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Yi Cao∗ Jia Zhai†
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Abstract

Price impact is the adverse change of the asset price against trader’s action. As a crucial part

of indirect trading cost, price impact has attracted increasing attention in both econometric and

data science literature. In this paper, we draw upon both strands of the literature and develop a

deep neural network enhanced recursive (DeRecv) model to estimate temporary and permanent

price impact of an order or trade. The temporary price impact is calculated as the sum of the

expected immediate impact at each time point after taking action in an ad-hoc market condition.

The permanent price impact is defined as a new permanent level at which the information of

the incoming order is entirely absorbed by the market. Through the experimental evaluation

based on data from 10 stocks at NASDAQ and Shanghai Stock Exchange, we show that the

proposed DeRecv model is better than the reinforcement learning model and the traditional

vector autoregressive model.
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1 Introduction

It is widely known that the trading action conversely influences the asset prices. A buy (or

sell) action increases (or decreases) the asset price (see Hasbrouck (1988, 1991); Parlour and Seppi

(2008); Hautsch and Huang (2012)). The change of the price due to the trading action is usually

called price impact or market impact. The action includes both the execution of a market order

and the placement of a limit order. The theoretical studies suggest a monotonic positive relation

between the price and volume of the trading action and the magnitude of the impact (see the work

of Hasbrouck (1988, 1991)). A trading action with a larger size or a more aggressive price incurs

a bigger impact. However, the magnitude of the impact can not be obtained directly from the

market. Therefore a number of studies investigate the methods for estimating the price impact of

a trading action.

Early studies, such as the work of Jones et al. (1994) show that the market order direction (buy

or sell) has significant explanatory power in estimating permanent price impact. Furthermore,

Huberman and Stanzl (2004) demonstrate that the magnitude of permanent price impact is linear

to the size of a market order (trade). Hasbrouck (1991) shows that a linear relationship between the

impact and the order size is not robust and may lead to a ‘misspecified model’. Therefore, Hasbrouck

(1991) proposes a polynomial term in the vector autoregressive (VAR) model for capturing the

non-linear relation between the permanent price impact and the size of the market order (trade).

Meanwhile, Parlour and Seppi (2008) and Hautsch and Huang (2012) show that the submission of

a limit order also exerts price impact even if the order is not immediately executed. Thus, Hautsch

and Huang (2012) propose a VAR based model to estimate the temporary and permanent price

impact of a limit order. Philip (2019) reconfirms the existence of a non-linear relation between the

price impact and trade size and shows that the traditional VAR model is not applicable in capturing

the impact in today’s trading environment. To solve this, Philip (2019) proposes a recursive model

by modifying a reinforcement learning (RL) framework. Due to its Markovian assumption, the RL

framework is highly flexible in modelling the non-linear relation, and therefore, has been applied in

modelling limit order book for years, particularly in optimal execution via a sequence of trade (see

Bertsimas and Lo (1998); Nevmyvaka et al. (2006); Hendricks and Wilcox (2014); Ning et al. (2018)).

Philip (2019) removes the optimisation of a trader’s objective and revises the RL framework as a

recursive model—the permanent price impact of a trade is the immediate price impact plus the

permanent impact of all subsequent trades caused by the initial action. By using the imbalance of
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the depth between the bid and ask side, Philip (2019), on one hand, simplifies the market condition

as a binary variable—either a positive or a negative imbalance, on the other hand, leaves two

research gaps. The first is the distinction of the impacts under different market conditions that

provide the same imbalance value. For example, the depth imbalance of one (depth of bid has one

more share than the depth of ask) and the depth imbalance of 10,000 (depth of bid has 10,000 more

shares than the depth of ask) are considered as identical market states ‘+DI’ in the model of Philip

(2019). However, the two market conditions apparently exert significantly different impacts than

illustrated in previous studies (e.g. Hasbrouck (1988, 1991); Parlour and Seppi (2008); Hautsch

and Huang (2012)). The second research gap is the estimation of the temporary price impact of an

order.

1.1 Research gap and motivation

Price impact has been considered as one important component of the indirect cost of a trading

action and is even higher than the transaction cost due to the study of the Deutsche bank Ferraris

(2008). An accurate estimation of the price impact is a key determinant of investment performance.

This work is motivated by the reinforcement learning (RL) model in Philip (2019). We summarise

our motivations as follows:

• The RL model can be used to model the non-linear relation between a market order and

its permanent impact on the market. A research gap that has not been solved yet lies in

modelling the market not by a simplified binary variable of market depth imbalance, but

by the limit order book, which reflects an ad-hoc market condition. This gap needs to be

addressed with further studies.

• The probability of the market reactions to an action is estimated by a binary variable Philip

(2019). Any changes of markets or order formats lead to massive expansions of subsequent

cases. This leaves estimating the transition probability as an addressable gap.

• The optimal execution of a large position is often performed over a short period Ning et al.

(2018). Accurate forecasts of execution costs are crucial in optimal execution strategy. The

temporary price impact of an order over a short trading horizon contributes to a large part

of the execution cost. This leaves another gap in the literature. Our study is motivated by

and represents a step towards addressing these gaps.
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1.2 Main contribution

In this work, we aim to address the discussed three research gaps and propose a Deep neural

network enhanced Recursive (DeRecv) model to estimate the temporary and permanent price

impact of a trade or order. Our main contribution in this study falls into the following three

points.

1. We model the limit order book by a vector of its price and depth (volume) at both bid and

ask sides, and update the order book by the order-matching rule (SEC (2000)) via a recursive

framework. Thus, our method models the order book as an ad-hoc state of the market. The

estimated impact shows a continuous, monotonic, and smooth relation with the trading price,

volume, and the market condition as well. This overcomes the work of previous studies that

the estimated impact may remain identical when the market condition changes.

