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Universidad 30, 28911 Leganés, Spain

Abstract

Radial basis functions (RBFs) have become a popular method for interpolation
and solution of partial di�erential equations (PDEs). Many types of RBFs used in
these problems contain a shape parameter, and there is much experimental evidence
showing that accuracy strongly depends on the value of this shape parameter. In
this paper, we focus on PDE problems solved with a multiquadric based RBF �nite
di�erence (RBF-FD) method. We propose an e�cient algorithm to compute the
optimal value of the shape parameter that minimizes the approximation error. The
algorithm is based on analytical approximations to the local RBF-FD error derived
in [1]. We show through several examples in 1D and 2D, both with structured and
unstructured nodes, that very accurate solutions (compared to �nite di�erences)
can be achieved using the optimal value of the constant shape parameter.
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1 Introduction

Radial basis functions (RBFs) were �rst used as an e�cient technique for inter-
polation of multidimensional scattered data (see [11] and references therein).
Later, it became popular as a truly mesh-free method for the solution of partial
di�erential equations (PDEs) on irregular domains. This application of RBFs
was �rst proposed by Edward Kansa [23,24] and it is based on collocation in
a set of scattered nodes.
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To overcome some of the drawbacks of the global RBF method, a local RBF
method was independently proposed by several authors which gave the method
di�erent names; Shu et al. [37] local multiquadric-based di�erential quadra-
ture (LMQDQ) method, Tolstykh et al. [39] RBF in a "�nite di�erence mode",
Wright [42] RBF �nite di�erence method. The method is based on approximat-
ing the solution as a linear combination of a set of identical RBFs translated to
a set of (scattered) RBF centers. However, the approximation is local, so it is
carried out within a small inuence domain instead of a global one. As a con-
sequence, the resulting linear system is sparse, overcoming the ill-conditioning
often associated to the global method, at the cost of losing its spectral accu-
racy. As a result, the local RBF method approximates a di�erential operator
at a given node as a weighted sum of the values of the sought function at
some surrounding nodes. Thus, it can be considered as a generalization of
the classical FD method. While in the global method the unknowns are the
coordinates of the solution in the functional space spanned by the RBFs, in
the local method the unknowns are the values of the solution at the scattered
nodes, just the same as with the FD method. However, in the FD method
the weights are computed using polynomial interpolation, and in the local
RBF one they are computed by �tting an RBF interpolant through a grid
point and a small number of its nearest neighbors. Since both, FD and local
RBF formulas are identical in form, we will refer to the local RBF method as
the RBF �nite di�erence (RBF-FD) method, as in [42]. In the last years the
RBF-FD method has been successfully applied to a great variety of problems
[3,6,7,18,29,31{33,36,38,40]

Most of the RBFs used to approximate the solution to a PDE contain a shape
parameter (that we denote c) that has to be chosen a priori. There is much ex-
perimental evidence showing that the accuracy of the approximated solution
strongly depends on the value of this shape parameter c. For the global RBF
method accuracy increases with c, but if c is too large the condition number of
the resulting linear system also increases giving rise to numerical instabilities
and loss of precision. Thus, the problem of how to select appropriate values for
the shape parameter has been of primary concern both from the theoretical
and the application points of view. As a result, a signi�cant amount of inter-
esting work has been carried out to address this issue for interpolation and
PDE problems (either with the global or the local RBF methods). Some of the
proposed techniques address the problem of how to select a single (constant)
value of the shape parameter, while others address the problem of selecting
di�erent shape parameters values for each node.

For interpolation problems, Hardy [21] suggested the use of c = 0.815 d, where
d is the average distance to the nearest neighbor (d = h for equispaced nodes).
On the other hand, Franke [19] recommended c = 1.25D/

√
N , where D is the

diameter of the smallest circle containing all data points (c = 1.25
√

2h for
equispaced nodes). A di�erent approach was taken by Carlson and Foley [4],
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who pointed out that the optimal value of c was strongly dependent on the
interpolated function and essentially independent on the number and loca-
tion of the interpolation nodes. They also presented an algorithm that yields
an e�ective value of c. Rippa [30] proposed a leave-one-out algorithm to es-
timate the interpolation error and use it to compute an optimal value of the
shape parameter. Larsson and Fornberg [28] used the method proposed in [16]
to circumvent ill-conditioning and, thereby, were able to solve interpolation
problems for very large values of c. They found that, very often, the error
reaches a minimum for a �nite value of c. The value of the optimal shape
parameter was studied and explained through approximate expansions of the
interpolation error.

Regarding spatially varying shape parameters, Kansa and Carlson [25] showed
through numerical experiments that using a node dependent value of c gives
better accuracy than a single (constant) one. The optimal value of c was
determined by numerically minimizing the root mean square error.

For the the solution of PDEs with the global RBF method, it has often been
argued [22,27,28] that one should push the value of the shape parameter as far
as possible in order to achieve more and more accurate solutions. Accuracy
should only be limited by ill-conditioning of the resulting matrix. Thus, a sig-
ni�cant amount of work has been devoted to improve the condition number of
the linear system associated to the PDE by pre-conditioning or by other tech-
niques. This counterintuitive statement that, without roundo� error, in�nite
accurate solutions can be obtained with a coarse grid, was refuted by Huang
et. al. [22]. These authors used arbitrary precision computations to experi-
mentally derive a formula for the error dependence on the shape parameter
c and the nodal spacing h. From this formula they obtain the optimal value
of the shape parameter that minimizes the error; c = − log λ/(3ah), where
a and λ are constants that depend on the problem. Thus, for a given grid
there is a maximum accuracy that can be obtained when the optimal shape
parameter is used. A di�erent approach was used by Ferreira, Fasshauer et

al [11,13,14]. They generalized Rippa's leave-one-out interpolation algorithm
[30] to the solution of PDEs with the RBF global method.

