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Simultaneous Estimation of Vehicle Sideslip and
Roll Angles Using an Integral-Based

Event-Triggered H∞ Observer Considering
Intravehicle Communications

Beatriz L. Boada, Fernando Viadero-Monasterio, Hui Zhang, and Maria Jesus L. Boada

Abstract—In recent years, several technological advances have
been incorporated into vehicles to ensure their safety and ride
comfort. Most of these driver-assistance technologies aim to
prevent skidding, whereas less attention has been paid to the
avoidance of other dangerous situations such as a rollover. Since
knowledge of slip and roll angles is critical to the control
and safety of vehicle handling, their estimation remains of
great interest when addressing emerging constraints in mod-
ern technologies involving networked communications and dis-
tributed computing. This paper presents an integral-based event-
triggered H∞ observer to simultaneously estimate the sideslip
and roll angles, considering intravehicle communications with a
networked-induced delay. As the longitudinal velocity and tire
cornering stiffness of a vehicle can vary significantly during
driving and have a strong influence on vehicle lateral stability,
these time-varying parameter uncertainties are considered in the
design of the observer. The simulation and experimental results
demonstrate the effectiveness of the proposed observer.

Index Terms—Integral-based event-triggering, intravehicle
communication, networked-induced delay, parameter uncertain-
ties, H∞ performance, sideslip and roll angle estimation.

I. INTRODUCTION

IN recent years, several technological advances have been
incorporated into vehicles to ensure their safety and ride

comfort. These systems, which have traditionally been devel-
oped to help drivers handle the vehicle, play a key role in the
emerging trend of autonomous vehicles (AVs). In relation to
the handling stability of a vehicle, lateral and yaw stability
control are major concerns [1]–[6]. Most of these driver-
assistance technologies aim to prevent skidding of vehicles,
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whereas less attention has been paid to the avoidance of
other dangerous situations such as a rollover, which occurs
mainly in vehicles with high center of gravity (CoG) or low
roll stiffness [7], [8]. An adequate design of advanced driver-
assistance systems entails an accurate and full knowledge of
the vehicle states. In this regard, the sideslip angle and the
roll angle are required to enhance the lateral and roll stability
performance, respectively [9]. These angles can be measured
directly by using sensors such as the Correvit S-Motion DTI
from Kistler or VBOX 3i dual antenna from Racelogic, among
others. The main drawback of these sensors is that they are
very expensive, making it infeasible to mount them on current
series-production vehicles. The best solution proposed so far
is to estimate the sideslip and roll angles based on dynamical
models of the vehicle using measurements obtained by sensors
already installed in most vehicles or by low-cost sensors [10]–
[12].

Most previous works have focused on estimating one or
the other angle, mainly the sideslip angle [13]. Di Biase
et al. [14] proposed a novel vehicle sideslip angle estimator
consisting of a simple single-stage extended Kalman filter
(EKF) approach for a heavy-duty vehicle using a rational
tyre model. Villano et al. [15] proposed the development of
an unscented Kalman filter (UKF) framework based on an
innovative combination of kinematic and dynamic modeling,
called a cross-combined approach, for vehicle sideslip angle
estimation using measurements from sensors already available
on many of today’s passengers vehicles. Unfortunately, the
lateral and roll dynamics of a vehicle are heavily coupled
[16], so the simultaneously estimation of roll and sideslip
angles should be performed. Cho et al. [17] proposed an
observer based on a bicycle model combined with a kinematic
model that uses lateral acceleration information. Additionally,
a new roll angle estimation methodology was proposed to
compensate the issue of drift in the lateral accelerometer
used directly for the observer. Hac et al. [18] used kinematic
based-models that consider the motion of a body and that
are not affected by uncertainties to estimate both the roll
and sideslip angle. Nevertheless, unexpected disturbances and
model uncertainties should be considering to guarantee a
robust estimation in different situations.

Since knowledge of the sideslip and roll angles is critical for
vehicle handling and safety control, their estimation continues
to arouse great interest, especially to deal with the limitations
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and problems that arise with the improvement of modern con-
trol technologies embedded in electronic control systems [19]
involving networked communications and distributed comput-
ing. The continuous and rapid development of more advanced
vehicular applications and devices implies the coexistence of
different vehicular communication networks [20], [21], both
intra- and intervehicle. In intravehicle networks, the devices
(sensors and actuators) are connected to computing modules
through either wired or wireless communication to facilitate
the operation of a single vehicle [22], [23]. Meanwhile, inter-
vehicle networks allow information exchange from vehicle to
vehicle (V2V) and between vehicles and infrastructure (V2I).
The latter type of network uses shared service platforms and
cloud computing to reduce the information storage require-
ments and the computational burden om the vehicle’s onboard
resources [24]. Nevertheless, Milano et al. [25] state that those
functions that are crucial for the normal operation mode or that
are safety critical must always be accessible in the vehicle.

It is well acknowledged that sharing information among
different networked systems often results in overutilization of
the available communication resources [26]. Due to the limited
network bandwidth, data sampling and controller/estimator
updates should be kept to the minimum required to ensure
efficient use of the communication resources and to save
network bandwidth. This idea has motivated the adoption of
different event-triggered mechanisms (ETMs) to determine
when data should be transmitted over the network [26]–[29].

Traditionally, the triggering mechanism is constructed based
on when current measurement signals (or system states) have
changed sufficiently in comparison with previous data such
that a triggering condition is violated [30], [31]. Nevertheless,
recent works have proved that, if the integral-based event
condition is designed by integrating measurement signals (or
system states) over a finite period, the amount of information
sent through the network can be reduced in some applications
[32], [33]. In [34], an integral-based event-triggered control
that uses the integrals of system states to construct the event
conditions is proposed. Numerical examples show that the
requirements on the derivative of the Lyapunov function are
relaxed, thus yielding improved sampling performance. These
works focused on the design of controllers, but none of
them considered parameter uncertainties. Li et al. [35] studied
integral-based event-triggered fault estimation and impulsive
fault-tolerant control for networked control systems. Although
their work proposed an observer using an integral-based event-
triggered mechanism, it did not consider parameter uncertain-
ties, nor the possibility of Zeno behavior [36].

Motivated by the discussion above, the main novelty of this
paper is the design of an integral-based event-triggered H∞ ob-
server to simultaneously estimate the sideslip and roll angles,
considering intravehicle communications with a networked-
induced delay. Both parameter uncertainties and disturbances
are considered when designing the observer. Moreover, a
positive lower bound on interevent times in the event-triggered
observer is provided to eliminate Zeno behavior. Based on
an augmented Lyapunov–Krasovskii functional, sufficient con-
ditions on the design of the integral-based event-triggered
parameters and the observer to achieve global asymptotic

stability are established in terms of linear matrix inequalities
(LMIs). A comparison of the proposed observer with results
previously presented by the authors [37], where a traditional
event-triggering mechanism is used, shows that the number
of measurements that need to be transmitted decreases while
the estimates for both angles are very similar. The simulation
and experimental results demonstrate the effectiveness of the
proposed observer.

Notation: Standard notation is used throughout this paper:
Rn denotes an n-dimensional real vector space. Rm×n denote
real matrices with dimensions of m × n. A superscript “T ”
represents the transpose of a matrix, while “I” and “0”
denote identity and zero matrices of appropriate dimensions,
respectively. The word “diag” stands for diagonal matrix. The
symbol “∗” denotes the symmetric term in a symmetric matrix.