2. On the financial market, a trading action may incur unlimited types of following actions.

We model the incurred actions as a classification problem by categorising them into eight

primary types. We then forecast the probability of each type using a deep neural network

with a Softmax activation function at output layer. By this, we consider a non-linear relation

between a trading action and its incurred actions. Therefore, it considers the probability

forecasting under more complex ad-hoc market conditions.

3. We also contribute to the literature by offering comprehensive empirical evidence that our

DeRecv model outperforms the benchmark models of Philip (2019) and Hautsch and Huang

(2012). Previous studies usually compare the impact of different trading actions under the

same market condition. In addition to this, we further compare the impact of the same trading

action under different market conditions. This empirical study highlights the importance of

the limit order book model in estimating the trading cost and clearly illustrates the advantage

of our proposed model.

1.3 Findings

We document several findings. First, we re-confirm that non-linearity exists in the relation

between the permanent price impact and the size of either a trade or a limit order. The relation is

across 10 different stocks in both developed and emerging markets.

Second, we show that the DeRecv model generates smooth and monotonic permanent impact

of a limit order or a trade under different market conditions. In contrast, VAR Hautsch and Huang
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(2012) and RL Philip (2019) model estimate identical impacts across the change of the market due

to the linearity of the model and the oversimplified market variable respectively.

Third, we find that the DeRecv model captures the temporary price impact across time with a

monotonic relation, whereas the VAR model fails to generate an impact that maintains stable and

consistent monotonicity to the size of a trade or an order across time.

The remainder of this paper is organised as follows. Section 2 develops the DeRecv model.

Section 3 describes the data used in the evaluation and compares the DeRecv, RL, and VAR

models in price impact estimation. Finally, section 4 summarizes and concludes the study.

2 Model Construction

In this section, we first briefly outline the recursive framework proposed in Philip (2019). We

then develop our model and show that our model addresses the existing problems and fills the gaps

discussed in Section 1.1.

2.1 Recursive framework

This work follows the recursive framework proposed in Philip (2019) for estimating the price

impact: the permanent price impact Q∗(s, a) of a trading action a on the market s can be modelled

as

Q∗(s, a) = R(s, a) + γ
∑
s′∈S

∑
ā∈A

P (s, a, 〈s′, ā〉)Q∗(s′, ā) (1)

where the R(s, a) represents the immediate impact after taking action a in s; the γ is the discount

factor; the s′ is the subsequent market after taking the action a in s; the ā is the following action

induced by a after the market has been transited from s to s′; and the market transition probability

can be represented as P (s, a, 〈s′, ā〉). The permanent price impact Q∗(s, a) of taking action a in

s equals the immediate response of this action plus the sum of the expected permanent impact of

all subsequent actions induced by the first action a. The A defines all possible actions that can be

immediately induced by the first action a. The framework in equation 1 is originally defined in the

work of Philip (2019). We follow this framework but revise the definition of all variables, i.e., a, s,

R(s, a), and P (s, a, 〈s′, ā〉).

In Philip (2019), market s is defined by the depth imbalance only (i.e. +DI and -DI) and the

action a is defined by large or small trade. In this study, we modify the definition of the market s as
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a four dimension vector. As action a includes limit or market order, and is occurred asynchronously,

we use the order time rather than clock time in modelling and estimating the price impact following

Hautsch and Huang (2012).

s ≡ [pat , p
b
t , d

a
t , d

b
t ]
ᵀ (2)

where the pat and pbt represent the best ask and bid price at order time t respectively, and dat and

dbt represent the depth at the best ask and bid level at order time t, respectively. As a result of

this modification, in our model, the market represents the true condition of the limit order book at

order time t. Table 1 shows examples of limit order book of stock Google, each of which represents

a market at t.

We also modify the definition of the action and distinguish a from ā — a represents the partici-

pant’s action in market s and ā denotes the market’s reaction (induced following actions) observed

by the participant. We define the action a as a real limit or market order with any price or size.

We define it by the price pt and volume ±vt of the order

a ≡ [pt,±vt]ᵀ (3)

where + and − indicate buy and sell orders, respectively and [pt = 0,±vt]ᵀ represents the market

order.

When an order a is placed at the market s, the market transits to a new one s′. As we

use the order time t to represent the market and order, we can also represent the market as

st ≡ [pat , p
b
t , d

a
t , d

b
t ]
ᵀ and the order as at ≡ [pt,±vt]ᵀ. The st represents the market status immediately

before the order at at t. Therefore the new market s′ equals to st+1. The st+1 is calculated by the

order book matching rule in O’Hara (1997); SEC (2000).

The permanent impact is defined as a new permanent level at which the information of the

incoming order is entirely absorbed by the market (Hasbrouck (1991)). The temporary price impact

at time tn is defined as the sum of expected immediate impacts n order time after placing an order

at at t, where n = 1, ...N − 1, and tN = t+N is the order time at which the price impact reaches

the permanent level. A placed order a generates a sequence of temporary price impacts and a final

permanent impact. The temporary impacts show how the market responds to the placed order

across time and how those responses converge to the final permanent level.

Once an order is placed in the market, other participants might be induced to submit subsequent

orders as a reaction. The reacting order contains arbitrary price and size and takes infinite possi-
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ble formats, which follow a nonstationary stochastic process (Hautsch and Huang (2012); O’Hara

(2015)). Therefore, estimating how likely an ad-hoc order is induced at a specific market s gener-

ates an unsound result. Instead, the reacting order can be categorised to represent several types.