There are also several authors that have explored the bene�ts of using spa-
tially varying shape parameters with the global RBF method. Kansa and Hon
[26] were �rst to suggest that a variable shape parameter should be related to
the local curvature of the solution, and proposed an experimentally based for-
mula to compute its value. Driscoll and Heryudono [10] proposed an adaptive
algorithm based on computing residuals on a �ner grid and using this infor-
mation to remove or add nodes. The shape parameters were also adaptively
varied by taking them proportional to the local internode distance. Wertz et

al. [41] used numerical experiments to show that the shape parameter should
be signi�cantly higher at boundary nodes than at interior nodes. They also
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showed that introducing oscillations in the values of the shape parameters im-
proves accuracy. Fornberg and Zuev [17] showed that the Runge phenomenon
plays a major role in the error of RBF interpolation and, as a result, that it
is advantageous to let the shape parameter vary spatially. They used global
optimization of a certain functional to explore the bene�ts of node dependent
values of c and con�rmed the empirical observations reported in [41]. Finally,
Flyer and Letho [15] used local node re�nement for the solution of vortex roll-
up and transport on a sphere. They used a node dependent shape parameter
that varies according to the inverse of the Euclidean distance to the nearest
node. However, the di�erentiation matrices had to be recalculated every few
time steps which implied a rather high computational cost. Thus, the authors
state at the conclusions section that they were exploring faster methods to
calculate di�erentiation matrices such as localized RBF stencils.

With regards to the solution of PDEs using the local RBF method, it has
been shown that, in the limit of increasingly at basis functions (c → ∞), the
RBF interpolants converge to polynomial interpolants [9] and, therefore, all
classical �nite di�erence formulas can be recovered from RBF-FD formulas in
the limit c → ∞. There is also considerable experimental evidence [5,43] that
very often there is a range of values of the shape parameter for which errors
are signi�cantly lower than errors resulting from standard �nite di�erences.

In this paper we address the problem of how to select a single value of the
shape parameter c in order to minimize the error of the approximation to a
solution of a PDE with the local RBF-FD method. We show that the accuracy
of the solution can be improved one or two orders of magnitude with respect
to �nite di�erences if one selects the right value of the shape parameter, and
we describe an e�cient technique to compute it. The technique is based on
the analytical approximations to the local error derived in [1] for 1D and
2D di�erential operators (for structured and non-structured nodes). In this
work, we use multiquadrics as RBFs since the formulas in [1] were derived for
these functions. However, the technique is readily applicable to any other RBF
containing a free shape parameter (Gaussians, inverse multiquadrics, ...).

We mention that in a second paper [2] we describe how to compute a spatially
varying optimal shape parameter and how accuracy can be further improved.
In [2], we show that a spatially varying optimal shape parameter can give rise
to several orders more accurate solutions if there exists an optimal c for most
of the grid points of the domain. However, if there are some nodes for which
an optimal value of c does not exist, the accuracy was similar to that obtained
with an optimal constant c. For those cases, we show that using generalized
multiquadrics with proper parameters as RBF guarantees the existence of an
optimal c for all the nodes, and thus, very signi�cant improvements in accuracy
can be obtained. However, it should be pointed out, that the constant shape
parameter method described in this paper is much easier to program than
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the variable shape parameter one, so that the gains in accuracy might not
compensate the burden of programming the variable case.

The rest of the paper is organized as follows. In Section 2, we briey describe
the local RBF-FD method, and how to compute the optimal shape param-
eter. In Section 3, we describe in detail the resulting numerical algorithm.
Section 4 includes several examples in 1D and 2D using both structured and
unstructured nodes. Finally, in Section 5 we summarize the main results of
this work.

2 RBF-FD method formulation

Consider the Dirichlet problem in a bounded domain 
 ⊂ R
d











L[u(x)] = f(x) in 


u(x) = g(x) on ∂

(1)

where L[·] is a di�erential operator and f and g are real functions. In the
RBF-FD method we approximate the operator L[·] at a node x = xj by a
linear combination of the values of the unknown function u at n scattered
nodes surrounding xj, which constitute its stencil. Thus,

L[u(xj)] ≈
n

X

i=1

αjiu(xi), (2)

where αji are the weighting coe�cients. In the standard FD formulation, these
coe�cients are computed using polynomial interpolation. In the RBF-FD for-
mulation, they are computed using interpolation with radial basis functions,
thus

u(x) =
n

X

i=1

λi φ(ri(x), ci), (3)

where ri(x) = ||x−xi|| is the distance to the RBF center, ||·|| is the euclidean
norm, and φ(ri(x), ci) is some radial function which depends on a free shape
parameter ci. In the following, we will use Hardy's multiquadric as RBF [21]
with a single (constant) value of the shape parameter (ci = c), thus

φ(ri(x), c) =
q

c2 + ri(x)2 . (4)

As we emphasized before, accuracy is highly dependent on the value of the
shape parameter c.
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Substituting (3) into (2) we can determine the unknown weighting coe�cients
αji by solving the system of linear equations

L[φ(rk(xj), c)] =
n

X

i=1

αjiφ(rk(xi), c), k = 1, . . . , n. (5)

Thus, the coe�cients αji depend on the distances from xj to the other nodes
in the stencil, and on the shape parameter c. In the following, we will assume
that the set of interpolation nodes with the corresponding stencils are given.
Therefore, the coe�cients αji will be functions of the shape parameter c only.

Consider that the domain 
 is discretized using N scattered nodes (NI interior
nodes and N −NI boundary nodes). Using (2), Eq. (1) at an interior node xj

can be written as

n
X

i=1

αji(c)u(xi) = f(xj) + ǫn(xj ; c), 1 ≤ j ≤ NI , (6)

where ǫn(xj ; c) is the local RBF-FD error resulting from approximating the
di�erential operator L[.] with the n node RBF-FD formula (2). In matrix form,
these equations can be written as

A(c)u = f + ǫ(c) , (7)

where u is the vector of exact solutions at the interior nodes, A(c) is a NI ×NI

sparse matrix whose entries are the weighting coe�cients αji(c), and ǫ(c) is
a vector formed by the local RBF-FD approximation errors ǫn(xj ; c) at the
interior nodes.