II. PRELIMINARIES AND PROBLEM FORMULATION

When driving a vehicle, both its longitudinal velocity, vx,
and the cornering stiffnesses of the front/rear tires, Cαf and
Cαr, can vary significantly. As both parameters have a strong
influence on the lateral stability of the vehicle [19], [38], [39],
these time-varying parameter uncertainties must be considered
in the design of the observer. It is assumed that the velocity
is measurable online in a polytope space. On the other hand,
when the vehicle is running, the tire lateral stiffnesses vary
but their values are unknown. In this case, these parameters
can be represented by their nominal values and the bounds of
their variations (Cαf +∆Cαf and Cαr +∆Cαr).

The framework of the integral-based event-triggered H∞
observer system is depicted in Figure 1. According to this,
the observer is situated far from the sensors and the data
are transmitted in a single packet over the communication
network, which suffers from time delays. The data provided
by the sensors are the steering wheel angle, δ(t), the longi-
tudinal velocity, vx(t), the yaw rate, r(t), and the roll rate,
ϕ̇(t). Assuming that the sensors’ signals are measured with
a sampling period h, the sampled signals are encapsulated
into a data packet, {δ(ih), vx(ih), y(ih) = [r(ih), ϕ̇(ih)]T }
(i = 1, 2, . . .), and sent to the integral-based event trigger
(IET) module that determines when to transmit the information
to the proposed observer over the communication network.
Under the event-triggered condition, the data packets are
released at instants ikh (k = 1, 2, . . .).

The communication network induces a time delay ηk at the
kth triggering instant between the sensor and observer that
satisfies 0 < ηm ≤ ηk ≤ ηM , where ηm and ηM are the lower
and upper bound on the transmission delay, respectively. The
lower bound is defined to avoid Zeno behavior [40].

Finally, the data are kept unchanged via a zero-order hold
(ZOH) until the observer receives the next data packet from the
network, to transform the discrete-time data into continuous-
time information {δ̌(t), v̌x(t), y̌(t)}.

A. Mathematical Vehicle Modeling

For the design of the observer, only the lateral vehicle
dynamics is considered, so the influence of the pitch angle
is ignored. The more complex the vehicle model, the more
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Fig. 1. Scheme of the networked system with the proposed integral-based event-triggered H∞ observer

restrictive the problem to be solved. We adopt a model of the
vehicle’s lateral dynamics that includes lateral, roll, and yaw
motions around the center of mass. The equivalent first-order
state-space model of the vehicle is given as [37], [41]

ẋ(t) = (A (ρ) + ∆A (ρ))x(t) + (Bδ (ρ) + ∆Bδ (ρ)) δ̌(t)

+(Bu (ρ) + ∆Bu (ρ))u(t) +Bw (ρ)w(t), (1)
y(t) = Cx(t), (2)

where x =
[
β r ϕ ϕ̇

]T
is the state vector given by the

sideslip angle, β, yaw rate, r, roll angle, ϕ, and roll rate, ϕ̇; δ
is the wheel steering angle; y =

[
r ϕ̇

]T
is the measured

output vector; u =
[
δc Mϕ

]T
is the control input vector

given by the commanded steer angle δc and the corrective yaw
moment Mϕ and w =

[
ϕr ṗf d

]T
is the disturbance

vector given by the road bank angle ϕr, the x component of the
angular velocity vector of the vehicle frame with respect to the
inertial coordinates, ṗf , and d is the system noise. In this work,
the vehicle is not controlled, so that u = 0. By considering
the control matrix, Bu, a controller can be added to the
vehicle architecture in the future, without having to modify
the designed observer. ∆ denotes the unknown uncertainties in
the model. The nominal and uncertain matrices are continuous
functions that depend on the time-varying parameter vector
ρ = [1/vx 1/v2x]

T whose measurement is available in real
time:

A(ρ) =


− IeqC0

Ixmvx
−
(
1 +

IeqC1

Ixmv2
x

)
h(mghcr−Kϕ)

Ixvx
−hcrCϕ

Ixvx

−C1

Iz
− C2

Izvx
0 0

0 0 0 1

−C0hcr

Ix
−C1hcr

Ixvx

(mghcr−Kϕ)
Ix

−Cϕ

Ix

 ,

Bδ(ρ) =


IeqCαf

Ixmvx
lfCαf

Iz
0

Cαfhcr

Ix

 , Bu(ρ) =


IeqCαf

Ixmvx
0

lfCαf

Iz
0

0 0
Cαfhcr

Ix
1
Ix

 ,

Bw(ρ) =


− g

vx
0 1

0 0 1
0 0 1
0 −1 1

 ,

∆A(ρ) =


− Ieq∆C0

Ixmvx
− Ieq∆C1

Ixmv2
x

0 0

−∆C1

Iz
−∆C2

Izvx
0 0

0 0 0 0

−∆C0hcr

Ix
−∆C1hcr

Ixvx
0 0

 ,

∆Bδ(ρ) =


Ieq∆Cαf

Ixmvx
a∆Cαf

Iz
0

∆Cαfhcr

Ix

 , ∆Bu(ρ) =


Ieq∆Cαf

Ixmvx
0

a∆Cαf

Iz
0

0 0
∆Cαfhcr

Ix
0

 ,

where C0 = Cαf + Cαr, C1 = lfCαf − lrCαr, C2 =
l2fCαf + l2rCαr, Ieq = Ix + mh2

cr, ∆C0 = ∆Cαf + ∆Cαr,
∆C1 = lf∆Cαf − lr∆Cαr, and ∆C2 = l2f∆Cαf + l2r∆Cαr.
The uncertain matrices ∆A(ρ), ∆Bδ(ρ), and ∆Bu(ρ) are
assumed to be bounded, with known bounds

−EA(ρ) ≤ ∆A(ρ) ≤ EA(ρ),

−EBδ
(ρ) ≤ ∆Bδ(ρ) ≤ EBδ

(ρ),

−EBu
(ρ) ≤ ∆Bu(ρ) ≤ EBu

(ρ).

(3)

In this case, the uncertain matrices can be modeled as
∆A(ρ) = EA(ρ)MAFA,

∆Bδ(ρ) = EBδ
(ρ)MBδ

FBδ
,

∆Bu(ρ) = EBu(ρ)MBuFBu ,

(4)
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with M• being the matrix-valued uncertainty satisfying
MT

• M• ≤ I and F• being the identity matrices of appropriate
dimensions.

Assuming that the longitudinal velocity vx can vary in the
range [vx, vx], the time-varying parameter vector ρ can be
represented as a combination of the N vertices ωi of a convex
polytope formed by two triangles with vertex ω3 in common:

• First triangle

– ω1 =
(

1
vx
, 1
v2
x

)
,

– ω2 =

(
(vx+3vx)
4vxvx

, 1
2vxvx

+ 1
2v2

x

)
,

– ω3 =

(
(vx+vx)
2vxvx

,
(vx+vx)

2

4v2
xv

2
x

)
.

• Second triangle

– ω3 =

(
(vx+vx)
2vxvx

,
(vx+vx)

2

4v2
xv

2
x

)
,

– ω4 =

(
(3vx+vx)
4vxvx

, 1
2vxvx

+ 1
2v2

x

)
,

– ω5 =
(

1
vx
, 1
v2
x

)
.

For each of the two triangles, the polytopic representation
is given by

Ξ =
N∑
i=1

αiωi, (5)

where
∑N

i=1 αi (ρ) = 1, αi (ρ ) ≥ 0, and N = 3.
We refer to [37], [42] for further details about the polytope.

