs. (4.5), (4.7)) and interfaces
(eqs. (4.6), (4.8)), both isotropic and anisotropic. The result shows us if a symmetry operation
has an effect or not, summarized in table 4.1.

The results are intuitive and map directly to metasurfaces of the same symmetry class (i.e.
C4 and C2). Anisotropy is needed for rotations to have any effect. Flipping a propagator is
meaningless. Flipping interfaces, however, reverses the order of refractive indices, ΩFSn1,n2ΩF =

Sn2,n1 in either case. Interestingly though, mirroring has no effect on neither Sn1,n2 nor Sn,d.
Looking at the illustration in fig. 4.2 it becomes clear, that an additional break in symmetry
is necessary for effective mirroring. At the very least the transmission matrices of the S-matrix
need cross polarization components to populate their off-diagonals [200]. Such a case is discuss
later in sec. 5.1.

The question remains what happens when an isotropic or anisotropic layer is adjacent to
an anisotropic layer that is rotated. This could be the case for a crystal rotated about the
propagation axis. Then, it would be a mistake to rotate the interface S-matrix of the two
layers because that would effectively apply the operation to both. In order to perform the
transformation with Ωφ separately we can employ a trick. It is possible to insert a dummy
layer with refractive index n0 between the two layers. Then, by trait of the star product, the
interface can be split such that,

Sn1,n2 ≡ Sn1,n0 ∗ Sn0,n2 . (4.24)

Propagator Sn,d Interface Sn1,n2

Operation isotropic anisotropic isotropic anisotropic
Ωφ × ✓ × ✓
ΩM × × × ×
ΩF × × ✓ ✓

Table 4.1: Summary of the effect of symmetry operations on propagation and interface S-
matrices of homogeneous layers. Check marks and crosses indicate the presence or absence of
resulting effects, respectively.
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aniφ-iso iso-aniφ aniφ-ani ani-aniφ aniφ-aniφ
Sφn1,n0

∗ Sn0,n2 Sn1,n0 ∗ Sφn0,n2
Sφn1,n0

∗ Sn0,n2 Sn1,n0 ∗ Sφn0,n2
Sφn1,n0

∗ Sφn0,n2

Table 4.2: Overview of anisotropic interface rotations. The header defines the type of inter-
faces, abbreviating iso for isotropic and ani for anisotropic.

In that regard eq. (4.24) is something like an identity of the star product of interfaces. We
can exploit it to correctly apply the rotation on just one half of the interface matrix. Table 4.2
summarizes all possible interface combinations in our formalism.

4.1.5 Implementation of SASA

The FMA-based S-matrix formalism described in section 4.1 is an analytical framework for
calculating stacks of arbitrary layers in all possible combinations. S-matrices of metasurfaces
can be simulated numerically and combined with analytical S-matrices with the same options for
transformations. Hence, in combination it forms the starting point of a semi-analytic stacking
algorithm (SASA). A full description of SASA for MATLAB can be found in appendix A.2. At
a later stage SASA was also transferred to Python. Furthermore, all analytical elements of the
S-matrix formalism were implemented in Wolfram Mathematica. To a large part, Mathematica
was used to simplify and structure the calculus for MATLAB and Python. Lastly, SASA for
MATLAB (or Python) is fully vectorized, so that all operations can be performed over the
complete discretized wavelength interval as array-operations. In that regard, the star product
was numerically optimized for an efficient calculation of vectorized block matrix elements.

4.2 Numerical validation

In the previous section 4.1 we have introduced an FMA version of the classical S-matrix for-
malism used in the FMM [208, 210]. While the simplification is physically meaningful within
the realm of homogenization, it is also utilitarian. The resulting algorithm SASA is applicable
to a broad range of metasurface stacks and very efficient at handling large parameters spaces3.
This is a result of the analytical component of SASA. The numerical component, i.e. the com-
bination with pre-calculated metasurfaces, relies on the accuracy of the FMA. In other words,
does a zeroth order S-matrix calculation compare well to a rigorous, higher order simulation?

In the following we will test the numerical accuracy of the FMA and, hence, SASA for
different metasurface stacks of varying complexity. All simulations are carried out over the same

3Especially, wavelengths and layer heights.
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Figure 4.3: a) Rendering of a stack of two identical nano-wire metasurfaces. b) The same
stack as a) but with the lower layer rotated by 90°. c) Plot of the maximal difference ∆Sij(d)
between the FMM and SASA simulation of the corresponding stack. The horizontal and vertical
dashed lines show the set accuracy σ and corresponding critical distance dcrit, respectively.

frequency range4 ν ∈ [100 THz, 500 THz], equivalent to the approximate vacuum wavelength
interval λ ∈ [0.6 µm, 3 µm]. For quantifying the difference between rigorous and semi-analytic
simulations we will use the maximal difference between S-matrix components [145]

∆Sij(d) := max
ω

∣∣∣|Srig
ij (ω, d)|2 − |SSASA

ij (ω, d)|2
∣∣∣ . (4.25)

The analysis of numerical results is based on our publication [145].

4.2.1 Stacks of parallel and orthogonal nano-wires

We start with a stack two identical nano-wire metasurfaces with period Λ = 300 nm, embedded
symmetrically in glass and separated by a glass spacer. The wires are comprised of gold with
length l = 240 nm, width w = 60 nm, and height (in z-direction) h = 30 nm. We investigate two
versions of this stack: parallel wires (the same metasurface twice, fig. 4.3.a) and orthogonal
wires (the bottom metasurface rotated by 90°, fig. 4.3.b). The first stack is, in total, C2

symmetric and second C4. Hence, the orthogonal wires behave isotropically and have only one
unique coefficient in transmission, Txx. In case of the parallel wires a second component, Tyy,
has to be considered additionally, accounting for linear co-polarization.

In the given wavelength range and for Λ = 300 nm the Wood anomaly is safely excluded
and the critical distance dcrit, eq. (3.30), shows flat behavior. Thus, choosing a high accuracy
σ = e−2π ≈ 2‰, the strictest measure of dcrit is found by inserting the smallest wavelength
λ = 600 nm which gives dcrit = 423 nm. Testing the exponential behavior of dcrit as well as the
numerical validity of the FMA we scanned the spacer distance d from 30 nm to 1000 nm.

4Here we use frequency instead of wavelength, because it reflects the harmonic dependence of the Drude-
Lorentz oscillator model. When comparing to experimental data, later on, we will switch to wavelengths.
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Figure 4.4: a) Rendering of a stack of two identical nano-L metasurfaces. b) the same stack
as a) but with the lower layer rotated by 90°. c) Plot of the maximal difference ∆Sij(d) between
the FMM and SASA simulation of the corresponding stack. The horizontal and vertical dashed
lines show the set accuracy σ and the corresponding critical distance dcrit, respectively.

First, we simulated the stack rigorously using the FMM [209, 218] 5. The wires’ gold was
modeled using a gold Drude-Lorentz model and glass was defined as n = 1.41 (see appendix
A.1). Then, we simulated an individual nano-wire metasurface, using FMM, and plugged it into
SASA’s framework. Here, we calculated the rotated metasurface using the rotation operation
Ωπ/2, eq. (4.20). The difference between the resulting S-matrix components ∆Sij(d) is plotted
for transmission in fig. 4.3.c) for both stacks.

We can clearly observe an exponential decay as expected from our derivation in eq. (3.29),
similar for all components. The non-monotonic fluctuations of their decay are due to oscillations
from occurring Fabry-Pérot resonances. Nevertheless, the difference ∆Sij(d) drops below the
limit set by σ when crossing the threshold of dcrit towards larger distances.

4.2.2 Stacks of parallel and orthogonal nano-Ls

For our next test we increase the complexity of the stack by breaking the symmetry of the
metasurfaces, using Ls instead of wires. Using the same period as before, Λ = 300 nm, their
arm lengths measure lx = 160 nm and ly = 240 nm, with a width w = 60 nm and height
h = 30 nm. Once again, we consider two cases with parallel and orthogonal Ls, fig. 4.4.a) and
b), respectively.

A single L particle has no in-plane symmetry and produces elliptically polarized light [200].
In addition to Txx and Tyy it is therefore necessary to consider the cross-polarization component
Txy = Tyx. Intuitively, the same is true for stacked parallel Ls. The combination of orthogonal
Ls, on the other hand, increases the symmetry of the stack, eliminating all cross-polarization
components.

5see sec. 2.4
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Figure 4.5: Plotted amplitudes (indigo lines) and phases (teal lines) of a stack of parallel Ls
with a spacer distance d = 150 nm. The first and second column show the Jones matrix in
forward transmission T̂ f (components annotated in the corners). The third and forth column
show the Jones matrix in forward reflection R̂f .

Using the same methods and materials as in the previous section we simulated both stack
variants rigorously with the FMM and semi-analytically with SASA. The rotation of the lower
metasurfaces in SASA was performed once more using Ωπ/2. The comparison of both approaches
is plotted in fig. 4.4.c) for excitation with x-polarized light.

Very similar to the wire-metasurfaces we see an exponential decay of the error for increasing
layer distances modulated by Fabry-Pérot oscillations. With the same accuracy level σ = e−2π

and identical periods, dcrit is the same. Again, the error drops below σ when passing the
threshold of dcrit. Interestingly, the difference of Txy (cyan line) from the orthogonal Ls is not
constantly zero. For distances d < dcrit we see it grow until it crosses the σ threshold shortly
after d = 150 nm. Although symmetry forbids cross-polarization it does appear in the near-field
coupling regime of the stack. Hence, bi-anisotropic coupling might occur for very small spacer
distances [120, 122, 181].

In the FMA regime (d > dcrit) symmetry fully determines polarization [146]. For closer
insight we plotted amplitude and phase for forward transmission and reflection of both stacks
at a distance of d = 150 nm. Fig. 4.5 shows the results for parallel Ls and fig. 4.6 for orthogonal
wires. In all instances the phase was normalized by k0. At the scale of the plots FMM and
SASA match very well, even for a spacer distance smaller than dcrit.

The symmetry of the stack of parallel Ls is clearly visible in fig. 4.5, with Txx ̸= Tyy,
Txy = Tyx and Rxx ̸= Ryy, Rxy = Ryx. The orthogonal counterpart shown in fig. 4.6 is C4
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Figure 4.6: Plotted amplitudes (indigo lines) and phases (teal lines) of a stack of orthogonal
Ls with a spacer distance d = 150 nm. The first and second column show the Jones matrix in
forward transmission T̂ f (components annotated in the corners). The third and forth column
show the Jones matrix in forward reflection R̂f . The cross-polarization of forward transmission
resulting from SASA, both amplitude and phase, is exactly zero, due to symmetry. The FMM
result is numerically zero in amplitude and, thus, shows an arbitrary phase.

symmetric in transmission, with Txx = Tyy, Txy = Tyx = 0, but has the same symmetry as
the parallel version in reflection. This is due to the number of passes light travels through the
stack. Reflected light sees the upper layer twice: when entering the stack and flipped when
exiting the stack. These kinds of propagation related symmetry effects are discussed again in
secs. 5.1 and 6.3.

4.2.3 Super-periodic stack of Ls and wires

One of the major advantages of stacking semi-analytically is the separate simulation of complex
layers. This allows SASA to stack metasurfaces of unequal periods without the need for super-
cell computations [151]. If the periods of two layers are different, their ratio will determine the
necessary computational domain of a rigorous simulation. Then, the smallest commensurate
number of periods from each layer defines their super-cell with a super-period. With ratios
tending towards incommensurability the domain can get impractically large6. SASA completely
circumvents this issue.

To check SASA’s capability we simulated a stack of two metasurfaces with different periods

6In sec. 5.2 we will demonstrate the experimental realization of a pseudo-incommensurable stack.
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Figure 4.7: a) Rendering of a stack of a wire- and an L-metasurface. b) Illustration of the
stack super-cell, comprised of the smallest commensurate number of periods from each layer.
The lower layer of Ls is colored red and the upper layer of wires yellow. Each layer’s unit
cell is asymmetric with a different period in x- and y-direction.c) Sketch of each particle with
annotations of parameter definitions.

and particles. The upper metasurface is comprised of gold wires and the lower of gold Ls (fig.
4.7.a,b). Both layers have the same height h = 30 nm. The array of wires has a period of
ΛW,x = 333.3 nm and ΛW,y = 133.3 nm, a length of lW,x = 200 nm and a width wW = 50 nm.
The array of Ls has a period of ΛL,x = 250 nm and ΛLy = 333.3 nm, arm lengths of lL,x = 180 nm
and lL,y = 250 nm, and a width wL = 60 nm. The geometrical parameters are referenced in fig.
4.7.c). The super-period of both layers is Λx = 1000 nm and Λy = 666.6 nm. Embedding and
spacer are again comprised of n = 1.41 glass.

Because a full FMM is impractical for this kind of super-cell we employed instead the
Finite Difference Time Domain (FDTD)7 method. Using the FDTD software package MIT
Electromagnetic Equation Propagation (MEEP) [237] we chose a spatial resolution of 2 nm for
computing the S-matrices. This was necessary to run the super-cell calculation in parallel
mode. The S-matrices were then constructed manually by calculating the x- and y-polarized
zeroth order transmitted Tij and the reflected Rij complex fields, which resulted from x- and
x-polarized normally incident plane wave excitation. Here, the reflected and transmitted fields
are defined with respect to planes 20 nm in front and behind the metasurfaces, respectively.

For the individual arrays of wires and L’s a single period was used in the FDTD, drastically
decreasing the numerical efforts compared to the super-cell calculation necessary for the stacked
system. Furthermore, due to the mirror symmetry with respect to the x-y-plane and the
reciprocity [201] of the system the S-matrices of each individual layer could be constructed

7This is the only time in this thesis an FDTD is used.



58 CHAPTER 4. SEMI-ANALYTIC STACKING ALGORITHM

200 300 400 500
frequency (THz)

200 300 400
frequency (THz)

200 300 400
frequency (THz)

200100 300 400
frequency (THz)

0.8

1.6

2

0.4

1.2

no
rm

.p
ha

se

0.8

1.6

2

0.4

1.2

no
rm

.p
ha

se

0.1

0.3

0.5

0.7

0.9

am
pl

itu
de

0.1

0.3

0.5

0.7

0.9

am
pl

itu
de

phase (FDTD)
phase (SASA)

amp. (FDTD)
amp. (SASA)

Txx Rxx

Ryx

Rxy

RyyTyx

Txy

Tyy

Figure 4.8: Plotted amplitudes (indigo lines) and phases (teal lines) of a stack of wires and
Ls with a spacer distance d = 250 nm. The first and second column show the Jones matrix in
forward transmission T̂ f (components annotated in the corners). The third and forth column
show the Jones matrix in forward reflection R̂f .

based on the transmission and reflection coefficients for illumination in forward direction,

SW =


[T fxx] 0 Rb

xx 0

0 [T fyy] 0 Rb
yy

[Rf
xx] 0 T bxx 0

0 [Rf
yy] 0 T byy

 , SL =


[T fxx] [T fxy] Rb

xx Rb
xy

T fxy [T fyy] Rb
xy Rb

yy

[Rf
xx] [Rf

xy] T bxx T bxy

Rf
xy [Rf

yy] T bxy T byy

 . (4.26)

Only the coefficients in brackets had to be determined to get the full S-matrices. The highest
estimate of the critical distance for this stack is determined by the largest period, i.e. ΛW,x =

ΛLy = 333.3 nm. With the other parameters set identical to the ones of the preceding sections
the critical distance becomes dcrit = 536.1 nm. Furthermore, as we learned from the stacks
prior, a high accuracy σ = e−2π is not strictly necessary, we chose for the L-wire stack d =

250 nm < dcrit/2.
The results in fig. 4.8 clearly show a good fit between the full FDTD and FDTD-based

SASA. As a conclusion, for future stack designs we can choose σ one ore two magnitudes higher,
especially when considering experimental accuracy [146,148,151]. Concerning the polarization
symmetry there is, again, a difference between transmission and reflection. In transmission,
the symmetry is completely broken, whereas in reflection the symmetry of the Ls prevails.
Strangely, both wires and Ls have at least one symmetry and it is counter-intuitive that the
transmission Jones matrix is completely asymmetric. The reason behind this will be discussed
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in sec. 5.1.
To conclude, we could show that SASA is numerically accurate within the FMA and works

with data supplied by different methods. Furthermore, the S-matrix structure together with
symmetry considerations make a good tandem in designing and analyzing the polarization of
stacks.