The probabilities of those types being induced lead to an overall trend of how participants react to

market actions. Accordingly, we group all orders that are possibly induced by a market action into

eight primary classes and estimate the probability of each class. Because we measure an expected

overall impact of a specific order, an estimation of how likely certain classes of an order may be

induced after the market s has been transited to s′ by an action a provides a straightforward and

measurable outcome. Accordingly, we define the market response action ā(i), i=1,...,8 as eight

primary classes/types:

1. ā(1): buy limit order at current bid price pbt ;

2. ā(2): buy limit order with price pt ∈ (pbt , p
a
t ];

3. ā(3): sell limit order at current ask price pat ;

4. ā(4): sell limit order with price pt ∈ [pbt , p
a
t );

5. ā(5): large buy market order;

6. ā(6): small buy market order;

7. ā(7): large sell market order; and

8. ā(8): small sell market order.

As shown by Hautsch and Huang (2012), the aggressiveness of the price significantly determines the

impact of a limit order. We group the limit orders as classes #1-4 mainly by their prices. Following

Philip (2019), the market orders are grouped as classes #5-8 mainly by their sizes. As a result

of this modification, in our model, the market participant submits order a = [pt,±vt]ᵀ in market

s = [pat , p
b
t , d

a
t , d

b
t ]
ᵀ, which transits the market to state s′, where the participant primarily observes

eight classes of action ā with probability P (s, a, 〈s′, ā〉). In our model, the size of a particular type

of order is measured by the average daily volume (ADV) of this order type.

We use a simple example to show the process of estimating the immediate price impact by the

modified RL framework. The initial market is st = [pat = 102, pbt = 100, dat = 1000, dbt = 600]ᵀ

and a participant’s action is a market buy order with size 1200 at = [pt = 0, vt = 1200]ᵀ. As the
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buy order consumes all depth at the best ask level, the best ask price moves up to the second

best ask level. We assume the new market status can be calculated as st+1 = [pat+1 = 103, pbt+1 =

100, dat+1 = 300, dbt+1 = 600]ᵀ. Thus, the mid-point price increases from 101 to 102, generating a 99

bps immediate impact. Figure 1 illustrates the transition from market st to st+1 (equivalent to s′

in equation (1)) by taking action at.

Figure 1: This figure shows an example of a participant taking an action of market buy order at = [pt = 0, vt =
1200]ᵀ in the market st = [pat = 102, pbt = 100, dat = 1000, dbt = 600]ᵀ
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Later, eight types of subsequent actions might be induced with different probabilities as il-

lustrated in Figure 2. Thus, the permanent impact of a market buy order at is the sum of the

immediate impact of at and the permanent impact of the eight classes of subsequent orders.

Figure 2: This figure shows that eight types/classes of subsequent reactions are induced after the market st has
been transitioned to st+1 by action at. LO: Limit Order; MO: Market Order
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Figure 3 depicts the recursive process of calculating both the permanent impact and temporary

impact. The temporary impact at order time t is equal to the immediate impact of the action
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at. Later, eight types of subsequent orders are induced in the market st+1. Thus, the temporary

impact at order time t + 1 is the sum of the immediate impacts of the eight types of actions

multiplied by their probability of occurrence. The temporary impact at order time t+ 2 is the sum

of the immediate impacts of 8 × 8 types of actions multiplied by their probability of occurrences,

respectively.

Figure 3: This figure shows the calculation process of the permanent and temporary impacts of action at. The
permanent impact of at is the immediate price impact induced by at plus the permanent impact of the eight induced
subsequent actions multiplied by their probability of occurrences. The temporary impact is the sum of expected
immediate impacts n order time after placing an order, where n = 1, ...N − 1, and N is the order time at which the
price impact reaches the permanent level.
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2.2 Modelling transition probability

After defining the market s, actions at and ā, and the computation process of permanent and

temporary price impacts, the remaining parameter of equation (1) to be estimated is the transition

probability P (s, a, 〈s′, ā〉). As we define eight primary market responses, the transition probability

can be rewritten as P (st, at, 〈st+1, ā
(i)
t+1〉), where i=1,...,8. As the state st+1 can be directly calcu-

lated by adding action at to st as illustrated in Figure 1, the probability of transiting from tuple

〈st, at〉 to tuple 〈st+1, ā
(i)
t+1〉, P (st, at, 〈st+1, ā

(i)
t+1〉), can be further simplified as the probability of

inducing type i subsequent action ā
(i)
t+1 after taking action at in market st, P (st, at, ā

(i)
t+1). Inspired

by the application of deep reinforcement learning in optimal execution (Ning et al. (2018)), we

model the probability P (st, at, ā
(i)
t+1) by a deep neural network.

As P (st, at, ā
(i)
t+1) represents the probability of induced subsequent action type i, it can be

formulated as a probabilistic interpretation of a classification problem following the early study of

Bridle (1990). We consider eight primary responses at order time t+1 as eight output classes of our
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model. Given the input of current market st and action at, the model outputs the likelihood of each

reaction a
(i)
t+1, i=1,...,8. Instead of generating a single class label as the traditional classification

problem, our DNN model produces the probabilities of eight classes being induced after taking

action at in market st. Therefore, we term it as probabilistic DNN (pDNN). For example, in

Figure 1, if one participant takes market buy order at = [pt = 0, vt = 1200]ᵀ in the market st =

[pat = 102, pbt = 100, dat = 1000, dbt = 600]ᵀ, other participants may follow the trend of at; thus, the

probability of following buy (or sell) actions might be increased (or reduced). Therefore, the output

of our model might be given as y = [0.1499, 0.3499, 0.0001, 0.0001, 0.3499, 0.1499, 0.0001, 0.0001]ᵀ,

which indicates that the probability of class 2 and 5 (aggressive buy action) is 0.3499, the probability

of class 1 and 6 (normal buy action) is 0.1499, and the probabilities of sell orders are all 0.0001.

