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ABSTRACT
External knowledge (a.k.a. side information) plays a critical role in zero-shot learning (ZSL) which
aims to predict with unseen classes that have never appeared in training data. Several kinds of external
knowledge, such as text and attribute, have been widely investigated, but they alone are limited with
incomplete semantics. Some very recent studies thus propose to use Knowledge Graph (KG) due
to its high expressivity and compatibility for representing kinds of knowledge. However, the ZSL
community is still in short of standard benchmarks for studying and comparing different external
knowledge settings and different KG-based ZSL methods. In this paper, we proposed six resources
covering three tasks, i.e., zero-shot image classification (ZS-IMGC), zero-shot relation extraction (ZS-
RE), and zero-shot KG completion (ZS-KGC). Each resource has a normal ZSL benchmark and a KG
containing semantics ranging from text to attribute, from relational knowledge to logical expressions.
We have clearly presented these resources including their construction, statistics, data formats and
usage cases w.r.t. different ZSL methods. More importantly, we have conducted a comprehensive
benchmarking study, with two general and state-of-the-art methods, two setting-specific methods
and one interpretable method. We discussed and compared different ZSL paradigms w.r.t. different
external knowledge settings, and found that our resources have great potential for developing more
advanced ZSL methods and more solutions for applying KGs for augmenting machine learning. All
the resources are available at https://github.com/China-UK-ZSL/Resources_for_KZSL.

1. Introduction
Supervised learning has achieved great success in many

domains such as natural language processing and computer
vision. Its methods often require a large number of labeled
training samples to achieve good performance, following a
closed world assumption. Namely, they predict with classes
that have appeared in the training stage (i.e., seen classes).
However, in many real-world applications, new classes al-
ways emerge, and it often costs too much computation,
human labour and time to address these new classes by
collecting labeled samples and training the model from
scratch. To this end, Zero-shot Learning (ZSL), which aims
at predicting with classes that have no training samples
(i.e., unseen classes), was proposed and has been widely
investigated in the past decade [1, 2, 3].

Since no labeled samples are given for unseen classes,
existing ZSL methods usually rely on external knowledge
(a.k.a. side information) which describes prior semantic
relationships between classes. They follow some paradigms
to utilize these external knowledge to transfer data and/or
models from seen classes to unseen classes. For example,
one classic paradigm is mapping-based which first embeds
all the classes with their external knowledge, then (jointly)
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maps the class embeddings and the sample features into
one common space where testing samples can be matched
with classes by measuring distances with metrics such as
the Cosine similarity. Widely investigated external knowl-
edge includes class textual information (e.g., names and
descriptions) [4, 5] and class annotations (e.g., attributes)
[6]. However, each kind of such external knowledge fails to
accurately or fully express inter-class relationships.

Recently, Knowledge Graphs (KGs) [7, 8, 9] have at-
tracted wide attention as the external knowledge of ZSL.
For example, Wang et al. [10] and Kampffmeyer et al.
[11] incorporate hierarchical inter-class relationships from
WordNet [12]; Gao et al. [13], Zhang et al. [14], Nayak et al.
[15] and Roy et al. [16] explore relational class knowledge
from common sense KGs such as ConceptNet [17]. Signifi-
cant performance improvement is often achieved when these
KGs are well utilized. Besides, KGs can also be used to
represent many other kinds of traditional external knowledge
such as human annotations and textual information [18, 19],
due to its high compatibility in representing and integrating
different knowledge. However, although various KGs have
been exploited by current methods, there is still a concern
on semantics completeness especially in distinguishing fine-
grained classes. Meanwhile, very fewmethods have been de-
veloped that can jointly utilize multiple kinds of knowledge
in a KG, while other kinds of KG semantics such as logical
expressions have not been investigated yet. Furthermore,
existing works all build their own KGs for evaluation, and
the community lacks standard and unified benchmarks for
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Benchmarking Knowledge-driven Zero-shot Learning

comparing different KG-based ZSL methods under settings
with ranging semantics. And more importantly, KG-based
external knowledge has been attractively investigated in the
computer vision but rarely covered in other domains. One
critical reason for all these issues is that there is a shortage
of high quality open benchmarking resources for method
development and evaluation.

In this work, we constructed systemic resources for KG-
based ZSL research. The resources include six benchmarks
with corresponding KGs for three ZSL tasks from different
domains: zero-shot image classification (ZS-IMGC), zero-
shot relation extraction (ZS-RE), and zero-shot knowledge
graph completion (ZS-KGC). The KGs contain different
kinds of external knowledge, including not only typical
external knowledge such as attribute, text and hierarchy,
but also relational facts and logical expressions, with the
goal of providing ranging semantic settings for investigating
different KG-based ZSL methods. In the paper, we present
the technical details of how these resources are constructed,
their statistics, data formats, and very high usage for evalu-
ating and developing robust and interpretable ZSL methods.

More importantly, we present an extensive benchmark-
ing study by evaluating and comparing two representative
and general ZSLmethods, two setting-specific ZSLmethods
and one interpretable ZSL method, under different external
knowledge settings that are supported by our resources. It
is worth mentioning that there are currently no methods to
utilize those potentially useful logical external knowledge,
and we thus developed an effective ensemble-based method
which combines symbolic reasoning and neural prediction
for ZS-KGC. Through this benchmarking study, we analyzed
the benefits of different external knowledge, and the pros and
cons of different ZSLmethods. We have quite a few concrete
observations and future work perspectives that will benefit
the ZSL community and the KG community. See details in
Section 6 and 7. Here are two brief conclusions:

• Utilizing various semantics represented by KGs can
often lead to higher performance and more inter-
pretable solutions, even when they are simply em-
bedded and fed into some methods that are originally
developed for single semantics. More effective meth-
ods for fusing and injecting different kinds of external
knowledge should be investigated in the future.

• ZSL methods of the generation-based paradigm of-
ten have more robust performance when both seen
and unseen classes are predicted, than methods of
the mapping-based paradigm, while the propagation-
based paradigm can often well utilize the graph struc-
ture. In future ZSL studies, more ZSL methods of
different paradigms should be tested and compared
with, under different external knowledge settings.

The remainder of this paper is organized as follows. In
Section 2, we set up the background of our work, including
an introduction to KG and the ZSL tasks in three differ-
ent domains, review the related works. In the next three
sections, we introduce the resources of ZS-IMGC, ZS-RE,

and ZS-KGC, respectively. In Section 6, we present the
benchmarking study using these resources. Subsequently, we
summarize the evaluation results, and discuss the challenges
and some potential research directions in Section 7. In the
end, we conclude the paper.

2. Background
2.1. Knowledge Graph

Knowledge Graph (KG) is famous for representing and
managing graph structured knowledge [7, 8, 9]. It has widely
applied in many domains such as search engine, recommen-
dation system, clinic AI, personal assistant, bioinformatics,
intelligent finance, software engineering and data analysis
[20, 21]. A KG is often largely composed of relational facts
in the form of triples of Resource Description Framework
(RDF)1 [22]. Each RDF triple is denoted as (s, r, o), where s
represents a subject entity, o represents an object entity, and r
represents a relation between these two entities (a.k.a. object
property). All these triples compose a multi-relational graph
whose nodes correspond to entities and edges are labeled
by relations. A KG also contains RDF triples that represent
literals and meta information such as entity attributes and
textual definition via built-in or bespoke data and annotation
properties such as rdfs:label and rdfs:comment.

In addition to these facts, KGs are often accompanied by
an ontological schema and constraints in languages from the
Semantic Web community such as RDF Schema (RDFS)2,
Web Ontology Language (OWL)3 and SHACL4 for richer
semantics and higher quality [23, 24, 25, 26]. They often
defines entities’ classes (a.k.a. concepts), properties (i.e.,
stating the terms used as relations), concept and relation
hierarchies, constraints (e.g., relation domain and range, and
class disjointness), and logical expressions such as relation
composition. The languages such as RDF, RDFS and OWL
have defined a number of built-in vocabularies for repre-
senting these knowledge, such as rdfs:subClassOf, rdf:type
and owl:disjointWith. It is worth mentioning that a KG,
especially those equipped with schemas and constraints, can
support symbolic reasoning such as consistency checking,
and entailment reasoning which infers hidden knowledge ac-
cording to the defined logics. Some ontology reasoners such
as HermiT [27] and TrOWL [28] can be directly applied.

Many kinds of data mining and machine learning tech-
niques can also be applied to KGs for approximate infer-
ence and knowledge discover. One typical example is KG
completion (KGC) by KG embedding techniques which are
to learn vector representations of KG components such that
their semantics such as relationships are kept in the vector
space [29, 30, 31, 32, 33]. KGC tasks often predict links
between different KG components, such as between entities,
between entities and classes, and between classes. Please
see Section 2.4 for more details on KGC. Another example

1https://www.w3.org/TR/rdf11-concepts/.
2https://www.w3.org/TR/rdf-schema/
3https://www.w3.org/TR/owl2-overview/
4https://www.w3.org/TR/shacl/
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is learning or mining concepts, rules, constraints and other
ontological knowledge from KGs [34, 35, 36].
2.2. Zero-shot Image Classification

Image classification is a critical task in computer vi-
sion. Zero-shot image classification (ZS-IMGC) refers to
predicting images with new classes that have no labeled
training images. In the literature of ZS-IMGC, case studies
range from classifying general objects [37, 38] to classifying
(fine-grained) objects in specific domains such as animals
[6, 2], birds [39], and flowers [40]. Please see [2] for a
comprehensive survey on ZS-IMGC studies.

To address new classes, some early ZS-IMGCworks em-
ploy class attributes as external knowledge, which describe
objects’ visual characteristics about e.g., colors and shapes,
to model the relationships between classes. However, these
attributes ignore the direct associations between classes,
cannot represent complicated relationship and usually need
human labour for annotation. Some other works adopt the
word embeddings of class names [5, 41], or the sentence
embeddings or textual features of class descriptions [42] to
model the inter-class relationships. Although such textual
information is easy to access, it cannot represent logical or
quantitative semantics, and is often quite noisy containing
many irrelevant words.

Recently, several methods model the inter-class rela-
tionships via KG, with promising results achieved. Wang
et al. [10] and Kampffmeyer et al. [11] adopt WordNet to
represent the hierarchy of classes of images from ImageNet;
Gao et al. [13], Nayak et al. [15] and Roy et al. [16] propose
to use common sense KG ConceptNet to introduce more
relational knowledge; Geng et al. [43] extract knowledge
from DBpedia as a complement of the WordNet class hi-
erarchy. However, all these KG-based ZS-IMGC studies are
still preliminary in terms of both semantic sufficiency in the
methodology and benchmarking in the evaluation. To bridge
the gap of benchmarking and support research in utilizing
different external knowledge, in this work, we contributed
three resources, each of which can support ranging external
knowledge settings with a KG that has incorporated not only
class hierarchy, text and attributes, but also common sense
class knowledge and logical relationships between classes.
2.3. Zero-shot Relation Extraction

As an important semantic processing task in the field
of natural language processing, the objective of relation
extraction (a.k.a. relation classification) is to predict the
semantic relation of two given entity mentions in a sentence.
Since the predicted relation and the given entity mentions
can compose a relational fact, RE also serves as an essential
technique for KG construction with text. Similar to image
classification, conventional supervised relation extraction
approaches cannot address new relation types that have never
appeared in the training data. To this end, the task of zero-
shot relation extraction (ZS-RE), which is to predict unseen
relations with given entity mentions and their sentences,
was proposed and has been investigated by some studies
[44, 45, 46, 47, 48, 49].