5 | Experimental realization of complex stacks

In this chapter we apply the semi-analytic stacking algorithm (SASA) to two experimentally
realized metasurfaces stacks. We will begin by analyzing the polarization response of a chiral
metasurface stack comprised of twisted nano-wires. By taking advantage of the mathematical
structure of S-matrices we will show how anisotropy can be designed from symmetry con-
siderations. Based on measurements of a fabricated chiral metasurface stack we formulate a
SASA model which we utilize to show the spacer height dependence of the stack’s polarization
behavior. This is based on our publication “Analyzing the polarization response of a chiral
metasurface stack by semi-analytic modeling” [238].

In the second half of this chapter we compose an isotropic metasurface stack with a pseudo-
incommensurable period ratio. This ratio is as close as we can get to actual incommensurability
within fabrication precision, but still creates a super-period that is orders of magnitude larger
than that of the unit cells comprising each metasurface layer. Moreover, while experimentally
demonstrating SASA’s capability, we test the validity of the FMA beyond its breaking point.
We will analyze 23 versions of the pseudo-incommensurable stack, each varying in spacer height
such that we can observe the transition between the coupling regimes discussed in sec. 3.4. This
was published in our paper “Experimental validation of the fundamental mode approximation
for stacked metasurfaces and its application to the treatment of arbitrary period ratios” [151].

5.1 Analysis of a fabricated chiral metasurface stack

Anisotropic metasurfaces can be engineered to manipulate polarization generating effects such
as asymmetric transmission [114, 115, 239], dichroism [116, 117] or optical activity [118, 119].
If the geometry of the structures used is such that they cannot be superposed with their
mirror, image they become chiral and can produce a chiral polarization response in turn [85].
To be intrinsically chiral, structures have to be three-dimensional or volumetric [121–124].
Nevertheless, two-dimensional structure designs have been demonstrated which also achieve a
chiral polarization response through engineered near-fields [127, 132]. A prominent example
are resonant particles such as asymmetric split ring resonators [131, 132]. Other approaches
use bianisotropically coupled bilayers of metasurfaces. Here, bianisotropy is induced through

60
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Figure 5.1: a) Rendering of a chiral metasurface stack comprised of twisted nano-wires. b)
Sketch of a cut through the y-z-plane of the chiral stack showing its vertical structure. From
top to bottom: cover layer of height dC , twisted wire-metasurface of height h, spacer layer of
thickness dS, and wire-metasurface of same height h on a glass substrate. c) Sketch of the
stacked unit cells of each metasurface layer. The wires in each layer are of identical size.

near-field coupling between the layers and can create or enhance chiral polarization effects
[115,134–136]. Following this approach achiral particles like wires [137,143] or crosses [138,139]
can be rotated with respect to each other to achieve chiral polarization effects [140].

Here, we consider two layers of wire-metasurfaces. To establish our model of the chiral stack
we begin by considering two metasurfaces that are separated by a spacer of thickness dS, a half
space of glass as a substrate and air as the cladding. For the experimental realization we add
a cover layer of thickness dC at the top of the stack (fig. 5.1.a,b).

The lower metasurface is comprised of parallel nano-wires, measuring w × l× h, aligned to
the y-axis, and arranged in a square lattice. The upper metasurface is of the same type as the
lower one but its wires are rotated counterclockwise by angle α (fig. 5.1.c).

5.1.1 Deducing polarization from scattering matrix structure

In the following, we will use SASA to analyze the polarization behavior of the stack qualitatively
from the structure of its S-matrices using only symbolic representations of their coefficients1.
Here, only the S-matrices of the metasurfaces are relevant. The homogeneous and isotropic
layers only propagate the phase and do not affect the symmetry, as shown in eq. (4.10).

The S-matrices of two wire-based metasurfaces from fig. 5.1a,c) can be constructed analyt-
ically. We make the following assumptions: the particle geometry is identical in both meta-
surfaces, one has wires aligned to the y-axis, the other wires rotated by an angle α about the
z-axis, and both are symmetrically embedded. Similar to the connection of unit cell symmetries
and the corresponding Jones matrix symmetries [145,188] we can derive each of our S-matrices

1Calculated using a Mathematica implementation of SASA.
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by considering the polarization properties of nano-wires2. A nano-wire will have a different
polarization response depending along which axis it is excited. Furthermore, its response is
reciprocal [201] making its S-matrix C2-symmetric [240]. Correspondingly, the S-matrix of a
wire-metasurface SW is written as

SW =


Tx 0 Rx 0

0 Ty 0 Ry

Rx 0 Tx 0

0 Ry 0 Ty

 , (5.1)

where the single-letter subscript of the coefficients gives credit to the cross-polarization free
response. For the twisted wires we can approximate the rotation by an angle α of the wires
in the unit cell by applying a rotation to SW [145, 241]. However, this implies a rotation of
the entire metasurface. The complex coefficients of the S-matrix will differ slightly to the unit
cell rotated case. This is due to different alignment of the wires towards each other in the
lattice [241]. Nevertheless, if no near-field coupling occurs between the two metasurfaces, the
same polarization characteristic is achieved as in the unit cell rotated case. This is sufficient for
our main objective, which is the structure of the S-matrix. Thus, using eq. (4.20) the S-matrix
of rotated wires is generally given by

SαW = Ω−1
α SWΩα =


T αxx T αxy Rα

xx Rα
xy

T αxy T αyy Rα
xy Rα

yy

Rα
xx Rα

xy T αxx T αxy

Rα
xy Rα

yy T αxy T αyy

 , (5.2)

where the angular dependent coefficients read: T αxx = Tx cos2 α + Ty sin2 α, T αyy = Ty cos2 α +

Tx sin2 α, T αxy = (Ty−Tx) cosα sinα, Rα
xx = Rx cos2 α+Ry sin2 α, Rα

yy = Ry cos2 α+Rx sin2 α, and
Rα
xy = (Ry−Rx) cosα sinα. Notice that all cross-polarization components are identical. Hence,

although SαW may produce cross-polarization it is unable to produce asymmetric transmission
∆x,y (eq. (2.40) in sec. 2.3)3.

2See also the discussion on wire metasurfaces in sec. 4.2.1.
3The asymmetric transmission ∆x,y vanishes for equal cross-polarization.
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To judge the symmetry of the full stack we combine SW and SαW with a spacer SdS ,n
(eq. (4.5)).4 Performing the star product on the three S-matrices results in [151]

Sstack = SαW ∗ SdS ,n ∗ SW =


T̄xx T̄xy R̄b

xx R̄b
xy

T̄yx T̄yy R̄b
xy R̄b

yy

R̄f
xx R̄f

xy T̄xx T̄yx

R̄f
xy R̄f

yy T̄xy T̄yy

 . (5.3)

The explicit expressions of the resulting coefficients can be found the in appendix A.4.1. Now
asymmetric transmission ∆x clearly emerges with T̄xy ̸= T̄yx and, thus, potentially produces
chiral light.5 This is somewhat surprising because each individual layer is evidently achiral. The
answer lies in the consecutive interactions with each layer. As discussed in sec. 4.1.3 whether
the electromagnetic fields are transformed or S-matrices (i.e. layers) is relative. Hence, each
interaction of a field with an S-matrix can be understood as a transformation that maps the
S-matrices’ symmetry onto the field symmetry. Each asymmetry accumulates in an increas-
ingly more broken symmetry of the fields. If we imagine x- or y-polarized light interacting with
SαW , both will experience the same symmetry operation. However, because of the C2 symmetry
of SW the already symmetry-broken fields will interact differently, depending on their initial
polarization.6 This presents us with an avenue towards asymmetric transmission, and in that
regard chirality, based on (multi-) layered symmetry. This is conceptually different to choos-
ing intrinsically chiral meta-atoms [114, 115, 239, 242] or designing bianisotropic coupling im
metamaterials [120, 243–246].

In the following section we will test whether the predictions using purely symbolic expres-
sions hold true for a fabricated version of the stack discussed above.7

5.1.2 Analysis of a fabricated stack by semi-analytic modeling

It was shown experimentally by Zhao et.al. [142] that multiple layers of successively rotated
nano-wires can form a so called twisted metamaterial with a chiral polarization response in the
absence of near-field coupling. In addition, their work demonstrated that lateral layer alignment
during fabrication could be ignored in this type of stacked metasurface [143]. Both cases are, in
essence, demonstrations of the FMA. Layer alignment is irrelevant because fundamental mode
coupling homogenizes each metasurface.8.

4While the spacer is physically necessary for the validity of the FMA we can ignore the cover layer on top.
5That is, light with a handedness, such as circularly or elliptically polarized light.
6The interaction can be understood as a coupling between dipoles of the wires and the incident fields [38,39].

Depending on polarization and orientation of the wires there will be a different ”preferred” direction.
7A comparison between a twisted-wire-stack modeled with unit cell rotation versus the analytic layer rotation

can be found in appendix A.3.
8This reflects the conceptual transition shown in fig. 3.3.
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Figure 5.2: a) Scanning electron microscope (SEM) image of the fabricated twisted-wire
stack. The two insets in the upper corners show SEM images of the upper (left) and lower
(right) metasurface layer. The main SEM image shows a focused ion beam (FIB) cut, revealing
the complete stack. Nano-wires were colored golden for better visibility. b) Coupling phase
diagram (CPD) of the fabricated stack with period Λ = 400 nm and dcrit-accuracy σ = 1%. The
horizontal dashed line shows the spacer height dS = 345 nm. The vertical dashed line shows
the corresponding wavelength cut-off for FMA validity.

Here, we will analyze a stack of only two twisted wire-metasurfaces in order to understand,
precisely, how the chiral response depends on the layer separation. For this, we fabricated a
stack resembling the one shown in fig. 5.1.a) and analyzed it both experimentally, rigorously
with an FMM, and approximately using SASA.

We chose equal periods with Λ = 400 nm and aligned unit cells for both metasurfaces. The
rotation angle of the upper layer metasurface’s wires was set to α = 60°. During fabrication
of each metasurface we applied a two-step electron beam lithography process.9 They were
structured by exposure of a two layer electron beam resist (150 nm Allresist ARP617.08 and
on top of that 100 nm Allresist ARP6200.4) with a variably shaped electron beam (Vistec, SB
350). This was followed by chemical development and coating by gold evaporation. Finally, we
applied a lift-off process to remove the resist. During this process we produced two fields of the
same metasurface as the lower layer of the stack. The spacer layer was spin-coated (Futurrex
IC1-200) on top of both fields, tempered at 200 °C for half an hour and etched to the desired
spacer height using Argon ion beam etching. We produced two versions of the stack: spacer
thickness dS = 40 nm on one field and dS = 345 nm on the other.

Then, the top-layer metasurface was fabricated with the same processes as the lower one.
In this way, we made sure that both versions were comparable with nearly identical structures.
Finally, a cover layer was spin-coated to dC = 900 nm. In total the field size of each fabricated
sample was 2×2 mm2.

9Sample fabrication was performed by Stefan Fasold at facilities of the Institute of Applied Physics in Jena.
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Figure 5.3: Transmittance (right axes) and phase (left axes) of the fabricated stack with
dS = 345 nm based on SASA (indigo and teal solid lines), FMM (cyan and green dotted lines)
and experiment (wine and olive solid lines). For comparison, the stack version with dS = 40 nm
is plotted as dashed lines (rose and yellow). Blue-tinted and red-tinted line colors refer to
transmission. Green and yellow tints refer to phase. The annotation in the top right corner of
each plot denotes the corresponding Jones matrix coefficient.

A scanning electron microscope (SEM) image of the resulting stack with dS = 345 nm is
shown in fig. 5.2.a), where parts of the layers were removed with a focused ion beam (FIB)
to reveal the structures underneath. The average dimensions of the nano-wires of both layers,
acquired by evaluation of the SEM images, are almost identical, with: lL = 235 nm, wL = 75 nm,
hL = 50 nm, lU = 225 nm, wU = 75 nm, and hU = 75 nm, with l, w, and h defined in fig. 5.1.b,c).
The subscripts L and U denote the lower and upper layer, respectively.

With a common period of Λ = 400 nm the CPD of the stack (fig. 5.2.b) tells us, that the
spacer version dS = 40 nm is definitely near-field coupled. The larger spacer, however, lies with
dS = 345 nm at the asymptotic boundary of dcrit. As we saw in sec. 4.2, dS = dcrit/2 could still
be tolerable. Whether this and the presence of the diffraction regime for λ < 700 nm disrupts
our SASA model is an open question.

We characterized the stack in our target wavelength range from 600 nm to 1620 nm using
an interferometric setup10 which measures both the transmitted intensity (transmittance) and
phase in a linear polarization basis.11 The diameter of the characterization beam on the sample

10Further details on the setup can be found in [122,247].
11The measurement was performed by Matthias Falkner at the Abbe Center of Photonics, Jena.
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was 2 mm, making sure that it was fully illuminated and no finite-size effects occurred. The
results for both variants of the stack are plotted in fig. 5.3, showing the fully reconstructed
Jones matrix in forward propagation. The plots show the transmittance as defined in sec. 2.2.2
because measurements detect intensities instead of the amplitudes [146].

For comparison, we developed a model of the dS = 345 nm version of the stack as a sequence
of layers. Since the sample was fabricated and characterized on a glass wafer, the substrate was
assumed to be a glass half-space. Both the spacer and the cover layer on top of the stack were
modeled analytically using equation (4.5). Likewise, the interfaces were calculated using the
interface S-matrix Si (4.6). The stack’s S-matrix Sstack is therefore composed by the cascaded
star product

Sstack = Snair,nSiO2
∗ SdC ,nSiO2

∗ SU ∗ SdS ,nSiO2
∗ SL, (5.4)

where SdC ,nSiO2
and SdS ,nSiO2

denote the S-matrices of cladding and spacer and Snair,nSiO2
the

cladding interface to air. The metasurfaces’ S-matrices are represented by SL and SU , referring
to the lower and upper metasurface, respectively.

The S-matrix coefficients of both metasurfaces SL and SU were calculated numerically as sin-
gle layers, using a self-implemented Fourier-Modal-Method (FMM) [218,248] and the geometric
parameters from SEM measurement. Based on a convergence test the FMM was truncated at
15 Fourier orders (in x- and y-direction). In case of the upper metasurface the nano-wires were
rotated individually in their unit cell in adaption to the fabricated sample. To account for the
corner rounding of the fabricated structures a curvature radius of 25 nm was assumed for the
corners of our model particles. As material parameters we used measured ellipsometric data of
evaporated gold and spin-on glass as they result from our fabrication process [249].

In addition to SASA a rigorous FMM of the full stack was performed to determine the
accuracy of the semi-analytical model. A rigorous FMM takes all evanescent and propagating
orders into account up to a set truncation limit (here: 15 Fourier orders) [218, 236]. Hence, a
direct comparison to SASA will help to indicate the validity of the FMA. As a side note, the
computation times of the rigorous FMM and SASA are compared in the appendix A.2.4.

The resulting transmittance and phase plots of both methods are shown together with the
experimental results in fig. 5.3 [146]. SASA and FMM results coincide perfectly, with respect
to the scale of the plot, both in transmittance and phase, indicating the validity of the FMA.
Notably, all the main features of the measured curves were reproduced. The difference to the
measured co-polarization components Txx and Tyy is comparatively small in transmittance and
almost identical in phase. The difference to the measured cross-polarization components Txy
and Tyx is more noticeable pertaining to their relatively low transmittance. The results confirm
the predicted asymmetric polarization behavior. Moreover, SASA holds in the experimental
test to both FMM and actual measurement data. The FMA coupling condition imposed by
dcrit seems to hold also for shorter wavelengths. Furthermore, since the Wood anomaly has no
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Figure 5.4: Linear asymmetric transmission (a) and ellipticity (b) derived from measurement
(solid lines) and SASA results (dashed lines). Indigo indicates x-polarized and cyan y-polarized
incident light. The colorbar on top of each plot shows the resonant bands determined by the
FWHM for min(Txx) and min(Tyy) of the upper and lower metasurfaces. (c)-(e): Asymmetric
transmission and ellipticity scanned over the spacer thickness from 40 nm to 1000 nm. (c)
Asymmetric transmission scanned for x-polarization. (d) and (e) display ellipticity for x- and
y-polarization. The red dashed line in each surface plot marks a spacer thickness of dS = 345 nm.

noticeable effect in either experimental or simulated results, the first diffraction order of this
particular stack appears to be negligible.