2.2.1 Network architecture

Following the network architecture in Ning et al. (2018), we use a fully connected feed-forward

deep neural network with four hidden layers with 20 neurons in each of the first three hidden layers

and 8 neurons in the last hidden layer, which connects the output softmax layer. Each neuron in

the hidden layer contains a ReLU activation function to prevent vanishing gradients and provide

sparsity. The network takes the market st = [pat , p
b
t , d

a
t , d

b
t ]
ᵀ and action at = [pt, vt]

ᵀ at t as input

and outputs the probabilities of induced eight classes of actions at t+ 1 via the Softmax layer.

The softmax function in each neuron in the output layer is defined as

p(y = j|x) =
e(wT

j x+bj)∑8
k=1 e

(wT
k x+bk)

. (4)

The softmax layer has the same length as the connected hidden layer, takes all neurons k=1 to 8

from the previous hidden layer as input, and calculates the probability of the output being one of

the j classes, j=1 to 8. With the softmax function at the output layer, we follow the study of Bridle

(1990) to use the cross-entropy function as the cost function for optimizing the whole network. The

cross-entropy function is defined as

H(y, ŷ) = −
8∑

k=1

yk log ŷk (5)

where yk and ŷk are the actual and predicted probabilities of each output. The cross-entropy cost

function is the sum of the products of all actual probabilities with negative log of the predicted
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probabilities. In multi-class classification, the cross-entropy function outperforms the traditional

mean squared error function with softmax activation function at the output layer (Bridle (1990)).

2.2.2 Training the network

To train the pDNN, we implement the model using Keras (Chollet (2016)). Following the works

of Mnih et al. (2013); Chollet (2016); Ning et al. (2018), we use RMSprop optimizer for training

the model. We apply stochastic dropout regularisation following Gal and Ghahramani (2016) with

a low dropout value of 0.1. Next, we randomly drop 10% of the input units in each iteration during

the training process for reducing the overfitting risk and better regularisation. Furthermore, we

split the training data into two parts: 80% as the training part and 20% as the validation part. The

first part is to train the network and tune the parameters for minimising the loss function. After

passing across all samples in the first part (one epoch), the trained network predicts the unknown

samples from the validation part. Once the validation loss does not decrease for a predefined period

(patience period), the training is stopped, and the model is saved. We select a maximum training

duration of 1000 epochs and early stopping patience of 10 following the studies of Fischer and

Krauss (2018).

To prepare the training dataset, we combine the data of the market st and the action at at

order time t as an input vector [pat , p
b
t , d

a
t , d

b
t , pt,±vt]ᵀ for pDNN. We bucket the actions that are

immediately taken after at to eight classes as the output targets of pDNN. Thus, the pDNN is

defined as a multi-class classification model to predict the probabilities of eight types of immediate

responses after the action at at market st. Table 1 shows an example of organising market action

and limit order book data as input features and output targets of pDNN model. In this example,

we use high-frequency data of Google stock after the market opening on 21 June 2012. The column

‘Time’ shows the seconds after the market opening (9:30 am). The columns ‘pat ’ and ‘pbt ’ depict

the best ask and bid prices, respectively and the columns ‘dat ’ and ‘dbt ’ are the depth at the best

ask and bid prices. The columns ‘pt’ and ‘±vt’ represent the price and shares of the action at. A

positive (or negative) ‘vt’ indicates a sell (or buy) order. A zero ‘pt’ represents a market order. The

‘Input Features’ represents the input vector [pat , p
b
t , d

a
t , d

b
t , pt,±vt]ᵀ. The ‘Output Class’ shows the

type of immediate response after taking the current action. For example, at time t=0.0599 (0.0599

seconds after the market opening), the action at is a sell order with price 579.4 and 300 shares,

which consumes 300 shares of depth at the best bid price level. The action at+1 immediately after

at is at the time 0.1132: a sell order with price 579.40 and 167 shares, which is a class 4 action:
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sell limit order with price pt+1 ∈ [pbt = 579.40, pat = 580.23). Similarly, the action at+2 immediately

after at+1 is at the time 0.1542: a buy order with price 579.40 and 100 shares, which is a class 1

action: buy limit order at current bid price pbt+1 = 579.40. Hence, we construct the market st and

action at at each order time t as the input feature, and the class of the response action at+1 at each

order time t+ 1 as the output target.

Table 1: This table shows examples of market st (via limit order book) and action at after market opening on 21
June 2012. Column ‘Time’ shows the seconds after market opening (9:30 am). The ‘Output Class’ is determined by
the order class at next order time.

market st Action at Input Features Output Class

ID Time pat pbt dat dbt pt ±vt [pat , p
b
t , d

a
t , d

b
t , pt,±vt]ᵀ {1, ..., 8}

1 0.0599 580.23 579.40 100 496 579.40 -300 [580.23,579.4,100,496,579.4,-300] 4
2 0.1132 580.23 579.40 100 196 579.40 -167 [580.23,579.4,100,196,579.4,-167] 1
3 0.1542 580.23 579.40 100 29 579.40 100 [580.23,579.4,100,29,579.4,100] 2
4 0.2023 580.23 579.40 100 129 579.89 25 [580.23,579.4,100,129,579.89,25] 2
5 0.2023 579.89 579.40 25 129 579.95 50 [579.89,579.4,25,129,579.95,50] 3
6 0.2023 579.89 579.40 25 129 579.89 -50 [579.89,579.4,25,129,579.89,-50] 3
7 0.2023 579.89 579.40 25 129 579.89 -60 - -

2.2.3 Summarised procedures and an illustrative example

We illustrate the procedure of estimating the permanent and temporary price impacts in Figure

4 and summarise the transition probability estimation via a pseudo code.

