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Abstract: Lung ultrasound images have shown great promise to be an operative point-of-care test for
the diagnosis of COVID-19 because of the ease of procedure with negligible individual protection
equipment, together with relaxed disinfection. Deep learning (DL) is a robust tool for modeling
infection patterns from medical images; however, the existing COVID-19 detection models are
complex and thereby are hard to deploy in frequently used mobile platforms in point-of-care testing.
Moreover, most of the COVID-19 detection models in the existing literature on DL are implemented
as a black box, hence, they are hard to be interpreted or trusted by the healthcare community. This
paper presents a novel interpretable DL framework discriminating COVID-19 infection from other
cases of pneumonia and normal cases using ultrasound data of patients. In the proposed framework,
novel transformer modules are introduced to model the pathological information from ultrasound
frames using an improved window-based multi-head self-attention layer. A convolutional patching
module is introduced to transform input frames into latent space rather than partitioning input
into patches. A weighted pooling module is presented to score the embeddings of the disease
representations obtained from the transformer modules to attend to information that is most valuable
for the screening decision. Experimental analysis of the public three-class lung ultrasound dataset
(PCUS dataset) demonstrates the discriminative power (Accuracy: 93.4%, F1-score: 93.1%, AUC:
97.5%) of the proposed solution overcoming the competing approaches while maintaining low
complexity. The proposed model obtained very promising results in comparison with the rival
models. More importantly, it gives explainable outputs therefore, it can serve as a candidate tool for
empowering the sustainable diagnosis of COVID-19-like diseases in smart healthcare.

Keywords: explainable artificial intelligence; interpretable deep learning; convolutional networks;
vision transformers; COVID-19; ultrasound image

MSC: 68T01; 68T05; 68T07; 68T09; 68T20; 68T30

1. Introduction

By the beginning of 2020, human beings were conquered by the SARS-CoV-2 virus.
That virus caused a pandemic infectious disease called COVID-19. The outbreak of
COVID-19 has had a catastrophic impact on global health infrastructure, leading to mil-
lions of infected cases and thousands of deaths [1]. In clinical practice, real-time reverse
transcriptase-polymerase chain reaction (RT-PCR) is used as a standard test to detect
COVID-19 infection [2]. However, research studies demonstrated that RT-PCR suffers from
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high false-positive rates because the clinical practice is strictly impacted by a variety of
aspects such as appropriateness of specimen, phase of infection, specimen categories, and
specimen conduct, containing sample acquisition time from the inception of COVID-19.
Moreover, the fast proliferation of COVID-19 has led to a deficiency of RT-PCR test kits
for the discovery of COVID-19. Another obvious shortcoming of this test involves direct
interaction between medical staff and patients. This, in turn, made the medical staff more
prone to infection, which caused a high death rate in the healthcare community. As a
remedy to the above issues, doctors and scholars showed that medical images can be used
as an effective tool to detect the presence of COVID-19. X-rays and computed tomography
(CT) are broadly used in this respect [3]. Accordingly, the research moved from manual
diagnosis of COVID-19 toward computer-aided diagnosis.

Ultrasound imaging is a non-invasive method that has already begun to replace X-rays
in pulmonary disease. There has been a surge in demand for point-of-care ultrasound,
which is supported by clinical facts and research findings. The advantages of point-of-care
ultrasonography (POCUS) include its low cost, ease of mobility, and bedside convenience
for patient safety. It is presently underutilized due to a lack of training options and an
appreciation of the research supporting this approach. It was discovered that it enhances
conventional diagnostic procedures and the technology is rapidly evolving. For wider
use, it was also suggested that POCUS be introduced into urgent and core medicine curric-
ula [4]. The latest epidemic of the COVID-19 pandemic forced the healthcare community
to utilize ultrasound imaging in emergency departments [5–7]. Discoveries indicated that
ultrasound imaging could help in both identifying COVID-19 cases and following up on
their states during the hospitalization phase. Nevertheless, lung ultrasound offers just
local pathological information on the status of the lung area. Thus, it is critical to thor-
oughly specify the necessary volume and distribution of lung regions to be scanned. This
way, multi-institutional studies are designed to search for an ideal trade-off between a
rapid and precise assessment to be performed [8]. For COVID-19 diagnosis, a twelve-area
methodology was proposed to signify an optimum trade-off between precision, speed, and
exam complication [9]. When it comes to evaluating patients’ states from ultrasound data,
both pathological information (i.e., pleural line, consolidations, opacities), and sonographic
artifacts (i.e., B-lines and A-lines) come to be significant. Nevertheless, identifying this
information and appropriately interpreting it demands extremely experienced doctors.
Therefore, to date, lung ultrasound data are not broadly accepted, even though their ca-
pacity would be somewhat recommended, especially in the face of urgent requirements
occurring in screening patients in the COVID-19 pandemic [10].

Deep learning (DL) as a subfield of machine learning (ML) was demonstrated as a key
enabler for almost all medical image analysis tasks and computer-aided diagnosis systems.
In this regard, convolutional neural networks (CNNs) are showing great capability for
extracting valuable representations from medical images [11]. For COVID-19 diagnosis,
CNNs are showing great promise in the detection and segmentation of infection and were
demonstrated to be very robust tools for achieving many interesting responsibilities, partic-
ularly in the realm of image perception. Given an adequate amount of training samples
and enough computing power, complex DL could even surpass doctors’ performance on
particular diagnosis tasks [12]. Research efforts are developing in the way of applying
CNNs to ultrasound data. However, training data are difficult to obtain, which is a com-
mon issue in medical image analysis and makes it challenging to effectively train these
complicated models. Unfortunately, the majority of DL solutions for COVID-19 diagnosis
are designed as a black-box model, which means that the model just provides us with
the final decision without justifying the reason behind it [13]. In other words, the doctors
are unable to interpret the internal working methodology of the DL model, thereby they
cannot trust the diagnosis results obtained from the DL model [14]. Generally speaking,
the opaque nature of DL models constrains the ability to integrate them into real-world
healthcare applications. These constraints come to be more serious in the case of critical or
pandemic diseases.
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1.1. Research Gaps

When it comes to the diagnosis of COVID-19 from ultrasound images using DL, many
research gaps are encountered, making it challenging to do well in combating COVID-19
either in or after the outbreak. By investigating the recent literature, this study considers
the following open gaps:

• Efficiency: In clinical practice, the task of detecting COVID-19 from lung ultrasound
data (either images or videos) necessitates high experience from doctors. Similarly, DL
should be able to effectively model the disease representations from the ultrasound
data in such a way that enables discriminating between the manifestations of COVID-
19 and other kinds of pneumonia with the lowest possible error rate. The healthcare
system does not tolerate any errors, especially in the diagnosis of pandemic diseases,
making the accuracy of the model an essential requirement [15];