Compared to the dS = 40 nm version of the stack we can identify noticeable differences in
the measured spectra. In particular, the peak in Tyx exhibits a redshift of 150 nm for the thin
spacer stack. This indicates near-field coupling between the metasurfaces of the dS = 40 nm
stack.

In order to analyze the polarization behavior of the stack we derived its asymmetric trans-
mission ∆x,y, eq. (2.40), and ellipticity ϵx,y, eq. (2.41), in forward transmission. In fig. 5.4.a)
we see that asymmetric transmission is strongest in the resonants bands of both layers, with
an extremum at λ0 = 950 nm reaching up to ±12 %. In the same spectral region, we see a
strong conversion from x-polarized to elliptically polarized light that is almost circular (fig.
5.4.b). The ellipticity for incident y-polarized light is more shallow and does not go beyond
±0.5. This is explained by the cross-polarization, in combination with the C2 symmetric lower
metasurface, giving light a different twist depending on the incident polarization.
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It is necessary to clarify the role of the spacer for the polarization behavior. Although
it does not possess any S-matrix symmetry its height and dispersion affect the phase of light.
Therefore, we varied thickness dS from 40 nm to 1000 nm in 1 nm steps using SASA. As discussed
in sec. A.2.3, we applied the associativity of the star product [236] for greater efficiency,

Sstack(dS) = ((Snair,nSiO2
∗ SdC ,nSiO2

∗ SU) ∗ SdS ,nSiO2
) ∗ SL. (5.5)

Based on this we calculated ∆x and ϵx/y as a function of dS, (fig. 5.4.c-e). The resulting Fabry-
Pérot type patterns show that the polarization characteristic of this stack is highly sensitive
with respect to the spacer thickness. Both the emerging polarization states and the dispersion
of the asymmetric transmission change as the Fabry-Pérot condition changes with the spacer
thickness. Moreover, the SASA result reveals that the ellipticity in y-polarization retains its flat
characteristic from 1000 nm to longer wavelengths for different spacer thicknesses. Evidently,
y-polarized light is converted to a slightly elliptical state mostly determined by the geometry of
the stack.12 At the short wavelength edge of the overlap resonant band the ellipticity switches
its sign due to the phase change between the resonance bands (fig. 5.4.b).

Figs. 5.4.c) shows that the asymmetric transmission ∆x = −∆y is sensitive to the chosen
spacer thickness dS. Indeed, a different choice of dS could almost result in ∆x vanishing [146].
Thus, when designing chiral stacks of this type it is insufficient to define the geometry of the
structure, and it is necessary to also optimize the separation between the metasurfaces.

In conclusion, the spacer thickness of complex metasurface stacks represents another degree
of freedom in the design of sophisticated layered media. While controlling the presence of
Fabry-Pérot resonances it can also be utilized to enhance otherwise negligible polarization
effects.

5.2 Incommensurable period ratios and experimental test
of the FMA

In the larger context of this thesis we will experimentally explore the conceptual transition
discussed in sec. 3.3.1 (fig. 3.3). Comparing our semi-analytic data with experimental results
we show the limits of the FMA and demonstrate its use as an analytic tool even beyond its
validity. Although there are works that thoroughly discuss the modal theory behind the FMA
[77,157,158,222] or test its accuracy as a numerical and homogenization method [145,222,250]
there seems to be a lack of experimental studies on its validity.

The specific stack example in this section addresses a parametric blind spot when designing
12It should be noted that in this particular region both cross-polarization components of the stack almost

vanish.
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Figure 5.5: a) Vertical cut through the x-z-plane of the stack. The annotations define all
necessary geometric parameters. b) Rendering of the stack design showing two layers of gold-
patch-metasurfaces embedded in glass. Substrate and cladding are glass and air, respectively.

periodic metasurface stacks. As mentioned before in sec. 4.2.3, computational issues arise when
stacking metasurfaces who’s periods have an incommensurable, i.e. non-rational, period ratio.
As a result a super cell across the entire stack is no longer properly defined as it tends to infinity.
The computational domain would have to be extremely large, making rigorous simulations of
the stack impractical. Moreover, the computational challenge is not only restricted to exact
incommensurable ratios. Rather, there is a range of ratios close to incommensurability that
still demand vast super-cell dimensions.

Using SASA we demonstrate both the design and analysis of incommensurable metasurface
stacks, applicable to arbitrary period ratios.

5.2.1 Constructing a pseudo-incommensurable stack

As the main subject of our argument we concentrate on a four-layer stack comprised of two
different isotropic periodic metasurfaces. As before, they are separated by a spacer layer of
thickness dS and have a cover layer of thickness dC on top (fig. 5.5). Each metasurface is a
periodic array comprising square nano-patches made of gold. This creates an overall isotropic
stack allowing us to ignore polarization in this particular case [188, 238, 251]. Nevertheless,
everything that follows can be adapted to the anisotropic case as well.

Square nano-patches present three degrees of freedom for the geometric design of each
metasurface: height h, particle width w, and period Λ. For our model system we chose an equal
height h = 30 nm for both metasurfaces. Aiming for plasmonic resonances at the boundary
between VIS and NIR we selected the widths of the upper and lower metasurface to be wU =

160 nm and wL = 70 nm, respectively (fig. 5.5.a). With h ≪ wU,L the lateral dimensions wU,L
will predominantly determine the resulting dispersion.

Our geometrical design targets the metasurfaces’ periods ratio ΛU/ΛL. If it becomes incom-
mensurable the super-period grows to infinity and looses its meaning [151]. Then, a physically
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Figure 5.6: Simulation results of the stack: a) Upper (red line) and lower metasurface (blue
line) as single layers. b) SASA result of the full stack with dS = 600 nm and dS = 960 nm.
c) SASA result scanning the spacer height dS from 80 nm to 960 nm in 40 nm steps. The red
dashed lines reference the results of b).

accurate simulation of such a stack becomes nearly impossible using rigorous numerical meth-
ods. Here, we chose the periods of the lower and upper metasurface to be ΛU = 341 nm and
ΛL = 200 nm. This value of ΛU resembles the closest we can get to π × 100 nm with 1 nm pre-
cision (limited by fabrication). The respective ratio of ΛU/ΛL = 1.705 produces a super-period
of 68.2 µm. The resulting computational domain is two orders of magnitude larger than the
individual periods ΛU,L, making it practically infinite with respect to the wavelength. Thus,
we term this type of period ratio pseudo incommensurable [151]. We used the FMM [228,236]
to simulate the individual metasurfaces embedded in glass. In all simulations we used the
Sellmeier equation for dispersive fused silica [252] and the permittivity of gold as produced by
our fabrication machines [249].13

To be comparable to actual samples we added a glass cover layer of thickness dC = 500 nm
with an interface to air on top of each metasurface, using SASA. As shown in fig. 5.6.a) the
resonances of both metasurfaces are positioned close to one-another (at approximately 820 nm
and 660 nm) with overlapping flanks. Combined in the stack this creates a noticeable peak
between the two single layer resonances (fig. 5.5.b). The prominence of the peak then largely
depends on Fabry-Pérot resonances determined by the separation distance of the layers (fig.
5.6.b,c).

Employing SASA we assembled the full stack based on fig. 5.6.a), using the single layer
S-matrices and the parameters listed above. The full stack Sstack is a combination of: the cover
interface Snair,nSiO2

, the cover layer SdC ,nSiO2
, the upper metasurface SU , the separating spacer

layer SdS ,nSiO2
, and the lower metasurface SL

Sstack = Snair,nSiO2
∗ SdC ,nSiO2

∗ SU ∗ SdS ,nSiO2
∗ SL. (5.6)

13That is, from the gold evaporation of the facilities at the Institute of Applied Physics, Jena.
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Varying dS from 80 nm to 960 nm, the resulting Fabry-Pérot fringe pattern variably subdues or
enhances the overlap peak in the resonance region (fig. 5.6.c) [151].

5.2.2 Experimental results

Based on our design parameters we fabricated the metasurfaces stack on a fused silica wafer,
characterized it using SEM, and measured its transmittance interferometrically14. From the re-
sults of the SEM evaluation of the sample we derived updated model parameters and performed
SASA simulations once more in order to compare them to the experimental findings.

Fabrication

The main goal of our fabrication effort was the realization of 23 metasurface stacks with identical
layers and varying spacer thickness from 80 nm to 960 nm in 40 nm steps. For comparison we
produce reference fields of the individual metasurfaces comprising the stack, in order to confirm
the predicted structural and optical properties.

Starting with a standard 4 inch circular fused silica wafer, we divided our fabrication design
into 24 equal sections around the polar grid of the wafer. This was comprised of 23 individual
stack sections and a 24th section intended for reference fields. The lower metasurface layer was
fabricated in parallel, processing all sections at once. This way, we can assume these metasur-
faces to be structurally identical. The reference field then viably represents this metasurface
layer for all stack variants [151].

Our fabrication technique of each metasurface employed electron beam lithography. Each
metasurface started as a 2 mm × 2 mm field comprised of a two layer electron beam resist
(150 nm Allresist ARP617.08 and 100 nm Allresist ARP6200.4). The desired periodic patch-
geometry was then written onto each field by exposing the resist with a variably shaped electron
beam (Vistec, SB 350). After chemical development of the resist we coated the sample with
30 nm gold by evaporation and removed the resist by applying a lift-off process [151].

Next, a uniform layer of SiO2 was deposited on the wafer to a height of 1 µm, using chemical
vapor deposition (CVD). In order to achieve the desired spacer heights we first covered one half
the wafer and removed 480 nm SiO2 on the other half via ion beam etching (Oxford Ionfab
300 using 400 eV Ar-ions). We then rotated the cover by 15° etched 40 nm and repeated this
step 10 more times, resulting in a height distribution from 80 nm to 960 nm in 40 nm steps. By
performing the etching steps 11 times in total the reference section (the 24th) was left at the
original SiO2 height of 1 µm [151].

Similarly, we fabricated the upper metasurface on top of the spacer layer of the 23 stack
14Fabrication and optical measurement were again performed by Stefan Fasold and Matthias Falkner, respec-

tively. SEM images were obtained with support by Michael Steinert at the Abbe Center of Photonics.
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Figure 5.7: Experimental results and comparison to the adapted SASA model. a) Unit cells
extracted from averaging the particles in SEM images. b) SEM image of a stack with spacer
height (dS = 120 nm) before the cladding layer was added. The blue and the yellow grid
represent the lattices of the upper and lower metasurface, respectively. c) Surface plot of the
measured transmittances of all 23 stack variants with spacer heights dS from 80 nm to 960 nm
in 40 nm steps. The red dashed lines reference the results in e) and f) at dS = 600 nm and
960 nm. d) - f) Direct comparison between measurement (cyan) and SASA (indigo) results: d)
Individual single layer results for the lower (dashed line) and upper (solid line) metasurface. e)
Stack with dS = 600 nm. f) Stack with dS = 960 nm.

sections, directly above the lower fields. The reference field of that metasurface was placed on
the 24th section with a large displacement to the other reference metasurface. We employed
the same fabrication process as before. Finally, we added a 500 nm SiO2 cladding layer covering
the entire sample using CVD [151].

In summary, we fabricated 23 stacks in total, each varying in spacer height. A 24th sample
was fabricated to provide reference fields of the two metasurfaces comprising each of the 23
stacks. An SEM image depicting a top view of one exemplary stack with spacer height of
dS = 120 nm is shown fig. 5.7.b) with the extracted average particles in 5.7.a).

Measurement and comparison

By averaging over the particles in SEM images we measured their respective widths, wL = 70 nm
for the lower metasurface and wU = 180 nm for the upper metasurface. While the particle size
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can be affected by many fabrication parameters, deviations in the periods are defined by the
calibration of the electron beam lithography system only. Since this error is well below the
error of the SEM calibration, the periods will be considered to be exact. As indicated by the
illustration of the blue and yellow grid in fig. 5.7.a) we achieved pseudo incommensurability.
Therefore, there is no possibility to superposition both lattices so that their boundaries form a
common frame within less than 68.2 µm edge length [151].

Using a home-built interferometric characterization setup we measured the normalized
transmittance of each field of the sample in a spectral interval from 600 nm to 1600 nm.15

The results for all 23 stack variants sorted by height are summarized in fig. 5.7.c). The sur-
face plot clearly reproduces the Fabry-Pérot fringe pattern predicted by our initial design (fig.
5.6.c). There are some visible discontinuities, likely due to fabrication variances.

The lobes on the right side of the surface plot (from 1000 nm to 1600 nm) modulate the
monotonic off-resonance dispersion. On the left of the surface plot (from 600 nm to 800 nm) the
lobes alternately subdue and enhance the overlap peak between the two metasurface resonances.

We compared measurement results of the individual metasurfaces layers’ transmittances
from the reference section of the wafer to our single layer FMM simulations (fig. 5.7.d). Our
original model only needed to be adapted with regard to the cladding height. The cladding
deviated by approximately 70 nm of optical path length. All other parameters were comparable
to our experimental results. Thus, using the same single layer FMM simulations we added the
updated cladding using SASA. Note that the lower reference metasurface is covered by an
additional 1 µm of glass due to the fabrication steps explained in the previous section.

Judging from fig. 5.7.d)-f), the fit between experiment and SASA is very good. We can
identify the plasmonic metasurface resonances at 660 nm and 820 nm of the lower and upper
metasurface, respectively. Moreover, the sinusoidal modulation on the right of each plasmonic
resonance are the expected Fabry-Pérot resonances. They are more frequent for the lower
metasurface since it is covered by a total of 1570 nm of glass in contrast to the upper one with
only 570 nm [151].

Similarly, SASA and the experiment match very closely for the full stacks (figs. 5.7.e) and
fs). Each plot shows a slice from 5.7.c), one at dS = 600 nm and the other at 960 nm. First, this
proves the validity of our model. Second, it confirms the assumption of similarity between the
reference metasurfaces and their counterparts in the stacks. Furthermore, this demonstrates
that we can predict and realize the optical behavior of pseudo-incommensurable stack super
cells using a SASA [151].
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Figure 5.8: Transition between coupling regimes: Illustration of the coupling of evanescent
diffraction orders for dS < dcrit (a) and dS > dcrit (d). The dashed boxes indicate the reach of
evanescent fields. Correspondingly, (b) and (e) show plots comparing SASA and measurement
for different coupling cases. The colored areas correspond to the coupling regimes in the CPD
(c). The blue line in (c) marks dcrit with accuracy σ = 1%. The horizontal and vertical dashed
lines denote the spacer thickness limit and wavelength cut-off for the SASA model. The cut-
off is also marked by dashed lines in (b) and (e). f) Normalized root mean square deviation
(NRMSD) between SASA and measurement results calculated for all 23 stack heights. The
change between the two coupling phases is indicated by dashed lines and colored areas.

5.2.3 Experimental validation of the FMA

By comparing the measurement results with the SASA model we can experimentally track the
transition between coupling regimes defined by the CPD (sec. 3.4). Furthermore, this allows us
to observe the conceptual transition between stacked metasurfaces and a layered metamaterial
discussed in sec. 3.3.1.

As a reminder, the physical concept behind the transition is illustrated in fig. 5.8.a),d),
showing coupling or decoupling of evanescent diffraction orders. The transition occurs between
a spacer thickness of dS = 360 nm and dS = 400 nm (fig. 5.8.b,e). Larger differences between
SASA and measurement are visible in fig. 5.8.b) than e). The expected spacer limit is, thus,
approximately 400 nm. In concert with the critical distance dcrit (eq. (3.30)) we can confirm
that, for an accuracy σ = 1%, this fulfills the FMA condition down to a cut-off wavelength

15Further details on the setup can be found in [122,247].
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shown as a dashed line in the corresponding CPD (fig. 5.8.c)16. It indicates the change between
coupling phases. As in fig. 5.8.c) the green and yellow areas in 5.8.b),e) mark spectral regimes
where the FMA is valid or invalid.

