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Abstract
Human cognition is marked by its ability to explain patterns in the world in terms of variables and regularities that are not 
directly observable, e.g., mental states, natural laws, and causal relationships. Previous research has demonstrated a capacity 
for inferring hidden causes from covariational evidence, as well as the use of temporal information to identify causal relation-
ships among observed variables. Here we explore the human ability to use temporal information to make inferences about 
hidden causes, causal cycles, and other causal relationships, without relying on interventions. We examine two behavioral 
experiments and compare participants’ judgments to those of Bayesian computational-level models that use temporal order 
and delay information to infer the causal structure behind observed event sequences. Our results indicate that participants 
are able to use order and timing information to discover hidden causes, and make inferences about causal structures relating 
hidden and observable variables. Computational modeling indicates that most participants are best described by norma-
tive delay model predictions, but also reveals several clusters of participants who made unexpected inferences, suggesting 
opportunities to enrich future models of human causal reasoning.

Keywords  Causal inference · Causal learning · Event cognition · Hidden variables · Latent variables · Bayesian models

Introduction

People have a remarkable capacity to make sense of the 
sparse, noisy, and ambiguous stream of data that makes 
up everyday experience. We infer causal relationships to 
explain events that occur close in time—such as between 
pressing an unmarked button on a hotel TV remote and see-
ing the TV turn on—but also between events much further 
apart in time—such as eating fast food and having an upset 
stomach some hours later. Often this involves positing the 
existence of unobserved (or latent) causes as well as the 
(inherently unobservable) causal relationships. For instance, 
for the example above, instead of concluding the food caused 
the symptoms, we may think that both deciding to eat fast 
food and having an upset stomach are due to stress at work 
or school. Similarly, sitting on a train and observing that sev-
eral people are repeatedly picking up their phones at similar 

times, we may infer that they are reacting to the same mes-
sages in a group chat or news notifications.

Coming up with an appropriate generative model of the 
external environment is valuable for any cognitive agent, 
allowing for accurate prediction and effective control in pur-
suit of goals, as well as sub-serving explanation and com-
munication. Where latent variables actually exist, identify-
ing them also tends to result in a better and more compact 
representation than attempting to do without them (e.g., 
Gershman & Niv, 2010). Previous studies on causal reason-
ing have shown that adults and children, even as young as 
10 months, can use covariation information to learn about 
hidden causes (Kushnir et al., 2003, 2010; Saxe et al., 2005; 
Lucas et al., 2014; Rottman et al., 2011). In particular, 
Lucas et al. (2014) showed that adults can correctly infer 
the presence of one or several hidden elements, as well as 
the functional form of their causal mechanism to explain the 
behavior of a black-box machine.

The possibility of common hidden causes, or latent 
confounders—i.e., causally relevant variables that have not 
been or cannot be observed—creates a challenge for the 
discovery of causal relationships. This is because depend-
encies between any two events or variables can always be 
explained by the idea that both are being influenced by some 
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unobserved third variable. As a simple example, an observed 
correlation between X and Y is consistent with a variety of 
causal models: Perhaps X causally influences Y, perhaps Y 
causally influences X; or perhaps some unobserved variable 
H causally influences both X and Y. These are also not mutu-
ally exclusive possibilities; it could also be the case that 
there is a bidirectional causal influence with X influencing 
Y even as Y influences X. Worse, X and Y could be constitu-
ents of some larger feedback loop involving multiple hidden 
variables.

Causal graphical models (CGMs, also known as causal 
Bayesian networks; Pearl, 1995, 2009) can help us formalize 
and better understand this problem.1 CGMs have become 
a dominant tool for causal inference both in data science 
and as a framework for modeling causal cognition (e.g., 
Koller and Friedman, 2009; Griffiths & Tenenbaum, 2005; 
Gopnik & Tenenbaum, 2007; Tenenbaum & Griffiths, 2001; 
Bramley et al., 2017). A CGM represents causal relation-
ships between random variables using directed edges and 
parameters encoding the causal mechanisms connecting 
causes with their effects. This formalism has the constraint 
that the resulting graph must be acyclic, i.e., there can be 
no path from any node in the graph back to itself, mean-
ing there is no natural way to represent feedback loops. As 
in the example involving X and Y above, when learning a 
CGM from observational contingency data, there is a strict 
upper bound on structural identifiability. Causal structures 
that have different interventional semantics can be Markov 
equivalent, meaning they imply identical (conditional) inde-
pendencies in the absence of interventions and so cannot 
be distinguished from observational data alone (e.g., Pearl, 
2009; Peters et al., 2017; Heinze-Deml et al., 2018).

The gold standard for uniquely determining causal 
structure is to perform experiments, manipulating causal 
variables and observing what else changes (Pearl, 2009; 
Cartwright, 2007). However, interventions are not always 
practical or even possible; in many settings, they may be 
unethical or prohibitively costly. While people are capable 
intuitive experimenters (Gopnik et al., 2007; Cook et al., 
2011; Kushnir & Gopnik, 2005; Lagnado & Sloman, 2004; 
Steyvers et al., 2003), they may also make use of the richness 
of observational data to tackle the challenging problem of 
inferring causal structure (e.g., Rothe et al., 2018). Given 
the abundance of observational data, ignoring such infor-
mation would severely limit people’s ability to make sense 
of the world around them. Critically, temporal information 
can provide cues and constraints on causal structure that are 
missed when only considering “static” contingency informa-
tion, which may be particularly important for tackling the 

challenging problem of inferring causal structures involving 
hidden causes.2

People do not generally encounter contingency data 
directly, but rather events occurring over time, often without 
the additional information that would allow them to build 
a contingency table (e.g., about what would constitute an 
“independent trial”). Temporal order and delay between 
events have been linked to learning since the early days of 
psychology, featuring in basic accounts of animal and human 
learning and conditioning (e.g., Grice, 1948; Michotte, 
1946). The connection between order and causality has 
been noted since the earliest work on causality, for instance 
by Hume, as causes are assumed to precede their effects 
(Hume, 1740). Recent research on the role of time in human 
causal structure learning has shown that people readily use 
temporal information to infer causal relationships among 
observed events, making use of both temporal order (Rott-
man & Keil, 2012; Bramley et al., 2014) and delay informa-
tion (Bramley et al., 2018; Gong et al., 2022). Underlining 
the importance of temporal information, people have also 
been found to make inferences that align with the tempo-
ral order of events, even if this temporal information is at 
odds with covariation evidence (Lagnado & Sloman, 2006; 
Rottman & Keil, 2012). Regarding more nuanced temporal 
delay information, it is well established that longer delays 
between two events lead to weaker judgments of causality, 
other things being equal (Grice, 1948; Shanks et al., 1989). 
Explanations for this observation consider working memory 
capacity constraints (Ahn et al., 1995; Einhorn & Hogarth, 
1986), but also the normative rationale that longer delays 
imply more events may have occurred in the meantime that 
could explain the effect (Buehner & May, 2003; Lagnado 
& Speekenbrink, 2014). Shorter delays are not invariably 
seen as more causal, however: People are also able to adapt 
their expectations to specific domains. As in the introductory 
examples, we expect the delay between pressing the power 
button on a TV controller and seeing the device turn on to 
be short but between eating fast food and developing symp-
toms of an upset stomach to be much longer (Garcia et al., 
1966; Buehner & McGregor, 2006a). Indeed, violations of 
the expectations about causal delays have been shown to 
reduce judgments of causal strength (Greville & Buehner, 
2010). Research focusing on the problem of identifying the 
structure of fully observed and acyclic causal systems sug-
gests that people use order information to rule out incompat-
ible causal structures, but are also able to use the duration 

1  Note that we consider directed CGMs, but there have also been pro-
posals for including undirected edges, see, e.g., Peters et  al. (2017) 
for a discussion.

2  In some cases, it is possible to rely on auxiliary information and 
assumptions to go beyond the equivalence classes that can be recov-
ered from observational contingency data, e.g., by making assump-
tions about the (non-)linearity of causal mechanisms and (non-)
Gaussianity of noise distributions (see Eberhardt, 2017; Peters et al., 
2017; Guo et al., 2020).
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and variability of causal delays to make more fine-grained 
judgments (Bramley et al., 2018).

