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1. Introduction

Computer vision is essential for developing artificial intelligence systems

as it enables machines to understand the observed environment. It aims

to extract information to describe the world from image data. Today,

computer vision has been used in a wide variety of real-world applications

like autonomous driving, robot navigation, image retrieval, etc.

In recent years, deep learning has become the dominant tool for com-

puter vision because of the ability to learn complex low-dimensional latent

representations of high-dimensional data. Instead of using hand-crafted

features, deep learning methods learn latent representations from input

images via a number of non-linear layers, and the learned representations

have achieved better performance in different tasks like image recognition,

semantic segmentation, etc. Moreover, learned representations enable AI

systems to adapt to new tasks quickly compared to hand-crafted features.

Though deep learning shows the promising potential of learning latent

representations from visual data, it is not good for interpretability. On the

other hand, since we have prior knowledge of the world already, we can

utilize it to learn better latent representations. This thesis explores some

ideas to encode different types of prior knowledge in the latent space for

deep learning methods.

Basic mathematics research gives a comprehensive understanding of

geometric relationships between multiple views [26], In that case, some

complex geometric relationships do not need to be learned from scratch

by deep neural networks. For example, given a pair of images from rec-

tified stereo cameras, the depth can be observed from stereo disparity.

Many traditional 3D vision methods are based on multi-view geometry.

Though these classical methods have shown good results under most ideal

Lambertian scenes, they are not robust enough. For example, challenging

regions like texture-less regions or reflective surfaces are often difficult

to be reconstructed. Since deep learning methods can introduce global

semantic information, the integration of multi-view geometry and deep

neural networks shows great potential in improving the prediction quality.

Chapter 2 will review the learning-based methods for multi-view depth
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estimation.

While frame-independent predictions with deep neural networks have

become the dominant solution to many computer vision tasks, in some

applications, the images are strongly correlated (such as the temporally

consecutive camera frames), and the potential benefits of inter-frame rea-

soning have received less attention. On the other hand, probabilistic

machine learning provides the ability to encode correlation as prior knowl-

edge for inference. Chapter 3 will present methods that combine Gaussian

processes and deep neural networks for different computer vision tasks like

multi-view depth estimation, stereo matching and novel view synthesis.

Since computer vision aims to extract useful information to understand

the world from images, it is beneficial to learn latent representations that

can identify and disentangle the underlying explanatory factors. For some

applications, the underlying factors are well-studied and we can leverage

the specific domain knowledge of data. For example, for images captured

by a camera, we know they depend on both the observed scene, camera

model and camera pose; for images of clothing items, we know the semantic

attributes like color, shape, and length influence the appearances. This

domain knowledge can be used to help design algorithms for learning

representations that can disentangle the factor of variation. Chapter 4

will present methods that utilize the prior knowledge of data domain to

learn disentangled representations for computer vision tasks like novel

view synthesis and image retrieval.

1.1 Contributions

All publications and codes are available as open access. The main contribu-

tions of the thesis are listed below:

• In Publication I, a method for multi-view depth estimation is introduced.

Inspired by the traditional plane sweep algorithm, the proposed frame-

work is the integration of multi-view geometry and deep neural networks.

A novel plane sampling strategy is proposed to provide better corre-

spondence candidates. The mask-based multiplane representations are

learned to aggregate geometry information without using hand-crafted

cost metrics after building the volume via differentiable homography

warping.

• Publication II, Publication III and Publication IV explore the combi-

nation of probabilistic methods and deep neural networks to learn cor-

related representations for different 3D vision tasks. For images with

given camera poses, Publication II proposes a soft constraint in latent

space via a tailored Gaussian process prior to alleviate the temporal

12
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inconsistency in multi-view depth estimation. Publication III extends

Publication II to the stereo matching problem and proposes a new prior

kernel that is based on gyroscope data. Publication IV proposes a novel

kernel to encode 3D camera orientation. The proposed kernel can be

used to manipulate the latent representations in generative models to

synthesize novel view images.

• Publication V presents a method that learns equivariant representations

for novel view synthesis, which takes advantages of both image-based

rendering methods and pixel generation methods. By leveraging the

transforming auto-encoders [31], the learned equivariant representations

can predict depth maps for novel target views, and the predicted depths

guide the alignment of the feature maps for skip connections.

• Publication VI presents a method that uses known semantic visual

attributes to learn attribute-specific disentangled representations. The

disentanglement plays a key role in interactive fashion retrieval for

obtaining more controllability of the search results since it is possible to

apply required operations in the desired subspace without affecting the

other subspaces.

1.2 Outline of the Thesis

This thesis consists of an overview and an appendix, which includes the

original articles. In Chapter 2, a brief review of previous work on multi-

view depth reconstruction is presented. Chapter 3 focuses on learning

correlated latent representations with Gaussian processes. Different co-

variance functions for encoding prior of camera poses are also presented

in detail. Chapter 4 studies two different ways of learning disentangled

representations. Chapter 5 discusses the limitations and future directions

of the research. In Chapter 6, the conclusion of the thesis is presented.

13





2. Deep Geometry-based Depth
Reconstruction

Depth estimation from images is a fundamental problem in computer

vision, and any progress in the field can have direct impacts on applications

like autonomous driving and augmented reality. Given a set of images

of a scene or an object, after the camera motion is recovered, multi-view

stereo (MVS) aims to assign each pixel in the images a 3D point. For 3D

geometry reconstruction, the related classical methods can be divided into

three categories: direct point cloud reconstructions [21, 51], volumetric

reconstructions [48, 73] and depth map reconstruction [5, 78]. This chapter

will focus on depth map reconstruction methods.

The key of recovering the 3D geometry is to solve the correspondence

matching problem across the input images. To find the corresponding

pixels, two essential elements need to be considered: potential pixel candi-

dates in other views that can be generated efficiently and the cost metric

that can measure the similarity of the given candidates. Since the cam-

era parameters are given, the correspondence matching problem can be

regarded as a 1D search along the epipolar line [26]. For the similarity met-

rics, there are different photo-consistency measurements that are common

for pixel-based matching [33]. Given two images I i and I j and a 3D point

p that can be seen by all two images, one can compute the photometric

consistency between the projections of point p as:

Ci j = ρ(I i[Ω(πi(p))], I j[Ω(π j(p))]), (2.1)

where ρ(f,g) is the similarity measures between input vectors f and g, πi(p)

is the projection of 3D point p in image I i, Ω(x) denotes a support domain

around point x. Different photo-consistency metrics can be defined as

different choice of ρ(f,g) and Ω(x). There are popular options like the sum

of square difference (SSD) and the zero-mean normalized cross correlation

(NCC). The SSD computes the L2 distance between input vector f and

g: ρSSD(f,g) = ||f−g||2. Though the SSD is time-efficient, it is not robust

enough to illumination gain and bias. The NCC is a commonly-used cost

metric in MVS methods. It considers the illumination gain differences in
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the matching domain via normalization:

ρNCC(f,g)=
(f− f̄) · (g− ḡ)

σfσg

,

where f̄ denotes the mean of f and σf denotes the standard derivation of f.

To solve the correspondence matching problem across multiple images,

plane sweep algorithm [14] discretizes the depth space with fronto-parallel

planes, projects images onto the planes, and measures the photometric

similarity of projected pixels on the planes. The projection is equivalent to

a planar homography warping from the neighbour frames to the reference

frame at sampled depths. Given the intrinsic matrix K, the relative rota-

tion R and the translation t, considering two camera models P=K[I|0] and

P′ =K′[R|t] and a plane defined as Π= (n⊤,d)⊤, the homography matrix can

be computed as:

H=K′
(︃

R−
tn⊤

d

)︃

K−1. (2.2)

With the H, the homogeneous coordinates can be transformed as x′ =Hx.

