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Chapter 1

Summary

1.1 Introduction and goal

This thesis develops the discrete sub- and supersolutions method and applies it to prove the convergence
of the nonlinear finite element method applied to the generalized diffusive logistic equation

—(Du’ = am’ (X)u) = Am(x)u — sa(x)u?, x€(0,1),
Du’(0) = am’(0)u(0), (1.1)
Du'(1) = am’(1)u(1),

where D > 0, > 0,1 > 0,6 > 0, m € C*[0, 1] such that m(x) > 0, m’(0) = 0 and m’(1) < 0 and
a € C[0, 1] with a(x) > 0 for all x € [0, 1]. This model was introduced in [1], [2], [3] and [4] as a
general version of the advection-diffusion model proposed in [10]. The parameter A permits to amplify
or reduce the influence of the population growth rate on the drift term, meanwhile provides a different
insight in the theoretical analysis of (1.1).

The dynamics of the parabolic problem associated with (1.1) in the case of positive initial condi-
tions is regulated by the non-negative solutions of (1.1). Assuming the description of the mathematical
model in [10], and noting with u(x, ) to the solution of the parabolic problem associated with (1.1),
we have that Am(x) is the per capita growth rate, it is not constant along the habitat and it depends on
the location x. Moreover, if m(x) > 0 for all x € [0, 1], the entire habitat is considered favourable and
Am(x) behaves like a source in the whole habitat. There are neither unfavourable regions where the pop-
ulation dies, i.e. {x € (0, 1) such that m(x) < 0}, nor regions where the population does not reproduce,
i.e. {x € (0, 1) such that m(x) = 0}. The flux of the population density u(x,?) is J = —D% + am’ (x)u.
Hence the dispersal of u(x, f) consists of two parts: the diffusion —D% provide by the Fick’s Law and
the directed movement upward along m’(x). This type of dispersal is called conditional dispersal. The
parameter @ measures the rate at which the population moves up m’(x). When we consider a > 0, the
population u(x, f) shifts in the direction along which m is increasing. It is also assumed that the boundary
acts as a reflecting barrier to the population. Moreover, as the dispersal term ‘;—i is in divergence form,
the dispersal per se does not increase or decrease the population, [10].
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One of the objectives of this thesis is to obtain the discrete version of the characterization (neces-
sary and sufficient conditions) of the Maximum Principle in [40] and [8], that will be the essential tool
in the method and the construction of the nonlinear finite element solution. Some results concerning the
Discrete Maximum Principle (DMP) can be found in [23], [50], [12], [33] and [34], but in none of them
there is a DMP characterization.

The very well known Nonlinear Galerkin Method (NGM) has been applied in [24], [34] and [50] to
equations in divergence form, i.e. =V - (g(x, u)Vu) = f(x), and to equations that match in the framework
of nonlinear monotone operators in [7], [19], [51] and [11]. Unfortunately, neither of these results can be
applied to the logistic equation. On the other hand, as the logistic equation require a positive subsolution
subject to homogeneous boundary conditions, the results in [32], [29] and [30] can not be applied
because they assume positive boundary conditions. In fact, in [29] is said that the finite element solution
may not preserve the properties of the solution of the original equation, however, using the DMP, we
guarantee that all the properties of the positive solutions of problem (1.1) are actually preserved.

Moreover, a detailed list of the first references to the Galerkin Method can be found in [27], two
key works on NGM are [16] and [26], [35] studies the stability and consistency for nonlinear problems
and [47] provides a posteriori estimates of the error for nonlinear finite element approximations using
the solution of linearized associated problem. More generally, sufficient conditions ensuring that the
approximate problem preserves the structure of the manifold of solutions of the continuous problems
depending on a parameter have been studied in [48], [36], [13], [14], [15] and [39].

To the best of our knowledge, this thesis proves the convergence of nonlinear finite elements for the
logistic equation for the first time in the literature. When a nonlinear elliptic equation is discretized using
finite differences, finite element or spectral methods, a nonlinear algebraic system arises. In our case,
considering the space of piecewise linear finite elements Vj,, h > 0, it follows that the approximation
of u, denoted by u;, € Vj, or equivalently the vector u,, where the components of the vector are the
coefficients of u, in the finite element basis, satisfies a nonlinear algebraic system. Now, our goal is to
approximate u;, > 0 (all the components of the vector are nonnegative and u;, # 0) and compare it with
the positive solution u.

In a similar way to the continuous case, we propose the discrete sub- and supersolutions method.
This method is entirely new, it can be extended to many other differential problems of elliptic type and
it supports routine implementation compared with the proofs of convergence developed in [45], [18],
[19] or [11]. It requires an ordered pair of a couple of positive subsolution and supersolution of the finite
element discretization and to check that the DMP is fulfilled. We prove that if the mesh size is less than a
first critical value, that depends on the smallest constant positive supersolution, denoted by M, of (1.1),
the Jacobian matrix evaluated in any positive supersolution less than M := M(1,1,...,1)7 satisfies the
DMP, meanwhile a positive strict subsolution, denoted by E, gives the coercivity constant.

In the end, we generate via the Newton Method a decreasing sequence of supersolutions i

(k)
" such

that
0<E< ﬁh(k”) < ﬁh(k) <M, forall k>0,

where < stands for component-wise strict inequalities. And best of all, we prove that the sequence
converges to uy. In [42], the Jacobian is required to be invertible in [E, M], however, in this thesis we
only need to assume that E << M. Moreover, we obtain explicit bounds of the error in the case that uy, is
bounded from below by a positive constant, because in this case the coercivity constant does not depend
on h. Consequently, under this condition, we prove that u; or L‘th(k) for some k > 0 approximates to u
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when i — 0.

The structure of this thesis is the following. In Chapter 2, we analyze the method exposed above
for a heterogeneous logistic equation without the drift term, subject to Neumann or Robin condition
boundary conditions. This problem covers the cases when @ = 0 or m’ = 0. Moreover, we introduce
the DMP and give necessary and sufficient conditions for it to be fulfilled. In Chapter 3, the discrete
sub- and supersolutions method is applied to approximate the positive solution of (1.1) when am’ # 0.
The proof of the convergence is complex because the differential operator in (1.1) is non-selfadjoint,
but thanks to a change of variable, it is possible to adapt the procedure to deduce explicit bounds of the
error. In Chapter 3, we apply a change of variable to transform the problem (1.1) in a problem with a
self-adjoint differential operator, consequently allowing to use the results of Chapter 2.

1.2 Finite element and notation

In this thesis, we consider a partition of [0, 1] in N subintervals, [x;_;, x;], where x; = ih with h =
and the continuous and piecewise linear functions on this partition defined by

1
N’

(x = x;i-1)/h, Xi-1 £ x < X,
@i(x) =4 (xig1 — )/, Xi £ X < X1,
0 otherwise,

for 0 < i < N, which generates the space of finite elements,
N
. . T _ N+l
Vi = {Vh = th,i%‘ D Vh = (Vo Vil e Vi) ERYT }
i=0

Given a function f : [0, 1] — R, we denote

12 12
1712 :=( fo f2) o WAl = (LB +1£71B) T and  liflle = ess sup,eo g lf L (1.2)

If v = (vo, Vi, ..., vu) € R™! n > 0, we denote

n 172
V] := (Z v,?] . (1.3)

i=0
Let us introduce the interpolation operator 7y, : C[0, 1] — V), defined as

N
() = ) V(). (1.4)
i=0

It is well known that V;, approximates to H>((0, 1)) in the sense that

v = maWll < IVl v =l < AVR2+ 1Vl and | (v =) [l < AV 2. (1.5)
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The above properties guarantee that Vj, is a good subspace where to find the numerical solution, uy, that
approximates u. Moreover, if we consider changing the degree of the finite elements to a higher one, it
does not ensure a better convergence if the function belongs to H*((0, 1)). The proof of (1.5) and the
optimal choice of the polynomial degree can be found in [46, Th. 4.2] and [46, Table 4.1], respectively.

Also, we precise of an analogous result for the multiplication of certain functions which enunciate
and prove in the following proposition.

Proposition 1.2.1. Let f € C'[0,1] and vy, € V). Then
Lfvi = 7 (fvmlleo < [Valleollf llooa-
Proof. For f € C'[0,1]and x € (x;, x;41), i € {0, 1,...,N},

L

i

lf(x) = fxal =

< f T and 100 - flun)l =

i

fxiﬂ
f/
X

(fvi = mp(fva))(x) = [f(x) = FOD] viii(x) + [f(X) = f(Xie1)] Vaiv1@is1 (X).

Hence, we obtain that

Xi+]
/
< f Tl
B

i

Moreover,

Xi+1

(v = m(Fvm) O] < [valleo (i(x) + %’H()O)f LT < valloollf leoh2

i

because ¢;(x) + ¢;+1(x) = 1 for each x € (x;, x;11). O

On the other hand, we provide an upper bound for |v,|, in connection with ||vy||, for some v;, € V.
This result will be necessary for the proof of the convergence.

Proposition 1.2.2. Let v, = Zfio vigi € Vi, or equivalently, v, = (vo, Vi, ..., vy)T, then
2 2
hvaly < 6 [valls.

Proof. Integrating the finite elements, we deduce that

A N-1 pRa

2 2 2, .2

||vh||2=§ Vo +2 E Vi + vy +8 E 2ViVit1.
i=1 i=0

Then, since

2 2 2 )
2vivipr = (Vi +Vig1)” — Vi = Vi 2 =V = Vi,

A N-1 p N h
||vh||§ > 3 [V% + 22 vi2 + v]z\,] 3 Z (vlz + Vl-zﬂ) > 6|Vh|§~
i=1 i=0
The proof is finished. o

it follows that

Finally, we introduce the following inequalities between matrices and therefore also for vectors.
Given R = {Rl‘j} and § = {S ,-_,~} two real matrices, we denote
R>S ifR,‘jZS,‘jVi,j, R>S ifRij>SijVi,j,
and

R>S§ if R>S and there exist atleast iy and jy, suchthat R;; > S

ioJjo*



Chapter 2

The heterogeneous logistic equation

2.1 Introduction

Let us consider the heterogeneous logistic equation subject to general boundary conditions

—Du” = Ac(x)u — Sa(x)u?, x€(0,1),
—Du’(0) + Bou(0) = 0, 2.1
Du'(1) + Byu(1) = 0,

where D > 0,4 e R, 6 > 0,80 20,8 =0, c € C[0,1] and a € CJ[O0, 1], with a(x) > 0 for all
x € [0, 1]. This equation models the asymptotic behavior of a population within a spatially heteroge-
neous region, whose growth is subject to logistic self-regulation, with a nonnegative nontrivial initial
population, where u(x) represents the density of the population at location x, D > 0 is the random diffu-
sion rate, Ac(x) is the spatially varying local growth rate, and da(x) measures the strength of the density
dependence of the logistic self-limitation. In particular, if Robin boundary conditions are imposed, i.e.
Bo > 0 and B; > 0, the surrounding medium is not considered inhospitable for the population. It is well
known that in a second stage, to simulate competition or cooperation between different populations, it
is first needed to simulate positive solutions of the logistic equation (2.1).

There has been a great progress in the study of the existence of positive solutions of the logistic
equation over the last thirty years, from the pionering modelling in [41] to the existence of metasolutions
in [38]. During this time different techniques have been applied to overcome the ongoing problems in
solving the heterogeneous logistic equation, such as sub- and supersolutions, bifurcation theory and
degree theory, see for example [28], [8], [20], [21], [2], [3] and [4]. Undoubtedly, the characterization of
the Maximum Principle established in [40], and later refined in [8], is one fundamental tool in the proof
of existence and uniqueness of u. Concerning sub- and supersolutions of (2.1), it is demonstrated in [6]
that, if there exists a supersolution, U € H?((0, 1)), and a subsolution Ue H?((0, 1)), in the sense that

—DU” > Ac(x)U - 6a(x)U?, —DU” < Ac(x)U — Sa(x)U*>  almost everywhere in (0, 1),
DU’(0) < BoU0), DU'(1)>-pU(1), DU'(0)=pyU0), DU'(1)<-pU0), (2.2)
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and satisfying 0 < U < U, then there exists a positive solution u € H>((0, 1)) of (2.1), u > 0 (u > 0 and
u # 0), such that U < u < U which is the unique positive solution by [21].

Now, consider the space of piecewise linear finite elements V, ¢ H 10, 1)), h > 0. Hence, if u is
the solution of (2.1), u satisfies

1 1 1
Df w'y — /lf cuv + Buv + 5[ a’v =0, VYve HY(O0,1)), (2.3)
0 0 {0,1} 0

where B(0) = By and B(1) = B, and then, it follows that the approximation of u, denoted by u;, € V,
satisfies

1 1 1
Df u,vy, — /lf m(upvy + f Buyvy + 5f nh(a)uivh =0, Yy, eV, 2.4)
0 0 {0,1} 0

where 7, is the interpolation operator onto V. Thus, (2.4) can be written as
Fy(u,) =0, (2.5)

where the components of the vector u;, are the coefficients of u; in the finite element basis. As in the
continuous case, we define Z as a positive strict supersolution of (2.5) if
F,(Z) >0 with Z>0, (2.6)

and z as a positive strict subsolution of (2.5) if
Fu(z) <0 with z> 0, 2.7

and propose the method of the sub- and supersolutions exposed in the introduction.

In this chapter, we generate via the Newton Method a decreasing sequence of supersolutions @
and at the same time, via a Modified Newton Method, we also get an increasing sequence of subsolutions
gh(k) such that

(k)
h

1V <u®™V <a®™ «<a®, forall k> 0. (2.8)

Then, we prove that both sequences converge to u,. Moreover, we obtain explicit a priori bounds of
the error in the case that u, is bounded from below by a positive constant, because in this case the
coercivity constant does not depend on /. Also, we determine the a posteriori bounds of the distance
between each iteration of the Newton Method and the exact solution of (2.1). In addition, the a priori
bounds depend on the positive strict subsolution and the positive strict supersolution of (2.5), which in
turn depend on the maximum and minimum values of the coefficients a(x) and c(x) and the parameters ¢
and A. Nevertheless, the a posteriori bounds depend on the stopping criterion established for the Newton
Method.