In this work, we build on prior research into how people 
infer the presence of hidden causes as well as on work that 
studies the role of temporal information in shaping people’s 
causal inferences. Specifically, we study how people use 
temporal information to infer the causal structure giving 
rise to observed sequences of events when this can involve 
hidden causes and causal cycles (see Fig. 1). Across two 
experiments covering different domains, we compare peo-
ple’s causal judgments to Bayesian structure learning models 
that use order or delay information.

Formal Framework

Our approach follows the tradition of rational analysis 
(Anderson, 1991) and computational-level models (Marr, 
1982). That is, we derive normative predictions under dif-
ferent assumptions about how people may construe the 
learning problem and compare these predictions to human 
judgments. We take causal structure learning to be a proba-
bilistic inverse problem, a common perspective that has been 
successful in explaining a wide range of phenomena (e.g., 
Griffiths & Tenenbaum, 2005; Gopnik & Tenenbaum, 2007). 
More precisely, we represent structure learning as a problem 
of Bayesian inference over a hypothesis space of possible 
causal generative models. This begins with the learner’s 
prior beliefs about the set of possible causal structures S 
and their parameters 𝜃s for all s ∈ S, represented as p(s) and 
p(𝜃s∣s), respectively. Given data D , a learner updates their 
beliefs about causal structures via Bayes’ theorem:

Here, p(D ∣ s) is the marginal likelihood of structure s, 
having integrated out our uncertainty about the parameters 
and potential hidden causes. However, this marginal is typi-
cally not available in closed form, as this involves integrating 

(1)p(s ∣ D) ∝ p(D ∣ s)p(s).

over unknown parameters, even for structures without hid-
den causes:

Evaluating marginal likelihood for structures with hidden 
hidden causes involves even more uncertainty, since the like-
lihood of parameters p(D ∣ �s) depends on the values of the 
hidden causes (h), which must also be marginalized over:

The integrals in these expressions can usually not be 
solved in closed form, so they require the use of an approxi-
mation scheme. We next discuss existing proposals to mod-
eling time in causal relationships, before discussing our 
approach.

Existing Modeling Approaches

Static CGMs serve as interpretable and compact static repre-
sentations of the causal relationships between random vari-
ables; however, the temporal dynamics between individual 
events are not typically represented explicitly. The idea of 
taking into account temporal information for discovering 
causal relationships is not new, considering, e.g., Granger 
causality (Granger, 1969), dynamic causal modeling (Friston 
et al., 2003) and advances in the machine learning literature 
(e.g., Didelez, 2008; Pamfil et al., 2020; Löwe et al., 2020; 
Malinsky & Spirtes, 2019; Strobl, 2019; Mastakouri et al., 
2021).

A popular variant of graphical models for modeling 
dynamic relationships or systems that evolve over time 
is given by dynamic Bayesian networks (DBNs; Dean & 
Kanazawa, 1989), where—as for for static CGMs—edges 
can be attached with causal semantics. However, one down-
side is that DBNs typically require a discretization of con-
tinuous time into discrete steps. Continuous time Bayesian 

(2)p(D ∣ s) = ∫ p(D ∣ �s, s)p(�s ∣ s)d�s.

(3)p(D ∣ s) = ∬ p(D ∣ �,�s, s)p(� ∣ �s, s)p(�s ∣ s)d�d�s.

X

YY Y

X X

time time

X

Y

X

Y

H

timetime time

Independent X Causes Y Y Causes X Common Hidden Cause Cycle

Fig. 1   Causal structure between events under each hypothesis. Events are denoted as red and blue vertical bars, for X and Y events, respectively. 
Hidden cause events are denoted by dotted vertical gray bars
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networks (CTBNs; Nodelman et al., 2002) extend DBNs to 
represent structured stochastic processes in continuous time, 
thereby mitigating the problem of choosing a discretization 
of time in DBNs. However, both standard DBNs and stand-
ard CTBNs implicitly assume that delays between events are 
memoryless, following exponential distributions (Murphy, 
2012). This assumption does not hold for many real-world 
phenomena, such as incubation periods expressing the delay 
between exposure to a virus and the first sign of symptoms.

A related approach that relaxes the DAG representa-
tion of CGMs is to introduce an undirected edge to capture 
both common hidden causes and cyclic relationships, as in 
so called “chain graphs” (Lauritzen & Richardson, 2002). 
However, this amounts to declaring the distinction between 
causal cycles and hidden causes as unidentifiable, even 
though these graphs respond differently to interventions: 
While intervening on one of the observed variables might 
cause the other variable to activate in a cycle, such interven-
tions would have no effect in a CHC structure, as there is 
no direct causal connection between the observed variables. 
Overall, despite many advancements, challenges remain for 
inferring causality from temporal as well as atemporal data 
(e.g., Glymour et al., 2019).

A different class of models that were applied to human 
causal cognition are based on point processes and represent 
causes that influence the rate with which other events occur 
in continuous time (Pacer et al., 2012; Pacer & Griffiths, 
2015). Recent modeling work has also addressed the ques-
tion of how people infer causality between specific event 
instances. This has been studied by Stephan et al. (2020), 
who focus on singular causes rather than causal structure 
over multiple observations with a modeling framework that 
is related to the delay model we discuss below. A differ-
ent line of work has focused on the question of how people 
infer causal structure between continuous causes in continu-
ous time, as opposed to events in continuous time (Davis 
et al., 2020). Moreover, while the present work focuses on 
studying human behavior at the computational level, prior 
research by Fernando (2013) presents an approach to learn-
ing causal structure between events at an implementational 
(i.e., neural) level.

Events in Continuous Time

We are interested in the causal relationships between the 
onsets of events, which can be treated as points on the real 
line. This means that two events never occur at exactly the 
same moment. We also assume that effects never precede 
their causes. Figure 1 shows an example of how four events 
imply different sets of cause–effect delays under five differ-
ent causal structures.

Order Model

We first describe an inference model that is sensitive only to 
order information and disregards delays between events. For 
this, we generalize previous work (Rottman and Keil, 2012; 
Bramley et al., 2014, 2018) in order to accommodate hid-
den causes and cycles. Our order model has likelihoods that 
depend only on the order of events in a given sequence, so is 
agnostic about the exact length of any inter-event delay dis-
tributions (see Fig. 2). We construct generative order models 
for each causal structure, compactly representing each as a 
probabilistic finite state machine (PFSM; Vidal et al., 2005) 
(see Appendix 3). Depending on the causal structure, differ-
ent sequences of events are possible.

The model in which X and Y are independent imposes 
no restrictions on transitions between events: X might be 
followed by another occurrence of X or by a Y, and vice 
versa. For X → Y  (that is, X causes Y ), we assume there is 
only one possible transition for each state: cause X is invari-
ably followed by its effect Y and X does not reoccur until 
its previous activation (and causal chain to Y ) has run its 
course, meaning that Y is always followed by X. Essentially, 
for the order model (but not the delay model, as discussed 
below), we assume causes are blocked from re-occurrence 
while they are still involved in producing their effects. An 
alternative could be to assume that multiple causal influ-
ences are able to travel between a cause and its effect simul-
taneously. We return to this assumption in the discussion. 
The structure Y → X has the mirrored semantics of X → Y  . 
A common hidden cause can produce activations of X and 
Y in succession, but uniquely and as opposed to the inde-
pendent structure, implies that the same variable will never 
activate more than twice in a row, following the assumption 
described above. For causal cycles, the order-only model 
assumes either observable event might initialize the observa-
tion sequence, but after this the observables activate in turn.

