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Abstract. The problem of finding k uniformly spaced points (centres)
within a metric space is well known as the k-centre selection problem.
In this paper, we introduce the challenge of k-centre selection on a class
of objects of exponential size and study it for the class of combinatorial
necklaces, known as cyclic words. The interest in words under transla-
tional symmetry is motivated by various applications in algebra, cod-
ing theory, crystal structures and other physical models with periodic
boundary conditions. We provide solutions for the centre selection prob-
lem for both one-dimensional necklaces and largely unexplored objects in
combinatorics on words - multidimensional combinatorial necklaces. The
problem is highly non-trivial as even verifying a solution to the k-centre
problem for necklaces can not be done in polynomial time relative to the
length of the cyclic words and the alphabet size unless P = N P. Despite
this challenge, we develop a technique of centre selection for a class of
necklaces based on de-Bruijn Sequences and provide the first polynomial
O(k-n) time approximation algorithm for selecting k centres in the set of
1D necklaces of length n over an alphabet of size ¢ with an approximation

factor of O (1 + %). For the set of multidimensional necklaces
q

of size n1 X na X ... X ng we develop an O(k- N2) time algorithm with an

approximation factor of O (1 + %) in O(k - N?) time, where
q
N =ni-ng-...-nq by approximating de Bruijn hypertori technique.

1 Introduction

The problem of finding k uniformly spaced points (centres) within a metric space
is well known as the k-centre selection problem. So far, the problem has been
intensely studied for finite, and explicitly given inputs like the k-centre problem
for graphs, grids, or a set of strings, which are essential in the context of facility
location and distribution [9IT6l33].

* partially supported by ESPRC grant (EP/R018472/1)
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The k-centre problem is also a tool in state space exploration, where cluster
centres or equally spaced centres need to be selected to guarantee effective cover-
age of the configuration space. For algebraic and combinatorial structures with a
state space of exponential size, sampling techniques have been used to generate
equally probable objects [7]. However, while such sampling techniques can give
uniform probability to the selection of any given object, there is a substantial
gap in the problem of ensuring that k& samples are representative. The k-centre
problem is a natural means of modelling this objective, with the goal of ensuring
that no object is significantly far from the set of samples under a distance based
on some similarity metric. However, if the explicit representation of the whole
class of objects is infeasible to store and process due to its exponential size, the
k-centre selection problem requires new solutions and approaches.

In this work, we consider the class of combinatorial necklaces (also known as
cyclic words). The study of 1D necklaces has been motivated by applications in
the coding theory, free Lie algebras, and Hall sets [BIBI2IT7I3012324]. Moreover,
2D necklaces have been recently studied for counting the number of toroidal
codes in [6] and can be used in the construction of 2D Gray codes [8]. Algorithms
for multidimensional combinatorial necklaces have remained a largely unexplored
area in combinatorics on words [2[2732]. A multidimensional necklace is an
equivalence class of multidimensional words under translational symmetry, which
is the natural generalisation of the shift operation in 1D, see Figure

Fig. 1. An illustration of translational symmetry for a 4 x 4 word. Note that all 4
words presented here (out of a total of 16) correspond to the same necklace and can be
reached from one another through some two-dimensional translation denoted (g1, g2).
In red, the translation from the starting word to the new word is highlighted, with the
original word overlaid in grey.

One natural use of multidimensional necklaces up to dimension three is the
combinatorial representation of crystal structures. In computational chemistry,
crystals are represented by periodic motives known as “unit cells”. Informally,
translational symmetry can be thought of as the equivalence of two crystals
under translation in space. Intuitively this symmetry makes sense in the context
of real structures, where two different “snapshots” of a unit cell both represent
the same periodic and infinite global structure, see Figure

Crystal Structure Prediction (CSP) is one of the most central and challenging
problems in materials science and computational chemistry [4JI]. The objective
is to find the “best” periodic three-dimensional structure of ions that yields the
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Fig. 2. The crystal of SrTiOs (left) and its 3D (middle) and 1D (right) necklace
representations.

lowest interatomic potential energy. The aim of our k-centre selection algorithms
for multidimensional necklaces is to replace the currently-used random genera-
tion approaches of unit cells [I2] that often lead to identical crystal structures
during the process of configuration-space exploration.