The structure of the chapter is now detailed. In Section 2.2, problem (2.5) is re-written using
matrices notations and its Jacobian is calculated. In Section 2.3, sufficient conditions that ensure the
Jacobian matrix to be non-singular M-matrix are given. The existence of the principal eigenvalue is
proven for tridiagonal matrices whose element in both principal subdiagonals are negative. Meanwhile,
the characterization of the DMP is proven in Theorem 2.3.2. Thereupon, some very important properties
of the principal eigenvalue are proven and then used to obtain the uniqueness of the positive solution
of (2.5). In Section 2.4, the existence of the positive solution of problem (2.5) is proven, initiating
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Newton Method in M = M(1, 1, ..., 1) for large enough M > 0. Moreover, two sequences verifying (2.6)
and (2.7) are built, one of positive strict supersolutions and the other of positive strict subsolutions,
respectively, that also satisfy (2.8). In some situations searching for the initial subsolution gh(o) is really
a difficult task. In Theorem 2.4.2, gh(o) is constructed in the case Ac(x) > 0 and with Neumann boundary
conditions. Henceforth, Theorem 2.4.3 deals with the general case. In Section 2.5, the convergence of
the nonlinear finite elements is proved, using sub- and supersolutions, the monotonicity in (2.8) and
the coercivity of two different bilinear forms. Finally, in Section 2.6, three very qualitatively different
examples are exposed, showing the different behaviours of the nonlinear finite element solutions. The
first one, with non constant c(x), large diffusion and mesh size guaranteeing the DMP, provides a small
approximation error. The second case corresponds to small diffusion and non constant coefficient a(x),
the simulations present oscillations when the mesh size is not sufficiently small, but once the mesh size
is less than a critical level, the DMP is fulfilled, the iterations of the Newton Method are ordered -they
do not cross each other- and the oscillations disappear. Although the mesh size has to be very small to
obtain the same error order of the first example. In the third and final example the solution is subject to
Robin boundary conditions, the coefficient c(x) is non constant and the diffusion is equal to 10™*. In this
example, even though the Newton Method converges, the discrete solution oscillates in the cases that
the DMP is not satisfied. The numerical simulations make us conjecture that if the DMP is satisfied the
oscillations disappear.

2.2 The discrete bilinear form

Throughout this chapter, given f € C[O0, 1], we define the following bilinear forms as
by H'((0,1)x H'((0,1)) >R and b}:VyxV, >R

where

1 1 1
br(w,v) = Df w'y' —/lf cwy + ,3wv+6f afwv
0 0 (0.1} 0

and

1 1 1
bjlf(Wh’Vh) = Df 1A lf m(c)wpvy, + Bwivy + (5f (@) fwpvp,
0 0 {0,1} 0
with 8(0) = By and B(1) = B;. By (2.3), we observe that
bu(u,v) =0 forall ve H'((0,1)), 2.9

so that, our purpose is to find an approximation of u,

N
u, = Z upipi, orequivalently, wu, = (upo,Un1, ..., Uh,N)Ts
i=0
such that
bl (up,vy) =0 forall vy € V. (2.10)
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Notice that (2.10) may be considered as a system of nonlinear equations. Indeed, as bzh(uh, -) is linear,
it is sufficient to check that

b (up, @) =0 forall i€ {0,1,...N}.

Analogously, using that b’,}h is also linear with respect to the first entry, (2.10) is equivalent to the non-
linear mapping

F, RV S RMU D Fu@z) = (A, + @)z, z=(20,21528) s

where Aj, € RVPN+1 and Y),(z) € RV*>N*1 are defined by

N

N
, = ZZﬂPi,
i=0

N 1
Aﬁ{’?ﬁ(@_p%)}ﬁjzo and Yh(Z)={6 fo ﬂh(a)zszoi}

i,j=0
where i indicates the row and j indicates the column, satisfying
Fy(uy) = 0.

Clearly, the matrices A; and Y, (z) are easily obtained integrating the functions of the basis of finite
elements and/or their derivatives. Hence,

D

Ah:h

Ah
App — EAh,l + Ap0, 2.11)

where the element of the symmetric and tridiagonal matrices A5, Ap, and Ay are the following

(Ap2)oo = 1, (Ap1)oo = 3co + ¢y, (An0)oo = Bo,
(Ap2vy =1, (An,)nN = ey-1 + 3cw, (Ano)nn = B,

ifie{l,2,...N—1},

(An2)ii =2, (App)ii=ci-1+6¢i+cipp and  (App)ii =0,
and finally, if i € {0, 1,..., N — 1},

(An2diiv1 = =1, (ApDiint = ci+cip1 and  (Ap)iiv1 =0,

where ¢; = c(x;). In the same way, we obtain that
oh
Yi(z) = @Yh,o(l), (2.12)

where the element of the symmetric and tridiagonal matrix Y}, 0(z) are

(Yno(2))oo = z0(12ap + 3ar) + z1(3ag + 2ay),

(Yno(@)nn = zv-1(2an-1 + 3an) + zvBay-1 + 12ay),
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ifie{l,2,...N—-1},
Yno@))ii = zi-1(2ai-1 + 3a;) + zi(Bai—1 + 24a; + 3aiv1) + zi1(3a; + 2a;41),
andifie{0,1,...N—1),
(Yno(@)iir1 = zi(3a; + 2ai41) + ziv1(2a; + 3a;41),

where a; = a(x;) and z = (20, 21, ..., 2v)" .
Newton Method is a fundamental tool used in this chapter, it requires the Jacobian of F;, evaluated
in some z, which is expressed as

N
th,i(z)} — Ah + 2Yh(Z), (213)

Ju(z) = { oz,
J

i,j=0

where F, = (Fi0, Fi 1, ooy Fan)'

2.3 The Discrete Maximum Principle

In this section, we will derive an upper bound for the finite element mesh size 4 in order to enforce the
Jacobian Matrix J(z) in (2.13) to be of the form

er =61 0 0
—El ()] —éz 0
E=| 0 -& es =& .. | heres >0andé > 0. (2.14)
0 0 —f~33 €4

Note that the matrices satisfying (2.14) can be expressed in the form
E =5sI—-B, where s=max{le]}+1 and B is a nonnegative matrix.

Moreover, the matrix B is irreducible because it is a tridiagonal matrix with & # 0 and é; # 0 (see
[31, 6.2.24]). We will provide below, as a consequence of the Perron-Frobenius theory on non-negative
matrices applied to B, some very useful properties of E. In the following theorem, we denote with p(B)
the spectral radius of B.

Theorem 2.3.1. Let E € R™" be a matrix satisfying (2.14). Then,
go(E) := 5 - p(B)

is the unique eigenvalue of E, called the principal eigenvalue of E, that admits a real eigenvectoryy > 0,
called the principal eigenvector. Moreover, yp > 0, oo(E) is algebraically and geometrically simple,
and if T # oo(E) is an eigenvalue of E,

oo(E) < Re(1),

where Re(7) is the real part of T.
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Proof. As B is an irreducible and nonnegative matrix, p(B) is a positive algebraically and geometrically
simple eigenvalue of B associated to y; > 0 (see [31, Th. 8.4.4]). Thus, o(E) is an eigenvalue of E
associated to y > 0 and it is algebraically and geometrically simple.

Now, we suppose that there exists an eigenvalue of E, u, associated to y > 0. Since B is an
irreducible and nonnegative matrix, then (/+B)"~! > 0 (see [31, 8.4.1]), as well as s—p is an eigenvalue
of B associated to y, we have that

0<(I+B" ly=1+s—ply.

Consequently, y > 0. Moreover, applying [31, Cor. 8.1.30] to B, we obtain that u = o¢(E) and therefore,
the uniqueness of the principal eigenvalue is proved, besides y; :=y > 0.
Finally, if we suppose that 7 is an eigenvalue of E, s — 7 is also an eigenvalue of B and then

s—Re(n) <|s—1<p(B) = o0o(E)<Re().

In the case that oo(E) = Re(7), we have that s — Re(7) < |s — 7| because T # o(E). Then, we obtain that
0o(E) < Re(r) which is a contradiction. m|

Note that in the special case in which the principal eigenvalue of E is positive, it is guaranteed that
E is an invertible matrix. Moreover, it holds that s > p(B) and thus, E is a non-singular M-matrix. The
theory on M-matrices has been extensively developed, i.e., [17], [25], [43], [44] and [49]. In this sense,
the following theorem provides us with the Discrete Maximum Principle.

Theorem 2.3.2. Discrete Maximum Principle Ler E € R™" be a matrix satisfying (2.14). Then, each
of the following conditions are equivalent:

i) oo(E)>0.
ii) There existsy > 0 with Ey > 0.
iii) E7'> 0.
Proof. Condition ii) follows immediately from condition i), choosing the principal eigenvector of E
given in Theorem 2.3.1. Also, due to Theorem 2.3.1 and condition iii), we prove i), multiplying Eyy =
ao(E)yg by E7! > 0, because y > 0. Finally, suppose condition ii). As sy > By and I + B > 0, we

have that
(L+s)'y>U+B)"y,

as well as (/+B)""! > 0 because B is an irreducible and nonnegative matrix (see [31, 8.4.1]), this implies
that y > 0. Consequently, condition iii) is deduced by [17, Th. 6.2.7]. Note that E is a irreducible matrix
with negative element in both its principal sub-diagonals. The proof is complete. O

At this regard, we obtain a principal eigenvalue comparison result for matrices satisfying (2.14).

Theorem 2.3.3. Let P, Q € R™" be matrices, both satisfying (2.14), such that P > Q. Then

oo(P) > 00(Q).
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Proof. From Theorem 2.3.1, it follows that there exists the principal eigenvector of O, y, > 0. Let us
define R := P — 0¢(Q)I. Then,

Ryg = (P~ co(@Dyo = (P~ Q)yg >0,

because P > Q and y, > 0. Moreover, R satisfies (2.14) because P satisfies it. Now, we can apply
Theorem 2.3.2 to deduce that
ao(R) > 0. (2.15)

Thus, applying Theorem 2.3.1 to R and using its definition, it follows that
Pyg = (00(Q) + 00(R)) yp  With yg >0,

and consequently, by uniqueness of the principal eigenvalue, we conclude that

oo(P) = 09(Q) + oo(R).

Finally, from (2.15), we obtain the desired result. |

The following theorem provides the critical size hy, such that, for all & < hy, J;(z) fulfills (2.14)
forz <M := M(1,1,..., 1)T. Note that &, depends on the parameters present in problem (2.1).

Theorem 2.3.4. Let M > 0. Assume that h € (0, hy), where

6D 1/2
hy = —o ] . 2.16
M (||2(5Ma—/lc||m) (2.16)

with hy, = oo if the denominator is zero. Then, for all z < M := M(1,1, ..., DT, the symmetric and
tridiagonal matrix

]h(z) = Ah + 2Yh(Z)
Sulfills (2.14).

Proof. We need to prove that A;, + 2Y,,(z) has negative sub-diagonal entries. It is enough to prove that
Aj + 2Y,(M) has negative sub-diagonal entries because

Ap +2Y,(z) <A, +2Y,(M) when z <M.

Then, fori € {0, 1, ..., N — 1}, using the expressions in (2.11) and (2.12), we conclude that

D Ah Moéh D h
(Ap +2Y,(M))jis1 = T E(Ci +Ciy1) + . (a; + ajy1) < 7 + 6||25Ma - Aclle <0,

if € (0, hy). O

In [46], the linear finite element method on a uniform grid is used to solve a simpler linear equation
with constant coefficients, i.e. c(x) = —1, 6 = 0, subjected to non-homogeneous Dirichlet boundary
conditions. There, in order to avoid oscillations of the numerical solution, it is obtained (2.16) with
M =0.

In our case, when Z satisfies (2.6), we will need to prove that J;,(Z) satisfies the Discrete Maximum
Principle (Theorem 2.3.2) and hence it is non-singular. This result is shown in the following theorem.
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Theorem 2.3.5. Let M > 0 and h € (0, hyy), where hy, is given in Theorem 2.3.4. Then,
oo(Jx(@) > 0 2.17)

and
(Jn@)™" >0, (2.18)
foreachz < M(1,1, ..., )T satisfying (2.6).

Proof. Due to Theorem 2.3.4, both matrices J;(Z) and Aj, + Y;(Z) satisfy (2.14). Moreover, as Z > 0, we
have the following inequality
J;,(Z) > Ah + Yh(i).

Then, applying Theorem 2.3.3, we deduce that
oo(Jn(@) > 0o(Ap + Yi(2)). (2.19)
Now, as Z € RV*! satisfies (2.6), we find that oo(4, + Y;(Z)) > 0 thanks to Theorem 2.3.2, and conse-

quently, by (2.19), we obtain (2.17). Finally, applying once again Theorem 2.3.2, we obtain (2.18). O

At this stage, it remains to study the uniqueness of the positive solutions u; of problem (2.5). The
uniqueness is obtained as a consequence of comparing principal eigenvalues together with Theorem
2.3.1. Moreover, we calculate the principal eigenvalues of Ay, Aj, + Y;,(u,) and J,(up).

Theorem 2.3.6. Let M > 0 and h € (0, hyy), where hy; is given in Theorem 2.3.4. Suppose that
Foup) =0 and 0<u,<M{d,1,..,1)7. (2.20)
Then, uy, is the unique vector satisfying (2.20). Moreover,
oo(Ap) <0, oo(Ay + Yy(up) =0 and oo(Jy(uy)) > 0. (2.21)

Proof. First of all, from (2.20) and Theorem 2.3.4 we deduce that Ay, A, + Y, (1) and Jj,(uy) satisfy
(2.14). Then, the principal eigenvalues oo(A,), 0o(Ay + Y(uy)) and oo(J5(uy)) are well defined. More-
over, using once again (2.20) combined with Theorem 2.3.1, it follows that

oo(Ay + Yp(uy)) = 0. (2.22)

Now, as u;, > 0, we can compare the above principal eigenvalues thanks to Theorem 2.3.3 and obtain
that
oo(Ap) < ao(Ap + Yi(ay)) < oo(Jp(up)). (2.23)

Therefore, (2.21) follows from (2.22) and (2.23).
Hereafter, we proceed by contradiction to prove the uniqueness. If we suppose that there exist two
vectors uy, and v, with u,, # vy, satisfying (2.20), then the following equations hold true

0 = Fy(wp) — Fi(vp) = ApQuy, — vp) + Ya(upwy, — Yip(vi) vy = (Ap + Y(ay, + vi))(ay, — vp).
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Hence, u;, — v, # 0 is an eigenvector of the matrix Aj, + Y, (u;, + v;,) associated to the eigenvalue 0.
Note that Aj, + Y;,(uy, + vy,) satisfies property (2.14) due to Theorem 2.3.4, since h < hy; and uy, + v, <
2M(1,1,...,1)T. Therefore, using Theorem 2.3.1 we obtain that

oAy + Yy(u, +vy)) <0. (2.24)
On the other hand, as v;, > 0, applying Theorem 2.3.3 and subsequently (2.22), it follows that
oo(Ap + Yi(wy, + V) > 0o(Ap + Yi(wy)) = 0,

which is a contradiction with (2.24). O

2.4 Discrete Sub- and Supersolutions Method

In this section, we prove the existence of the positive solution of the nonlinear system (2.5) by using the
sequence l‘lh(k“) provided by the Newton Method:

5,0 =0 — (@) @), k=0, (2.25)

where (J, (ﬁh(k)))‘1 is the inverse of the matrix Jh(ﬁh(k)) = A+ 2Yh(ﬁh(k)). For that end, we take as initial

guess ﬁh(o) a positive strict supersolution of problem (2.5) in the sense of (2.6). One of our aims is to

prove that, for this choice of the initial guess ﬁh(o), each one of the iterations of Newton Method (2.25)

is a positive strict supersolutions of problem (2.5). Then, thanks to Theorem 2.3.5 all ﬁh(k“) are well
defined and moreover,
1" > a0t (2.26)
Additionally, we consider another sequence gh(k”) provided by a modified Newton Method:
u, Y = - @ R ), k2o, (2.27)

choosing in this case, as initial guess g}fo) a positive strict subsolution of problem (2.5) in the sense of
(2.7). We will prove that all the iterations in (2.27) are positive strict subsolutions of problem (2.5), and
consequently

u s u (2.28)

In the following theorem, we prove the above remarks by using the convexity of each component
of Fh .