• Complexity: Deep models are demonstrated as robust tools for learning inherent
features and diagnostic cues from medical image analysis. These models usually have
a complicated building structure so that they can model different representations
from large-sized and multi-dimensional training datasets. This complexity, in turn,
necessitates the model training to be performed on powerful and computationally
efficient machines, making it challenging to effectively detect COVID-19 from lung
ultrasound data. Another challenge to be considered in this respect is that the complex
models are unable to do well when trained on limited training data, which is a typical
scenario when dealing with COVID-19 lung data [16,17];

• Opaqueness: As stated above, the deep models are characteristically composed of
multiple building blocks and layers with several nonlinear interconnected interactions.
Even if one is to inspect all these layers and describe their relations, it is unfeasible
to fully comprehend how the neural network came to its decision. Therefore, DL
is often considered a ‘black box’. To properly understand how the model made its
choice, one would need to examine all of these constituting layers and define their
relationships. This is practically infeasible, leading the community to declare the
DL model as a “black box” model. There is growing concern that these black boxes
might exhibit some unobserved bias in making their decisions [13,14,18]. This can
have far-reaching repercussions, especially in medical applications. When it comes
to COVID-19 detection, the same problem exists; however, the dangerousness of
the disease even after the outbreak means that doctors have no chance to trust such
opaque models. Marginal mistakes in the diagnostic decision may cause catastrophic
consequences. Explainable artificial intelligence (XAI) is an evolving subfield to
provide a good explanation if it gives insight into how a neural network came to its
decision and/or can make the decision understandable.

1.2. Contributions

In response to the above challenges and gaps, this work presents a novel DL solution
that affords and is interpretable and efficient in the detection of COVID-19 from ultrasound
data. The main contributions of this work are pointed out as follows:

• First, a lightweight convolutional transformer network for flexible and robust model-
ing of COVID-19 from ultrasound data is designed, while dissipating the nightmare of
“data-hungry” models by being able to effectively learn from scratch and attain high
screening performance on small-size data.

• Second, two parallel transformer modules are designed with window-based and
shifted-window multi-head self-attention layers, respectively, aiming to improve the
representational power of the model, while maintaining a few numbers of parameters.

• Third, the convolutional patching module is integrated to empower image tokenization
to sustain local spatial representations by encoding relationships between patches.

• Fourth, a weighted pooling module is presented to get rid of the necessity for class to-
kens and by scoring the sequential embeddings of the disease representations captured
by the transformer modules to better relate information across the input frames.



Mathematics 2022, 10, 4153 4 of 17

• A gradient activation mapping integrated after-weighted pooling to empower
the proposed model visually explains its decided class for a given input frame,
which is achieved by highlighting the contribution of different biomarkers in the
ultrasound frame.

• Finally, an experimental evaluation of the public lung ultrasound dataset demonstrates
the ability of the proposed solution to precisely screen COVID-19, while generating a
visual explanation for the generated decisions.

1.3. Organization

The remaining part of this work is systematically organized as follows. Section 2
discusses the literature studies relevant to COVID-19 detection. Section 3 argues the
methodology of the proposed solution. In addition, the experimental setting of this study
is discussed in Section 4. Then, the results, analysis, and findings are given in Section 5.
Finally, Section 6 concludes this work.

2. Related Work

DL was demonstrated to be effective in a variety of imaging tasks spanning semantic
segmentation, object detection, etc. Inspired by these achievements, more recently, DL
has been progressively applied in medical applications, such as pneumonia detection,
localization, and segmentation from chest X-rays. This in turn shows that DL can be used
to help and automate preliminary diagnosis, which is of enormous importance to the
medical profession.

2.1. Deep Learning for COVID-19 Screening

The literature contains a lot of studies for the screening of COVID-19 from different
modalities of medical images, among them the lung ultrasound gains the least research
attention despite its demonstrated promise for screening and follow-up diagnosis. For
example, Born et al. [19] proposed a convolutional model, called POCOVID-net, which is
dedicated to identifying COVID-19, healthy, and bacterial pneumonia from lung ultrasound
frames and videos. The POCOVID-net was accompanied by a class activation map (CAM)
as an interpretability technique for localizing the spatiotemporal pulmonary manifesta-
tions, which are regarded as valuable for human-in-the-loop circumstances in medical
studies. Similarly, Diaz-Escobar et al. [20] applied many pre-trained models (i.e., VGG19,
InceptionV3, Xception, and ResNet50) to finetune them on lung ultrasound frames to detect
COVID-19 and pneumonia patients. Awasthi et al. [21] presented a lightweight convo-
lutional model, termed Mini-COVIDNet [21], for detecting COVID-19 from ultrasound
images, where the model can be deployed and used in resource-constrained applications
making it ideal for a point-of-care situation. The Mini-COVIDNet was trained to optimize
focal loss function to lessen the impact of class imbalance. Moreover, Frank et al. [22] pro-
posed a DL framework that combines domain knowledge into deep networks by feeding
anatomical representations and ultrasound artifacts as an extra channel comprising vertical
and pleural artifact masks in addition to original lung ultrasonic frames. They claimed
that the direct inclusion of this domain knowledge enables the deep networks to achieve
different diagnosis tasks using ultrasonic imagery quickly and efficiently. Additionally, the
framework was enabled to learn from both convex as well as linear probes and it shows
good performance on the COVID-19 severity assessment task, as well as the semantic
segmentation model. In addition, Muhammad et al. [17] proposed screening COVID-19
from ultrasound images using a lightweight convolutional model of consisting of five major
building convolutional blocks with a small number of trainable parameters. Then, the
feature maps from each block are fused to generate a representation vector to be fed into a
fully connected layer (FCL), where the final decision is made.
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Moreover, Marco et al. [23] presented a DL system for screening COVID-19 from
ultrasound data using a pre-trained and residual convolutional model, which is trained
(using transfer learning and data augmentation techniques) to quantify the severity of
infection as well. In another approach, Xue et al. [24] developed a multimodal approach
for assessing the severity of COVID-19 from two types of modality data (ultrasound data
and clinical information), where a dual-level supervised multiple-instance learning was
applied to combine the zone-associated features and patient-associated representations
from heterogeneous training data, hence resulting in discriminatory features. The model
aligned the two modalities using a contrastive learning module while maintaining the
discriminatory representations of each of them. Furthermore, Roy et al. [15] proposed a
spatial transformer network, that concurrently forecasts the degree of severity of COVID-19
in ultrasound frames and localizes pathological artifacts in a weakly supervised manner.
The authors also developed a lightweight technique for the efficient aggregation of scores
of frames at the video level.