Most of the existing methods for CSP require the exploration of different
configurations of periodic structures that combine local exploration and selec-
tion of new random locations in unexplored configuration space. The number
of unit cells of size ny X ny X ... X ng in the d-dimensional integer lattice and
considering them up to translational symmetry is exponential and it is larger

d
than %, where ¢ is the number of different ions and N = [] n;. The size of
i=1

such an object makes it infeasible to represent this set explicitzly in the form of a
weighted graph. By extension, applying existing centre selection algorithms will
lead to an EXPSPACE solution and therefore require new techniques for oper-
ating on implicitly represented combinatorial objects. The same problem exists
when it may be required to construct k equally spaced code words from a set of
multidimensional cyclic words.

Even the original k-centre problem on graphs is non-trivial. The k-centre
problem is both NP-hard with respect to the size of a graph and is APX-hard
[18], making a PTAS unlikely. Additionally, the k-centre problem is unlikely to
be fixed-parameter tractable in the context of the most natural parameter & [13].
A different form of the k-centre problem appears in stringology with important
applications in computational biology; for example, to find the approximate gene
clusters for a set of words over the DNA alphabet [14125/26].

This paper introduces the challenge of k-centre selection for implicitly repre-
sented sets. Notably, we aim for polynomial time algorithms in the length of the
output rather than in the size of the graph. The length of the output corresponds
to a logarithmic factor relative to the size of the graph, multiplied by some func-
tion on the number of centres. The k-centre problem for strings or words can
be defined over various distance functions. In this paper we focus on the overlap
distance, based on the overlap coefficient (well known in linguistic processing
[IT429128]). The overlap coefficient measures the similarity of two words relative
to the number of common subwords. This measure can, in turn, be used as a
proxy for the closeness of potential energy in crystals. However, it is not critical
for our algorithmic results; all results could be reformulated using other distance
functions at the cost of slightly different approximation bounds.
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In particular we develop a technique of centre selection based on de-Bruijn
Sequences and provide the first polynomial O(k - n) time approximation algo-
rithm for selecting k centres in the set of 1D necklaces of length n over an

alphabet of size ¢ with an approximation factor of O (1 + %). In the
q

multidimensional case, the results on generating de Bruijn tori are highly lim-

ited, so we developed a technique to select centres by approximating de Bruijn

hypertori. We present an algorithm that generates k centres for the set of mul-

tidimensional necklaces of size ny X ng X ... X ng with an approximation of
log, (k-N) . 2 . _
0] (1 + W) in O(k - N?) time, where N = ny - ns - ... - ng. Moreover,

we show that verifying a solution to the k-centre problem for necklaces can not
be done in polynomial time relative to the length of the cyclic words and the
alphabet size unless P = N P, indicating that the k-centre problem itself is likely
to be at least NP-hard.

2 Preliminaries

Let X' be a finite alphabet of size ¢. In this paper, we assume that X is linearly
ordered. We denote by X™* the set of all words over X' and by XY™ the set of all
words of length n. The length of a word u € X* is denoted by |u|. We use u;,

for any i € {1,...,|u|}, to denote the i*" symbol of w.
Let [n] return the ordered set of integers from 1 to n inclusive. Given 2 words
u,v € X* where |u| = |v|, u = v if and only if u; = v; for every i € [|ul].

A word w is lexicographically smaller than v if there exists an ¢ € [|u]] such
that wjug ... u;—1 = vive...v;1 and u; < v; or |u| < |v| and wiuy ... up =
V1V3 . .. V|- For example, given the alphabet X' = {a, b} where a < b, the word
aaaba is smaller than aabaa as the first 2 symbols are the same and a is smaller
than b. For a given set of words S, the rank of v with respect to S is the number
of words in S that are smaller than v.

The translation (cyclic shift) of a word w = wyws...w, by r € [n] returns
the word wy41 ... wpwi ... w,, and is denoted by (w),, i.e. (wiws...wy), =
Wpi1 - .. Wuwy ... w,.. Under the translation operation, u is equivalent to v if
v = (w), for some r € [n]. The t** power of a word w, denoted by wt, is equal
to w repeated t times. For example (aab)® = aabaabaab. A word w is periodic
if there is some word u and integer ¢ > 2 such that ! = w. Equivalently, word
w is periodic if there exists some translation r € [Jw| — 1] where w = (w),. A
word is aperiodic if it is not periodic. The period of a word w is the length of
the smallest word u for which there exists some value ¢ for which w = ut.