The model can then be redefined as

ẋ(t) =
N∑
i=1

αi

[
(Ai +∆Ai)x(t) + (Bi,δ +∆Bi,δ) δ̌(t)

+ (Bi,u +∆Bi,u)u(t) +Bi,ww(t)
]
, (6)

y(t) = Cx(t). (7)

B. Integral-Based Event-Triggered Mechanism

As depicted in Figure 1, the data packet that contains the
sampled sensor signals obtained with a constant sampling
period h, {δ(ih), vx(ih), y(ih)} (i = 1, 2, . . .), is sent to
the event generator, which determines whether the current
data packet needs to be transmitted to the observer over
the network. The release instant is denoted as ikh, where
ik ∈ N. Assuming that the last transmitted data packet
is {δ(ikh), vx(ikh), y(ikh)}, the subsequently sampled data
packet {δ(ikh + jh), vx(ikh + jh), y(ikh + jh)} (j =
0, 1, 2, . . . ), will be transmitted at instant ik+1h ≜ ikh + jh
to the observer when the following integral-based event-
triggering condition is satisfied [33]:

ϵ2
h∫

h−hM

yT (iks+ js)Ωy(iks+ js)ds

≤
h∫

h−hM

ey(iks)
TΩey(iks)ds, (8)

where ϵ > 0 is a threshold, Ω > 0 is a weighting matrix, hM is
the maximum time between two successive triggering instants,

and ey(ikh) = y(ikh)−y(ikh+ jh) is the error between the
current measured output vector and the last transmitted one. In
this research, the value of hM has been selected by trial and
error, considering two aspects: (1) to obtain a feasible solution
from Theorem 1 and (2) to obtain good performance in the
estimation of both the sideslip and roll angles while achieving
a reduction in the data transmission.

The integral-based event triggering mechanism consists of
a comparison between the accumulated measurements and the
accumulated difference of the observation vector between two
successive triggering instants. This performs better from the
data transmission reduction viewpoint when compared with
the corresponding traditional event-triggered mechanism.

Assuming that the time delay induced by the communication
network is ηk at release instant ikh, the transmitted data packet
{δ(ikh), vx(ikh), y(ikh)} arrives at the ZOH module at ins-
tant tk = ikh+ηk. If data dropouts and disorders are supposed
not to occur, the data packet received by the observer from the
plant through the network is defined as {δ̌(t), v̌x(t), y̌(t)} =
{δ(ikh), vx(ikh),y(ikh)} for t ∈ [ikh+ ηk, ik+1h+ ηk+1).
ηk and ηk+1 are the network delay of the latest and next ZOH
arrival data packet, respectively.

According to [43], the holding time at ZOH is defined as

η(t) ≜ t− ikh, t ∈ [ikh+ ηk, ik+1h+ ηk+1) , (9)

and the updated measured output vector, y̌(t), received by the
observer can be rewritten as

y̌(t) = ey(t) + y(t− η(t)), (10)

where the delay η(t) satisfies ηm ≤ ηk ≤ η(t) < ηk + h ≤
ηM + h.

Substituting y(t) and y̌(t) given by (2) and (10), respec-
tively, into (8), one obtains

ϵ2
∫ t

t−hM

(
ey(s) +Cx (s− η)

)T

Ω

×
(
ey(s) +Cx(s− η)

)
ds−

∫ t

t−hM

eTy (s)Ωey(s)ds ≤ 0.

(11)

A demonstration that the integral-based event triggering
mechanism ensures the existence of a minimum inter-event
time for the closed-loop system can be found in [44] and [45].

III. INTEGRAL-BASED EVENT-TRIGGERED OBSERVER
DESIGN

In this section,the integral-based event-triggered observer is
designed as follows:

˙̃x(t) =
N∑
i=1

αi

[
Aix̃(t) +Bi,δ δ̌(t) +Bi,uu(t)

+Li

(
y̌(t)− ỹ(t)

)]
, (12)

ỹ(t) = Cx̃(t), (13)
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where Li are the observation gain matrices. Considering (10),
the observer can be formulated as

˙̃x(t) =
N∑
i=1

αi

[
Aix̃(t) +Bi,δ δ̌(t) +Bi,uu(t)

+Li

(
ey(t) +C

(
x(t− η(t))− x̃(t)

))]
, (14)

ỹ(t) = Cx̃(t). (15)

Defining ex(t) = x(t) − x̃(t) as the state estimation
error and combining (6) and (14), the error dynamics can be
obtained as

ėx(t) = ẋ(t)− ˙̃x(t)

=
N∑
i=1

αi

[
Ai

(
x(t)− x̃(t)

)
− LiCex(t) + ∆Aix(t)

+∆Bi,δ δ̌(t) + ∆Bi,uu(t) +Bi,ww(t)

−Li

(
ey(t) +C

(
x(t− η(t))− x(t)

))]
. (16)

If we define an augmented state vector as ξ(t) =[
ex(t) x(t)

]T
, (14) and (16) are transformed into the

following augmented form:

ξ̇(t) =
N∑
i=1

αi

[
(A0,i +∆A0,i) ξ(t) +A1,iξ(t− η(t))

+A2,iey(t) + (A3,i +∆A3,i)q(t)
]
, (17)

where q(t) =
[
δ̌(t) u(t) w(t)

]T
and

A0,i =

[
(Ai − LiC) LiC

0 Ai

]
, A1,i =

[
0 LiC
0 0

]
,

A2,i =

[
−Li

0

]
, A3,i =

[
0 0 Bw,i

Bδ,i Bu,i Bw,i

]
,

∆A0,i =

[
0 ∆Ai

0 ∆Ai

]
= ĒA,iM̄AF̄A,

∆A3,i =

[
∆Bδ,i ∆Bu,i 0
∆Bδ,i ∆Bu,i 0

]
= ĒB,iM̄BF̄B ,

with

ĒA,i =

[
0 EA,i

0 EA,i

]
, M̄A =

[
MA 0
0 MA

]
, F̄A =

[
FA 0
0 FA

]
,

ĒB =

[
EBδ

EBu
0

EBδ
EBu

0

]
, M̄B =

MBδ
0 0

0 MBu
0

0 0 0

 ,

F̄B =

FBδ
0 0

0 FBu
0

0 0 0

 .

For the theoretical development presented in later sections,
the following definitions and lemmas are introduced:

Definition 1. Given a scalar γ > 0, the system (17) is said to
be asymptotically stable with an H∞ performance index γ if,
under zero initial conditions, the following inequality holds:∥∥zT (t)z(t)∥∥

2
< γ

∥∥qT (t)q(t)
∥∥
2
, (18)

where z(t) = C1ξ(t) is the performance output and C1 =[
I 0

]
.

Lemma 1. (Jensen’s inequality). For any positive constant
matrix F > 0 ∈ Rnxn, scalars 0 ≤ p1 ≤ p2, and a vector
function ω : [p1, p2] → Rn that is continuously differentiable,
the following inequality holds:

−
∫ p2

p1

ωT (s)Fω(s)ds

≤ − 1

p2 − p1

(∫ p2

p1

ω(s)ds

)T

F

(∫ p2

p1

ω(s)ds

)
.