2.2. Explainable Medical Image Analysis

With the increased acceptance of DL solutions in medical image diagnosis, explain-
ability becomes an inevitable requirement to effectively use these solutions in real-world
healthcare. To this end, many studies have recently emphasized developing explainable
models for COVID-19 screening. For example, Wu et al. [25] proposed a multi-task DL
framework that jointly classifies COVID-19 and segment infections from a CT scan with
the main aim of using the segmentation results to provide an explanation for the screen-
ing decisions. In a similar way, Wang et al. [26] proposed a joint learning framework,
called DeepSC-COVID, for the screening and segmentation of COVID-19 lesions from 3D
CT scans. In particular, the DeepSC-COVID model is composed of three sub-networks,
namely the cross-task feature sub-network, segmentation subnetwork for segmenting 3D
COVID-19 lesions, and classification subnetwork for identifying COVID-19, pneumonia,
and non-pneumonia cases. The latter one contains a multi-layer visualization method
to produce evidential masks that include tiny and imprecise lesions for making the task
screening of COVID-19 explainable. During the training of DeepSC-COVID, a task-aware
loss was developed based on our visualization method for effective collaboration between
classification and segmentation. Though the integration of segmentation and classification
tasks in the single model help provide an explainable diagnosis, it makes the model very
complex and has a very large number of parameters. In addition, Shi et al. [27] presented
an explainable attention transfer model network to automatically screen COVID-19 from
chest X-ray and CT scans, which consisted of a teacher model and a student model. The
former models the global representation and uses a deformable attention module to distill
the infection lesions to intensify the reaction to lesions and restrain noise in unrelated areas
with an extended reception field. Next, an image fusion unit was proposed to integrate
attention knowledge transmitted from teacher to student with the necessary representa-
tions in the original input. The student model was designed to concentrate on sporadically
formed lesion areas to learn discriminatory features. In [28], the Gradient-weighted CAM
(Grad-CAM) algorithm was employed for debugging the convolutional models to provide
explainability of its classification decision in chest X-rays.

3. Research Methodology

This section introduces and discusses the proposed framework for screening COVID-
19 from lung ultrasound data. To obtain a better interpretation of the proposed framework,
an illustration of its structural design is presented in Figure 1. As observed, the proposed
framework consists of six main building modules and we are going to dive into the details
of each of them in the next subsections.
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pneumonia from lung ultrasound data.

3.1. Convolutional Patching

The conventual language Transformer was designed to accept input in form of a
one-dimensional sequence of token embeddings. This seems inappropriate when dealing
with 2D ultrasound frames, therefore the input frame x ∈ RH×W×C is reshaped into a
sequence of compressed 2D patches xp ∈ RN×((p×p)·C), whereby H ×W represents the
spatial dimensions of the original frame, C represents the number of channels, p × p
denotes the spatial dimensions of each patch, and N denotes the number of patches (it is
calculated as follows N = HW

P2 ) , denoting the length of the input sequence of Transformer
modules. Each of these modules utilizes a fixed size latent vector D, hence, the generated
frame patches are mapped to d dimensions through learnable linear projection, as shown
in Equation (1).

z0 =
[

xclass, x1
pE, x2

pE, · · · xN
p E
]
+ Epos,E ∈ RN×((p×p)·C), Epos ∈ R(N+1)×(d) (1)

where the generated output z0 of this projection can be referred to as patch or token em-
beddings. The patch embeddings were supplied by one-dimensional position embeddings
Epos ∈ R(N+1)×(D) to preserve spatial pathological information in ultrasound frames.

To establish an inductive bias in the proposed model, the standard image patching,
as well as token embedding, are replaced with a straightforward convolutional mod-
ule. The design of a convolutional module consists of a depth-wise convolutional layer
(DWConv2D) activated by LeakyReLU (LReLU) function and followed by a max-pooling
layer. In doing so, the above formula can be formulated as:

z0 = MaxPool(LReLU(DWConv2D(x))) (2)

where the DWConv2D layer contains a number of d filters, equal to the embedding dimen-
sion in Equation (1). Two convolutional modules are stacked to generate convolutional
patching. This convolutional patching makes the model more flexible and simpler than the
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standard vision transformer. In particular, the convolutional modules are introduced to
embed the input ultrasound frames into a latent representation, which is more efficient for
modeling pathological information in subsequent layers. Variations in the size of image size
do not have an effect on the number of parameters but impact the length of the sequence
and consequently the required computing. Even though the standard patching operation
necessitates that the dimensions of input frames be dividable by the size of the patch. The
convolutional modules enabled the model to accept input of various sizes of data with no
requirement for clipping or padding as it alleviates the necessity of uniformly partitioning
an image into patches. Another advantage of the proposed model lies in the fact that
convolution and max pool layer could be overlapping, enabling the sequence length to
become increased but conversely, improving screening performance by infusing inductive
bias. Obtaining these convolutional patches enables the model to hold the local spatial
pathological information eliminating the need for positional embedding as it achieves a
very decent performance.

3.2. Transformer Modules

The project sequence of embeddings z0 are then passed to a stacked transformer
module. Each of these modules consists of alternating layers of multiheaded self-attention
(MHA) and Feed Forward Network (FNN) blocks.

The traditional self-attention (SA) [29] attention layer is commonly used to calculate
the attention score for each head on a global receptive field, leading to quadratic compu-
tations in terms of the number of tokens, which makes it inappropriate for ultrasound
frames/videos that require a huge set of tokens for modeling pathological information.
To address that, window-based or local SA is adopted to calculate SA for local windows,
where windows are disposed to uniformly divide the image in a non-overlapping way.
Given that the window includes M×M non-overlapping patches, SA is computed locally
within the window.

For each instance in patch embedding z ∈ RN×D, a weighted summation is calculated
for all values v in the sequence. Then, the attention scores are calculated according to
pairwise correspondence between two embedding elements and the corresponding query
qi and key k j representations.

[q, k, v] = zUqkv, Uqkv ∈ RM2×dh (3)

a = so f tmax
(

qkT
√

dh
+ B

)
, a ∈ RN×N (4)

H(z) = a·v (5)

where H represents the attention head; q, k, v ∈ RM2×dh represent the query, key, and
value matrices; dh denotes the query/key dimension, M2 represents the number of window
patches and B ∈ RM2×M2

represents the relative position bias [16].
The MHA is an expansion of the above calculations by calculating the SA for multiple

heads concurrently and then concatenating the output of each of them, and later projecting
this concatenation in FFN.

MHA(z) = concat
[

H0, H1, · · · , Hh−1
]

(6)

Layer norm (LN) is applied at the beginning of each module, while the residual
connection is applied to the MHA and FNN layers in each module.

By calculating window-based SA, the computational complexity of a global MHA and
a window-based MHA (WMHA) over an image containing h× w patches are formulated
as follows:

Ω(MHA) = 4hwC2 + 2(h× w)2C (7)

Ω(WMHA) = 4hwC2 + 2M2(h× w)C (8)
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where the first formula is quadratic with respect o the number of patches h× w, and the
other formula is linear when M is constant. Therefore, the global SA calculation is mostly
unreasonable for a large number of patches, while the local SA is usable. However, local
SA does not have connections among windows, limiting its representation power [16]. As a
remedy, the network requires the application of cross-window connectivity while retaining
the effective calculation of non-overlapping windows. This is achieved by designing two
parallel transformer modules, one uses WMHA and the other use cross-window-based
MHA (CWMHA). Mathematically speaking, the flow of information in the first transformer
modules could be formulated as follows:

z̃I
l = WMHA

(
LayerNormalize

(
zI

l−1

))
+ zI

l−1, l = 1 · · · L (9)

zI
l = FFN

(
LayerNormalize

(
z̃I

l−1

))
+ z̃I

l−1, l = 1 · · · L (10)

In a similar way, the flow of information in the other transformer module is calculated
as below:

z̃I I
l = CWMHA

(
LayerNormalize

(
zI I

l−1

))
+ zI I

l−1, l = 1 · · · L (11)

zI
l = FFN

(
LayerNormalize

(
z̃I I

l−1

))
+ z̃I I

l−1, l = 1 · · · L (12)

Like language models [30], a trainable embedding was prepended to the sequence of
embedded patches (z0 = xclass), whose status at the output of the transformer modules (zL)
serves as the frame/video representation y, as shown in Equation (4).

y = LayerNormalize(zL) (13)

During either fine-tuning or pre-training, the classification module accompanies the
zL. The classification module is implemented with FNN composed of a single hidden layer.