A necklace is an equivalence class of words under the translation operation.
An aperiodic necklace is called a Lyndon word. For notation, a word w is written
as w when treated as a necklace. Given a necklace w, the canonical form of w
is the lexicographically smallest element of the set of words in the equivalence
class w. The canonical form of W is denoted by (W), and the 7" shift of the
canonical form is denoted by (w),.. Given a word w, {(w) denotes the canonical
form of the necklace containing w.
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A subword of the necklace w, denoted by wy; ; is the word u of length |w| +
J —i—1mod |w| such that us = W;_144 mod |w| fOr every a € |w|. For notation,
u C w denotes that u is a subword of w. Further, v C; w denotes that u is a
subword of w of length 7. If a word u is a subword of w, then wu is also a subword
of the necklace (w). We denote that u is a subword of some necklace w by u C w,
and that u is a subword of w of length i by u C; w.

If w = uv, then u is a prefix and v is a suffix. For notation, the tuple S(v, ¢)
is defined as the set of all subwords of v of length ¢. Formally let S(v,¢) =
{s C v : |s| = ¢}. Further, S(v,¢) is assumed to be in lexicographic order, i.e.
S(v,€)1 > S(v,£)3 > ...S(v,)|,|, where S(v,{); denotes the i*" entry of S(v, £).
The set of necklaces of length n over an alphabet of size ¢ is denoted by N, A
Multidimensional Words and Necklaces: In order to establish multidimen-
sional necklaces, notation for multidimensional words must first be introduced.
A d-dimensional word over X is an array of size 7 = (ni,nsg,...,nq) of el-
ements from Y. In this work we tacitly assume that n; < no < ... < ng
unless otherwise stated. Let |w| denote the vector of length d defining the
size of the multidimensional word w. Given a size vector @ = (ny,na,...,nq4),
X7 is used to denote the set of all words of size 7i over X. Given a vec-
tor 7 = (ny,nsg,...,nq) where every n; > 0, [7] is used to denote the set
{(z1,79,...,24) € NUVi € [d],z; < n;}. Similarly [,7] is used to denote the
set {(x1,29,...,24) € N? | Vi € [d], m; < x; < n;}.

For a d-dimensional word w, the notation we,, p,....p,) 18 used to refer to
the symbol at position (p1, pe, ..., pa) in the array. Given two d-dimensional
words w,u such that |w| = (ny,n9,...,n4-1,a) and |u| = ( n1, na, ..., ng_1,
b), the concatenation wu is performed along the last dimension, returning the
word v of size (n1,n2,...,n4-1,a + b) such that vy = wy if pg < a and vy =
U(py,pa;....pa—1,pPa—a) if pg > a.

A multidimensional subword of w of size m is denoted by v T, w. As in the
1D case, a subword is defined by a start and an end position within the original
word w. Let w(i, j] for i, j € [ii] denote the subword u of size (j; —i1 +1, j2 — iz +
1,...,J4 — 94+ 1). The symbol at position p’ of u equals the symbol at position
(i1 +p1,i2 + D2, ... iq + pa) of w, L.e. Uy = Wi, 4p1 intps,..iatpa)

A d-dimensional translation r is defined by a d-tuple r = (r1,72,...,74). The
translation of the word w € X7 by r, denoted by (w),, returns the word v € X7
such that vy = w; for every position p € [7]] where j= (p1 + r1 mod ny,ps +
ro mod ng, ..., pq + rq mod ng). It is assumed that r; € [0,n; — 1], so the set of
translations Zz is equivalent to the direct product of the cyclic groups, giving
Ziz = Zny X Zpy X ... X Zyp,. Given two translations r = (r1,72,...,74) and t =
(t1,t2,...,tq) in Zz, t+r is used to denote the translation (r; +¢; mod nq,re +
to mod na, ..., rq + tg mod ng).

Definition 1. A multidimensional necklace w is an equivalence class of
multidimensional words under the translation operation. The set of multidimen-
sional necklaces over an alphabet of size q of size ny X no X ... X ng is denoted
by J\/:f where T = (n1,n2,...,Nq)-



6 D. Adamson, A. Deligkas, V. V. Gusev, and I. Potapov

Proposition 1. The number of multidimensional necklaces of size ny X ngy X

d
... X ng over an alphabet of size q is bounded by % < N[, where N = ] n;.
i=1

Proof. Given any word w € X7, there are at most N — 1 words equivalent to w

der th lati . iving N7 > 1271 a¥
under the translation operation, giving | q | > ~ S O