Lemma 2. [43] For any constant matrix F = FT ∈ Rnxn,
matrix T ∈ Rnxn, scalars 0 < τ1 ≤ τ(t) ≤ τ2 ,and
vector function ω : [−τ2,−τ1] → Rn such that the following
integration is well defined, it holds that

− (τ2 − τ1)

∫ t−τ1

t−τ2

ω̇T (s)Fω̇(s)ds

≤ − (ω(t− τ1)− ω(t− τ(t)))
T
F (ω(t− τ1)− ω(t− τ(t)))

− (ω(t− τ(t))− ω(t− τ2))
T
F (ω(t− τ(t))− ω(t− τ2))

+ (ω(t− τ1)− ω(t− τ(t)))
T
TT (ω(t− τ(t))− ω(t− τ2))

+ (ω(t− τ(t))− ω(t− τ2))
T
T (ω(t− τ1)− ω(t− τ(t))) ,

when [
F T
TT F

]
≥ 0.

Lemma 3. [46] For any matrix R > 0, matrix X = XT ,
and constant ρ, it holds that

−XR−1X ≤ ρ2R− 2ρX.

To analyze the stability for each of the two polytope
triangles of the designed observer given in the form of (12)
and (13), the following theorem is developed:

Theorem 1. For given scalars ηm > 0, ηM > ηm, h > 0,
hM > 0, ϵ > 0, ρ1 > 0, ρ2 > 0, and γ > 0, the system
(17) is asymptotically stable with an H∞ performance index
γ under the integral-based event-triggering condition if there
exist scalars µ1 > 0 and µ2 > 0, definite-positive symmetric
matrices P = PT > 0, Q1,i = QT

1,i > 0, Q2,i = QT
2,i >

0, R1 = RT
1 > 0, R2 = RT

2 > 0, Ω = ΩT > 0, and
Z = ZT > 0, and any matrices S and Mi of appropriate
dimensions such that the following LMIs hold:

Γ11,i Γ12,i Γ13,i Γ14,i Γ15,i

∗ Γ22,i 0 0 0
∗ ∗ Γ33,i Γ34,i Γ35,i

∗ ∗ ∗ −µ1I 0
∗ ∗ ∗ ∗ −µ2I

 < 0 for i = 1, 2, . . . , N,

(19)[
R2 S
∗ R2

]
> 0, (20)
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with

Γ11,i =



Γ11,i
11 Γ11,i

12 R 0 Γ11,i
15 Γ11,i

16

∗ Γ11,i
22 Γ11,i

23 Γ11,i
24 0 0

∗ ∗ Γ11,i
33 Γ11,i

34 0 0

∗ ∗ ∗ Γ11,i
44 0 0

∗ ∗ ∗ ∗ −Z 0
∗ ∗ ∗ ∗ ∗ −γ2I

 ,

Γ11,i
11 =

[
∆11,i MiC+Q112,i −R112

∗ P2Ai +AT
i P2 +Q122 −R122

]
,

∆11,i = (P1Ai −MiC)+(P1Ai −MiC)
T
+Q111,i−R111,

Γ11,i
12 =

[
0 −MiC
0 0

]
, Γ11,i

15 =

[
−Mi

0

]
,

Γ11,i
16 =

[
0 0 P1Bw,i

P2Bi,δ P2Bi,u P2Bw,i

]
,

Γ11,i
22 = −2R2 − ST − S, Γ11,i

23 = R2 + S,

Γ11,i
24 = R2 + ST , Γ11,i

33 = (Q2,i −Q1,i)−R1 −R2,

Γ11,i
34 = −ST , Γ11,i

44 = −Q2,i −R2,

Γ12,i =


0 0 CT

1

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

 ,

Γ13,i =


Γ13,i
11 Γ13,i

12 Γ13,i
13 Γ13,i

14

Γ13,i
21 Γ13,i

22 Γ13,i
23 Γ13,i

24

0 0 0 0
0 0 0 0

−ηmMT
i 0 − (η̄ − ηm)MT

i 0

Γ13,i
61 Γ13,i

62 Γ13,i
63 Γ13,i

64

 ,

Γ13,i
11 =

[
ηm
(
AT

i P1 −CTMT
i

)
ηmCTMT

i

]
, Γ13,i

12 =

[
0

ηmAT
i P2

]
,

Γ13,i
13 =

[
(η̄ − ηm)

(
AT

i P1 −CTMT
i

)
(η̄ − ηm)CTMT

i

]
,

Γ13,i
14 =

[
0

(η̄ − ηm)AT
i P2

]
, Γ13,i

21 =

[
0

−ηmCTMT
i

]
,

Γ13,i
22 = Γ13,i

24 =

[
0
0

]
, Γ13,i

23 =

[
0

− (η̄ − ηm)CTMT
i

]
,

Γ13,i
61 =

 0
0

ηmBT
w,iP1

 , Γ13,i
62 =

 ηmBT
i,δP2

ηmBT
i,uP2

ηmBT
w,iP2

 ,

Γ13,i
63 =

 0
0

(η̄ − ηm)BT
w,iP1

 ,

Γ13,i
64 =

 (η̄ − ηm)BT
i,δP2

(η̄ − ηm)BT
i,uP2

(η̄ − ηm)BT
w,iP2

 ,

Γ14,i =


Γ14,i
11 Γ14,i

12

0 0
0 0
0 0
0 0
0 0

 , Γ15,i =


Γ15,i
11 0
0 0
0 0
0 0
0 0

0 Γ15,i
16

 ,

Γ14,i
11 =

[
0 P1EA

0 P2EA

]
, Γ14,i

12 =

[
µ1F

T
A 0

0 µ1F
T
A

]
,

Γ15,i
11 =

[
P1EBδ

P1EBδ
0

P2EBδ
P2EBu

0

]
,

Γ15,i
16 =

µ2F
T
Bδ

0 0
0 µ2F

T
Bδ

0
0 0 0

 ,

Γ22,i =

ΘT ϵ2

hM
ΩΘ ΘT ϵ2

hM
Ω 0

∗ − Ω
hM

+ ϵ2

hM
Ω 0

∗ ∗ −I

 ,

Γ33,i =

[
Γ33,i
11 0

∗ Γ33,i
22

]
, Γ34,i =

[
Γ34,i
11 0

Γ34,i
21 0

]
,

Γ33,i
11 =

[
ρ21R111 − 2ρ1P1 ρ21R112

∗ ρ21R122 − 2ρ1P2

]
,

Γ33,i
22 =

[
ρ22R211 − 2ρ2P1 ρ22R212

∗ ρ22R222 − 2ρ2P2

]
,

Γ34,i
11 =

[
0 ηmP1EA

0 ηmP2EA

]
, Γ34,i

21 =

[
0 (η̄ − ηm)P1EA

0 (η̄ − ηm)P2EA

]
,

Γ35,i =

[
Γ35,i
11 0

Γ35,i
21 0

]
,

Γ35,i
11 =

[
ηmP1EBδ

ηmP1EBu 0
ηmP2EBδ

ηmP2EBu
0

]
,

Γ35,i
21 =

[
(η̄ − ηm)P1EBδ

(η̄ − ηm)P1EBu
0

(η̄ − ηm)P2EBδ
(η̄ − ηm)P2EBu 0

]
,

with

P =

[
P1 0
0 P2

]
, S =

[
S11 S12

∗ S22

]
,

R1 =

[
R111 R112

∗ R122

]
, R2 =

[
R211 R212

∗ R222

]
,

Q1,i =

[
Q111,i Q112,i

∗ Q122,i

]
, Q2,i =

[
Q211,i Q212,i

∗ Q222,i

]
.