Interestingly, fig. 5.8.b) shows a clear deviation between SASA and experiment right at the
cut-off wavelength. Whereas the SASA model predicts a suppression of the overlap peak the
experimental data exhibits an enhancement. We can conclude that this is likely an effect of
near-field coupling of higher evanescent diffraction orders [151].

In contrast, fig. 5.8.e) shows only a weak deviation between SASA and experiment for the
dS = 400 nm stack. So, the deviation from the FMA condition in the small cut-off interval
could be considered negligible in the larger scheme. From this we can extrapolate that, for a
fixed wavelength interval, the overall validity of the FMA remains stable with regard to small
deviations close to the short wavelength boundary [151].

To properly quantify the overall accuracy of SASA with respect to the experimental result
we employ the normalized root mean square deviation (NRMSD). First, we calculate the root
mean square deviation (RMSD) of the transmittances from experiment (τe) and SASA (τs) as
a function of dS over the wavelength interval

RMSD(dS) =

√∑Nλ

k=1 (τe(λk, dS)− τs(λk, dS))
2

Nλ

, (5.7)

where we sum over all discrete wavelengths λk ∈ [600 nm, 1600 nm] with k ∈ {1, . . . , Nλ} ⊆ N
for a total of Nλ = 512 wavelength points. Next, we normalize RMSD(dS) by the mean range
of the measured transmittance

NRMSD(dS) =
RMSD(dS)

maxλ (τe(λ, dS))− minλ (τe(λ, dS))
. (5.8)

We calculated NRMSD(dS) for all 23 stacks and plotted the result in fig. 5.8.f). The plot clearly
shows the two regimes with NRMSD dropping below 10 % at the predicted cut-off wavelength
λ = 400 nm. With the exception of NRMSD(dS = 80 nm) all other, FMA-invalid, results are
scattered well above the 10 % line. We interpret the runaway result as a coincidentally correct
match. Regardless, the predicted behavior of the FMA and SASA solidifies with all results
beyond dS > 400 nm [151].

Regarding the exponential decay of the error observed in sec. 4.2 the results here are
inconclusive. Since we deal with experimental data, other error sources have to be taken into
account to properly explain the NRMSD. These include, but certainly are not limited to, the
accuracy of the FMM simulations of individual metasurfaces as well as experimental deviations

16To broaden the view we increased the spectral interval by 200 nm on each boundary to λ ∈
(400 nm, . . . , 1800 nm).
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not taken into account by our model (e.g. deviations from the assumed refractive indices of
gold and glass). However, because the single layer results of the reference samples in fig. 5.7.d)
compare reasonably well we can assume the magnitude of these errors to be relatively small.

In conclusion our results demonstrate that the stacking condition imposed by an estimate
of dcrit gives an accurate limit for the FMA. Vice versa, this implies that models breaking the
FMA limit can indirectly identify certain aspects in experimental data. Knowing that far-field
interactions are fully and easily covered within the FMA and SASA, any significant deviations
will likely be the results of near-field interactions.



6 | Reflection paths in metasurface stacks

In the previous chapters we developed and tested SASA both as a design tool and analytical
method. In conjunction with the FMA, SASA has proven to be accurate for a variety of
metasurface stacks. In this chapter we will venture beyond SASA’s ability to simulate stacks
and show what physical insights can be found within its mathematical framework. The following
is based on our publication ”Equivalence of reflection paths of light and Feynman paths in stacked
metasurfaces” [148].

The idea behind this chapter originates from the concept of electron scattering paths in
mesoscopic1 solid state physics [253, 254]. The aim is to compare and partially transfer this
concept to the physics of nano-optics in the specific case of metasurface stacks. Our point of
contact is the study of conduction in mesoscopic systems. It uses descriptive concepts equiva-
lent to the modal coupling of fundamental modes in metasurface stacks [255–257]. In particular,
the process of electron scattering at junctions in mesoscopic structures can be considered anal-
ogously to the scattering of light at nano-structures or metasurfaces [257–259].

As we discussed in secs. 2.4 and 4.1 the interaction between light and (homogeneous)
metasurfaces can be described by scattering processes. More abstractly, their interaction is
determined by a set of connected ports in or out of which particles or waves can be transmitted
or reflected [236, 255]. In the case of mesoscopic electron transport this is the interaction of
electrons from different leads at a given junction. Whether an electron is transmitted or reflected
into a specific port is given by a certain probability [255,260,261]. Thus, for each combination
of ports and whether the interaction results in transmission or reflection there exists a certain
combined probability. When a scattering process is completed, the final path an electron took
can be described as a sum of all its possible paths, weighted by their probability for a given
initial port [254]. Therefore, these paths give a picture of the interaction during the scattering
process. In electron scattering theory they represent what is sometimes called the ”Feynman
paths” of the system [253,254].

Here, Feynman path literally means all possible paths an electron, or a photon for that
matter, can take in a physical system. A rigorous quantum mechanical treatment of these
would entail the use of path integrals and possibly Feynman diagrams [262, 263]. This poses a

1The physical realm between the microscopic and the macroscopic.
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unique challenge for the interaction of electromagnetic fields with periodically arranged nano-
structures. Fortunately, S-matrices are representations of the overlap integral between the
incident fields and their local interaction with the nano-structures, as they can be expressed as
Greens functions [253]. This allows us to seize the concept of Feynman paths as an effective
model. In the following we will show how this translates into the S-matrix formalism of SASA
and which physical interpretations it allows.

6.1 Equivalence of Feynman paths and reflection paths

6.1.1 Geometric expansion of stacked scattering matrices

The star product eq. (4.2) gives an overlap of the transmission functions of adjacent meta-
surfaces and includes all contributions of reflections between them. Mathematically, these are
represented by a reflection kernel of the form

(Î− R̂b
i R̂

f
i+1)

−1. (6.1)

The reflection kernels contain exactly the Fabry-Pérot type interactions of far-field coupled
metasurfaces we saw before in secs. 5.1.2 (fig. 5.4) and 5.2 (figs. 5.6, 5.7). Finding the
nano-optical equivalent of Feynman paths then means accessing the back and forth reflected
components of light propagating through adjacent metasurfaces [148].

We can expand the reflection kernel of the star product of two S-matrices (N = 2) into a
geometric matrix series 2, such that

(
Î− R̂b

1R̂
f
2

)−1

= Î+
∞∑
α=1

(
R̂b

1R̂
f
2

)α
. (6.2)

Then, each block matrix element Ŝij of a stacked S-matrix can be written as a matrix series

Ŝij = Ŝij0 + Ŝij1 + Ŝij2 + . . . , (6.3)

where i, j ∈ {1, 2} are the S-matrix’s block indices or Jone matrices.
In optics of stratified media such an expansion is known as a Bremmer series [264, 265].

It represents the optical Wentzel-Kramers-Brillouin (WKB) approximation of the Helmholtz
equation for one-dimensionally inhomogeneous media [264]. Even in the much more complex
case of stacked metasurfaces we can separate the response of the stack into a leading order term

2If it is invertible and its block-matrix elements do not take values > 1. This is usually the case for physical
systems including absorption.
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(i.e. the WKB term) and a series of consecutive interferometric terms. For two adjacent layers
and front to back propagation this takes the form of

T̂ f = T̂ f
2T̂

f
1︸︷︷︸

leading transmissive term

+ T̂ f
2

(
∞∑
α=1

(
R̂b

1R̂
f
2

)α)
T̂ f
1︸ ︷︷ ︸

interferometric term

(6.4)

for transmission and

R̂f = R̂f
1 + T̂ b

1 R̂
f
2T̂

f
1 + T̂ b

1 R̂
f
2

(
∞∑
α=1

(
R̂b

1R̂
f
2

)α)
T̂ f
1. (6.5)

for reflection. The infinite power series of reflection matrices describes the interactions of all
possible paths light can take between layers after consecutive reflections. For coherent excitation
these paths will interfere, including the leading transmissive term. However, separating the pure
transmission from inter-layer reflections allows us to analyze how the latter influence the final
result [148].

6.1.2 Transmission and reflection for N layers as a geometric series

It is convenient for this discussion to restrict ourselves to either front or back direction since the
mathematical structure will be similar. We start by considering the 0th order of transmission
in front direction. This is straightforward Jones matrix calculus and we can immediately write,

T̂
f (0)
1,2,...,N = T̂ fN

[
T̂ fN−1 . . .

(
T̂ f2 T̂

f
1

)]
=

N−1∏
k=0

T̂ fN−k, (6.6)

where the superscript (0) denotes the leading order term. To include higher orders, we start
with a three layer stack. Plugging eq. (6.4) into itself, while using the associativity of the star
product, we get

T̂ f(1,2),3 = T̂ f3 T̂
f
1,2 + T̂ f3

(
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k=1

(
R̂b

1,2R̂
f
3
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f
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f
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(
R̂b

1R̂
f
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)k
T̂ f1 + T̂ f3
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(
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T̂ f2 T̂

f
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+ T̂ f3

∞∑
k=1

[(
R̂b

2 + T̂ f2 R̂
b
2T̂

b
2 + T̂ f2 R̂

b
1

∞∑
j=1
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R̂f
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R̂f

3
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∞∑
k=1

(
R̂b

1R̂
f
2

)k
T̂ f1 , (6.7)

where we used eq. (6.5) in backward direction for R̂b
1,2. Matrices with multi-indices separated

by a comma, T̂m,n, collectively describe transmission or reflection from layer m to n. Multi-
index notation is helpful when increasing the number of layers. For N = 4 layers we can write
the transmission in a form that represents the structure of the stack,

T̂ f((1,2),3),4 = T̂ f4

(
Î+

∞∑
k=1

(
R̂b

(1,2),3R̂
f
4

)k)
T̂ f3

(
Î+
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(
R̂b

1,2R̂
f
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)k)
T̂ f2

(
Î+
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(
R̂b

1R̂
f
2

)k)
T̂ f1 .

(6.8)

From eqs. (6.7) and (6.8) we can identify a pattern to generalize to N layers. Using the
associativity of the star product, eqs. (6.4) and (6.5) can be generalized to N layers by applying
each new layer to all the previous ones combined. For this, we introduce the multi-index
Mk := 1, . . . , (N − k), denoting all modal contributions from the 1st to the (N − k)th layer.
Then, the transmission through an N -layer stack can be written as [148]

T̂ f
Mk

= T̂ f
N−k

N−k−1∏
p=1

(
Î+

∞∑
α=1

(
R̂b
MpR̂

f
np−1

)α)
T̂ f
np , (6.9)

using the index abbreviation np := N −k− p. The occurring reflection matrices can be written
recursively,

R̂f
Mk

= R̂f
Mk+1

+ T̂ b
Mk+1

R̂f
N−kT̂

f
Mk+1

+ T̂ b
Mk+1

R̂f
N−k
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α=1

(
R̂b
Mk+1

R̂f
N−k

)α
T̂ f
Mk+1

. (6.10)

If Mk = 1, only the first layer matrices are applied. The case k = 0 gives the transmission or
reflection of the full stack. Note that the order of indices results from applying the matrices
right to left. Changing from forward to backward direction simply results in interchanging the
superscripts f and b as well as reversing the index order. The geometric expansion of the star
product was added to our implementation of SASA in MATLAB and Mathematica.
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6.1.3 Interpreting reflection path coefficients

The expansion of S-matrix kernels yields the sum of all interactions within a stack. These
represent an interaction picture of Feynman paths of fundamental modes between metasurfaces.
Because they originate from a series of consecutive reflections, we will call them reflection paths.

For more insight on individual reflection paths we can subtract series that are truncated at
different orders Ψ. For brevity, we choose an arbitrary, scalar transmission coefficient T of a
stack described by eq. (6.9). Introducing the subscript notation {Ψ} for a series up to order
Ψ, we define

T{Ψ} :=
Ψ∑
α=0

Tα. (6.11)

With this, the Ψth order contribution is given by

TΨ = T{Ψ} − T{Ψ−1}. (6.12)

We call these coefficients virtual as they influence the final response of the stack indirectly
through interference. This becomes clear when deriving the transmittance of a truncated coef-
ficient T{Ψ}, which yields

|T{Ψ}|2 =

(
Ψ∑
α=0

Tα

)(
Ψ∑
β=0

T ∗
β

)
=

Ψ∑
α=0

|Tα|2 +
Ψ∑
α=1

Ψ−α∑
β=0

(
TβT

∗
β+α + T ∗

βTβ+α
)

=
Ψ∑
α=0

|Tα|2 + 2
Ψ∑
α=1

Ψ−α∑
β=0

|Tβ||Tβ+α| cos (δαβ) . (6.13)

Higher order paths interfere depending on the phase difference δαβ := ϕβ − ϕβ+α between their
respective phases ϕα.

6.1.4 Physical formulation for a four layer stack

The experimentally realized stacks we discussed previously (secs. 5.1 and 5.2) are comprised
of four layers, cover, upper metasurface, spacer, and lower metasurface. Therefore, the trans-
mission and reflection matrices of the geometric series describe interfaces, propagators, and
complex layers. We will now add these to our formulation of reflection paths and derive their
general reflection paths. Assuming symmetrically embedded metasurfaces there are N = 5
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distinct layer S-matrices. Using eqs. (6.9) and 6.10 we get
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5
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1. (6.14)

Numbering from top to bottom (forward direction), layers 2 and 4 are propagators and do not
reflect, thus R̂b

2 , R̂
b
4 → 0̂. Furthermore, transmission matrices of propagators can be rewritten

as scalars, using eq. (4.5), T̂ f
2 → P2 and T̂ f

4 → P4. With this equation (6.14) becomes
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The multi-index reflection matrices R̂b
M1

and R̂b
M3

are each a group of reflection paths in back-
ward direction. They have to be calculated recursively starting from the back of the stack,
where each recursion step adds a bundle of paths up to a certain layer. This yields3

R̂b
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= P2R̂
b
1P2, (6.16)
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Inserted into eq. (6.15) we arrive at the geometric series of the entire stack,

T̂ f
M0

= T̂ f
5

[
Î+
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The cascaded sums in eq. 6.18 allow us to identify each possible path in the multi-layer system.
For instance, truncating the series at Ψ = 1 gives us all reflection paths occurring at first order.
An illustration of these is shown in fig. 6.1. In total, there are seven unique paths contained in
the first order. Each has a different amount through the metasurfaces and recurring reflections.
Together they accumulate slightly different transmission profiles that add interferometrically

3The explicit calculations can be found in appendix A.4.2.
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Figure 6.1: Illustration of all reflection paths included up to 1st order (Ψ = 1). Red and blue
arrows represent reflected and transmitted k-vectors. Each occurrence of a bend in the black
dashed line of a path corresponds to a reflection at an interface or metasurface. The first order
paths (1) – (7) combine (interfere) with the leading order path (0) to the total transmitted field
(kT ). Correspondingly, red dashed arrows represent branches of reflection paths back into air.
Together, these combine to the total reflected field (kR).

to the overall response of the stack.
Before we look at an example of a real stack, there remains the question of truncation.

Above, we truncated all partial sums at Ψ. When we say first order it implies the first order of
all sums. Yet, it would be equally feasible to truncate each sum differently. Then, however, we
would need some foundation on how to choose the truncation. As this appears to be arbitrary
we can circumvent the issue mathematically. Using the multinomial theorem it is possible
sort the series by the combinatorial occurrence of each path. The comparatively long result
can be found in appendix A.4.3. We note that the combinatorics of reflection paths could be
potentially interesting for analyzing which type of path influences a particular stack the most.

6.2 Decomposition of Fabry-Pérot resonances

In this section we revisit the pseudo-incommensurable metasurface stack discussed in sec. 5.2.
An important spectral feature of this stack were the Fabry-Pérot resonances subduing or en-
hancing the overlap peak between the main metasurface resonances (fig. 5.7.c,e,f). Now, we
will analyze to which order reflection paths influence that result.