Following prior work (Bramley et al., 2018), we complete 
each order structure by setting the transition probability for 
a state k to 1

outdegree(k)
 , where the outdegree is defined as the 

Fig. 2   Parsing of events on the 
real line for an order-representa-
tion, where colored vertical bars 
represent point events. In this 
case X and Y are assumed inde-
pendent (as represented by the 
causal directed edges between 
events), but the sequence X ≻ 
Y ≻ X ≻ Y is possible under all 
five structures, except for Y → X
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number of outgoing edges from a state, implementing the 
principle of the Bayesian Ockham’s razor (e.g., Myung & 
Pitt, 1997). For example, we assume there is always a 1

2
 

chance of X occurring as the next event in the independent 
structure (see Appendix 3).3

Delay Model

For our generative model of events and their delays, we use 
a variant of a dynamic Bayesian network (DBNs; Dean & 
Kanazawa, 1989) representation, as a CGM in which nodes 
denote when components of the causal system activate. 
Edges correspond to parameterized delay distributions 
controlling the intervals between activations of a cause 
and effects. Root causes are assumed to cause their own 
recurrence with their own set of parameters controlling 
their inter-event distributions. Here we restrict out atten-
tion to causal relationships in which each effect event can 
only have at most one cause event, and effect events appear 
in the order their cause events occurred in. For instance, 
for a X → Y  structure, the sequence x(1) ≻ x(2) ≻ y(1) ≻ y(2) 
(where ≻ denotes precedence with respect to the temporal 
order) would be consistent with the delay model, whereas 
the sequence x(1) ≻ x(2) ≻ y(2) ≻ y(1) would not be consistent. 
This assumption is weaker than the assumption for the order 
model, as the delay model does not assume that causes are 
blocked until their effects have occurred, but only assumes 
that the problem of causal attribution is resolved via tem-
poral precedence; we discuss this point further in the gen-
eral discussion. To generate data from such a model, one 
samples root cause activations, then samples causal delays 
to their effects, unrolling the graph into a tree of event tim-
ings. Inference then amounts to “reverse engineering” the 
causal structure most likely to have given rise to the set of 
timings observed, taking into account prior beliefs about 
their plausibility.

Following prior work, we use the gamma distribution to 
model delays (e.g., Bramley et al., 2018; Gong et al., 2022; 
Stephan et al., 2020). Gamma distributions have positive, 
i.e., ∈ (0,∞) , support and can capture beliefs about the 
expectation and variance of delay distributions. Gamma 
distributions are typically defined by a shape k and a scale 
𝜃 (or alternatively, by a shape α and rate β). As opposed 
to the exponential distribution (which is a special case of 

the gamma distribution), the gamma distribution allows 
for modeling non-memoryless delay distributions. That is, 
gamma distributions can capture expectations about when 
an effect will happen after observing a cause as well as how 
much variability there is around this expectation. For easier 
interpretability, we express gamma distributions using a 
standard reparametrization in terms of their mean μ = k𝜃 
and variance σ2 = k𝜃2. For additional background on the 
gamma distribution, see Appendix 4.

We display static summary graphs along with example 
event sequences in Fig. 1. For our computational analysis, 
we index events of each type separately by their i-th occur-
rence. In the unrolled graphical representation, edges thus 
represent parameterized gamma delays between occurrences 
of events (represented as nodes). For instance, if x(i) is con-
nected to y(i) by an edge under a particular structure hypoth-
esis, x(i) occurred at some time x(i) = 1s and we observe a 
delay of 0.4s, then the value of y(i) is y(i) = x(i) + 0.4s = 1.4s.

For the independent structure, x(i) causes x(i+ 1) and y(i) 
causes y(i+ 1), such that there is no inherent dependence 
between occurrences of X and the next occurrence of Y. 
Under X → Y  , each x(i) is caused by x(i− 1), while each y(i) is 
caused by x(i) and thus is independent of y(i− 1) conditional on 
x(i). For the common hidden cause structure, the occurrences 
of x(i) and y(i) are taken to be caused by activations of a hid-
den cause h(i), which was self-caused by h(i− 1). We further 
assume causal delays from h(i) to x(i) and h(i) to y(i) have tied 
parameters, such that occurrences of X neither systemati-
cally succeed or precede occurrences of Y. Coupled with our 
assumptions about delay distributions, this means that com-
mon hidden causes entail effects that are close to one another 
in time, but occur in arbitrary orders. This assumption of tied 
parameters may be justified in real-world settings whenever 
the observed variables have a shared causal mechanism, 
e.g., if both observed variables are instances of the same 
“type” of variable (as is the case for our cover stories below), 
but see the discussion about the possibility of relaxing this 
assumption. Lastly, the causal cycle resembles X → Y  (or 
Y → X ) but distinguishes itself by two characteristics, which 
arise from a shared cause-effect mechanism: (1) delays from 
X to Y and Y to X are symmetric; hence, the parameters are 
tied; and (2) a sequence of observations might begin with 
either X or Y.

Overview of Experiments

We ran two experiments in which participants watched a 
series of short videos. Participants were allocated to dif-
ferent cover stories, but videos always showed two colored 
circles on a gray background, corresponding to the two 
observable components X and Y of some causal scenario 
of unknown structure. Activations were then visualized by 
the requisite component flashing briefly. Participants had to 

3  As noted above, since time is continuous and we treat events as 
points, the chance of two coinciding exactly is zero. However, per-
ception is not infinitely sensitive, representing continuous numbers 
on a computer requires discretization, and computer screens have a 
finite refresh rate. Therefore, events occurring very close together 
may be perceived as simultaneous. In a few cases in our stimuli, two 
events occurred within 50ms of one another, so potentially appearing 
to coincide. In these cases, we compute order model likelihoods by 
marginalizing over the two possible orders, assuming both are equally 
probable.



	 Computational Brain & Behavior

1 3

watch the videos and make a forced choice from the set of 
five candidate causal structures.

Experiment 1

Methods

Participants

Fifty adults (18 female, mean age 34.30 years, SD = 10.70) 
participated in the experiment in return for a base payment 
of £1.50 and performance-related bonuses of up to £1.20 
resulting in an average compensation of £11.46/h. Partici-
pants took, on average, 16.25 (SD = 9.09) minutes to com-
plete the task.

The experiment was conducted online with participants 
recruited via Prolific Academic (www.​proli​fic.​co). The 
experiment was programmed in Scala.js and ran as a stand-
ard client-side experiment. In order to ensure high data qual-
ity, participants were required to have a 99% completion rate 
on previous studies on Prolific, as well as between 100 and 
10,000 previous submissions. The study was pre-registerd 
on OSF (https://​osf.​io/​e5d23).

The sample size for our first experiment is based on a 
power analysis using G*Power (Faul et al., 2009). We con-
sider binomial tests for each of the five conditions, where 
the stimuli were sampled from the generative structure (that 
is, excluding the prior elicitation condition). We are inter-
ested in detecting deviations from the expected proportion of 
chance responses (0.2 for 5 response options) for the ground-
truth category relative to all other categories. For a power 
of 0.95, a Bonferroni-adjusted alpha level of 0.05

5
= 0.01 (for 

running five separate tests), a proportion of 0.2 under the 
null-hypothesis, and a proportion (to be interpreted as an 
effect size) of 0.5 under the alternative hypothesis, we obtain 
a required total sample size of 44. Including a safety margin, 
we thus obtain a total sample size of 50 participants.

Design and Procedure

Participants were asked to identify the causal relationships 
between different species of bioluminescent bacteria and 
told they would be paid £0.20 for each trial in which they 
identified this correctly. Concretely, their task was to iden-
tify the causal structure giving rise to observed sequences 
of events. We constructed video stimuli that showed two 
bacteria labeled X and Y which would occasionally light up 
and presented five possible causal hypotheses in the form 
of graphical diagrams relating the bacteria to one another 
and to a potential hidden cause (see Fig. 3 for a screenshot 
of the interface).

Participants were first trained on how to interpret each 
diagram, see Appendix 1  for the training participants 
underwent. Participants were also told that in addition to 
the observed X and Y bacteria, a hidden bacterium might 
also be present, and that this might influence the occurrence 
of illuminations of the observed bacteria. Participants were 
also instructed that some causal structures may never be the 
correct answer and some might be correct for several of the 
trials. After completing instructions and two comprehension 
checks (see Appendix 1), each participant completed six tri-
als in randomized order. Five of these involved watching 35 
s videos containing between 12 and 15 occurrences of each 
bacterium X and bacterium Y lighting up. In reality, each 
of the five causal structures was used to generate the data 
for exactly one of these trials. One additional trial (occur-
ring randomly in the sequence of trials) did not include any 
observed data. Participants were instead instructed: “This 
recording must have gone missing. Even though there is no 
video recording available, please give your best guess about 
which structure it might have been anyway.” This trial served 
to probe participants’ prior expectations about the plausibil-
ity of the different structures without seeing any data.