The RBF-FD approximation û to the exact solution u is obtained by solving
the discretized linear system

û(c) = A−1(c)f , (8)

so the RBF-FD error is given by

E(c) ≡ u − û(c) . (9)

Therefore, we can state our problem as the problem of �nding the value of
the shape parameter c which minimizes (9) in a certain norm. We de�ne the
optimal shape parameter as the value c∗ such that

||E(c∗)||∞ = min
c

||E(c)||∞ ≡ min
c

||u − û(c)||∞ . (10)

It is apparent that in real problems the value c∗ can not be computed directly
from (10) because the exact solution is not known. However, from (7) and (8)
we can write

||E(c∗)||∞ = min
c

||A−1(c) ǫ(c)||∞ , (11)
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and estimate the value c∗ using the analytical approximations to the local error
ǫ(c) derived in [1]. These formulas are written as series expansions in powers
of h (the inter nodal distance), which are valid for c ≫ h. The coe�cients
of these formulas depend on c, h, and on the value of the exact solution
and its derivatives. However, as we will show later, these coe�cients can be
easily computed without losing accuracy using an approximate �nite di�erence
solution ~u instead of the exact solution u. Using these formulas we seek for
an approximate value c∗e to the optimal shape parameter c∗ such that

||Ee(c
∗

e)||∞ = min
c

||A−1(c) ǫe(c)||∞ , (12)

where ǫe(c) is the estimated local error computed with the analytical approx-
imations to the local error derived in [1].

3 Numerical algorithm

For a given problem (1) and a given set of N scattered nodes, the numeri-
cal method described in the previous section is implemented in the following
numerical algorithm:

(1) For each interior node xj determine a stencil of n surrounding nodes.
(2) Use �nite di�erences to compute an approximate solution ~u(xj).
(3) Find the value c∗e which minimizes ||A−1(c) ǫe(c)||∞. At each iteration:

• Use (5) to compute numerically the RBF-FD coe�cients αji(c), and
therefore matrix A(c).

• Use the �nite di�erence solution ~u(xj) computed in step 2 and the an-
alytical formulas derived in [1] to estimate the local approximation error
ǫn(xj ; c) at each node, and therefore ǫe(c) = [ǫe(x1 ; c), ǫe(x2 ; c), . . . , ǫe(xN ; c)]T .

(4) Compute the optimal RBF-FD approximate solution û(c∗e) = A−1(c∗e) f .

In step 3 we have used matlab command fminsearch which �nds the minimum
of a nonlinear function using the Nelder-Mead Simplex method.

From the point of view of computational cost, the algorithm requires the
solution of two NI ×NI sparse linear systems (steps 2 and 4), and the solution
of NI dense systems of n×n unknowns at each iteration of step 3. The typical
number of iterations required is 15.

A possibility to try to improve the accuracy of c∗e is to use an iterative proce-
dure: once an approximate value of c∗e is computed in step (4) and therefore
a better approximation û(c∗e) to the exact solution, go back to step (3) to
compute a re�ned value of c∗e.

7



10
−2

10
−1

10
0

10
1

10
−6

10
−4

10
−2

10
0

10
2

C

|| E ||
∞

RBF−FD structured, N=21

10
−2

10
−1

10
0

10
1

10
−6

10
−4

10
−2

10
0

10
2

C

|| E ||
∞

RBF−FD structured, N=41

10
−2

10
−1

10
0

10
1

10
−6

10
−4

10
−2

10
0

10
2

C

|| E ||
∞

RBF−FD structured, N=61

10
−2

10
−1

10
0

10
1

10
−6

10
−4

10
−2

10
0

10
2

C

|| E ||
∞

RBF−FD structured, N=81

Fig.1.Infinitenormoftheerrorsofproblem(13)asfunctionof c,using
N=21,41,61,and81structurednodes.Solidlines:RBF-FDerror(9).Dot-dashed
lines:estimatederror(15).Dashedlines:finitedifferenceerror.

4 Exampleproblems

Inthissectionwewillapplythenumericalalgorithmjustdescribedtothe
solutionofsomeexampleproblemsin1Dand2D,usingbothstructuredand
nonstructurednodes. Wewillalsoapplythetechniquetoseveralproblems
thathavebeensolvedinthepastwiththeRBF-FDmethod.Wewillshowthat
usingtheoptimal(constant)valueoftheshapeparameterleadstosignificant
improvementsinaccuracy.

4.1 Onedimensionalboundaryvalueproblem

Considerthefollowingproblem






uxx=f(x), 0<x<1,

u(0)=1, u(1)=1+

√
2

2

(13)

wheref(x)iscomputedfromtheknownsolutionu(x)=1−sin
5π

4
x.
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4.1.1 Structured nodes

Let us discretize the domain in (13) using N structured nodes and let's use
a three nodes (x − h, x, x + h) central di�erence scheme to approximate the
second derivative. The resulting local RBF-FD approximation error is [1]

ǫ3(x; c) =
h2

12
u(IV )(x) +

h2

c2
u′′(x) − 3 h2

4 c4
u(x) + O

�

h4 P3(1/c
2)

�

. (14)

We use the notation O (hm Pn(1/c2)) to indicate that the terms that have
been neglected are of order hm

Pn
i=0

ai

c2i , where ai are constants which depend
on the derivatives and values of the particular function at x. This error is
estimated using a �nite di�erence approximation to the exact solution u(x),
so ~u(x) = u(x) + O(h2). In (14), u′′(x) and u(IV ) are computed exactly from
f(x), so

ǫ3e(x; c) =
h2

12
f ′′(x) +

h2

c2
f(x) − 3 h2

4 c4
~u(x) + O

�

h4 P3(1/c
2)

�

. (15)

and the accuracy of the local error computed with the �nite-di�erence ap-
proximation in (15) is of the same order (O(h4)) as the one computed with
the exact solution in (14). From now on, we will replace the exact solution
u(x) by the �nite di�erence approximation ~u in all the formulas derived in [1],
without loss of precision.