Theorem 2.4.1. Let k > 0. Suppose that the iterations ﬁh(k) and l_lh(k+l) in (2.25) are well defined and
that (2.26) is satisfied, then
Fy@ ") > 0. (2.29)

Moreover, suppose that the iterations yh(k) and gh(kﬂ) in (2.27) are well defined, (2.28) is satisfied and

ﬂ,(k) >u h(kﬂ), then
X u,

Fuw"") <o0. (2.30)
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Proof. First of all, note that Fj, is convex in each component because

1 N
Fhi(2) = by(z. ) + 6 f m(@2g;,  for z=(20,21,..20) €RM, 2= 370,
0 -
Jj=0

where the first term is linear and the second term is convex. Hence, defining
V= (ﬁh(k”) + ﬁh(k)) /2,
it follows that
Fu(v) - B, @) > J,@")(v - a,). (2.31)
Now, by (2.26), we have that #,""(s) # i,"'(s) for each s € [0, 1], and then,
2(5,0 ) +2(a,0) > (3 + 7, ) .
Therefore, as om,(a)y; is positive for s sufficiently near to x;, we obtain that
Fu@, ") + F, @) > 2F,,(v). (2.32)
Multiplying (2.31) by 2 and applying (2.32), we find that
Fiy@, ") > F,@") + L@@, " -a) = 0,

and (2.29) follows from (2.25).
In the same way, we deduce that

k k+1 k+1 k k+1
F,w ) > F@") + 7,0, )@ —uh),

and consequently, as

— (k k+1 k k+1 k+1 k
L@ —u®) 2 7, )@ P - u®)

because ﬁh(k) > gh(k”) and (2.28) is satisfied, it becomes apparent that

k — (k k+1 k k+1
F,w®) + 7,@) @ - u®) > F,@).

Finally, from (2.27) it follows (2.30). m|

From now on we focus our efforts to find the initial positive strict supersolution ﬁh(o) and the

positive strict subsolution gh(o) satisfying (2.6) and (2.7), respectively. In this sense, note that the constant

function,
Ac(x)
M = 2.33
533,)1(] oa(x) ( )

is a supersolution of problem (2.1) if M > 0, and also, in the particular case that 8y = 5; = 0 and
Ac(x) > 0 for all x € [0, 1],

Ac(x)
min
xe[0,11 da(x)
is a positive subsolution of problem (2.1). In the following theorem the constants £ and M are used to
prove the existence of positive sub- and supersolutions of problem (2.5).

(2.34)
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Theorem 2.4.2. LetM = M(1,1,...,1)" and € = (1,1, ..., 1)T where M and € are given in (2.33) and
(2.34), respectively. Then,

a) Fr(M)>0if M > 0.
b) Fiy(e) <0ifBy =1 = 0and Ac(x) > 0 for all x € [0, 1].
Proof. Firstly, we prove a) using the expressions (2.11) and (2.12), M > 0 and

Méa; > Ac; foreach i€ {0,1,...,N}.
Indeed, we have that
A Mo
Fh,o(M) =Mh [—E(4CQ + 2C|) +ﬁo + %(2000 + 10611)] > 0,

because Sy > 0. Now, ifi € {1,2,...., N — 1},

A Mo
Fh’,‘(M) = Mh [—E(Zci_l + 86‘,‘ + 2Ci+]) + a(lOa,-_l + 40(1,‘ + 1061,‘.,.]) > 0.
Finally,
A Mo
Fh,N(M) =Mh [—E(ZCN_l + 4CN) +ﬂ1 + E(loaN—l + 20&1\1) > 0,

because 51 > 0.
In an analogous way, it can be proved b), assuming that 8y = 81 = 0 and Ac(x) > O for all x € [0, 1].
O

In the case that Ac(x) < 0 for all x € [0, 1] (M < 0), it is not necessary to find a supersolution
because (2.1) doesn’t admit a positive solution (for more details see [28] and [37]). Therefore, if (2.1)
has a positive solution, we can choose M given in (2.33) such that M is a good candidate to start
sequence (2.25).

Now, we obtain gh(o) in terms of a subsolution u of (2.1) satisfying

—Du’ - Acu+dai < —C in (0,1), Du'(0) > Bou(0), Du'(1) < —Biu(1) (2.35)

for some constant C > 0 and
u(x) >0 forall xe€[0,1]. (2.36)
Note that (2.35) is more restrictive than (2.2).

Theorem 2.4.3. Suppose a, c € H*((0, 1)) and u € H*((0, 1)) satisfying (2.35) and (2.36). Then
Fi(my(w) < 0 with my(u) = (u(xo), u(x1), ..., u(xy))" > 0, (2.37)
for each h € (0, h*) where

2/3
Cc/2

B = 3103
(I6au = Aclles + Sllalleollialen) e 11> + lelleollAc 12 + Sl el

(2.38)

In the case in which the denominator in (2.38) is equal to zero, h* = oo.
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Proof. In this proof, we use the notation v;, := m;,(«). From (2.36), we know that v;, = r;,(x) > 0; thus,
(2.37) is satisfied if
Fpi(vp) = b'jh(vh,gpi) <0 foreach i€ {0,1,..,N}. (2.39)

We now prove (2.39). Firstly, by multiplying the first inequality in (2.35) by ¢;, we find that

1 1 1 1
—Df ;i — /lf cup; + §f au’; < —Cf ©i.
0 0 0 0

Integrating by parts and using the remaining inequalities of (2.35), it follows that

1/2, i=0,N,

b,(u,;)) < —Chy;, where 71':{ 1 ie{l,2,...N—-1}

and then,
by, vns 1) < By (vis 01) = bu(ut, 1) = Chy;.
Hence, (2.39) is satisfied if
bl (v i) — bu(u. @7) < Chy,;. (2.40)

We finally prove that, for each & € (0, h*), (2.40) is fulfilled if 4" is given by (2.38). Indeed, we

know both that | |
f Vi = f u'e; and f Bvnpi = f Bugi,
0 0 (0,1} {0,1}

1 1 1 1
bl (Vn, i) — bulut, @) = -2 f TR(C)Vipi + 6 f m(@Vvie: + A f cug; — 6 f au*g;.
0 0 0 0

and consequently,

Now, adding and subtracting A fol cvpp; and & fol avigoi and denoting E; := m,(f) — f, we deduce that

1 1 1
by (V@) = bu(u, 1) = f (—Ac + da(vy + w)Eup; — A f Ecvppi +6 f Evipi.
0 0 0

Subsequently, using ||[vx|lo < |lull, Holder’s inequality and (1.5), we can bound the above three integrals
in the following way,

1
f (=Ac + 6a(vy, + W)E,@;
0

1
A f EcthOi
0

to obtain that

|l (vhr 1) = by, 07)] <
|(16au — Aclleo + 5alleollillo) eI + lallsllAc” 2 + Nl 60" 1| il (2.41)

< (I16au — Aclle + dllallollulles) e 2 llpillo 2,

2 2
< llulllioa” 2 llgilloh”,

1
< lullollAc” 2 ligill2h*  and l5f Evjpi
0

Finally, as ||¢ill, = (2y:h/3)V? and assuming that 7 < h*, we obtain (2.40) using y; > 1/2. In the case
that the denominator in (2.38) is zero, we obtain that bﬁh(vh,tpi) = b,(u, ¢;) in (2.41), and therefore,
(2.40) is satisfied for all 2 > 0. O
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The main result of this section is stated in the following theorem. We will denote as

My == max @ ”(x) and & = mln u" (x). (2.42)
x€[0,1] 0,11~
Also, we will choose M given in (2.33) such that M = M(1,1,...1)7 is a positive strict supersolution.
Nevertheless, if M is not a positive strict supersolution, we are in the case that either (2.5) doesn’t admit
a positive solution or M is itself a positive solution of (2.5) (see Theorem 2.4.2).

Theorem 2.4.4. Let M and hy given in (2. 33) and Theorem 2.3.4, respectively, such that M satisfies
(2.6). Suppose h < hy so that there exists u satzsjj)mg 27 and u, O « M. Then, ifﬁh(o) =M, the

sequences in (2.25) and (2.27) are well deﬁned, a’o(Jh(uh(k))) > 0 and

(k)

0<u® «<u™ <«a®V «a® <m (2.43)

h

for all k > 0, and both sequences converge to uy which is the unique solution of (2.5) satisfying (2.20).
Moreover, uy, satisfies that for each k > 0,

a1, 1, D <up < Mip(1,1, .., DT (2.44)

Proof. First of all, note that @, © and u, © satisfy (2.6) and (2.7), respectively, and gh( < u, O .- M.
(k) (k)

Now, we proceed by induction. We suppose that @,” and u,™ are well defined and satisfy
F,@") >0, F,u*) <0 and 0<u® <o <M. (2.45)
Then, applying Theorem 2.3.5, a’o(Jh(uh ))) > 0 and (Jh(uhk))) ' 0. Consequently, a, **+1 and g}fkﬂ)
are well defined and satisfy (2.26) and (2.28), respectively.
On the other hand, by (2.27), we deduce that
J (uh(k))( (k) _(k+1)) J (ll (k))( (k) _ (k)) +F (uhk)) (246)

(k)

where we have added and subtracted J, (i (k))u, . Developing (2.46), it follows that

Jy(a (k))( (k) _ (k+1)) =Y, (l—lh(k) _ uh(k)) (l—lh(k) (k)) +F, ( (k))
and owing to (2.45), we have that
Jh(ﬁh(k)) (uh(k) _(k+1)) > 0.

Then, as (J;,(ﬁh(k)))‘l > 0, we deduce gh(kH) < uh(k) Therefore, by Theorem 2.4.1, we obtain (2.29) and
(2.30).

Now, we prove that
u kD

u Y <, (2.47)

and the proof by induction will be finish. Repeating a similar process to (2.46), we affirm that

J(a (k))( (k+1) _ (k+1)) —Fy(u (k))+J (u(k))< (k) E;,(k+1))v
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and developing the right side, adding and subtracting Y, (gh(k”)) (gh(k“)), it follows that

Jh(ﬁh(k)) (ﬁh(k+1) _ Eh(k+1)) _ (ﬁ}fk) _ Eh(1<+1)) (l_lh(k) _ Eh(k+1)) -F, (E;,(k+]))-

Then, as gh(k”) < ﬁh(k), by (2.30) we obtain that

(), (= (k] K+l
Jh(uh( ))<uh(+)—gh(+)> >0

and consequently, we have (2.47) because (J;,(ﬁh(k)))‘l > 0.
The rest of the proof is a consequence of (2.43) and the uniqueness given in Theorem 2.3.6. Indeed,
as the sequence {ﬁ;k)} -0 is strictly monotonically decreasing and bounded from below by gh(o) > 0 and

the sequence {g }fk) }k

limits exist

-0 is strictly monotonically increasing and bounded from above by M, the following

= lima" and u,:=limu®, (2.48)

k—o0 k—oo 1

satisfying 0 < w,, @, < M. Now, making k tend to infinity in
5@®) (0*) —u®) = -F® and 2@ (@5 -aP) = -F,@®),

because F;, € C®°(RM*!), we conclude that both u, and U, are solutions of (2.5). Moreover, as 0 <
u,, 0, < M, owing to Theorem 2.3.6, we obtain u, = 0y, therefore, it is the unique solution satisfying
(2.20). Finally, (2.44) is obtained from (2.43) and (2.48). The proof is completed. m|

Let us remark that, as A, is not a non-singular M-matrix, it is not possible to use the results in
[42], because 0¢(A;) < 0, as we proved in (2.21). Nevertheless, we can apply Theorem 2.3.5 in each
iteration of (2.25), to prove that (Jh(l_lh(k)))_l > 0.

2.5 Errors

In practice, we need reliable and accurate estimates of the error, understanding the error as the norm
of the difference between the corresponding iteration in (2.25), ﬁg{), and the positive solution of the

problem (2.1), u. We will estimate the error using the triangular inequality
Nt = @1 < et = aapll + e, = L, e > 1, (2.49)

where u, is given in the Theorem 2.4.4. Moreover the error estimates will provide us with the mesh size
h required to fulfill a previously given bound of the error. This critical size of & will depend strongly on
the parameters and coefficients appearing in (2.1) and of the a posteriori bounds, &, and M;, given in
(2.42), which become tighter bounds for u;, as k — oco. Furthermore, it will also provided us with the
exit criterion for Newton Method. Note that the norms used in this section have been defined in (1.2)
and (1.3).

Also, it is very important to highlight that, under the same conditions of Theorem 2.4.4,

0 <, 1,.. D <w, <M1, 1,17 <M if k> 1.
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Moreover, in the cases that gh(o) := & where g s given in Theorem 2.4.2 or gh(o) := m;,(u) if the hypotheses
of Theorem 2.4.3 are satisfied, &, is lower bounded by € > 0 or by min,¢o,1; u(x) > 0, respectively.
Therefore, in the mentioned cases, &, and My are bounded by positive constants independently of &
and k.

To begin, we analyse the three bilinear forms by, by, and bguh, as described in the following

theorem.

Theorem 2.5.1. Let the assumptions of Theorem 2.4.4 be satisfied. Then, for k > 1, it holds that
buw,w) 2 0, busy, (w,w) 2 Cry Wil and - byvy, (w,w) > C2 Wl Yw e H'((0, 1), (2.50)
and

by (wiowp) 2 0, By, (wiowi) = Crolwilly,  and b, (wiown) > Colwally  Ywy € Vi, (2.51)

up 2uy

where the positive constants C1; = C1(u), C12 1= Ci(&r) and Cy are

. . DC,
Cy:=6 d Ci(p):= D, , 2.52
2= 0w eenn and - Ci(9) mm{ D+ (ke - 5a¢)+||m} (@2)
with (Ac — dap)* the part positive of Ac — dap.