3.3. Down-Sampling Module

In order to generate a hierarchical representation, the number of tokens is reduced
by down-sampling modules, introduced to reduce the number of tokens as the depth of
the network increases. In the earlier patch-merging module, the features of each set of
g × g neighboring patches are concatenated and then passed to a convolutional 1 × 1 layer.
This way, the number of tokens is decreased by a multiple of g × g (i.e., down-sampling),
and the dimension of the output is turned into 2C. The same process is applied after each
transformed module and by the end, the stacked modules jointly generate a hierarchical
representation with the same dimensions as the feature map generated from standard
convolutional networks.

3.4. Weighted Pooling

To encode the sequential outcomes into a singular class index, rather than applying
a class token (as commonly performed in common transformer networks), the proposed
model presents a weighted pooling layer. Simply, the outputs of the transformer modules
are pooled over the whole sequence of data because they include appropriate representation
across various sections of the ultrasound frames. Mathematically speaking, the sequential
pooling operation can be declared as the mapping function M : Rb×n×d → Rb×d given as:

xL = f(x0) ∈ Rb×n×d (14)

where xL represents the feature maps generated from L-th of the transformer module
and b, n, d denote the size of the mini-batch, length of the sequence, and embedding
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dimension. Hence, xL maps are passed to a linear layer with So f tMax activation to
generate the following:

x′L = so f tmax
(

g(xL)
T
)
∈ Rb×1×n (15)

Following this, the obtained probability scores are used to calculate the pooled output
as follows:

z = x′L × xL = so f tmax
(

g(xL)
T
)
× xL (16)

The design of weighted pooling enables the model to score the sequential embeddings
of latent representations generated from transformer modules and robustly relate data
throughout the input data. This behavior is similar to the process of attention to sequential
data. This pooling layer can be implemented in either trainable or non-trainable manner;
however, the latter case is more efficient for the reason that every embedded patch includes
a different quantity of entropy. Accordingly, the network is capable of assigning higher
scores to input patches that comprise more pathological information valuable for the
screening of pneumonia or of COVID-19. Furthermore, the weighted pooling enables the
model to improve by using information from heterogeneous sources.

3.5. Classification Module

Given the output of the weighted pooling, the model calculates the final screening
decision in the classification module consisting of two fully connected layers, the first
with 64 neurons and containing three units corresponding to three classes, i.e., COVID-19,
pneumonia, and normal. The last layer is normally activated with SoftMax activation. The
parameters of the model-optimized categorical focal loss (SFL) function [31] help lessen the
impact of class imbalance on the final classification performance.

CFL = −
n=3

∑
i=1

αi(i− pi)
γ log pi (17)

The hyperparameter γ enables fine-tuning of the weight of various samples. If γ = 0,
this signifies the categorical cross-entropy. Given a higher value of γ, a small set of simply
categorized ultrasound frames participate in calculating the training loss, while frames
belonging to the minority class are assigned a higher weight. αi represents a balance factor.

3.6. Explainability Module

When it comes to explaining the DL model, CAM is a popular approach for generating
an activation map for every input sample signifying pixel-wise donation to the decision,
or disease type in our case. The discriminative ability of CAM stems from the fact that it
generates class-aware activation maps offering more analysis at the class level. However,
CAM suffers from primary limitations that it adds to the Softmax layer, hence, performing
re-training, which might cause the performance to degrade [32]. Grad-CAM++ [18] is
integrated to calculate activation maps with no modification to the DL model. They also
require a weight matrix to bring together feature maps. This could be accomplished by
initially estimating the gradient of a given class with respect to each feature map and
then applying global average pooling on the derivatives to obtain a weight matrix. This
way, Grad-CAM++ prevents adding up additional layers, thereby eliminating performance
degradation and re-training problems. The calculation of weights w(c)

k in Grad-CAM++ can
be formulated as follows:

w(c)
k =

H

∑
i=1

W

∑
j=1

α
(c)
k (i, j).ReLU

(
∂Y(c)

∂Ak(i, j)

)
, (18)
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where Y(c) represent the model estimated probability for class c immediately prior to
the SoftMax layer and α

(c)
k (i, j) represent weighting factors for class-specific pixel-wise

gradients calculated as follows:

α
(c)
k (i, j) =

1

∑i,j
∂Y(c)

∂Ak(i, j)

=

∂2Y(c)

(∂Ak(i, j))2

2. ∂2Y(c)

(∂Ak(i, j))2 + ∑a,b Ak(a, b). ∂3Y(c)

(∂Ak(i, j))3

(19)

where (i, j) and (a, b) represent the iterators over the same activation map Ak and were
applied to evade disorientation. The final saliency map can be calculated as follows:

L(c)
Grad−CAM++(x, y) = ReLU

(
∑
k

w(c)
k Ak(x, y)

)
(20)

where Ak(x, y) is the activation of node k in the intended network layer at the loca-
tion (x, y).

4. Experimental Design

This section defines the design settings of proof-of-concept experiments in terms of im-
plementation setup, evaluation metrics, and the dataset adopted for training and evaluations.

4.1. Implementation Setup

To set up the experimentations in this work, a TensorFlow 2.6 running over Python
3.8 virtual environment is employed for implementing the deep models. All experiments
are performed on a Dell workstation armed with RAM (256 GB) and CPU (Intel ® Xe®(R)
CPU E5-2670 0@ 2.60 GHz). The training of that models was accelerated by NVIDIA
Quadro graphical processing unit (GPU). All the experiments are performed using five-fold
cross-validations strategies.

4.2. Evaluation Metrics

For evaluating the detection performance of the proposed method and the competing
ones, a set of popular multi-class classification metrics calculated as a function of false
positive (FB), false negative (FN), true negative (TN), and true positive (TP) samples are
opted for and defined as follows:

Accuracy (A) =
TP + TN

TP + TN + FP + FN
× 100, (21)

Sentivity (Se) =
TP

TP + FN
× 100, (22)

Speci f icity (Sp) =
TN

TN + FP
× 100, (23)

F1− score (F1) =
2TP

2TP + FP + FN
× 100, (24)

Beyond the above metrics, the Area Under the Curve (AUC) is adopted to assess the
detection capability of the model.

