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Abstract

Laminar flame propagation is an important problem in combustion modeling for
which great advances have been achieved both in its theoretical understanding and
in the numerical solution of the governing equations in two and three dimensions.
Most of these numerical simulations use finite difference techniques on simple geome-
tries (channels, ducts, ...) with equispaced nodes. The objective of this work is to
explore the applicability of the RBF-generated finite differences (RBF-FD) method
to laminar flame propagation modeling. This method is specially well suited for
the solution of problems with complex geometries and irregular boundaries. An-
other important advantage is that the method is independent of the dimension of
the problem and, therefore, it is very easy to apply in 3D problems with complex
geometries. In this work we use the RBF-FD method to compute two- and three-
dimensional numerical results that simulate premixed laminar flames with different
Lewis numbers propagating in open ducts.

1 Introduction

Premixed flame propagation is an important topic in combustion research with many
applications in engineering and industry safety. It arises in all occasions that a mixture
of fuel and air occurs, and therefore the mixture can be ignited leading to a propagating
flame. Thus, it is important to understand this physical process which very often takes
place in complex shaped domains. One important tool to achieve this goal is the numerical
simulation of the equations describing flame propagation. In the past, finite differences
(FD) [1–5] and finite element methods (FEM) [6, 7] have been successfully used.

In recent years, radial basis function (RBF) methods has been widely investigated.
The main feature of RBF methods is its mesh-independence, relying not on the loca-
tion but on the distance between RBF centers. This fact makes RBF methods basically
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the same for any dimension and for any shape of the domain. Furthermore, they are
conceptually simple and easy to implement. There are two different formulations of the
RBF method: the global RBF method [8–12] and the local RBF method [13–17] also
known as RBF-generated finite differences (RBF-FD). In the global RBF formulation,
full differentiation matrices are constructed based on RBF interpolants. This formulation
is spectrally convergent independently of the distribution of RBF centers. Its principal
drawback is that, as the overall number of centers increases, the condition number of the
differentiation matrix increases, and this fact restricts the applicability of the method to
large scale problems where a great number of RBF centers is needed. In the RBF-FD for-
mulation, the spectral convergence is lost. However, the method has the great advantage
that the resulting differentiation matrices are sparse and well-conditioned even for large
scale problems in complexly shaped domains [13, 18–20].

In this work we have used RBF-FD to numerically solve a three-dimensional model
for the propagation of flames in open circular ducts. Since our focus is to explore the
feasibility of the RBF-FD method for the solution of flame propagation problems, we use
a simple Arrhenius reaction term to model the chemistry.. However, complex chemistry
models can be easily incorporated since the RBF-FD method applies only to the modeling
of the space derivative terms. We use stencils with a relatively large number of nodes and,
in this way, we are able to achieve high order approximation accuracy. This approach was
first used by [18, 19, 21], which were the first to propose the use of RBF-FD with large
local stencils in order to achieve both high accuracy and well-conditioning.

The article is organized as follows: Section 2 describes the mathematical model; Sec-
tion 3 introduces the RBF-FD formulation and explains the numerical implementation
of the model; Section 5 presents the two- and three-dimensional numerical results and
Section 6 summarizes the conclusions of the present work.

2 Mathematical model

The mathematical model which describes the propagation of laminar flames in open ducts
of circular cross-section [5], written in the reference frame moving with a speed V (t)
relative to the solid wall, takes the form

∂T

∂t
+ V (t)

∂T

∂z
= ∆T + ω (T, Y ) , (1a)

∂Y

∂t
+ V (t)

∂Y

∂z
=

1

Le
∆Y − ω (T, Y ) , (1b)

where ∆ is the laplacian, Y denotes the mass fraction of reactant, T the non-dimensional
temperature, z the longitudinal coordinate along the duct and ω (T, Y ) the non-dimensional
reaction rate, which is assumed to follow an Arrhenius law of the form

ω (T, Y ) =
Ze 2

2 Le up
2
Y exp

[

Ze (T − 1)

1 + γ (T − 1)

]