Based on the star product of the incommensurable stack, eq. (5.6), and using eqs. (6.18)
and (6.16) the geometric series reads
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f
U

)β)
PC T̂ fI , (6.19)
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with

R̂b
I,C = PCR̂b

IPC , (6.20)

and

R̂b
I,S = PSR̂b

UPS + PST̂ fUPCR̂
b
I

(
Î+

Ψ∑
γ=1

(
PCR̂f

UPCR̂
b
I

)γ)
PC T̂ bUPS. (6.21)

For brevity we abbreviate: lower metasurface L, upper metasurface U , spacer layer S, cladding
layer C, and interface to air I. The scalar propagators PC = exp{i(nk0dC)} and PS =

exp{i(nk0dS)} describe the phase propagation within the cladding and spacer layer.
Together with fig. 6.1 we can interpret eqs. (6.19), (6.20), and (6.21). First, light enters

into the stack through the air interface (T̂ fI ). It then propagates through the cover (PC) and
interacts with the upper metasurface (R̂f

U and T̂ fU). The first geometric series over β describes
recurring reflection processes in the cladding, which can give rise to Fabry-Pérot resonances.
After propagating through the upper metasurface (T̂ fU) light travels through the spacer layer
(PS) to interact with the lower metasurface (R̂f

L and T̂ fL). Again, recurring reflections are
created as represented by the geometric series over α. After completing all internal paths light
exits through the lower metasurface (T̂ fL) into the underlying glass wafer [151].

Even though eq. (6.19) considers propagation in forward direction, backward propagating
reflection paths have to be considered as a part of the interaction process inside the stack [266].
These are created by reflections of forward propagating light (R̂f ) that flip the propagation
direction. The resulting backward paths will create a cascade of reflection and transmission
processes depending on their point of origin in the layer system of the stack [151]. Reflec-
tion from the upper metasurface creates paths that take a round trip through the cover as
represented by eq. (6.20) (paths (1) and (4) to (7) in fig. 6.1).

In contrast, backward paths originating from reflection at the lower metasurface (eq. (6.21))
create a complex combination of reflection paths that can reach back to the top interface. These
can include further reflections in the cover. For instance, comparing paths (3) and (4) both
have the same amount of interaction with the lower metasurface. The latter, however, shows
an additional reflection off of the upper metasurface, likely resulting in stronger damping [151].

As we discussed in sec. 6.1.3 all individual paths are considered to be virtual phenomena. To
discern their combined impact as an interferometric perturbation we can employ a geometrically
expanded version of SASA. Using the numerical data from our experimentally validated model
of the stack, we calculated the Fabry-Pérot decomposition for a spacer distance dS = 960 nm
up to second order (Ψ = 2). The results are shown in fig. 6.2.

The full series up to second order, T fxx{Ψ}, is plotted in fig. 6.2.a). At leading order the stack’s



6.3. REFLECTION PATHS OF A PATCH-WIRE METASURFACE STACK 85

0

0.2

0.4

0.6

0.8

1

600 800 1000 1200 1400 1600
wavelength (nm)

am
pl
itu
de

0.3

0.4

0.5

0.6

625 718 765
wavelength (nm)

am
pl
itu
de

0

0.2

0.4

0.6

0.8

1

600 800 1000 1200 1400 1600
wavelength (nm)

am
pl
itu
de

0th order
1st order
2nd order
full SASA

0th order
1st order
2nd order
full SASA

(c)(b)(a)

Figure 6.2: Plots of the geometric expansion a pseudo-incommensurable stack with dS =
960 nm. a) Computed amplitude of the full stack compared to the geometric expansion from
0th order up to 2nd order. b) Enlarged plot interval of a) showing the differences between
different orders close to the Fabry-Pérot resonance. c) Computed amplitude of the virtual path
coefficients of 1st and 2nd order compared to the full stack and 0th order expansion.

transmittance is purely determined by transmission through all layers. This fully neglects the
overlap peak as shown by the indigo solid line. We already reach a good approximation of the
full stack’s transmittance by adding the first order to the series. Zooming in on the overlap
peak at 718 nm we see that the series up to second order sufficiently matches the full SASA
result (fig. 6.2.c). This convergence is probably due to the added plasmonic dampening of the
metasurface for each higher order path.

Each individual order TΨ has its own amplitude profile. Looking at these profiles separately
tells us about their relative contribution with respect to the zeroth order (fig. 6.2.d). They
clearly reproduce features of the individual metasurfaces like the resonance at 820 nm. As
assumed before, dampening is strongly increased with each order.

We can conclude that both the Fabry-Pérot fringe pattern and the overlap peak between
the individual plasmonic resonances are mainly created by first order reflection paths and a
modest modulation by second order paths. From our analytical investigation we can ascertain
that the paths contributing to first order comprise the ones summarized in fig. 6.1.

6.3 Reflection paths of a patch-wire metasurface stack

As we have seen, reflection paths present us with a perspective into small features of a stack’s
optical response. In that regard, virtual reflection paths give a glimpse into the hidden inter-
actions that shape these features. This immediately leads to the question what further insights
can be found in considering the phase and polarization of different paths. To satisfy our cu-
riosity we designed and fabricated a stack that combines an isotropic metasurface with a C2

symmetric one. This allows us to analyze individual contributions to the ellipticity.
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Figure 6.3: (a) SEM image of a FIB cut revealing the fabricated patch-wire stack. Particles
are colored golden for better visibility.(b), (c) Average particles extracted from SEM images.
(d) Sketch of superimposed unit cells of the metasurfaces, forming a super-cell of period 600 nm.
The red grid and particles designate the lower metasurface and yellow ones the upper metasur-
face.

6.3.1 Design and fabrication

Based on our previous experimental experience (chapter 5) we chose a four layer design. From
top to bottom this stack is comprised of: a cover layer, a patch-metasurface (SP ), a spacer
layer, and a wire-metasurface (SW ). As with the previous samples, the nano-particles were
comprised of gold and the dielectric embedding of fused silica. We fabricated everything on
top of a fused silica wafer, which defined the lower half-space of the stack. The patches of the
upper metasurface are isotropic with a C4 symmetry. With the C2 of the wires in the lower
metasurface the stack is in total C2. The full stack is represented by the star product

Sstack = Snair,nSiO2
∗ SdC ,nSiO2

∗ SP ∗ SdS ,nspin-on ∗ SW , (6.22)

where nspin-on is the refractive index of spin-on glass supplied by Futurrex IC1-200.
Like in our previous fabrication runs, we employed electron beam lithography, gold evap-

oration, and a chemical lift-off process to fabricate the nano-structures.4 To obtain reference
fields of each metasurface layer in the stack, we fabricated each on two separate fields: the stack
itself (fig. 6.3.a) and a single layer of the respective metasurfaces, resulting in a total of three
samples. After fabricating the first metasurface, we added a spacer layer using spin-on glass
(Futurrex IC1-200) and etched it to the desired thickness of dS = 450 nm. We then fabricated

4The fabrication was performed by Stefan Fasold.
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metasurface, and of the full stack at the right, respectively. Each plot shows both transmittance
and phase, color coded by the legend. Only x-polarization is plotted for the patch-metasurface
as it is isotropic.

the upper metasurface. Finally, we added an SiO2 cover layer of thickness dC = 585 nm by
chemical vapor deposition [148].

Testing the limits of our fabrication machines we attempted to make the nano-particles as
small as possible to operate, at least partially, in the visible wavelength range. The minimum
gold particle diameter we can control is 80 nm before their geometry looses shape and disinte-
grates for very small sizes. A minimum lateral distance between two adjacent particles should
be larger than 50 nm to prevent them from fusing together.5

After fabrication the average particle sizes were extracted from SEM images (fig. 6.3.a–
c). The nano-patches have a period of ΛP = 200 nm, average diameter wP = 68 nm, and
height hP = 55 nm. The nano-wires have a period ΛW = 300 nm, average lateral dimensions
wy = 108 nm and lx = 176 nm, and height hW = 45 nm. The periods were chosen so that each
particle is contained with just enough next-neighbor separation. Incidentally, they have a ratio
of ΛW/ΛP = 3/2, creating a super-period of 600 nm (fig. 6.3.d).

6.3.2 Measurement results compared to SASA

The stack was simulated using the established combination of single layer FMM calculations
and SASA (fig. 6.4). Ellipsometric measurements of the materials produced by our fabrication
processes supplied refractive index data [116]. The wavelength interval was defined by our
interferometric measurement [122, 247] setup, ranging from 470 nm to 1200 nm. We performed
interferometric measurements of both the single layer fields and the full stack, simultaneously

5The numbers depend of the height of the gold layer and the fabrication process.
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Figure 6.5: Upper row (a)–(d): amplitudes (indigo) and phases (teal) resulting from the
geometric expansion of the SASA model. The two columns on the left and the right show for
different input polarization. Plots annotated with {Ψ} show the truncated series compared to
the full SASA result and those marked by Ψ the corresponding coefficients. Lower row (e)–(f):
ellipticity corresponding to the input polarization and series or coefficients above. The inset in
(g) shows an enlarged view of the maximum ellipticity.

measuring transmittance and phase in x- and y-polarization.6 As shown in fig. 6.4 there is very
good agreement between the SASA model and the measurement, both for transmittance and
phase.

The isotropic patch-metasurface of the upper layer exhibits a single resonance at approxi-
mately 580 nm. On the other hand, the C2 symmetric wire-metasurface of the lower layer shows
two distinct resonances for different polarization at approximately 600 nm and 800 nm. The
isotropic resonance overlaps with polarization sensitive resonances in the stacked configuration.
For x-polarization this results in a broader, slightly more prominent resonance at 600 nm. Due
to the isotropy of the lower metasurface the stack displays two resonances in y-polarization.
The phase is mainly determined by the collective heights of spacer and cover. Phase jumps at
the resonance positions of the single layers combine in the stack [148].
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6.3.3 Reflection path analysis

With a suitable SASA model of the fabricated stack we can perform a reflection path analysis
to reveal internal interactions that were hidden from measurement. We recalculated the stack
with a geometric expansion up to second order, Ψ = 2, yielding the transmission up to order
T{Ψ} and their virtual coefficients TΨ. Both their amplitude and phase are plotted in fig. 6.5
for x- and y-polarization.

Clearly, the full SASA result is already well approximated at first order. Looking at the
respective coefficients shows that the second order amplitude is strongly damped and its con-
tributions are negligible. As expected the metasurfaces’ resonances manifest themselves in the
amplitude profile of the first order. The phase of T{Ψ} seems to be unchanging with the ex-
pansion. This is explained by the fact that the phase is largely determined by the propagation
lengths of paths in the stack. Any accumulated phase vanishes due to interference, eq. (6.13).
Predictably, the set of coefficients contributing to each order TΨ shows the accumulated phase
of the taken paths.

Interestingly, we can observe in the lower row of fig. 6.5 that the ellipticity of light trans-
mitted through the stack is not everywhere zero and, thus, not linear but elliptical. The effect
is weak for incident x-polarization with only a small deviation from zero close to the 600 nm
resonance. At the 800 nm resonance for y-polarization we can see a clear jump to elliptically
polarized light. This is surprising because the combination of the metasurfaces’ C4 and C2

symmetry forbids non-linear polarization states.
If we take a closer look at the average wire-particles (fig. 6.3.c), we notice a small asymmetry

along the x- and y-axis giving the particles a very subtle pear-shape. Revisiting our simulation
results and investigating the off-diagonal components of the Jones matrices we find a non-
vanishing cross-polarization with a maximum for y-polarization of |Txy| = |Tyx| ≈ 0.05 and
|Rxy| = |Ryx| ≈ 0.08 at λ ≈ 800 nm. This was unexpected but the question remains how such
a small geometrical perturbation can have such a noticeable effect on the ellipticity?

More insight can be found by analyzing the geometric expansion of the ellipticity. Here,
the convergence is equally fast at first order. Moreover, higher order contributions enhance
the maximum zeroth order ellipticity by about 10 % (inset in fig. 6.5.g). This tells us two
things. First, the increase (or decrease) in ellipticity is mostly determined by the phase shift
of the resonance. Second, higher order paths transport a certain degree of anisotropy. The
ellipticity of higher order TΨ shows a variety of polarization states that are created. Their
interpretation needs be handled carefully. The second order contributions have an amplitude
close to zero which makes their phase and ellipticity inconsequential. Even higher orders should
be considered noise.

6The optical measurement was performed by Matthias Falkner.
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Yet, unnoticeable in the full response, the first order produces highly elliptical polarization,
which is almost circular at 1000 nm in x-polarization. We identify these as virtual polarization
states. Their creation is related to the accumulation of phase and larger number of interactions
with the symmetry-broken wire-metasurface. This can be understood further by calculating
the transmission coefficients of the expansion explicitly. Using the geometric expansion for a
four layer stack7, eq. (6.15), and renaming the subscripts accordingly, we get

T̂ fstack = T̂ fW

(
Î+

Ψ∑
α=1

(
R̂b
I,SR̂

f
L

)α)
PST̂ fU

(
Î+

Ψ∑
β=1

(
R̂b
I,CR̂

f
W

)β)
PC T̂ fI , (6.23)

while using the same naming convention for homogeneous layers as in eq. (6.19). With the
support of eq. (6.10) to calculate the reflection matrices in (6.23), we can write explicit expres-
sions of the virtual reflection paths in eq. (6.23). The transmission matrices of the first four
paths contained up to first order (Ψ = 1) read as8

T̂ f0 = T̂ fWPSTPPCTI , (6.24)
T̂ f(1) = T̂ fWPSpTPRPRIP3

CTI , (6.25)

T̂ f(2) = T̂ fW R̂
f
WRPP3

STPPCTI , (6.26)

T̂ f(3) = T̂ fW R̂
f
WP3

ST
3
PRIP3

CTI . (6.27)

The indices in parentheses refer to paths (1)–(3) illustrated in fig. 6.1. Each contains two
reflections that result in a different number of interactions with the anisotropic lower metasur-
face. Whereas both the leading order term T̂0 and T̂ f(1) only transmit once through the bottom
layer, T̂ f(2) and T̂ f(3) have twice the number of interactions through additional reflections. We
can therefore argue that they add a higher degree of anisotropy to the interferometric part of
the stack’s transmission. If we account for the geometrical deviation of the nano-wires, we have
to add a small asymmetric perturbation ξT := Txy and ξR := Rxy for each polarization, for
instance,

T f0,x = (T fxx + ξT )PSTPPCTI (6.28)
T f(2),x = (T fxx + ξT )(R

f
xx + ξR)RPP3

STPPCTI (6.29)

(6.30)

These perturbations propagate with each reflection path and add interferometrically to the
polarization of the stack. They exist as an inextricably part of the interaction.

7With N = 5 S-matrix layers.
8All isotropic Jones matrices can be reduced to a scalar, e.g. T̂P = TP Î.
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Figure 6.6: Geometric expansion of the asymmetric transmission ∆y and ellipticity ϵx,y up to
second order, Ψ = 2. The upper row, (a)–(c), shows the series up to order Ψ, and lower row,
(d)–(f), the corresponding coefficients. For reference the full SASA result is plotted for each
case in the upper row (solid indigo line). Dashed, dashed-dotted, and dotted lines show the
zeroth, first, and second order. For convenience they are additionally color coded as shown in
the legend.

6.4 Chiral reflection paths

6.4.1 Higher order effects on chirality

To conclude our discussion on reflection paths and their possible interpretation we take another
look at the first experimental example in this thesis. In sec. 5.1 we saw that a stack of
twisted nano-wires could produce a chiral response in the absence of near-field coupling. We
identified the combined symmetry operations of its S-matrices on the incident field as the
mechanism creating the necessary asymmetric transmission. Moreover, we observed that Fabry-
Pérot resonances played an important role in enhancing the asymmetric transmission while
controlling ellipticity.

Based on what we have learned, reflection paths should have some impact on the stack’s
asymmetric response. With each round trip within the stack they experience symmetry oper-
ations imposed by the S-matrices. The broken symmetry of the twisted wires is a much more
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complex problem than the previously discussed patch-wire stack. This begs the question how
the relative rotation of the wires by an angle α maps onto the reflection paths.

Using the SASA model based on our experimental evaluation of this stack from sec. 5.1
we calculated the geometric expansion of its asymmetric transmission ∆y

{Ψ} and ellipticity
ϵx,y{Ψ}. Fig. 6.6 shows both the truncated series and its related coefficients (∆y

Ψ, ϵx,yΨ ) up to
second order Ψ = 2.9 The first thing we observe is that the series converges at second order.
Focusing on asymmetric transmission (figs. 6.6.a), there is a noticeable blue-shift between the
zeroth order and all higher orders, including the full SASA result. Clearly, the leading order
transmission is sufficient to produce asymmetric transmission, as should be expected by our
symmetry argument. The blue-shift, however, is a result of higher order paths and, therefore,
also of the reflection of each individual layer. Surprisingly, this blue-shift can not be observed
in the corresponding coefficients ∆y

Ψ (fig. 6.6.d). This tells us that the interference of all paths
is responsible for the shift, in conjunction with the added reflections.