4.3. Data Description

To train and evaluate the proposed method, a public and open-source LUS dataset
is used, which is known as the POCUS dataset. The dataset consists of image and video
samples belonging to three classes of infection, namely COVID-19, viral pneumonia, and
bacterial pneumonia, in addition to samples from healthy individuals. The dataset contains
a total of 261 recordings (202 videos + 59 images) captured from a total of 216 patients with
either linear or convex probes. The distribution of samples across different classes is given
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in more detail in Table 1. Linear probes have high frequency, leading to a superior resolution
that enables improved investigation of irregularities near the pleural line [22]. However, the
linear probe penetrates the lung tissue less than the convex probe, which could make it hard
to tell the difference between B-line artifacts (a major lung artifact) and hidden tissue. The
images and videos in the POCUS dataset were aggregated from a variety of sources, such as
clinical data obtained from academic ultrasound courses, hospitals, scientific publications,
public medical repositories, and health-tech corporations. The complete details of different
sources of data in the POCUS dataset can be found in reference [19]. The COVID-19 cases
were confirmed by RT-PCR. The dataset is supplemented by a comprehensive metadata file
encapsulating the anonymized patient identifier, source URL, source identifier, sex, age,
symptoms, pathological manifestations, video frame rate, image resolution, and the total of
frames per video. The length and type of videos are a varied (160 ± 144 frames) dataset,
whereas they have a frame rate of 25± 10 Hz. Outstandingly, all samples in the dataset
were reported to be revised and confirmed by one medical expert with more than 10 years
of clinical experience and an academic instructor. Figure 2 shows some examples of 2D
ultrasound frames for COVID-19, pneumonia, and healthy patients.
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Table 1. The class distribution of the POCUS dataset.

COVID-19 Bacterial
Pneumonia

Viral
Pneumonia Healthy Total

CONVEX
Videos 64 49 3 66 182

Images 18 20 / 15 53

LINEAR
Videos 6 2 3 9 20

Images 4 2 / / 6

Total 92 73 6 90 261

4.4. Data Preparation

As the usual step in developing a DL solution, data need to be pre-processed before
going to the training stage. In this regard, the convex ultrasound probes are used for
training models in all experimentations. Owing to the small number of samples belonging
to the viral pneumonia class (3 convex videos), the data are pre-processed by eliminating the
data of that class and the training is performed using only the other three classes. Moreover,
all convex ultrasound samples (179 videos and 53 images) were physically pre-processed by
dividing the videos into separate images at a 3 Hz frame rate (i.e., maximum of 30 frames
per video) resulting in a dataset comprising a total of 1204 COVID-19 images, 704 bacterial
pneumonia images, and 1326 images of normal cases. Moreover, the generated image
samples are cropped into a quadratic window, eliminating artifacts, ration bars, and text,
and then they are resized into 224 × 224 pixels. Different from hold-out testing data, all the
presented stated results in this work are attained from five-fold cross-validation stratified
by the count of examples in each class. The image samples were divided at the patient
level; therefore, it is guaranteed that the frames of one video are existing only per one-fold
and that the number of videos per class is almost the same for all folds. All models were
trained to classify images as COVID-19, pneumonia, and non-infected. Furthermore, the
data were augmented by applying image flipping, rotations

[
−10

◦
, 10

◦]
and translations

(up to 10%, which in turn differentiate the data and help avoid overfitting).

5. Results and Analysis
5.1. Comparative Analysis

To evaluate the competitiveness of the proposed model, detection performance is
fairly compared against the cutting-edge COVID-19 models, namely CNN [17], POCOVID-
Net [19], Mini-COVIDNet [21], Residual Net [23], and Inception [20]. To assure that
comparison is very fair, the results of the competing methods are reproduced in the same
experimental environment, settings, and training data. During the experiments, an overfit-
ting issue was observed in the case of Mini-COVIDNet, therefore we had to apply some
regularization methods to assure the results remain real and representative. Table 2 shows
the results obtained from comparative experiments by calculating the mean and standard
deviation (std) over different validation folds. Moreover, the comparison also includes the
number of parameters of each model to give an intuitive understanding of the model’s
complexity. It is notable that the pre-trained Residual Net [23] shows the lowest screen-
ing performance (accuracy: 71.5%) despite its large number of parameters. Moreover,
POCOVID-Net [19] and Mini-COVIDNet [21] show relative improvement in COVID-19
screening performance with an accuracy of 82.1% and 82.7%, respectively. However, they
exhibit a large number of parameters. Notably, CNN [17] achieved the most competitive
performance across all evaluation metrics, while maintaining a small number of parameters
compared with the above methods. More significantly, the proposed model demonstrated
robust detection performance across all performance metrics (accuracy: 93.4% F1-score:
93.1%, AUC: 97.5%), overcoming the competing methods with large margins. As ob-
served, the number of parameters of the proposed model is surprisingly smaller than all
the competing methods, which can be attributed to the elegant design of building blocks,
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i.e., convolutional patching and window-based attention. The lightweight nature of the
proposed model makes it a time- and space-efficient solution that can be easily integrated
into the real-world healthcare system.

Table 2. Comparison of the 5-Fold cross-validation performance (mean ± std) of the proposed
methods and competing models for COVID-19 screening from a frame-based lung ultrasound dataset.
The Precision, Recall, F1-score, and AUC metrics are reported for each class.

METHOD ACCURACY
(%)

NO.
PARAMS CLASS PRECISION

(%) RECALL (%) F1-SCORE
(%) AUC (%)

COVID-19 93.8 ± 4.75 91.9 ± 2.00 92.8 ±2.8 96.8 ± 3.68

Pneumonia 95.1 ± 2.90 96.2 ± 1.73 95.6 ± 2.2 97.2 ± 5.59CNN [17] 90.3 ± 5.13 389,540

Normal 80.1 ± 5.87 75.6 ± 5.2 77.8 ± 5.5 83.1 ± 10.5

POCOVID-
NET
[19]

82.1 ± 11.6 14,747,971

COVID-19 84.6 ± 6.80 88.1 ± 10.8 86.3 ± 8.3 95.3 ± 1.19

Pneumonia 93.9 ± 4.20 91.5 ± 2.10 92.7 ± 2.8 97.3 ± 1.57

Normal 56.2 ± 8.22 51.9 ± 2.90 54.0 ± 4.3 68.2 ± 2.74

COVID-19 81.9 ± 3.92 91.8 ± 9.65 86.6 ± 5.6 95.3 ± 6.54

Pneumonia 82.4 ± 4.56 90.3 ± 5.32 86.2 ± 4.9 95.7 ± 9.13
MINI-

COVIDNET
[21]