. (2)
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The non-dimensional parameters Le, Ze and γ are the Lewis number, the Zeldovich
number and the heat release ratio, respectively. up is the non-dimensional quantity

up = SL/UL = 1 −
3γ + Le − 2.344

Ze
,

based on laminar burning velocity of planar flame [22]. In the following simulations,
Ze = 15 and γ = 0.8 for different values of the Lewis number Le and the duct radius R.
Two different cases are considered: an adiabatic wall,

∂Y

∂r

∣

∣

∣

∣

r=R

= 0,
∂T

∂r

∣

∣

∣

∣

r=R

= 0,

and an isothermal wall,
∂Y

∂r

∣

∣

∣

∣

r=R

= 0, T |r=R = 0.

In both cases,

Y = 1, T = 0; x → −∞,

∂Y

∂z
= 0,

∂T

∂z
= 0; x → +∞,

far upstream and downstream of the flame front, respectively. The temperature T and
concentration Y are assumed to be 2π-periodic functions of the azimuthal coordinate φ.

As initial conditions we have used

Y (z) =
1

1 + e25(z−z0)
and T (r, φ, z) = [1 − Y (z)] f(r, φ) (3)

in the adiabatic case and

Y (z) =
1

1 + e25(z−z0)
and T (r, φ, z) =

[

1 − Y (z)

1 + e25(r−0.8R)

]

f(r, φ) (4)

in the isothermal case, where z0 is the initial location of the flame and f(r, φ) is a function
which modules the amplitude of the initial condition.

3 RBF-FD formulation

RBF-FD can be considered as a natural generalization of classical finite differences [13,
19, 23]. Given a PDE and a set of RBF centers {xj}

N
j=1, the spatial differential operator

L[·] is approximated at xi by a linear combination of the values of the unknown function
u(x) at the n − 1 closest scattered nodes surrounding xi,

L[u(xi)] ≈
∑

j∈σi

αiju(xj), (5)
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where αij are the weighting coefficients and σi = {σi(j)}
n
j=1 is a set which contains the

indices of the nodes which form the stencil centered at xi. To determine the unknown
coefficients αij , function u(x) is interpolated in (5) by a local RBF interpolant of the form

Inu(x) =
∑

k∈σi

λk φ(||x− xk||2, εk),

where λk is a vector of expansion coefficients and φ(||x−xk||2, εk) is an RBF. After some
algebra, the following linear system of equations results,

L[φ(||xi − xk||2, εk)] =
∑

j∈σi

αijφ(||xj − xk||2, εk), k = σi(1), . . . , σi(n). (6)

Its solution yields the weighting coefficients αij . Notice from equation (6) that RBF-FD is
based on enforcing (5) to be exact for RBFs. This procedure guarantees the nonsingularity
of (6) even for scattered nodes [24,25]. The principal consequence is that, independently
of the node distribution, the dimension or the shape of the domain, the RBF-FD weighting
coefficients are obtained by just solving (6). FD uses instead multivariate polynomials
which are independent of node location. Thus, this unisolvency property is no longer
assured [11, 26]. Notice also that the corresponding RBF-FD weights can be assembled
into a differentiation matrix which preserves the inherent sparsity of FD.

In this work, the RBF chosen is the Gaussian (GA),

φ(r, ε) = e−ε2r2

,

which belongs to the class of global, infinitely differentiable RBFs containing a free shape
parameter ε. For a given stencil size n, the shape parameter affects both the accuracy of
the method and the condition number of the system of equations (6). The RBF method is
most accurate for smaller values of the shape parameter where the system of equations is
ill-conditioned. This can be clearly seen in Figure (1), which shows the typical dependence
of the error and the condition number on the shape parameter. Notice that the error and
the condition number cannot both be kept simultaneously small (this is the so-called
uncertainty principle [27]). An effective way to select the shape parameter is to specify
a value of the shape parameter on each stencil such that the matrix condition number
satisfies κmin ≤ κ ≤ κmax [18, 20]. This strategy yields a value of the shape parameter in
the region for which the system of equations (6) is still well-conditioned and the error is
close to its minimum value. In this work we take κmin = 1012 and κmax = 1014. In general,
the values of κmin and κmax must be selected for each problem [18, 20]. However, if the
number of nodes in the stencil is high enough, the minimum error is obtained just before
ill-conditioning and, therefore, values of the condition number κ close to 1014 usually work
fine.