At the end of each trial, participants made a forced-
choice judgment selecting which of the five causal structures 

Fig. 3   Experiment interface, showing the stimulus display (top) and 
structure judgment, including a confidence slider, for the bacteria 
cover story (bottom). This frame shows a Y event

https://www.prolific.co
https://www.osf.io/e5d23
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generated the data and provided a confidence in this judg-
ment using a slider ranging from a left pole of 0 for “com-
pletely uncertain” and a right pole of 100 “completely cer-
tain” (with increments of 1, and without a starting value to 
minimize anchoring effects), as shown in Fig. 3.

The left/right position of the X and Y objects was rand-
omized for each video (with the labels remaining in place), 
and the colors of the lights were randomly drawn for each 
trial to make different trials more distinguishable and rein-
force the idea that different causal structures could govern 
different pairs of bacteria. Colors were sampled such that 
each pair had maximally dissimilar hues in a hue/saturation/
value color space, but equal saturation and value (i.e., bright-
ness). Events took the form of bacteria lighting up: This 
was displayed by having the colored circle representing the 
bacterium become maximally visible (by assigning minimal 
opacity) and then decay exponentially back to its baseline 
opacity, fading into the gray background with a rate of 25% 
per video frame (with a refresh rate of 50ms), providing a 
visual presentation that is consistent with the semantics of 
point events but ensures participants could easily perceive 
and distinguish between the events.

Stimuli

All video stimuli were generated by sampling from one 
of the five causal structures under consideration. Sampled 
delays were generated from distributions that provided 
adequate evidence for the true generative structure, while 
leaving some uncertainty. In particular, we set the param-
eters such that recurrence of each cause occurred with a 
longer, more variable delay than those delays between 
causes and effects, ensuring that there would be little chance 

of a cause recurring while its effects were still underway 
or of effect events overtaking each other. Specifically, for 
the independent structure, we set �a = 2.0s, �2

a
= 0.4s and 

�b = 2.0s, �2
b
= 0.4s . For X → Y , we set �a = 2.0s, �2

a
= 0.4s 

and �b = 0.5s, �2
b
= 0.01s (for X ← Y  swapping a and 

b). For the common hidden cause structure, we set 
�a = 2.0s, �2

a
= 0.4s  and  �b = 0.5s, �2

b
= 0.01s  .  Fo r 

the causal cycle, we set �a = 1.0s, �2
a
= 0.01s and 

�b = 1.0s, �2
b
= 0.01s , which leads the self-delays of the X’s 

and Y ’s to be the same as for all other structures in expec-
tation, while providing reliable cues. All stimulus param-
eterization settings are also reported in Appendix Table 2 
as an overview. For each causal structure, we generated four 
stimulus sequences using the same generative model and 
selected one uniformly at random for each participant to 
average over idiosyncrasies of particular sampled sequences. 
All stimuli are visualized in Fig. 4 and the exact timings of 
the events are included in the pre-registration materials (see 
https://​osf.​io/​e5d23).

Results

Overall, participants recovered the correct structure 58% 
of the time (compared to a chance-level accuracy of 20%). 
However, accuracy depended on the ground-truth causal 
structure. Figure 5 displays confusion matrices showing how 
often participants recovered the true generative structure in 
each condition. For the independent and the directed causal 
structures ( X → Y  and Y → X ), participants most frequently 
identified the ground truth. For the common hidden cause 
(CHC), people more often judged the data to be generated 
by a causal cycle, and for the causal cycle, people more often 
tended to favor one of the directed structures.

Fig. 4   All stimulus sequences presented to participants, where X events are denoted by red lines and Y events are denoted by blue lines

https://osf.io/e5d23
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Results for the prior elicitation condition are presented 
in Fig. 6. As indicated by deviations from the gray hori-
zontal line, participants descriptively favored independent 

causal relationships and the common hidden cause over 
other possibilities.

Experiment 1 had a cover story of bioluminescent bac-
teria in a Petri dish, and it may be that the findings reported 
above express people’s idiosyncratic expectations about the 
behavior of such bacteria. To assess the domain-generality 
of people’s causal inferences from temporal data, we repeat 
(and internally replicate) the task under a range of different 
cover stories, as we report below.

Experiment 2

The aim of our second experiment was to replicate the find-
ings from Experiment 1, and to understand (1) whether 
Experiment 1’s results reflect domain-general expectations 
or specific expectations about our bacterium cover story; and 
(2) in the event that participants’ beliefs vary, how they do 
and to what extent their elicited priors are consistent with 
their inferences. We included a replication of the original 
cover story and three new between-participant conditions 
with different cover stories. The experiment was pre-regis-
tered on OSF (https://​osf.​io/​jq9bd).

Methods

Participants

Two-hundred adults recruited with Prolific Academic (113 
female, 1 other; mean age 33.49 years, SD = 11.59) took part 
in Experiment 2 in return for a basic payment of £1.30 and 
performance-related bonuses of up to £1.20 resulting in a an 
overall average compensation of £10.49/h. Participants took 
13.71 min on average (SD = 6.30) to complete the task. The 
experiment was conducted online with participants recruited 
via Prolific Academic (www.​proli​fic.​co). The criteria used to 
select participants were the same as for Experiment 1. The 
power calculation for determining the required sample size 
follows the rationale for Experiment 1, as 50 participants 
were allocated to each cover story condition.

Design and Procedure

Participants were randomly assigned to one of the four 
cover story conditions. These cover stories were selected to 
cover a wide spectrum of everyday inference domains and 
potentially different inductive biases, based on prior work 
that focused on capturing people’s beliefs across a range of 
different domains (Yeung & Griffiths, 2015; Kushnir et al., 
2010). In particular, the stories were selected to fulfill three 
desiderata: First, events and specifically their onsets can hap-
pen very quickly. Second, the causal “type” of the observed 
variables is the same (as opposed to, e.g., different medical 

Fig. 5   Confusion matrices, containing people’s judgment frequencies 
relative to ground truth for the respective experimental condition

Fig. 6   Prior expectations (guess frequencies on trials without evi-
dence) across all experiments (N = 250). Horizontal gray lines cor-
respond to chance-level responding

https://osf.io/jq9bd
https://www.prolific.co
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symptoms following an infection). Finally, there are plausi-
ble mechanisms for all five causal structures in the setting 
described by the cover story.

Biological	� Bioluminescent bacteria, where events are 
illuminations of either bacterium. Identi-
cal to Experiment 1, serving as an internal 
replication.

Medical	� Recordings of mirco-seizures in animals’ 
brains, where events correspond to local sei-
zures on either side of the brain.

Mechanical	� Mechanical devices, where an event corre-
sponds to one of the two knobs being pushed 
out (following Kushnir et al., 2010).

Behavioral	� Sleep recordings of two people, where events 
correspond to brief waking-up events of 
either person.

In all other ways, Experiment 2 was identical to Experi-
ment 1.

Stimuli

Stimulus selection and sampling were identical to Experi-
ment 1.

Results

Experiment 2 replicated the qualitative pattern observed in 
Experiment 1. As shown in Fig. 5, participants in the bio-
logical cover story again identified independent and directed 
causal structures correctly but tended to mistake the hidden 
cause for a cycle and the cycle for a unidirectional structure. 
However, there was some variation on this pattern in the 
three new cover stories, as we discuss below.

Results for the prior elicitation condition are presented 
in Fig. 6. We observe that the replication condition matches 
the qualitative pattern observed in Experiment 1. Mean-
while, there are qualitative differences in response patterns 
across cover story conditions, with participants descriptively 
reporting independent causes and a common hidden cause 
most often.

Inferential Statistics

Before turning to model-based analyses, we provide fre-
quentist inferential statistics for both experiments. Over-
all, participants performed above chance (i.e., 20%), 

aggregating over the five causal structures (exact bino-
mial test, p < 0.001). Running separate binomial tests per 
ground-truth structure with a Bonferroni-adjusted signifi-
cance level of � =

0.05

5
= 0.01 indicates better than chance-

level performance for all conditions (independent p < 0.001, 
X → Yp < 0.001 , X ← Yp < 0.001 , X ← H → Yp < 0.001 ) 
except for when the true structure was a cycle (p = 0.048).