82.7 ± 10.2 3,361,091

Normal 62.3 ± 9.50 44.7 ± 11.5 52.1 ± 10.4 63.1 ± 7.63

RESIDUAL
NET [23] 71.5 ± 13.5 23,851,011

COVID-19 76.4 ± 8.21 85.2 ± 6.26 80.6 ± 7.1 89.2 ± 5.88

Pneumonia 89.7 ± 9.76 63.1 ± 9.08 74.1 ± 9.4 82.5 ± 4.82

Normal 33.2 ± 11.7 37.3 ± 10.7 35.1 ± 11.2 55.6 ± 8.62

COVID-19 85.6 ± 4.79 80.9 ± 8.27 83.2 ± 6.1 93.1 ± 7.01

Pneumonia 80.2 ± 3.43 81.2 ± 3.10 80.7 ± 3.3 91.9 ± 7.33
INCEPTION

[20] 83.3 ± 7.71 20,867,625

Normal 67.3 ± 15.4 60.7 ± 7.71 63.8 ± 10.3 72.6 ± 4.51

PROPOSED 93.4 ± 3.46 290,891

COVID-19 95.8 ± 2.58 94.5 ± 1.22 95.1 ± 1.7 98.1 ± 2.30

Pneumonia 95.1 ± 3.84 94.8 ± 1.34 94.9 ± 2.0 98.8 ± 1.68

Normal 91.2 ± 3.73 87.7 ± 3.43 89.4 ± 3.6 95.7 ± 1.33

5.2. Statistical Analysis

To further investigate whether the achieved results are statistically significant from
those obtained from the competing DL methods, the Friedman omnibus test is applied as a
common, popular way of contrasting the performance given by ML models. Hence, the
Friedman test is applied to the stratified five-fold cross-validation results and the calculated
p-values are presented in Table 3. The Python library SciPy is used to implement the
Friedman test with threshold σ = 0.05. It could be noted that all p-values are less than
the threshold, implying the rejection of the null hypothesis. This means that the results
of the proposed model statistically differ from those of the competing methods across
different metrics.

Table 3. The statistical results obtained from the Friedman test with a significance threshold σ = 0.05.

Method Accuracy F1-score AUC

Proposed vs. CNN [17] 6.25 × 10−3 5.22 × 10−8 5.03 × 10−3

Proposed vs. POCOVID-Net [19] 7.40 × 10−5 6.98 × 10−3 9.90 × 10−4

Proposed vs. Mini-COVIDNet [21] 5.96 × 10−3 5.96 × 10−6 7.63 × 10−3

Proposed vs. Residual Net [23] 2.06 × 10−4 4.76 × 10−3 8.89 × 10−7

Proposed vs. inception [20] 9.84 × 10−6 5.50 × 10−5 2.54 × 10−5
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5.3. Ablation Analysis

To deep dive into the building blocks of the proposed model, a group of ablation
experiments is performed to analyze the role and the contribution of each building block to
the total screening performance. The results of the ablation experiments are presented in
Table 4. In these experiments, a shallow version of the standard vision transformer is used
as a baseline model and achieved 89.6% accuracy, 89.2% F1-score, and 94.8% AUC. Moving
forward, the inclusion of the transformer module with WMHA is shown to be beneficial
for improving the COVID-19 screening performance (accuracy: 90.7%, F1-score: 90.8%,
AUC: 95.1%). In the same way, the inclusion of the transformer module with SWMHA is
observed to lead to similar improvements. More interestingly the parallel integration of the
above modules in our model significantly improved the classification performance across
all metrics (accuracy: 92.5%, F1-score: 91.9%, AUC: 97.1%). This explains the importance
of both features in separate windows and cross-windows being essential to improving
the representation power of the model. Finally, the integration of the proposed weighted
pooling module is obviously improving the classification performance.

Table 4. Ablation experiments of the proposed model under 5-fold cross-validation.

METHOD ACCURACY F1-SCORE AUC

BASELINE 88.1 ± 2.96 87.3 ± 4.99 94.2 ± 2.45

+CONVOLUTIONAL
PATCHING 89.6 ± 1.74 89.2 ± 3.09 94.8 ± 2.68

+WMHA 90.7 ± 3.73 90.8 ± 2.16 95.1 ± 1.08

+SWMHA 90.9 ± 2.35 90.3 ± 2.24 95.6 ± 1.52

+ (WMHA||SWMHA) 92.5 ± 3.16 91.9 ± 1.93 97.1 ± 2.39

+WIGHTED POOLING 93.4 ± 3.46 93.1 ± 2.43 97.5 ± 1.77

5.4. Explainability Analysis

To understand and interpret the screening decision obtained from the proposed model,
the class-related saliency maps for some COVID-19 and pneumonia cases are presented in
Figure 3A,B, correspondingly.

It could be seen that the GRAD-CAM++ shades the significant lung areas in the
ultrasound frame, contributing to making the prediction of the output classes. It is also
observable that the model activates diverse zones in the input frame corresponding to
different biomarkers to be learned and considered during the screening. These diverse
zones adopted for screening are learned intrinsically in the model. Moreover, it is notable
that the regions of activations vary from one frame to another, even though they both belong
to the same class of infection, hence, these activations can be further enhanced by using
more ultrasound data from the same class. For the pneumonia frame, one may observe the
presence of pleural consolidations, which is a common biomarker for that disease [33,34].
On the other hand, COVID-19 was demonstrated to show abnormal pleural lines together
with upright artifacts in lung ultrasound frames/videos. Figure 3A highlights the location
of the lung infection lesions where it is obvious that our model is considering the area in
close proximity to the pleural lines for screening the COVID-19 class. This assessment also
establishes that the proposed solution could promptly identify the cases suffering from
considerable lung abnormalities displayed as B-lines, which enables improved screening of
COVID-19 patients.
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6. Conclusions and Future Work

This work presents a lightweight and explainable convolutional transformer model
for the efficient screening of COVID-19 from ultrasound data. The representation power
of the model is further improved by convolutional patching and parallel window-based
transformation modules. The findings demonstrate that the proposed solution considerably
improves COVID-19 detection performance with high information compactness, meaning
that it achieves both efficiency (high detection accuracy) and effectiveness (a small number
of trainable parameters). Beyond and above this, the classification decisions obtained from
the proposed solution can be visually explained so they can be easily interpreted and
trusted by medical staff. These competitive advantages of the proposed solution render it a
candidate for improving the quality of ultrasonic diagnosis in smart healthcare systems
during and after the pandemic.

This work can be extended in three ways in the future. First, in coping with the
sustainable development strategy in Egyptian Vision 2030, the proposed solution will be
extended to be provided as a sustainable diagnosis service/system that can be collabora-
tively trained using ultrasound data from different Egyptian hospitals. By doing so, the
Egyptian Ministry of Healthcare will have great management of COVID-19-like pandemics
with automated, efficient, interpretable, and effective tools. Second, the proposed solution
will be extended to take advantage of 5G and B5G communication to deliver the patients’
data and corresponding diagnosis decisions in real time. This direction will specifically
focus on the responsiveness of our system as an essential requirement of the sustainability
of the Egyptian healthcare system. Third, the proposed solution will be extended to learn
from different modalities of data to improve the quality and functionality of COVID-19
diagnosis in the healthcare system.