Notice that if the system of equations is well-conditioned for small values of the shape
parameter, then a much lower error would be obtained [10]. To avoid ill conditioning,
high precision arithmetic can be used [28]. However, the corresponding computational
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Figure 1: Dependence of the error (left) and the condition number (right) on the shape
parameter ε in the approximation of the laplacian of u(x, y) = sin(x) cos(y) at (0.5, 0.5)
using a stencil of 41 Halton nodes.

cost would be really high and for practical purposes this approach is not used. Alter-
natively, stable algorithms that avoid ill-conditioned can be used, and during the last
years significant efforts have been devoted to achieve this objective [29–32]. Although
the corresponding computational cost of these methods are lower than working with high
precision arithmetic, their cost is still high for practical purposes.

4 Numerical implementation

Equations (1a) and (1b) are discretized as

∂T

∂t
+ V (t) DzT = ∆̂T + ω, (7a)

∂Y

∂t
+ V (t) DzY = ∆̂Y − ω, (7b)

where Dz and ∆̂ are the RBF-FD differentiation matrices which respectively approximate
∂
∂z

and ∆. T , Y and ω represent functions T , Y and ω evaluated at centers {xj}
N
j=1.

In order to prevent the flame from leaving the computational domain as time evolves,
we follow the method described in [4, 5]. In these works, the authors attach the frame of
reference to some point x∗ = (r∗, φ∗, z∗) that moves with the forefront of the flame with
a speed V (tk) relative to the solid wall by imposing at this point an arbitrary constant
temperature in the range 0.2 < T ∗ < 0.5 and ∂T/∂z|

x
∗ 6= 0. Under these constraints,

equation (7a) at the reference point yields

V (tk) DzT
∗ = ∆̂T ∗ + ω∗.

This equation is used at every time step to compute the velocity of the flame V (tk).
After an initial transient period, if the flame propagates with a constant velocity, the
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temperature distribution becomes steady in the frame of reference attached to the flame,
and the value V (tk) becomes time independent. This value is the constant flame speed
relative to the wall. The criterion for a steady distribution is that

max

∣

∣T k+1 − T k
∣

∣

∆t
< 10−5,

where T k and T k+1 are the values of the temperatures at previous and current time levels,
respectively. Since the error committed in determining the velocity with this method is
O (∆t), equations (7a) and (7b) are advanced in time using a first order method in time.
It results in the following system of equations

T k+1 = T k + ∆t
[

∆̂T k + ωk − V (tk) DzT
k
]

, (8a)

Y k+1 = Y k + ∆t
[

∆̂Y k − ωk − V (tk) DzY
k
]

, (8b)

where the solution for all interior nodes at time step k + 1 is computed using the values
of the solution at time step k.

Neumann boundary conditions are implemented at every time step in a way similar
to that described in [20]. For instance, consider the adiabatic condition

∂T

∂r

∣

∣

∣

∣

xi

=

(

∂T

∂x
ni

x +
∂T

∂y
ni

y

)
∣

∣

∣

∣

xi

= 0, (9)

where ni = (ni
x, n

i
y, 0) is a normal vector to the surface of the duct at one boundary point

xi. Let αx and αy be the stencil weights that respectively discretize the first derivatives
with respect to x and y on a stencil formed by one boundary point xi and n − 1 interior
nodes and let {σi(j)}

n
j=1 be the set which contains the corresponding node indices. The

boundary value T (xi) = T σi(1)
at time tk+1 is given by

T k+1
σi(1)

= −

n
∑

j=2

(

ni
xα

j
x + ni

yα
j
y

)

ni
xα

1
x + ni

yα
1
y

T k+1
σi(j)

,

which is calculated from the interior values {T k+1
σi(j)

}n
j=2 already updated.