To tackle these unseen relations, some ZS-RE studies
convert the original problem to another text understanding
problem by utilizing the relations’ descriptive information.
For example, Levy et al. [44] reduce relation extraction to
answering reading comprehension questions by associating
one or more natural-language questions to each relation type.
Obamuyide et al. [45] formulate relation extraction as a
textual entailment problem with the relation descriptions,
and consider the input sentence and the description as the
premise and hypothesis, respectively. However, these works
are labor intensive as human efforts are required to design
questions or write descriptions for relations. And the trans-
formed tasksmay not be suitable for the RE problem enough.

Another attractive way is to leverage the external infor-
mation that explicitly describes the semantic associations
between relations, according to which unseen relations can
be directly predicted by transferring features learned from
seen relations. For example, Chen et al. [49] explore them
from the text descriptions of relation labels. Considering that
relation labels can be represented in a KG by a number of
relational facts, the state-of-the-art is achieved by those who
explored the semantics from KGs [47]. One representative
work is [48] by our team, which builds associations between
seen and unseen relations via implicit and explicit semantic
representations with KG embeddings and logic rules. In
comparison with hand-crafted questions or descriptions in
aforementioned works, these external information contain
more semantic knowledge about relations and are easier to
collect such as accessing from online open resources.

Back to the external knowledge currently used, the struc-
tured knowledge by KGs is usually more accurate than the
text, with less noise when incorporated in learning algo-
rithms. Thus, to better study the impact of KG external
knowledge on ZS-RE and facilitate developing more effec-
tive KG-based ZS-RE methods, we developed a new ZS-
RE resource, where some data in [48] are inherited and im-
proved. In particular, targeting the situation that the original
benchmark used in [48] is mainly for the standard zero-
shot setting but ignores the more realistic generalized zero-
shot setting, we segment the original training set, and down-
sample to extract two balanced subsets: one is taken as the
new training set and the other is used for testing. Besides, in
the benchmarking study, we evaluated more ZS-REmethods
such as OntoZSL [18] under more settings, in comparison
with the original paper [48].
2.4. Zero-shot Knowledge Graph Completion

KGs such asWikidata and DBpedia mostly face the chal-
lenge of incompleteness, and thus KG completion (KGC),
which is often defined to predict the subject, relation or
object of a missing triple (fact), has been widely investi-
gated. The KGC methods usually first embed entities and
relations into vectors by e.g., geometric learning and Graph
Neural Networks (GNNs), and then discover the missing
facts in the vector space [50]. However, these methods can
only predict entities and relations that have been associated
in some training triples, but cannot address newly-added

Yuxia Geng et al.: Preprint submitted to Elsevier Page 3 of 19
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Table 1
Comparison of our original resources used in OntoZSL [18] and the new resources in KZSL (this paper).

Types of
External Knowledge

ZS-IMGC ZS-RE ZS-KGC
Hierarchies Attributes Literals Relational Facts Logics KGs+Logic Rules Text RDFS OWL

OntoZSL ! ! ! % % % ! ! %

KZSL ! ! ! ! ! ! ! ! !

(unseen) entities and relations, which are quite common as
KGs are often evolving. To this end, zero-shot KGC (ZS-
KGC), which is to predict triples with entities or relations
that have never appeared in the training set, was recently
proposed and has achieved quite much attention in recent
years [51, 52, 53, 4]. As setting both entities and relations
unseen makes the problem much more challenging, in this
paper, we focus on those newly-added relations but keep the
entity set seen.Wewill consider unseen entities in the future.
It is worth noting that ZS-RE and ZS-KGC here both
involve completing relational facts with unseen relations,
but they are totally different tasks. ZS-RE aims to predict
the missing relations given entity mentions and their
associated text, while ZS-KGC aims to predict new facts
given the existing relational facts.

There are relatively few ZS-KGC studies that aim at
addressing unseen relations. Qin et al. [4] leveraged the
features learned from relations’ textual descriptions, and ex-
tracted two benchmarks from NELL andWikidata for evalu-
ation. As in ZS-IMGC, textual external knowledge is usually
noisy, with irrelevant words and ambiguous meanings. To
support further studies for developing and comparing ZS-
KGC methods that can utilize different kinds of external
knowledge, we propose two ZS-KGC resources, each of
which is associated with one KG composed of relational
facts (i.e., data graph) as the target for completion (fact pre-
diction), and one ontological schema (i.e., schema graph) as
external knowledge. For the schema graph, we adopt some
vocabularies in RDFS, such as rdfs:domain, rdfs:range,
rdfs:subPropertyOf and rdfs:comment, to define and de-
scribe relations with their e.g., domain and range constraints,
hierarchy and text descriptions, and adopt some vocabularies
in OWL, such as owl:inverseOf, owl:propertyChainAxiom
and owl:SymmetricProperty, to define some logics such as
relation inversion and composition, and some characteristics
of relations.
2.5. Related Resources

There have been some open resources that can be used
for KG-based ZSL. However, as already discussed above,
the KGs of the existing resources usually have only one
kind of semantics such as class hierarchy. This makes it
hard to fairly compare different methods that use different
semantics, and limits the development of more effective
methods that can fuse and utilize different KG semantics.
Meanwhile, the construction of these resources is usually
very briefly introduced in evaluation sessions with details
missing. This significantly limits their usage. In contrast,
our resources cover different tasks with KGs having different

kinds of semantics, and the construction of these resources
are well presented with details.

A part of the proposed resources have already been
very briefly introduced and used in our OntoZSL paper [18]
which focuses on presenting a new ZSL method. However,
these resources have been extended massively and some
new resources have been added in this work. As shown in
Table 1, we i) extended the KGs for ZS-IMGC with logical
expressions and new common sense knowledge; ii) extended
the ontological schemas for ZS-KGCwith relation semantics
in OWL; (iii) re-organized all the resources with formal
knowledge representation, and higher accessibility; and iv)
added a resource for a new task — ZS-RE which is widely
investigated in natural language processing.

It is worth noting that this is more than a resource paper,
but includes an extensive benchmarking study. We have
evaluated different ZSL methods using all these resources
for different tasks, and have analyzed the impact of different
kinds of semantics of the KGs. Besides, we also present the
use case of these resources for evaluating the explanations
of some ZSL methods.

3. Resource Construction for ZS-IMGC
3.1. Images and Classes

We extract two benchmarks named ImNet-A and ImNet-
O from ImageNet which is a large-scale image database
organized according to the WordNet taxonomy [37]. Each
class in ImageNet is matched to a WordNet node, and has
hundreds and thousands of images. Due to a large number of
hierarchical classes and a huge number of images, ImageNet
is widely adopted in computer vision research as well as in
ZSL research.

We focus on the class families (groups) in ImageNet,
such as vehicles and dogs, and extract fine-grained classes
with the following conditions: 1) seen classes are classes
in the ImageNet 2012 1K subset that is often used to train
CNNs e.g., ResNet [54], and unseen classes are those one-
hop away according to the WordNet hierarchy; 2) the con-
nection between seen and unseen classes are dense, e.g., a
seen class has more than one neighboring unseen classes;
3) every class can be linked to a Wikipedia article such
that more additional information about this class can be
accessed; and 4) the total number of selected seen and
unseen classes in each family is at least 5. As a result,
we extracted 28 seen classes and 52 unseen classes from
11 families all about animals (e.g., bees and foxes) for a
benchmark named ImNet-A, and extracted 10 seen classes
and 25 unseen classes for a benchmark named ImNet-O for
general object classification from 5 different class families
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AwA:n02374149
rdfs:label “equine”

AwA:n02374451
rdfs:label “horse”

AwA:n02391049
rdfs:label “zebra”

AwA:a024
rdfs:label “long_leg”

rdfs:subClassOf rdfs:subClassOf

AwA:a026
rdfs:label “tail”

AwA:a011
rdfs:label “stripes”

AwA:hasTextureAwA:hasBodyPartAwA:hasBodyPartAwA:hasBodyPart

AwA:a086
rdfs:label “body_part”

rdfs:subClassOfrdfs:subClassOf

AwA:n02127808
rdfs:label “big_cat”

AwA:n02129604
rdfs:label “tiger”

rdfs:subClassOf

owl:disjointWith

AwA:a052
rdfs:label “eat_fish”

owl:disjointWith

AwA:a087
rdfs:label “food”

rdfs:subClassOf

cn:horse
owl:sameAs

cn:carry_a_person

cn:riding

cn:capableOf

cn:usedFor

Figure 1: A snapshot of the KG of AwA. The prefixes AwA and cn are two ad-hoc namespaces of the KG.

Table 2
Statistics of ZS-IMGC benchmarks. “#Att.” refers to the
number of attributes. S/U denote seen/unseen classes.

Datasets #Att.
#Classes

#Images
Training Testing

Total (S/U) Total S/U S/U
ImNet-A 85 80 (28/52) 77,323 36,400/0 1,400/39,523
ImNet-O 40 35 (10/25) 39,361 12,907/0 500/25,954
AwA 85 50 (40/10) 37,322 23,527/0 5,882/7,913

(e.g., food and fungi). Table 2 shows detailed statistics of
ImNet-A and ImNet-O.

In addition, we also re-use a very popular ZS-IMGC
benchmark namedAnimals with Attributes (AwA) [2]. AwA
is a coarse-grained dataset for animal classification that
contains 37, 322 images from 50 animal classes, all of which
can bematched toWordNet nodes. The original AwA bench-
mark has no KG, while in this work, we build a KG as its
external knowledge.
3.2. External Knowledge and KG Construction

We collect different kinds of external knowledge, in-
cluding class hierarchy, attribute, text, relational fact and
logical expression, for ImNet-A, ImNet-O and AwA. For
each benchmark, we then construct one KGwhich integrates
all these external knowledge. The statistics of the resulting
KGs are shown in Table 3.
3.2.1. Class Hierarchy

We first extract the class hierarchy fromWordNet whose
class nodes are connected via the super-subordinate relation
(a.k.a. hyponymy or hypernomy relation). The class hierar-
chy is used as our KG backbone, and is formally represented
by the RDFS vocabulary rdfs:subClassOf, as Fig. 1 shows.
Each class’s IRI (Internationalized Resource Identifier) is
created following its original WordNet id, e.g., zebra from
AwA has the IRI AwA:n02391049. The prefix “AwA” here
refers to an ad-hoc namespace of our KG. Since WordNet
contains a very large taxonomy, we extract a subset that
covers all the benchmark classes and all their ancestors,
using the WordNet interface in the Python package NLTK5.