Figure 1 shows with solid lines the in�nity norm of the RBF-FD error, ||E(c)||∞ =
||u − û(c)||∞, as a function of the shape parameter c for di�erent number of
nodes N . In all cases, the estimated error given by (15), shown with dot-
dashed lines, reproduces closely the RBF-FD error in the limit c >> h. This
allows us to estimate c∗ accurately using (15). Notice that for large values of
c, the RBF-FD error approaches the standard �nite-di�erence error, depicted
in Fig. 1 with dashed lines. We observe that there is a range of shape param-
eters around c∗ for which the RBF-FD solution is signi�cantly more accurate
than the �nite di�erence solution. Notice also that in the case N = 81 ill
conditioning appears for large values of c.

From top to bottom, Table 1 shows the in�nite norm of the �nite di�erence
solution error ||~E||∞, the exact optimal shape parameter c∗ and its corre-
sponding error ||E (c∗) ||∞, the estimated optimal shape parameter c∗e and its
corresponding error ||E(c∗e)||∞, and the di�erence between the exact and the
estimated optimal shape parameter. The results are very accurate, since the
error in c∗e is of order O(h2). Notice that, to leading order, the value of the
optimal shape parameter is independent of h (independent of N). Also no-
tice that there is an improvement of approximately two orders of magnitude
between the �nite di�erence solution and the optimal RBF-FD solution.
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Table1
Optimalshapeparametersandthecorrespondingerrorsforproblem(13)withstruc-
turednodes.

N=21 N=41 N=61 N=81

||̃E||∞ 4.181·10−3 1.044·10−3 4.638·10−4 2.609·10−4

c∗ 0.8589 0.8616 0.8621 0.8623

||E(c∗)||∞ 6.694·10−5 1.672·10−5 7.425·10−6 4.182·10−6

c∗e 0.8628 0.8626 0.8625 0.8625

||E(c∗e)||∞ 7.763·10−5 1.735·10−5 7.541·10−6 4.216·10−6

|c∗−c∗e| 0.0039 0.0010 0.0004 0.0002
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Fig.2.SameasFig.1butforunstructurednodes.

4.1.2 Unstructurednodes

Inthecasethatthedomainisdiscretizedwithunequallyspacednodes,the
localRBF-FDapproximationerrorusingathreenodes(x−h,x,x+λh)cen-
traldifferenceschemeis

ǫ3(x;c)=
λ−1

3
hu′′′(x)+(λ−1)

h

c2
u′(x)

+[λ(λ−1)+1]
h2

12
u(IV)(x)+λ

h2

c2
u′′(x)

+[λ(λ−5)+1]
h2

4c4
u(x)+O h3P2(1/c

2). (16)
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Table 2
Same as Table 1 but for unstructured nodes.

N = 21 N = 41 N = 61 N = 81

||~E||∞ 4:928 · 10−3 1:327 · 10−3 3:818 · 10−4 3:377 · 10−4

c∗ 0:7795 0:7944 1:0063 0:8067

||E(c∗)||∞ 1:178 · 10−3 1:945 · 10−4 4:551 · 10−5 2:580 · 10−5

c∗e 0:7858 0:7959 1:0069 0:8071

||E(c∗e)||∞ 1:207 · 10−3 1:981 · 10−4 4:586 · 10−5 2:595 · 10−5

|c∗ − c∗e| 0:0063 0:0015 0:0006 0:0004

In this case, the local approximation error is only of order O(h) so we also
include terms of order O(h2) in the formula. The resulting approximation to
the local error is of order O(h3) while in the case of structured nodes it was of
order O(h4). To compute the estimated error ǫ3e(x; c) the derivatives of order
greater or equal to two appearing in equation (16) are computed exactly from
the derivatives of f . The values of u and u′ are approximated to �rst order
using �nite di�erences.

Figure 2 shows the corresponding in�nite norm of the error ||E(c)||∞ as func-
tion of c for di�erent number of nodes N (we use Halton nodes [20] here).
In this case, the error estimation (dot-dashed lines) is as accurate as in the
case of structured nodes, but the minimum error corresponding to c∗e is less
pronounced.

Table 2 shows the same information as Table 1 but for unstructured nodes. As
before, the optimal shape parameter is estimated accurately (c∗−c∗e = O(h2)),
but the improvements in accuracy with respect to �nite di�erences are less
signi�cant (approximately one order of magnitude).

4.2 Steady convection-di�usion problem

Consider the problem















ux − uxx = π2 sin (π x) + π cos (π x), 0 < x < 1,

u(0) = 0, u(1) = 1
(17)

whose exact solution is u(x) = sin (π x) +
ex − 1

e − 1
. This problem was proposed

and solved in [5]. The local approximation error to the convection-di�usion
di�erential operator with the RBF-FD formula using three structured nodes
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Fig.3.Infinitenormoftheerrorsofproblem(17)asfunctionof c,using
N=11,21,41,and81structurednodes.Solidlines:RBF-FDerror(9).Dot-dashed
lines:estimatederror(18).Dashedlines:finitedifferenceerror.

is

ǫ3(x;c)=
h2

12
2u′′′(x)−u(IV)(x)+

h2

2c2
(u′(x)−2u′′(x))

+
3h2

4c4
u(x)+O h4P3(1/c

2). (18)

Inthisformulauisapproximatedusingasecondordercentraldifference
scheme,andu′isapproximatedfromũusingthecorrespondingsecondorder
centraldifferencescheme.Higherderivativesareapproximatedtosecondorder
throughtherecursionu(k+1) =̃u(k)−f(k−1)fork≥1.