In order to test whether people’s judgments differed 
between cover story conditions and ground-truth structures, 
we fit a multinomial logistic regression with the inferred 
causal structure as our criterion and the ground-truth causal 
structure as well as cover story as dummy- (or one-hot)-
coded predictors. Likelihood-ratio tests for the two predic-
tors reveal significant main effects of both ground-truth 
causal structure (χ2(16) = 1657; p < 0.001) and cover story 
(χ2(12) = 29.913; p = 0.003). Qualitatively, the main distinc-
tive pattern here is that people in the sleep condition had a 
propensity to infer the CHC structure when the CHC was 
the ground truth, relative to other conditions. We conjecture 
that this effect is the result of there being a more salient and 
intuitive common hidden cause—noises waking both sleep-
ers—in this condition.

Focusing on the prior elicitation trials over our cover 
stories in aggregate, we see that judgments deviated sys-
tematically from a random guesser null-hypothesis over the 
five candidate causal structures (χ2(4) = 95.12; p < 0.001). 
Meanwhile, the null-hypothesis that prior judgments are 
independent of the cover story could not be rejected (χ2(12) 
= 19.168; p = 0.085).

Model‑Based Analyses

Having demonstrated that judgments are sensitive to and 
broadly aligned with the ground-truth causal structure, we 
now turn to our formal modeling framework to better under-
stand whether participants’ inferences are consistent with 
one or other of the Bayesian accounts we have outlined. That 
is, we will use model comparison to estimate to what extent 
participants’ judgments are sensitive to delay information 
or just event order.

This requires (1) defining a prior over structures and pri-
ors over causal delay distributions; (2) computing marginal 
structure likelihoods and combining these with the structure 
prior; and (3) converting the resulting posterior into choice 
probabilities. We lay out each of these steps below.

Priors

Rational models of inference under uncertainty must gen-
erally ascribe a set of prior beliefs or inductive biases to 
the agents being studied. In a classical rational analysis, 
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these priors are assumed to be matched to the statistics of 
environment to which agents are adapted (Anderson, 1991), 
but, as is the case in many models of causal learning, it is 
unclear how one would estimate these statistics directly. An 
alternative is to estimate participants priors empirically, and 
see whether participants’ inferences from data are consist-
ent with these priors. We compare such a prior over causal 
structures (henceforth the elicited priors), to a uniform base-
line, as well as a flexible prior that is fitted to participants’ 
judgments.

For the flexible prior, we fit a categorical prior distribu-
tion over our five causal structures along with the rest of our 
model. This required 4 parameters with the fifth element 
determined by the requirement that the prior sums to 1. For 
the elicited prior, we compute the relative choice frequencies 
of the causal structures in stimulus-free prior-elicitation tri-
als across all participants. We assume guesses in the elicited 
prior condition represent samples obtained via probability-
matching from the prior and that learners roughly share this 
prior; the choice frequencies can be taken as a reflection 
of this prior. In order to allow for some deviations from 
probability-matching choice behavior, either towards more 
random responding or harder maximization, we pass the 
elicited (log) prior through a softmax with a weight param-
eter � ∈ [0,∞] which we also fit to the training folds in our 
cross-validation procedure (as explained below).

Calculating Marginal Likelihoods—Including 
Conservatism

We assumed uninformative or weakly informative priors for 
all delay model parameters. For details on approximate infer-
ence for the delay model, see Appendix 4. We confirmed the 
stability of our marginal likelihood estimates by running 
the full procedure 5 times, which resulted in the same find-
ings (yielding the same results at the numerical precision 
we report).

The order and delay models we introduced assign struc-
ture likelihoods for any sequence of X and Y events, for the 
delay model after marginalizing over potential hidden causes 
and parameters. However, these model predictions follow 
from the, arguably unrealistic, assumption that participants 
have perfect and arbitrarily precise perception and memory 
of temporal order and delays. We thus accommodate the 
possibility that participants have more uncertainty in their 
likelihoods than that assumed by our ideal-observer mod-
els. This is achieved by passing our order and delay model 
likelihoods through a softmax function with a fitted tempera-
ture λ. This allows for varying levels of perceptual uncer-
tainty, possible memory failures, and conservatism with 
regard to belief change, conceptually following prior work 
(e.g., Edwards, 1968; Bramley et al., 2014). Intuitively, as 

λ becomes small, � → 0 , we obtain stronger likelihoods, for 
� → ∞ we approach uniform (non-diagnostic) likelihoods, 
while the use of log probabilities allows us to also recover 
the original likelihoods.

Mapping Posterior Probabilities to Decisions

Participants do not provide posterior distributions directly 
but make forced-choice judgments about which of the five 
structure diagrams produced each observed sequence. Our 
decision model thus corresponds to a multinomial distribu-
tion over the five causal structures, where the probability of 
selecting each structure is given by the respective posterior 
structure probability. That is, the (normalized) product of 
structure prior and structure likelihood, as given in Eq. 1.

Cross‑validation

We assess the predictive performance of order and the delay 
model variants on the judgments of all 250 participants. 
Excluding the prior elicitation trial, each participant made 
five judgments based on event sequences meaning there are 
1250 choices, each made from the same set of five options. 
We evaluate the models’ ability to predict participants’ 
judgments for each of the ground-truth structures using 
softmax temperature parameters fit to data from the other 
four ground-truth structures. For the flexible prior models, 
we fit the four free prior parameters as well as the likeli-
hood softmax temperature. For the elicited prior models, we 
fit a prior softmax temperature and the likelihood softmax 
temperature. In each case, we evaluate model performance 
in terms of the average cross-validated log-likelihood for 
the left-out ground-truth structure. This provides a rigor-
ous test of generalization, as predictions are made towards 
an unseen experimental condition while avoiding potential 
issues with commonly used information criteria for model 
selection (e.g., Arlot & Celisse, 2010; Vehtari et al., 2017). 
As we have four different cover story conditions and do not 
posit systematic relationships between domains, we perform 
cross-validation on each cover story individually and subse-
quently aggregate the results. We also assess to what extent 
computing the elicited prior for each cover story separately 
or in aggregate aids in predicting peoples’ judgments.

Model Comparison Results and Discussion

Table 1 presents aggregate (summed) cross-validation nega-
tive log-likelihood values for the different models. Over-
all, the delay likelihood with a uniform prior over causal 
structures gave the best predictions (as quantified by the 
lowest negative log-likelihood). The delay likelihood with 
a uniform prior outperformed all other models, including 
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all baselines and other combinations of priors with order or 
delay likelihoods. In particular, incorporating elicited pri-
ors did not lead to better cross-validated predictions, neither 
when using the average elicited prior across cover stories nor 
with elicited priors computed separately by cover story. We 
note that the delay likelihood with elicited priors resulted 
in the same minimal negative log-likelihood, which can be 
explained by a very large value for the prior softmax tem-
perature, which essentially transforms the elicited prior into 
a uniform prior. These results are in line with the idea that 
people use fine-grained delay information to infer causal 
structure rather than relying just on the order the observed 
events occurred in. Figure 7 presents posterior probabilities 
per ground-truth causal structure when fitting the order and 
delay likelihood softmax temperature on all data simultane-
ously. The fitted values are λ = 4.02 and λ = 3.94 for order 
and delay model predictions, respectively. We discuss the 
finding that elicited priors did not aid in predictions in the 
general discussion.

Regarding model recovery, for the event sequences stud-
ied here, the delay model always recovered ground-truth 
structure in our simulations (across five random runs), with 
the softmax transformation providing a slightly softened 
version of the original model predictions. The order model 
deviated systematically, as can also be seen in Fig. 7. This 
structure mis-identification of the order model is not surpris-
ing, as the Bayesian Ockham’s razor penalizes structures 
whose predictions are less specific to the observed data. 
Specifically, a cyclic (alternating) sequence is also consist-
ent with a unidirectional structure, where the directionality 

is determined by which variable activates first, but the latter 
is less flexible. The cyclic structure spreads its likelihood 
across sequences beginning with X or Y, leading to unidi-
rectional chains to be inferred instead under an order-only 
account. We observe a similar trend towards misidentifying 
causal cycles in the human judgments and elaborate on this 
further in the general discussion.