5https://www.nltk.org/howto/wordnet.html

3.2.2. Class Attribute
Based on this structure, we then add the attribute annota-

tions of seen and unseen classes to the graph. Before adding,
there is a need to establish the hierarchy of attributes. This is
because some attributes describe the same aspect of objects.
For example, attributes like black, white and red all describe
the appearance color of objects, while head, tail and claws
all describe the body parts of animals. The categorization of
attributes on the one handmodels richer relationships among
attributes, and on the other hand, it is helpful for defining the
relations between classes and attributes. Under the guidance
of WordNet hierarchy, we manually gather the attributes in
the datasets into different groups. For example, we gather 17
attributes into the group of body parts and 8 attributes into
the color group for the KG of AwA.

We represent these attributes and attribute groups as
KG nodes, each of them also has a namespace specified by
the dataset to which it belongs and a unique id defined by
ourselves, as shown in Fig. 1. Then, we connect attribute
nodes to their group nodes via relation rdfs:subClassOf, and
define the relation edges from class nodes to attribute nodes
according to the group to which the connected attribute
belongs. For example, for class zebra and its one annotated
attribute tail, a relation named AwA:hasBodyPart is defined.

Regarding the attribute annotation data, for AwA, we use
its published class-attribute matrices annotated by experts
[6], in which each AwA class has an associated binary-
valued or continuous-valued attribute vector. In order to
avoid the loss of semantic information, we adopt the binary-
valued version and extract attributes whose correspond-
ing vector values are 1 as annotated ones for each class.
While for ImNet-A/O, we manually annotate attributes for
classes as the attributes of ImageNet classes are not avail-
able. Briefly, we prepare a list of attributes that are gathered
fromWikipedia pages and attribute annotations of other ZS-
IMGC datasets such as AwA, divide all 115 classes into
5 parts, and invite 15 volunteers who are undergraduate
from Zhejiang University for annotation. Every volunteer
is asked to assign 3∼6 attributes for each class with the
images and Wikipedia articles of classes as references. Each
class is independently reviewed by 3 volunteers and the final
decision is made by voting. The statistics of attributes of
these three datasets are listed in Table 2.
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Table 3
Statistics of different kinds of entities, relations and triples in the KGs of ZS-IMGC. “Hie.”, “Att.” and “CN” are short for Hierarchy,
Attribute and ConceptNet, respectively.

Datasets # Entities # Relations # Triples
Total Class Att. CN Total Att. CN Total Hie. Att. Literal sameAs CN disjointWith

ImNet-A 8,920 111 103 8,706 41 17 21 10,461 210 335 214 156 9,546 /
ImNet-O 3,148 59 52 3,037 31 6 22 3,990 110 110 111 93 3,566 /
AwA 9,195 100 102 8,993 42 15 23 14,112 197 1,562 202 182 10,546 1,423

3.2.3. Class Text
In addition to structured triples, we also introduce the

textual information of classes and attributes. Here, we
choose their English surface names considering that some
classes are hierarchically related and their names are similar.
For example, classes red_fox, grey_fox, kit_fox and their
parent class fox. The class names can also be looked up by
NLTK WordNet interface, we represent them in the graph
using RDFS vocabulary rdfs:label, as Fig. 1 shows.
3.2.4. Relational Fact

We also access more relational class knowledge from
a large scale common sense KG ConceptNet [17] whose
knowledge is collected from multiple resources including
WordNet, DBpedia, etc. We use its latest dump6 and extract
the English subset which contains over 3.4 million triples
and around 1.8 million nodes in total. It is obvious that not
all of them contain valid information about the classes in
the benchmarks, we therefore choose to extract a relevant
subgraph by aligning classes and attributes to the entities of
ConceptNet and querying their 1-hop neighbors.

Considering that entities in ConceptNet are words and
phrases of natural language, we use the literal names of
classes and attributes and conduct string matching for align-
ment. For example, class zebra can be aligned to ConceptNet
entity c/en/zebra. For some attributes that cannot bematched
due to different word forms, we lemmatize them before
alignment. For example, attribute spots is lemmatized to spot
that can be found in ConceptNet. Besides, we also find that
some ConceptNet entities refer to the same objects but have
different forms, e.g., c/en/zebra and c/en/zebra/n/wn/animal.
Targeting this, we merge them using a custom namespace
“cn” and extract the union of these entities’ neighborhoods.
For example, the above two entities are merged as cn:zebra.
To be unified, other entities are also represented with this
namespace. Finally, for the aligned elements, we use a
vocabulary owl:sameAs defined in OWL to relate them in
the graph. From the statistics of resulting KGs shown in
Table 3, we find that the ConceptNet entities of some classes
or attributes are still missing, it may be because they are
fined-grained concepts and have not been included in Con-
ceptNet yet.We choose to skip them and leave the knowledge
extraction of them as a future work. In addition, to reduce
the noise during neighborhood query, we ignore the relations
with less information, e.g., Synonym, Antonym, SymbolOf,
NotCapableOf and NotHasProperty.

6https://github.com/commonsense/conceptnet5/wiki/Downloads

However, to use the extracted subgraph, there are still
some issues to be addressed. One issue is that the relations
extracted from ConceptNet may have the same semantics
with the relations we have defined. For example, cn:isA and
rdfs:subClassOf both indicate the semantic of hierarchy. For
this, we unify them into rdfs:subClassOf. The other is that
the knowledge extracted fromConceptNetmay already exist.
An example is (cn:squirrel, cn:LocatedNear, cn:tree), which
is already modelled by the attribute triple: (AwA:squirrel,
AwA:hasHabitat, AwA:tree). To solve this, we extract the
subjects and objects of these triples to generate a set of tuples
(s, o), and filter out ConceptNet triples with repetitive tuples.
3.2.5. Logical Expression

In ZS-IMGC, we also found that some classes that be-
long to different families and look greatly different have
many identical attributes. For example, two animal classes
zebra and tiger both have attributes stripes, tail and muscle.
During inference, tiger may provide an unexpected signif-
icant contribution to the feature learning of zebra due to
too many shared attributes between them. Although their
parent classes (i.e., equine and big_cat) and literal names
have been introduced in the KG to distinguish them, more
direct information would benefit the model and should be
investigated. One kind of semantics that can be expressed
by a KG for further augmentation is the logical relationship
defined using OWL vocabulary. Therefore, we define dis-
jointness for these classes and add disjointness axioms using
built-in property owl:disjointWith, as shown in Fig. 1. In
the example above, the disjointness between zebra and tiger
means that an images of zebra cannot simultaneously be the
instance of tiger so that avoiding the misclassification. We
also define the disjointness between classes and attributes.
For example, the fact “Zebra doesn’t eat fish” means the
disjointness between class zebra and attribute eat_fish.

Since the overlap of attributes of ImNet-A/O classes in
different families is low, we mainly set the disjoint con-
straints for classes and attributes in AwA. For the disjoint-
ness between different classes, we first generate a candidate
set by counting the number of shared attributes. Specifically,
for a pair of classes that belong to different families, if
their shared attributes are more than 2∕3 of the attributes
of class that has fewer attributes, we set a candidate disjoint
relationship between them. Then, we invite volunteers to
check these candidates with their images as references so
that ensuring the correctness of extracted class disjointness.

Yuxia Geng et al.: Preprint submitted to Elsevier Page 6 of 19

https://github.com/commonsense/conceptnet5/wiki/Downloads


Benchmarking Knowledge-driven Zero-shot Learning

For the disjointness between classes and attributes, we lever-
age the continuous-valued attribute vectors, and each class
is disjoint with attributes whose vector values are 0.
3.3. Data Overview and Storage

In this section, we contributed two new fined-grained
benchmarks ImNet-A and ImNet-O as well as their corre-
sponding KGs. ImageNet has been widely used in the ZS-
IMGC literature due to its large scale and diverse gran-
ularity, while our work is the first attempt to extract and
study its fined-grained subsets. We also build a KG for the
widely used coarse-grained dataset AwA. Different from
the external knowledge built in previous works with limited
class semantics, our constructed KGs not only represent the
widely used class knowledge — class hierarchy, attributes
and text in a unified graph, but also integrate a subgraph
newly extracted from ConceptNet as well as some logic
expressions that have not yet been investigated.

Each constructed KG is composed of RDF triples which
are stored in a CSV file with three columns corresponding
to subjects, relations and objects. The KG files can easily
be accessed by Python libraries or be loaded into graph
stores. Regarding the images, we follow previous work [2]
and provide ResNet features which are stored as a matrix,
whose two dimensions correspond to feature vector length
and image number, respectively.

4. Resource Construction for ZS-RE
4.1. Relation Text and Types

In the previous work [48], we contributed a benchmark
for ZS-RE which is constructed from a well-known relation
extraction dataset named Wikipedia-Wikidata [55]. Due to
the tight integration of Wikipedia and Wikidata, Wikipedia-
Wikidata collects sentences from EnglishWikipedia corpus,
identifies Wikidata entities in the sentences, and annotates
relation labels by querying Wikidata relations that connect
the extracted entities. As a result, a number of samples are
generated, each of them is accompanied by a sentence text,
a pair of entity mentions and a relation between them.

To construct the ZS-RE benchmark, all relations in the
Wikipedia-Wikidata are first clustered based on their word
embeddings, and then the relations in each cluster are di-
vided into two disjoint groups — the seen group and the
unseen group according to the number of their samples.
The first step ensures the preliminary semantic associations
(fromword embeddings) between seen and unseen relations,
while the second step ensures that seen relations are data-
rich while unseen relations are data-poor. In [48], the rela-
tions with more than 1,200 samples are specified as seen
relations while the rest are specified as unseen ones. After
manual adjustments, a dataset with 70 seen relations and 30
unseen relations is finally outputted.

However, the dataset focuses on serving the standard
zero-shot setting where samples of only unseen relations
are tested, while ignores a more realistic generalized ZSL
(GZSL) setting where samples of seen and unseen relations

Table 4
Statistics of the ZS-RE benchmarks. S/U means seen/unseen
relations.