A closer look at the ellipticity (figs. 6.6.b,c) reveals a similar modification of the leading
order characteristic, especially in x-polarization. As ϵx,y{Ψ} informs us about the final shape of the
polarization ellipse, the coefficients ϵx,yΨ ascertain the accumulated phase shifts at each order.
Figs. 6.6.e) and (f) show increasing fluctuations for higher orders, which are more frequent at
smaller wavelengths. We can observe virtual circular polarization, some of which coincides with
the extrema of ϵx,y{Ψ} in figs. 6.6.b) and (c), e.g. λx ≈ 880 nm or λy ≈ 680 nm.

A case can be made that the Fabry-Pérot resonances observed in fig. 5.4 subtly influ-
ence the polarization asymmetry. The virtual polarization, relative phase shifts, and collective
interference of the reflection paths within it affect the polarization ellipse and blue-shift the
asymmetric transmission. In that regard, the spectral band in which the stack’s response can
be considered chiral is affected by reflection paths.

6.4.2 Geometric expansion of the asymmetric transmission

The S-matrix formalism in combination with the geometric expansion enables us to find analyt-
ical expressions of effects that normally hide from view. Such is the case with the asymmetric
transmission of the twisted-wire-stack. Above, we have seen that there are, indeed, observable
higher order effects that are inextricable in rigorous simulations and measurements [146, 267].
But even the SASA calculations presented in fig. 6.6 do not show directly how reflection paths
produce ∆y

{Ψ}.
In the following we will treat this problem analytically by revisiting the wire-S-matrices (5.1)

and (5.2). As we proved in sec. 5.1.2 they correctly represent the symmetry of the experimental
stack. Even numerically, layer rotation approximates the rotation of wires in their unit cells

9Because ∆y = −∆x it is sufficient to discuss the asymmetric transmission for only one input polarization.
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sufficiently well, as shown in appendix A.3. In order to calculate the expansion of asymmetric
transmission we need to first calculate the expanded coefficients of the stack. To reduce our
mathematical effort we utilize the associativity of the star product to rewrite eq. (5.5) using
eq. (5.3), such that

Sstack = (Sn1,n2 ∗ SdC ,n2) ∗ (SαW ∗ (SdS ,n2 ∗ SW )) = Sn1,n2 ∗ (SdC ,n2 ∗ S̄stack). (6.31)

Deliberately ignoring the cover layer, we can make a statement about the asymmetry of the
reflection paths based solely on the reduced stack S̄stack. Paths that include the cover follow
the same mathematical three-layer structure like S̄stack, as seen on the right-hand-side above.
The higher nesting level increases the combinatorial count of paths while adding multinomials
of forward reflection in the cover (see eq. (A.33)). Recalling the sketch in fig. 6.1, reflection
events will apply the same but flipped symmetry operations as in transmission if we ignore,
for a moment, the exact amplitudes and phases. In other words, reduction of the nested star
product structure to S̄stack produces a heuristic, analytical model of the asymmetry of reflection
paths.

Using the three-layer expansion, eq. (6.7), and replacing the second layer with the actual
spacer (R̂2 = 0, T ij2 = δijP , with P = PdS ,n) the transmission of the stack becomes

Tij = PT 3
ikT

kj
1 + T 3

ik

∞∑
m=1

P2m+1
[(
R̂1R̂3

)m]kl
T 1
lj, (6.32)

where the sub- or superscripts 1 and 3 denote variables pertaining to SαW and SW , respectively.
For brevity we use the sum convention

∑2
j=1 aijbjk = aijb

jk. Because the power of the matrix
product R̂1R̂3 leads to nested multinomial products we use the notation [.]kl for the coefficient
of its resulting matrix. Inserting eq. (6.32) into the formula for asymmetric transmission (2.40)
and using eq. (6.13) for the absolute square of the geometric series we arrive at

∆x
{Ψ} =

Ψ∑
m=0

|Txy,m|2 − |Tyx,m|2︸ ︷︷ ︸
:=∆m

+2
Ψ∑

m=1

Ψ−m∑
n=0

(
|Txy,n||Txy,m+n| cos (δxymn)− |Tyx,n||Tyx,m+n| cos (δyxmn)

)
︸ ︷︷ ︸

:=Γmn

. (6.33)

We will now calculate ∆x
{Ψ} up to first order, which is already close to convergence, as shown

in fig. 6.6 for the analogous ∆y
{Ψ}. For this, we calculate the leading asymmetries ∆0 and ∆1

as well as the first order interferometric term Γ10. Here, we utilize the symmetry properties
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T 12
1 = T 21

1 , R12
1 = R21

1 and T 12
3 = T 21

3 = R12
3 = R21

3 = 0. Then, the zeroth order difference reads

∆x
0 = |Txy,0|2 − |Tyx,0|2 = |T xy1 |2

(
|T xx3 |2 − |T yy3 |2

)
= (|Tx|2 − |Ty|2)(|Tx|2 + |Ty|2 − 2|Tx||Ty| cos(ϕx − ϕy)) cos2 α sin2 α. (6.34)

The first order difference is more complicated, producing upon insertion of the S-matrix com-
ponents a polynomial of trigonometric functions,

∆x
1 = |Txy,1|2 − |Tyx,1|2

= (A1 cos4 α + A2 cos6 α) sin2 α + (A3 cos2 α + A4 cos4 α) sin4 α + A5 cos2 α sin6 α, (6.35)

where the coefficients Ai = Ai(|Tx|, |Ty|, |Rx|, |Ry|;ϕx − ϕy, γx − γy) are multinomial functions
of amplitudes and phase differences 10 Of course, all reflection paths interfere amongst each
other, including the leading order. This is taken care of by the first order correction,

Γ10 =
∣∣T 11

3

∣∣∣∣T 11
3 R1

1kR
kl
3 T

1
l2

∣∣ cos δxy10 −
∣∣T 22

3

∣∣∣∣T 22
3 R1

2kR
kl
3 T

1
l1

∣∣ cos δyx10 . (6.36)

The mathematical structure is comparable to eq. (6.35) but depends on the phase differences
δxy10 = ϕxy0 − ϕxy1 . Their calculation is rather less revealing 11. Even a multinomial analysis
using the pattern matching capabilities of Mathematica remained inconclusive. In a future
work a combinatorial approach based on eq. (A.33) could be used to identify contributions of
individual paths as well as interferometric corrections.

Intuitively, with every revolution inside the stack the twist angle α accumulates. Both ∆x
0

and ∆x
1 depend on the rotation angle α and vanish for α = 0. The higher powers of the cosine

and sine functions in ∆x
1 indicate repeated symmetry operations on the reflection paths, as

the rotation of the metasurface is mapped onto the field vector with each interaction. This
can be interpreted as the following: a reflection path effectively experiences more than a two-
layer stack with just one rotated layer. Rather, in its carried coordinate system it propagates
through a stack of multiple layers of rotated wires, depending on its optical path length. We
notice that at first order there is a maximum total power of cosm α · sinn α with m + n ≤ 8.
This translates, in our interpretation, into consecutive rotations of up to six times the initial
layer angle α. As discussed by Y. Zhao et al. (2012) [267] the asymmetric response of a stack
broadens with an increased number of layers. This explains, partially, the broadening (and
shift) of the asymmetric transmission in fig. 6.6.a).

Even though the paths themselves only experience a virtually expanded stack, the collective
result seems to adhere to the same principle. Our calculation of the expanded asymmetric

10The exact results can be found in appendix A.4.4, eqs. (A.35)–(A.39).
11See appendix A.4.5 for details.
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transmission shows quantitatively how the layer or wire rotation influences the asymmetry of
the stack. It represents the literal twist that is mixed into the overall response of the stack.



7 | Summary and outlook

In this thesis we set out to find a semi-analytic description of metasurface stacks that sup-
ports versatile stack designs and delivers sound physical insights. At first, we asked the subtle
question of what differentiated stacked metasurfaces from (bulk) metamaterials. Generally
speaking, metamaterials are the overarching category. As we discussed in the introduction
(chapter 1), the definition of metamaterials relies on specifically engineered optical function-
ality and incorporates a vast variety of different nano-photonic designs. Here, we explained
how to conceptually transition from a periodic bulk metamaterial to a system of stacked ho-
mogeneous metasurface layers (sec. 3.3). We define individual metasurfaces by attributes of
the fundamental mode approximation (FMA). It implies subwavelength metasurface periods,
zeroth order diffraction, and the absence of evanescent fields. In order to quantify the validity
of the FMA, we derived a critical distance at which the far-field conditions are met (sec. 3.3.2).
Categorizing the types of coupling a stack can exhibit, we introduced the concept of a coupling
phase diagram (CPD). Depending on the wavelength, layer distance, and periods a stack tran-
sitions between diffractive, near-field and far-field coupling (sec. 3.4). The latter identifies the
FMA-regime and in our definition a proper metasurface stack.

While the definition of stacks via FMA validity is of some academic merit, its applicability
emerges in combination with a proper mathematical formalism, describing optical character-
istics. We chose scattering matrices (S-matrices) to encode the transmission and reflection of
both individual metasurfaces and full stacks. As anisotropy can be an important feature for
polarization manipulation, S-matrices can be used to describe both the symmetry of a stack
and the involved (polarized) fields. In conjunction with the FMA we developed a semi-analytic
stacking algorithm (SASA), which was implemented in MATLAB and Mathematica (sec. 4.1).
Meanwhile, SASA has also been transferred to Python and further optimized as a program with
open source access [268]. SASA was shown to be computationally efficient and reproduced rig-
orous FMM and FDTD simulations accurately (sec. 4.2). One of its most advantageous features
is the analytical manipulation of S-matrices. Either resulting from numerical simulations or
Fresnel equations, S-matrices can be stacked arbitrarily and flipped, rotated, or mirrored as
needed. Importantly, these present symmetry operations relative to incident polarized fields
(sec. 4.1.3).
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We employed this feature of SASA to analyze the polarization symmetry of a stack of
twisted-wire-metasurfaces (sec. 5.1). Characterizing the structure of each layer’s S-matrix and
the stack as a whole, we could predict chiral polarization behavior by the presence of asym-
metric transmission, without the necessity to simulate any nano-optical effects. Comparing to
experimental results we could prove the validity of our SASA model and deduce the emergence
of elliptical polarization, and therefore handedness. We recall that in the FMA-regime near-
field coupling and, hence, bi-anisotropy are prohibited. Consequently, the handed polarization
asymmetry was a result of symmetry operations applied by each achiral metasurface on the
incident field, enhanced by metasurface resonance bands (sec. 5.1.1). Indeed, a stacked con-
figuration was necessary to break the symmetry. Here, we could also explain that, based on
our validated SASA model, the layer distance had an influence on the asymmetric transmission
and ellipticity via Fabry-Pérot modulation (sec. 5.1.2). Thus, metasurface stack polarization
asymmetry is spacer dependent.

Continuing our evaluation of SASA’s capability, we demonstrated the experimental re-
alization of a pseudo-incommensurable metasurface stack comprised of two isotropic patch-
metasurfaces with differing meta-atom diameters and periods (sec. 5.2). The prefix pseudo
relates to ratios that are incommensurable by design, but are limited by fabrication accuracy.
In the case of our electron beam lithography machine this was about 1 nm. We achieved a
super-period of approximately 68.2 µm, demanding a practically infinite computational domain
for rigorous optical simulations. Here, SASA was shown to be capable of accurately predicting
and adapting to experimental results (sec. 5.2.2). This suggests that FMA-based models can
in fact be used to compute any period ratio. Furthermore, we took the opportunity to test
FMA validity conditions. The same pseudo-incommensurable stack was fabricated 23 times
with varying spacer thicknesses, transitioning from a near-field regime to far-field coupling.
SASA compared well in all cases. Moreover, an analysis of the mean-square-deviation between
experimental and simulated data sets satisfied the predicted coupling phase transitions on the
basis of the CPD (sec. 5.2.3). If a stack is non-diffractive but the FMA invalid, we can deduce
in argumentum e contrario the presence of near-field coupling. In short, SASA is highly ac-
curate and our conceptual transition from metamaterial to metasurface stack is in accordance
with physical reality.

To summarize, metasurface stacks are clearly distinguishable from bulk metamaterials by
the validity of the FMA. This allows for strong simplifications leading to SASA, which accu-
rately models the optical properties of said stacks. This incorporates complex polarization as
well as arbitrary period ratios. Moreover, SASA efficiently varies the spacer thickness of stacks
in order to identify, analyze, and optimize Fabry-Pérot resonances and their effects.

While semi-analytical modeling is a useful addition to the toolkit of computational nano-
photonics, it can also provide deeper physical insights into a stack’s internal field interactions.
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Interestingly, the S-matrix multiport-formalism used in nano-optics conceptually overlaps with
the treatment of scattering in mesoscopic electron transport. The path an electron takes after
scattering at a junction can be represented as a superposition of all possible paths between
connected leads. Using the terminology of quantum electrodynamics, these paths represent
Feynman paths. In metasurface stacks this corresponds to a geometric expansion of internal
reflection matrices (sec. 6.1). Then, transmission through a stack can be separated into lead-
ing order transmission through consecutive layers and interferometric corrections. The latter
constitute equivalents to Feynman paths, which we called reflection paths. Individual paths
carry virtual amplitudes, phases, and polarization, conglomerating with all other paths to the
full response of the stack. Revisiting the incommensurable metasurface stack we applied the
reflection path concept to the experimentally validated SASA model (sec. 6.2). A geometric
expansion of its transmission showed that its main Fabry-Pérot resonance was composed of
mainly first and second order paths. All higher order contributions experienced strong damp-
ening and were negligible. Using a uniform truncation across all partial sums of the expansion
we could, furthermore, identify each constituent virtual path.

These results suggested that studying reflection paths could be an addition to the analy-
sis of a stack’s optical response. Therefore, we applied the method to a specifically designed
anisotropic stack comprising a wire- and a patch-metasurface (sec. 6.3). Because meta-atom
dimensions were chosen close to the limits of our fabrication machines, shape deviations oc-
curred. Using reflection paths, we could show that symmetry perturbations created nearly
circular virtual polarization states, manifesting chirality from on average C2-symmetric struc-
tures. Although the virtual polarization largely vanished upon interfering there remained an
ellipticity well above zero in the nano-wire resonance band. The reflection path analysis showed
a noticeable increase of the ellipticity due to first order contributions.

It is now conceivable that reflection path polarization can be significant. Recalling our anal-
ysis of the chiral twisted-wire-stack, we asked how its asymmetric transmission and ellipticity
were affected by interferometric corrections (sec. 6.4). We already understood, that Fabry-
Pérot resonances modulated asymmetric transmission. Reflection paths revealed a significant
blue-shift of the asymmetric transmission due to first and second order contributions. This was
accompanied by highly elliptical as well as circular, virtual polarization states that maximized
and blue-shifted the chiral response. After some calculation we could even find mathematical
expressions of the accumulated ”twist” at each order, enhancing the asymmetry.

All in all, the results of this thesis demonstrate that SASA produces valid and applicable
semi-analytic models of periodic metasurface stacks. Our endeavor into reflection paths even
suggests an expanded potential for further analytical understanding of layer interactions. For
instance, it is imaginable that more complex, inhomogeneous stacks, like the multi-wavelength
meta-lens design by Zhou et al. [74], could be analyzed by extracting reflection paths from



99

higher diffraction orders. Surmising that near-fields could be treated as perturbations to the
FMA, one could also attempt to investigate interference effects in more closely stacked bi-
layers [269–271] or metasurfaces of multi-layered particles [272, 273]. In general, all presented
concepts and equations can be expanded or adopted to other types of layered media, with or
without metasurfaces [274, 275].