Individual Differences

Even though our aggregate results indicate that, overall, par-
ticipants were best accounted for by the delay model, we may 
expect that people differ in their use of delay statistics over 
order heuristics, as well as how reliably they choose struc-
tures that are best supported by the evidence, as captured by 

Table 1   Model comparison 
results

Model comparison using cross-validated negative log-likelihoods (NLL) of the respective decision model 
on all experimental data, where model predictions are made towards judgments from unseen ground-truth 
structure conditions. Best predictive performance (lowest NLL) in boldface

Model name Prior p(s) Likelihood 
p(D ∣ s) 

CV NLL

Baselines
Random Uniform − 2011.80
Flexible Flexible (4 free parameters) − 2633.75
Elicited prior Mean elicited prior − 2020.19
Elicited prior per domain Mean elicited prior per domain − 2021.27
Alternative models
Order Uniform Order 1704.22
Delay Uniform Delay 1670.29
Flexible order model Flexible Order 1980.64
Flexible delay model Flexible Delay 2187.49
Elicited prior order Avg. elicited prior Order 1704.22
Elicited prior delay Avg. elicited prior Delay 1670.29
Elicited prior per domain order Avg. elicited prior per domain Order 1712.47
Elicited prior per condition delay Avg. elicited prior per condition Delay 1672.82

Fig. 7   Posterior probabilities of the computational models for the 
stimuli sequences displayed to participants when fitting aggregate 
data, comprising all judgments from Experiment 1 and Experiment 2
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the softmax temperature described above. To better under-
stand those individual differences, we used a probabilistic 
mixture model to identify different clusters of participants, 
and see which models (delay, order), and parameters (tem-
perature) best explain the behaviors in each cluster.

Specifically, we computed (hard) cluster assignments via 
expectation maximization (Dempster et al., 1977) conditional 
on numbers and types of clusters, and chose the number of 
order and delay clusters using the Bayesian information crite-
rion (BIC) to penalize the complexity and flexibility inherent 
in larger numbers of clusters. The number of clusters was 
allowed to vary between 0 and 7 for order and delay clusters 
each, resulting in an overall number of clusters between 1 and 
14. We re-ran the procedure 30 times with different initial 
parameters to mitigate getting stuck in local minima.

We find the lowest BIC for four order and four delay clus-
ters (BIC = 2693.76). We present posterior model predic-
tions for each cluster in Fig. 8 as well confusion matrices of 
human judgments in each cluster. As presented in Appendix 
Fig. 16, the minimum is relatively flat, so that we do not 
make strong claims about the exact number of clusters to 
describe a general population. Looking at judgments per 
cluster in Fig. 8, we can find several qualitative patterns: 
First, many participants are best described by a strictly or 
nearly normative delay account (47 and 10 participants in 
clusters 5 and 8, respectively). Overall, 150 out of 250 par-
ticipants are better described by delay model predictions 
than an order-only account. Second, several participants 
tended to infer a unidirectional relationship when the ground 
truth was a cycle, typically treating the first event to occur in 

Fig. 8   Posterior model predictions and confusion matrices of people’s judgments for all clusters
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the sequence as the cause. These participants are allocated to 
both order and delay clusters (in particular clusters 1, 2, 3, 
6, and 7). We discuss this effect in the “First-Mover Effects” 
section. A third pattern is that several participants inferred 
cycles when the ground truth was given by a common hid-
den cause (clusters 1, 2, 6, and 7), also discussed in the 
“First-Mover Effects” section. Lastly, there are a number of 
participants who infer common hidden causes when events 
are independent (clusters 2 and 6, in particular). This may 
be attributable to a simplicity preference, in which people 
preferentially posit fewer explanatory variables (Lombrozo, 
2007).

Overall, this analysis indicates that a large proportion of 
people make inferences that are well-aligned with our nor-
mative expectations, and exploit both delay and order infor-
mation to identify causal structure and hidden causes. At 
the same time, we have observed phenomena that raise the 
question of how one may enrich models of causal reasoning 
with temporal dynamics to capture the breadth of inferences 
people make; we discuss this further below.

General Discussion

The present results expand our understanding of how peo-
ple exploit temporal information to identify causal struc-
ture. Our findings demonstrate that people use temporal cues 
including both order and delays to make generally appropri-
ate inferences about structures that include hidden causes 
and cyclic relationships. We found that people make infer-
ences that are broadly consistent with Bayesian inference 
from an uninformative prior based on inter-event intervals, 
doing so similarly across four domains. Furthermore, we 
considered a range of different assumptions that might drive 
these inductive inferences. We found that people’s structure 
judgments show a sensitivity not just to the order in which 
events occur, but to the distribution of inter-event delays, 
using a comparison of several probabilistic models, extend-
ing results from previous research (Bramley et al., 2018). We 
did not find that people’s elicited priors help in predicting 
their judgments. Furthermore, there were some notable dif-
ferences between model predictions and participants’ judg-
ments, with implications about (1) ways people might make 
systematic errors in real-world causal inference problems; 
and (2) different assumptions people make about causal 
structures with temporal dynamics that are not captured by 
current accounts.

First‑Mover Effects

In almost all combinations of cover story and structure, 
participants inferred the true generative structure more 
often than any alternative, with one conspicuous exception: 

participants more often judged causal cycles to be unidirec-
tional causal links (X causes Y or Y causes X). What could 
explain this finding? One key consideration may be whether 
participants interpret the beginning of the video clips as an 
observed “window” of an ongoing stream of events or as the 
actual beginning of the causal system dynamics. One possi-
bility is the existence of a “first-mover-effect,” i.e., that peo-
ple view the first event they notice in an alternating sequence 
(with symmetric delays) as the “root-cause” of the series of 
events, rather than inferring a cycle. We tested whether when 
participants mis-identified a causal cycle, they were most 
likely to mistake it for a directed model in which the cause 
is the first variable to activate. This turned out to be the 
case 96% of the time, a significant deviation from chance (χ2 
test of independence indicates χ2(1) = 142.235; p < 0.001). 
Meanwhile, this inference error would also be partly con-
sistent with an order-only account, as the likelihood for the 
cycle is spread across either variable starting the sequence. 
From this perspective, people may interpret the alternating 
sequence as a repeated activation of the cause on its own 
(i.e., the variable starting the observed sequence), which 
triggers the effect events. Alternatively, people may have 
inferred that there is a cycle, but simply reported on which 
variable activated first, thereby starting the cycle.4

Future work may probe these potential biases further, 
for instance assessing real-world situations in which a par-
ticipant is observing an ongoing symmetric cyclic process 
and views one component as the cause, simply because it 
occurred when one started observing the process. It would 
further be useful to investigate to what extent this finding 
can be explained by delay accounts with a first-mover bias or 
an order-only account, for instance by altering the stimulus 
delay parameters or providing a “fade-in” period, where the 
start of the video clips is slowly increasing in luminescence, 
or otherwise making it clear that learners are observing a 
causal system that is already “running” when participants 
start observing it. Additionally, it could be tested whether 
the effect may be more pronounced when only little data is 
available and diminish with longer stimulus sequences. This 
departure from model predictions warrants further investiga-
tion and raises the question of inductive bias, that is, to what 
extent human judgments depend on background knowledge 
and domain-specific expectations about the causal system 
under consideration.

4  It is conceivable that participants have a preference for a lexico-
graphic order with X being the cause and Y the effect. However, a test 
for whether there is a difference in the marginal frequency of how 
often X → Y  or Y → X are inferred revealed no such effect (two-tailed 
exact binomial test, p = 0.624), which aligns with a lack of qualitative 
trends, as shown in Appendix 9.
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Hidden Causes or Causal Cycles

Another pattern that emerged in some clusters was a ten-
dency to choose causal cycles when the ground truth was 
a common hidden cause. One explanation for this observa-
tion is that some participants, rather than treating the events 
as a single continuous stream, may partition events—espe-
cially when these events occur in bursts separated by longer 
delays—as sets of distinct episodes. In this scenario, there 
are cases where Y follows X after a very short delay—sug-
gesting an X → Y  edge—as well as cases where X follows 
Y after a very short delay—suggesting a Y → X edge. In 
combination, these edges imply a causal cycle. Exploring 
this possibility is an interesting prospect for the future, but 
doing so would require an account of how and when people 
partition continuous time sequences into discrete events, and 
potentially more complex causal models.