Datasets
# Relations # Sentences

Training Testing
S/U Total S/U S/U

Origin Data [48] 70/30 193,867 176,717/0 0/17,150
ZeroRel (New) 70/30 104,646 84,000/0 3,496/17,150

both appear during testing. Moreover, the training samples
are not well balanced with respect to the relation — 44 out
of 70 seen relations all have 2,800 samples, while the rest
26 have less than 2,800 samples (the minimum is 1,246).
The imbalanced training set may have a negative impact
on the quality of pre-training a deep neural network that
will be used to extract the features of samples. To support
the GZSL setting and release the imbalance issue, in this
paper, we further split the current training set. Firstly, we
down-sample the training set to 1,200 instances per relation
to make the training samples balanced over different seen
relations. Then, we further down-sample the rest data to the
maximum of 50 sentences per relation to generate another
balanced subset as the testing data of seen relations. The
sample numbers of the original dataset from [48] and the
new dataset are compared as Table 4 shows. We rename the
new dataset as ZeroRel.
4.2. Knowledge Graph and Logic Rule

We next present how the KG and rule external knowl-
edge are constructured for ZeroRel. As introduced in [48],
the implicit semantic association between seen and unseen
relations is first mined from pre-trained KG embeddings fol-
lowing the assumption that the embeddings of semantically
similar relations are located to each other in the embed-
ding space [31]. For example, the similarity of vectors of
relations nationality and live_in_country is higher, whereas
the relation profession has low similarity with the former
two relations. Therefore, givenWikidata entity mentions and
relations in the dataset, we directly use the Wikidata knowl-
edge graph and adopt a version of dump7 that is often used
for training KGE models. Statistically, the dump contains
20,982,733 entities, 594 relations and 68,904,773 triples in
total. For convenience, we do not set additional namespaces
for it. Based on such a KG, various KGE methods can be
applied to pre-train semantically meaningful representations
for relation labels and build the implicit semantic associa-
tions. From another point of view, the semantic associations
between relations can also be modeled by this KG in a
symbolic way, e.g., a batch of shared neighboring entities.

Logic rules are further constructed to represent the as-
sociations between relations. They are in the form of body
⇒ head, where head is a binary relation and body is a
conjunction of binary and unary relations, and the length
of a rule is determined by the number of relations in its
body. A rule of length 2 is like brother(x, y)∧ father(y, z) ⇒
uncle(x, z), where x, y, z are three entity variables, showing

7http://openke.thunlp.org/download/wikidata
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the instances of relation uncle can be inferred by the in-
stances of relations brother and father, and the relation uncle
can be viewed as a composition of relations brother and
father. A rule of length 1 such as born_in_country(x, y) ⇒
nationality(x, y) illustrates the semantic identity between re-
lations born_in_country and nationality. In the ZSL setting,
if a rule involves an unseen relation, its instances can be
predicted based on other seen relations in the rule. Therefore,
it is intuitive to incorporate with logic rules to build an
explicit association between seen and unseen relations.

Logic rules could be automatically extracted from struc-
tured KGs by any KG rule mining algorithms or tools. We
choose AMIE [56] for its convenience and fast-speed to
extract logic rules of different lengths from theWikidata KG
proposed above. Each mined rule is associated with a PCA
confidence score provided by AMIE. In particular, we limit
the maximum length of rules to 2 for the efficiency of mining
valid rules, and then keep those rules which include at least
one relation in the dataset with a confidence threshold of 0.3.
Finally, we mined 50 length-1 rules and 122 length-2 rules
in total for the relations in the dataset. It is noted that these
rules can also be formulated using OWL axioms but with
probability values, i.e., the length-1 rules with higher
confidence values have higher possibility to mean the
relation equivalence that can be represented byOWL vo-
cabulary owl:equivalentProperty, and the length-2 rules
with higher confidence values have higher possibility to
mean the relation composition.

4.3. Data Overview and Storage
To evaluate the zero-shot learning in relation extraction,

we constructed a ZS-RE benchmark and contributed a new
version that supports more ZSL settings. Based on this, we
contributed two kinds of external knowledge — KG and
logic rules, both of them contain richer and more accurate
relation semantics than the base one from word embeddings.

We store the KG resource in a CSV file as ZS-IMGC
case, with three columns corresponding to the subject enti-
ties, relations and object entities. The extracted logic rules
are stored in a JSON file with “head”, “body” and “pcaconf”
properties specifying the head, body and PCA confidence
score of a rule. As for the ZS-RE data ZeroRel, we follow
previous work to provide it in a CSV file, in which each
row corresponds to a sample including the sentence text, the
relation label, the entity mention pairs and their indexes in
the sentence.

5. Resource Construction for ZS-KGC
5.1. KGs for Completion

We employ two ZS-KGC datasets (i.e., two sub-KGs for
completion) proposed in [4]. They are NELL-ZS extracted
fromNELL8 andWiki-ZS extracted fromWikidata9. In both
datasets, relations are divided into two disjoint sets: a seen
relation set s and an unseen relation set u. In training, a

8http://rtw.ml.cmu.edu/rtw/
9https://www.wikidata.org/

Table 5
Statistics of ZS-KGC datasets. “Tr/V/Te” is short for train-
ing/validation/testing. “#Ent.” denotes the number of entities.

Datasets # Ent. # Relations # Triples
Total (Tr/V/Te) Total (Tr/V/Te)

NELL-ZS 65,567 181 (139/10/32) 188,392 (181,053/1,856/5,483)
Wiki-ZS 605,812 537 (469/20/48) 724,928 (701,977/7,241/15710)

set of facts (RDF triples) of the seen relations are used, while
in testing, the model predicts the facts involving unseen
relations in u. A closed set of entities are considered in
both datasets, which means each entity in the testing triples
has already appeared in the training triples. Besides, a subset
of training facts is left out as the validation set by filtering
all training facts of the validation relations. The statistics of
these two datasets are shown in Table 5.
5.2. Ontological Schema

We build an ontological schema as external knowledge
for each dataset. It mainly includes semantics expressed
by RDFS (concept hierarchy, relation hierarchy, relation’s
domain and range), semantics expressed by OWL (relation
characteristics and inter-relation relationships), and textual
meta data (e.g., the names and descriptions of concepts and
relations). Note concept here refers to entity type/class. In
our paper, the sub-KG for completion is also named as a
data graph, and its ontology schema is a schema graph. The
statistics of the resulting ontological schemas of NELL-ZS
and Wiki-ZS are shown in Table 7.
5.2.1. Semantics in RDFS

Semantics by RDFS vocabularies act as the backbone of
the schema graph. Different from the data graph where rela-
tions act as edges between nodes, in the schema graph, rela-
tions act as nodes (i.e., subjects or objects in RDF triples).
Specifically, we use the vocabularies rdfs:subPropertyOf,
rdfs:domain, rdfs:range and rdfs:subClassOf to define the
relation semantics and generate corresponding triples:
• (r1, rdfs:subPropertyOf, r2), subproperty triple, states thehierarchical relationships between relations, i.e., relation

r1 is a subrelation of relation r2;
• (r, rdfs:domain, Cs), domain triple, summarizes the sub-

ject entity type (i.e., subject concept) Cs of relation r;
• (r, rdfs:range, Co), range triple, summarizes the object

entity type (i.e., object concept) Co of relation r;
• (Ci, rdfs:subClassOf, Cj), subclass triple, states the hier-archical relationships between entity types Ci and Cj .

A snapshot of the schema graph of NELL-ZS is shown in
Fig. 2. As we can see, the schema graph’s nodes are relations
and entity types of the data graph. We also add dataset-
specific namespace for these nodes. Besides, the edge in
the schema graph, i.e., the relationship between relations, is
called as “meta-relation”.
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NELL:radio_station_in_city NELL:has_office_in_city
rdfs:subPropertyOf

NELL:city

rdfs:range rdfs:range

NELL:radio_station

NELL:company

rdfs:domain
rdfs:domain

rdfs:subClassOf

“specifies… a particular company 
has offices … in a particular city”

rdfs:comment

“an organization whose 
goal is to make money”rdfs:comment

NELL:city_has_company_office

owl:inverseOf

owl:FunctionalProperty

rdf:type

NELL:has_spouse

owl:SymmetricProperty

rdf:type

NELL:country_states

NELL:state_contains_city

_: y!

NELL:country_cities

rdf:first rdf:rest

owl:propertyChainAxiom

rdf:nil

_: y"

rdf:first rdf:rest

Figure 2: A snapshot of the constructed schema graph for ZS-KGC dataset NELL-ZS. _:yi and _:yj denote two blank nodes.

For the schema graph of NELL-ZS, the aforementioned
semantics in RDFS can be extracted from NELL’s ontology.
The ontology is saved and published as a CSV file10 which
has three columns corresponding to subjects, predicates and
objects of RDF triples. From these triples, we extract domain
and range triples according to the predicates “domain” and
“range”, respectively, and extract subproperty and subclass
triples according to the predicate “generalizations”. For the
schema graph of Wiki-ZS, these semantics can be accessed
fromWikidata by a tookit implemented in Python11. Specif-
ically, we look up a relation’s super-relations by Wikidata
property P1647 (subproperty of), look up a relation’s do-
main concepts and range concepts by Wikidata property
P2302 (property constraint) with constraints Q21503250
(type constraint) and Q21510865 (value-type constraint),
respectively, and look up a concept’s super-concepts by
Wikidata property P279 (subclass of).
5.2.2. Semantics in Text

We further enrich the schema graphs with textual in-
formation of the nodes (i.e., relations and concepts), which
usually act as important external knowledge in addressing
ZS-KGC [4, 18, 52]. For NELL-ZS, we extract the textual
descriptions of relations and concepts from NELL’s ontol-
ogy file by the predicate “description”. ForWiki-ZS, we look
up the surface names and descriptions of relations and con-
cepts from Wikidata using properties label and description,
respectively. The extracted text can be represented in the
graph by RDFS vocabularies rdfs:label and rdfs:comment,
leading to a literal-aware schema graph.
5.2.3. Semantics in OWL

We also introduce relation semantics in OWL including
the relationships between relations and relation characteris-
tics.We provide an overview illustration with definitions and
examples in Table 6, and will next introduce the details.

Inverse Relationship. The inverse relationship between
two relations is defined by owl:inverseOf. If r1 is an in-
verse relation of r2, when a fact (e1, r1, e2) holds, the fact
(e2, r2, e1) also holds, and vice versa. In building the onto-
logical schemas for ZS-KGC, we introduce the inverse rela-
tionships between seen and unseen relations, with triples in

10http://rtw.ml.cmu.edu/resources/results/08m/NELL.08m.1115.
ontology.csv.gz

11https://pypi.org/project/Wikidata/

format of (r1, owl:inverseOf, r2). In prediction, the ZS-KGCmodels can utilize the unseen relations’ inverse relations
which have been involved in the training triples. Since the
inverse relations have been removed from NELL-ZS when
it is originally constructed, we only add inverse triples for
relations in Wiki-ZS, which are extracted from Wikidata by
its property P1696 (inverse property).

Compositional Relationship. A relation can be con-
structed by ordered composition of several other relations.
Relation r3 is a composition of another two relations r1 and
r2, denoted as r1∧r2 ⇒ r3, if we have (x, r1, y)∧(y, r2, z) ⇒
(x, r3, z), where x, y and z are three entity variables. Such
compositional relationships are also helpful for KGC. For
example, with brother ∧ father ⇒ uncle, we can infer a is
an uncle of c if a is a brother of b and b is a parent of c.
Therefore, we add composition axioms in our ontological
schemas to define some seen and unseen relations as the
compositions of some seen relations. We limit the number of
compositional relations in each axiom to 2. A composition
axiom can be represented in the schema graph as the rightest
part of Fig. 2 shows, where it has been serized as RDF triples
with blank nodes according to W3C OWL to RDF graph
mapping standard12.