For M sampled fronto-parallel planes, the plane normal can be written

as n⊤ = (0,0,1), and d = −dm where the sampled depths dm ∈ [dnear,d f ar]

for m = 1, . . . , M. Under the Lambertian surfaces assumption, if the plane

is located at the real surface, then the colors of warped pixels should be

similar. Using a cost metric like SSD and NCC can measure the similarity,

and the depth map can be extracted from the cost volume via the simple

winner-takes-all strategy or designed global optimization strategies [41].

Recent success on deep learning has triggered the interest to improve the

MVS with learning-based methods. To encode the geometry information,

many learning-based MVS methods rely on plane sweep algorithm to build

cost volumes [35, 81, 86, 87, 36]. MVdepthNet [81] pre-computes a 3D

cost volume by using the absolute difference of RGB values as the cost

metric, and the cost volume is then stacked with the reference image as

the input to the framework. Instead of comparing the RGB difference,

MVSNet [86] extracted feature maps from images firstly and then built a

3D variance-based cost volume from the warped feature maps. DPSNet [36]

concatenate the warped features to obtain a 4D volume without using a

distance metric. Though the concatenated features improve performance,

the 3D convolution layers make the prediction slower. After aggregating

the cost volume with deep neural networks, to get the final depth map,

some methods turn the prediction into a classification task and use soft-

argmax operation to compute the continuous depth estimation [86, 36],

while some methods regress the predictions directly [81].
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2.1 Histogram-Based Depth Plane Sampling

The plane sampling plays an essential role in the plane sweep algorithm.

Both the number of planes and the selection of planes affect results. Gen-

erally, with more sampled planes, the accuracy of prediction will be higher,

but the time to construct the cost volume will be longer [81]. For plane selec-

tion, some methods uniformly sample planes in the depth domain [86, 91].

Give the pre-defined depth range [dmin,dmax], the i-th sample of Nd planes

can be selected by

di = (dmax −dmin)
i

Nd −1
+dmin. (2.3)

On the other hand, some methods show that uniformly sampling in the

inverse-depth domain improves performance since it provides denser sam-

ples in areas closer to the camera [36].

1

di

= (
1

dmin

−
1

dmax

)
i

Nd −1
+

1

dmax

. (2.4)

Most of these sampling methods rely on a pre-defined fixed depth range,

while methods like DeepMVS [35] pre-run the traditional methods like

COLMAP [71] to estimate the depth range firstly.

To enable the model to work for both indoor scenes and outdoor scenes

well with fewer planes at fixed ranges, Publication I proposes the idea

of sampling planes based on the cumulative histogram of depths, which

provides enough coverage of depth planes in both nearby and far areas

when the training set is a mixed dataset. The depth density and cumulative

depth density function can be defined as

p(di)=
ni

N
and P(di)=

i∑︂

j=1

p(di), (2.5)

where ni is the frequency of the depth value di, and N is the number of

pixels with valid ground truth depth values in the training dataset. Given

the cumulative density function P, a set of depth values can be sampled

with the inverse density function

di = P−1(θi), (2.6)

where θ0,θ1, ...,θNd−1 are uniformly selected quantiles of P within range

[θmin,θmax)

θi = (θmax −θmin)
i

Nd

+θmin. (2.7)

Figure 2.1 shows the comparison between histogram-based sampling and

inverse depth based sampling. The main motivation of sampling uniformly

in the inverse-depth domain is to have a higher density for close depths.
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Figure 2.1. Comparison between two different plane sampling schemes. (a) The upper
figure shows the selected planes from histogram-based sampling and the
bottom figure shows selections from inverse depth based sampling. The x-axis
denotes the depth in log scale, while the blue curves present the cumulative
histogram of depths of the training set. (b) Qualitative comparison between
inverse depth based sampling and histogram-based sampling on different
datasets.

Generally, there will be more pixels in nearby areas, so using histogram-

based sampling is naturally in accordance with the motivation. With

limited number of planes (Nd = 15) and the fixed depth range di ∈ [0.5,50],

most selected planes from inverse depth based sampling are located in

extreme close regions (di < 1), and for distant region there is no enough

planes. Differently, the histogram-based sampling provides coverage for

both nearby and distant regions with θi ∈ [0.1,1). Moreover, the curve in

Figure 2.1 shows the cumulative histogram of depths. The higher slope of

the curve means denser distribution of pixel depths. The selection results

show that histogram-based sampling provides more depth planes within

the depth range with a higher slope, and the density in closer areas is also

higher than far areas. The qualitative predictions show that histogram-

based sampling enables the model to work well with sparse planes in

both small-scale and large-scale depth scenes. For the last row in the

figure, extremely close objects get worse predictions with histogram-based

sampling than inverse depth based sampling due to the lack of depth

planes within 1 meter, which also shows that the plane selection has an

important impact on the final predictions.

In summary, the histogram-based sampling attempts to improve the

selection of potential candidates for correspondence matching. When

reducing the number of candidates (depth planes in plane sweep algorithm),

the plane sampling has a significant impact on the quality of predictions,

and the histogram-based sampling can deal with both small-scale depth

range like indoor scenes and larger-scale range in outdoor scenes with

the same fixed planes, by utilizing the distribution of depth values in the
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training set as a prior knowledge to guide the sampling.

2.2 Mask-based Multiplane Representation

Traditional plane-sweep based methods use hand-crafted cost metrics to

measure photo-consistency of warped images to find an optimal plane

for each pixel. For challenging regions like texture-less regions or non-

lambertian surfaces, the designed cost metrics can fail and lead to noisy

predictions. Some learning-based methods like DPSNet [36] use 3D con-

volution layers to aggregate concatenated feature maps directly without

using a cost metric, but it can be more time-consuming.

Similar to the intermediate multiplane representations for image based

rendering like Layered Depth Image (LDI) [74] and Multiplane Image

(MPI) [93], Publication I proposes a MaskNet module to learn a mask-

based multiplane representation without defining a cost metric. Since

an MPI also includes a set of fronto-parallel planes, it shares similarities

with the cost volume built by plane sweep. To render images from an

MPI, each plane work as a RBGA layer that encodes an RGB image and

an alpha map for the visibility. For depth estimation problem, the RGB

information is not needed to present the geometry, so the proposed mask-

based multiplane representation only attempts to roughly learn the opacity

from the volume. In plane sweep algorithm, the core idea is to verify the

sampled depth planes with the photo-consistency between warped pixels.

However, with sparse discretized depth planes, many pixels may miss the

optimal corresponding plane. The intuition of the mask-based multiplane

representation is to predict whether the ray will hit a surface before the

plane for each pixel. Given a reference frame and the warped images

of a neighbour frame on two successive planes, if the relative position

of a warped pixel flips, it hints the surface is between the two sampled

planes. The intermediate representations learning can be then regarded as

a binary classification task, and the binary ground truth can be extracted

from the ground truth depth maps.

Given Nd selected depth planes, the input of the MaskNet consists of

the reference images and warped images from all planes, which has size

3(1+Nd)×H×W. Then there is an encoder-decoder architecture to predict

the multiplane representation. A sigmoid function follows the prediction

layer of the MaskNet, and the predicted value for each pixel on each

sampled plane denotes the probability that the ray will hit the surface

before the plane. The pixel-wise cross-entropy loss can be computed to

train the MaskNet. After obtaining the multiplane representation from the

MaskNet, another encoder–decoder module, DispNet, is used to regress the

final depth maps. The learned multiplane representation is concatenated

with the reference image as the input of the DispNet, which has the size
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Figure 2.2. Overview of the proposed workflow in Publication I. Given the reference image
and the warped neighbour images on sampled depth planes, an intermediate
multiplane representation is learned firstly to predict the probability of a ray
terminating before each plane. Then the continuous inverse depth maps will
be predicted based on the learned masks.