Figure3showswithsolidlinesthecorrespondinginfinitenormoftheerror
||E(c)||∞ asafunctionofcfordifferentnumberofnodesN.Asintheprevious
cases,theerrorestimatedwiththeanalyticalformulasisincloseagreement
withtheactualerror,andtherefore,theestimatedoptimalshapeparameter
isveryaccurate.

Table3showsthesameinformationasTable1butforproblem(17).Asbe-
fore,theestimatedoptimalshapeparameterisveryaccurate.Inreference[5]
theoptimalshapeparameterwascomputedbytrialanderror(c∗=1/ǫ∗=
1/0.9=1.11).Theauthorsincludedaconstantterminordertoimposethe
conditionthattheRBF-FDformulasareexactforconstants.Thecorrespond-
ingresultswerepresentedinTableIVof[5],andarereproducedhereinthe
fourthandfifthrowsofTable3.
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Table 3
Optimal shape parameters and the corresponding errors for problem (17) with struc-
tured nodes.

N = 11 N = 21 N = 41 N = 81

||~E||∞ 8:337 · 10−3 2:088 · 10−3 5:220 · 10−4 1:305 · 10−4

c∗ 1:1031 1:1101 1:1116 1:1121

||E(c∗)||∞ 8:318 · 10−4 2:090 · 10−4 5:241 · 10−5 1:311 · 10−5

c∗[5] 1=0:9 1=0:9 1=0:9 1=0:9

||E(c∗[5])||∞ 1:43 · 10−3 3:83 · 10−4 9:75 · 10−5 2:45 · 10−5

c∗e 1:1139 1:1127 1:1123 1:1123

||E(c∗e)||∞ 9:245 · 10−4 2:161 · 10−4 5:282 · 10−5 1:314 · 10−5

|c∗ − c∗e| 0:0108 0:0026 0:0007 0:0002

4.2.1 Unstructured nodes

In the case that the domain is discretized with unequally spaced nodes, the
local RBF-FD approximation error using a three nodes (x − h, x, x + λh) cen-
tral di�erence scheme for the convection-di�usion operator is

ǫ3(x; c) =
(1 − λ)

3
h u′′′(x) + (1 − λ)

h

c2
u′(x)

+
h2

12

h

2 λ u′′′(x) − [λ (λ − 1) + 1] u(IV )(x)
i

+
λ h2

2 c2
[ u′(x) − 2 u′′(x) ]

− [λ (λ − 5) + 1]
h2

4 c4
u(x) + O

�

h3 P2(1/c
2)

�

. (19)

The derivatives appearing in these formulas are approximated in the same
way described in the previous section.

As was the case in (16), the local approximation error is only of order O(h)
so we include terms of order O(h2) in this formula too. The resulting approxi-
mation to the local error is also of order O(h3) while in the case of structured
nodes it was of order O(h4).

Figure 4 shows with solid lines the corresponding in�nite norm of the error
||E(c)||∞ as function of c for di�erent number of nodes N (Halton nodes). The
error estimation (dot-dashed lines) is as accurate as in the case of structured
nodes.
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Fig.4.SameasFig.3butforunstructurednodes.

Table4
SameasTable3butforunstructurednodes.

N=11 N=21 N=41 N=81

||̃E||∞ 1.105·10−2 2.667·10−3 6.788·10−4 1.685·10−4

c∗ 1.1230 0.9773 1.0525 1.0536

||E(c∗)||∞ 4.863·10−3 4.690·10−4 5.891·10−5 1.578·10−5

c∗e 1.1409 0.9818 1.0536 1.0539

||E(c∗e)||∞ 5.060·10−3 4.832·10−4 5.979·10−5 1.584·10−5

|c∗−c∗e| 0.0179 0.0045 0.0011 0.0003

Table4summarizestheseresults.Noticethatinthiscasetheoptimalshape
parameterc∗ismoredependentonh.Thisisduetothefactthattheformula
fortheerrorisonlyorderhandthereforec∗isindependentofhonlyforlarge
valuesofN.

4.3 Twodimensionalboundaryvalueproblem

ConsidernowthetwodimensionalPoissonproblem






∆u=f(x,y), inΩ=(0,1)×(0,1)

u=u(x,y), on∂Ω
(20)
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Fig.5.Infinitenormoftheerrorsofproblem(20)withexactsolution(21)asfunction
ofc,usingdifferentnumberNofstructurednodes.Solidlines:RBF-FDerror(9).
Dot-dashedlines:estimatederror(22).Dashedlines:finitedifferenceerror.

wheref(x,y)isobtainedfromtheexactsolution

u=exp − x−
1

4

2

− y−
1

2

2

cos(2πy)sin(πx). (21)

Thisproblemhasbeenusedby WrightandFornberg[43]totesttheperfor-
manceofthelocalRBF-FDandlocalRBF-HFD(HermiteRBF)methods.

4.3.1 Structurednodes

SupposethedomainisdiscretizedinN×Nstructurednodes.Usingafive
nodes{(x,y),(x−h,y),(x+h,y),(x,y−h),(x,y+h)}centraldifferencescheme,
thelocalRBF-FDerroris

ǫ5(x,c)=
h2

12
u(4,0)(x)+u(0,4)(x)+

5h2

6c2
u(2,0)(x)+u(0,2)(x)

−
7h2

6c4
u(x)+O h4P3(1/c

2). (22)

Inthisequationuisapproximatedusingsecondordercentraldifferences,
u(2,0)+u(0,2)=fiscomputedexactly,andu(4,0)+u(0,4)=∆f−2u(2,2),where
u(2,2)isapproximatedfromũusingthecorrespondingsecondordercentral
differencescheme.

InFig.5,weplotwithsolidlinestheinfinitenormoftheerror||E(c)||∞
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Table 5
Optimal shape parameters and the corresponding errors for problem (20) with exact
solution (21) using structured nodes.