3 The k-centre problem for necklaces

In this section, we formally define the k-centre problem for a set of necklaces.
The input to our problem is some positive integer k, an alphabet X', and positive
integer length n. The goal is to choose a set S of k centres from the implicitly
defined set of necklaces such that the maximum distance between any member
of the input set and the set of centres S is minimised. For example, when the
problem is defined over the set N, . of g-ary necklaces of length n, the problem is
to select some subset S C N* such that [S| = k and the distance between each
necklace w € N, . and the necklace u € S that is closest to w is minimised.
The remainder of this section formalises the k centre problem for necklaces.
Section defines the overlap distance between necklaces. At a high-level, the
overlap distance between two necklaces is the inverse of the overlap coefficient
between them, in this case, 1 minus the overlap coefficient. This distance can
be seen as a natural distance based on “bag-of-words” techniques used in ma-
chine learning [I5]. Section uses the overlap distance to define the k-centre
problem for classes of necklaces. Along with a problem definition, we provide
preliminary results on the complexity of the k-centre problem for necklaces, as
well as theoretical lower bounds on the optimal solution in the necklace setting.

3.1 The Overlap Distance and the k-centre Problem

Our definition of the overlap distance depends on the well-studied overlap coeffi-
cient, defined for a pair of sets A and B as €(4, B) = ﬁﬁm). In the context
of necklaces €(w, V) is defined as the overlap coefficient between the multisets of
all subwords of w and v. For some necklace w of size 77, the multiset of subwords

of size ¢ contains all u C; w. For each subword u appearing m times in w, m

copies of u are added to the multiset. This gives a total of N subwords of size 7 for
any E_; where N =nj-ns-...-ngq. For example, given the necklace represented by
aaab, the multiset of subwords of length 2 are {aa, aa, ab,ba} = {aa x 2,ab, ba}.
The multiset of all subwords is the union of the multisets of the subwords for
every size vector, with a total of N2 subwords; see Figure

To use the overlap coefficient as a distance between w and v, the overlap
coefficient is inverted so that a value of 1 means w and v share no common
subwords while a value of 0 means w = v. The overlap distance (see example in
Figure[3) between two necklaces w and v is O(w, v) = 1 — €(w, V). Proposition
shows that this distance is a metric distance.
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‘word ababab ‘word abbabb ‘Intersection

1 |jax3,bx3 aXxX2bx4 5
2 |ab x 3,ba x 3 ab X 2,bb X 2,ba X 2 4
3 |aba X 3,bab x 3 abb X 2,bba X 2,bab X 2 2
4 |abab x 3,baba X 3 abba X 2,bbab X 2,babb x 2 0

5 |ababa X 3,babab x 3 |abbab X 2, bbabb x 2, babba x 2 0

6 |ababab x 3,bababa x 3|abbabb X 2, bbabba X 2, babbab X 2 0
Total 11

Fig. 3. Example of the overlap coefficient calculation for a pair of words ababab and
abbabb. There are 11 common subwords out of the total number of 36 subwords of
length from 1 till 6, so €(ababab, abbabb) = 1= and O(ababab, abbabb) = 25.

w\V/A BCDEF

A |0 DB IEIsg

B |0 B8
AaaaaBaaabCaabbC ﬁiéfiﬁgﬁ
D abab E abbb F bbbb |14 1§ 10 [° ¥ 1
B (81838 0 0 18
PR

16 16 16 16

Fig. 4. Example of the overlap distance O({W), (¥)) for all necklaces in N3.

Proposition 2. The overlap distance for necklaces is a metric distance.

Proof. Let a,b,é e Nqﬁ, for some arbitrary vector 7 € N? and ¢ € N. The
overlap distance is metric if and only if O(a,b) < O(&,¢&) + O(b, €). Rewriting
this gives 1 — ¢(a,b) < 2 — €(&,b) — €(b, &) which can be rewritten in turn
as €(a,b) + €(b,&) < 1+ €(a,b). Observe that if ¢(a,¢&) + €(b,&) > 1 then
“?{,126‘ + ll}@f‘ > 1, meaning that |a N &| 4 [bN & > N2. This implies that & and
b share at least |a N & + [b N & — N2 subwords. Therefore ¢(a, n) must be at
least €(a,n) + ¢(b, &) — 1. Hence O(a,b) < O(a,¢) + O(b, ¢). O

3.2 The k-centre Problem.

The goal of the k-centre problem for necklaces is to select a set of k necklaces of
size 77 over an alphabet of size ¢ that are “central” within the set of necklaces
Nqﬁ Formally the goal is to choose a set S of k necklaces such that the maxi-
mum distance between any necklace w € N, (f and the nearest member of S is
minimised. Given a set of necklaces S C Nqﬁ, we use ”D(S,./\/'(f) to denote the
maximum overlap distance between any necklace in N, (f and its closest necklace
in S. Formally @(S,./\/'qﬁ) = maxye v Milges O (W, V).