Proof. First of all, notice that, as u is a positive solution of the problem (2.1), u is a positive eigenfunc-
tion associated with the eigenvalue 0 of the following eigenvalue problem

Dy — Acy + dauy = oy, in (0, 1),
{ —Dy’(0) + Boy(0) = 0,
Dy'(1) + Bi1y(1) = 0.

Thus, by [37, Th. 7.7 and Th. 7.8], O is the corresponding smallest eigenvalue. Now, we obtain the
first inequality in (2.50) from the Rayleigh formula applied to the symmetric form b,. Moreover, since
u, > &, we conclude that

1
bunrow) 26 [ > G, Vwe H'(O. 1),
0

On the other hand, by Rayleigh-Ritz Theorem (see [31, Th. 4.2.2]) applied to A, + Y (uy), as it is
a symmetric matrix, and using Theorem 2.3.6, we have that

wl(An + YVa))w, >0, ¥ w, e RV

or equivalently, the first inequality in (2.51) is satisfied. Consequently, as u;, >

&k.p, it follows that
i
2 2
b’z’uh(wh,w;,) > 5f m(@upwy, = Collwplly, ¥V wy € V.
0

Finally, we will prove the coercivity in H'((0, 1)). Let 4 € [0, 1], we know that for all w €
H'((0, 1)),

1 1 1
Busu, (9, 9) = by w) + C f W2 > D f W) +(Cs - (e = dau)* ) f W2,
0 0 0
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and for all w;, € V,,,

1 1 1
bh,, (Whw) = pby, (Wi, wy) + Co f wi > uD f W))? +(Ca — pll(Ac — Sagyp)*lleo) f wi.
0 0 0

Now, we choose u such that both second inequalities, in (2.50) and in (2.51), hold true, considering ¢ = u
and ¢ = &, respectively. In the case C; — |[(Ac — dap)*|l = D, we choose u := 1 and C(¢) := D.
However, when C, — ||(Ac — 6ap) || < D, we have to choose u such that

. Gy
D = C, — pll(Ac — 6ap)™ |, , lentl = € (0,1),
H 2 = pll(Ac = 6a@)” ||, or, equivalently u D+ (e - a9) I 0, 1)
and De
Cilp) = . :
D + |(Ac = dag)*[le
The proof is concluded. o

In the following theorem we obtain an upper bound of the error between the iteration uﬁlk) and u,.

This upper bound depends on F, (uh 1), which tends to 0 when k tends to infinity.

Theorem 2.5.2. Under the assumptions of Theorem 2.4.4, the following estimates hold
Ciallel — wplln < G/ P IFy@ ", and Colla® — uplly < G/0)'2 1Fy@ ), Yk =1, (2.53)

where Cy 3 = Ci(gx) and C; are those described in (2.52).

Proof. As F, is convex (see the proof of Theorem 2.4.1), we deduce that
Fu(@,") > Ju(up) (8,° - ). (2.54)
In particular, from Theorem 2.4.4 we know that ﬁh(k) > uy, and thus, from (2.54) we have
(89 - w) Fa@®) > (80 - w) ) (8% - w) = o, @° - w8, - ). 2.55)
Now, using Cauchy-Schwarz inequality, from (2.55) it follows that
by, @ =@ =) < [0 — wy Lo [Fy (@, ). (2.56)

Since

1(N 1
17— whll3 = f (Z(u,f?—uh,,-)sa,) Z(u“—uh,i)z f ¢ 2> (h/3) [ — w3,
0 %o 0

because ﬁh(k) > uy,, we obtain from (2.56),
bh, (@ — 1 = wy) < G/ 11" - wplloF @) (2.57)

Finally, (2.53) follows from (2.51) and (2.57). The proof is complete. O
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The next result provides us with the bound for the error between the solutions of (2.1) and (2.5).
We use a similar proof to the famous Céa’s Lemma applied to b,.,,. Usually in the literature the error
[l — upl| is estimated by Ch, where C is a large constant. We improve this estimate by developing the
error in
llee = unll < Moo — 7Ol + [0 () — uall,

and using the Céa’s Lemma to obtain the bound of ||m, (1) — uy||, which we will obtain that is O(h?) (see
[22]).

Theorem 2.5.3. Assume a, ¢ € H*((0,1)). Then, under the assumptions of Theorem 2.4.4, for each
k > 1 we have that

C C
Nl — ullgr < C—3h+ Vi2 + 1”2 | and ||uh—u||2s(c—3+||u"||z)h2,
1,1 2

where C| | = Ci(u) and C, are given by (2.52) and
Cs := (I6au — Acllco + SllallcMicn) 1" ll2 + MisllAc” 12 + M 160" |I2. (2.58)

Proof. First of all, in order to simplify the notation, we define £ := f —m,(f). Now by (2.9) and (2.10),
we obtain

Buva, (= (1), Vi) = Buras, (= 7 (10), Vi) + b, vi) = bl (o vi), ¥ vy € Vi,

. . 1 1
and, adding and subtracting A fo cupvy and 6 fo auivh,

1

1 1
by, (up — 705 (u), vi) = D f Ev,—2 f cE, v, — A f Ecupvy,
0 0 0

1 1
+ f BE,vy, +6 f Eiv, + 6 f a(u + up)E,vy. (2.59)
{0,1} 0 0

Meanwhile,

1
Df Ev,=0 and BE,v, =0,
0 {0,1}

because 7, (u)(x;) = u(x;) foreach i € {0, 1, ..., N}, (2.59) can be rewritten as

1 1 1
by, (U, — mp(u), vyy) = f (a(u +up) — Ac) Evy, — A f Ecupvy +6 f E ulvy,.
0 0 0

Moreover, by Holder’s inequality and (2.44) we deduce that
sy (1t = 7(0). i)l < [(I6ate = Aco + OllallooMin) Eullz + MiallAE ] + MENISEdll2] Ivila.
Then, applying (1.5) to E,,, E. and E,, we obtain

Bty — 7(0), vi)| < C3h2(illa,s (2.60)
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where C3 is given by (2.58). Considering v, := u, — m,(u) in (2.60), and using the corresponding
inequality in L>((0, 1)) given by (2.50), we have

Callup — mywll < C3h?. 2.61)

Hereafter, if we bound ||v;||> by |[vil|z1 and once again take vy, := uy, —m, (1) in (2.60), using the coercivity
in H'((0, 1)) given by (2.50), we infer that

Ciillup — mp@llgp < C3h*. (2.62)

Finally, using the triangle inequality, together with (1.5), (2.61) and (2.62), we state that

Cs 5
ot = uilly < Ny — 7RIz + Nl (1) — ully < (C_ + [l ]l | 17,
2

and
C ’n
oty — ullgn < Ml — TR @1 + Nl (u) — ullg < (—C >+ VR + ju Ilz) h.
1,1

The proof is complete. o

Now, combining Theorem 2.5.2 with Theorem 2.5.3 in (2.49), yields
Theorem 2.5.4. Suppose a, c € H*((0, 1)), under the assumptions of Theorem 2.4.4, for k > 1,

3 ]’l)l/2 F1 ﬂ(k) C
1l < 2P0 +(C—3h+ \/lmllu”llz)h,
1,2 1,1

and

32 IE, . ©
< G/h) " \F@, ) N C; Tl | 22 (2.63)
C, C

" — ull, =
2
where Cy | = Ci1(u), C12 = Ci(rp), Cr and Cs are given in (2.52) and (2.58).

2.6 Some numerical examples

In this section, we study three problems which highlight different aspects of the theory developed in this
chapter. First, we fix the following exit criterion for the Newton Method

|Fh(ﬁh(kexn))|2 S é_‘ and |ﬁh(kexir) _Eh(kexif)|2 S g’ (2'64)

for some & € (0,1). As Jh(ﬁh(k)) is a tridiagonal matrix such that o-o(Jh(ﬁh(k))) > 0, Jh(ﬁh(k)) is a non-
singular M-matrix. Therefore, we can solve

Un@ N F@®) and (@) Fu@), k>0,

using Thomas algorithm due to its advantages (see [46, Section 3.7] on banded systems).
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2.6.1 Numerical results for the choice D =1, 1=1,6=1,c(x) = x+1,a =1
and By =51 =0

In this case, we rewrite (2.1) as follows

{ = (X+ l)u—uz’ in (071)7 (2 65)

W (0) = u'(1) = 0.

Then, the constants M = 2 and € = 1 defined in (2.33) and (2.34), are respectively a supersolution and
a subsolution of (2.65). Consequently, (2.65) has a unique positive solution, u, satisfying

1 <u(x) <2, forall xel0,1].

The hypotheses of Theorem 2.4.4 are satisfied if gh(o) := g and ﬁh(o) := M (see Theorem 2.4.2). More-

over, both sequences, (2.25) and (2.27), converge to u; and since in this case hy, > 1 it also holds
0 < gl 1,..., 1)T <u, < Mp(L 1, l)T, forall k> 0andh > 0,

where 1 < g < My, < 2. Moreover, thanks to Theorem 2.5.4, we have

3/h 12\ l-l(k) 401+ M
< 3/h)" |Fy(u, )|2+ (1+ k,h)h2+2h,/—h2+ —E, (2.66)

® _ i
h cia Ekh

lla

and

— (k)
L GB/0)'? [F, @, . (2(1 +Min)

—(k
1 — ull,
Ek,h

)h2 = Ez,
Ek,h
where we have used that

"Il < Ml”lleo < 201x + 1 = ulles <2

by (2.65). Hence

Ek,h
3-— Ek,h

Cri=¢rp, Cr12em/2, Cipzcipi= min{l, } and C; < 2(1 + Myy).

In the same way, if we fix the exit criterion given in (2.64), as 1 < g, < My, < 2, it follows that
E; <23/W)'2¢+ 120> +2hVh2 +1 and  E, < (3/h)'& + 8K2.
Finally, we check that the derivative of v := & /l(ke"i’), obtained from the simulations, near the boundary

point x = 0, satisfies the following inequality

h
Al (x)| = [v(h) — v(0)] < V' () — o' (£)|dt + |u(h) — u(0)] < h'?E, + B?, forall x € (0,h),
0

where E| is given in (2.66), with k = k., and |u(h) — u(0)| is estimated using Taylor’s Theorem. In
particular, Table 2.1 shows that the numerical solutions of (2.65) satisfy the above inequality for different
values of hand & = 1077,
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Lh | kw1800 - 0) E, WPE, + 1
1077 5 3-1073 2-1071 9.1072
1072 5 3-107° 21072 2.1073
1073 5 3-1077 2-1073 6-107
1074 5 3-107° 21077 2.107°

Table 2.1: Simulations of example 2.6.1, for & = 107,

2.6.2 Numerical results for the choice D = 100, 1 = 1,6 = 1,¢c = 1, a(x) =
100x + 1 and By = B; = 0.

Consider now the singular perturbation problem

{ -10~*u"’ = u— (100x + 1) > in (0,1),

wW(0)=u1)=0. (2.67)

In an analogous way to the previous example, we deduce that the positive solution of (2.67) satisfies

1
= —< < =
o 1Ol_u(x)_l M, forall xe€][O0,1].

Consequently, we pick again gh(o) :=gand l_lh(o) := M in Theorem 2.4.4, but for this example

hy =~ 0.0017,

which implies that we can only ensure the convergence of (2.25) if h < hy,. In Figure 2.1 we present
three plots, each one for a different value of 4, of an iteration of the Newton Method satisfying the
same fixed exit criterion. Firstly, for # = 0.125 the Newton Method does not converge. Nevertheless,
the Newton Method converges for 2 = 0.0625 and 7 = 0.0016. In particular, for 1 = 0.0625, h £ hy,
the iterations of the Newton Method do not satisfy (2.43), they intersect and the numerical solution
oscillates (see Figure 2.2 (top)). But in the case 7 = 0.0016, i < hy,, the iterations of the Newton
Method are ordered and the final numerical solution does not oscillate as it can be seen in Figure 2.2
(bottom). Figure 2.1 is similar to [46, Figure 11.3].

2.6.3 Numerical results for the choice D = 10>, 1 =1, = 1,8, = 8, = 1072,
a=1 and c(x) = 10 — (x — 0.5)%.
In this last example we consider Robin boundary conditions,

1073w = (10 = (x = 0.5Y) u — u?, in (0, 1),
—1073 &/(0) + 1072 u(0) = 0, (2.68)
1073 w/(1) + 102 u(1) = 0.

We emphasize that in this case we can not use Theorem 2.4.2 to obtain a positive strict subsolution of
problem (2.5), however, we will use Theorem 2.4.3. In that sense, firstly we prove that

u(x) = pe” %09 for 1€ (0,9.83) (2.69)
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0.6

——h=0125 and kg — 100
——-h=00625 and k. =11
——h=0.0016 and kg =11

Figure 2.1: Simulations of example 2.6.2, for £ = 1077 and number of iterations in Newton Method,
kexil S 100

satisfies (2.35). Indeed, as u satisfies the boundary conditions in (2.68), it only remains to find C > 0
such that
—107u"(x) = (10 = (x = 0.57) u(x) + *(x) < —=C forall x € (0,1). (2.70)

Replacing u defined in (2.69) and its second derivative in the expression in the left of (2.70), we obtain
that for all x € [0, 1],
u(x) (=9.98 + 0.6(x = 0.5)% + u(x)) < u(x) (<9.83 + u(x)) < pe > (-9.83 + o),
and thus, we obtain that
C = pe>?(9.83 - )

satisfies (2.70). Then, due to Theorem 2.4.3 we have that 7;, (1) is a positive strict subsolution of problem
(2.5)if h < h*, where

2/3
1e™%2(9.83 — ) /2

B = () = 313
(I = clloo + laalleo ) 2”12 + 2llaeleq

Now, using that
lullo = pt, Il —clloo < 10 —pe™?* and  ||u” [l < 80,
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Iterations for h = 0.0625 Iterations for h = 0.0625 (Zoom)
i = = = = — - 0.5 ’\ ~ -
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Figure 2.2: Iterations of Figure 2.1: ‘dashed’ - upper iterations and ‘dotted” - lower iterations.

we have that 23
=512(9.83 — ) /4

B () > 33— = (1),

) = 401 + 40u (1 — e75/2) ok

and, as h(*)(y) is a decreasing function for all u € [0, 9.83], we are interested in choosing ¢ = 0 to obtain
a larger range for 4. In particular,

h < hy(0) = 0.009. 2.71)
Therefore, we start the sequence in (2.27), taking as initial guess
u® = (ue 0909 where j~ 0, >0, 2.72)

Consequently, the hypotheses of Theorem 2.4.4 are satisfied for ﬁh(o) = M, for M = 10 (see Theorem
2.4.2). Also (2.72) is satisfied for all & verifying (2.71), because )y ~ 0.024 (see (2.16)). Hence, we
obtain that both sequences, (2.25) and (2.27), converge to u, satisfying

0 < g(1, 1., D <wy, < Miy(1,1,.., DT, forall k>0,
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where 0 < /16_5/2 < Ekh < Mk,h <M.

