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Abstract: Electroencephalography (EEG) is widely used in 

clinical applications and basic research. Dry EEG opened the 

application area to new fields like self-application during 

gaming and neurofeedback. While recording, the signals are 

always affected by artefacts. Manual detection of bad channels 

is the gold standard in both gel-based and dry EEG but is time-

consuming. We propose a simple and robust method for 

automatic bad channel detection in EEG. Our method is based 

on the iterative calculation of standard deviations for each 

channel. Statistical measures of these standard deviations 

serve as indications for bad channel detection. We compare the 

new method to the results obtained from the manually 

identified bad channels for EEG recordings. We analysed EEG 

signals during resting state with eyes closed and datasets with 

head movement. The results showed an accuracy of 99.69 % 

for both gel-based and dry EEG for resting state EEG. The 

accuracy of our new method is 99.38 % for datasets with the 

head movement for both setups. There was no significant 

difference between the manual gold standard of bad channel 

identification and our iterative standard deviation method. 

Therefore, the proposed iterative standard deviation method 

can be used for bad channel detection in resting state and 

movement EEG recordings.

Keywords: Electroencephalography, dry electrode, 
artefacts, head movements, brain-computer interfaces

1 Introduction

Electroencephalography (EEG) is a non-invasive technique 

for recording neural electrical activity with the help of 

electrodes placed on the scalp. This method is widely used in 

clinical applications and basic research. Moreover, EEG can 

be used in brain-computer interfaces or rehabilitation. The 

latest development of electronics for EEG recordings and dry 

electrodes enabled self-application and thus usage in out-of-

the-lab scenarios [1].

The EEG signal has low amplitude and as such is prone to 

artefacts and unwanted noise. The reconstruction of the brain 

activity from bad channels is sometimes not possible. 

Therefore, it is very important to remove non-reliable channels 

before applying any type of EEG signal analysis or source 

reconstruction. The most common procedure for bad channel 

detection still is manual inspection. This procedure is often 

time-consuming and subjective, which can lead to different 

results depending on the experts evaluating the EEG [2–4].

Dry EEG is more prone to movement artefacts compared to 

gel-based EEG. Due to the lower channel reliability in dry 

EEG, the manual identification of bad channels is even more 

time-consuming.

Various semi- or fully automated approaches for bad 

channel detection have been proposed for gel-based EEG 

including a combination of different statistical, temporal, and 

frequency features [5,6]. Our aim is the development of a 

simple and robust method for automatic bad channel detection 

in dry EEG recordings [7], which is at the same time also 

suitable for gel-based EEG.

2 Methods

2.1 Measurements

In the study participated 5 healthy volunteers, 3 females and 2 

males, with a mean age of 27 ± 10. We analysed EEG data

from two different segments: one segment of resting EEG with 

closed eyes for 3 minutes and one segment while volunteers 

were performing head movements. Head movements were not 

executed rapidly, but rather slowly. The participants were

instructed to move their heads downwards to the chest and 

back to a straight position when they hear a tone. The 

movement was repeated every 4 seconds. In sum, 45

movement epochs for each participant are recorded.

We used 64-channel gel-based and dry EEG caps with an 

equidistant layout (waveguard, ANT B.V., Hengelo, The 
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Netherlands). The reference electrode was placed on the right 

mastoid. The sampling rate was 1024 samples/second. 

2.2 Data Processing 

The data were processed using MATLAB (The 

MathWorks, Inc., Natick, United States). Each of the 15 

datasets was analysed separately. Data were pre-processed 

using a finite impulse response (FIR) bandpass filter 

implemented in EEGLAB [8] with a low cut-off frequency of 

1 Hz and a high cut-off frequency of 40 Hz, as one of the 

standard frequency ranges for EEG analysis [9]. After 

filtering, the newly proposed iterative method for automatic 

bad channel detection was performed. For comparison, the 

data were manually inspected and bad channels were 

identified as well. 

The proposed method is applied and tested on two 

different window lengths for the resting state EEG. The first 

studied case is a window length of 60 s after skipping the first 

10 s of the signal to avoid filter artefacts. For the second 

studied case, a 30 s window is chosen as commonly used in 

the standard EEG signal analyses [9]. These windows have the 

same lengths for all the datasets. However, for the datasets 

with the head movement, the analysis windows were starting 

2.3 s after the movement and had a length of 0.5 s. Thus, 

transient movement artefacts were not considered for 

identifying bad channels. 

The signal quality of each channel is manually evaluated 

for the chosen windows [1,10]. The same signal windows were 

used for the automatic bad channel detection. All datasets were 

visually inspected by one annotator and the bad channels were 

annotated similar to the criteria described in [11]. Predefined 

bad channel characteristics are: exhibiting either a saturated 

signal, an isoelectric line, or a predominantly artefactual EEG 

recording. 

2.3 Automatic ISD Method 

We propose an Iterative Standard Deviation (ISD) method for 

automatic bad channel detection in both dry and gel-based 

EEG recordings. The standard deviation is calculated for each 

of the 64 channels over the whole analysed data window. 