Then, the observer gains Li are given by Li = P−1
1 Mi.

Proof: See Appendix A.
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TABLE I
LATERAL DYNAMICS MODEL PARAMETERS OF THE MERCEDES SPRINTER

VAN

Description Parameter Value
Total vehicle mass m 2150 kg
Distance from roll center to CoG hcr 0.35 m
Distance from CoG to front axle lf 1.51 m
Distance from CoG to rear axle lr 2.04 m
Front tire cornering stiffness Cαf 969.64 kN/rad
Rear tire cornering stiffness Cαr 1299.5 kN/rad
Roll moment of inertia Ix 500 kg/m2

Yaw moment of inertia Iz 2975 kg/m2

Roll stiffness Kϕ 53.825 kNm/rad
Roll damping coefficient Cϕ 5.448 kNms/rad

IV. RESULTS AND DISCUSSION

A. Simulation Results

In this subsection, the effectiveness of the proposed integral-
based event-triggered H∞ observer is tested on a simu-
lated Mercedes Sprinter van model created in the software
TruckSim® [47]. The parameters of the van’s lateral dynamics
model used for designing the observer are presented in Table
I. For the simulation tests, it is assumed that the van’s
longitudinal velocity is bounded in the interval [2m/s, 20m/s]
and that the maximum variation of the front and rear tire
cornering stiffnesses is 5% of their nominal values.

To perform the simulation tests, we recreated different
driving maneuvers in the TruckSim® environment:

• Test 1: J-turn maneuver at 60 degrees of steering wheel
steer angle and with a speed of 60 km/h on an asphalt
road

• Test 2: double lane change at 70 km/h on an asphalt road
• Test 3: sine sweep maneuver for a frequency range from

0.05 to 0.5 Hz at 40 km/h on an asphalt road

These maneuvers are some of the most commonly used to
analyze the handling, stability, and rollover propensity of a
broad range of vehicles. During these maneuvers, the vehicle
exhibits strongly nonlinear behavior. Each of the tests was
carried out for three cases, considering different values of the
sampling period h and minimum lower and maximum upper
bounds ηm and ηM , respectively. hM is defined to be equal to
50 s considering both that Theorem 1 has a feasible solution
and vehicle safety. Both simulation and experimental results
have shown that a value of hM equal to 50 s is adequate. Table
II presents the parameters used in the design of the proposed
observer. The LMIs (19) and (20) in Theorem 1 were solved
offline by using the LMI toolbox in MATLAB to obtain the
observer gains, Li, and the triggering parameters, Ωi, for the
three cases:

• Case A
– First triangle of the polytope

Ω1 =

[
185.222 0

0 185.222

]
, L1 =


0.368 −0.444
−4.389 4.582
−0.164 −0.109
3.817 1.883

 ,

L2 =


0.516 −0.244

−12.884 6.811
−0.020 −0.157
3.361 2.339

 , L3 =


−1.605 1.578
16.480 −19.303
0.014 −0.192
−6.454 10.541

 .

– Second triangle of the polytope

Ω2 =

[
41.410 0

0 41.410

]
, L3 =


5.143 −0.914

−24.096 3.518
−0.130 −0.139
8.900 3.563

 ,

L4 =


−1.075 −0.475
4.177 0.840
−0.006 −0.149
−1.811 4.680

 , L5 =


−11.464 0.688
41.785 −3.662
0.054 −0.162

−16.305 7.008

 .

• Case B
– First triangle of the polytope

Ω1 =

[
183.697 0

0 183.697

]
, L1 =


0.330 −0.446
−3.994 4.441
−0.1574 −0.114
3.459 1.937

 ,

L2 =


0.520 −0.246

−13.440 6.870
−0.024 −0.152
3.481 2.375

 ,

L3 =


−1.416 1.713
13.896 −20.863
−0.002 −0.196
−5.821 10.940

 .

– Second triangle of the polytope

Ω2 =

[
48.151 0

0 48.151

]
, L3 =


4.708 −0.936

−23.060 3.504
−0.128 −0.143
8.341 3.679

 ,

L4 =


−1.070 −0.481
4.162 0.826
−0.006 −0.153
−1.834 4.852

 , L5 =


4.708 −0.936

−23.060 3.504
−0.128 −0.143
8.341 3.679

 .

• Case C
– First triangle of the polytope

Ω1 =

[
195.676 0

0 195.676

]
, L1 =


0.575 −0.431
−6.164 5.263
−0.194 −0.091
5.683 1.617

 ,

L2 =


0.653 −0.256

−14.412 6.964
−0.049 −0.178
3.986 2.119

 ,

L3 =


−2.167 0.931
25.262 −11.827
0.066 −0.169
−8.110 8.453

 .
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– Second triangle of the polytope

Ω2 =

[
40.317 0

0 40.317

]
, L3 =


6.696 −0.952

−28.403 4.100
−0.139 −0.121
11.063 2.813

 ,

L4 =


−1.388 −0.430
5.785 0.905
−0.001 −0.137
−2.347 3.997

 , L5 =


−10.122 0.696
38.734 −4.066
0.039 −0.151

−14.882 6.417

 .

TABLE II
DESIGN PARAMETERS OF THE OBSERVER

Case A Case B Case C
h (ms) 15 10 10
hM (s) 50 50 50
ηm (ms) 5 5 5
ηM (ms) 20 20 50

γ 1
ϵ2 0.01
ρ1 1
ρ2 1

Simulation results obtained from the proposed integral-
based event-triggered H∞ observer were compared with those
obtained by considering a traditional event-triggered mecha-
nism as described in [37]. For the traditional event-triggered
mechanism, the observer gains and triggering parameters are
listed in Appendix B. Tables III–V present the root-mean-
square (RMS) and maximum errors of the estimated sideslip
and roll angles obtained for the different tests and cases.
The values estimated by both event-triggered mechanisms
are very similar with a difference of less than 1 degree.
The results confirm that the integral-based event-triggered
mechanism reduces the number of data transmitted over the
network in comparison with the traditional event-triggered
mechanism, by up to 12%. Figure 2 shows a time-based plot
of the simulated and estimated sideslip and roll angles, and
the release instants for test 3 and case A for the traditional
and integral-based event-triggered mechanisms. A comparison
of these results confirm that the proposed observer exhibits
better performance.

B. Experimental Results

To verify the feasibility and good performance of the pro-
posed algorithm, experiments were carried out on two vehicles
with different characteristics: a Mercedes Sprinter van and a
GOKA 650 (Figure 3). Both are ISVA (Research Institute of
Vehicle Safety) Laboratory test vehicles. They are equipped
with:

• A Racelogic’s inertial measurement unit (IMU) IMU04,
providing highly accurate measurements of pitch, roll,
and yaw rate using three rate gyros, as well as x, y, z
acceleration via three accelerometers with the following
specifications: ±450◦/s angular rate range in each axis,
±20g acceleration range in each axis, 0.00085◦/s angular
rate resolution, and 0.00004g acceleration resolution.

• A Racelogic’s VBOX 3i dual antenna with antennas
mounted 90◦ to the true heading of the vehicle with the

TABLE III
SIMULATION RESULTS FOR TEST 1

Traditional Event Triggering Integral-Based Event Triggering
Sideslip Angle (deg)

Case RMS Error Max. Error RMS Error Max. Error
A 0.91 1.63 0.88 1.60
B 0.90 1.59 0.90 1.64
C 0.90 1.55 0.89 1.61

Roll Angle (deg)
Case RMS Error Max. Error RMS Error Max.