9.2

—-—h=01 and kg4 =14
——h=004 and k. =14

9F e h=0.02 and k. =14
——h=10"* and kg =15
8.8 1 1 1 1 1 1 1 1 1 |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2.3: Simulations for example 2.6.3, for £ = 10~ and u = 0.1.

Now, we study the error in the L>-norm. Firstly, as (2.33) and (2.69) with u = 9.83 are a subso-
lution and a supersolution of (2.68) respectively, it follows that the unique positive solution of (2.68)
satisfies

0.8 < u(x) <10, forall x€[0,1].

Then, we have that
Cy = Ekh and C3<(9.2+ Mk,h)”u”Hz + 2Mk,h»

where the constants are defined in (2.52) and (2.58). Moreover, by proceeding as in the first example,
we bound the second derivative by [|lu” || < 92200. Therefore, by (2.63) we obtain that

G/ [Fu@, ") . ((9.2 + M)92200 + 2My.,

—(k
1@ — ull, <
Ek,h

+ 92200) W = E,.
Ekh
Table 2.2 shows E, for k = k,,;; and different values of .
Note that gy, = pe>'? is near to zero because u ~ 0 but this is not a problem because we expect
Eexitsy t0 be bigger and near to the minimum of u. In the Table 2.2 we can observe this fact. Also, the

constant C3 could have been taken smaller, if we would have had more information about u.
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’ h ‘ kexit Ekprir,h E2
1073 14 8.83 0.29
1074 15 8.83 2-1073
107 15 8.83 2-107°

Table 2.2: Simulations for example 2.6.3, for & = 10~/ and u = 0.1.

Finally, Figure 2.3 shows some simulations of this last example, obtained for decreasing values
of h. We highlight again, the effects in the simulations when the hypotheses of Theorem 2.4.4 are not
satisfied. Indeed, in the two cases that & > hy;, Newton Method converges but the numerical solutions
oscillate. In the Figure 2.4 we have done a zoom to better observe the case 7 = 0.02.

0.05 0.1 0.15 0.2 0.25

Figure 2.4: Zoom of Figure 2.3.



Chapter 3

The generalized diffusive logistic
equation

3.1 Introduction

In this chapter, we apply the discrete sub- and supersolutions method to prove the convergence of the ap-
proximate solution given by the nonlinear finite element method to the positive solution of the problem
(1.1) that we write here again

—(Du’ — am’ (X)) = Am(x)u — Sa(x)u?, x€(0,1),
Du'(0) = am’(0)u(0), 3.
Du'(1) = am’(1)u(1),

where D > 0, @ >0, 1> 0,5 > 0, m € C?[0, 1] such that m(x) > 0 for all x € [0, 1], m’ £ 0, m’(0) > 0
and m’(1) < 0, and a € CJ[O0, 1], with a(x) > 0 for all x € [0, 1]. As we mentioned in the introduction, if
there exists a supersolution, U € H?((0, 1)), and a subsolution Ue H?((0, 1)), in the sense that

~(DU’ — am’ (x)TY = Am(x)U - sa(x)T*, ~(DU’ — am’(x)U) < Am(x)U — a(x)U?
almost everywhere in (0, 1), and

DU'(0) < am’ (0)T(0), DU’'(1) 2 am’(1)T(1),
DU’ (0) > am’(0)U(0), DU’'(1) < am’(1)U(1),
and satisfying 0 < U < U, then, by [6], there exists a positive solution u € H*((0,1)) of 3.1),u >0

(u > 0 and u # 0), such that U < u < U which is the unique positive solution by [2]. Moreover, if u is
the solution of (3.1), u satisfies

1
0

1
f (Du' — am'u)v' — f (/lmu - 6au2) v=0, YveHY(0,1), 3.2)
0
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and then, it follows that the approximation of u, in the space of finite element, denoted by u;, € Vj,
satisfies

1 1
f (Du;l - am,(m’)uh) v, — f (/Urh(m)uh - 67rh(a)u,21) vy =0, Vv, €V, (3.3)
0 0

where 7, is defined in (1.4). Thus, the discrete sub- and supersolutions method is proposed to approxi-
mate uy, > 0 satisfying
Fh(uh) = 0, (34)

and compare it with the positive solution u.

3.2 The discrete bilinear form

Our aim now is to calculate the nonlinear map Fj, in (3.4). In order to do so, we introduce the approxi-

mation uy, of u:
N

. T
uy = Z up i, orequivalently, w, = (upo, Upn1s.... UpN)" -
i=0

The weak formulations (3.2) and (3.3) can be rewritten as
bu(u,v) =0 ¥Yv e H'((0,1)) and 5" (up,vy) =0 Vv, € Vj,

up

respectively, where
1 1 1 1
by(w,v) ::Df w’v'—a'f m’wv’—/lf mwv+6f afwv
0 0 0 0

1 1 1 1
b};(wh, vy) = Df WV, — a/f TR Ywyvy, — /lf m(m)wpvy, + 6f m(a) fwpvy,
‘ 0 0 0 0

for w, v € H'((0,1)), wy, vy € V), and f € C[0, 1]. Therefore, u;, solves the nonlinear system

and

Fi(2) =0, with Fy(z):= (A4, + V,2)z, 2= (20,212,

where the matrices A, € RV**N+1 and Y,,(z) € RVN**N+1 are defined as follows

N N

, = Z Zipi-
i=0

Note that i indicates the row and j indicates the column. It is easily seen that

D a Ah
Ay = —Apr— =Ap1 — —Ano, 3.5
e e (3.5

where the element of the tridiagonal matrices Ay, Ay, and Ay are the following

N 1
A= (b, and Yh(z)={6 fo nh(a)zw,}

i,j=0

(Ap2)oo = 1, (An,Doo = —2my, —mj, (Apo)oo = 3mg + my,
(Ap2ny =1, (Ap NN = my_| +2my, (Ano)NN = my_1 + 3my,
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ifief{l,2,...,N—-1},

An2)ii =2, (ApDii=m_, —m;

i1 and  (Apo)ii = my_y + 6m; +myyy,

and finally, if i € {0, 1,..., N — 1},

A1 = -1, (Anis = —m; —2m;,, and  (Apo)iie1 = m; + Mg,

An)ir; = -1, (ApDir; =2m; +m},, and  (Apo)i+1; = M + Miy1,

where m; = m(x;) and m; = m’(x;). In the same way,

oh
Yy(z) = @Yh,o(l),

where the elements of the symmetric and tridiagonal matrix Y}, o(z) are

(Yno(2))oo = z0(12ao + 3ay) + z1(Bag + 2ay),

Yno@)nn = zv-1(2an-1 + 3ay) + zvBay-1 + 12ay),
ifief{l,2,...N—1},
(Yno(@)ii = zi-12ai-1 + 3a;) + zi(3a;-1 + 24a; + 3a;41) + zi1(3a; + 2a;11),
and,ifi € {0,1,...,.N — 1},
(Yno@)iir1 = zi(3a; + 2ai41) + ziv1(2a; + 3a;11),

where a; = a(x;) and z = (20, 21, ..., 2v)" .

3.3 Discrete Sub- and Supersolutions Method

31

(3.6)

In the present section we develop the main steps of the Discrete Sub- and Supersolution Method in
Chapter 2 applied to the discrete equation (3.3). The first step is to construct a suitable constant positive

strict supersolution M satisfying

F,(M)>0 with M:=M{1,1,....,1)T >0.

(3.7)

Let J;,(z) denote the Jacobian of Fj. The second step is to obtain /), > O such that J;,(z) evaluated at

z < M possesses negative principal subdiagonals for all & < Ay, i.e.

= — 0 0
— % - 0
— * —

Ti(z) =
n(Z) 0 -

S o

(3.8)
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Let 0o(J5(z)) denote the principal eigenvalue of J;,(z). Property (3.8) guarantees the existence of o(J;,(2)),
which is the unique eigenvalue that admits a real positive eigenvector (see Theorem 2.3.1 for more de-
tails). Moreover, this condition enable the Discrete Maximum Principle introduced in Theorem 2.3.2.

The key point through the ongoing procedure is the choice of A, given M > 0. With this choice
and the several consequences of the DMP next theorem proves the uniqueness of the positive approxi-
mate solution uy, € [0, M] satisfying (3.4).

Theorem 3.3.1. Let M > 0. If

6D
h<hM'

= 3.9
3alim’||eo + [12Mda — Am||» (3.9

holds, then Ji,(2) := Ap+2Y,(2) satisfies (3.8) foreachz <M := M(1,1,...,1), and the positive solution
uy of (3.4) satisfying
O<u, <M

is unique, if it exists.

Proof. Let M > 0 and h < hy,. Since the N + 1 components of F;, are defined as

1 N
Fi,i(2) = bz 1) + 6f (@2 2= (20,21, s 2= ) 2,
0 -
j=0

we know that

OF,(2)

! OF (M)
0z j '

1
= bj(@j. i) + 26 fo m(@)zpi < by(j, i) + 26 fo m(@Mpi = —=
J

So Jy(z) = Ay + 2Y(z) and Jj,(z) < J,(M), if z < M. Now we will prove that J,(M) satisfies (3.8), and
so does Jj(z), if h < hy;. From (3.5) and (3.6) we obtain that

D a , ., A Méh
(M) i1 = 7 + E(mi +2m;, ) — E(mi + M) + T(ai +ais1)

and

(JrM))is1; = ~7

foreachi € {0, 1,..., N — 1}. Hence, the upper bound

o« . Msh
- E(Zmi +mi) - E(mi +mip) + T(ai + a;1)

D «a, |, h
0 + §||m oo + g||2M5a — Ao,
of the two above subdiagonals elements of J,(M) is negative if 4 < hy,. Since Fj(z) is the sum of the
matrix A, and the non-linear term Y},(z)z, the proof finishes in the same way that the proof of Theorem
2.3.6.

O
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Next theorem proves that if & < hy,, the sequence of the consecutive iterations of the Newton
Method applied to (3.4), with initial data M, converges and it is itself a positive monotone decreasing
sequence. The theorem also proves that if there exists a positive strict subsolution E, satisfying

FyE)<0 and 0<E<M:=M(1,1,...,1), (3.10)

the iterations of the Newton Method converge to a positive solution of (3.4). Observe that M can not be
a solution of (3.4).

Theorem 3.3.2. Let hy defined in Theorem 3.3.1 and i h(kH) be the sequence of supersolutions of prob-
lem (3.4) given by the Newton Method

a, " = — (@, @), k=0, (3.11)
where J,@") = Ay + 2Y,@, ). Ifh < hy, 1,* == M,

Allmlleo + allm” [|oo

M:=M(1,1,...,1) with M := (3.12)

6 minyeo 17 a(x)
and Fy(M) + 0. Then u h(k”) is well defined and it converges to a solution u;, € [0, M] of (3.4). Moreover,
0<a <a® <M forall k>0. (3.13)

If E satisfying (3.10) exists. Then
E<a" forall k>0. (3.14)

Proof. First of all, we will prove that M is a positive strict supersolution of (3.4), i.e. M satisfies (3.7).
Observe that M > 0 because m(x) > 0 for each x € [0, 1] and F,(M) # 0 by hypothesis, thus, (3.7) is
satisfied if

a , 2 Ms
FroM) = Mh [E(m0 ) = 5 (o + 2my) + - (20ay + 10a1)] >0,

@ o Ms
Fh,N(M) =Mh [—ﬂ(mN_l + mN) - E(sz,l + 4mN) + a(lOaN,l + ZOClN)] >0

and

1 Ms
Fpi(M) = Mh [%(m M) = 25 @iy + 8+ 2mi) + o (10ai-1 +40a; + 10ai,1)] > 0

i+1

foreachie€{1,2,...,N — 1}. Indeed, as
SMa; > Allmlle + e|lm” || foreach i€ {0,1,...,N}, m{>0 and m)y <O,

it follows that

M [ m —mq Mh [ miy — m,
Flo(M) > O‘T | 20, Fun(WD) > e e

+Im”|lo | = 0
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and

ml{+1 B ml{—l 77 .
FriM) = aMh[T +||m”’||ls| >0 foreach i€ {0,1,...,N},

because
Xit1
m.,, —m; = f m” > —h|m”||. foreach i€ {0,1,...,N—1}.
Xi

Therefore, M satisfies (3.7).
Now we will prove that if i < /iy, and Fj,(M) # 0, @," is well defined, it holds that

1

0« 0, < ﬁh(o) =M.

According to Theorem 3.3.1, since & < hy, the elements of the subdiagonals of J,(M) are negative.
Thus, as M > 0 and

]h(M)M = (A + 2Yh(M))M > Fh(M) > 0,
it follows from Theorem 2.3.2 that J,(M) is invertible and J; (M) > 0. Then, u( ) is well defined and

_ (1
h( ) <« M. Moreover, as

Jva,” Jh(M)( h_ ) + J,(MM > —F,(M) + F,(M) = 0

RS 0, and thus, (3.13) is satisfied for k = 0. The proof continues by induction in k. To obtain that
Fh(ﬁh(k)) > 0, since F), is convex, we use a similar argument of the one used in the proof of Theorem

2.4.1. Thereafter, we repeat the process done before. The converge of uh ) to a solution u, € [0,M]
satisfying (3.4) is a consequence of both (3.13) and F, € C*(RM*1).

Lastly, we prove (3.14) by induction. Since E <« M, (3.14) is true for k = 0. As a consequence of
Yi(z)v = Y, (v)z for all z, v e RV*!, we obtain that

I, (8,7 ~E) = A4y (8,” - E) + 2¥,@,°) (8" - E)
- Fh(“h( )) — Fy(E) + Yi(E - l_lh(k))E + Y,(a (k))( ® E)

Now by (3.11), since F,(E) < 0 and E < ﬁh(k) by hypothesis of induction, we deduce that

Jh(u(k))( (k+1) ) J (u(k))( (k+1) —(k))+J (u(k))( 105 E)
= -Fu(B) + Y@, - E)(,” - E) > 0.