5 Numerical Results

In the following sections, we present the results of solving the mathematical model for
different values of the Lewis number Le and the duct radius R using a high-order RBF-FD
method. We consider both the two-dimensional and the three-dimensional forms of the
model, comparing our results with those presented in [5] where the same model has been
solved numerically using the classical second-order finite difference formulas.
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Figure 2: Sparsity of the differentiation matrix ∆̂ using a grid of 91 × 61 nodes and a 25
node stencil.

5.1 2D-results

In this section we present the results obtained with the two-dimensional form of the model
where only coordinates z and r are taken into account and the azimuthal coordinate
φ is not considered. Hence, the laplacian in equations (1a) and (1b) takes the form
∆ = ∂2

∂z2 + ∂2

∂r2 + 1
r

∂
∂r

, where the variables z and r are respectively the longitudinal and
radial coordinates and the derivatives with respect to φ are zero. Because of the symmetry
across the duct centerline, we only consider the region 0 < r < R adding the boundary
conditions

∂Y

∂r

∣

∣

∣

∣

r=0

= 0 and
∂T

∂r

∣

∣

∣

∣

r=0

= 0.

In our simulations, the upstream and downstream boundaries are placed at zmin = −10
and zmax = 20. The resulting domain is discretized using a grid of 91 × 61 nodes. The
stencil size is n = 25, which results in an accuracy corresponding roughly with a fourth-
order method. The time step size is ∆t = 10−3 except for the case Le = 0.5, where we
use ∆t = 0.5 ·10−3 to ensure numerical stability. For all stencils, the RBF-FD weights are
computed solving (6) with condition numbers in the range 1012 ≤ κ ≤ 1014. In Figure 2 we
represent the non-zero elements of the differentiation matrix ∆̂. Notice the high sparsity
of RBF-FD for which only 0.45 percent of the elements of the matrix are non-zero.

Figure 3 shows the solution for the case Le = 1 and R = 15 with isothermal bound-
ary conditions (compare with Figure 2 in [5]). The flame structure has the so-called
mushroom-shape. Notice that the flame extinguishes near the wall and the reaction rate
increases smoothly towards the axis of the tube, where the flame structure is almost pla-
nar. Figures 4 and 5 show solutions corresponding to R = 20 and 6, with Le = 0.7 and
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Figure 3: Flame structure for Le = 1, R = 15 and isothermal wall. Upper half: isotherms
(solid lines: T at intervals 0.1, Tmin = 0.1 and Tmax = 0.9). Lower half: fuel mass fraction
contours (dotted lines: Y at intervals 0.1, Ymin = 0.1) and reaction rate contours (solid
lines: ω = 0.1, 0.5, 1).

isothermal walls (compare with Figure 3 and 4 in [5]). Notice that for R = 20 a two
cell solution exists with a structure similar to the tulip flame structure: the forefront
of the flame is located near the wall and the flame almost extinguishes near the axis.
For R = 6, the single cell leading edge is located at the axis of the tube, reaching the
maximum temperature just behind the flame front. The corresponding time evolution of
the non-dimensional flame velocities and numerical tolerances are plotted in Figure 6. In
both cases, the velocity becomes time independent and the tolerance satisfies the criterion
for a steady distribution. Similar behavior is observed in all the simulations presented
in this work. Figures 7 and 8 (compare with Figure 5 and 6 in [5]) show the adiabatic
and isothermal wall solutions for large values of the radius in the case Le = 0.5. In both
cases it is observed a two cell structure with a similar appearance near the axis of the
tube. Nevertheless, the isothermal wall solution produces quenching near the wall and,
as a result, the structure of the flame is different in that region.

The problems analyzed in this section are also considered in [5]. It can be appreciated
that the RBF-FD solution evolves with the same qualitative features than those presented
in the cited work.
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5.2 3D-results

In this subsection we present the results of solving the three-dimensional model in a
duct of radius R = 8 extending from zmin = −3 to zmax = 10, where the upstream and
downstream boundaries are respectively placed. This domain is discretized using 6300
nodes as it is shown in Figure 9. The stencil size is n = 35, which in three dimensions
corresponds roughly with a third-order method. The time step size is ∆t = 0.5 · 10−3 to
ensure numerical stability. For all stencils, the RBF-FD weights are computed solving
(6) with condition numbers in the range 1012 ≤ κ ≤ 1014. Figure 10 shows the non-zero
elements of the differentiation matrix ∆̂ with these settings. As in the two-dimensional
case, the matrix is highly sparse with only 0.56 percent of the elements non-zero.