For NELL-ZS, we first extract a set of candidate rela-
tion compositions via checking relation’s domain and range.
Specifically, for any three relations r1, r2 and r3, if the rangeof r1 is the domain of r2, the domain of r1 is also the domain
of r3 and the range of r2 is also the range of r3, then r1∧r2 ⇒
r3 is regarded as a candidate composition. These candidates
can be extracted according to the schema of NELL-ZS
defined by RDFS. Briefly, for each relation of NELL-ZS,
we traverse all seen relation pairs and check whether the
domains and ranges of the two seen relations and the current
relation match the above condition. Some candidate relation
compositions extracted in the above step are not correct; one
example is mother_of_person ∧ person_also_knownas ⇒
wife_of. Targeting this, we manually check these candidates.
Briefly, each candidate is independently reviewed by three
volunteers (including one of the authors and two of our
colleagues who are familiar with KGs and ontologies) and
the final decision is made by voting. It is also allowed that
volunteers can look up all the information about relations
such as triples and descriptions during review.

12https://www.w3.org/TR/owl2-mapping-to-rdf/

Yuxia Geng et al.: Preprint submitted to Elsevier Page 9 of 19

http://rtw.ml.cmu.edu/resources/results/08m/NELL.08m.1115.ontology.csv.gz
http://rtw.ml.cmu.edu/resources/results/08m/NELL.08m.1115.ontology.csv.gz
https://pypi.org/project/Wikidata/
https://www.w3.org/TR/owl2-mapping-to-rdf/


Benchmarking Knowledge-driven Zero-shot Learning

Table 6
Illustrations and statistics of inter-relation relationships and relation characteristics of the ontological schemas of NELL-ZS and
Wiki-ZS. x, y, z are entity variables. “[NELL]” and “[Wiki]” denote the example comes from NELL-ZS and Wiki-ZS, respectively.

OWL
Semantics

Formula Example
Statistics

NELL-ZS Wiki-ZS

Inversion (x, r1, y) ⇔ (y, r2, x) P802 (student) & P1066 (student of) [Wiki] 0 39
Composition (x, r1, y) ∧ (y, r2, z) ⇒ (x, r3, z) countrystates ∧ statecontainscity ⇒ countrycities [NELL] 20 7

Symmetry (x, r, y) ⇒ (y, r, x) hasspouse [NELL] 20 25
Asymmetry (x, r, y) ⇒ ¬(y, r, x) subpartof [NELL] 24 11
Reflexivity (x, r, x) animalpreyson [NELL] 2 0
Irreflexivity ¬(x, r, x) P184 (doctoral advisor) [Wiki] 46 15
Functionality (x, r, y) ∧ (x, r, z) ⇒ y = z airportincity [NELL] 6 15
Inverse Functionality (x, r, y) ∧ (z, r, y) ⇒ x = z statecontainscity [NELL] 16 1

Table 7
Number of relations, concepts, literals, meta-relations, and different axioms in the ontological schema.

Datasets # relations # concepts # literals # meta-relations # subproperty # domain # range # subclass
# relation

characteristics
NELL-ZS 894 292 1,063 9 935 894 894 332 114
Wiki-ZS 560 1,344 3,808 11 208 1,843 1,378 1,392 67

However, the method of checking relation’s domain and
range can not bewell applied toWiki-ZS becausemostWiki-
ZS relations have multiple domains and multiple ranges,
which will result in too many candidates and cost too much
manual assessment. Therefore, forWiki-ZS, we useAMIE to
mine compositional rules from facts. Different from mining
rules from the Wikidata dump in the ZS-RE task, we mine
relation compositions from the triples of Wiki-ZS dataset
since some Wiki-ZS relations are not included in the dump.
Moreover, to ensure the correctness of mined rules, we i)
filter out those rules whose scores are below 0.9, and ii)
invite volunteers to manually assess the remaining rules as
for NELL-ZS. Finally, we transform the correct ones into
relation composition axioms for the schema of Wiki-ZS.

Symmetry & Asymmetry. In a KG, a relation r is
symmetric if we have (y, r, x) given (x, r, y). One typical
example is has_spouse. In contrast, a relation r is defined as
asymmetric if (y, r, x) is always false given (x, r, y). We add
symmetric and asymmetric characteristics to some relations
in our schemas of NELL-ZS and Wiki-ZS, because they
could be utilized by potential methods for addressing ZS-
KGC by e.g., inferring more facts for training and finding
similar seen relations for an unseen relation. In our resource
we add symmetry and asymmetry for relations that have
identical domains and ranges.

To add symmetry and asymmetry for relations in NELL-
ZS, we use the predicate “anti-symmetric” defined in the
ontology file of NELL. Specifically, for symmetric relations,
we first extract relations whose “anti-symmetric” values
are false, and then select those with the same domain and
range. Some of the resultant relations are still not symmetric,
and we invite volunteers to filter out them. For asymmet-
ric relations, they can be automatically extracted by the
predicates “anti-symmetric” and “irreflexive” considering
that a relation is asymmetric iff it is antisymmetric and

irreflexive. For relations ofWiki-ZS, the symmetric relations
can be extracted by looking up the Wikidata constraint
Q21510862 (symmetric constraint) stated in the property
P2302 (property constraint). While for the asymmetry, we
extract relations which have identical domain and range, and
manually assess them.

We use membership axioms and two OWL built-in con-
cepts owl:SymmetricProperty and owl:AsymmetricProperty
to represent relation symmetry and asymmetry in our on-
tological schemas. When the ontologies are represented as
schema graphs, relation characteristics are transformed into
RDF triples like (r, rdf:type, owl:SymmetricProperty) which
means r is a symmetric relation.

Reflexivity & Irreflexivity. A relation r is regarded as
reflexive if (x, r, x) holds and as irreflexive if (x, r, x) does
not hold where x is an entity variable. Similar to symmetry
and asymmetry, relation reflexivity and irreflexivity could
be utilized in ZS-KGC with e.g., additional training samples
and more information for relation similarity. We can even
directly infer testing triples in form of (e, r, e) if r is reflexive.

We use the values of the predicate “anti-reflexive” de-
fined in the NELL’s ontology file to add reflexive and ir-
reflexive characteristics for relations in NELL-ZS. For re-
lations in Wiki-ZS, since Wikidata has no definitions to-
wards these two characteristics, we extract relations that
have identical domain and range, and manually assess their
reflexivity and irreflexivity. The representation of relation
reflexivity and irreflexivity in the schema graph is the same
as symmetry and asymmetry but uses the built-in concepts
of owl:ReflexiveProperty and owl:IrreflexiveProperty.

Functionality & Inverse Functionality. Given a func-
tional relation r, if (x, r, y) and (x, r, z) holds, then y and z
must be the same entity. Namely every entity can be related
to at most one entity via a functional relation. A relation
can also be defined as inverse functional when its inverse
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relation is functional. We add both functionality and inverse
functionality to some relations. They can be potentially used
for addressing ZS-KGC as the other relation characteristics
discussed above. They can also constrain the searching space
for new triples. For example, given a subject and a functional
relation, the corresponding object must be unique.

To extract these two characteristics, we look up the
whole set of triples of NELL (via its published dump13) and
Wikidata (via its SPARQL Endpoint), and extract relations
whose object entity is unique for the same subject, and rela-
tionswhose subject entity is unique for the same object. They
are represented in the sameway as symmetry and asymmetry
but use the built-in concepts of owl:FunctionalProperty and
owl:InverseFunctionalProperty.
5.3. Data Overview and Storage

To the best of our knowledge, this resource is the first
to incorporate with rich ontology information for tackling
the ZS-KGC problems with unseen relations. In comparison
with the external knowledge contained in text, ontological
schema provides richer and more accurate semantics about
KG relations. With our resources, various ontology-driven
ZS-KGC methods are expected to develop.

Each ontological schema is saved in two formats. The
first is the original ontology file ended with “.owl”. It can be
directly loaded and easily viewed by ontology editors such as
Protege. The second is an RDF triple file to save the schema
graph which is transformed from the ontology according
to W3C OWL to RDF graph mapping. It is convenient for
graph embedding methods e.g., GNNs and KGE algorithms
to process. Note other mappings from OWL ontology to
RDF graph can be considered by the user.

6. Benchmarking and Results
6.1. Evaluating ZSL Model Performance

In this section, we evaluate and compare the performance
of different ZSL methods under different KG settings, using
the aforementioned resources. We first introduce the ZSL
methods and evaluation settings, and then separately intro-
duce the results on ZS-IMGC, ZS-RE and ZS-KGC.
6.1.1. ZSL Methods and Evaluation Settings

As we introduce earlier, a kind of widely investigated
ZSL methods are mapping-based. They usually learn a map-
ping between the class embedding space and the sample
space via data of seen classes, and generalize the learned
mapping to unseen classes for prediction which is imple-
mented by searching for matched classes for a testing sample
according to some distance metrics. According to the space
where the searching is conducted, these methods can be
further divided into three categories: semantic-space based
which maps the sample feature to the space of class embed-
ding, sample-space based which maps the class embedding
to the space of sample feature, and common-space based

13http://rtw.ml.cmu.edu/resources/results/08m/NELL.08m.1115.esv.
csv.gz

which maps the sample feature and the class embedding to
a common latent space. In addition to these mapping-based
methods, another popular branch of methods are generation-
based. They formalize ZSL as a missing data problem and
learn to synthesize samples (features) for unseen classes
conditioned on their class embeddings to augment data.

In this work, we adopt two representative methods as
our evaluation approaches. One is a classic semantic-space
based algorithm named DeViSE [5], which is widely used
in various ZSL studies. The other method is a state-of-the-
art generation-based method named OntoZSL [18] which
leverages Generative Adversarial Network (GAN) [57] to
generate data and is originally developed to utilize ontolo-
gies as external knowledge. Another reason for selecting
them is that they are compatible to different external knowl-
edge that have been embedded, through which we are able
to systematically compare different knowledge settings. We
benchmarked both methods for all the three ZSL tasks.

It is worth noting that we considered the performance
in two ZSL settings: one is the standard ZSL which tests
samples of only unseen classes, the other is the generalized
ZSL (GZSL) which tests samples of both seen and unseen
classes and is more challenging. We evaluated under both
settings for the ZS-IMGC and ZS-RE tasks, while for the
ZS-KGC task, we only considered the standard ZSL setting
since in our task of predicting a triple’s object entity, the
subject entity and the unseen relation are given (see more
details in Section 6.1.4).
6.1.2. ZS-IMGC

With the KGs of the ZS-IMGC benchmarks, we made
the following four external knowledge settings which have
different semantics:
• Basic KG: Hierarchy and attribute triples which cover the

semantics of class hierarchy, class attributes and attribute
hierarchy.