(k+1)

Thus, using that (Jh(ﬁh(k))) > 0, we getE <0, O

The following theorem provides us with the positive strict subsolution of (3.4) verifying (3.10).
The key point is to use the subsolution

u:= Eemn(x)/D

of the problem (3.1), where &€ > 0 is sufficiently small. Hence, the interpolation in the space of finite
elements of u is the desire subsolution of (3.4). This idea was already used in Theorem 2.4.3. So, due

to the presence of the drift term in the equation (3.1), we have to adapt the argument of the proof of
Theorem 2.4.3.
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Theorem 3.3.3. Suppose m € H*((0, 1)). If

. 2
h<ht = [ Amin,go 1] m(x) ]
4V2alle= Pl (I lsoll (™Y lla + lle™ DIl )
Then
E =¢ (e(ym(xu)/D’ eam(xl)/D’ o emn(xN)/D)
where

. M A minxe[o’]] m(x)
0 < &< min s
lle®™/Plles”  26|lalloolle®™ /Pl

satisfies (3.10) for M > 0.

Proof. As

oy MDD

0 < ee <M Vie{0,1,...,N}

lle@/P||
by (3.15), it follows that 0 < E < M := M(1,1,...,1), for M > 0. Now will prove that
Fp,(E) = b’é(E,cp,-) <0 foreach i€{0,1,...,N},

where E = m,(u) and u := ge®¥/P Indeed, as

fol (Dﬂ'—am'y)gol’- =0 and Ll (E_H)/‘P; =0,

we have that

1 1 1
blfg(E, wi) = —af m'(E — u)g; — af (mp(m") — m")Eg; + f (6mp(a@)E — Anp(m)) Eg;.
0 0 0

Moreover, by (3.15), we know that

am/D” am/D”
[oe) (o]

g(&) = dllalllle e— A min m(x) < 26||al||le £—A min m(x) < 0.
x€[0,1] x€[0,1]

Thus, it is possible to find an upper bound for the third term of (3.17) in the following way

1 1
f (6m1(@)E — Amy(m)) Exp; s(ananwugnw—a n[l(i)r}]mm) f Eg; < —S&eh
0 x€l0, 0

Consequently, using Holder inequality and (1.5), we deduce that

gle)eh

h ’ ” " ’ 2
) < i -
PLE. ) < a (Il + ol ) Wil + 8220

Finally, as [l¢ll> < V2/h, (3.16) is satisfied if

—am/D D\’ D 1/2
g(&) < =2 V2alle™ Pl (Ilm sl (¢”™P) " I + lle™™ P lleollm 1) 112,

" 2llemam/Plle,”

35

(3.15)

(3.16)

(3.17)
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or equivalently, if

’”
Aminepo 1y m(x) = 2 V2alle™™ Pl (Il loll (/P Il + lle™ P lloollm’”I12) A2
e < s
Sllalleclle™™ Pl

which is true because 2 < h* and )
Amin,po 1) m(x)

26llallcolle™Plos”

3.4 Errors

In this section, we obtain the upper bounds of the L*((0, 1)) norm of the difference between the positive
solution of (3.1) and the positive solution of (3.3) and its first derivatives, respectively. As the existence
of a positive solution u, of (3.3) is guaranteed by Theorem 3.3.2, for 4 is sufficiently small and Theorem
3.3.3 ensures the existence of E = (Ey, Ey, ..., Ey) satisfying (3.10) for M > 0, if the hypothesis of
Theorem 3.3.3 are satisfied and ¢ satisfies (3.15), we can finally bound u;, as follows
A /l o + 144 oo
0 < ge®Mine0nmO/D <y (x) < M = M Vx € [0,1]. (3.18)
) mlnxe[o,l] a(x)
Thanks to (3.18), the constants yp,y; and 7y, in the next theorem are independent of % if the
hypothesis of the Theorems 3.3.2 and 3.3.3 hold true.

Theorem 3.4.1. Assume that a € H*((0, 1)) and m € H>((0, 1)). If u and wj, are the positive solutions of
(3.1) and (3.3), respectively and u,(x) > 0 for each x € [0, 1]. Then

Yollu —upll; < y2h  and  yill(u—w) |5 < y2h

where

b}

Yo i & minye(o,17 (a(x)un(x)) = mi {6minxe[0,1] (a(x)up(x)) } D
0.— 1= ] )
llea™/P| o llg* llo lle@™/P| o

g :=Am —am” — dau, g* is the positive part of g, y1 = D/||e?™P|| if g* =0, and vy, := 2?:1 v2.i with

"Iz,

Y22 1= (|l lsllunlles + 'l 7/D)) [I1 (7™ Pu) " 1t + Nuanlloll (€™™/P) N ]

<. 2, @ 2 2 3
¥ = allm’|lollusll, + 5 (I ok + 1lm” [loo) NlunllZ, + Allmlleollienl %, + SllallcollenllZ,

. — D
a1 :=2alle ™ Pl (lulloo + llunlloo) lapllollm

. - D
253 2= (Olla” Iallnlleo + Allm” l12) lle™ ™ Plleo (tlleo + lutnlloo) letnllooh,

Y2a = (SllallollenllZ, + Albmleollenlloo) (I (€™ Pre) " It + Nanlooll (7P o]

it = gl < ( [, /E)hl/z.
Yo Y1

Consequently,
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Proof. Firstly, we will prove that
bu(e®Py,v) >0 forall veH((0,1)). (3.19)
Indeed, deriving and simplifying, we obtain that
bu(€®™Py,v) = (v, v)

where ¢, is the symmetric bilinear form defined as

1 1
cu(v,v) :f De®™/P(y')? +f (Sau — Am) e\
0 0

Now, as u is a positive solution of (3.1), we have that e~miD

the eigenvalue O of the eigenvalue problem

u is a positive eigenfunction associated with

— (De""”/Dtp’)’ + (au — Am) e"’"/Dtp =op, in (0,1),
0y 1= De®™/Py'n = 0, on {0,1},

where n(0) = —1 and n(1) = 1. Moreover, it follows from [37, Th. 7.7 and Th. 7.8] that O is the
corresponding smallest eigenvalue. Therefore, as ¢, is the symmetric bilinear form associated with

(— (De‘”"/D-’)’ + (au — Am) P 9, [0, 1]) ,

we conclude (3.19), due to the Rayleigh formula applied to c,.
Secondly, we will obtain that

Yolltt = upll} < Busuy (u — g, €™ (u — wy)) (3.20)

and

Yill = ) 1B < By (= gy €™ ™P(u = wy,)). (3.21)

Indeed, applying (3.19) with v := e™®"/P(u — uy,), it becomes apparent that
1
Busu, (1 = up, v) = 5f aupe™™'P (u = up)* = yollu = upl3
0
and (3.20) is proved. On the other hand, from (3.19) it follows that
1
Dy, (U — up, v) = by (u — up, v) + 6f aupe™™"P(u — uy)? (3.22)
0
for some u € [0, 1]. Moreover, integrating by parts, we obtain that

1 1
- Z(xf m' e P = w)(u — up) > a/f (m’e’m"/D) (u — up)* (3.23)
0 0
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because m’(0) > 0 and m’(1) < 0. Thus, using (3.22) and (3.23), it follows that

D 1
Dy, (U — U, v) = H“tl”TH”(u - uh)’II% + f [ (am” = Am + Sau) + Saup] e ®™/P(u — uy)*.
e 00 0

Now, (3.21) is satisfied if

— tmin | O Minelo.1) (@()un(x))
K [m — am” —oan) o |’

(Am — am” — Sau)” being the positive part of Am—am’” —dau, or i := 1 in the case that the denominator
is equal to zero.
Thridly, we will prove that

Dy (u =, € P (u = u)) < yoh. (3.24)

It suffices to show that

1

—b,(up,v) + (5f aupe™ P (u — up)? < yoh, with v:= e Py —uy),
0

because u satisfies (3.2). Moreover, by (3.3) we have that

bﬁh (up,vp) =0, with v, :=m,(v).
Thus, to show that (3.24) is verified is equivalent to prove that

1
b (up, vi) = bu(up, v) + 6 f aupe™ P (u — up)? < ysh. (3.25)
0

Next, we will prove (3.25). Define E; := my(f)— f. As vi(x;) = v(x;) foreachi € {0, 1, ..., N}, it follows
that

1
bl (up, vi) = bu(up,v) + 5f aupe™™™P(u — uy)?
0
1 1 1
= —a'f (ﬂh(m/)v;l - m’v’) up — /lf (mp(m)vy, — mv) uy, + 5f (mp(a)vy, — av) ui
0 0 0
1 | 1 1
= —af Ewviup — a/f m'u,E} + f (SE up, — AE,) viuy, + f (6au, — Am) E,u, (3.26)
0 0 0 0

where we have added and subtracted the terms « fol m'v, iy, A fol mvuuy, and O fol avhuﬁ. Now, by (1.5),
due to
Vi lleo < 2[Vlleo /R

and applying integration by parts in the second term, to find the corresponding upper bounds, we con-
sider separately each in (3.26):

1 —
o —a [ Ewviun < allvllellullellEwllz < 2alle™/Plle (lullss + luanlloo) letnlloollm l1ah.
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_ 1 ’ El _ 1 ’ IE < 17 ’ ’ E
o —a [ muE, =« [ (m'u) Ey < a(llm”lleollunllos + 17 lloollit 12) 12

1
d j(; (6Eauh - /lEm) Vplp < (6”Eu”2”uh”oo + /l”Em”Z) ”V”oo”uh”oo
< (Slla” 2 llunlloo + Allm”12) lle™Pllo (lutlleo + letnlloo) et llcoh>.

1
o [ Gawy = Am) Eyuy < (SllallosllunlZ, + Allmlloolienllos) I1E -

Moreover, from Proposition 1.2.1 and (1.5), we deduce that

IE N2 < N (e=™Pu) = e Pully + iy (7™ Pur) = ™ Puplleo

< [i1(e™Pu) " ok + Manllooll (7P o] .

Consequently, to obtain (3.25) it is enough to find an upper bound of ||u}|l,. For this goal we use that,
due to (3.3), uy, satisfies

1 ) 1 1
Dj; (”;1) :aj(; nh(m’)uhu;l+fo‘ (/lﬂh(m)uh—éﬂh(a)uﬁ) up.

1 1 1 1
1 1
2 2 2 2 2
2](; o (m Yy, = m’uh'o - L (mn(m")) u;, = m’uh|0 - j(; (mn(m’y = m') u, — j(; m" u;,

applying (1.5), we conclude that
! a
Df () < allm’||solluslIZ, + 5 (Ul Lok + llm” o) Nl 2, + Allmalleollunl 2, + Slalloo el
0

Finally, the proof finishes as a consequence of the inequality

lle = wplleo < Nt = waplla + 11 = wp)'llo-

‘We now discuss error estimates for the iterations
N
_() _ (o) () _(k) 0 _ N\ A0
u- = (”h,o’ Wyiseees uh,N)’ u,” = Z u, ;i
i=0

of the Newton Method and the positive solution u of (3.1), in terms of F}, (ﬁﬁlk)). We will denote by | - |;
the 1-norm in RV+!,
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Theorem 3.4.2. Assume that a € H*((0,1)) and m € H?((0,1)). Under the assumptions of Theorem
3.3.2, the following estimates hold for each k > 0,

yollu = G018 < ol + 3 |[Fu @) and il (u=a0) 1B < yoh + 3 [Fu (@)
where

. — . —(k
O min (o 1 (a(x)uﬁlk) (x)) [ ominygpo 1 (a(x)uﬁl )(x)) D
Yo = am/D Y1 =mn +
lle?™ P lloo llg*leo

b}

lle®™/Plloo

g = Am —am’” — Sau, g* is the positive part of g, y1 = D/|[e®™/P|lw if g* =0, y2 := 3| y2, with
21 :=20lle™ Pl (ltlloo + 1 oo ) 158 ol
V20 1= (||m leolZ oo + 1 lleo 77D 2) [Il (€ Pu) " o + 17 Neoll (7P) N
= Nl [F (a)] + 7.
1= allm Nl 12, + 5 Qi o+ o o) U1, + Aol 51 + Sl 1
= (olla” I} oo + Allm’ ||2) lle™™Pllaq (Itlloo + N1t oo ) 15 oo
=

Sllalleoli@12, + Alimlleolia o) [Il (e Pae) " ah + 1 leoll (7Y o]

and
¥ = (llulloo + 15 llo) lle™™ Pl
Consequently,
Y2h +y3 |Fh (k))| v y2h + 73 'Fh (k))’ .
e = 2 lloo < : :
Yo Y1

Proof. Letk > 0. In an analogous way to the proof of (3.20) and (3.21), we have that

—am/D —am/D ~(k)

70||W||% < bu+u(k)(W e _w(w, e w), w:i=u-—i,

w) and W5 <b

u+ ll

Now we will prove that
bysa W, V) < y2h + 3 |Fh )|l where v := e P —al).

Considering v, := m,(v), it suffices to show that

1
Do vi) = b, v) + 8 f aiiy) e "Pw? < y3h, (3.27)
0

because u satisfies (3.2) and

bl @ ) < VEER@] < (o + 1750 ) el I ()
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Therefore, it remains to prove (3.27). As in the proof of Theorem 3.4.1, we know that

bh(k)(uh ,vi) — b (u(k) V) +6f aﬁ(k)e am/D,,2

1 1 1
= —a/f E /v;lu;k) —a/f m’ﬁ;lk)E;+f (6E i - AE )vhu;k) f ((5auzk) Am)E T
0 0 0
k —r(k — k _ ’
< yaah+ o (I loolla@ oo + o Neolli 1) [1 (7 Pu) " o + 1@ Neoll (€77 P) Moo | 1+ y23h + y2.4h.

(k)

‘Ol , we obtain that

Then, it is necessary to find an upper bound for ||i, Indeed, denoting z := i,

1 1 1 1
D (z’)2 = bi‘ (z,2) + ozf m(m)zd + /lf m(m)z — 6f (@), (3.28)
0 0 0 0

Consequently, as

1 . 1 . 1 1
2 f s f (rum')) 2 = ' - f (') = m'y 2 f w2,
0 0 0 0

bl (z,2) = 2" Fy(@) < |Ia |l [Fu(2)],
we deduce from (3.28) and (1.5) that

and

DIZI; < 1l [Fp@); + 7-
The proof finishes using that

—(k k
o = 2o <l = 1 + 1 (1 = 0 .

3.5 Simulations

In this section we present the results given by Theorem 3.3.1, Theorem 3.4.1 and Theorem 3.4.2 applied
to a first problem and Theorem 3.3.1 and Theorem 3.3.2 applied to a second different problem.

3.5.1 Numerical results for m(x) = cos(x),a(x)=land D =a=1=06 = 1.

We will obtain the a priori and a posteriori estimations of the error for the following problem

—@ + sin(x)u) = cos(x)u — u?, x€(0,1),
u'(0) =0, (3.29)
u' (1) = —sin(D)u(1).