Seeing Structure in Independent Event Sequences

Participants sometimes inferred a relationship between X 
and Y when the two variables were independent, particularly 
viewing CHC and cycles as plausible explanations in the 
independent conditions. What explains this finding of people 
seeing structure where there is none? One possibility is that 
people might infer a CHC when there are several instances 
of X and Y occurring in close temporal proximity, perhaps to 
the point of perceiving simultaneous events. Alternatively, 
if events are farther apart in time, people may infer a causal 
cycle, following the speculation above that people parti-
tion sets of events into episodes. Additionally, a prior belief 
about a CHC with a an unreliable delay distribution from 
hidden to observed events could also lead to patterns that 
resemble independent sequences. We did not observe dis-
tinctive differences in inferences for the different instances 
of independent sequences presented to participants, and a 
systematic investigation of this mis-identification would 
require more instances of stimulus sequences, possibly with 
explicit manipulations. From the modeling side, exploring 
this further could be aided by relaxing the assumptions that 
causes invariably lead to their effects, and that there are 
no outside influence beyond those presented in the causal 
structures, as we also discuss below. More broadly, previous 
work has established that people sometimes see structure 
where there is none (Williams & Griffiths, 2013; Griffiths 
& Tenenbaum, 2007; Blanco, 2017), and explanations from 
this line of research may be fruitful directions for future 
theoretical work.

Hidden Causes with Tied Parameters

Our delay model assumed that the delay distributions map-
ping from hidden causes to observed variables have tied 

parameters, encoding the belief that they share a common 
causal mechanism. For example, if two bioluminescent bac-
teria are responding to the same environmental stimulus, 
e.g., a shock, is it plausible that the mechanisms driving 
their responses are similar. Consequently, we might expect 
that the distribution of shock-to-response delays across these 
bacteria resembles (or matches) the distribution of delays for 
a single bacterium responding to multiple shock events over 
time; this is naturally formalized by coupling the param-
eters of the delay distributions. In contrast, if we have a 
bacterium and a mechanical sensor that are responding to 
the same shock event, there is little reason to infer a simi-
lar mechanism is at work and it may thus be more reason-
able to assume distinct, uncoupled distributions for the two 
delay distributions. Between these two extremes, one might 
assume a weak coupling between the parameters, e.g., imple-
mented via a hierarchical model (Lucas & Griffiths, 2010).

While the CHC with tied parameters leads to an expec-
tation of observed events being clustered together in time 
(with no systematic temporal precedence of one event type 
over another), allowing for untied delay distributions creates 
identifiability issues. For instance, a CHC may look like a 
unidirectional structure between the observations when the 
delay distributions differ in their expectation and have suf-
ficiently low variance to follow an alternating order. Gener-
ally, untied parameters mean that the CHC structure receives 
an additional set of parameters and this increased complexity 
is penalized due to the Bayesian Ockham’s razor (Myung & 
Pitt, 1997).

As a supplementary analysis, presented in Appendix 7, 
we assessed a delay model that did not assume tied param-
eters for the CHC structure. As expected, untied parameters 
lead to lower posterior probability for the CHC when the 
CHC is the ground truth, but do not change the results for 
the other structures at the numerical precision we report. 
Importantly, this mis-identification does not seem to capture 
people’s deviations from our predictions, and leads to lower 
scores in the global cross-validated model comparison as 
compared to our original results with tied CHC parameters. 
However, exploring this assumption with manipulated con-
text information may be a valuable direction for future work, 
in particular in relation to prior expectations about weak 
coupling between parameters, as could be formalized using 
a hierarchical model.

Representing Inductive Biases

A general question in human causal learning concerns the 
role of domain-specific expectations, e.g., about what struc-
tures are plausible in particular domains, and finer details 
such as how quickly or reliably a cause might bring about its 
effect. In our experiments, neither elicited priors nor fitted 
priors over causal structures helped in predicting people’s 
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judgments when combined with delay model likelihoods 
(Table 1). This is consistent with participants having weak 
and idiosyncratic beliefs about plausible causal structures, 
but in light of our sample size and the observation that there 
were systematic preferences in our prior elicitation condi-
tion, it was nonetheless surprising that elicited priors did not 
help in predicting people’s judgments.

How can we explain this mismatch, which, at first 
glance, could be taken to suggest that—contra many previ-
ous accounts of causal reasoning—people do not integrate 
their prior beliefs and evidence in a probabilistically coher-
ent way. One possibility is that our assumption that people 
would probability-match in the elicitation condition, i.e., 
make discrete choices with probability proportion to their 
degrees of subjective belief (e.g., Costello & Watts, 2014; 
Acerbi et al., 2014), was unwarranted—perhaps partici-
pants’ judgments reflected a policy more like maximiza-
tion, and their real prior beliefs were nearly uniform. An 
alternative possibility is that our within-participant design 
led to systematic effects that were orthogonal to partici-
pants actual prior beliefs: That is, contra our instructions 
but consistent with our actual design (and common prac-
tice), participant may have expected to see each causal 
structure at least once. Additionally, the influence of con-
text information on people’s inference may come to bear 
only when people have stronger mechanistic intuition about 
the causal relationships and the cover stories we consid-
ered may not be associated with sufficiently strong prior 
beliefs. Future work, including between-subjects designs 
for prior elicitation and manipulations drawing on the lit-
erature on prior elicitation, also in statistics (e.g., Stefan 
et al., 2022; Barrera-Causil et al., 2019), and work on the 
role of context information in causal cognition (Buehner 
& May, 2002; Buehner & McGregor, 2006b; Buehner & 
May, 2003; Griffiths & Tenenbaum, 2009; Schlottmann, 
1999; Schlottmann et al., 2002) may help resolve this issue 
and shed light on causal cognition more generally. While 
our analysis and the previous discussion largely focused 
on structure-level biases, people might plausibly expect 
different causal mechanisms—and, by extension, cover sto-
ries—to entail different delay distributions. Exploring peo-
ple’s inductive biases about delay distributions in causal 
mechanisms and how they inform structural inferences is 
an important direction for future work.

Towards Richer Causal Models

For the sake of simplicity, all of our experiments dealt 
with event types that had at most one cause, e.g., a bacte-
rium might illuminate due to a hidden cause or the activity 
of the other bacterium, but not both. Additionally, in the 

present study, our generative model was stochastic in terms 
of when causes brought about their effects, but influences 
were deterministic in their causal strengths. That is, the 
occurrence of a cause invariably led to the occurrence of 
its effect. In the real world, however, causes can sometimes 
fail, thereby introducing additional complexity and ambigu-
ity into the learning task. We also make the assumption that 
there are no additional outside causes beyond the ones pos-
ited by the respective causal structure that can trigger effect 
events (except for the common hidden cause that invari-
ably affects both X and Y ). Studying human learning in the 
face of stochastic causal relationships and variable delays 
would thus be an interesting direction for future research, 
but would also severely complicate the inference problem, 
which is already challenging, as we are marginalizing over 
all unknown quantities.

Furthermore, we dealt with a strictly observational set-
ting and future work may probe how people intervene on 
dynamic causal systems (e.g., Gong et al., 2022) when the 
set of causal structures may include hidden causes, follow-
ing a rich literature on interventions in static human causal 
learning (Steyvers et al., 2003; Coenen et al., 2015; Bramley 
et al., 2015).

More generally, future work may benefit from including 
conditions with alternative judgment elicitation paradigms, 
such as free-form drawing of nodes and edges to describe 
causal relationships, as well as qualitative, natural language, 
descriptions.

Conclusions

We have presented the first study investigating the role 
of temporal information in how people discover hidden 
causes and causal cycles. We conducted two novel experi-
ments that covered different domains and tested several 
computational models. We took an ideal-observer perspec-
tive to examine how people go from observed sequences 
of events to inferred structures. We found participants 
were broadly consistent with a Bayesian account, and 
were able to use order and timing information to identify 
causal structure, including the presence of a common hid-
den cause where appropriate. Meanwhile, several groups 
of participants showed systematic patterns of judgments 
that deviated from all of our models, which suggests 
future experiments as well as opportunities for enriching 
the causal models we attribute to human learners. These 
findings expand our understanding of how people learn 
about causal structure from an ongoing stream of observed 
events with temporal dynamics and open up several poten-
tially fruitful avenues for future research.
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Appendix: 1. Participant training 
and comprehension checks

Figures 9, 10 and 11.