A 0.50 0.80 0.57 0.70
B 0.47 0.85 0.54 0.79
C 0.47 0.91 0.58 1.00

Case Non-transmission Rate (%)
A 97.45 97.90
B 98.10 98.30
C 98.10 98.30

TABLE IV
SIMULATION RESULTS FOR TEST 2

Traditional Event Triggering Integral-Based Event Triggering
Sideslip Angle (deg)

Case RMS Error Max. Error RMS Error Max. Error
A 0.56 1.42 0.56 1.42
B 0.57 1.43 0.56 1.43
C 0.56 1.39 0.55 1.40

Roll Angle (deg)
Case RMS Error Max. Error RMS Error Max. Error

A 0.86 2.09 0.89 0.89
B 0.58 1.43 0.89 2.14
C 0.54 1.33 0.96 2.27

Case Non-transmission Rate (%)
A 51.87 57.87
B 58.84 66.23
C 58.84 66.23

TABLE V
SIMULATION RESULTS FOR TEST 3

Traditional Event Triggering Integral-Based Event Triggering
Sideslip Angle (deg)

Case RMS Error Max. RMS Error Max.
A 0.12 0.25 0.13 0.41
B 0.13 0.27 0.13 0.53
C 0.12 0.27 0.13 0.13

Roll Angle (deg)
Case RMS Error Max. Error RMS Error Max. Error

A 0.33 0.87 0.34 0.97
B 0.28 0.69 0.34 0.94
C 0.26 0.65 0.36 0.99

Case Non-transmission Rate (%)
A 75.93 80.53
B 81.38 87.00
C 81.39 87.00

following main specifications: 100 Hz GPS/GLONASS
data logging, 1 cm distance resolution, 0.01 km/h velocity
resolution, < 0.2◦ sideslip angle (RMS) accuracy and
< 0.14◦ roll angle (RMS) accuracy.

• A Kistler Universal measurement steering wheel DTI
sensor with the following specifications: ±250 Nm steer-
ing moment range, ±1, 250◦ steering angle range, ≤
2, 000◦/s steering speed and 0.015◦ steering angle reso-
lution.

For the experimental tests, it is assumed that the longitudinal
velocity is bounded in the interval [2 m/s, 20 m/s]. The
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(a) Sideslip angle

(b) Roll angle

(c) Release instants

Fig. 2. Mercedes Sprinter van: simulation results for test 3 and case A

(a) Mercedes Sprinter van (b) GOKA 650

Fig. 3. Test vehicles

maximum variation of the tire cornering stiffnesses is 5% and
1% of their nominal values, for the Mercedes Sprinter van
and the GOKA 650, respectively. Concerning the GOKA 650,
only case B is carried out.

Figures 4a and 5a show the maneuvers conducted with the
Mercedes Sprinter van and the GOKA 650, respectively. The
longitudinal velocity profiles corresponding to these maneu-
vers are depicted in Figures 4b and 5b. During the tests,
the vehicles perform lane changes and turns on roundabouts.

(a) Vehicle trajectory (b) Longitudinal speed

Fig. 4. Mercedes Sprinter van: vehicle trajectory and longitudinal speed for
real maneuver

(a) Vehicle trajectory (b) Longitudinal speed

Fig. 5. GOKA 650: vehicle trajectory and longitudinal speed for real
maneuver

TABLE VI
EXPERIMENTAL RESULTS FOR THE MERCEDES SPRINTER VAN

Traditional Event Triggering Integral-Based Event Triggering
Sideslip Angle (deg)

Case RMS Error Max. Error RMS Error Max. Error
A 0.83 3.49 0.85 3.52
B 0.83 3.47 0.84 3.52
C 0.82 3.47 0.83 3.42

Roll Angle (deg)
Case RMS Error Max. Error RMS Error Max. Error

A 0.76 2.25 0.79 2.62
B 1.19 3.35 0.80 2.38
C 1.42 3.70 0.80 2.41

Case Non-transmission Rate (%)
A 72.66 76.25
B 79.6 82.77
C 79.63 82.77

Tables VI and VII show the comparative results in terms
of the RMS error, maximum error, and non-transmission
rate between the traditional and integral-based event-triggered
mechanisms during the driving maneuvers. The results show
that the integral-based event-triggered mechanism reduces the
number of data transmitted over the network in comparison
with the traditional event-triggered mechanism, by up to 7%
and 5% for the Mercedes Sprinter van and the GOKA 650,
respectively, with similar performance in terms of estimation
of the vehicle angles. Figures 6 and 7 show time-based plots of
the simulated and estimated sideslip and roll angles, and the
release instants for the traditional and integral-based event-
triggered mechanisms. The experimental results confirm the
effectiveness of the proposed observer.

The observer was implemented in C++ and executed on a
Raspberry Pi with a 1.4-GHz ARM processor connected to
the internet via WiFi. The computation time of the proposed
observer is relatively short, less than 0.1 ms per cycle, which
ensures its execution in real time.
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(a) Sideslip angle

(b) Roll angle

(c) Release instants

Fig. 6. Mercedes Sprinter van: experimental results for case A

TABLE VII
EXPERIMENTAL RESULTS FOR THE GOKA 650: CASE B

Traditional Event Triggering Integral-Based Event Triggering
Sideslip Angle (deg)

RMS Error Max. Error RMS Error Max. Error
0.91 11.44 0.91 11.44

Roll Angle (deg)
RMS Error Max. Error RMS Error Max. Error

0.89 2.76 0.88 2.63
Non-transmission Rate (%)

73.20 76.89

V. CONCLUSION

An integral-based event-triggered H∞ observer to simul-
taneously estimate the sideslip and roll angles, considering
intravehicle communications with a networked-induced de-
lay, is proposed herein. Based on an augmented Lyapunov–
Krasovskii functional, sufficient conditions on the design of
the integral-based event-triggered parameters and the observer
to achieve global asymptotic stability are established in terms
of linear matrix inequalities. As the longitudinal velocity and
tire cornering stiffness of the vehicle have a strong influence

(a) Sideslip angle

(b) Roll angle

(c) Release instants

Fig. 7. GOKA 650: experimental results for case A

on its lateral stability and can vary significantly when driving
the vehicle, these time-varying parameter uncertainties were
considered in the design of the observer. The simulation
and experimental results and the robustness analysis show
that the performance of the proposed integral-based event-
triggered observer is better than that of the observer that
uses a traditional event-triggered mechanism, in terms of the
number of data transmitted over the communication network,
with similar performance in the estimation of the vehicle
angles. The results confirm that the proposed observer can
improve the effective usage of the networked system, being
able to reduce the data transmission over the network by up
to 12%. Therefore, it is deemed more efficient in terms of the
utilization of limited bandwidth.