(3+ Nd)× H ×W. The DispNet can be trained with the average L1 loss

between the estimated inverse depth (disparity) and the ground truth

inverse depth. Figure 2.2 shows the overview of the workflow.

Compared to the cost volumes used in other plane sweep based methods,

the main difference of the proposed mask-based multiplane representation

is that it does not need to compute any cost metric. Moreover, since it is

not just verifying whether the sampled plane is located at the real surface

but predicting the probability of ray termination, it is considering the

continuous volume density with discrete samples and more suitable for

sparse planes. The results reported in Table 2.1 show that when there

are only 16 planes, the proposed MaskNet performs better than other

state-of-the-art plane sweep based methods. As the running time will

drop when using fewer planes, it can benefit real-time systems. And the

significant improvement of the outdoor scenes (MVS) and synthesized

scenes (scenes11) can be introduced by still considering far planes when

the samples are sparse.
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Table 2.1. Comparison results between MVDepthNet, DeepMVS, COLMAP, and our
method. We outperform other methods in most of the data sets and error
metrics (smaller better).

MVDepth-16 DeepMVS COLMAP Ours (Hist.) Ours (Inv.)

scenes11

L1-rel 0.2352 0.3755 0.7205 0.1475 0.2144

L1-inv 0.0292 0.0495 0.0936 0.0231 0.0308

sc-inv 0.3207 0.5810 0.7814 0.2483 0.2985

MVS

L1-rel 0.3835 0.8217 0.9921 0.2669 0.4030

L1-inv 0.1384 0.1065 0.1812 0.1377 0.1600

sc-inv 0.3427 0.5325 0.6892 0.3001 0.3100

SUN3D

L1-rel 0.1840 0.8604 1.8499 0.1797 0.1611

L1-inv 0.0865 0.1317 0.4511 0.0818 0.0808

sc-inv 0.2013 0.4992 1.1219 0.1916 0.1769

RGBD

L1-rel 0.1628 0.5066 2.2992 0.1748 0.1572

L1-inv 0.0789 0.1717 0.5593 0.0846 0.0802

sc-inv 0.2360 0.5238 1.2970 0.2304 0.2062
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3. Correlated Latent Representations

Most learning-based methods make predictions per frame independently.

For example, variational autoencoders (VAEs) [44] assume the data are

independent and identically distributed (i.i.d.). In problems like multi-

view depth estimation, though the cost volumes utilize neighbour frames

to encode geometry information, the prediction for each frame is still

independent, which may lead to inconsistency across frames easily.

On the other hand, the potential benefits of utilizing correlations between

input data to obtain better predictions have received less attention, though

in many tasks the inputs are correlated in time, camera poses, object

identities, etc. For example, in applications like autonomous driving, the

consecutive images in the video stream can be correlated in time as they

could look very similar and they should have similar latent representations.

There are methods in monocular depth estimation that utilize the temporal

dependency across frames without knowing the relative camera poses [63,

82]. Sometimes, the camera poses of input images are given, and they

can form the relationship between frames. Considering the standard

camera projection model that is characterized by the intrinsic and extrinsic

parameters
(︂

u v 1

)︂
T

∼K

(︂

R t

)︂(︂

x y z 1

)︂
T

, (3.1)

where (x, y, z) ∈R
3 are the world coordinates. R is a rotation matrix and t is

a translation vector, which make up the transformation matrix from the

world coordinates to the camera coordinates. K is the intrinsic matrix that

maps the camera coordinates to image (pixel) coordinates (u,v). According

to Eq. (3.1), the scene motion and camera motion would be responsible

for image appearance change over time. When given a static scene that

consists of a set of fixed world coordinates with a fixed camera, the driving

factor of pixel values change is the camera pose, so the images captured

from close poses could have similar latent representations. Leveraging the

correlations between inputs could regularize the latent space and obtain

better results.

Gaussian processes (GPs) provide a probabilistic machine learning frame-
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work for encoding flexible prior knowledge over functions. A Gaussian

process f (x) is a random function which can be defined in the following

formalism [66]:

f (x)∼GP(µ(x),κ(x,x′)), (3.2)

where µ(x) is a mean function and κ(x,x′) is a covariance function (kernel)

that can be used to define similarity and encode a correlation structure.

There are some popular examples of covariance functions. For example,

the Radial Basis Function (RBF) specifies the covariance between pairs of

random variables

κ(x,x′)=σ2 exp

(︃

−
|x−x′|2

2ℓ2

)︃

, (3.3)

where the σ2 and ℓ2 are learnable hyperparameters.

In GPPVAE [6], the standard periodic kernel is used for 1D rotation,

which warp the input angles to the unit circle u(θ) = (cos(θ),sin(θ)) and

gives

κ(θ,θ′)= exp

(︃

−
2sin2((θ−θ′)/2)

ℓ2

)︃

. (3.4)

Though the standard periodic kernel encodes the nearness of 1D rotations

well, there are no established functions to encode priors in SE(3) induced

by 6-DoF camera poses in the standard GP toolsets. The formulation of

such a covariance function can be an essential building block for applying

GP priors in 3D computer vision. This chapter will explore different view

covariance functions in 3D vision tasks like multi-view depth estimation,

stereo matching and novel view synthesis.

3.1 Hierarchy of View Priors

Since the camera poses can reveal the relationship between frames, it

could be used to form the prior covariance functions. In many cases, full

relative poses between frames can be available via odometry technology

and visual-inertial systems [58, 65, 75]. But sometimes, for handheld

devices with low-quality Micro Electro-Mechanical System (MEMS) only,

estimating the full 6-DoF poses can be infeasible, and only 3-axis gyroscope

data is available.

According to the availability of motion information, a hierarchy of three

movement-induced GP prior kernels is presented in Publication III:

• when the full 6-DoF relative poses with rotation matrices and translation

vectors are known, a full pose kernel can be used.

• when only angular rates of the relative orientation changes are available,

a gyroscope kernel can be used.
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Figure 3.1. Example of the full pose kernel proposed in Publication II. (a) A continuous
camera trajectory on the left with associated camera frames. (b) The pose
kernel encodes information about how much ‘closeness’ we expect certain
views to have with their latent representations. For example, the covariance
values between frames 1–4 and 9 are higher.

• even when motion is unknown, a time-decay kernel can still be used.

Full pose kernel In the mathematical sense, the camera poses belong to

the special Euclidean group, SE(3), which comprise arbitrary combinations

of translations and rotations SO(3)×T(3). The SO(3) denotes the special

orthogonal rotation group, and the T(3) denotes the group of translations.

One way to build the covariance function of full camera poses is using

custom distance measures. The Publication II adopt the pose distance

metric proposed by Mazzotti et al. [56] and Matérn class [66] to build the

following covariance function:

D[Pi,P j]=
√︃

∥ti − t j∥2 +
2

3
tr(I−R

T

i R j), (3.5)

κ(Pi,P j)= γ2
(︂

1+
⎷

3D[Pi,P j]

ℓ

)︂

exp

(︂

−
⎷

3D[Pi,P j]

ℓ

)︂

. (3.6)

The tr(·) gets the trace of the matrix, and the learnable hyperparameters γ2

and ℓ define the characteristic magnitude and length-scale of the Gaussian

processes. Fig. 3.1 shows an example of the full pose kernel computed by

Eq. (3.6). Frames that look similar have closer camera poses and higher

covariance values.