Author Contributions: Conceptualization, M.A.-B., H.H. and K.M.S.; methodology, M.A.-B., H.H.
and K.M.S.; software, M.A.-B. and H.H.; validation, M.A.-B., H.H., A.W.M., K.A.A. and K.M.S.;
formal analysis, M.A.-B., H.H., K.A.A., A.W.M. and K.M.S.; investigation, M.A.-B., H.H., A.W.M. and
K.M.S.; data curation, M.A.-B., H.H., A.W.M. and K.M.S.; writing—original draft preparation, M.A.-B.
and H.H.; writing—review and editing M.A.-B., H.H., K.A.A., A.W.M. and K.M.S.; visualization,
M.A.-B., H.H. and K.M.S.; supervision, M.A.-B.; funding acquisition, K.A.A. All authors have read
and agreed to the published version of the manuscript.



Mathematics 2022, 10, 4153 16 of 17

Funding: This research is funded by the Researchers Supporting Program at King Saud University,
(RSP-2021/305).

Acknowledgments: The authors present their appreciation to King Saud University for funding the
publication of this research through the Researchers Supporting Program (RSP-2021/305), King Saud
University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare that there are no conflict of interest in the research.

References
1. WHO. WHO Coronavirus Disease. 2020. Available online: WHO.int (accessed on 30 September 2022).
2. Garg, A.; Ghoshal, U.; Patel, S.S.; Singh, D.V.; Arya, A.K.; Vasanth, S.; Pandey, A.; Srivastava, N. Evaluation of seven commercial

RT-PCR kits for COVID-19 testing in pooled clinical specimens. J. Med Virol. 2020, 93, 2281–2286. [CrossRef] [PubMed]
3. Bernheim, A.; Mei, X.; Huang, M.; Yang, Y.; Fayad, Z.A.; Zhang, N.; Diao, K.; Lin, B.; Zhu, X.; Li, K.; et al. Chest CT Findings in

Coronavirus Disease-19 (COVID-19): Relationship to Duration of Infection. Radiology 2020, 295, 200463. [CrossRef] [PubMed]
4. Mischi, M.; Bell, M.A.L.; Van Sloun, R.J.G.; Eldar, Y.C. Deep Learning in Medical Ultrasound—From Image Formation to Image

Analysis. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020, 67, 2477–2480. [CrossRef]
5. Bansal, G.; Chamola, V.; Narang, P.; Kumar, S.; Raman, S. Deep3DSCan: Deep residual network and morphological descriptor

based framework forlung cancer classification and 3D segmentation. IET Image Process. 2020, 14, 1240–1247. [CrossRef]
6. Rohmetra, H.; Raghunath, N.; Narang, P.; Chamola, V.; Guizani, M.; Lakkaniga, N.R. AI-enabled remote monitoring of vital signs

for COVID-19: Methods, prospects and challenges. Computing 2021, 1–27. [CrossRef]
7. Chamola, V.; Hassija, V.; Gupta, V.; Guizani, M. A Comprehensive Review of the COVID-19 Pandemic and the Role of IoT, Drones,

AI, Blockchain, and 5G in Managing its Impact. IEEE Access 2020, 8, 90225–90265. [CrossRef]
8. Zhang, Y.; He, X.; Tian, Z.; Jeong, J.J.; Lei, Y.; Wang, T.; Zeng, Q.; Jani, A.B.; Curran, W.J.; Patel, P.; et al. Multi-Needle Detection in

3D Ultrasound Images Using Unsupervised Order-Graph Regularized Sparse Dictionary Learning. IEEE Trans. Med Imaging 2020,
39, 2302–2315. [CrossRef]

9. Mento, F.; Perrone, T.; Fiengo, A.; Tursi, F.; Macioce, V.N.; Smargiassi, A.; Inchingolo, R.; Demi, L. Limiting the areas inspected by
lung ultrasound leads to an underestimation of COVID-19 patients’ condition. Intensive Care Med. 2021, 47, 811–812. [CrossRef]

10. McElyea, C.; Do, C.; Killu, K. Lung ultrasound artifacts in COVID-19 patients. J. Ultrasound 2020, 25, 333–338. [CrossRef]
11. Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.M.; van Ginneken, B.;

Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [CrossRef]
12. Xie, X.; Niu, J.; Liu, X.; Chen, Z.; Tang, S.; Yu, S. A survey on incorporating domain knowledge into deep learning for medical

image analysis. Med. Image Anal. 2021, 69, 101985. [CrossRef] [PubMed]
13. Tjoa, E.; Guan, C. A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI. IEEE Trans. Neural Networks Learn.

Syst. 2020, 32, 4793–4813. [CrossRef] [PubMed]
14. Ahmed, I.; Jeon, G.; Piccialli, F. From Artificial Intelligence to Explainable Artificial Intelligence in Industry 4.0: A Survey on

What, How, and Where. IEEE Trans. Ind. Inform. 2022. [CrossRef]
15. Roy, S.; Menapace, W.; Oei, S.; Luijten, B.; Fini, E.; Saltori, C.; Huijben, I.; Chennakeshava, N.; Mento, F.; Sentelli, A.; et al. Deep

Learning for Classification and Localization of COVID-19 Markers in Point-of-Care Lung Ultrasound. IEEE Trans. Med. Imaging
2020, 39, 2676–2687. [CrossRef]

16. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using
Shifted Windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision 2021, Montreal, BC, Canada,
11–17 October 2021; pp. 9992–10002. [CrossRef]

17. Muhammad, G.; Hossain, M.S. COVID-19 and Non-COVID-19 Classification using Multi-layers Fusion From Lung Ultrasound
Images. Inf. Fusion 2021, 72, 80–88. [CrossRef] [PubMed]

18. Chattopadhyay, A.; Sarkar, A.; Howlader, P. Grad-CAM ++ : Improved Visual Explanations for Deep Convolutional Networks. In
Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March
2018; pp. 839–847. [CrossRef]

19. Born, J.; Wiedemann, N.; Cossio, M.; Buhre, C.; Brändle, G.; Leidermann, K.; Goulet, J.; Aujayeb, A.; Moor, M.; Rieck, B.; et al.
Accelerating Detection of Lung Pathologies with Explainable Ultrasound Image Analysis. Appl. Sci. 2021, 11, 672. [CrossRef]

20. Diaz-Escobar, J.; Ordóñez-Guillén, N.E.; Villarreal-Reyes, S.; Galaviz-Mosqueda, A.; Kober, V.; Rivera-Rodriguez, R.; Rizk, J.E.L.
Deep-learning based detection of COVID-19 using lung ultrasound imagery. PLoS ONE 2021, 16, e0255886. [CrossRef]

21. Awasthi, N.; Dayal, A.; Cenkeramaddi, L.R.; Yalavarthy, P.K. Mini-COVIDNet: Efficient Lightweight Deep Neural Network
for Ultrasound Based Point-of-Care Detection of COVID-19. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 2023–2037.
[CrossRef]