Depending on the initial conditions, the model can reach different steady state solu-
tions for the same set of parameters [5, 33, 34]. For instance, Figures 11 and 12 show the
steady state flame structures computed for Le = 0.5 and R = 8 with isothermal boundary
conditions using different initial conditions. Figure 11 shows the isosurface T = 0.7 (left)
and the longitudinal section of the flame (right). Both reveal an axisymmetric structure
similar to that obtained in the corresponding two-dimensional case shown in Figure 7,
despite the different radius. Figure 12 shows the isosurface T = 0.9 (left) and a longi-
tudinal section of the flame (right). In this case, a complicated flame structure with no
axial symmetry is obtained. The right side of the figure reveals that the maximum tem-
perature is reached inside the lobules of the flame. Figures 13 and 14 show respectively
the solutions for Le = 0.5 and R = 8 with adiabatic boundary conditions and Le = 0.7
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Figure 11: Three-dimensional flame structure for Le = 0.5, R = 8 and isothermal wall.
Left: isosurfaces T = 0.7. Right: longitudinal section of the flame.

and R = 8 with isothermal boundary conditions. Notice that in both cases the flame
structure is not axisymmetric.

Comparing these results with those analyzed in [5], it is observed that the RBF-FD so-
lution evolves with the same qualitative features than those computed with FD. The main
advantage of RBF-FD over standard FD is that, as the Mairhuber-Curtis Theorem [11,26]
points out, in FD it is not possible to compute the weights on arbitrary unstructured sten-
cils in more than 1D, while in RBF methods this problem does not exist [24, 25]. As a
result, RBF-FD is able to solve problems using an arbitrary node distribution with high
accuracy in space by just increasing the number of nodes in the stencil and/or by choosing
appropriately the shape parameter.

6 Conclusions

In this work we analyze the use of RBF-FD to numerically solve a three-dimensional model
for the propagation of flames in open circular ducts. The main feature we observe is that
RBF-FD is very simple and easy to implement for the solution of a three-dimensional
problem. Since its formulation only depends on the distance between centers and not on
their location, the method is essentially the same for any dimension and for any shape
of the domain. Given an arbitrary node distribution, the RBF-FD method is able to
calculate the weighting coefficients that approximate the differential operator by just
solving the system of equations (6) for every stencil.

As in FD, the order of the approximation depends on the stencil size. However, RBFs
contain a free shape parameter which modifies the accuracy of the approximation [23,35]
and the conditioning number of the system of equations. It is more accurate for smaller
values of the shape parameter for which the system of equations is ill-conditioned. Hence,
accuracy and ill-conditioning cannot be kept simultaneously small. In order to control this
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Figure 12: Three-dimensional flame structure for Le = 0.5, R = 8 and isothermal wall.
Left: isosurfaces T = 0.9. Right: longitudinal section of the flame.

Figure 13: Three-dimensional flame structure for Le = 0.5, R = 8 and adiabatic wall.
Left: isosurfaces T = 0.8. Right: longitudinal section of the flame.
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Figure 14: Three-dimensional flame structure for Le = 0.7, R = 8 and isothermal wall.
Left: isosurfaces T = 0.9. Right: longitudinal section of the flame.

trade off between accuracy and ill-conditioning, we follow the strategy proposed in [18,20]
to select the shape parameter. It is based on specifying a value of the shape parameter
on each stencil so that the matrix condition number is bounded, κmin ≤ κ ≤ κmax. This
strategy yields a value of the shape parameter which is close to the minimum shape
parameter for which the system of equations (6) is still well-conditioned.

Unlike the global RBF method, the resulting differentiation matrices are highly sparse
and well-conditioned. In the examples considered, around the 0.5 percent of the elements
were non-zero with the corresponding savings in time and memory with respect to the
global RBF method. As a result, RBF-FD is a very good alternative to efficiently solve
large scales problems in complexly nth-dimensional shaped domains [18].
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