Publication IV proposes another novel full pose kernel that considering

translation and rotation separately κ(Pi,P j) = κtrans(ti,t j)κrot(Ri,R j). As

translation vectors reside in R
3, the RBF covariance function Eq. (3.3) can

be applied directly to get

κtrans(ti,t j)=σ2 exp

(︃

−
|ti − t j|2

2ℓ2

)︃

. (3.7)
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To formulate a proper covariance function in SO(3) for rotations, since the

Euler angles can suffer from gimbal lock [16, 19]) and the quaternion can

suffer from non-uniqueness, the covariance function of rotation matrices is

proposed. Considering the eigendecomposition of R that define the rotation

axis and angle, the geodesic distance can be defined as

dg(R,R′)= arccos

(︂
1

2
(tr(RTR′)−1)

)︂

. (3.8)

Then a Taylor expansion gives dg(R,R′)≈
√︁

tr(I−RTR′), and the covariance

function can be written as

κview(R,R′)= exp

(︃

−
tr(I−RTR′)

2ℓ2

)︃

. (3.9)

When there is only rotation around one axis, the covariance function Eq. (3.9)

leads to the 1D standard periodic kernel Eq. (3.4).

Gyroscope kernel The covariance functions of full camera poses re-

quire the pose estimation to be solved on the fly, which can be computa-

tionally expensive for low-end devices. To relax the requirement for the

full poses, based on the observations of angular velocity from a gyroscope

ω= (ωx,ωy,ωz), a gyroscope kernel is proposed in Publication III.

A vector r undergoing uniform circular motion around an axis satisfies
dr
dt

= ω× r, which can be equivalently expressed with the infinitesimal

rotation matrix

[ω]×
def=

⎛

⎜
⎜
⎝

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎞

⎟
⎟
⎠

. (3.10)

Considering the distance metric in Eq. (3.6), if an initial rotation R(0) is

given, the rotation part can be replaced as

R(t)
T

R(t′)

=
[︂∫︂ t

0

[ω(τ)]×R(0)dτ

]︂T[︂∫︂ t′

0

[ω(τ)]×R(0)dτ

]︂

=
∫︂ t′

t

[ω(τ)]×Idτ. (3.11)

Assuming a piece-wise constant rotational rate, given a collection of time-

stamped angular velocity observations {(tk,ωk)}
j
k=i between time instances

ti and t j, the distance function for rotations can be written as

dgyro(ti, t j)=
√︂

tr(I3 −
∏︁ j

k=i+1 exp(−[ωk]×∆tk)), (3.12)

where ∆tk = tk − tk−1 and ‘exp’ denotes the matrix exponential function. We

disregard any possible additive or multiplicative biases in this distance

metric, and simply assume the gyroscope to be suitably calibrated.
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(a) Dt (b) Dgyro (c) Dpose

Fig. 3. Examples of the different distance matrix. Our Markovian gyroscope
Figure 3.2. Examples of three levels of the hierarchy of view priors. The markovian

gyroscope kernel captures a similar pattern as the pose distance without
access to the full pose information.

Moreover, to define the rotational distance between input frames in

a Markovian fashion, the cumulative distance si =
∑︁i

j=1 dgyro(t j−1, t j) is

computed firstly, and then the proposed gyroscope kernel can be written as

κgyro(ti, t j)= γ2
(︂

1+
⎷

3 |si − s j|
ℓ

)︂

exp

(︂

−
⎷

3 |si − s j|
ℓ

)︂

, (3.13)

where γ2 and ℓ are learnable hyperparameters.

Time-decay kernel Even there is no available motion data, since the

consecutive frames captured from close timestamps are more likely to look

similar and vice versa, the time difference between input frames can also

be utilized to form the correlation structure. In that case, the time-decay

kernel can be written as a stationary Matérn covariance function

κt(t, t′)= γ2
(︂

1+
⎷

3 |t− t′|)
ℓ

)︂

exp

(︂

−
⎷

3 |t− t′|)
ℓ

)︂

, (3.14)

where γ2 and ℓ are learnable hyperparameters, and t and t′ denote times-

tamps. Figure 3.2 shows the examples of different kernels based on differ-

ent levels of motion information.

3.2 Latent Nonparametric Fusion

Autoencoder architectures play crucial roles in learning low-dimensional

latent representations [32]. Different from principal components analysis

(PCA) that only considers linear transformations, autoencoders use a

nonlinear multilayer encoder network to transform the high-dimensional

data (e.g., images) into a low-dimensional code. Then a decoder network

is used to predict output results from the latent code. Since there is

information lost during downsampling, to refine fine-grained details better

in outputs, the skip connections between encoder layers and decoder layers

are used to pass low-level features [69]. Combined with convolutional

neural networks (CNNs), the encoder–decoder architectures are widely
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used for diverse computer vision problems like image segmentation [69, 4],

depth estimation [22, 81], image synthesis [44, 9], etc.

To take the correlation between inputs into consideration, the GP priors

can be introduced in the latent code. Considering the extracted latent

representation yi from the encoder as noise-corrupted observation of the

‘ideal’ latent representations zi, given the view prior based on the motion

information, the ’ideal’ latent representations zi can be inferred via the GP

regression model

zi, j ∼GP(0,κ(Pi,Pi′)),

yi, j = zi, j +εi, j, εi, j ∼N(0,σ2),
(3.15)

where i is the index of the input frame, Pi denotes the camera pose data,

and j is the index of the dimension of latent representations. The noise

variance σ2 is a learnable parameter. The GP priors are assigned indepen-

dently to each dimension of the latent representations.

To obtain the ‘ideal’ latent representations, the posterior mean can be

computed by solving the GP regression with one matrix inversion [66]:

E[Z | {(Pi,yi)}
N
i=1]=C (C+σ2 I)−1 Y,

V[Z | {(Pi,yi)}
N
i=1]=diag(C−C (C+σ2 I)−1 C),

(3.16)

where Z = (z1 z2 . . . zN )⊤ are stacked ‘ideal’ latent representations, Y =
(y1 y2 . . . yN )⊤ are stacked extracted latent representations from the en-

coder, and C denotes the prior covariance matrix Ci, j = κ(Pi,P j). Then

instead of the extracted latent representations from the encoder, the poste-

rior mean for each frame E[zi | {(Pi,yi)}
N
i=1] is passed to the decoder to get

the output result. Fig. 3.3 shows an example sketch of the latent nonpara-

metric fusion with the encoder-decoder architecture. The parameters of

the encoder network, the decoder network and the hyperparameters of GP

priors are optimized jointly during training.

The GP regression in the latent space allows soft fusion between multiple

frames by leveraging the correlation between input data. In Publication II,

the experimental results show that the latent nonparametric fusion leads

to more temporal consistent predictions for multi-view depth estimation.

Moreover, it is more robust to ill-conditioned inputs. For example, for multi-

view depth estimation problem, when the baseline between two images is

too small, the cost volume cannot encode geometry information. In that

case, the vanilla encoder-decoder architectures like MVDepthNet [81] that

take the cost volume as a part of input may fail, while our predictions can

be more robust as the neighbour latent representations can be propagated

to ‘recover’ the failed latent representation. Similar improved results also

are observed for stereo matching problem with the gyroscope kernel in

Publication III.
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Figure 3.3. The workflow of GPMVS that uses latent nonparametric fusion to solve the
MVS problem better. The current frame and the previous frame are used to
compute a cost volume, which is then stacked with the current frame as the
input to the encoder network. After extracting latent representations from
the encoder, the pose priors are introduced and the latent representations are
updated via the GP inference. The new latent representations will be passed
through the decoder network to get the final outputs. Figure adapted from
Publication II.
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Figure 3.4. Experiment results on ShapeNet with GPPVAE and the proposed view kernel.
(a) Black dots denote the 60 view angles in training data, while red dots denote
the novel test views. (b) The covariance matrix for 60 training views. (c) The
cross covariance matrix for the training views and test views. (d) Generated
images for a chair and a car. For each category, the first (elevation 30◦) and
the third row (elevation 60◦) show predictions for views from angles found
in the training set, while the second row shows synthesis results for angles
never observed for any objects in the training set.