22. Frank, O.; Schipper, N.; Vaturi, M.; Soldati, G.; Smargiassi, A.; Inchingolo, R.; Torri, E.; Perrone, T.; Mento, F.; Demi, L.; et al.
Integrating Domain Knowledge Into Deep Networks for Lung Ultrasound With Applications to COVID-19. IEEE Trans. Med.
Imaging 2021, 41, 571–581. [CrossRef]

23. La Salvia, M.; Secco, G.; Torti, E.; Florimbi, G.; Guido, L.; Lago, P.; Salinaro, F.; Perlini, S.; Leporati, F. Deep learning and lung
ultrasound for Covid-19 pneumonia detection and severity classification. Comput. Biol. Med. 2021, 136, 104742. [CrossRef]

WHO.int
http://doi.org/10.1002/jmv.26691
http://www.ncbi.nlm.nih.gov/pubmed/33230819
http://doi.org/10.1148/radiol.2020200463
http://www.ncbi.nlm.nih.gov/pubmed/32077789
http://doi.org/10.1109/TUFFC.2020.3026598
http://doi.org/10.1049/iet-ipr.2019.1164
http://doi.org/10.1007/s00607-021-00937-7
http://doi.org/10.1109/ACCESS.2020.2992341
http://doi.org/10.1109/TMI.2020.2968770
http://doi.org/10.1007/s00134-021-06407-0
http://doi.org/10.1007/s40477-020-00526-y
http://doi.org/10.1016/j.media.2017.07.005
http://doi.org/10.1016/j.media.2021.101985
http://www.ncbi.nlm.nih.gov/pubmed/33588117
http://doi.org/10.1109/TNNLS.2020.3027314
http://www.ncbi.nlm.nih.gov/pubmed/33079674
http://doi.org/10.1109/TII.2022.3146552
http://doi.org/10.1109/TMI.2020.2994459
http://doi.org/10.1109/iccv48922.2021.00986
http://doi.org/10.1016/j.inffus.2021.02.013
http://www.ncbi.nlm.nih.gov/pubmed/33649704
http://doi.org/10.1109/WACV.2018.00097
http://doi.org/10.3390/app11020672
http://doi.org/10.1371/journal.pone.0255886
http://doi.org/10.1109/TUFFC.2021.3068190
http://doi.org/10.1109/TMI.2021.3117246
http://doi.org/10.1016/j.compbiomed.2021.104742


Mathematics 2022, 10, 4153 17 of 17

24. Xue, W.; Cao, C.; Liu, J.; Duan, Y.; Cao, H.; Wang, J.; Tao, X.; Chen, Z.; Wu, M.; Zhang, J.; et al. Modality alignment contrastive
learning for severity assessment of COVID-19 from lung ultrasound and clinical information. Med Image Anal. 2021, 69, 101975.
[CrossRef] [PubMed]

25. Wu, Y.-H.; Gao, S.-H.; Mei, J.; Xu, J.; Fan, D.-P.; Zhang, R.-G.; Cheng, M.-M. JCS: An Explainable COVID-19 Diagnosis System by
Joint Classification and Segmentation. IEEE Trans. Image Process. 2021, 30, 3113–3126. [CrossRef]

26. Wang, X.; Jiang, L.; Li, L.; Xu, M.; Deng, X.; Dai, L.; Xu, X.; Li, T.; Guo, Y.; Wang, Z.; et al. Joint Learning of 3D Lesion Segmentation
and Classification for Explainable COVID-19 Diagnosis. IEEE Trans. Med. Imaging 2021, 40, 2463–2476. [CrossRef] [PubMed]

27. Shi, W.; Tong, L.; Zhu, Y.; Wang, M.D. COVID-19 Automatic Diagnosis with Radiographic Imaging: Explainable Attention
Transfer Deep Neural Networks. IEEE J. Biomed. Health Inform. 2021, 25, 2376–2387. [CrossRef] [PubMed]

28. Brunese, L.; Mercaldo, F.; Reginelli, A.; Santone, A. Explainable Deep Learning for Pulmonary Disease and Coronavirus COVID-19
Detection from X-rays. Comput. Methods Programs Biomed. 2020, 196, 105608. [CrossRef]

29. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv.
Neural Inf. Process. Syst. 2017, 2017, 5999–6009.

30. Ganesh, P.; Chen, Y.; Lou, X.; Khan, M.A.; Yang, Y.; Sajjad, H.; Nakov, P.; Chen, D.; Winslett, M. Compressing large-scale
transformer-based models: A case study on bert. Trans. Assoc. Comput. Linguistics 2021, 9, 1061–1080. [CrossRef]

31. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020,
42, 318–327. [CrossRef]

32. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM : Visual Explanations from Deep Networks.
Int. J. Comput. Vis. 2019.

33. Boccatonda, A.; Ianniello, E.; D’Ardes, D.; Cocco, G.; Giostra, F.; Borghi, C.; Schiavone, C. Can Lung Ultrasound be Used to Screen
for Pulmonary Embolism in Patients with SARS-CoV-2 Pneumonia? Eur. J. Case Rep. Intern. Med. 2020. [CrossRef]

34. Monteiro, R.A.D.A.; Duarte-Neto, A.N.; da Silva, L.F.F.; de Oliveira, E.P.; Nascimento, E.C.T.D.; Mauad, T.; Saldiva, P.H.D.N.;
Dolhnikoff, M. Ultrasound assessment of pulmonary fibroproliferative changes in severe COVID-19: A quantitative correlation
study with histopathological findings. Intensive Care Med. 2021, 47, 199–207. [CrossRef] [PubMed]

http://doi.org/10.1016/j.media.2021.101975
http://www.ncbi.nlm.nih.gov/pubmed/33550007
http://doi.org/10.1109/TIP.2021.3058783
http://doi.org/10.1109/TMI.2021.3079709
http://www.ncbi.nlm.nih.gov/pubmed/33983881
http://doi.org/10.1109/JBHI.2021.3074893
http://www.ncbi.nlm.nih.gov/pubmed/33882010
http://doi.org/10.1016/j.cmpb.2020.105608
http://doi.org/10.1162/tacl_a_00413
http://doi.org/10.1109/TPAMI.2018.2858826
http://doi.org/10.12890/2020_001748
http://doi.org/10.1007/s00134-020-06328-4
http://www.ncbi.nlm.nih.gov/pubmed/33392642

	Introduction 
	Research Gaps 
	Contributions 
	Organization 

	Related Work 
	Deep Learning for COVID-19 Screening 
	Explainable Medical Image Analysis 

	Research Methodology 
	Convolutional Patching 
	Transformer Modules 
	Down-Sampling Module 
	Weighted Pooling 
	Classification Module 
	Explainability Module 

	Experimental Design 
	Implementation Setup 
	Evaluation Metrics 
	Data Description 
	Data Preparation 

	Results and Analysis 
	Comparative Analysis 
	Statistical Analysis 
	Ablation Analysis 
	Explainability Analysis 

	Conclusions and Future Work 
	References