Figure 4: This figure shows procedures of estimating the permanent and temporary price impacts of action at at
market st.

For an action 𝑎௧ and market state 𝑠௧ at 
order time 𝑡

Calculate 𝑠௧ାଵ = 𝑎௧ + 𝑠௧ as the updated 
market state at order time 𝑡+1

Calculate the midpoint change of 𝑠௧ and 
𝑠௧ାଵ as immediate impact of 𝑎௧ at 𝑡

Calculate probabilities of eight response 
actions after taking 𝑎௧ at market state 𝑠௧

For 𝑖 =1 to 8 classes response action 𝑎ത௧ାଵ
(௜)

Calculate 𝑠௧ାଶ = 𝑎ത௧ାଵ
(௜)

+ 𝑠௧ାଵ as the updated 
market state if taking 𝑖 class of action

Calculate the midpoint change of 𝑠௧ାଶ and 
𝑠௧ାଵ as immediate impact of 𝑎ത௧ାଵ

(௜) at 𝑡+1

End of For ?

Take 𝑎௧ = 𝑎ത௧ାଵ
(௜) and 𝑡 = 𝑡+1

Temporary Impact at 𝑡+1 = ∑ Immediate Impact of Type 𝑖 ∗ 𝑃 Class 𝑖௜

Permanent Impact of 𝑎௧ = Temporary Impact at 𝑡 and 𝑡+1

Permanent Impact Converge ?

NOYES

NO

YES

Output Permanent Price Impact Output Temporary Impact at 𝑡+1 

Given full limit order book (LOB): Construct 
Input Feature and Output Class as Table 1 
as the training dataset for the pDNN model

Calculate Average Daily Volumn (ADV) of 
class 𝑖 of response action, 𝑖=1,…,8

Train the pDNN model (as Figure 4) by the 
constructed training dataset

For a new action 𝑎௧ and market state 𝑠௧, 
construct Input Feature

Feed Input Feature to trained pDNN model 
and generate probabilities of eight classes 
response actions

Probability Estimation

Modelling transition probability 
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Pseudo code of modelling transition probability

Model Training
1. Given full limit order book (LOB): Construct Input Feature and Output Class in Table 1 as the training dataset
2. Train the pDNN model by the constructed training dataset
3. Calculate Average Daily Volume (ADV) of class i of responses, i=1,. . . ,8
Probability Estimation
1. For a new action at and market st, construct Input Feature
2. Feed Input Feature to trained pDNN model and generate probabilities of responses of the eight classes

We show an example using the full order book data of Google stock (symbol ‘GOOG’) on 21

June 2012 to illustrate the estimation procedure. The data contains 112,673 records from 9:30 am

to 4:00 pm, including every order submission, execution, and deletion. We organise the raw data as

the examples in Table 1 and randomly select 90,140 records (80%) to construct the dataset to train

the pDNN model. The pDNN model is implemented using Keras (Chollet (2016)) and is trained

on dual-core Xeon e5 CPU with 128GB RAM. To construct the RL framework in equation (1) and

Figure 3, we calculate the ADV of each class of order based on the training set of Google stock, as

shown in Table 2.

Table 2: This table shows the ADV of eight classes of orders based on the full order book of Google stock on 21
June 2012. The definition of eight classes is in Section 2.1

class 1 class 2 class 3 class 4 class 5 class 6 class 7 class 8

ADV 89.4913 70.2024 72.1074 67.2667 78.8095 79.4844 77.7972 72.7208

After training the pDNN model, we use the following example to illustrate the procedure of

estimating the permanent and temporary price impacts. In this example, the input feature of the

pDNN model is [pat , p
b
t , d

a
t , d

b
t , pt,±vt]ᵀ=[569.91, 569.75, 30, 1000, 569.91,−20]ᵀ, where a sell limit or-

der is placed at the best ask price. Therefore, the updated market is st+1=[569.91, 569.75, 50, 1000]ᵀ.

The mid-point changes when order time t is 0. We feed the input feature to the trained pDNN and

receive the probabilities of eight classes of market responses, as shown in the Table 4.

Table 3: This table shows a random example of the market and an action: a sell limit order with 20 shares and
price 569.91 submitted to the limit order book at 10961.6729 seconds after market opening at 9.30 am. The current
best bid and ask prices are 569.75 and 569.91, respectively. We use this illustrative example to show the procedure
of estimating the price impact.

market st Action at Input Features

Time pat pbt dat dbt pt ±vt [pat , p
b
t , d

a
t , d

b
t , pt,±vt]ᵀ

10961.6729 569.91 569.75 30 1000 569.91 -20 [569.91,569.75,30,1000,569.91,-20]

We can observe the intuition from the generated probabilities: after a sell limit order at, the

probabilities of a further sell order (class 3, 4, 7, and 8) are higher than a buy order (class 1, 2,

12



Table 4: This table shows the probabilities of eight classes of responses generated by the pDNN model based on
the input feature [569.91, 569.75, 30, 1000, 569.91,−20]ᵀ. The model is trained by the full limit order book of Google
stock on 21 June 2012.

class 1 class 2 class 3 class 4 class 5 class 6 class 7 class 8

Probability 0.1034 0.1057 0.1908 0.1626 0.0807 0.0840 0.1362 0.1366

5, and 6). Using the market update rule by Figure 1, we can calculate the immediate impact of

taking each of the eight actions following the order matching rule in O’Hara (1997); SEC (2000).