Fig. 9   Screenshot of page of online experiment that explained causal 
graphical models

Fig. 10   Comprehension check 1, which participants had to complete 
successfully before progressing in the experiment
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Appendix: 2. Cover story styling

Figure 12.

Appendix: 3. Order model representation

As time is continuous and events are treated as point events, 
the probability of two events occurring at exactly the same 
time is zero. However, as discretization is required to repre-
sent time on a computer as well as to display stimuli to par-
ticipants, and taking into account that human perception is 
limited in its temporal precision, events that are very close in 
time might be perceived as simultaneous. In order to be con-
sistent with the order-only account, we are thus required to 
marginalize over the two possible orderings behind observed 
simultaneous events for computing the structure likelihood. 
See Fig. 13 for graphical representations of the different 
causal structures under the order model as probabilistic finite 
state machines.

Fig. 11   Comprehension check 2, which participants had to complete 
successfully before progressing in the experiment

Fig. 12   Backgrounds used for stimulus displays for different cover 
stories. (A) Biological (bacteria); (B) behavioral (sleep); (C) mechani-
cal (devices); (D) medical (micro-seizures)

X

X

X

X

X

X

X X

Y

YY

Y

Y

Y

Y

Y

Fig. 13   Probabilistic finite state machines representing the different 
causal structures under and order-only account
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Appendix: 4. Delay model

Delay model representation

For all delays, we assume uninformative or weakly informa-
tive priors, where the only fixed assumptions are that effects 
follow causes, and in the absence of information to the 
contrary, shorter delays are more likely than longer ones. 
Following Bramley et al. (2018), we here use a mean and 
shape parameterization of all gamma delays for expressing 
the prior distributions. We assume exponential (maximum-
entropy) prior distributions with a scale of 10 for all mean 
and scale parameters. Similarly, for initial states, we assume 
exponential priors with a scale of 1. These priors capture 
the idea that people can learn that delay distributions are 
longer or shorter and more or less variable in a particular 
context. For computing p(D ∣ s) , we employ a Monte Carlo 
approach. As a simple Monte Carlo estimate of the mar-
ginal likelihood is unlikely to succeed with the parameter 
dimensionality, we approach this problem with importance 
sampling with parameterized proposal distributions. For all 
structures, we compute posteriors over delay parameters 
using Stan (Carpenter et al., 2017), with 4 chains, a burn-
in period of 400 samples and 2000 MCMC samples. We 
then computed the mean and variance of the posterior sam-
ples of each parameter (that is, the marginal posterior mean 
and variance), which we use to parameterize independent 
gamma proposal distributions. We then use these parameter-
ized gamma distributions as our proposal distributions in the 
importance sampling procedure for computing the marginal 
likelihood for a given structure (see, e.g., Murphy, 2012). 
For each sequence of events we use 106 importance samples. 
Note that in the case of the hidden cause structure, we fur-
ther need to marginalize over the times at which the hidden 
events occurred. We marginalize over the hidden states in 
an inner Monte Carlo loop with an additional 10 samples 
to improve the stability of our estimates. See Fig. 14 for 

graphical representations of the different causal structures 
under the delay model.

Gamma distribution

Figure 15 shows density functions for different param-
eter settings of gamma distributions. More formally, the 
probability density function for the gamma distribution 
Gamma(k,𝜃) describing the delay x, where k is the shape 
and 𝜃 the scale parameter, is given by

with Γ being the gamma function. We have that �[x] = k� 
and � [x] = k�2 , and we can reparameterize the distribution 
with � =

� [x]

�[x]
 and k = � [x]

�2
 for a more intuitive interpretation 

in the setting of causal delays. See Table 2 for the parame-
terizations used to generate the stimuli in our experiments.

(4)p(x) =
1

� (k)�k
xk−1e

−
x

� ,

Fig. 14   Delay model as a DBN model. 𝜃 denotes parameters [μ,σ2]⊤; 
OR* indicates that the cycle can either start with X or Y, depending 
on how the initial state was sampled

Fig. 15   Density functions of gamma distributions with different 
means and variances. The red line shows the special case in which the 
gamma distribution recovers one particular exponential distribution

Table 2   Parameterization for sampled event sequences used as stim-
uli for human experiments

 For the mapping of labels a and b to causal delays, see Fig. 14

Structure μa  �2

a
 μb  �2

a
 

Independent 2.0 0.4 2.0 0.4
X → Y  2.0 0.4 0.5 0.01
X ← Y  0.5 0.01 2.0 0.4
CHC 2.0 0.4 0.5 0.01
X ↔ Y  1.0 0.01 1.0 0.01
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Appendix: 5. Confidence ratings

Table 3.

Appendix: 6. Cluster analysis

Figure 16.

Appendix: 7. Common hidden cause 
with untied parameters

As an additional analysis, we re-ran our evaluation proce-
dure with a modified delay model with untied delay dis-
tribution parameters for the delays from the common hid-
den cause to the observables. Posterior probabilities for the 
respective causal structure on all stimuli from Experiments 
1 and 2 are presented in Fig. 17 and Table 4. Overall, we 
observe worse model fits than for the delay model with tied 
parameters as reported in the main text.

Table 3   Confidence ratings per ground-truth causal structure

Confidence ratings

True  
structure

Inferred 
correct

Count Mean SD Min First  
quartile

Medial Last  
quartile

Max

Indep No 141.00 55.86 23.32 0.00 40.00 53.00 74.00 100.00
Yes 109.00 61.70 24.55 0.00 45.00 62.00 83.00 100.00

XY No 23.00 60.09 23.12 6.00 46.50 57.00 75.50 100.00
Yes 226.00 79.06 19.65 5.00 69.25 82.00 96.00 100.00

YX No 21.00 62.76 21.00 21.00 50.00 65.00 77.00 100.00
Yes 230.00 79.42 18.76 24.00 67.25 82.50 96.75 100.00

CHC No 140.00 67.56 21.81 4.00 53.75 69.00 84.50 100.00
Yes 110.00 59.90 22.93 0.00 46.25 58.50 77.75 100.00

Cycle No 187.00 73.96 22.29 8.00 61.00 76.00 93.50 100.00
Yes 63.00 62.46 23.72 5.00 47.50 65.00 81.00 100.00

Prior elicita-
tion

250.00 12.92 23.17 0.00 0.000 0.00 16.00 100.00

Fig. 16   BIC score as a function of the number of order and delay 
clusters, analysis comprising judgments from all 250 participants

Fig. 17   Posterior probabilities 
for delay model with untied 
common hidden cause effect 
delays for the stimuli sequences 
displayed to participants when 
fitting aggregate data, compris-
ing all judgments from Experi-
ment 1 and Experiment 2
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Appendix: 8. Self‑avoidance

Figure 18.

Appendix: 9. Asymmetries between X → Y  
and Y → X  inferences

Table 5

Table 4   Model comparison 
results for common hidden 
cause with untied parameters

 Model comparison using cross-validated negative log-likelihoods (NLL) of the respective decision model 
on all experimental data, where model predictions are made towards judgments from unseen ground-truth 
structure conditions. Best predictive performance (lowest NLL) in boldface

Model name Prior p(s) Likelihood 
p(D ∣ s) 

CV NLL

Baselines
Random Uniform − 2011.80
Flexible Flexible (4 free parameters) − 2633.75
Elicited prior Mean elicited prior − 2020.19
Elicited prior per domain Mean elicited prior per domain − 2021.27
Alternative models
Order Uniform Order 1704.22
Delay (untied) Uniform Delay 1718.59
Flexible order model Flexible Order 1980.64
Flexible delay model Flexible Delay 2278.80
Elicited prior order Avg. elicited prior Order 1704.22
Elicited prior delay (untied) Avg. elicited prior Delay 1718.59
Elicited prior per domain order (untied) Avg. elicited prior per domain Order 1712.47
Elicited prior per condition delay (untied) Avg. elicited prior per condition Delay 1720.39

Fig. 18   Self-avoidance: relative frequency of structure re-selection on 
the respective trial number. Normative (unbiased) responding would 
have resulted in a pattern corresponding to the black line

Table 5   Frequencies the respective structures were inferred, depend-
ing on whether the left-right position was flipped or not

True structure Inferred structure Flipped Not flipped

XY XY 116 110
XY YX 2 0
YX XY 3 3
YX YX 118 112
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