Problem 1. k-centre problem for necklaces.

Input: A size vector of d-dimensions 7@ € N?, an alphabet of size ¢, and an
integer k € N.
Question: What is the set S C N7 of size k minimising D (S, N)?
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There are two significant challenges we have to overcome in order to solve Prob-
lem |1} the exponential size of ./\/qﬁ, and the lack of structural, algorithmic, and
combinatorial results for multidimensional necklaces. We show that the concep-
tually more straightforward problem of verifying whether a set of necklaces is a
solution for Problem [2|is NP-hard for any dimension d.

Problem 2. The k-centre verification problem for necklaces.

Input: A d-dimensional size vector 7 € N, an alphabet of size ¢, a rational
distance £ € QQ, and a subset S C ./\/qﬁ.
Question: Does there exist a necklace w € N such that O(w,S) > ¢?

Theorem 1. Given a set S C Nqﬁ and a distance ¢, it is NP-hard to determine
if there exists some necklace v € ./\/:f such that O(8,v) > ¢ for every s € S.

Proof. This claim is proven via a reduction from the Hamiltonian cycle problem
on bipartite graphs to Problem [2]in 1D. Note that if the problem is hard in the 1D
case, then it is also hard in any dimension d > 1 by using the same reduction for
necklaces of size (nq,1,1,...,1). Let G = (V, E) be a bipartite graph containing
an even number n > 6 of vertices. The alphabet Y is constructed with size n
such that there is a one to one correspondence between each vertex in V' and
symbol in X. Using X' a set S of necklaces is constructed as follows. For every
pair of vertices u,v € V where (u,v) ¢ E, the necklace corresponding to the
word (uv)™/? is added to the set of centres S. Further the word v", for every
v € V, is added to the set S.

For the set S, we ask if there exists any necklace in ./\/Z’ that is further than
a distance of 1 — % For the sake of contradiction, assume that there is no
Hamiltonian cycle in G, and further that there exists a necklace w € N, (’f such
that the distance between w and every necklace v € S is greater than 1 — %
If w shares a subword of length 2 with any necklace in S then w would be at a
distance of no less than 1 — % from S. Therefore, as every subword of length 2
in S corresponds to a edge that is not a member of F, every subword of length
2 in w must correspond to a valid edge.

As w can not correspond to a Hamiltonian cycle, there must be at least one
vertex v for which the corresponding symbol appears at least 2 times in w. As G
is bipartite, if any cycle represented by w has length greater than 2, there must
exist at least one vertex u such that (v,u) ¢ E. Therefore, the necklace (uv)"™/?
is at a distance of no more than 1 — % from w. Alternatively, if every cycle
represented by w has length 2, there must be some vertex v that is represented
at least 3 times in w. Hence in this case w is at a distance of no more than
1-— % from the word v™ € S. Therefore, there exists a necklace at a distance of
greater than 1 — % if and only if there exists a Hamiltonian cycle in the graph
G. Therefore, it is NP-hard to verify if there exists any necklace at a distance
greater than [ for some set S. a

The combination of this negative result with the exponential size of N, qﬁ relative

to 7 and ¢ makes finding an optimal solution for Problem [1| exceedingly unlikely.
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Lemma 1. Let S C ./\/'qﬁ be an optimal set of k centres minimising ZD(S,Nqﬁ)
then (S, N]7) > 1 — M.

Proof. Recall that the distance between the furthest necklace w € N; and the
optimal set S is bounded from bellow by determining an upper bound on the
number of shared subwords between w and the words in S. For the remainder of
this proof let w to be the necklace furthest from the optimal set S. Further for
the sake of determining an upper bound, the set S is treated as a single necklace
S of length n - k. As the distance between w and S is no more than the distance
between w and any v € S, the distance between w and S provides a lower bound
on the distance between w and S.