The latent nonparametric fusion can also be applied to generative models

to synthesize images. Instead of using the iid prior over the latent space,

GPPVAE [6] considers the GP prior that is factorized into an object kernel

and a view kernel. Though GPPVAE extends the regular VAEs with the

power of modeling correlations in latent space, their view kernel only

supports 1D arbitrary angles or fixed angles. By only replacing the view

kernel with the proposed view kernel that supports 3D rotations in SO(3)

in Eq. (3.9), Publication IV enables the GPPVAE to synthesize novel views

with arbitrary 3D angles. The resulting composite kernel can be written

as

κ(x,R;x′,R′)= xTx′

⏞⏟⏟⏞

object

exp
(︁
−

1

2
tr(Λ−RT

ΛR′)
)︁

⏞ ⏟⏟ ⏞

view

, (3.17)

where Λ= diag(ℓ−2
x ,ℓ−2

y ,ℓ−2
z ) and ℓx,ℓy,ℓz are learnable lengthscale hyper-

parameters. x and x′ are learned object feature vectors, and R and R′

are rotation matrices. Fig. 3.4 shows qualitative experiment results on

ShapeNet [7] datasets. Compared to frame-independent inference, leverag-

ing the closeness of camera poses as the GP priors regularizes the latent

representation softly and makes the latent space more interpretable.
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4. Disentangled Representation
Learning

Though deep learning shows promising potential in learning low-dimensional

latent representations, the lack of the controllability and interpretability

may limit the application in real-world problems. A solution is to disen-

tangle the underlying factors of variation [29, 55, 68, 95]. For instance,

for generating an image of an object, computer graphics models suggest

controlling factors like object identity, object location, pose, lighting, etc.

Ideally, the factors of variation only change some specific characteristics

of the data, while leaving all other characteristics invariant. Based on

the invariance, the disentangled representations can benefit some tasks

that require the representations to be unaffected by uninformative fac-

tors, such as pose-invariant face recognition [64, 79]. In the context of

generative models for image synthesis, the disentangled representations

provide flexible control of synthesis results [59, 28, 42, 43, 80, 45]. For

example, StyleGAN [42] can separate the fine-grained attributes (e.g., hair,

freckles) from higher-level variation (e.g., identity, pose). Different from

the coarse-to-fine level control, some methods provide explicit control over

specific factors. HoloGAN [59] can control the pose of generated object im-

ages via disentangling 3D pose and identity. ConfigNet [45] can generate

face images with desired attributes such as head pose, smile, hair color,

presence or absence of eyeglasses, etc.

To learn disentangled representations, many methods decompose la-

tent representations into independent subspaces with respect to factors

of variation [34, 77, 47]. When there is prior knowledge about the data

domain, and the factors of variation are labelled in the training set, the

disentangled representation learning can be then supervised by the la-

bels [12, 88, 90, 67]. For instance, as it is common to disentangle the

pose and identity in 3D vision [61, 77, 85]. Tatarchenko et al. concatenate

the extracted latent representations from the input image and the target

angles to generate novel view images [77]. Peng et al. propose a feature

reconstruction metric learning method to disentangle identity and pose

for better face recognition performance [64]. The Publication VI leverages

the semantic feature labels of clothing images to learn attribute-specific
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representations to improve the interactive retrieval results.

Besides factorizing latent representation into independent chunks, equiv-

ariant representations are also able to disentangle the factors of variation.

Different from many methods based on factorisation that attempt to make

sub-features invariant to other transformations (e.g., pose change), the

equivariant representations aim to preserve information about the trans-

formation [84, 31, 60, 50, 59, 13]. Hinton et al. proposed transforming

auto-encoders (TAE) to model both 2D and 3D transformations, where

the transformation matrix can be applied to the output features of the

capsules directly [31]. Daniel et al. introduce the feature transform layer

to simulate many image-space transformations [84]. Transformable bot-

tleneck network [60] also applies spatial transformations to a volumetric

bottleneck directly. Based on TAE, Chen et al. propose an image-based

rendering method that provides continuous view control for novel view

synthesis [9]. Inspired by [9], Publication V learns a transformable latent

representation to regress pixels of novel views with depth-guided skip

connections.

Considering the challenges of obtaining labels for factors of variation,

some methods attempt to learn disentangled representation in an unsuper-

vised manner [34, 30, 8]. A significant fraction of unsupervised methods

are based on generative modelling. The VAE based methods like β-VAE use

an extra penalty on the KL-divergence term to match the Gaussian prior.

InfoGAN [8] learn interpretable latent representations by maximizing the

mutual information between synthesized images and latent features. Some

methods swap out features explicitly and propose invariance loss functions

to encourage disentanglement [28, 34, 39]. For example, Hu et al. learn

disentangled feature chunks by mixing and unmixing encoded features

with autoencoders [34]. Though Publication VI relies on the supervisory

signal of fashion attributes, it also leverages the idea of feature mixing

during the training to maintain disentanglement.

4.1 Equivariant Representation for Novel View Synthesis

Given single or multiple input images of a scene, the novel view synthesis

(NVS) is the task that aims to generate new images of the scene from

a novel viewpoint. Generally, except for the 3D model-based rendering

techniques, previous methods for NVS can be divided into two main classes,

image-based rendering (IBR) or pixel generation methods. Image-based

rendering methods use a collection of given images to render novel views

rather than geometric primitives, which can re-use pixels from source im-

ages directly. Some IBR systems do not require explicit geometry but use

the correspondences between images. For example, learning-based meth-

ods like [40, 94, 76] predict the appearance flow directly. When the depth
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maps are available, the image can be rendered from nearby viewpoints via

3D warping [54], which elevates pixels to 3D points and re-projects them

onto new images to get pixel-to-pixel correspondences. Some IBR methods

also leverage deep learning to predict depths from images [20, 9] when

there are no depths given as inputs. Since pixels in the input source views

can be re-projected to a novel view, the IBR methods can preserve original

low-level details of the scene such as textures and colors well. However,

obtaining accurate correspondences between images is challenging. When

the source input is just a single image, the depth prediction can be even

harder. And the failure can easily lead to distortion in generated new im-

ages. On the other hand, some learning-based methods attempt to predict

pixel colors in target views instead of re-using the pixels [77, 85]. Since

the goal is to synthesize the appearance of the scene seen from other view-

points, it is natural to disentangle the camera poses and the appearance.

With the disentangled representations of images, these pixel generation

methods can generate structurally consistent geometric shapes, but the

visual quality of the generated images is worse than IBR methods due to

the lack of low-level details.

To combine the advantages of both IBR methods and pixel generation

methods, Publication V proposes a pixel generation method that uses

warped feature maps with skip connection layers to preserve low-level

details. Different from other pixel generation methods that extract latent

representations for pose and appearance separately, we adopt equivariant

representation as [9] to explicitly control the viewpoint of the generated

results.