N 11 × 11 21 × 21 41 × 41 81 × 81

||~E||∞ 3:847 · 10−2 9:516 · 10−3 2:370 · 10−3 5:921 · 10−4

c∗ 0:5601 0:5772 0:5807 0:5816

||E(c∗)||∞ 4:517 · 10−3 1:219 · 10−3 3:040 · 10−4 7:602 · 10−5

c∗e 0:5756 0:5811 0:5816 0:5818

||E(c∗e)||∞ 6:320 · 10−3 1:335 · 10−3 3:106 · 10−4 7:627 · 10−5

|c∗ − c∗e| 0:0155 0:0039 0:0009 0:0002

as function of c for di�erent number of nodes N . As was the case for the
problems in 1D (Figs. 1 and 3) the estimated error using (22), shown with dot-
dashed lines, agrees closely with the actual error when c >> h. The agreement
improves as N increases (h decreases). For large values of c the RBF-FD error
coincides with the standard �nite di�erence error (depicted with dashed lines).

Table 5 shows the same information as the previous tables but for the solution
of problem (20). As in previous cases, the estimated optimal shape parameter
c∗e is very close to the exact optimal shape parameter c∗, and there is a very
small loss of accuracy resulting from the use of the estimated value c∗e instead
of the exact value c∗. Again, the RBF-FD method is more accurate than
the standard �nite di�erence method, although in this case, the di�erence in
accuracy is only of one order of magnitude.

This same problem was solved in reference [43]. However, for the local RBF
interpolation the authors included a constant term in order to impose the
condition that the RBF-FD formulas are exact for constants. Introducing this
additional function in the basis used for local interpolation results in the fol-
lowing analytical formula for the local approximation error,

ǫ5e(x, c) =
h2

12

�

~u(4;0)(x) + ~u(0;4)(x)
�

+
9 h2

8 c2

�

~u(2;0)(x) + ~u(0;2)(x)
�

+ O
�

h4 P2(1/c
2)

�

.(23)

This expression is slightly di�erent from (22). The term proportional to u does
not appear. This should be expected since the formula is exact for constant
functions. However, this additional degree of freedom has a very small impact
on the results as can be appreciated in Fig. 6. In this �gure we plot the in�nite
norm of the errors as function of c (N = 21×21) when the RBF-FD solutions
are computed with and without the constant term in the interpolation basis
(dashed and solid lines, respectively). We also plot the estimated errors for
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Fig.6.Infinitenormoftheerrorsofproblem(20)withexactsolution(21),using
N=21×21structurednodes.Solidline:exacterror(9)usinglocalRBFinterpo-
lationwithnoconstantterm.Dashedline:exacterror(9)usinglocalRBFinterpo-
lationwithconstantterm.Dot-dashedline:estimatederrorusing(22).Dottedline:
estimatederrorusing(23).

thesetwocases,withandwithouttheconstanttermintheinterpolationbasis
(dottedanddot-dashedlines,respectively).Weobservethattheoptimalshape
parameterisonlyslightlymodifiedwhentheconstanttermisaddedtothe
RBF-FDinterpolation.

Table6showsthesameinformationasTable5,butforthecaseinwhicha
constanttermisaddedtotheinterpolation.Row2showstheresultsobtained
inreference[43](seeTable3of[43])forthecasec=1/1.6=0.625,which
givesthemostaccurateresultsreportedin[43]forthe5nodeRBF-FDfor-
mula.Inthistable,wehaveusedthesamegridsusedin[43].Asinprevious
cases,theanalyticalapproximationtotheerrormakesitpossibletoaccurately
computetheoptimalshapeparameterwithoutknowingtheexactsolutionof
theproblem.

4.3.2 Unstructurednodes

ConsidernowthecaseinwhichthedomainisdiscretizedusingNunstructured
nodes.ThelocalRBF-FDerrorforsixunequallyspacednodes{(x,y),(x+
h,y+λ1h),(x+β2h,y+λ2h),(x+β3h,y+λ3h),(x+β4h,y+λ4h),(x+β5h,y+
λ5h)}centraldifferenceschemeis[1]
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Table 6
Same as Table 5 but including a constant term in the RBF interpolation, as in [43].

N 6 × 6 11 × 11 21 × 21 51 × 51

||~E||∞ 1:348 · 10−1 3:847 · 10−2 9:516 · 10−3 1:517 · 10−3

c[43] 1=1:6 1=1:6 1=1:6 1=1:6

||E(c[43])||∞ 2:692 · 10−2 4:305 · 10−3 1:147 · 10−3 1:850 · 10−4

c∗ 0:5899 0:6246 0:6143 0:6445

||E(c∗)||∞ 1:667 · 10−2 4:267 · 10−3 1:144 · 10−3 1:840 · 10−4

c∗e 0:6361 0:6365 0:6176 0:6451

||E(c∗e)||∞ 2:993 · 10−2 5:457 · 10−3 1:145 · 10−3 1:857 · 10−4

|c∗ − c∗e| 0:0462 0:0119 0:0033 0:0006

ǫ6(x, c) = h
h

A0;0 u(3;0)(x) + A0;1 u(2;1)(x)

+ A0;2 u(1;2)(x) + A0;3 u(0;3)(x)
i

+
h

c2

h

A1;0, u
(1;0)(x) + A1;1 u(0;1)(x)

i

+ h2
h

B0;0 u(4;0)(x) + B0;1 u(3;1)(x) + B0;2 u(2;2)(x)

+ B0;3 u(1;3)(x) + B0;4 u(0;4)(x)
i

+
h2

c2

h

B1;0, u
(2;0)(x) + B1;1 u(1;1)(x) + B1;2 u(0;2)(x)

i

+
h2

c4
B2;0 u(x) + O

�

h3 P3(1/c
2)

�

, (24)

where the coe�cients Ai;j and Bi;j depend on the surrounding nodes layout
{βk} and {λk}, and its exact values can be computed numerically for each
node. In this example, we have not computed numerically the derivatives of
u(x) that appear in equation (24). Instead, we have used the exact values of
the function and its derivatives in order to analyze the convergence of the
error and to estimate the optimal shape parameter.