Future work will address the inverse design of nano-photonic functionality. Here, one sets
a target function or property and searches for nano-structures that perform as desired. This is
already prevalent in the research community, where machine learning or data driven algorithms
such as neural networks are applied for inverse design [177, 178, 276–279]. Work following this
thesis already adapts SASA for that purpose. As we discussed, stacked metasurfaces can pro-
vide a simplification of parameter spaces and allow for rapid repetition and modification of
simulations. This is ideal for machine learning. Here, one could create a database of metasur-
faces that provides training data, e.g. for an evolutionary algorithm [280, 281] that provides
an optimized stack configuration based on a user-defined figure of merit. Because the stacking
itself and all layer manipulation is done analytically, this would be several orders of magnitude
faster than any fully numeric approach.

As a final remark, we should briefly mention related work that was out of the scope of
this thesis. As emphasized in the introduction, nano-photonic color filters are one of the many
promising applications of metasurfaces. Here, we touched upon a remarkable application case in
medicine: contactless sensing of vital parameters based on time-dynamic NIR-color variations
of human skin [282–284]. Causally connected, oxygenated and deoxygenated hemoglobin is
responsible for changing the absorption spectrum of blood with every breath and heart beat.
If we filter two specific wavelengths, say 750 nm and 840 nm, we can produce a signal based
on the ratio of time-varying ratios of absorptances, which relates to the oxygen saturation
of blood [285]. This can be measured with a camera sensor that monitors (facial) skin in
these spectral bands [286]. For the purpose of NIR-filtering we designed and fabricated a
pixelized metasurface-filter-array. Although the filters were single layer metasurfaces, SASA was
successfully employed to optimize the cladding material for uniformity and filter contrast.1 The
combination of metasurface-filtering and camera-based measurement of dynamic multispectral
color changes was filed as a patent [287]. This shows emphatically that metasurfaces and
seemingly academic design approaches, like FMA-based semi-analytic modeling, are relevant
for future photonic technologies.

1At the moment of writing this thesis a publication is in preparation.
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A.1 Dispersion of gold and glass

The materials used in every experimental example and corresponding FMM-simulation were
gold and glass. For nano-structuring, gold was evaporated and thus deposited on fused silica
(SiO2) wafers. Here, we used measured ellipsometric data from in-house1 produced gold layers
and fitted a Drude-Lorentz model based on ε(ω) defined in eq. (2.12) [145]. Describing bound
and free electrons (ω0 = 0) the three-term model for gold reads

εDL(ω) = ε∞ +
f1

−ω2 − iγ1ω
+

f2
ω2
0,2 − ω2 − iγ2ω

, (A.1)

with normalized parameters ε∞ = 5.53, f1 = 2178.43, γ1 = 0.30978, ω0,1 = 0, f2 = 465.79,
γ2 = 2.94869 and ω2

0,2 = 228.713. Here, ε∞ comprises arbitrary electronic transitions, with
ε∞ = 1 +

∑
j=3 fj/

(
ω2
0,j − ω2 − iγjω

)
. In the unit-free normalization the angular frequency

becomes ω = 2π/λ. Fig. A.1 shows ε(ω) for frequencies in the NIR. Moreover, by using eq.
(2.13) (n(ω) =

√
ε(ω)) and substituting ω → λ we can also find the wavelength dependent

refractive index of gold, additionally plotted in fig. A.1. Both cases were compared to tabulated
data by Olmon et al. [288], showing an overall good agreement with growing deviations towards
the SWIR.

In the case of glass we have to differentiate the type of glass and fabrication method. Gen-
erally, wafer substrates were comprised of fused silica (SiO2). If chemical vapor deposition
(CVD) is used to produce homogeneous glass layers, amorphous crystalline SiO2 is the re-
sult, which closely resembles fused silica. An alternative method is presented by spin-on glass.
Here, we used Futurrex IC1-2002, comprising silicon and silanol groups in an n-Butan solution.
Depositing a volumetrically precise droplet of IC1-200, the sample is then rotated at high fre-
quencies (50 Hz) so that an even coating is achieved. After baking at various high temperatures
(200 °C – 800 °C) the solvent evaporates, polymerization occurs and an amorphous silica layer
is left. As shown in fig. A.1, there is a small yet significant difference between fused silica and

1Institute of Applied Physics of the University of Jena.
2https://futurrex.com/en/products/spin-on-glass-coatings.html
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Figure A.1: Left: complex permittivity and refractive index of gold, comparing a Drude-
Lorentz model based on in-house measurements and data by Olmon et al. [288]. Right: Re-
fractive index of two kinds of glass: fused silica (SiO2) and Futurrex IC1-200 spin-on-glass.

IC1-200-based glass.
Here, we describe the refractive index of fused silica using the Sellmeier dispersion equation

[289] with parameters attained from Malitson et al. [290],

n2 − 1 =
0.6961663λ2

λ2 − 0.06840432
+

0.4079426λ2

λ2 − 0.11624142
+

0.8974794λ2

λ2 − 9.8961612
. (A.2)

Using data provided by Futurrex, we compared eq. (A.2) to IC1-200 in a VIS to NIR wavelength
range, fig. A.1. Both types of glass have a real valued refractive index, showing similar gradients
but differing by a constant shift of approximately 0.02–0.025.

A.2 Implementation of SASA
The FMA-based S-matrix formalism described in section 4.1 is an analytical framework for
calculating stacks of arbitrary layers in all possible combinations. S-matrices of metasurfaces
can be simulated numerically and combined with analytical S-matrices with the same options for
transformations. Hence, in combination it forms the starting point of a semi-analytic stacking
algorithm (SASA). In the following we will describe how SASA can be utilized to automate the
process of stacking and significantly reduce the computational effort for simulating metasurface
stacks. The following description is tailored towards an implementation in MATLAB but can
analogously be transferred to Python as well. All analytical elements of the S-matrix formalism
were also implemented in Wolfram Mathematica. To a large part, Mathematica was used to
simplify and structure the calculus.

It is important to note that the transmission and reflection coefficients populating the S-
matrix should generally be considered wavelength dependent. This is especially true when
pertaining to measurements or simulation results, i.e. available data is usually not monochro-
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matic.
In that regard, SASA for MATLAB (or Python) is fully vectorized, so that all operations

can be performed over the complete discretized wavelength interval as array-operations. This
includes Redheffer’s star product, which was numerically optimized for an efficient calculation
of all vectorized block matrix elements. For that, we analytically calculated the star product
of two arbitrary S-matrices using Mathematica. Then, each element of the resulting 4 × 4 S-
matrix can be calculated by point-wise operations over the wavelength discretization, which
is most efficient for MATLAB (i.e. OpenBLAS) vectorization. The efficiency was tested by
benchmarking runs of different implementations of the star product using both the system clock
time and MATLAB’s profiler tool.

There are three main parts to SASA’s implementation:

1. Constructing a stack from input data.

2. Performing optional operations on certain layers as demanded.

3. Calculating the star product of the stack.

These will be explain in the necessary detail in following in order to understand how SASA
works as a program. A flow chart of the program can be found in figs. A.2–A.4.

A.2.1 Stack construction

As a user of SASA we usually have a mix of pre-calculated metasurface S-matrices SMSp and
homogeneous layers defined by their refractive indices np. Ideally, SASA should automatically
construct all necessary propagation and interface S-matrices from the given layer distribution of
refractive indices and embed the metasurfaces accordingly. For that it is important to properly
define how to count and enumerate layers. Lets say we have a simple stack of two arbitrary
metasurfaces separated by three homogeneous layers. The top of the stack, which we define
as the cladding, there is a half-space of air and the bottom, the substrate, there is glass. The
intuitive, physical way of counting layers would give us five in total (2+ 3). Yet, the algorithm
should consider the interfaces between the layers. This gives us a larger count for internal
numbering in SASA,

physical: S =

N layers︷ ︸︸ ︷
S1 ∗ S2 ∗ · · · ∗ SN−1 ∗ SN (A.3)

SASA: S = S1 ∗ S1,2 ∗ S2 ∗ · · · ∗ SN−1 ∗ SN−1,N ∗ SN︸ ︷︷ ︸
2N−1 layers

. (A.4)

So, whereas physically there are N layers the algorithm constructs 2N − 1. Conceptually, a
stack is then a structure with four properties:
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• a wavelength interval with L entries over which it is defined,

• the layer distribution of media - an N × La array,

• the height of each layer - N in total,

• the media embedding the stack (short embedding), i.e. a set of two refractive indices.

These properties depend on the design of the stack and have to be defined by the user. The
discrete wavelength interval [λ1, . . . , λL] is used by SASA in order to correctly calculate the
dispersion and phase propagation of all homogeneous layers. Obviously, all precalculated data,
e.g. metasurface simulations, should be defined over the same interval. From the input of N
media and N heights SASA constructs the necessary distribution of propagators and interfaces.
For instance, a stack of two metasurfaces separated by a glass spacer, with a glass substrate,
air cladding and an additional cladding layer of glass of on top would read

(Sair,glass ∗ Sd1,glass ∗ Sglass,MS1) ∗ (SMS1) ∗ (SMS1,glass ∗ Sd2,glass ∗ Sglass,MS2) ∗ (SMS2 ∗ SMS2,glass).

The parentheses collect the S-matrices related to the physical layers. It is clear that meta-
surfaces need to be calculated with the correct embedding in order to fulfill the boundary
conditions with their local surrounding. Listing A.1 shows a code snippet of the corresponding
SASA function call. All properties listed above are collected as parameters in the MATLAB
struct SASA_PARS. SASA identifies so-called complex layers by the keyword Smatrix and checks
their embedding with respect to adjacent layers. All homogeneous layers are calculated using
the equations from sec. 4.1.2. Each individual S-matrix is sorted into a list and numbered
according to (A.4).

Once the stack is constructed optional operations can be performed. These refer to the
symmetry operations from sec. 4.1.3 and are called using the keywords rotate, mirror, and
flip. SASA can identify whether layers are isotropic or anisotropic and will perform the options
according to sec. 4.1.4.

A.2.2 Array vectorization

As mentioned before all operations should be vectorized for optimal efficiency. The vectorization
targets the wavelength dimension of the stack. Looping over λp would be inefficient and can
be replaced by matrix operations. Each S-matrix of the stack is of size L× 4× 4. First, we can
flatten the wavelength dimension by linearizing the 3D array along one dimension3. Let S̄ be

3In MATLAB this can be done using the reshape function.
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1 % c r e a t e input s t r u c t f o r SASA
2
3 % the metasur face S−matrix o f l a y e r 1 ( upper l a y e r )
4 MetaS_1 = s t r u c t ( ' Smatrix ' , SMAT_1, ' embedding ' , { n_SiO2 , n_SiO2 }) ;
5
6 % the metasur face S−matrix o f l a y e r 2 ( lower l a y e r )
7 MetaS_2 = s t r u c t ( ' Smatrix ' , SMAT_2, ' embedding ' , { n_SiO2 , n_SiO2 }) ;
8
9 % the compos it ion o f the s tack ( read : l e f t to r i g h t as top to bottom )

10 stack_medium = {n_SiO2 , MetaS_1 , n_SiO2 , MetaS_2 } ;
11
12 % he ight o f each l a y e r (0 denotes metasur faces )
13 stack_height = {H_cladding , 0 , H_Spacer , 0} ;
14
15 % the embedding o f the s tack
16 n_embed = s t r u c t ( ...
17 ' c ladd ing ' , n_air , ...
18 ' sub s t r a t e ' , n_SiO2 ) ;
19
20 % c r e a t e parameter s t r u c t f o r SASA input
21 SASA_PARS = s t r u c t ( ...
22 'Lambda ' , wavelength_vector , ...
23 'medium ' , stack_medium , ...
24 ' he ight ' , stack_height , ...
25 ' embedding ' , n_embed) ;
26
27 % opt ions : r o t a t e 3 rd l a y e r by alpha_ degree s
28 alpha_ = 60 ;
29 SASA_OPTS = s t r u c t ( ' r o t a t e ' , {3 , alpha_ }) ;
30
31 % run SASA
32 SMAT_SASA = SASA(SASA_PARS, SASA_OPTS) ;

Listing A.1: MATLAB function call of SASA: example on how to input stack properties.

an (L·)4× 4 array of S-matrices with

S̄ = (S1(λ1), . . . , SL(λL))
T (A.5)

Similarly, we can define an L · 4 × L · 4 array Ω̄−1 populated by L copies of a 4 × 4 operator
Ω−1. A transformation of the S-matrix array, S̄ ′, is then written as the product

S̄ ′ = Ω̄−1S̄Ω, (A.6)

applying the transformation Ω to each wavelength element Sp(λp).
In similar fashion we can formulate an array multiplication for S-matrices. Starting with
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the S-matrix array S̄ we can put together a block diagonal matrix of S-matrices S with S̄ as
its main diagonal,

S = diag(S1(λ1), . . . , SL(λL)). (A.7)

For a high number of wavelengths L or a very fine discretization, S can be defined as a sparse
matrix. Then, any two S-matrix arrays can be multiplied as

S̄1,2 = S1 · S̄2. (A.8)

All the above also maps onto the treatment of Jones matrices. The array multiplication is
useful for an efficient implementation of the star product.

A.2.3 Calculating the star product

The star product is at the core of SASA. There are two ways of implementation: iterative and
recursive. Depending on the machine the code is run on, one might be more efficient then
the other. The user can choose which to use via the SASA input options SASA_OPTS (figs.
A.2–A.4).

The iterative calculation follows directly from the associativity of the star product [208],

S = (((S1 ∗ S2) ∗ S3) ∗ . . . ) ∗ S2N−1 =⇒ SNp = SNp−1 ∗ Sp, (A.9)

where multi-index Np = (1, . . . , p) collects all previous star products, with 1 < p ≤ 2N − 1 and
N2N−1 resulting in the full stack.

The recursive star product is performed pair-wise such that

Sm,n with n == m ⇒ Sm, (A.10)
if n == m+ 1 ⇒ Sm ∗ Sn, (A.11)

otherwise ⇒ (Sm ∗ Sm+1) ∗ Sm+2,n, (A.12)

In contrast to the iteration, the recursion calculates the stack beginning with the last S-matrix
pair.

The associativity allows another reduction in computational effort [208,291]. If we need to
vary the distance of a homogeneous layer we get a vector of distances dp = (d

(1)
p , . . . , d

(D)
p ) or

the set dp ∈ {dip}, we can avoid performing all calculations D times and instead split the stack,
such that

S = (S1 ∗ · · · ∗ Sp−1) ∗ Sdp,np ∗ (Sp+1 ∗ · · · ∗ S2N−1). (A.13)

Thus, all other star products only need to be calculated once and the height variation is,
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N

Figure A.2: SASA flow chart part 1 of 3: initialization of the program and recogni-
tion of the stack pattern via create_layer_mask.m. Using the auxiliary interface function
create_interface.m the first layer (interface) is created.

mathematically, a star product of three S-matrices. Our implementation of SASA will detect
whether one layer of a stack has multiple heights and split the stack accordingly. The benefit
of this for scanning layer heights, say to analyze Fabry-Pérot resonances, cannot be overstated.
This was used, e.g., for the stack design in sec. 5.1. Explicit numbers on computation times
regarding that design can be found in appendix A.2.4.
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j=j+1

j < N?

j=j+1

Figure A.3: SASA flow chart part 2 of 3: stack construction based on the previously identified
layer pattern. Using the auxiliary functions create_interface.m and create_propagator.m
the stack S-matrices are created iteratively, while applying layer operations where they are de-
manded by the user. Complex S-matrices (metasurfaces) are taken from pre-simulated results.
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j < D? j < D?