4.1.1 Transformable Latent Representations

Chen et al. proposed an IBR method that learns an equivariant repre-

sentations to predict depth maps for target views directly [9]. Given the

source image input Is, the encoder network φ extracts the latent code

zs = φ(Is). Similar as TAE, the latent code can be formed as zs ∈ R
n×3,

and the given transformation between source viewpoint and the target

viewpoint Ts→t = [R | t]s→t can be applied to the latent code with matrix

multiplication to get the transformed latent code for the target view:

z̃t = Ts→t żs, (4.1)

where żs is the homogeneous representation of zs. However, monocular

depth estimation with the equivariant representations is challenging and

unstable predictions lead to distorted target images.

Different from [9] that only use the equivariant representations to pre-

dict depth maps for target views, as a pixel generation method, Publication

V aims to predict target images from the equivariant representations with

a decoder network. Considering the equivariant representation zs which
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Figure 4.1. Overview of the proposed architecture in Publication V. The encoder extracts
the equivariant representation, which can be multiplied with the relative
transformation matrix to get the representation of the target novel view. The
depth decoder and the pixel decoder will map the transformed representation
to the target depth map and the target view image correspondingly.

can be regarded as a set of sparse points in latent space, intuitively the

framework will encourage the latent code to encode 3D shape informa-

tion implicitly. Though the sparse latent code that encodes 3D position

predictions for features might be sufficient to estimate depth maps, gener-

ating novel view images with rich textures or many small objects is still

challenging due to the information loss.

4.1.2 Depth-guided Skip Connections

To alleviate the lack of fine-grained details in outputs, many methods

leverage skip connections layers between the encoder and the decoder to

transfer low-level feature maps [69]. However, unlike tasks like semantic

segmentation where the outputs and the input images are well-aligned spa-

tially, the output images have very different shapes than the input source

images. In that case, the skip connections cannot be applied immediately.

As discussed in the previous section, the equivariant representations can

predict depth maps for novel target views, which can be used for 3D warp-

ing. Instead of warping image pixels directly, Publication V warps the

multi-level feature maps before passing them to the pixel generation de-

coder. As shown in Figure 4.1 , there are two decoders in the framework.

The depth decoder ψd maps the transformed representation to the depth

map Dt
˜ =ψd(z̃), and the pixel decoder ψp predicts the RGB values for pixels

given the transformed representation and the warped multi-level feature

maps. To warp the feature maps, given the camera intrinsic matrix K , the

relative transformation matrix Tt→s, and the predicted depth map Dt
˜ , for

a pixel in the target view ps, the correspondence in the source view can be

found by

ps ∼ K Tt→s D̃t(pt)K−1 pt, (4.2)

where pt and ps denote the homogeneous coordinates. The differentiable

bilinear interpolation [37] is applied since the obtained ps are continuous

values. The depth decoder is trained in an unsupervised manner so there
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Input Target [77] [76] [9] Ours Input Target [77] [76] [9] Ours

Figure 4.2. Results on different ShapeNet objects. For each object, the first two columns
correspond to the input source image and the target image. The 3rd column
shows the result from the pixel generation method [77]. The 5th column
corresponds to the result from the IBR method [9]. The final column shows
the result from the proposed method in Publication V.

is no requirement for ground truth 3D information.

The depth-guided skip connections enable the method to benefit from

establishing explicit correspondences to maintain fine-grained details as

IBR methods. On the other hand, as pixel generation methods, it exploits

implicit learned prior to generate structure-consistent predictions to ‘cor-

rect’ distortion. The qualitative comparison on ShapeNet [7] objects shown

in Figure 4.2 demonstrates that the proposed framework can combine the

advantages of IBR methods and image generation methods. The pixel

generation method [77] generates blurry results. Also, because of the lack

of low-level details, the identity of the object fails to be preserved. The

synthesis results from the IBR method [9] suffer from distortion. Differ-

ently, the proposed method generates structure-consistent predictions as

pixel generation methods (e.g., it can generate the missing chair legs and

missing tires), and the generated results also include rich fine-grained

details as the IBR method.

Publication V explores the use of the equivariant representation for novel

view synthesis. As the pixel changes between rendered images for the

given scene are driven by the viewpoint changes, it is reasonable to build

the relationship between viewpoints and the latent representation in a

similar way to disentangle pose and appearance. Moreover, considering

the limitation of the compact equivariant representation, Publication V

also exploits the benefits of explicit correspondences in feature maps to

maintain fine-grained details in predictions.
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4.2 Attribute-driven Disentangled Representation for Image
Retrieval

When there is prior knowledge about the data domain, it is easier to dis-

entangle the factors of variation. For example, in the fashion domain,

there are diverse semantic visual attributes (e.g., category, color, length of

sleeves) to describe fashion items, which can be used to learn disentangled

representations. Publication VI shows that the attribute-driven disen-

tangled representations can benefit interactive fashion retrieval tasks.

Interactive image retrieval for online fashion shopping provides the ability

to change retrieval results according to user feedback [10, 24, 89]. It is

not only necessary to obtain expressive image representations, but also to

empower the model to modify the representation flexibly to meet the re-

quirements from users. For interactions that only involve a specific aspect

of the image, image representations that are semantically entangled can

cause other aspects to change inadvertently (e.g., a user wants to change

the color of a T-shirt only, but the new retrieved results also have different

sleeve type). Since the entangled representations limit the controllability

of the retrieval, Publication VI uses semantic attribute labels to train deep

neural networks to learn attribute-specific representations.

4.2.1 Attribute-specific Subspaces

To create a model that disentangles semantic factors in independent sub-

spaces, the visual attributes can be used as supervisory signals. Assuming

there is a predefined list of attributes of length A (e.g., color, category,

fabric) indexed with the symbol a. Each attribute a has a predefined list

of attribute values (v1
a,v2

a, ...,v
Ja
a ), where Ja denotes the number of possi-

ble values. Deep CNNs like AlexNet [46] or ResNet [27] can be used as

the backbone network to extract the global representation fn of the input

image In firstly. To decompose the fn into attribute-specific subspaces,

for each attribute a there is a fully-connected two-layer network φa that

maps fn to a attribute-specific representation rn,a =φa(fn). The proposed

architecture that extracts the disentangled representation is called the

Attribute-Driven Disentangled Encoder (ADDE).

To utilize the semantic attribute labels, there is a classification layer

consists of a fully-connected layer with softmax function to predict the

attribute the values ŷn,a = sof tmax(FC(rn,a)). Then the training of the

attribute-specific subspaces can be supervised by the cross-entropy loss for

independent multi-label attribute classification tasks in subspaces as

Lcls =−
N∑︂

n=1

A∑︂

a=1

log(p(yn,a| ŷn,a)), (4.3)

where yn,a is the ground truth label of the image In for attribute a, ŷn,a
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is the output from the classification layer, and N denotes the number of

input samples.

After extracting attribute-specific representations rn,a for each attribute

a, the final disentangled representation of the input image In is obtained by

simply concatenating the attribute-specific representations together rn =
(rn,1, . . . ,rn,A), where rn ∈R

A·d and d denotes the dimension of each attribute-

specific representations. Since the dimensions separate different attributes,

it is flexible to modify the final representation rn when a user wants to

change specific attributes of retrieval results by applying operators directly

on the desired subspace without affecting the other subspaces.

4.2.2 Block-diagonal Memory Block

After training with the classification task, the extracted disentangled

representations can be used as discriminative representations to retrieve

similar images that share the same attribute values as the query image.

However, to interact with user feedback like changing specific attributes,

the model have to learn how to modify the relevant dimensions.