APPENDIX A
PROOF OF THEOREM 1

Let us choose a candidate Lyapunov–Krasovskii functional
as follows:

V (t) = V1(t) + V2(t) + V3(t) + V4(t), (21)
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where

V1(t) = ξT (t)Pξ(t), (22)

V2(t) =
N∑
i=1

αi

[∫ t

t−ηm

ξT (s)Q1,iξ(s)ds

+

∫ t−ηm

t−η̄

ξT (s)Q2,iξ(s)ds
]
, (23)

V3(t) =
N∑
i=1

αi

[
ηm

0∫
−ηm

t∫
t+θ

ξ̇T (s)R1,iξ̇(s)dsdθ

+(η̄ − ηm)

−ηm∫
−η̄

t∫
t+θ

ξ̇T (s)R2,iξ̇(s)dsdθ
]
, (24)

V4(t) = (η̄ − η) eTy (t)Zey(t), (25)

with η̄ = h+ ηM .
The derivative V̇ (t) with respect to t along the trajectory

of system (17) can be written as

V̇ (t) = V̇1(t) + V̇2(t) + V̇3(t) + V̇4(t), (26)

where

V̇1(t) = ξ̇T (t)Pξ(t) + ξT (t)Pξ̇(t), (27)

V̇2(t) =
N∑
i=1

αi

[
ξT (t)Q1,iξ(t) + ξT (t− ηm) (Q2,i −Q1,i)

×ξ(t− ηm)− ξT (t− η̄)Q2,iξ(t− η̄)

]
, (28)

V̇3(t) = η2mξ̇T (t)R1ξ̇(t) + (η̄ − ηm)
2
ξ̇T (t)R2ξ̇(t)

−ηm

t∫
t−ηm

ξ̇T (s)R1ξ̇(s)ds

− (η̄ − ηm)

t−ηm∫
t−η̄

ξ̇T (s)R2ξ̇(s)ds, (29)

V̇4(t) = −eTy (t)Zey(t). (30)

Applying Lemmas 1 and 2, on integration in V̇3(t) and if LMI
(20) holds, we get

V̇3(t) ≤ η2mξ̇T (t)R1ξ̇(t) + (η̄ − ηm)
2
ξ̇T (t)R2ξ̇(t)

−
(
ξ(t)− ξ(t− ηm)

)T
R1

(
ξ(t)− ξ(t− ηm)

)
−
(
ξ(t− ηm)− ξ(t− η)

)T
R2

(
ξ(t− ηm)ξ(t− η)

)
−
(
ξ(t− η)− ξ(t− η̄)

)T
R2

(
ξ(t− η)− ξ(t− η̄)

)
+
(
ξ(t− ηm)− ξ(t− η)

)T
ST
(
ξ(t− η)− ξ(t− η̄)

)
+
(
ξ(t− η)− ξ(t− η̄)

)T
S
(
ξ(t− ηm)− ξ(t− η)

)
.

(31)

From Lemma 1, the upper bound of inequality (11) is

ϵ2

hM

(∫ t

t−hM

(
ey(s) +Cx (s− η)

)
ds

)T

Ω

×
∫ t

t−hM

(
ey(s) +Cx (s− η)

)
ds

− 1

hM

(∫ t

t−hM

ey(s)ds

)T

Ω

∫ t

s−hM

ey(s)ds ≤ 0. (32)

According Definition 1, the observer defined in (14) and
(15) is asymptotically stable with H∞ performance under the
integral-based event-triggering condition (32), if the following
inequality is satisfied

V̇1(t) + V̇2(t) + V̇3(t) + V̇4(t)

+
ϵ2

hM

(∫ t

t−hM

(ey(t) +Θξ(t− η)) dt

)T

Ω

×
(∫ t

t−hM

(ey(t) +Θξ(t− η)) dt

)

− 1

hM

(∫ t

t−hM

ey(s)ds

)T

Ω

(∫ t

t−hM

ey(s)ds

)
+ ξT (t)CT

1 C1ξ(t)− γqT (t)q(t) ≤ 0. (33)

Substituting (27)–(30) into (33) and taking (31) into ac-
count, we get inequality (34), with Θ =

[
0 C

]
.

The inequality (34) can be rewritten as

ςT (t)Πς(t) + ς(t)TΠT
1 R1Π1ς(t)

+ ςT (t)ΠT
2 R2Π2ς(t) < 0, (35)

where ς(t) =
[
ξ(t) ξ(t− η) ξ(t− ηm) ξ(t− η̄) ey(t)

w(t)
∫ t

t−hM
ξ(s− η)ds

∫ t

t−hM
ey(s)ds

]T
and

Π =



Π11 Π12 R1 0 Π15 Π16 0 0
∗ Π22 R2 + S R2 + ST 0 0 0 0
∗ ∗ Π33 −ST 0 0 0 0
∗ ∗ ∗ Π44 0 0 0 0
∗ ∗ ∗ ∗ −Z 0 0 0
∗ ∗ ∗ ∗ ∗ −γI 0 0
∗ ∗ ∗ ∗ ∗ ∗ Π55 Π56

∗ ∗ ∗ ∗ ∗ ∗ ∗ Π66


,

Π1 = ηm

N∑
i=1

αi

[
A0,i A1,i 0 0 A2,i A3,i 0 0

]
,

Π2 = (η̄ − ηm)
N∑
i=1

αi

[
A0,i A1,i 0 0 A2,i A3,i 0 0

]
,
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N∑
i=1

αi

[
ξT (t)

(
(A0,i +∆A0,i)

T
P+P (A0,i +∆A0,i)

)
ξ(t) + ξT (t)PA1,iξ(t− η) + ξT (t)PA2,iey(t)

+ ξT (t)P (A3,i +∆A3,i)q(t) + ξT (t− η)AT
1,iPξ(t) + +eTy (t)A

T
2,iPξ(t) + qT (t) (A3,i +∆A3,i)

T
Pξ(t)

]
+

N∑
i=1

αi

[
ξT (t)Q1,iξ(t) + ξT (t− ηm) (Q2,i −Q1,i) ξ(t− ηm)− ξT (t− η̄)Q2,iξ(t− η̄)

]
+ η2m

( N∑
i=1

αi

[
(A0,i +∆A0,i) ξ(t)

+A1,iξ(t− η) +A2,iey(t) + (A3,i +∆A3,i)q(t)

])T
R1

( N∑
i=1

αi

[
(A0,i +∆A0,i) ξ(t) +A1,iξ(t− η) +A2,iey(t)

+ (A3,i +∆A3,i)q(t)

])
(η̄ − ηm)

2
( N∑
i=1

αi

[
(A0,i +∆A0,i) ξ(t) +A1,iξ(t− η) +A2,iey(t) + (A3,i +∆A3,i)q(t)

])T
R2

×
( N∑
i=1

αi

[
(A0,i +∆A0,i) ξ(t) +A1,iξ(t− η) +A2,iey(t) + (A3,i +∆A3,i)q(t)

])
−
(
ξ(t)− ξ(t− ηm)

)T
R1

×
(
ξ(t)− ξ(t− ηm)

)
−
(
ξ(t− ηm)− ξ(t− η)

)T
R2

(
ξ(t− ηm)− ξ(t− η)

)
−
(
ξ(t− η)− ξ(t− η̄)

)T
R2

×
(
ξ(t− η)− ξ(t− η̄)

)
+
(
ξ(t− ηm)− ξ(t− η)

)T
ST
(
ξ(t− η)− ξ(t− η̄)

)
+
(
ξ(t− η)− ξ(t− η̄)

)T
S
(
ξ(t− ηm)− ξ(t− η)

)
− eTy (t)Zey(t) +

ϵ2

hM

(∫ t

t−hM

(ey(s) +Θξ(s− η)) ds

)T

Ω

(∫ t

t−hM

(ey(s) +Θξ(s− η)) ds

)

− 1

hM

(∫ t

t−hM

ey(s)ds

)T

Ω

(∫ t

t−hM

ey(s)ds

)
+ ξT (t)CT

1 C1ξ(t)− γqTq ≤ 0. (34)

with

Π11 =
N∑
i=1

αi

[
(A0,i +∆A0,i)