• Basic KG+literals: Basic KG plus textual information.
• Basic KG+CN: Basic KG plus ConceptNet subgraph.
• Basic KG+logics: Basic KG plus disjointness axioms.
To apply these external knowledge in ZSL, we take ad-
vantage of some semantic embedding techniques to en-
code them and generate a vector representation for each
class. Specifically, we adopt mature and widely-used TransE
[58] to encode the graph structural knowledge contained
in Basic KG, Basic KG+CN and Basic KG+logics. For
Basic KG+literals, we adopt a text-aware graph embedding
method used in [18] to simultaneously embed the textual and
graph structural knowledge.

Besides the above KG-based external knowledge set-
tings, we also made the following simple but widely used
external knowledge settings. Relevant external knowledge
can be extracted from the original benchmarks, and have also
been included in our new resources:
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Table 8
Accuracy (%) of DeViSE on AwA, ImNet-A and ImNet-O. The best result on each metric is marked with underline.

External
Knowledge

AwA ImNet-A ImNet-O
acc accs accu H acc accs accu H acc accs accu H

w2v (500) 24.22 78.42 1.05 2.08 13.52 59.71 0.63 1.25 14.21 66.40 3.93 7.43
w2v (300) 8.42 86.32 0.00 0.00 26.95 84.36 0.16 0.32 20.49 93.60 0.00 0.00

att 38.48 81.86 3.59 6.88 35.72 61.00 12.60 20.89 31.75 47.80 17.24 25.34
hie 43.50 65.25 5.60 10.32 30.94 62.07 1.67 3.25 29.25 54.60 10.85 18.10

Basic KG 43.24 86.44 6.40 11.91 34.38 25.50 28.13 26.75 24.77 34.20 22.49 27.14
Basic KG + literals 46.12 84.42 8.76 15.88 33.62 23.36 29.33 26.01 26.13 38.60 21.67 27.75
Basic KG + CN 45.56 88.85 0.38 0.76 35.11 67.71 7.46 13.43 26.72 70.40 7.23 13.11
Basic KG + logics 37.54 80.69 1.09 2.15 – – – – – – – –

Table 9
Accuracy (%) of OntoZSL on AwA, ImNet-A and ImNet-O. The best result on each metric is also underlined.

External
Knowledge

AwA ImNet-A ImNet-O
acc accs accu H acc accs accu H acc accs accu H

w2v(500) 45.39 57.83 34.53 43.24 20.94 34.50 15.62 21.50 20.00 41.20 14.33 21.27
w2v(300) 20.80 22.67 12.88 16.43 27.76 40.50 20.40 27.13 24.73 37.20 17.52 23.83

att 58.47 59.90 44.24 50.89 37.87 33.50 27.62 30.28 32.98 42.00 20.67 27.71
hie 38.89 51.08 31.38 38.88 33.32 40.93 23.06 29.50 33.17 36.80 21.13 26.85

Basic KG 62.65 59.59 50.58 54.71 38.21 45.71 23.21 30.79 32.14 44.60 18.74 26.39
Basic KG + literals 59.21 62.39 45.55 52.66 38.58 35.64 27.64 31.13 32.57 44.80 19.35 27.03
Basic KG + CN 54.61 63.31 39.19 48.41 35.24 39.86 24.97 30.71 29.39 42.20 19.64 26.80
Basic KG + logics 54.65 65.37 40.76 50.21 – – – – – – – –

• Class Attributes (att): 85, 85 and 40 dimensional binary-
valued attribute vectors (multi-hot vectors) for classes of
AwA, ImNet-A and ImNet-O, respectively.

• Class Word Embeddings (w2v): Two kinds of word
vectors for each class via its name. One is by [59] with
a dimension of 500; the other is by a Glove model with a
dimension of 300.

• Class Hierarchy (hie): A 100 dimensional vector for
each class, encoded by a graph auto-encoder [60] over the
class hierarchy.
We evaluate these external knowledge settings and two

ZSL methods by macro accuracy following the standard in
the ZS-IMGC community. Macro accuracy is calculated in
the following way: an accuracy, the ratio of correct pre-
dictions over all the testing samples, is first independently
computed for each class, and then the accuracies of all tested
classes are averaged. In the stardard ZSL setting, we com-
pute the macro accuracy over all the unseen classes, denoted
as acc. In the generalized ZSL setting, two macro accuracies
are calculated over the seen classes and the unseen classes,
respectively, denoted as accs and accu, and a harmonic mean
H = (2 × accs × accu)∕(accs + accu) which balances the
performance of predicting seen classes and unseen classes
is calculated as the overall metric.

The results of DeViSE and OntoZSL on three datasets
are shown in Table 8 and Table 9, respectively. From both
tables, we can see that the KG-based external knowledge
settings all achieve better performance than those currently
widely used none-KG-based settings — att, w2v and hie
on AwA. Although the KG-based settings do not always
achieve the best performance w.r.t. all the metrics on ImNet-
A and ImNet-O, the results are still comparable. All these

illustrate the potential of KG-based external knowledge in
ZS-IMGC. Besides, with TransE which was originally de-
veloped for KGs with relational facts alone, and a simple
pipeline that stacks semantic embedding and a ZSL method,
although more semantics are introduced in Basic KG+CN
and Basic KG+logics, their results are not better than Basic
KG on most metrics. This motivates the community to i)
develop more effective ZS-IMGC techniques to utilize all
these promising semantics for better performance, or ii)
adopt more flexible strategies to take advantage of these
semantics such as retrievingmore refined knowledge for spe-
cific prediction tasks or datasets, and our resources provide
a chance for such investigations.

We also observe the performance differences when ap-
plying the setting of w2v to different datasets, i.e.,w2v(500)
performs better than w2v(300) on AwA, whereas on ImNet-
A/O, the situation is inverse — w2v(300) performs better
on most metrics. For example, when experimenting with
OntoZSL, on AwA, w2v(500) achieves 45.39% in acc and
43.24% in H , with improvements of 24.59% in acc and
26.81% in H over w2v(300). While for ImNet-A, on the
metrics of acc andH ,w2v(300) inversely achieve respective
6.82% and 5.63% performance gains against w2v(500). For
ImNet-O, the improvements are 4.73% on acc and 2.56% on
H . These two kinds ofword embeddings are both pre-trained
on Wikipedia corpus, but the difference is that w2v(500) by
[59] directly learns a word vector for each class, no matter
the class name contains a single word or multiple words,
while w2v(300) generates word vectors for multiple-word
classes by averaging the word vectors of terms in names.
The averaged class word embeddingsmay bemore beneficial
for the fine-grained classes of ImNet-A/O as the words in
the names of the classes in a family are highly overlapped.
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Table 10
Accuracy (%) of GCNZ on AwA, ImNet-A and ImNet-O. The better result on each metric is marked with underline.

External
Knowledge

AwA ImNet-A ImNet-O
acc accs accu H acc accs accu H acc accs accu H

Class Hierarchy 37.44 81.45 7.86 14.34 33.95 48.71 18.37 26.68 32.24 49.00 18.04 26.37
Basic KG 62.98 75.59 20.28 31.98 36.64 45.57 23.92 31.38 33.98 43.80 21.61 28.94

Instead, the classes in AwA are coarse-grained, the overlap
of words in their names is relatively less. Correspondingly,
in encoding the text in the Basic KG+literals with 300-
dimensional word vectors from Glove (i.e., w2v(300)), Ba-
sic KG+literals gains an improved performance w.r.t most
metrics against Basic KG on ImNet-A/O whereas even per-
forms worse on AwA when experimenting with OntoZSL.
See the fifth and sixth rows of Table 8 and Table 9 for more
detailed comparisons. According to these observations, we
can conclude that w2v(300) may be more appropriate for
tasks with fine-grained classes, while w2v(500) may be
better for tasks with coarse-grained classes.Moreover, it also
inspires us to take the properties of the task and data into
account when designing semantic embedding techniques for
the external knowledge.

Apart from these two representative ZSL methods, we
also evaluate a famousKG-based ZSLmethod namedGCNZ
[10], which uses a Graph Convolutional Network (GCN)
to propagate features between class nodes and outputs a
classifier for each unseen class, under two semantic set-
tings that GCNZ can support, i.e., Basic KG and Class
Hierarchy. GCNZ is a typical method of the propagation-
based paradigm which has attracted wide attention for KG-
based ZS-IMGC studies [61, 13, 62, 15, 43]. The results
are shown in Table 10. It can be seen that along with more
semantics introduced in Basic KG than inClass Hierarchy,
a higher performance is obtained over all three datasets,
including an improvement on predicting unseen classes in
the standard ZSL and a better balance between accs and accuin the generalized ZSL. We also find a larger performance
gap between Basic KG and Class Hierarchy on AwA than
on ImNet-A/O. It may be because the distances between
AwA classes in the class hierarchy graph are larger since the
nature of coarse granularity of AwA, and this may penalize
the feature propagation in the graph convolutional layer.
Contrastingly, when more semantics such as class attributes
are introduced in Basic KG, the connections between AwA
classes are greatly enriched, resulting in a significant perfor-
mance improvement. It is worth noting that thoughwe ignore
the relational edges in the Basic KG when GCNZ is applied
(since GCN can only support single relation graph), we still
obtain promising results. In the future, more GCN variants
that can support multi-relation graphs such as R-GCN [63]
and CompGCN [64] can be investigated to make full use of
the semantics of the KG.
6.1.3. ZS-RE

We evaluate one baseline external knowledge setting
which is based on word embeddings, and other two external

Table 11
Accuracy (%) of DeViSE and OntoZSL on ZeroRel. The best
result on each metric is underlined.

Semantics DeViSE OntoZSL
acc accs accu H acc accs accu H

w2v 21.40 65.73 0.04 0.08 11.00 56.86 0.20 0.40
KG 34.43 63.64 7.47 13.37 35.81 53.06 9.21 15.69
Rule 35.74 61.96 10.20 17.51 36.20 52.20 12.05 19.58

knowledge settings based on our resources introduced in
Section 4.2:
• w2v: one 100-dimensional word vector for each relation

by averaging the words in its name. The word embedding
model is trained on the latest Wikipedia dump14 using the
word2vec algorithm [65] with a window size of 5.

• KG: one 100-dimensional KG embedding for each rela-
tion. The KG entity and relation embeddings are trained
by the OpenKE [66] toolkit using TransE on theWikidata
dump constructed in Section 4.2.