We will use an unstructured node layout of N2 nodes: N2 − 4(N − 1) Halton
nodes [20] in the interior of the domain and 4(N − 1) structured nodes on the
boundary (see Fig. 7). For the local support, we will use stencils with n = 6
nodes. For standard �nite di�erences, 6 nodes stencils allow, in principle, a
consistent approximation to the laplacian operator (i.e. the approximation
is at least �rst order accurate) since there are six constraints that have to
be satis�ed. However, there are special con�gurations of the nodes in the
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stencil for which there is no solution to the constraints [34], and therefore the
coe�cients of the �nite di�erence formula can not be computed. The problem
of stencil support selection for unstructured nodes is a very crucial topic in
�nite di�erences which has been addressed by several authors. In a recent
paper, Davydov and Oanh [7] reviewed di�erent support selection methods
and proposed a new algorithm based on minimizing the sum of the squares of
the angles between two consecutive lines from the central node to the other
nodes in the stencil.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
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0.3

0.4
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1

x

y

Fig. 7. Unstructured node layout with 961 nodes: 841 Halton nodes inside the do-
main and 120 structured nodes on the boundary. Filled circles are the nodes removed
from the set after applying Seibold's algorithm

We also have found that (at least with Halton nodes) arbitrary stencils using
nearest nodes sometimes leads to an ill- conditioned system for large values of
c. Therefore, we apply a modi�ed version of the algorithm recently proposed by
Seibold [35] to select a valid six node stencil. The algorithm is based on a linear
programming approach that guarantees the positivity of the stencil. Since the
coe�cients of RBF-FD for a given stencil coincide with the coe�cients of FD
in the limit c → ∞, and since Seibold's algorithm guarantees the positivity
of scattered FD stencils, then it also guarantees the positivity of the RBF-
FD stencil in that limit. In fact, we have found this to be the case in all the
experiments that we have done. Applying Seibold's algorithm to the Halton
nodes shown in Fig. 7, results in a 6 node stencil selection for almost all the
interior nodes. There are a few nodes, usually very close to the boundary, for
which Seibold's algorithm does not yield a solution. Those nodes are removed
from the set (these are shown as �lled circles in Fig. 7), and Seibold's algorithm
is applied again until a valid �nite di�erence 6 node stencil is assigned to each
node. Then, steps 2 to 4 of the numerical algorithm described in Section 3
are applied in order to compute the optimal RBF-FD solution. Starting from
valid �nite di�erence stencils insures the validity of the corresponding RBF-
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Fig.8.SameasFig.5butforunstructurednodes.

Table7
SameasTable5butforunstructurednodes.

N 121(120) 441(438) 961(955) 1521(1513)

||̃E||∞ 6.153·10−2 1.668·10−2 7.454·10−3 3.983·10−3

c∗ 0.4655 0.7871 0.5027 0.5113

||E(c∗)||∞ 1.360·10−2 1.079·10−2 1.841·10−3 1.616·10−3

c∗e 0.4869 0.7783 0.5058 0.5094

||E(c∗e)||∞ 1.519·10−2 1.079·10−2 1.911·10−3 1.630·10−3

|c∗−c∗e| 0.0214 0.0088 0.0031 0.0019

FDstencils.

PlotsoftheRBF-FDandestimatederrorsfordifferentnumberofnodesN
appearinFig.8withsolidanddot-dashedlines,respectively. Weobserve
againanexcellentagreementbetweenthem.Wetabulatedthemainresultsin
Table7,inwhichweshowthenumberofnodesinthegridandinparenthesis
thenumberofnodesremainingafterapplyingSeibold’salgorithm.Theerror
achievedwiththeestimatedoptimalshapeparameter||E(c∗e)||∞ isveryclose
totheoptimalone||E(c∗)||∞ inallthecases.Asexpected,thedifference
betweentheexactoptimalparameterc∗andtheestimatedonec∗edecreases
withthenumberofnodesN.
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Fig.9.Infinitenormoftheerrorsofproblem(20)withexactsolutions(25)to(28),
usingN=31×31structurednodes.

4.3.3 AdditionalPoissonequationexamples

Inthissection,weaddressthesolutionofseveralproblemsdefinedbythePois-
sonequationwhichhavebeenproposedinthepast.Inallcases,weconsider
equation(20)withthefunctionfcomputed,ineachcase,fromthefollowing
exactsolutions:

u1=sin(πx)sin(πy) (25)

u2=
arctan[2(x+3y−1)]

arctan2(
√
10+1)

(26)

u3=0.75exp−
(9x−2)2+(9y−2)2)

4
+0.75exp−

(9x+1)2

49
−
9y+1

10
+

0.5exp−
(9x−7)2+(9y−3)2

4
−0.2exp−(9x−4)2−(9x−7)2 (27)

u4=
25

25+(x−0.2)2+2y2
. (28)

Figure9showswithsolidlinestheinfinitenormoftheerror||E(c)||∞ asa
functionofcforthefourproblemsconsideredhere(problems(25)to(28)).
Intheseproblems,wehaveusedaregularmeshof31×31nodes.Noticethat
inallcasestheestimatederrorscomputedwithequation(22),shownwith
dot-dashedlines,areincloseagreementwiththeRBF-FDerrorsforc≫ h,
andthatthereisalwaysarangeofshapeparametersforwhichtheRBF-FD
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Table 8
Optimal shape parameters and the corresponding errors for problem (20) with exact
solutions (25) to (28), using a 31 × 31 structured grid.

u1 u2 u3 u4

||~E||∞ 9:144 · 10−4 1:868 · 10−3 4:604 · 10−3 9:727 · 10−7

c∗ 1:0380 0:5978 0:4922 4:4949

||E(c∗)||∞ 7:092 · 10−8 1:043 · 10−3 1:742 · 10−3 7:436 · 10−8

c∗e 1:0387 0:5978 0:4935 4:4957

||E(c∗e)||∞ 1:345 · 10−6 1:043 · 10−3 1:758 · 10−3 7:440 · 10−8

|c∗ − c∗e| 0:0007 0:0000 0:0013 0:0008

solution is more accurate than the standard FD solution (the FD error is
shown in dashed lines).