T
P+P (A0,i +∆A0,i)

+Q1,i −R1 +CT
1 C1

]
,

Π12 =
N∑
i=1

αiPA1,i, Π15 =
N∑
i=1

αiPA2,i,

Π16 =
N∑
i=1

αiP (A3,i +∆A3,i) , Π22 = −2R2 − ST − S,

Π33 =
N∑
i=1

αi

[
(Q2,i −Q1,i)−R1 −R2

]
,

Π44 =
N∑
i=1

αi

[
−Q2,i −R2

]
, Π55 =

ϵ2

hM

[
ΘTΩΘ

]
,

Π56 =
ϵ2

hM

[
ΘTΩ

]
, Π66 =

[
− Ω

hM
+

ϵ2

hM
Ω

]
. (36)

By the Schur complement, inequality (35) is equivalent to

N∑
i=1

αi

 Πi ΠT
1,i ΠT

2,i

∗ −R−1
1 0

∗ ∗ −R−1
2

 < 0. (37)

Inequality (37) is obeyed if the following condition is met

for each of the terms: Πi ΠT
1,i ΠT

2,i

∗ −R−1
1 0

∗ ∗ −R−1
2

 < 0, for i = 1, . . . N. (38)

Pre- and post-multiplying both sides of inequality (38) by
diag{I,P,P}, we have Πi ΠT

1,iP ΠT
2,iP

∗ −PR−1
1 P 0

∗ ∗ −PR−1
2 P

 < 0. (39)

Applying Lemma 3 to (39), we get Πi ΠT
1,iP ΠT

2,iP
∗ ρ21R1 − 2ρ1P 0
∗ ∗ ρ22R2 − 2ρ2P

 < 0. (40)

Using (4), noting that MT
AMA ≤ I, MT

Bδ
MBδ

≤ I,
and MT

Bu
MBu ≤ I are satisfied, and reapplying the Schur

complement, we obtain from (40) that
Γ̄11,i 0 Γ̄13,i Γ̄14,i Γ̄15,i

∗ Γ̄22,i 0 0 0
∗ ∗ Γ̄33,i Γ̄34,i Γ̄35,i

∗ ∗ ∗ −µ1I 0
∗ ∗ ∗ ∗ −µ2I

 < 0 for i = 1, 2, . . . , N,

(41)
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where

Γ̄11,i =



Γ̄11,i
11 Γ̄11,i

12 R1 0 Γ̄11,i
15 Γ̄11,i

16

∗ Γ̄11,i
22 R2 + S R2 + ST 0 0

∗ ∗ Γ̄11,i
33 −ST 0 0

∗ ∗ ∗ Γ̄11,i
44 0 0

∗ ∗ ∗ ∗ −Z 0
∗ ∗ ∗ ∗ ∗ −γ2I

 ,

Γ̄11,i
11 = AT

0,iP+PA0,i +Q1,i −R1, Γ̄
11,i
12 = PA1,i,

Γ̄11,i
15 = PA2,i, Γ̄

11,i
16 = PA3,i, Γ̄

11,i
22 = −2R2 − ST − S,

Γ̄11,i
33 = Q2,i −Q1,i −R1 −R2, Γ̄11,i

44 = −Q2,i −R2,

Γ̄12,i =


0 0 CT

1

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

 , Γ̄13,i =



ηmAT
0,iP (η̄ − ηm)AT

0,iP
ηmAT

1,iP (η̄ − ηm)AT
1,iP

0 0
0 0

ηmAT
2,iP (η̄ − ηm)AT

2,iP
ηmAT

3,iP (η̄ − ηm)AT
3,iP

 ,

Γ̄14,i =


PĒA F̄T

A

0 0
0 0
0 0
0 0
0 0

 , Γ̄15,i =


PĒB 0
0 0
0 0
0 0
0 0
0 µ2F̄

T
B

 ,

Γ̄22,i =

 ϵ2

hM
ΘTΩΘ ϵ2

hM
ΘTΩ 0

∗ − Ω
hM

+ ϵ2

hM
Ω 0

∗ ∗ −I

 ,

Γ̄33,i =

[
ρ21R1 − 2ρ1P 0

∗ ρ22R2 − 2ρ2P

]
,

Γ̄34,i =

[
ηmPĒA 0

(η̄ − ηm)PĒA 0

]
, Γ̄35,i =

[
ηmPĒB 0

(η̄ − ηm)PĒB 0

]
.

Finally, by assuming that the matrix P has the structure

P =

[
P1 0
0 P2

]
,

and applying the transformation Mi = P1Li, LMI (19) is
obtained.

This completes the proof.

APPENDIX B
OBSERVER GAINS AND TRIGGERING PARAMETERS IN THE

TRUCKSIM® ENVIRONMENT FOR THE TRADITIONAL
EVENT-TRIGGERED MECHANISM

• Case A
– First triangle of the polytope

Ω1 =

[
0.994 0
0 0.994

]
, L1 =


0.205 −0.322
−1.121 2.081
−0.0183 −0.027
0.459 1.330

 ,

L2 =


−0.071 0.167
2.545 −1.828
0.006 −0.117
−0.893 5.598

 , L3 =


1.191 −2.013

−10.710 13.105
−0.035 −0.005
2.569 −0.240

 .

– Second triangle of the polytope

Ω2 =

[
0.994 0
0 0.994

]
, L3 =


3.413 0.171

−26.725 −3.143
−0.093 −0.179
6.990 8.569

 ,

L4 =


8.239 −1.376

−43.490 6.652
−0.026 −0.200
8.388 7.936

 , L5 =


22.703 −6.847
−87.587 20.738
−0.100 −0.165
21.751 1.717

 .

• Case B
– First triangle of the polytope

Ω1 =

[
22.630 −1.512
−1.512 8.888

]
, L1 =


0.250 2.281
3.472 −12.433
−0.070 −1.207
8.094 234.330

 ,

L2 =


0.116 2.034
4.492 −12.367
−0.007 −1.244
−3.999 230.554

 ,

L3 =


−0.768 1.026
5.874 −10.660
0.044 −1.203

−16.569 223.186

 .

– Second triangle of the polytope

Ω2 =

[
21.449 −0.346
−0.3463 8.232

]
, L3 =


1.482 6.394
−1.165 −2.470
−0.036 −1.319
6.350 117.708

 ,

L4 =


−0.598 6.162
1.234 −2.057
−0.002 −1.387
−2.245 116.812

 , L5 =


1.482 6.394
−1.165 −2.470
−0.036 −1.319
6.350 117.708

 .

• Case C
– First triangle of the polytope

Ω1 =

[
22.531 −1.593
−1.593 8.945

]
, L1 =


0.173 2.636
4.104 −16.069

−0.0520 −0.967
7.492 262.736

 ,

L2 =


0.034 2.362
5.330 −15.818
0.004 −1.000
−6.633 258.222

 , L3 =


−0.921 1.321
7.097 −13.670
0.043 −0.968

−21.619 250.489

 .

– Second triangle of the polytope

Ω2 =

[
20.933 −0.342
−0.342 8.196

]
, L3 =


1.082 8.215
−0.991 −4.506
−0.049 −1.963
5.968 160.158

 ,

L4 =


−1.127 7.897
1.232 −3.967
−0.003 −2.033
−3.620 158.995

 , L5 =


−7.231 6.656
8.412 −1.953
0.042 −1.976

−20.482 156.236

 .
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