First, the standard deviation of the signal for the j-th 

sensor over the whole analysis window of length N is 

calculated (see eq 1). 

= ( , )    (1) 

 is the i-th out of N samples for the j-th electrode and  is 

mean voltage for the j-th electrode. The result are 64 values of 

standard deviations. They are observed further as one 

population from which outliers have to be identified. Four 

criteria are established to detect the bad channels (see eq 2-5). 

The criteria used to eliminate the outliers from the population 

of SDs are the median and the 75th percentile range, the 

standard deviation of channels lower than 10-4 μV and higher 

than 100 μV. 

( , ) >     (2) 

( , ) <  μ     (3) 

( , ) >  μ     (4) 

An additional criterion for ending the iterations is: 

( ) >     (5) 

( , ) is standard deviation of the j-th channel at the k-th 

iteration. M is the median of the population of standard 

deviations in the k-th iteration. SDp is the standard deviation of 

all individual channel standard deviations in the k-th iteration. 

2.4 Statistical Analysis 

Statistical analysis was performed in MATLAB R2021a. The 

aim was to compare the identification of bad channels between 

the two methods. The manual selection of bad channels is 

taken as ground truth. The performance of the proposed ISD 

method is evaluated with the confusion matrix, sensitivity, 

specificity, and accuracy calculation. In addition, Fisher’s 

exact test at an alpha level of 0.05 is used to check if the two 

methods are providing significantly different outputs. 

3 Results 

The main results of the analysis are shown in Table 1 for all 

320 analysed channels from all 5 participants. For the 30 s long 

analysis window and gel-based electrodes, the number of bad 

channels manually identified is 11 while the ISD method 

identified 10 bad channels. In the dry dataset 25 channels are 

manually selected as bad, while the ISD method identified 24 

of them. For the datasets with the head movements, the 

manually identified number of bad channels is 12 and 30 for 

gel-based and dry recordings, respectively. In this case, the 

ISD method identified 10 and 32 bad channels in gel-based 

and dry recordings, respectively. The accuracy of the ISD 

method for the gel-based and dry alpha EEG recordings with 

the chosen 30 s window is 99.69 %. The accuracy of the ISD 

cdbme_2022_8_2.pdf   258 8/29/2022   5:45:49 PM

258



method is 99.38 % for both types of recordings and the 0.5 s 

fixed window in the head movement datasets.

Figure 1 shows the method’s performance for the 10 s 

exemplary alpha EEG dataset. In both cases (gel-based and 

dry), both methods (manual and ISD) identified the same 

channels as bad (colored red in Figure 1). For the gel-based 

electrodes these are 3RD and 3LD and for the dry ones 3RD, 

3LD, and 5LB. All bad channels in the datasets were detected 

in the first iteration.

4 Conclusion

We found no significant differences in the channels labelled as 

bad for the manual and ISD detection of bad channels for both 

resting state and head movement EEG. The ISD method is 

simple and robust and can be applied for bad channel 

identification in both dry and gel-based recordings, replacing 

manual evaluation. The detection criteria of the ISD method 

can be adapted to other datasets. As this method is working 

iteratively and does neither depend on pre-defined hard 

thresholds nor standardized values, it has the potential to 

automatize the process of bad channel detection. After the 

application of the ISD method, processing steps can be applied 

to further clean the data. However, the ISD method can be also 

used to detect artefacts, such as e.g. movement artefacts. 

We can notice a higher overall number of bad channels 

detected in the datasets with the head movement for dry 

recordings. As Debnath et al. reported, existing bad channel 

detection methods may not perform well if the recordings have 

a high number of bad channels as e.g. in EEG recordings with 

movements [3]. The advantage of our proposed ISD method is 

to overcome this limitation. The next phase of method testing 

would consider a broader frequency range of the EEG signals.

Figure 1: Alpha EEG dataset for all 64 channels and 10 seconds a) gel-based and b) dry. The red color indicates bad channels that are 
detected by the manual and ISD methods.

a) b)
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Future work will address the main limitation of this study 

which is the low number of subjects. 

Table 1: Statistical results of the ISD method for gel-based and dry 
EEG. Number of channels identified as bad from a total of 320 
channels for all 5 volunteers. P-values of Fisher’s exact test. The 
difference between identified bad channels from manual and ISD 
methods was compared at a significance level of alpha = 0.05. 

Dataset  Alpha Head 
movement 

 Performance 
parameter 

30 s 
window 

60 s 
window 

0.5 s 
window 

Gel-
based 

Sensitivity 90.91 84.62 83.33 

Specificity 100 100 100 

Accuracy 99.69 99.38 99.38 

Manual 11 13 12 

ISD 10 11 10 

p-value 0.04*10-16 0.01*10-17 0.02*10-17 

Dry Sensitivity 96.00 100 100 

Specificity 100 100 99.31 

Accuracy 99.69 100 99.38 

Manual 25 24 30 

ISD 24 24 32 

p-value 0.03*10-33 0.01*10-34 0.04*10-38 
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