In order to determine the number of subwords shared by W and S, consider
first the subwords of length 1. In order to guarantee that w shares at least one
subword of length 1, S must contain each symbol in X, requiring the length of
S to be at least q. Slmllarly, in order to ensure that w shares two subwords of
length 1 with S, S must contain 2 copies of every symbol on X, requiring the
length of S to be at least 2¢. More generally for S to share i subwords of length
1 with W, S must contain i copies of each symbol in X, requiring the length of
S to be at least i - ¢. Hence the maximum number of subwords of length 1 that
W can share with S is either L%J, if L%J < n, or n otherwise.

For subwords of length 2, the problem becomes more complicated. In order
to share a single word of length 2, it is not necessary to to have every subword
of length 2 appear as a subword of w. Instead, it is sufficient to use only the
prefixes of the canonical representations of each necklace. For example, given
the binary alphabet {a, b}, every necklace has either aa, ab or bb as the prefix of
length 2. Note that any necklace of length 2 followed by the largest symbol ¢ in
the alphabet n—2 times belongs to the set N,'. As such, a simple lower bound on
the number of prefixes of the canonical representation of necklaces is the number
of necklaces of length 2, which in turn is bounded by %-. Noting that the prefixes
inS may overlap, to ensure that S and w share at least one subword of length 2,

the length of S must be at least 4. Similarly, for S and W to share i subwords

of length 2, the length of S must be at least %. Hence the maximum number
of subwords of length 2 that S and W can share is either LQZékJ, if LQZ—zkj < n,or

n otherwise. In order for S to share at least one subword of length j with W, the

length of S must be at least q%. Further the maximum number of subwords of

length j that S and W can share is either [£2%% | if | Z2% | < or n otherwise.
q q-

The maximum length of a common subword that W can share with S is the

largest value [ such that qu < n - k. By noting that qu > %l, a upper bound

on | can be derived by rewriting the inequality % ¢ <n-kasl=2log,(n-k).
Note further that, for any value I’ > I, there must be at least one necklace that
does not share any subword of length ! with S as S can not contain enough
subwords to ensure that this is the case. This bound allows an upper bound
number of shared subwords between W and S to be given by the summation
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2log, (n-k) log, (k-n) log, (kn)
. i-n-k og n) __ qnlog n)
Z; min([ <% |, n) < n-log,(n-k) + =5~ ~ — 41— ~ nlog, (k- n).
Using this bound, the distance between w and S must be no less than 1 lo8g (k)
In the multidimensional case, let 71 = ( m1, ma, ..., mgq) be a size vector of
q-dimensions such that M = mq -mq - ... -mg. The largest value of M such that
S can contain every subword with M positions is 2log,(n - k). From Proposition

M
the lower bound on the number of necklaces of size m is qﬁ. The maximum

. M
number of shared subwords between w and Sis > i - ]\g % < log, (k- N). Hence
i=1
log, (k-N)
——

the distance between w and s is at most 1 — O

The key idea behind our algorithms for approximating the k-centre problem on
necklaces is to find the largest vector 7= (l1,1a,...,lq) such that every word of
size £ appears as a subword within the set of centres. In this setting i is larger
than £ if my-mg-...-mg>1Iy-la-...-lg. This is motivated by observing that
if two necklaces share a subword of length [, they must also share 2 subwords of
length [ — 1, 3 of length | — 2, and so on.

Lemma 2. Given w,v € ./\/'; sharing a common subword a of size m, let x; =

2

n; - m; if n; = m;, and x; = otherwise. The distance between w and

v 1s bounded by O(w,v) < 1 — Hj\zfif <1- % where N = Hie[d] n; and

i€[d]

Proof. Note that the minimum intersection between w and v is the number of
subwords of a, including the word a itself. To compute the number of subwords of
a, consider the number of subwords starting at some position j € [la]]. Assuming
that |a|; < n; for every i € [d], the number of subwords starting at j corresponds

. d
to the size of the set [j,|a|], equal to [] m; — |a|;. This gives the number of
i=1
shared subwords as being at least > [ mi—lal; > Y. j > MTQ Therefore,
jé€llal] i€(d] je[M]
M2 0

the distance between w and v is no more than 1 — INT-

4 Approximating the k-centre Problem for necklaces

In this section we provide our approximation algorithms. The main idea is to
determine the longest de-Bruijn sequence that can fit into the set of k-centres.
As the de Bruijn sequence of order [ contains every word in X! as a subword,
by representing the de Bruijn sequence of order [ in the set of centres we ensure
that every necklace shares a subword of length [ with the set of k-centres.