For example, if taking class 2 action (buy limit order with price pt ∈ (pbt , p
a
t ]), the new action at+1

is constructed as [569.91, 70.2024]ᵀ. The updated market at t+ 2 is as:

st+2 = st+1 + at+1

= [569.91, 569.75, 50, 1000]ᵀ + [569.91, 70.2024]ᵀ

= [569.91, 569.75, 70.2024− 50, 1000]ᵀ

= [569.91 + 0.060236, 569.75, 20.2024, 1000]ᵀ

= [569.97, 569.75, 20.2024, 1000]ᵀ

The mid-point change is 0.060236/2=0.030118. Similarly, we can calculate the mid-point change

for all eight classes. Hence, we update the Temporary Impact (TI) in equation (1) and Figure 3 as

TI(st, at) = 0 + 0.99(P (class1)Q(st+1, class1) + P (class2)Q(st+1, class2)

+ P (class3)Q(st+1, class3) + P (class4)Q(st+1, class4)

+ P (class5)Q(st+1, class5) + P (class6)Q(st+1, class6)

+ P (class7)Q(st+1, class7) + P (class8)Q(st+1, class8))

= 0 + 0.99(0.1034× 0 + 0.1057× 0.030118 + 0.1908× 0 + 0.1626× 0

+ 0.0807× 0 + 0.0840× 0 + 0.1362× (−0.02854) + 0.1366× 0)

= −0.000697

The first iteration provides a 0.000697 decrease of the bid-ask mid-point. It shows that although a

small sell order brings zero immediate impact on the mid-point, after one order time, the following

actions from other participants push down the mid-point by a tiny magnitude. The second iteration

is based on eight market actions. We feed eight input features [st+1, action class i]ᵀ to pDNN model

and generate the probability of 8×8=64 market responses. We show the iterations in Table 5. After
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iteration 53, the permanent price impact estimation does not change to a precision of 6 decimal

places for further iterations. Therefore, the permanent price of a 20-share sell limit order placed

at the best ask price 569.91 generates a -0.001408 impact on the bid-ask mid-point. The result is

consistent with our expectation, that is, a small sell limit order placed at the ask price generates a

small negative price impact.

Table 5: Estimation of the permanent price impact after each iteration.
Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 . . . ... Iteration 50 Iteration 51 Iteration 52 Iteration 53

-0.000697 -0.000711 -0.000746 -0.000801 -0.000837 -0.001407 -0.001408 -0.001408 -0.001408

3 Model evaluation

We compare the performance of estimating temporary and permanent price impacts using our

proposed DeRecv model with RL model in Philip (2019) and traditional VAR model in Hautsch

and Huang (2012).

3.1 Data

We use high frequency full order book data from the NASDAQ exchange market, and the

Shanghai Stock exchange (SSE) market for the 21 June 2012 to 18 July 2012 time period. From

NASDAQ, we select the stocks of the five most popular companies: Google, Microsoft, Apple,

Amazon, and Intel. From SSE, we select the five largest stocks based on market value. Table 6

shows the summary statistics for the 10 stocks. The data contains the submission and trade of every

order. The stock selection is based on two reasons. First, NASDAQ is a mature exchange market,

and the five selected stocks are highly liquid. Second, SSE, though relatively new, is ranked fourth

worldwide by market capitalisation and monthly trading volume. Jiang et al. (2019) show that

the price impact on SSE market is more significant than well-developed markets. An evaluation

based on high frequency data in both the well-developed market and emerging market brings a

thorough performance comparison of the proposed model across distinctive market mechanism and

conditions.

We compare the performance of our proposed DeRecv model with the RL model of Philip (2019)

and the VAR model of Hautsch and Huang (2012) using two groups of experiments. The first group

compares the performance of estimating permanent price impacts via DeRecv and RL model. The
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Table 6: This table shows the summary statistics for the ten sample stocks. The sample contains 20 trading days
from 21 June 2012 to 18 July 2012. ‘No. Obs.’ is the number of order and trades. ‘Price’ is the averaged executed
price in dollar and RMB. ‘Spread’ is the average difference between the bid and ask. Size is the number of shares
of the order and trade. The ‘Avg. size.’, ‘Med. size’, and ‘Max size’ are the average, median, and maximum share,
respectively.

Stock No. Obs. Price Spread Avg. size. Med. size Max size

NASDAQ

GOOG 2563365 570.84 0.30011 62.88 100 2300
AAPL 2206348 583.27 0.15650 88.37 100 15000
AMZN 2779675 222.82 0.13483 84.72 100 33570
INTC 2905150 27.05 0.01246 477.30 300 82396
MSFT 2979000 30.55 0.01253 544.69 300 200000

SSE

PetroChina (601857) 1883970 43.53 0.02802 269.76 295 7130938
Kweichow Moutai (600519) 1895554 88.26 0.11928 557.07 250 60234
SAIC Motor (600104) 1555686 8.54 0.01204 579.44 407 796157
Yangtze Power (600900) 1624788 10.08 0.01208 880.74 693 519050
Daqin Railway (601006) 1793484 8.51 0.01151 1432.43 981 1781252

second group compares the performance of estimating temporary price impacts via DeRecv and

VAR model.