Attribute manipulation retrieval in the fashion domain is a new research

problem. In many scenarios, given the query image, users may want to

manipulate the query image interactively (e.g., change the color of the

dress from pink to blue) rather than simply searching for similar images

as the query image. AMNet [89] proposes a memory block module that

consists of a memory and a neural controller, which is followed by a manip-

ulation fusion module. FashionSearchNet [1] utilizes attribute locations to

learn attribute representations separately. More recent methods leverage

generative models like GANs to synthesize images that meet attribute

manipulation requirements [3, 49, 52], but for image retrieval the image

generation is not necessary. Most of existing methods do not consider dis-

entanglement. For instance, AMNet uses fully-connected layers to fuse the

retrieved representation from memory block and the original image repre-

sentation to obtain the final representation. FashionSearchNet also learns

the global representations that fuse different subspaces with additional

functions, which introduces entanglement.

To formulate attribute manipulation retrieval, for each image, it has

associated attribute values that can be written as a merged single list

v = (v1,v2, . . . ,vJ), where J =
∑︁A

a=1 Ja. The corresponding attribute values

v j can be present as a one-hot encoding: attribute values present in the

image are encoded as 1s, the rest with 0s. Then given a query image Iq

with attribute values vq = (v1
q,v2

q, . . . ,vJ
q ), the task is to find target images

that have attribute description as vp = (v1
p,v2

p, . . . ,vJ
p ), which differs from vq

only for a subset of attributes.

Inspired by AMNet, Publication VI introduces a memory block module to

store prototype representations for each attribute value. For example, for
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the color attribute, there is a prototype representation for each pre-defined

color in the dataset. The memory block can be initialized by averaging

the attribute-specific representations of those training images with the

same value. Due to the disentanglement, only relevant dimensions in the

subspaces are selected to form the prototype representations. And the

resulted initial memory block is a block-diagonal matrix as

M=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

e1
1 . . . e

J1

1 0 . . . 0 0 . . . 0

0 . . . 0 e1
2 . . . e

J2

2 0 . . . 0

...
. . .

...
...

. . .
...

. . .
...

0 . . . 0 0 . . . 0 e1
A . . . e

JA

A

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (4.4)

where e
j
a stored in the columns of the memory block is the prototype

representation for the j-th attribute value of the attribute a.

With the memory block module, the attribute-specific subspaces can be

modified freely. Figure 4.3 shows the proposed framework for attribute

manipulation. For each query with a generated manipulation requirement,

there is a positive sample (target image with desired attribute values)

and a negative sample. For the query image and the target image, the

disentangled representations rq and rp are extracted via the ADDE re-

spectively. The manipulation requirement can be encoded as a vector

i = vp −v− q = (i1, i2, . . . , iJ), where i ∈ {−1,1,0} denotes removing the at-

tribute value, adding the attribute value or keeping the value unchanged.

Then the target modified representation r′ for retrieval can be computed

as

r′ = rq +Mi. (4.5)

As the retrieval is to find the top-K nearest neighbour based on the ex-

tracted disentangled representations, the triplet loss [72] is adopted to

regularize the distance between representations. The compositional triplet

loss will encourage the target modified representation r′ to be close to the

image representation extracted from the positive sample that has desired

attributes:

Lct =max(0,d(r′,rp)−d(r′,rn)+m), (4.6)

where rp,rn are the extracted disentangled representations of the positive

sample and the negative sample, m is the margin parameter, and d(·) is

the L2 distance.

During the training, the ADDE and the memory block module will be

optimized jointly. To maintain the disentanglement when updating the

memory block, the block-diagonal structure needs to be preserved. In that

case, a regularization loss function inspired by [70] is introduced on the

non-diagonal elements:

Lmem = ||M◦N ||1, (4.7)
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Figure 4.3. The framework proposed in Publication VI for attribute manipulation retrieval.
The Attribute-Driven Disentangled Encoder (ADDE) extracts the disentangled
image representations. The memory block M stores the prototype represen-
tations for all attribute values. The target compositional representation r′

can be obtained by adding the residual embedding, which is computed by
combining the manipulation vector i and the memory block.

where ◦ means the element-wise multiplication and N denotes to the

non-diagonal elements as

N = 1D −D, D =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1M1
0 . . . 0

0 1M2
. . . 0

...
...

. . .
...

0 0 . . . 1MA

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (4.8)

The 1Ma
is a matrix of ones of size d× Ja. The L1-norm regularization loss

helps to curb the mixing of different attribute-specific representations.

Moreover, due to the novel block-diagonal structure, the memory block

can not only multiply with the manipulation vector to obtain residual

representations for modification, but also project the one-hot attribute

label vector into the disentangled subspaces directly. Intuitively, since the

attribute label vector and the RGB image describe the same fashion item,

the encoded semantic information should be similar, and the representation

extracted from the image should be close to the prototype representation

projected from the attribute label vector. To encourage this semantic

consistency, there is novel loss function proposed as

Lc = d(rq,Mvq)+d(r′,Mvp)+d(r′,Mvn), (4.9)

where vq, vp, vn are the attribute value vectors of the query image, the

positive sample and the negative sample generated for the manipulation

task. This semantic consistency loss encourages the alignment between the

prototype representations in the memory block and the extracted image

representations, so the composition will be more smooth for manipulation.
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Shopping100k DeepFashion

AMNet [89] ADDE-M AMNet [89] ADDE-M

NDCG@30 0.7148 0.7367 0.2821 0.3291

NDCGt@30 0.4010 0.4305 0.3347 0.3470

NDCGo@30 0.7571 0.7779 0.2947 0.3629

Top-10 0.2562 0.4117 0.1411 0.2360

Top-30 0.4294 0.5981 0.2294 0.3152

Top-50 0.5164 0.6729 0.2758 0.3591

Table 4.1. Quantitative results on Shopping100k [2] and DeepFashion [53] datasets for
attribute manipulation retrieval. Table adapted from Publication V.

Also, the prototype representation can be regarded as pseudo-supervision

for the attribute-specific representation learning, which can speed up the

convergence during training.

To better measure the ability to preserve attributes that should not

be modified, besides using top-k retrieval accuracy as evaluation met-

rics, Publication VI also uses Normalized Discounted Cumulative Gain

(NDCG@k) [38] and its novel variants for evaluation. The standard NDCG

metric is defined as:

1

Z

k∑︂

j=1

2rel( j)−1

log( j+1)
, (4.10)

where rel( j) is the number of matching attributes between the ground-

truth label of j-th ranked image and the desired label divided by the total

number of attribute types. Z is a normalization constant. The two variants

proposed in Publication VI is called NDCGt and NDCGo, which have

similar formula as Eq. (4.10), though they have different way of computing

rel( j). The NDCGt focuses on the target attribute to be modified, so the

rel( j) will be binary, while NDCGo only considers the rest unchanged

attributes.

Publication VI leverages the given semantic labels as the prior knowl-

edge in the data domain and explores the attribute-driven disentangled

representations for interactive fashion retrieval. The introduced attribute-

specific subspaces make representation manipulation more flexible, and

the tailored block-diagonal memory block module with the proposed novel

loss functions enables the preservation of disentanglement. Table 4.1

shows quantitative results on Shopping100k [2] and DeepFashion [53]

dataset. With the same backbone architecture, compared to the AMNet

that utilizes a memory block for entangled image representations, using

disentangled image representations introduces a significant improvement

in terms of both NDCG metrics and top-k retrieval accuracies. The better

top-k accuracies and NDCGt@30 shows that the disentangled represen-

tations can retrieve images with desired attributes successfully, and the
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Figure 4.4. Top-5 retrieval results for attribute manipulation retrieval. The green boxes
denote images that match all desired attributes.

better NDCGo@30 results also indicate better preservation of undesired at-

tributes. Figure 4.4 shows qualitative examples for attribute manipulation

retrieval.
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5. Discussion

This chapter summarises the findings briefly and discusses the limitations

and future directions of each publication.