Definition 2. A de Bruign hypertorus of order 7 is a cyclic d-dimensional
word T containing as a subword every word in X" exactly once.
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Lemma 3. There exists an O(n - k) time algorithm for the k-centre problem on

2 .
N returning a set of centres S such that D(S,N7') <1 — log;i’; n)

Proof. Our algorithm operates by partitioning a de Bruijn sequence S of order
A into a set of k centres of size n — A + 1, with the final A — 1 symbols of the
it" centre being shared with the (i + 1) centre. In this manner, the first centre
is generated by taking the first n symbols of the de Bruijn sequence. To ensure
that every subword of length A\ occurs, the first A — 1 symbols of the second
centre is the same as the last A — 1 symbol of the first centre. Repeating this,
the i" centre is the subword of length n starting at position i(n — A+ 1) + 1 in
the de Bruijn sequence. An example of this is given in Figure

Sequence: 0000001000011000101000111001001011001101001111010101110110111111
Centre |Word

1 000000100001100010100

2 101000111001001011001

3 110011010011110101011

4 000000 0101110110111111

Fig. 5. Example of how to split the de Bruijn sequence of order 6 between 4 centres.
Highlighted parts are the shared subwords between two centres.

This leaves the problem of determining the largest value of A such that ¢* <
k- (n— X+ 1). Rearranging ¢* < k- (n — A+ 1) in terms of A gives A <
log, (k- (n+1) — k- A). Noting that A\ < log,(k - n), this upper bound on the
value of A\ can be rewritten as log, (k- (n + 1 —log,(k - n))) =~ log,(k - n). Using
Lemma [2| along with logq(k -n) as an approximate value of A gives an upper
bound on the distance between each necklace in ' and the set of centres of

2
1-— %. As the corresponding de Bruijn sequence can be computed in no
more than O(k - n) time [31], the total complexity is at most O(k - n). O

Theorem 2. The k-centre problem for Nq” can be approximated in O(n-k) time
log, (k-n) logz(k-n)

with an approzimation factor of 1+ n—log, (kn) _ 2n(n—log, (kmn)) "

5 7logg(kn)
Proof. Using the lower bound of 1 — longTE;c ) given by Lemma |3| gives 11%%
N 2n? —log? (kn) o 2n log, (kn)—log? (kn) - log, (kn) log? (kn) "
T 2n2-2n lo;q (kn) — L+ 2n2£:2n10g'q (lgn) =1+ nflong (kn) — 2n(n7ﬁ)gq (kn)) " a
Theorem 3. LetT be a d-dimensional de Bruijn hypertorus of size (z,z,. .., x).
There exist k subwords of T that form a solution to the k-centre problem for
2 .
Nq(y’y"”’y) with an approzimation factor of 1 + Nlog" (k) log, (k-IV)

—log, (k-N) ~— 2N(N-log, (k-N))
where y¢ = N and 2 = logn (y).
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Proof. Recall from Lemma [1| that the lower bound on the distance between the
centre and every necklace in N, ;L is 1 — W. As in Theorem [2| the goal is
to find the largest de Bruijn torus that can “fit” into the centres. To simplify
the reasoning, the de Bruijn hyper tori here is limited to those corresponding
to the word where the length of each dimension is the same. Formally, the de

Bruijn hypertori are restricted to be of the size m; =ma =... =m; = V/N for
some j € [d], giving the total number of positions in the tori as M. Similarly,
the centres is assumed to have size ny = ng = ... = ng = N , giving N total
positions.

Observe that the largest torus that can be represented in the set of centres has
M positions such that ¢™ < k- N@=)/d(J/N — VM + 1)7. This can be rewritten
to give M < 1ogq(k;~N(d J)/d(\/> \ﬁ—&— 1)7). Noting that M is of logarithmic
size relative to N, this is approximately equal to M < log, (k- N). Using Lemma

.. . . 7 log2 (kN .
the minimum distance between any necklace in N7* is 1 — Og;;ﬂ ). Following

2:Nlog, (k-N)—logZ(k-N) _ 1
N2z Nog, (kM) — 1T

the arguments from Theorem [2| gives a ratio of 1 4

log,, (kN) log? (kN)
N—-log, (kN) = 2N(N-log, (kN))" U

While this provides a good starting point for solving the k-centre problem for
N, qﬁ, this work is restricted by the limited results on generating de Bruijn hyper-
tori, particularly in higher dimensions [I0/T9)20121122]. As such, we present an
alternative approach below. The high-level idea is to reduce the problem from
the multidimensional setting to the 1D problem, which we can approximate well
using Theorem [2| Given a size vector 77, integer k and alphabet X' our approach
can be thought of as finding a set of k- nq - ... -ng_1 centres of length ng over
X, taking advantage of the added number of centres to increase the length of
shared subwords.