3.2 Comparative Evaluation: Permanent Price Impact

3.2.1 Different Orders on Same Market

We first estimate the permanent price impact of limit orders with different sizes on the same

market. The evaluation is based on our proposed DeRecv model and RL model of Philip (2019) on

the selected stocks. We compare the estimated permanent price impact and illustrate the results

in Figure 5. In Panel A, the permanent price impact of buy and sell limit order placed at the

best bid and ask level is estimated by DeRecv and RL models. The order size is represented as a

ratio of shares to the depth at the best bid and ask level, respectively. For example, if the depth

at the best bid is 100 shares, the size of a buy order placed at the best bid price with 200 shares

can be represented as 200/100 = 2. The permanent impact of such a buy order is 1 basis point.

The sell order is represented with a negative sign. Similarly, a sell order with 200 shares can be

represented as −200/100 = −2 and generates -0.7 basis point permanent impact. It is clear from

Figure 5 Panel A that the DeRecv and RL models generate a similar relation between the order

size and the permanent price impact. The relation curve generated by the DeRecv model is slightly

smoother than the one by the RL model. In Figure 5 Panel B, the relation between the trade size

and permanent price impact is closer to a linear relationship. In this example, the DeRecv model

captures a smoother linear curve while the RL model shows a relation with tiny noise.
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Figure 5 Panel B shows another example of permanent price impact estimation via DeRecv

and RL models using the data of Petro China stock from the SSE. Its permanent impact shows

a different pattern to Google in NASDAQ. The buy (or sell) limit order of Petro China stock

generates weaker (or stronger) impact than the ones of the Google stock. However, the buy (or

sell) trade of Petro China stock induces stronger (or weaker) impact than the ones of the Google

stock. This result conforms to the previous studies of price impact on emerging markets (e.g.

Jiang et al. (2019)). Similar to the result in Panel A, a monotonic relation between trade size

and the magnitude of the permanent price impact is captured by the DeRecv and RL models.

We can observe from Panel B that the DeRecv model shows a smoother relation compared to the

curve estimated by the RL model, which generates a more discrete and non-smooth relationship.

The right column in Panel B shows a clearer comparison. The curve estimated by the RL model

appears not as smooth as the one by the DeRecv model. We assume the reason behind it is that an

oversimplified discrete market in RL model brings a piece-wise discrete curve. To investigate the

reason, we zoom-in Figure 5 and conduct a further experiment by order (or trade) size with small

intervals.

Figure 5: This figure shows the permanent price impact of limit order (left column) and trade (right column) with
different sizes using the DeRecv and RL models for the data of Google (Panel A) and Petro China (Panel B) stocks
from 21 June 2012 to 18 July 2012.
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Figure 6 shows a ‘zoomed-in’ investigation of the permanent price impact estimation by the

DeRecv and RL models. The x-axis is the ratio of the shares of the buy (or sell) order or trade to

the depth at the best bid (or ask) level. We use 0.05 as the ratio increment in the experiments. It
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is evident that the DeRecv model captures a smoother and accurate relationship between the size

and the permanent impact. The RL model, however, generates noisy and step-wise estimations

for the two example stocks. This further shows that in the RL model, a discrete market state by

depth imbalance only oversimplifies the market condition and yields a close but not smooth and

non-accurate step-wise relation between the size and impact magnitude.

Figure 6: This figure shows a ‘zoomed-in’ illustration of the permanent price impact of limit order (left column)
and trade (right column) with different sizes using the DeRecv and RL models for the data of Google (Panel A) and
Petro China (Panel B) stocks from 21 June 2012 to 18 July 2012.
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3.2.2 Same Order on Different Market

We then compare the price impact of the same order on different markets. When the market

depth at bid and ask side is different, one order (or trade) generates significantly different price

impact (see the work of Hautsch and Huang (2012)).

We first compare the price impact of a buy action with size 500 shares submitted to a market,

where the depth of the best ask is 500, and the depth of the best bid is changing from 50 to

1000. The Figure 7 compares the price impacts of Google and Petro China stocks generated by our

proposed DeRecv, RL (Philip (2019)), and VAR model (Hautsch and Huang (2012)). In theory,

when the depth of the best bid increases from 50 to 1000, the permanent impact of a buy limit

17



order decreases. In Panel A, at the bid depth size of 50 and 100, the VAR model generates impact

values of 2.53 and 1.44, which shows a negative linear relation. When the bid depth size is from

150 to 500, the impact value by the VAR model remains the same of 0.61. When the bid depth

size increases to 600 to 1000, the impact by VAR model remains at 0.44 as well. It is clear that

when the bid depth size changes within a large range from 150 to 1000, the impact value by VAR

model shows only two steps of 0.61 and 0.44. It indicates that VAR model expects the same price

impact under the market change. It is apparently against the theoretical studies of Hasbrouck

(1988, 1991); Parlour and Seppi (2008); Hautsch and Huang (2012). It is also a dangerous result

as the price impact by VAR model is remarkably under estimated when the bid depth size is from

150 to 400. An under-estimated impact may mislead the trading strategy by over estimating the

potential profit. The RL model by Philip (2019) provides even worse results as it generates only

two impact values when the bid depth increases from 50 to 1000. Among three models, only the

DeRecv model (red curve in Figure 7) provides a smooth monotonic relation of the impact and

bid depth size. In Panel B, we observe the same pattern that the RL and VAR models generate

a piece-wise impact value of a trade under market conditions with different bid depth sizes. The

DeRecv model provides a monotonic and smooth estimation of the price impact corresponding to

the change of the market.

Second, we compare the price impact of a sell action with size 500 shares submitted to a market,

where the depth of the best bid is 500, and the depth of the best ask is changing from 50 to 1000.