Table 8 compares the results obtained with �nite di�erences, and with RBF-
FD using the optimal shape parameter computed either from the exact solu-
tion or from equation (22).

Problem (25) was �rst proposed by Ding et al. [8] to numerically analyze the
dependence of the approximation error with shape parameter c, local density
of nodes h, and number of supporting nodes n. They used equally spaced
nodes in their numerical experiments and concluded that for n ≤ 9 the error
behaves as ||E|| ≈ O((h/c)1:9). Our analysis in [1] shows that the error behaves
as ||E|| ≈ O((h/c)2) (see, for instance, equation (22)). Problem (25) has also
been used by Davydov and Oanh [7]. In Fig. 7 of their paper the root mean
square (rms) error of the numerical di�erentiation error and the solution error
are displayed as a function of c. They use a value of the shape parameter as

large as possible with the RBF matrix still numerically non singular. Thus,
they operate the RBF-FD method in the region where it is equivalent to
�nite di�erences, and this is con�rmed in Fig. 7 of their paper, where the
RBF-FD errors are undistinguishable from those of �nite di�erences. From
that �gure, and for N = 31 × 31 (1/N = 10−3), the rms of the numerical
di�erentiation error is approximately 9 ·10−3 and the rms of the solution error
is approximately 4 · 10−4. Using the optimal shape parameter c∗e, we obtain
an rms for the numerical di�erentiation error of 4.7 · 10−7, and an rms for the
solution error of 2.4 ·10−8. The reason for this extremely high accuracy is that,
for this problem, it is straightforward to verify that the shape parameter that
minimizes the local approximation error (22) is independent of location. Thus,
the optimal (constant) shape parameter c∗e that we use in our computations
minimizes the error at every point of the grid.

Problem (26) was used by Larsson and Fornberg [27] to analyze the global
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RBF method for in�nitely smooth basis functions (c → ∞). The problem
was solved in the unit disk using 50 unstructured nodes. Of the six problems
considered in [27], problem (26) was the most hard to solve (||E||∞ = 0.23 for
the optimal shape parameter c∗ = 1/0.89 = 1.124). The results in Fig. 9 and
Table 8 show that, also with the local RBF method, the errors are relatively
high. In addition, it can be observed that, with a constant shape parameter,
there is very little accuracy increase with respect to �nite di�erences. This
can be due to the fact that, either there are many locations for which there
is not a local optimal shape parameter, or the optimal local shape parameter
varies much with location and there is not a single (constant) optimal shape
parameter c∗ which can be successfully used at all locations.

Problem (27) was also proposed by Ding et al. [8]. The solution is quite hilly,
having three relative extrema and one saddle point within the domain. As in
the previous problem, the solution error and the optimal shape parameter are
accurately computed with equation (22), but there is little improvement with
respect to �nite di�erences.

Problem (28) was solved in [27] and [43] on the unit disk using unstructured
nodes and 9 node stencils. The minimum value of the in�nite norm of the
solution error with an unstructured set of 200 nodes (shown in Fig. 4 of [43])
is approximately 1.6 · 10−5. The results in Table 8 show that, for a regular
rectangular mesh of 961 nodes and 5 node stencils, the in�nite norm of the
error is 7.440 · 10−8. The reason for this high accuracy is that function (28)
is almost constant throughout the domain and, therefore, using a single (con-
stant) optimal shape parameter for all the nodes results in highly accurate
solutions. In fact, in reference [1] the optimal shape parameter that minimizes
the local approximation error for a nine node stencil at location (0, 0) was
c = 1/0.2617 = 3.82 and this result varies very little with location.

5 Conclusions

In this paper we describe how to predict the solution error using the RBF-FD
method with a single (constant) value of the shape parameter. It is based on
analytical formulas derived in [1] for the local approximation error of RBF-
FD formulas. Since the error can be accurately predicted, it is also possible to
accurately estimate the optimal shape parameter that minimizes the solution
error.

We have described the technique through several examples in 1D (3 node sten-
cils) and 2D (5 and 6 node stencils) using both structured and unstructured
nodes. However, the formulas derived in [1] can also be used to solve prob-
lems with other stencils. We emphasize that to compute the optimal shape
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parameter to order O(h2) it is only necessary to approximate the solution
u(x) and certain derivatives to order O(h2). In practice, this can be achieved
by �rst computing the standard �nite di�erence solution, then use this solu-
tion to estimate the optimal shape parameter c∗e, and �nally use this value to
compute the optimal RBF-FD solution. For unstructured grids in 2D it is not
advisable to estimate derivatives through �nite di�erence formulas, since this
will require the selection of appropriate stencils for each derivative. Instead,
one can use the RBF global method on a coarse grid and use this solution to
approximate u(x) and the needed derivatives on the unstructured grid.

From the point of view of computational cost the technique requires solving
the problem twice; �rst with standard �nite di�erences and then with the
RBF-FD method. Thus, for the solution of a Poisson problem in 2D using
N nodes, the method requires the solution of two sparse linear systems of
N × N unknowns. However, it is possible to take advantage of the fact that,
to leading order, the optimal shape parameter is independent of h. Thus, the
�nite di�erence solution or the global RBF solution needed to estimate c∗e, can
be computed in a coarse grid, and then the RBF-FD method can be used to
compute the �nal solution in a �ne grid. In this way the computational cost
can be signi�cantly reduced.
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