Case 1, ¢"¢ > k- ﬂ' In this case the set of centres is constructed by using

k= M centres of N "d_ The motivation behind this approach is to optimise

the length of the 1D subwords that are shared by the centre and every other
necklace in NVJ'. Let S C N be a set of centres k - 711\7 from N4 constructed
following the algorithm outlined in Lemma |3 Follovvlng the arguments from
Lemma [3] every necklace in ¢ must share a subword of length log,(k - N)
with at least one centre in S. As every subword of size (1,1,...,1,ny4) of any
necklace in NV, qq belongs to a necklace w € N, <% by ensuring that every necklace
in S appears as a subword in the centre S’ C ./\/'(f it is ensured that w shares
at least one subword of length log,(k - N) with some necklace in S’. This can
be done by simply splitting S into k£ sets of nﬂ centres, each of which can be

d
made into a word of size 77 through concatenation. From Lemma' 2l the maximum

distance between any necklace in S’ and necklace in N; is 1 — W This

equals the bound given by Lemma 3| giving the same approximation ratio.

Case 2, ¢" < k- nﬂ: Following the process outlined above, it is possible to rep-
resent every word of length ny over X' with some redundancy. In order to reduce
the redundancy an alternative reduction from the 1D setting is constructed. The
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high-level idea is to construct a new alphabet such that each symbol corresponds
to some word in X" for some size vector .

The first problem is determining the size vector allowing for this reduction.
Let X (1) denote the alphabet of size ¢™*"™2"--'™d guch that each symbol in X(1)
corresponds to some word in . Given a word w € X(m)"t/ ™12/ M2, na/ma
a word v € X7 can be constructed by replacing each symbol in w with the
corresponding word in X". Note that the largest value of m such that every
symbol in X(1m) can be represented in k words from X (m)"1/ ™12/ M2, na/ma

is bounded by the inequality ¢™*™2"™a <. [ L] [ B2 ). .| 2] Letting
1 m2 mq
M =m;y -mg - ... myg, this inequality can be rewritten as approximately ¢™ <

k- % Treating M as being approximately N gives M < log, (k).

Using this bound on M let m be some set of vectors such that M = m; -
mg + ... - mg. We may assume without loss of generality that my = 1. The
centres for ./\/'f are constructed by making a set S of kMLnd centres for N:]S}.

every necklace in q’ﬁ(} must share a

Following the arguments from Lemma
Ny log, (k) 10gq(k'1ogN(k))

(k- &) = =5 = 1ogq(kq) = Note fur-

ther that, as each symbol in X(m) corresponds to a word in Y™ converting

each word in S to a word of size (mq, ma, ..., mg_1,n1) provides a set of cen-

subword of length at least log,

. m1,M2,...,Mqg—1,N .
tres such that every necklace in J\/q( M2 M=) ghares a subword of size

N
m M ith t C tinge thi t
1,Mo, ..., Mg_1, oz (k) with some centre. Converting this new se
q

of centres into a set ' C N qﬁ maintains the same size of shared subwords. From
Lemma the furthest distance between S’ and any necklace in ./\/qﬁ is bounded

2 N
logy (k'logq(k))

2(k)- 2 N
logy (k) — 52 1 e (b ) | _ logg (e )

from above by 1 — SNZ =1- SN? T

Theorem 4. The k-centre problem for Nf can be approzimated in O(N>k) time

log, (kN) log? (kN) _17d
—log, (kN) _ 2N(N—log, (kN))’ where N = J[;_; n;.

within a factor of 1 +

Proof. Following the above construction, note that in both cases the distance
between the set of centres S and the necklaces J\/'qﬁ is bounded from above by
1_ log? (k-N) log, (kN) log?2(kN)

2N2 —log, (kN) 2N (N—log, (kN))
derived using the same arguments as in Theorem [2| Regarding time complexity,
in the first case the problem can be solved in O(k - N) time using Theorem [2| In
the second case, a brute force approach to find to best value of m can be done
in O(N) additional time steps giving a total complexity of O(k - N?). O

. The approximation ratio of 1 + is
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