• Rule: one 100-dimensional rule-guided relation embed-
ding for each relation. The embedding method incorpo-
rated with rules are introduced bellow.
We leverage the pre-trained KG embeddings for initial

relation embeddings, and then utilize the extracted rules
to generate rule-guided relation embeddings. For a length-
1 rule r1(x, y) ⇒ r2(x, y) and a length-2 rule r3(x, y) ∧
r4(y, z) ⇒ r5(x, z), we can get r⃗1 = r⃗2 and r⃗3 + r⃗4 =
r⃗5 according to the TransE KGE algorithm which assumes
s⃗+ r⃗ ≈ o⃗ for a valid triple (s, r, o). Note r⃗1, r⃗2, r⃗3, r⃗4, r⃗5, s⃗, r⃗, o⃗all represent entity and relation embeddings. Thus, for a
relation associated with such rules, its embedding can be
re-calculated based on the embeddings of other relations in
the rules. Specifically, the embedding of relation r associated
with K rules is calculated as follows:

Erl(r) =
∑K

k=1 sk ∗ ET ransE(Rr
k)

∑K
k=1 sk

where Rr
k is the k-th rule of relation r, and sk corresponds

to its confidence score. ET ransE(⋅) represents the rule-basedoperation following the TransE’s assumption. For example,
for an unseen relation ru with its three rules, R1: rA ⇒ ru,
R2: rB ∧ rC ⇒ ru, and R3: rD ∧ ru ⇒ rE , its rule-guidedembedding is calculated as:

Erl(ru) =
s1 ∗ r⃗A + s2 ∗ (r⃗B + r⃗C ) + s3 ∗ (r⃗E − r⃗D)

s1 + s2 + s3
.

14https://dumps.wikimedia.org/enwiki/latest/
enwiki-latest-pages-articles.xml.bz2
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Table 12
Results (MRR and hit@k (%)) of DeViSE and OntoZSL on NELL-ZS and Wiki-ZS. The best result on each metric is underlined.

External
Knowledge

DeViSE OntoZSL
NELL-ZS Wiki-ZS NELL-ZS Wiki-ZS

MRR hit@ MRR hit@ MRR hit@ MRR hit@
10 5 1 10 5 1 10 5 1 10 5 1

Text 0.221 34.6 29.0 15.5 0.183 26.7 21.7 13.5 0.215 34.5 28.3 14.5 0.185 27.3 22.3 13.5

RDFS-hie 0.229 35.1 29.3 16.3 0.179 25.4 20.9 13.5 0.225 34.8 28.9 15.9 0.175 25.4 20.4 13.1
RDFS-cons 0.221 34.5 28.7 15.3 0.183 26.4 21.7 13.6 0.220 34.3 28.0 15.4 0.177 25.7 21.2 13.0
RDFS graph 0.225 35.3 29.4 15.6 0.184 27.0 21.7 13.6 0.223 35.1 29.1 15.3 0.185 27.5 22.3 13.4

RDFS+literals 0.223 35.0 29.0 15.3 0.185 27.1 22.0 13.6 0.227 35.6 29.4 15.6 0.188 28.1 22.6 13.5

Apart from the ZSL method of DeViSE which had
been evaluated in [48], in this paper, we also extend to
experiment with OntoZSL, i.e., learning to generate instance
features (extracted by Piecewise Convolutional Neural Net-
works [67]) for unseen relations conditioned on their seman-
tic embeddings. Both methods are assembled with the three
external knowledge settings mentioned above. The results
on our newly constructed dataset ZeroRel are shown in Ta-
ble 11, where the classification accuracy is reported. Similar
to ZS-IMGC, we compute the accuracy independently for
each relation type, and report the averaged accuracy on
unseen relations in the standard ZSL (i.e., acc) and on seen
and unseen relations in the generalized ZSL (i.e., accs and
accu, respectively) with their harmonic mean computed.

From Table 11, we can see that the settings of KG and
Rule both achieve significant improvements over the w2v
setting, no matter what ZSL methods are used. Especially,
the Rule setting leads to the best performance. All of these
results illustrate that the semantics in the external knowledge
from KG and logic rules are richer than the semantics in
the word embeddings w.r.t. the task of ZS-RE, and the rule-
guided embeddingmethod we used is effective. In the future,
we plan to develop more techniques to utilize the semantics
in KGs and the logic rules. We also find that the generation-
based method OntoZSL performs better than the mapping-
based method DeViSE, especially with respect to accu and
H , under the knowledge settings of KG and Rule which
contain richer semantics than w2v. For example, under the
setting of Rule, the H score of OntoZSL is 11.8% higher
than that of DeViSE.
6.1.4. ZS-KGC

For NELL-ZS and Wiki-ZS, we made one simply none
KG external knowledge setting that has already been in-
cluded in the original benchmark, and fiveKG-based settings
using our new resources:
• Text: relations’ textual descriptions which are originally

proposed and used by Qin et al. [4];
• RDFS graph: complete relation semantics in RDFS;
• RDFS-hie: a part of RDFS graph, covering subproperty

and subclass triples;
• RDFS-cons: a part of RDFS graph, covering relation

domain and range constraints;

• RDFS+literals: RDFS graph plus textual meta data of
concepts and relations;

• RDFS+OWL: RDFS graph plus semantics in OWL.
As in ZS-IMGC and ZS-RE, we embed the external

knowledge and apply the resultant relation vectors into the
ZS-KGC methods. For RDFS graph and its two subgraphs
(RDFS-hie and RDFS-cons), we adopt TransE for em-
bedding, and for RDFS+literals, we also adopt the text-
aware graph embedding method used in [18]. To embed the
relation’s textual descriptions, we follow [4] and perform a
weighted summation of the vectors of words in descriptions,
where an open word embedding set15 of dimension 300 is
used. We also use the same word vectors to initialize the
representation of text in RDFS+literals.

We first compare these five external knowledge settings
using methods of DeViSE and OntoZSL, where the sample
features of KG relations are learned by their associated
entity pairs. The KGC task here is to predict the object
entity given a subject entity and a relation, we thus rank
all the candidate entities according to their likelihood to
be the object. Two commonly used metrics are adopted:
mean reciprocal ranking (MRR) which computes the average
of the reciprocal predicted ranks of all the ground truths
(right objects), and ℎit@k which represents the ratio of
testing samples whose ground truths are ranked in the top-k
positions (k is set to 1, 5, 10) [29]. As the candidate space
only involves entities, the prediction with unseen relations
is independent of the prediction with seen relations, and in
fact, the latter is the traditional KGC task. Therefore, we only
consider the standard ZSL testing setting in ZS-KGC. The
results are shown in Table 12.

From Table 12, we find that in comparison with Text,
RDFS graph and RDFS+literals always lead to better
performance, RDFS-hie and RDFS-cons that contain in-
complete RDFS semantics also achieve comparable results,
and even perform better on some metrics. For example,
when applying the OntoZSLmethod on NELL-ZS, theMRR
values of Text, RDFS-hie, RDFS-cons, RDFS graph and
RDFS+literals are 0.215, 0.225, 0.220, 0.223 and 0.227,
respectively. These results demonstrate the superiority of
our proposed RDFS-based relation semantics. Besides, we
also find that when changing the external knowledge from
Text to RDFS graph, a higher improvement is achieved on

15https://github.com/mmihaltz/word2vec-GoogleNews-vectors
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NELL-ZS than on Wiki-ZS. For example, when OntoZSL
is applied, the value of ℎit@10 is improved by 0.6% on
NELL-ZS, whereas is only improved by 0.2% on Wiki-ZS.
And on Wiki-ZS, the results w.r.t other metrics are roughly
the same. See the first and fourth row of Table 12 for more
comparisons. These results are mainly due to that 44 out
of 537 Wikidata relations have missing semantics in RDFS.
When complementing the RDFS graph with relations’ tex-
tual information (i.e., RDFS+literals), the performance on
Wiki-ZS is further improved.

In Table 12, it can also be seen that RDFS-hie performs
better than RDFS-cons on NELL-ZS, while RDFS-cons
inversely achieves better performance on Wiki-ZS. For ex-
ample, when experimenting with DeViSE, theMRR value of
RDFS-hie on NELL-ZS is 0.229 and 3.6% relative higher
than that of RDFS-cons, while on Wiki-ZS, the MRR is
decreased by 0.004 when shifting the setting from RDFS-
cons to RDFS-hie. This is probably because for all relations
in the NELL-ZS, around 58% of them are hierarchically re-
lated, while only nearly 30% have identical domain and range
constraints; while inWiki-ZS, the constraint information are
richer than the hierarchy information, i.e., 160 relations are
hierarchically related, and although only 161 relations have
the same domain and range constraints, over 70% of them
have more than one identical domains or ranges.

The external knowledge defined byOWL is quite promis-
ing for augmenting ZSL, but there are current no systemic or
robust methods. We try to validate the effectiveness of OWL
semantics by testing an ensemble method, which combines
symbolic reasoning and embedding-based prediction, under
the setting of RDFS+OWL. Briefly, for a testing tuple (sub-
ject and relation), if the object can be inferred through logical
expressions (cf. Section 5.2.3), we adopt the inferred object;
otherwise, we use the predicted object ranking by ZSL
models such as OntoZSL. Even with such a naive ensemble
solution, we got some encouraging results. On Wiki-ZS, 5
unseen relations have inverse relations which are among the
seen relation set, and ℎit@1 increases from 28.6% to 55.3%
when logical inference with the inverse semantics is used.
On NELL-ZS, 4 unseen relations are composed by 10 seen
relations, and the logical inference with composition leads
to 6.3% increment on ℎit@1. These results demonstrate the
superiority of the OWL-based relation semantics, although
the method of utilizing OWL axioms presented here is quite
preliminary. With our resources, more robust methods can
be investigated to better utilize such logical expressions and
significantly augment ZSL performance.

Besides, the OWL semantics can also be used to validate
the correctness of prediction results or improve the predic-
tion efficiency. For example, irreflexivity constrains that the
predicted object entity can not be the same with the given
subject entity; and both irreflexivity and asymmetry can
be used to reduce the searching space of candidate entities
during prediction. In the future, more available and effective
methods are expected to take advantage of these semantics
for promoting ZSL.

6.2. Evaluating ZSL Model Explanation
Argumentative machine learning explanation by addi-

tional domain or background knowledge has been widely
investigated [68, 69, 70]. Our ZSL resources with rich ex-
ternal knowledge can also be used to investigate explainable
ZSL methods and evaluate ZSL methods’ interpretation and
prediction justification. For demonstration, we use different
external knowledge settings that can be made by our re-
sources to evaluate a knowledge augmented ZSL explanation
method named X-ZSL which explains the transferability of
sample features in zero-shot image classification in a human
understandable manner [43]. Briefly, X-ZSL first uses an
Attentive Graph Neural Network to automatically learn seen
classes that are important to the feature learning of an
unseen class, then explains the feature transfer between them
by extracting class knowledge from KGs, and finally uses
some templates to generate human understandable natural
language explanations.

Fig. 3 presents and compares X-ZSL’s explanations us-
ing different external knowledge. We give two examples,
each of which includes one unseen class and one seen class
that contributes to this unseen class, from AwA and ImNet-
A — two benchmarks for ZS-IMGC. As we can see, for
the feature transferability between seen and unseen classes,
the knowledge from class hierarchy provides overall expla-
nations, from the perspective of their relatedness in biol-
ogy; the knowledge from class attributes provides detailed
explanations, from the perspective of their relatedness in
characteristics especially in visual characteristics; while the
relational facts from ConceptNet provide an important sup-
plement. In summary, different semantics in our resources all
can have positive contributions to explain a ZSL model or to
justify a ZSL prediction, and thus more explanation methods
with different manners can be investigated and compared
with using our resources.