Firstly, using the existence of the supersolution U and the subsolution U of (3.29),



42 Chapter 3. The generalized diffusive logistic equation

U:=2 and U = cos(1)ec®™cosh,

satisfying 0 < U < U, we ensure the existence of a unique positive solution u of (3.29). Moreover, u is
bounded as follows

0.5 < cos(1)ecs™=(M < y(x) <2 forall x € [0,1]. (3.30)
Hence, from Theorem 3.3.3, if & < 0.0012 < A%, it is true that
E :=0.0993 (¢80, g0 geoston))
satisfies (3.10). Now, as iy, > 1/2, the hypothesis of the Theorem 3.3.2 are satisfied choosing

w”:=E a”:=M1,...,1), M:=2, and /<0.0012.

Thus, the sequence in (3.11) converges to a positive solution u, = (up, Up1,-- ., upy) of (3.4), this
solution is unique in [0, M] and it satisfies

N
£:=0.17 <up(x) <2, where uy(x) = Z U 1pi(x). (3.31)
i=0
We plot in Figure 3.1 the a priori estimates of |[u — u|, || (u — u;,)’ ||* and ||uy, — ul|. given by Theorem
3.4.1. To do so we proceed as follows, using the bounds given by (3.30) and (3.31), we have that
ge”!
2 — cos(1)el=cos(D)’

1

Yo=ge ', y = ya1 < 16e”Win(1), ¥ < 2sin(1) (2 + h) + 14,

22 < (2 +sin(1) \7) (nh + 2sin(D)e™ D), yy5 < 8e™Dh, ¥4 < 6(nh + 2sin(1e” V),

"
where 1 := || (e‘ Cm(x)u) ||l,. Furthermore,

Q ’ . —_ S .
7 < I (e D) Noolle’ + sin()uleo + lle™lleoll (' + sin(x)u)’ flo-
To estimate || (u” + sin(x)u)’ ||, We use that u is a solution of (3.29). Hence
I + sin(x)u) lleo = [l cos(xu = 1leo

Now we integrate the corresponding equation of (3.29) to obtain that

f ) u? — cos(Hu dt = f ' (' +sin(Hu) dr = ' (x) + sin(x)u(x)
0 0

holds true for each x € (0, 1], because ’(0) = 0. Thus

' + sin(x)ulleo < [l cos()u — 1?|co,
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100_
........... [lu—unpl|2
_____ llu'=u'sll2
o — |lu—unll«
1072 -
1073 4
\\

1073 1074 1073 10°% 1077 1078 107° 10710

h

Figure 3.1: A priori errors for the problem (3.29).

which due to (3.30) leads to
n < (sin(De™ < + e=D) || cos(x)u — 1los < ™V (sin(1) + 1) (4 — cos*(1)).

Finally we will obtain the estimations of |lu — ﬁ;k)Hz, I (u - ﬁ;k)), |I?> and ||ju — ﬁ;k)llm, given by Theorem
3.4.2 and afterwards, we will present them in Table 3.1. It is important to highlight that, in our case,

higher levels of precision (see [9] for more details) are required to obtain that
|F al | <(N+ 1)max|Fhl &) |—>0 as k — oo,
Using the following notation

(k) (k) (k)
& := min i, (x My = max i, (x and |F | s
k x€[0.1] h (0, k - €01 h (X, {: h 1

we deduce that the constants in the Theorem 3.4.2 are bounded as follows

ake‘l

W, Y21 <22+ Mk)Mke_cos(l) sin(1), ¥ < Mé+79,

-1
70 Z &xe 71 Z

1
5 < sin(1)M? + 5 (sin(1)h + DM + M + M}, y2 < (Mg +sin(1) \3) (nh + My sin(1)e™ "),
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Y23 < 2+ M)Mie™ ™ Dh,  yy4 < (M + M) (nh + My sin(1)e” °°S(')), y3 < (2 + Mp)e™ D),

where 1 := || (e‘ °°S(x)u)” |, is estimated as before.
Coh [k R @) e e a I e )l
10376 452-100™ 1.48-107" 1.59-107T 3.08-107T
1016 453.-10°° 47.1072 5.02-1072 9.73-1072
10° 16 453-100 1.48.1072 1.59-1072  3.07-1072
10°]6 453.100 47-107° 5.02-10%  9.72-107°

Table 3.1: A posteriori error for the problem 3.29.

3.5.2 Numerical results for the case m(x) = sin(x + 1),a(x) = 1,D=06=41=1

and a = 200.

1.4 1

1.2 1

1.0 1

0.8 A

0.6 -

0.4 4

0.2 4

0.0 A

-0.2 1

Figure 3.2: The iterations ﬁ;lm) for the problem (3.32) with different /.
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Consider the following generalized diffusive logistic equation

—@’ —200cos(x + Du) = sin(x + Du — u?, x€(0,1),
u’(0) = 200 cos(1)u(0), (3.32)
W (1) = 200 cos(2)u(1).

We will study the behaviour of the iterations of the Newton Method for different choices of 4. For this
problem, Theorem 3.3.2 provides M = 201 in (3.12) and ensures that the Newton Method converges
for an initial data M := 201(1, 1,...,1) if 4 < hyo; ~ 1/121. Recall that, by (3.9), Theorem 3.3.1 yields
hyop = 1/121.

We plot in Figure 3.2 the corresponding fourteenth iteration of the Newton Method for a set of
five decreasing values of & verifying

I (3] ~ 10

The effect in the fourteenth iteration when & > 5y, is appreciated in the simulations shown in Figure 3.2

0.12 1.45
— h=1/8
016 - h=1/15 Lo
——- h=1/30 :
008 h=1/50
— h=1/122 1.35 o
0.06 A
1.30
0.04 A
1.25
0.02 A
0.00 - 1.20 :_j' i
-0.02 T T T T 1.15 i T T T T -
0.300 0.325 0.350 0.375 0.400 0.52 054 0.56 0.58 0.60 0.62

Figure 3.3: Zoom of Figure 3.2.

and Figure 3.3. Moreover, we have done a zoom in Figure 3.3 to better observe the different cases: on the
rise (left) and in the peak (right). Thus, Theorem 3.3.2 ensures the convergence and the monotonicity of
the iterations of the Newton Method, as in (3.13), only for # = 1/122 among all & considered in Figure
3.2. It can be seen in Table 3.2 some cases in which the difference between two consecutive iterations
of the Newton Method changes sign, consequently they are not ordered as in (3.13), for & > hyy; . We
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also provide in Table 3.2 the values of

min {ﬁﬁlk) - ﬁ;lkﬂ)} = mlln {ﬁzkl) - ﬁgf;rl)} (3.33)
for two different situations for each A: when (3.33) is more negative and for k = 13. Finally, we show
in Figure 3.4 that the iterations of the Newton Method are ordered if & < hy(;, however when h > hyg
they intersect.

2k minfa’ - [ h k minfo)) -af ) |
1/8 4 -2.09 1/30 2 -1.7-1073
1/8 13 -1.42-1078 1/30 13 -252-10°™
1/15 4 -0.1 1/50 5 -2.16-1071
1/15 13 -8.29-10°10 1/50 13 —422-107%

Table 3.2: Several cases when the iterations do not satisfy (3.13).

3.0 le-10 3.0 le-10
254 2.5
2.0 2.0
1.5 15 4
1.0 1 1.0
0.5 0.5
- //
0.0 - 0.0 4 —
-0.5 A -0.5

T T T T = T T T T
0.000 0.025 0.050 0.075 0.100 0.000 0.025 0.050 0.075 0.100

Figure 3.4: Zoom of several iterations for the case & = 1/30 (left) and & = 1/122 (right).



Chapter 4

The generalized diffusive logistic
equation with change of variable

4.1 Introduction

In this chapter, we will apply the results of Chapter 2 to the problem (1.1) with @ > 0 and m” # 0. For
this goal, it should be noted that the change of variable

u =@y “.1)

transforms (1.1) in the following heterogeneous logistic equation

= () = L) = = Saem e xe0,1)
D 2D 4D? D ’ T
(4.2)
—W(0) + o= Ow(0) = 0, W (1) = ~=m'(Hw(1) = 0
w 2me-,w 2me-.
Then, (4.2) is a self-adjoint problem and it can be rewritten as
—w” = c(xX)w — a(x)w?, x€(0,1),
=w'(0) + Bow(0) = 0,
w' (1) +Biw(l) = 0,
where
P 2 5
€)= Sm) = s () = s () G 1= Sale )/ er)
a 04
= —m' =——m . 3
fo = 35mO), Bri= =5=m' () 43)

Since we have assumed that D > 0,6 > 0, @ > 0, m € C?[0, 1], m’(0) > 0, m’(1) < 0, a € C[0, 1] and
a(x) > 0 for all x € [0, 1], it follows that By > 0, 81 > 0, ¢ € C[0, 1], @ € C[0, 1] and a(x) > 0 for all
x € [0, 1]. Then, the hypotheses on the heterogeneous logistic equation (2.1) of Chapter 2 are verified.
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On the other hand, note that (4.2) has a unique positive solution, denoted by w, in the same way
that (2.1) possesses a unique positive solution u. Moreover, w satisfies

1 1 1
f W — f cwy + Bwv + f aw?v =0, Yve H'Y(O,), (4.4)
0 0 {0,1} 0

where B(0) = By and B(1) = B;. Thus, considering the space of piecewise linear finite elements V), C
H'((0,1)), h > 0, it follows that the approximation of w, denoted by w;, € V}, satisfies

1 1 1
f wyv, — f m(C)wpvy + f Bwpvy + f n;l(fl)wﬁvh =0, Yv, €V, 4.5)
0 0 {0,1} 0

where 7, is the interpolation operator onto Vj. Consequently, we propose

am/(2D)

uy = my(e W)

as the candidate to approximate to u in Vj,.

4.2 Applying and improving the Chapter 2

In a similar way to Chapter 2 for D = 1 = ¢ = 1, we define the following bilinear forms
1 1 1
bw,v) := f w'v'—f cwv+f ,8wv+f afwy
0 0 0,1 0

1 1 1
; . . ~
b (wh, vp) = f WiV, — f mr(wyvy + Bwivy + f (@) fWavh,
0 0 0.1 0

and

with S(0) = By and B(1) = B;. Then, obtaining wy, € V,, satisfying (4.5) is equivalent to solve
Fup(w;) =0 (4.6)

where F, : RV — R¥*! is defined by

1 N
Fiu(z) = (Ap + Yp(2)z, A)= {bg(#’jaéoi)}g:o and Yj(z) = {fo ﬂh(a)wj%} )

i,j=0

where i indicates the row and j indicates the column, and z = (zo, 21, .., zv) and z = Zf\io Zipi.
Now, we look for both a positive strict supersolution and a subsolution of (4.6) (see (2.6) and
(2.7)). Moreover, taking into account the hypothesis assumed on m(x), we have that

c(x) 4DAm(x) — 2am’’ (x) — &> (' (x))?
X — = > 0.

47
O A A 4Doa(x)e™ /D) @.7)

Then, by the Theorem 2.4.2, M := M(1, 1, ..., )T satisfies

FM) >0 and M > 0.
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Thus, M is a positive strict supersolution if F,(M) # 0. On the other hand, since m(x) > 0 for all

x € [0, 1], we know that

w = ge®™/CD)

is a positive subsolution on (4.2) satisfying (2.35) if ¢ is sufficiently small. Consequently, if 4 is suffi-
ciently small and m € H*((0, 1)), we apply the Theorem 2.4.3 to prove that

F,(E) <0 with E = (w(x), w(x1),...,w(xy)). (4.8)

The following theorem gives a positive strict subsolution of (4.6) in a similar way as Theorem 3.3.3
does.

Theorem 4.2.1. Suppose m € H*((0, 1)). Then,

E =g (m00)/@D) gome/OD) | pam(n/(2D))
where Ami )
MiNye(o,1] M(X
O<e<— = (4.9)
26llalleolle™™ /Pl
satisfies (4.8) if
. 2/3
h<ht e V31 MiNeqo,1] 71(xX)
B 42D/, ((llclleo + llmlle ) 11 (/@)Y Iy + fleem/ @D [lc” )
A a a?
where c(x) = Bm(x) - Em”(x) - H(m’(x))z.
Proof. We will prove that
F.(E) = b"(E, ;) <0 foreach i€ {0,1,...,N}, (4.10)

if E = m,(w) and w := £e®"W/CD) Note that

1 |
f m’gogz—f w”¢; foreach ie{l,2,...,N -1},
0 0

1 1 1 1
f Wy = —Bow(0) — f w”¢@y and f Wy = -Biw(l) - f won.
0 0 0 0

Thus, it is easy to obtain that

1 1
b’E(E, ©) = j(; (E' —w)g! + fo‘ (—m” —mp(c)E + m,(Zl)Ez) i

foreachi € {0,1,..., N}. Moreover, since

A 1
”:(Bm—c)y and f(E'—y')(p,f:O foreach i €{0,1,...,N},
0
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it is enough that

1 1
BL(E, @) = fo (cw - mi(@E) s + j; (ﬂh(Zl)Ez—%mv_v)(p[<O @.11)

to prove (4.10). Thus, we deduce (4.11) if & < h*. Indeed, by (1.5) and the Holder inequality, we have
that

1 1 1
fo (ew - mu()E) i = fo (c = ma(c)) wep; + fo m1(©) (w = E) @i < (Iwlleolle” 2 + liclloollw”Il2) 2 lpillo

and
1
f m(E = w)gi < lmlloollw” [2hlgill
0

Then, we deduce that

’ /l 4 1 ~ /l
PhCE, @ < (Il + (el + Sl 1”1 ) ¥l + f (@E - 5m)Eg. @12
0
Now, by (4.9), we know that

A 26 A
e— = min m(x) < =lallelle® Pl € = = min m(x) < 0.

am/D
e D xe[0.1] D D x€[0,1]

0
8(e) := Sllalllle

Thus, it is possible to find an upper bound for the second integral of (4.12) in the following way

! 5 A ! g(e)eh
j(; (m,(a)E - Bm) Eyp; < g(é‘)jov Ep; < M 4.13)

Consequently, by (4.12), (4.13) and ||¢;ll, < (2h/3)"/?, we obtain that

g(e)eh

A
h . 7 -~ ’ 2 1/2
DEE. @) < (Il + (el + Tl o) 2 2n/3)' + 5 e

Finally, (4.11) is satisfied if
—am am 7’ /l am "
8(e) < 20 P (1™ Pl e + (el + Sl )11 () 12 213!,

or equivalently, if

. _ ’”
Amin,ego ) m(x) = 2Dl )|, ([l D[ [l [l + (llclloo + Slimlles) 1| (7™ D) |1y) h(2h/3)!1

Sllalloslle™™ Plloo

e <

which holds true because & < h* and (4.9). O
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Now, according to Theorem 2.3.4, to guarantee that the elements of the subdiagonals of
Jh(Z) = Ah + 2Yh(Z)

are negative for all 4 < hy; and foreach z <M := M(1,1,..., DT, we need that

24D? 12
]’ZM .