Chapter 2 shows a learning-based method for multi-view depth estima-

tion. To introduce the well-studied geometric relationships as the prior

knowledge to the deep architectures, a traditional plane sweep algorithm

is used to build the discrete volume as a part of the input. Different from

classical plane-sweep methods that use hand-crafted cost metrics to mea-

sure photo-consistency, the learned multiplane representations are used

to roughly encode the opacity. Moreover, as the plane sampling affects

the results of plane sweep algorithms, Publication I proposes the idea of

sampling planes based on the cumulative histogram of depth. For depth

ranges that have a denser distribution of pixels, the histogram-based sam-

pling provides better coverage compared to uniform sampling. Similarly,

there are other methods that also try to boost performance by improv-

ing the candidate selection for correspondence matching. For example,

in NerfingMVS [83], the sparse depth maps are used to guide the point

sampling for each ray. UCS-Net [11] proposes uncertainty-aware adap-

tive thin volumes to achieve reasonable spatial partitioning. However,

since the plane sampling in Publication I will be driven by the histogram

of the training dataset, the method requires the training dataset to be

diverse and balanced enough. One potential direction to improve the

method is automatically adjusting depth planes according to inputs. For

instance, NeRF [57] utilizes hierarchical volume sampling where the sec-

ond set of points are sampled based on the coarse volume distribution

estimation. In Publication I, the learned multiplane representations can

also estimate depth distribution roughly, which provides the possibility

to vary sampled depth planes. Another limitation of Publication I is the

requirement for ground truth depth labels. To further explore geometry

information, some unsupervised learning frameworks for monocular depth

estimation [92, 23] that use warping-based view synthesis as supervision

signals can be adapted.

Chapter 3 advocates inter-frame reasoning with deep neural networks
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based on the relationship between the images for image sequences instead

of frame-independent predictions to obtain more consistent results. For

some computer vision applications, the input images from the video stream

are strongly correlated, so the correlation should be captured for latent

image representations. Moreover, when camera poses of input images are

given (e.g., multi view stereo and novel view synthesis), the camera pose is

the main factor that leads to pixel changes, so the relationship between

camera poses can be utilized as the prior for latent representations. Pub-

lication II, Publication III and Publication IV build the prior covariance

functions based on custom pose distance measures and leverage Gaussian

process regression in the latent space to fuse multiple extracted latent

image representations. Both Publication II and Publication III demon-

strate that the correlated latent representations make more temporally

consistent depth predictions. And Publication IV shows that using GP

prior enable generative models to learn well-structured representations.

Recently, more other works also realize the importance of temporal fusion.

Many of them exploit recurrent networks [63, 18]. In [63], the ConvLSTM

is proposed to model the spatiotemporal dependencies. Compared to the

latent fusion by LSTM, the nonparametric fusion based on the Gaussian

process does not need extra parameters and utilize the relationship of

camera poses rather than learning the transitional kernel from scratch.

The weakness of using the GP prior is that though it considers the pose

changes, it only introduces soft constraints in the latent space without

using any perspective correction. In that case, the errors can also be

propagated during the fusion. Inspired by both Publication II and [63],

DeepVideoMVS [18] propose a novel hidden state propagation scheme for

ConvLSTM by explicitly warping based on perspective projection. Though

the latest methods considers the temporal dependency across frames, the

dynamic objects remain a open problems. Another direction of exploring

the correlation of data is metric learning [25]. Loss functions like con-

trastive loss [25] and triplet loss [72] are designed to map similar input

data to nearby points on the manifold. However, using the camera poses

for metric learning received less attention. Some retrieval-based relocal-

ization method can be improved by making use of the relationship between

camera poses. For example, CamNet [17] considers the camera frustum

distance when training the global descriptors, and combining the proposed

GP priors with metric learning can be a future direction. Moreover, in

addition to the 3D vision tasks presented in Chapter 3, other computer

vision tasks like semantic segmentation may also have the potential to

benefit from the correlated latent representations to reduce the flicker

among predictions, so the proposed GP priors can be extended to other

applications.

Chapter 4 introduces two different methods of learning disentangled

image representations when there is prior knowledge in the data domain.
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When the factors of variation are well-studied, it is beneficial to also

disentangle these factors in the latent space to make the latent image

representations more controllable and interpretable. In Publication V, the

equivariant representation is used to disentangle the viewpoint changes

and the identity for the novel view synthesis task. Though the model

combines the benefits of both image-based rendering and the direct pixel

regression, the prediction for thin structures (e.g., chair legs and electric

poles on the road) can still be inaccurate, since the depth estimation for

novel views based on a single source image is challenging. Publication VI

leverages semantic attribute labels to divide the image representations

into attribute-specific subspaces, so the image representations can be more

controllable for interactive fashion retrieval. A block-diagonal memory

block module also stores prototype attribute representations to support

attribute manipulation. The main limitation of the proposed methods is the

requirement of the ground truth labels, which is not always feasible. And

the missing attribute labels can also cause problems. In Publication VI, the

current method uses the semantic consistency loss to implicitly encourage

the missing attribute types to have attribute-specific representations that

are close to zero vectors. For ‘true’ missing attribute (e.g., the sleeve length

for paints) it could work, but if the missing is caused by label mistakes,

then the zero attribute-specific representations are not expected. Learning

disentangled image representations in an unsupervised manner [34, 15,

62] could be a future direction to improve the method.
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6. Conclusion

The thesis explores several methods to integrate different types of prior

knowledge into deep neural networks. Some of presented methods are

tailored for specific computer vision problems (e.g., Publication I for multi-

view depth estimation and Publication VI for interactive fashion retrieval),

and some methods share the similar paradigm (e.g., Publication II, Publi-

cation III and Publication IV learn correlated latent representations via

Gaussian process priors).

The presented prior knowledge can be regarded as the domain knowledge

for the tasks. More specifically, in this thesis, the prior knowledge can be

divided into three categories: (i) the well-studied epipolar geometry, (ii)

the correlation introduced by camera poses, and (iii) the known factors of

variation. Experimental results show that all prior knowledge improves

the performance of deep models for the tasks discussed in the thesis.

For dense 3D reconstruction, Publication I uses the depth distribution to

guide the plane sampling for the plane sweep algorithm and utilizes multi-

view geometry to extract multiplane representations. The discretized

plane volume encodes the scene geometry, and the learned multiplane

representation captures the continuous volume opacity.

For applications with given camera motion information (e.g., multi-view

stereo and novel view synthesis), the closeness between the camera poses

reveals the similarity of the image, which can be exploited to constrain

the image representations. To encode prior introduced by camera poses,

Publication II, Publication III and Publication IV exploit the latent non-

parametric fusion via Gaussian processes. The proposed covariance func-

tions for SE(3) poses enrich the library of GP priors. The use of Gaussian

processes in the latent space for prior encoding bridges the gap between

computer vision and nonparametric inference, advocating for inter-frame

reasoning in more computer vision tasks when the input images are highly

correlated.

With known factors of variation, learning disentangled representations

makes the deep models more flexible and controllable. For factors like

semantic attributes, Publication VI shows that the attribute-specific sub-

47



Conclusion

spaces can be used to factorize the image representations. For 3D vision

tasks like novel view synthesis, it is natural to disentangle the appearance

and the viewpoints, and the equivariant representations provide a way

of preserving the structure of transformations. Publication V uses the

equivariant representation to generate pixels for novel views. To alleviate

the limitation of the compact representations and benefit from explicit cor-

respondences, the depth-guided skip connections are proposed to maintain

low-level details in synthesis results.

Ultimately, all methods utilize the prior knowledge to regularize the

latent space, which makes the latent representations more interpretable

and well-structured.
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