7. Discussion and Outlook
7.1. ZSL Methods

For all the knowledge settings across all the tasks, we
compared two general ZSL methods — DeViSE and On-
toZSL. According to the results, we find that the generation-
based method OntoZSL always has superior performance
than the mapping-based method DeViSE no matter in the
standard ZSL setting or in the generalized ZSL setting,
especially in ZS-IMGC and ZS-RE. For example, on AwA
in ZS-IMGC, DeViSE achieves average 35.89% acc and
average 6.25%H across all the knowledge settings, whereas
the average acc and H values of OntoZSL are 49.33% and
44.43%, respectively. This may due to the hubness problem
[71] that exists in the label searching of DeViSE. That
is, since DeViSE maps a number of sample features to
a point in the class embedding space for a certain class,
during prediction, this manner will increase the probability
of irrelevant points (hubs) being the nearest neighbors (i.e.,
the matched classes or relations). In contrast, OntoZSL takes
a different strategy which generates a number of unseen
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Unseen Classes
horse

Contributing Seen Classes
zebra

Unseen Class
roseate spoonbill

Contributing Seen Classes
spoonbill

Image

General Explanations The prediction for samples of horse is supported by zebra. The prediction for samples of roseate spoonbill is supported by spoonbill.

Knowledge from
Class Hierarchy

Triples:
(horse, rdfs:subClassOf, equine), (zebra, rdfs:subClassOf, equine)
Generated Explanations:
Horse and zebra both belong to equine.

Triples:
(roseate_spoonbill, rdfs:subClassOf, spoonbill)
Generated Explanations:
Roseate spoonbill is a member of spoonbill

Knowledge from
Class Attributes

Triples:
(horse, AwA:hasBodyPart, long leg), (zebra, AwA:hasBodyPart, long leg),
(horse, AwA:hasBodyPart, tail), (zebra, AwA:hasBodyPart, tail),
(horse, AwA:hasTexture, furry), (zebra, AwA:hasTexture, furry),
(horse, AwA:hasBehavior, group), (zebra, AwA:hasBehavior, group),
…
Generated Explanations:
They both have long leg and tail, are both furry, and both like to live in a group, …

Triples:
(roseate_spoonbill, ImNet-A:hasBodyPart, long thin legs), (spoonbill, ImNet-A:hasBodyPart, long thin legs), 
(roseate_spoonbill, ImNet-A:hasBill, white long flat and wider bill), (spoonbill, ImNet-A:hasBill, long flat 
and wider bill), 
(roseate_spoonbill, ImNet-A:hasHabitat, water), (spoonbill, ImNet-A:hasHabitat, water), 
…
Generated Explanations:
They both have long thin legs, are similar in bill, and both live in water, ….

Knowledge from 
ConceptNet

Triples:
(cn:horse, rdfs:subClassOf, cn:herd_animal), (cn:zebra, rdfs:subClassOf, cn:herd_animal),
(cn:horse, cn:hasA, cn:eyes), (cn:zebra, cn:hasA, cn:eyes)
Generated Explanations:
They are both herd animals, and both have eyes.

Triples:
(cn:roseate_spoonbill, rdfs:subClassOf, cn:bird), (cn:spoonbill, rdfs:subClassOf, cn:bird)
Generated Explanations:
They are both a type of bird.

Figure 3: Examples for explaining why features of seen classes zebra and spoonbill are transferred to unseen classes horse and
roseate spoonbill, respectively. Note we have replaced human unreadable entity ids by entity names.

samples (features) so that classifiers can be trained to classify
the unseen testing samples. However, in the ZS-KGC task,
DeViSE performs better than OntoZSL on some metrics.
This is because we conduct an inverse mapping in the ZS-
KGC case, i.e., mapping one semantic representation to a
number of sample features for a relation, as the relation
semantics have higher dimensions. This can suppress the
hubness problem to some extent.

In particular, we also find that in the generalized ZSL, the
performance gap between DeViSE and OntoZSL is larger
than in the standard ZSL. This is because the mapping-based
methods are trained only by the samples of seen classes,
and thus have a strong bias towards seen classes during
the prediction of generalized ZSL, while for the generation-
based methods, they convert the ZSL problem to a standard
supervised learning problem and thus the bias toward unseen
classes in prediction is avoided.

Although OntoZSL usually achieves better performance,
there is an issue that can not be overlooked – OntoZSL con-
tains more parameters compared with DeViSE, and thus it
takes much more effort to search for appropriate parameters
and hyper parameters such as the dimension of random noise
vectors and the number of synthesized samples.

Apart from these two ZSLmethods that are applicable to
all the tasks and all the external knowledge settings, we also
evaluated a ZSL method of the propagation-based paradigm
named GCNZ in ZS-IMGC to exploit the single relation
graph of the KG. In addition to GCN, other multi-relation
graph neural networks such as R-GCN [63] and CompGCN
[64] can also been applied and evaluated. Actually, methods
of the propagation-based paradigm have been rarely applied
and compared in tasks beyond ZS-IMGC, such as ZS-RE and
ZS-KGC. Our resources make this possible, and we regard
this as an important future work for the ZSL community.
There are also some recent works leveraging pre-trained
language models (PLMs) such as BERT [72] to tackle the
zero-shot problems in ZS-RE [49] and ZS-KGC [73, 74].
Coupled with semantics from large amount of free text data,

these models can easily generalize to unseen elements with
the textual external knowledge. Recently, there are also a
variety of studies trying to integrate structured knowledge
such as KGs into the current language models to leverage
both structured and unstructured semantics, this provides
us an opportunity to combine the ZSL methods of the
PLM-based paradigm with our constructed KG resources.
Moreover, impressive multi-modal pre-training techniques
can also be experimented for the ZS-IMGC tasks.

Reviewing all the experiment results, it can also be
observed that although our proposed external knowledge
settings achieve great balance between accs and accu metrics
in the generalized ZSL, they do not always work well on
accs. This motivates us to explore more robust ZSL methods
tomaintain the high prediction accuracy on seen labels in the
generalized ZSL setting.
7.2. External Knowledge

In Section 6, we evaluated different external knowledge
settings including none KG-based ones such as w2v in
ZS-IMGC and ZS-RE and KG-based ones with varying
semantics. We find KG-based settings always achieve better
prediction performance, especially in ZS-RE and ZS-KGC
where KG-based external knowledge have been rarely stud-
ied. Moreover, KG settings with richer semantics usually
have better performance. For example, Basic KG+literals
has better performance than Basic KG in ZS-IMGC, and
Rule has better performance than KG in ZS-RE. All these
validate our motivations of investigating various external
knowledge via KGs.

Although promising performance has been achieved,
there are still some open problems w.r.t. utilizing the exter-
nal knowledge. First, more advanced semantic embedding
techniques are required to jointly embed different kinds of
KG semantics. We adopted some simple semantic embed-
ding techniques, such as TransE, and developed some new
techniques for text-aware and logic-aware KG embedding.
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Although they are quite effective when combined with On-
toZSL andDeViSE, more advancedmethods could be devel-
oped for better performance and for addressing some knowl-
edge settings that the current embedding methods cannot
address, such as Basic KG+CN and Basic KG+logics of
ZS-IMGC andOWL of ZS-KGC.We expect that somemore
complicated semantic embedding methods, such as multi-
relation graph embedding [63, 64], ontology embedding [33]
and multi-modal KG embedding [32], can be evaluated in
combination with different ZSL methods.

Second, more adaptive solutions are required for some
specific KG-based knowledge settings, besides the current
pipeline of first embedding the KG and then applying the
class embedding in an existing ZSL method. This is mo-
tivated by the observation that sometimes some specific
knowledge settings have different performance on different
datasets; for example, RDFS-hie has better performance
than RDFS-cons on NELL-ZS, but has worse performance
thanRDFS-cons onWiki-ZS. It seems that different datasets
have different knowledge preferences, and it is necessary to
take the properties of datasets into account when utilizing
the same external knowledge. One promising solution is first
automatically retrieving dataset-relevant knowledge from
the KG and then utilizing these knowledge in ZSL. Some
learnable knowledge retrieval solutions could be considered
in the future [75].

Logical expressions are all considered in three ZSL
tasks, i.e., disjointness axioms in ZS-IMGC, logic rules in
ZS-RE and OWL axioms in ZS-KGC. Their incorporation in
different ZSL datasets and different ZSL methods also needs
more adpative methods. Compared with ZS-IMGC, ZS-RE
and ZS-KGC seem to benefit more from these logic expres-
sions. This may be because the latter two are both symbolic
inference tasks, i.e., inferring the semantic relations between
two entity mentions and inferring the object entities given
the subjects and relations. For the ZS-IMGC task, there
exists a gap between the symbolic class knowledge and class
instances (i.e., images), and it is more challenging to utilize
the logic expressions.

Third, high quality and large scale KG-based resources
covering more tasks and more knowledge settings are re-
quired. We plan to continuously extend our resources in the
following aspects: i)more external knowledge will be added
for the existing ZSL tasks, such as more logical expressions
for ImNet-A/O and AwA; ii) resources of more tasks, such as
zero-shot visual question answering that we are investigating
[76], will be added; iii) more ZSL settings, such as ZSL
with incremental unseen classes [77], will be considered;
and iv) high quality documents and Python libraries will be
made and added for easier access of the existing and new
resources.

8. Conclusion
External knowledge plays a critical role in ZSL, while

KGs have shown their great superiority for representing
different kinds of external knowledge for augmenting ZSL.
To address the issue of semantic insufficiency in existing

ZSL resources and the issue of lacking standard benchmarks
to investigate and fairly compare KG-based ZSL methods,
we created systematic resources for KG-based research on
ZS-IMGC, ZS-RE and ZS-KGC, including six standard
ZSL datasets and their corresponding KGs that can support
different settings with ranging semantics. For ZS-IMGC, we
integrate not only typical external knowledge such as class
hierarchy, attributes and text, but also common sense rela-
tional facts from ConceptNet and some logical expressions
such as class disjointness. For ZS-RE, we contributed KGs
equipped with logic rules as the external knowledge. For ZS-
KGC, we build ontological schemas with semantics defined
by RDFS and OWL, such as relation hierarchy, relation’s
domain and range, concepts, relation characteristics, and
relation and concept textual meta data, for a NELL KG and
a Wikidata KG that are to be completed. Based on these
resources, we conducted an extensive benchmarking study
on different ZSL methods under different external knowl-
edge settings, which illustrate the effectiveness and great
potential usage of our proposed resources.We also discussed
the strongness and weakness of different KG-based methods
of different paradigms, and analyzed potential solutions for
addressing some specific knowledge settings, for adaption
to different datasets across tasks, and for better exploiting
different kinds of external knowledge.
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