= \|I8DsMaea/@D) — 4D m + 2Dam’” + a*(m’V|jes

)

with hy; = co if the denominator is equal to zero. Now we can apply Theorem 2.4.4. Note that the
sequence in (2.27) is not needed in this chapter. Thus, the following theorem is analogous to Theorem
3.3.2. We will omit the its proof because it is similar to the proofs of Theorem 3.3.2 and Theorem 2.3.6.
As before, the case in which M is itself a positive solution of 4.6 is excluded.

Theorem 4.2.2. Ifw,” := M = M(1,1,..., )T, with M defined in (4.7), Fy(M) # 0 and h < hy, the
sequence

wh(kJrl) — wh(k) _ (Jh(wh(k)))_th(wh(k))’ k > 0’ (414)

where Jh(wh(k)) = AL+ 2Yh(w,f")), is well defined, it converges to some solution of (4.6) and

0< Wh(k”) < wh(") <M forall k>0.

Moreover, if m € H*((0, 1)), h* and E are as defined in Theorem 4.2.1, E < M and h < h*. Then
0<E< w,f") forall k>0

and consequently, (4.14) converges to the unique positive solution of (4.6) between [0, M].

As we have already seen w;, = (wj, 0, whgl,...,wh,N)T is a solution of (4.6) if, and only if, w;, =
Zfi o Wh,i; satisfies (4.5). Hence, thanks to Theorem 4.2.2, the function wy, and the iterations of the
Newton Method

N
- (k) _ — (k) = (k) _ (=) - (k) — (k)
w, = E Wy i Pis where w, _(Wh,O’Wh,l""’Wh,N)
i=0

are bounded by constants that do not depend on 4 :
0 < ge®Mmen MR <y () < 5P (x) <M forall x € [0,1] (4.15)

and ¢ satisfies (4.9). Hence, to prove that wy, converges to w when # tends to 0, we may apply Theorem
2.5.3 if a € H*((0, 1)).

Now, consider u;, = m,(e®/?Pw,). We prove that u;, approximates to «. Indeed, by (4.1) and
Proposition 1.2.1, it is apparent that

||Mh _ u“oo < “ﬂ,h(eam/(ZD)Wh) _ eam/(ZD)Wh”oo + ||€a/m/(2D)Wh _ e(lm/(ZD)M/”oo

’
< willoll (™) Nl + 1™ 2Pl Iwy, = Wlleo. (4.16)
Moreover, by Theorem 2.5.3, there exists a constant C > 0 such that

wh = Wlleo < 2llwy = wilgn < 2(Ch+ VA2 + 1{Iw” 1) . (4.17)
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Therefore, from (4.15), (4.16) and (4.17), we deduce that u;, converges to u whe h tends to 0.
The next theorem provides the estimates for the norms of the difference between u and the iteration

—(k) . 2D) —(k
Lt;l) =Ty <eam/( )ng )),

and w and w ). These errors depend on F, ( ) that converges to 0 when k — oo.

Theorem 4.2.3. Suppose a € H%((0, 1)) and m € H*(0, 1)). Under the assumptions of Theorem 4.2.2,
the following estimates hold true for each k > 0,

17 = ulles < IWPlall (7P floh + 1™ PP o 17 = Wi, (4.18)
and
1
9 = wileo < (R + h V2 + )||w"||2+(—+ﬁ)h +(—+ )(6/h)”2'F (’“), 4.19)
Y1 Yo Vi
where
(k) . Yo
_ - 0
0= i o). = min{ i}
and

k ~ k)2
2 = WP lleolle” Il + Nl 1210112, +

+ (llaw = clloo + lallooll5 oo ) 1w I,
where a and c are defined in (4.3) and g* is the positive part of g := ¢ — aw.

Proof. Since w is a positive solution of the problem (4.2), w is a positive eigenfunction associated with
the eigenvalue O of the following eigenvalue problem

=" =+ awy = oy, in (0, 1),
{ =" (0) + Boy(0) =
Y1)+ Bry(1) =0

where ¢, a, By and B; are given in (4.3). Thus, by [37, Th. 7.7 and Th. 7.8], O is the corresponding
smallest eigenvalue. Moreover, from the Rayleigh formula applied to the symmetric form b,,, it follows
that

by(v,v) >0, Yve HY((O,1)). (4.20)

Now, for k > 0, we will prove that
by 50 (v,v) 2 yolvll; and by gm0 (v,v) 2 yilvIl, . (4.21)

Indeed, by (4.20), we have that

1
~ —(k) 2 2
by (020) > fo > yollvIE.

Hence, the first inequality of (4.21) is proved. On the other hand, thanks also to (4.20) we know that

1
k) 2
w+w(k)(v v) > ub,,(v,v) +f(; aw;)
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for some u € [0, 1]. Then, as By > 0 and 8; > 0, we have that

1 1
by () 2 g f () + f 00 =l (¢ = aw)* [l)v?
0 0

and, choosing p = 1 if y9 — || (¢ — @aw)* || > 1, or otherwise,

_ Yo
L+ (c—aw)" [le

=y —pllc—aw) o, ie., u € [0,1],

we obtain from (4.22) the second inequality in (4.21).
Next, we will prove that

B s vi) < v2R2 il + (6/1) Pllvylla [F (W) where vy 1= ) = .

First, by the Cauchy-Schwarz inequality and Proposition 1.2.2, it follows that

bl (54 v0) < VIR < vl [B (857)], < 6/ Pl [ (87,

Moreover, as w satisfies (4.4), it is enough to obtain that
b (Wp Vi) = bW, v) + b (W, 1) < yah?|vall
W+wh hs Vh w s Vh WLI{) h h —72 hil2-

Now, we will prove (4.24). Indeed, defining E¢ := m;(f) — f, we have that

1
f E,v,=0 and BE, v, = 0.
0 {0,1}

Therefore, it follows that

h — (k
B (s V) = Do, 00) + B (7, 1)

1 1 1
= —j(; ECWEZC)W, + fo‘ E; (W;lk))z vy + fo‘ [(Nl (W + W;lk)) - C] E, v,

Consequently, by the Holder’s inequality and (1.5), we obtain (4.23).
Finally, if v := m,(w) — "’ in (4.21), from (4.23) it is apparent that

yollmu(w) = T2 < yahlimw) = w1l + 6/ lmow) = w1l [ (%))

and
Pllnn) = B0, < yahtlmow) = w1l + 6/ imyow) = w1l B (%)),

Then, removing terms in (4.25), we deduce that

yollmaw) = 501 < 3ol + 6/ By (W)

53

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

4.27)
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and thus, by (1.5), we have that
_ _ ” 6/m'? _
I = 50l < =m0l + o) = 0l < B+ 220+ = R (W) @29)

And, in the same way, since
_(k _ (k
llzn(w) = W lla <l (w) = 50l

we obtain from (4.26) and (1.5) that
6/h)'"?
I = 0 I = s+ n) — 0 < NI+ Tl + 2282+ O |, ()]
71 Y1

Therefore, (4.19) follows from

_(k —_ (k = (k
I =l < llw = 9112 + [w = 3l
Moreover, replacing wy, and u;, by w;’” and ﬁzk), respectively, (4.16) implies (4.18). O

4.3 Simulations

We will apply the results of this chapter to the problem

—@ + sin(x)u) = cos(x)u — u?, x € (0,1),
u'(0) =0, (4.29)
' (1) = —sin(1)u(1).

First, we propose the change of variable
u= ecos(x)/ZW
that transforms (4.29) into

—w” = 0.25 (6 cos(x) — sin(x)) w — e« 2y2, xe(0,1),
(4.30)
w'(0)=0, w()+0.5sin(H)w(l)=0.

Note that (4.30) possesses a unique positive solution w, because (4.29) has a unique positive solution as
we have proved in the Subsection 3.5.1. Moreover, we know that

W:=15¢""2 and W = cos(1)e®3costcosth
are a supersolution and a subsolution of (4.30), respectively, and they satisfy 0 < W < W. Moreover,
0.41 < cos(1)e3costcos) < o) < 1.5¢712 <091 forall x € [0,1]. 4.31)
Second, from the Theorem 4.2.1, we deduce that

E := 0.0993 (ecos(xo)/Z’ ecos(xl)/Z’ o ecos(xN)/Z)
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satisfies (4.8) if & < 0.141 < h*. Now, if M := W and k < 0.141 < h* the hypothesis of the Theorem
4.2.2 are satisfied because iy, > 1/2. Thus, the sequence in (4.14) converges to a positive solution

Wy = (Wno, Wnis- -, Wpy) of (4.6). This solution is unique in [0, M] and it satisfies
N
0.13 < wy(x) <091, where wy(x) = Z Wh,ii(X). (4.32)
i=0
Now we will obtain the estimations of ||122k) — ||, given by Theorem 4.2.3. Afterwards, we will

present these estimations in Table 4.1. Using the notation

) — (k)
& = min i, (x) and M; := max i, (x),
k= oy () k= o h x)

we have that the constants in the Theorem 4.2.3 are bounded as follows

cos(1)/2

N T —(Z{(fs(l)el‘cosm’ 2 < 2My+0.5¢"2M? +(1.5—cos(1)e D 1 2y,

where 1 := |[w”||; is estimated from problem (4.30) and (4.31) as follows

W1l < W llee = llew — aw?lleo < 2.25¢7 "% = cos?(1)e! 7251 ~ 0.92

Ch [k R, =Pl -l
1072 ] 4 1.4-1078 1.05-1072 2.07-1072
10° [ 4 444.-10° 935-10* 1.87-107°
10* 4 141-107 9.36- 1073 1.87-107*
1055 130-10 92.10° 184-107

Table 4.1: A posteriori error for the problem 4.29.

Finally, it is important to comment that 128-bit floating-point arithmetic (quad precision) is re-
quired for the case & = 10> because of the bad influence of the rounding errors appearing if 64-bit
floating-point arithmetic (double precision) is used. In particular, the results of Theorem 4.2.2 are not
satisfied for k = 4 and it is not possible to obtain

[FA (W0)| < 107"

for some k > 0 if the double precision is activated. Fortunately, the problems are eliminated using quad
precision.
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Chapter 5

Conclusions

This thesis introduces the discrete sub- and supersolutions method to simulate the positive solutions
of the generalize logistic diffusive equation. This new method provides exactly an algorithm with all
the necessary details, like the initial data, the step size and the stop criterion among others, to approx-
imate the positive solution of a current research problem. In addition the method calculates explicitly
the difference between the approximated solution and the solution. Consequently, the discrete sub and
supersolutions method provides the keys to optimize the finite element mesh size when applied to non-
linear equations with varying coefficients.

The necessary and sufficient conditions that guarantee that the Discrete Maximum Principle (DMP)
is fulfilled are the key tools throughout the thesis. The DMP in this thesis is the discrete version of the
characterization of the Maximum Principle in [40], [8] and [37] that has inspired us. To ensure the con-
vergence of the Newton Method, it is enough that the iterations are positive, are ordered and do not
intercross. For all this to be fulfilled, it is required to restrict the mesh size so that the DMP is satisfied.
Also, it is required the initial data of the Newton Method to be a positive strict supersolution. In this
thesis, we provide this mesh size and one positive strict supersolution for each discrete problem studied.

Once the converge of the Newton Method is guaranteed, it is necessary to find a positive constant
limiting below all iterations, independently of the mesh size. This constant ensures that the coercivity
constant does not depend on the mesh size which is essential to prove that the approximate solution
effectively converges to the solution of the problem. In this thesis, we prove that, thanks to the DMP,
a positive strict discrete subsolution limits bellow all iterations but it would be necessary to check that
this subsolution is bounded below by a positive constant, independently of the mesh size. Fortunately, if
the mesh size is less that a second threshold, a theoretical subsolution, maybe more restrictive, provides
us this positive constant. In addition, in this thesis, the second threshold is provided for each discrete
problem.

The discrete sub- and supersolutions was introduced for the first time in the recent paper [5] for
a heterogeneous diffusive logistic equation, which is written up in Chapter 2. The referee of this paper
exposed:

“This works considers the stationary logistic equation, set in one spatial dimension, with variable
coefficients and Neumann or Robin boundary conditions. The authors establish some conditions to
ensure that the discretization of the problem via the nonlinear finite elements method converges to and
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has the same shape of the solution of the original continuous problem.

The main novelty is the use of discrete sub- and supersolutions to guarantee that the Newton
(or modified Newton) method converges to the solution of the discrete problem. The key for that is
a characterization of the validity of the discrete maximum principle, which is a counterpart of the
continuous version established in [40] and later refined in [8].

The techniques developed in this work are very innovative since they build an easily implementable
bridge between continuous and discrete problems, that can be extended to many other differential prob-
lems of elliptic type. Moreover, the mathematical presentation of the results is pretty clear and the
simulations of Section 6 help to understand how the developed theory works. For all this reasons, 1
recommend this work for publication in the Journal of Differential Equations.”

The main goal of this thesis is to approximate the positive solution of the generalized diffusive
logistic equation. In Chapter 3, we apply the discrete sub- and supersolutions method to this model
and successfully achieved our goal. Similar results to those of Chapter 2 are achieved depending on the
parameters of the model. The great difficulty of this problem is that is not self-adjoint, but it is possible
to apply a change of variable to obtain the coercivity constant and thus, to prove the convergence. Also,
a different strategy is considered in Chapter 4. Applying a change of variable, we transform the model
in a self-adjoint problem in order to use the results of Chapter 2.

The two strategies provide methods to approximate the positive solution of the generalized dif-
fusive logistic equation. It is important to highlight that each strategy either provides different initial
data, step size, stop criterion and explicit error. We provide them for the same example in Chapter 3 and
Chapter 4. Clearly, the errors in infinity norm are better for “normal” parameters if we apply the change
of variable because in this case the error is bounded above by a constant dependently of / against i!/?
without the change of variable. Nevertheless, when we apply the change of variable using the expo-
nential function, the underflow and overflows have to be checked. Also, it is necessary to approximate
the second derivative of m, thus more regularity on m is needed. Consequently, we suggest taking into
account both strategies and to calculate both errors.

Finally, we would like to comment that the discrete sub- and supersolutions method opens the
possibility of being able to use it with other numerical methods different to the Finite Element Method
and also to apply it to many others nonlinear partial differential equations. Moreover, the following step
is to treat the case of several dimensions, but we have preferred to choose it in one dimension, because
the method is new.
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