Figure A.4: SASA flow chart part 3 of 3: efficiently perform the Redheffer star product either
iteratively (cascaded) or recursively. One homogeneous layer can have a vector of heights as a
property. The SASA uses the associativity of the star product and precalculate the adjacent
parts of stack, before iterating through all heights.
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A.2.4 Computation time

Since SASA computes purely algebraic equations, it took only about 8 × 10−5 s to simulate the
stack in sec. 5.1 for a single wavelength point on a standard laptop (2.7 GHz Sandy Bridge
Intel Core i7 (2620M) and 16 GB 1333 MHz DDR3 memory). Moreover, the FMM for the
single layer metasurfaces took about 790 s per wavelength point on a cluster node (using 2
threads on a Harpertown Intel Xeon-L5420 processor and 16 GB DDR memory). On the other
hand, the rigorous FMM of the entire stack took about 1.7 × 103 s per wavelength using the
same cluster nodes. Adding the time for the algebraic calculations and the single layer FMMs
together and taking into account that simulations on a cluster can be run in parallel the semi-
analytic approach is twice as fast for a single calculation as the rigorous FMM. When varying
stack parameters such as spacer thickness, the order of layers or their orientation, the saved
computation time by using SASA increases significantly. Nevertheless, a proper benchmark
test would be needed for a thorough comparison of computation times.4

A.3 Comparison between layer rotation and unit cell ro-
tation in twisted-wire-stack

As discussed in sec. 5.1.1 there is a difference between rotating an entire layer wire-metasurface
or rotating its unit cells. The symmetry of both is the same - a broken C2 symmetry with equal
cross-polarization components. This was proven by comparison to the experimental results in
sec. 5.1.2. The question remains, how the two types of rotation actually compare. In fig. A.5
we plotted the full FMM result, which was matched against experiment, and the SASA model
using layer rotation. This was accomplished by using the lower wire-metasurface twice and
rotating it in the upper layer by 60 °. Of course, there is a small difference in the actual length
of the wires as they resulted from fabrication. This is an error we should keep in mind when
comparing the two results. Nevertheless, as fig. A.5 shows us, they are surprisingly similar.
Most strikingly, the cross-polarization components match really well. We can conclude that
our analytical models of the stack correctly approximate the real stack, well beyond a mere
symmetry argument.

4Excerpt of the appendix in [146].
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Figure A.5: Full 4× 4 S-matrix of the twisted-wire-stack described in sec. 5.1. Each subplot
shows the amplitude of the corresponding coefficient annotated in its lower right corner. The
indigo blue lines show the result using SASA and layer rotation of the upper layer by 60 °. The
cyan lines show the full FMM-result.

A.4 Expressions of series coefficients and explicit calcu-
lations

A.4.1 Chiral stack S-matrix coefficients

The explicit expressions for the transmission coefficients of equation (5.3) are given by,
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α
xy +Rα

yyT
α
xx

)
− T αxx

)
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α
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)
− 1

, (A.14)
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Reflection coefficients read

R̄b
xx =
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A.4.2 Multi-index backward reflection matrices

Here, we show the explicit calculation of the recursive multi-index backward reflection matrices
for N = 5 layers from sec. 6.1.4. Importantly, the backward matrices have to be treated in
reverse layer order. Occurring froward matrices are then defined in that particular slice of the
stack, e.g. forward propagating modes between layer N−2 and N for forward reflection starting
at N and considered until N − 2. In other words, the recursion of reflection matrices has to be
performed slice-wise, in reverse layer order, and with slice dependent transmission coefficients.
Fortunately, because the composition of the five-layer stack entails only two metasurfaces, we
can eliminate those reflection matrices that refer to propagators through homogeneous layers
(layers 2 and 4). This leads to the following sequence of step by step unfolded recursions, while
eliminating propagator-reflections,

R̂b
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= R̂b
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4,3,2, (A.24)
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Î+
Ψ∑
γ=1

������*0(
R̂f

4R̂
b
3

)γ T̂ b
4 , (A.26)

R̂f
M2

= R̂b
2,3,4 = R̂f

2,3 +

������������������:0

T̂ b
3,2R̂

f
4

(
Î+
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The respective slice transmission matrices , T̂ f
2,3,4 and T̂ b

4,3,2, then follow by using eq. (6.9) and
obeying the layer ordering of each slice,
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f
4. (A.30)
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Inserting all above equations into each other as well as rewriting T̂ f
2 → P2 and T̂ f

4 → P4 yields
the explicit reflection series for layers 4 to 1
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Î+

Ψ∑
γ=1

(
P2R̂

f
3P2R̂

b
1

)γ)
P2T̂

b
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A.4.3 Combinatoric formulation of 5-Layer transmission

We can recognize from the paths in fig. 6.1 that the power of the propagators P is a counter
for the number of revolutions in the stack. Accordingly, we can rewrite eq. eq. (6.18) such that
all terms are ordered by powers of P. Partially resolving all parentheses in eq. (6.18) lets us
identify individual terms of (recurring) Feynman paths,
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We can clearly recognize elements of paths that recur in each of the three main sums. Using
the multinomial theorem, we can sort these by their multinomial factors and the power of
propagator pairs P2P4. Finally, we arrive at

T̂ f
M0

= T̂ f
5P4T̂

f
3P2T̂

f
1

+ T̂ f
5

Ψ∑
α=1

∑
α1+···+αΨ+2=α

(
α

α1, . . . , αΨ+2

) Ψ∏
p=1

(
Pα2+αp+2(1+p)

2 Pα1+α2+αp+2

4

)2
×
(
R̂b

3R̂
f
5

)α1
(
T̂ f
3R̂

b
1 T̂

b
3 R̂

f
5

)α2
Ψ∏
γ=1

(
T̂ f
3R̂

b
1

(
R̂f

3R̂
b
1

)γ
T̂ b
3 R̂

f
5

)αγ+2

P2T̂
f
1

+ T̂ f
5P4T̂

f
3

Ψ∑
β=1

(
P2R̂

b
1P2R̂

f
3

)β
P2T̂

f
1



A.4. EXPRESSIONS OF SERIES COEFFICIENTS AND EXPLICIT CALCULATIONS XV

+ T̂ f
5

Ψ∑
δ=1

∑
δ1+···+δΨ+2=δ

(
δ

δ1, . . . , δΨ+2

) Ψ∏
p=1

(
Pδ2+δp+2(1+p)

2 Pδ1+δ2+δp+2

4

)2
×
(
R̂b

3R̂
f
5

)δ1 (
T̂ f
3R̂

b
1 T̂

b
3 R̂

f
5

)δ2 Ψ∏
ν=1

(
T̂ f
3R̂

b
1

(
R̂f

3R̂
b
1

)ν
T̂ b
3 R̂

f
5

)δν+2

P2T̂
f
1

× P4T̂
f
3

Ψ∑
µ=1

(
P2R̂

b
1P2R̂

f
3

)µ
P2T̂

f
1. (A.33)

A.4.4 Coefficients of the first order asymmetric transmission

The asymmetric transmission of the expanded transmission matrix pertaining to the chiral
metasurface stack can be calculated using eq. (6.33). An explicit expression of the first order
term ∆x

1 , eq. (6.35), follows by inserting the matrix coefficients from eqs. (5.1) and (5.2). Then,

∆x
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= (A1 cos4 α + A2 cos6 α) sin2 α + (A3 cos2 α + A4 cos4 α) sin4 α + A5 cos2 α sin6 α. (A.34)

The coefficients Ai are the factors of the trigonometric functions that follow from expanding
and sorting eq. (A.34). Denoting the amplitude |T | and |R| with t and r, respectively, the
coefficients read

A1 = 2txtyrxry
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A.4.5 Phase shift of the first order asymmetric transmission

Here, we show the calculation of the phase shifts producing the interferometric corrections of
Γ10 in eq. (6.36) The phases of zeroth and first order can be calculated for order ψ by

ϕijψ = arctan
(
ImT ijψ /ReT ijψ

)
:= arctan

(
ζ ijψ
)
. (A.40)

Using the identities of arcus functions and compositions of arcus functions and tirgonometric
functions,

arctanx+ arctan y = arctan
(
x− y

1 + xy

)
and cos(arctanx) = x√

1 + x2
, (A.41)

the phase difference term in eq. (A.34) reads

cos δxy10 = cos(ϕxy0 − ϕxy1 ) =
ζxy0 − ζxy1√

1 + (ζxy0 )2 + (ζxy0 ζxy1 )2 + (ζxy1 )2
. (A.42)

The ratios ζ ijψ require the imaginary and real parts of eq. (6.32) with the matrix coefficients from
eqs. (5.1) and (5.2) inserted. These are very complex expressions that have to be calculated
and simplified using Mathematica (or similar software). After some calculation and pattern
matching (structurally sorting terms) we arrive at

ζxy0 =
tx sin(2ϕx + nk0d)− ty sin(ϕx + ϕy + nk0d)

tx cos(2ϕx + nk0d)− ty cos(ϕx + ϕy + nk0d)
(A.43)
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. (A.44)

The first order ratios include reflection phases, ϕ̃ of the metasurfaces and read
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The different sums of phases in the arguments of the trigonometric functions visibly represent
an individual virtual path and its interactions with the metasurfaces. The factor 3 of the spacer
phase nk0d clearly denotes the first order with three passes through the spacer: one revolution
and one pass through.
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D | Zusammenfassung

Ziel dieser Arbeit war die Entwicklung eines semi-analytischen Models mehrschichtiger nano-
strukturierter Oberflächen. Einzelne Schichten werden hierbei in Forschungsgemeinschaft als
“Metasurface” bezeichnet. In Folge nennt man Schichtsysteme aus Metasurfaces “Metasur-
face Stacks” oder “Stacked Metasurfaces”. Das besondere an Metasurfaces liegt an einer
speziellen Art der Licht-Materie-Wechselwirkung. Im Gegensatz zu herkömmlichen, natürlich
vorkommenden optischen Materialien, welche im Wesentlichen durch ihre atom- und moleku-
larphysikalischen Eigenschaften Wechselwirken, besitzen Metasurfaces mesoskopische Struk-
turen. Diese haben Größen, die der von Lichtwellen entsprechen. Dadurch entstehen zum
einen Streuphänomene die komplexe Feldwechselwirkungen erzeugen. Darüberhinaus sorgen
evaneszente Felder, die auf der Oberfläche der Nano-Strukturen angeregt werden können, für
ein geändertes Resonanzverhalten, welches sich durch verschiedene Reflektions- und Absorp-
tionseigenschaften auszeichnet. Beispielsweise wird im Falle von Metallen wie Gold das durch
Licht in Schwingung versetzte Elektronengas durch die begrenzte Ausdehnung einzelner Struk-
turen lokalisiert. Dies führt zu einem optischen Verhalten, welches stark von dem homogen
ausgedehnter Metalle abweicht. Insgesamt bedeutet dies, das die Beschreibung solcher Meta-
surfaces mit mathematischen Modellen so komplex wird, dass charakteristische Größen wie
der Brechungsindex oder die Permittivität ihre Bedeutung verlieren können. Diese bleibt nur
erhalten, wenn die Metasurface als Ganzes als effektives Medium beschrieben werden kann. Hi-
erbei muss man zu klassischen Mischmaterialien differenzieren. Aufgrund der mesoskopischen
Größe ist die optische Antwort des Materials mehr als nur die Summe aller darin befindlichen
Materialeigenschaften. Das Verhalten der Felder muss abgewogen werden. Im Kern gilt es
zu untersuchen, unter welchen Bedingungen die Feldwechselwirkung einer Metasurface als ho-
mogen und damit als effektives Medium behandelt werden kann.

Sind die Strukturen einer Metasurface periodisch angeordnet lassen sich die dort angeregten
Felder durch sogenannte Bloch-Moden beschreiben. Diese sind periodische Feldlösungen der
Maxwell-Gleichungen. Betrachtet man nun die Gesamtheit aller Bloch-Moden der Metasurface,
kann man eine dominante Mode mit, im Vergleich zu allen anderen, maximalem Energietrans-
port in das Fernfeld identifizieren. Diese nennt man in der Literatur Fundamentalmode. Ist die
Metasurface so beschaffen, dass bei Wechselwirkung mit Licht einer bestimmten Wellenlänge
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diese Fundamentalmode signifikant alle anderen Moden dominiert und letztere stark dämpfen,
das heißt evaneszent abfallen, so kann das betreffende Medium als homogen gedeutet werden. In
der vorliegende Arbeit wurden solche homogenen Metasurfaces in Form von Mehrschichtern un-
tersucht. Die bereits benannten Metasurface Stacks können durch die Fundamentalmoden der
jeweiligen Schichten im Fernfeld wechselwirken. Daraus ergeben sich viele Anwendungen theo-
retischer und experimenteller Natur. Um dies zu erreichen, wurde ein semi-analytisches Modell
entwickelt, welches einen Metasurface Stack in Gänze effizient beschreibt. In Konkurrenz dazu
stehen rigorose numerische Simulationen. Diese können mit einem gewissen Rechenaufwand na-
hezu beliebige nano-strukturierte Systeme simulieren. Durch das semi-analytische Model spart
man jedoch mehrere Größenordnungen an Rechenzeit und -aufwand. Hierbei werden einzelne
Schichten durch Streumatrizen beschrieben. Streumatrizen homogener Schichten wie Glas kön-
nen analytisch aus Fresnel-Gleichungen berechnet werden. Streumatrizen von Metasurfaces
werden einzeln numerisch simuliert. Da es sich um periodische Metasurfaces handelte wurde
die sogenannte Fourier Modal Method (FMM) verwendet. Die Tatsache, dass so Metasurfaces
nur je einmal simuliert werden müssen, bedeutet einen enormen Vorteil bei der Berechnung.

Ein weiterer Vorteil liegt in der mathematischen Struktur der Streumatrizen. Diese lassen
sich algebraisch behandeln und können mit einfachen Transformationsmatrizen manipuliert
werden. Dies beinhaltet beispielsweise Rotationsoperationen aber auch Basistransformationen.
Das Besondere daran: Jede Transformation einer Streumatrix entspricht einer äquivalenten
Transformation einer Metasurface. Somit können diese analytisch manipuliert werden und
viele Varianten eines Metasurface Stacks in kurzer Zeit simuliert werden.

All dies ist jedoch nur möglich, wenn nach wie vor die Fundamentalmoden dominieren. Dies
kann durch einen Sicherheitsabstand der Schichten gewährleistet werden. An der Schwelle, dem
kritischen Abstand, fallen die evanenszenten Felder benachbarter Schichten gerade stark genug
ab, um ein gültiges homogenes Medium zu repräsentieren. Die Herleitung und das numerische
und experimentelle Testen des kritischen Abstands war wesentlicher Bestandteil der vorliegen-
den Arbeit. Es konnte gezeigt werden, dass das semi-analytische Model bei einem kritischen
Abstand stabil bleibt und physikalische Phänomene korrekt vorhersagt. Des Weiteren kon-
nte die Theorie der approximativen Fundamentalmodendominanz experimentell nachgewiesen
werden. An verschiednen Stacks wurden auch die analytischen Stärken der Streumatrixtheorie
gezeigt. So konnten Aussagen über die Anisotropie eines Metasurface Stacks aus verdrehten
Nano-Drähten getroffen werden, die rein numerisch schwer abzuleiten sind. Dabei wurde auch
erklärt, wie Chiralität aus nicht-chiralen Bestandteilen entstehen kann. Die Antwort: Einzelne
Metasurfaces bilden Symmetrie-Operationen auf die Felder ab, die diese dann mit sich tragen
und so ihre Gesamtsymmetrie chiral brechen.

In Anlehnung an Konzepte zum Elektronentransport in mesoskopischen Systemen wurde das
semi-analytische Model erweitert. Aufgrund vergleichbarer mathematischer Strukturen konnten
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sogenannte Feynman-Pfade identifiziert werden. Diese beschreiben jeden möglich Pfad den ein
Teilchen oder eine Welle bei Streuprozessen zwischen mehreren beteiligten Streuern nehmen
kann. In der Beschreibung von Metasurface Stacks erlaubt dies ein detailliertes Verständnis
von Zwischenschichtwechselwirkungen. Damit konnten Resonanzen der Fundamentalmoden im
Fernfeld aufgedeckt werden, die maßgeblich zur optischen Antwort des Gesamtsystems beitra-
gen. Als Beispiel ist hier wieder der bereits benannte anisotrope Metasurface Stack zu nennen.
Eine Feynman-Pfad-Analyse ergab, dass Resonanzeffekte erster und zweiter Ordnung ein zusät-
zliches Verdrehen des Feldvektors erzeugen. Dies verursacht eine verstärkte chirale Asymmetrie
der Felder und erklärt die Stärke der experimentell gemessenen Effekte.

Insgesamt wurde in der vorliegenden Arbeit ein semi-analytisches Model von Stacked Meta-
surfaces entwickelt, welches verschiedenen experimentellen Tests stand hielt. Dabei konnten
auch vielseitige deskriptive Fähigkeiten gezeigt werden. Ein besonderer Erfolg liegt in der
Erweiterung des Modells zur Untersuchung von Feynman-Pfaden in Mehrschichtsystemen.
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