In theory, a sell action pushes down the price. We observe a general relation between the impact

and the market: when the ask depth size increases, the impact of a sell action decreases. However,

the pattern in Figure 8 is the same as the pattern in Figure 7: the RL and VAR models estimate a

piece-wise impact values across different depth sizes at ask side. Only the DeRecv model estimates

a monotonic and smooth price impact according to the market change. From the Panel A and B,

we can clearly observe that when the ask side depth size is between 150 to 400, the RL and VAR

models under-estimate the impact of a sell action (either a sell limit order or a sell trade). The

under-estimation might misdirect a trading strategy by over-estimating its potential profit.

3.2.3 Temporary Price Impact

We estimate the temporary price impact using our proposed DeRecv model and the VAR model

of Hautsch and Huang (2012) on the selected stocks. We show the estimated temporary price impact

using the data of Google stock in Figure 9. The left column of Figure 9 shows the temporary price
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Figure 7: This figure shows the price impacts of a limit buy order (Panel A) and a trade (Panel B) with 500 shares
of Google (left) and Petro China (right) stocks. The impacts are estimated by DeRecv, RL and VAR models under
different market conditions, where the depth change at the best bid is from 50 to 1000. The x-axis shows the bid
depth size and the y-axis shows the impact in basis points. The depth size at the best ask is 500 shares.
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impact exerted by buy (or sell) limit order with shares equal to the depth at the best bid (or ask)

level via DeRecv and VAR models, respectively. The y-axis represents the price impact in basis

points. Specifically, the upper two curves show that the arrival of a buy limit order exerts positive

temporary price impacts across event times (x-axis) from 0 to 50 and converges to the permanent

impact of 0.685 at around the event times 45 to 50. The first difference between the DeRecv and

VAR models is the smoothness of the temporary impact curve. The DeRecv generates a much

smoother curve (red line) compared to the one using the VAR model (black dot-line). From an

economic perspective, the temporary impact increases monotonically across time and converges to

the permanent impact (Dufour and Engle (2000); Engle and Patton (2004); Hautsch and Huang

(2012); Jiang et al. (2019)). Although the DeRecv model captures the monotonic relation for all

event times, the temporary impact estimated by VAR model is noisy and shows some unexpected

non-monotonic values from event times 8 to 15. The lower two curves show that an incoming sell

limit order exerts a negative price impact and converges to the permanent impact of -0.436 at

around the event times 45 to 50. Like the upper curves, the temporary impact generated via the
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Figure 8: This figure shows the price impacts of a limit Sell order (Panel A) and a Sell trade (Panel B) with 500
shares of Google (left) and Petro China (right) stocks. The impacts are estimated by DeRecv, RL and VAR models
under different market conditions, where the depth change at the best ask is from 50 to 1000. The x-axis shows the
ask depth size and the y-axis shows the impact in basis points. The depth size at the best bid is 500 shares.
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DeRecv model is unwrinkled and decreases monotonically with event time. In contrast, the curve

generated by the VAR model shows some uncertain noises from event time 0 to 15 and does not

recover to a smooth monotonic change across time.

The right column of Figure 9 shows the estimation of temporary impact exerted by market

orders (trades). The upper two curves illustrate how the temporary price impact changes after the

arrival of a market buy order with shares equal to the depth at the best bid level. Similar to the left

column, the red line—generated by the DeRecv model—shows a smoother and monotonic increase

of the temporary impact across the event time. However, the black dotted-line—generated by the

VAR model—shows some random fluctuations in the estimated temporary price impact from event

times 0 to 10. The lower two curves show identical patterns from event times 0 to 50. The two

curves indicate that a sell market order exerts an immediate negative impact, and the magnitude

of the impact increases across time monotonically.

The estimation of temporary price impact using the data of Petro China stock is shown in Figure

10. The pattern in Figure 10 is similar to the example in Figure 9. The DeRecv model provides a
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Figure 9: This figure illustrates the estimation of temporary price impact of buy (or sell) limit / market order with
size equal to the depth at the best bid (or ask) level using the DeRecv and VAR models for the data of Google stock
from 21 June 2012 to 18 July 2012.
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smoother and accurate estimation of temporary price impact across time and performs consistently

better relative to the VAR model. The VAR model, in contrast, provides a noisy impact, which is

close but not as accurate as of the one estimated by the DeRecv model.

Figure 10: This figure illustrates the estimation of temporary price impact of buy (or sell) limit / market order
with size equal to the depth at the best bid (or ask) level using DeRecv and VAR models for the data of Petro China
stock from 21 June 2012 to 18 July 2012.
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From the comparison, we note that the DeRecv model generates a smoother and monotonic

relation of the permanent price impact to the size of the order or trade and performs better than

the one using the RL model of Philip (2019). In addition, the DeRecv model produces smoother

and monotonic estimation for the temporary price impact across event times and is better than the

one using the VAR model of Hautsch and Huang (2012). Therefore, our proposed DeRecv model

captures the non-linear relation of both the permanent price impact on the size of order or trade,

and the temporary price impact across time.

We conduct a similar evaluation by using ten stocks, as illustrated in Table 6. All results confirm

the same findings as examples shown in Figure 10 and 9. To conserve the space of the main body

of the paper, other results are shown in the Appendix.
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4 Conclusion

The evidence that the price impact has a non-linear relation to the size of the order or trade

has crucial implication for estimating the temporary and permanent price impacts. In this study,

we modify and develop a DeRecv model in which the permanent price impact is defined as a new

permanent level at which the information of the incoming order is entirely absorbed by the market.

The temporary price impact is defined as the sum of expected immediate impact n order time

after placing an order, where n = 1, ...N − 1, and N is the order time at which the price impact

reaches the permanent level. To estimate the expected immediate impact, the probabilities of

the primary types of reactions are estimated using a pDNN model. The pDNN model takes the

raw limit order book and the initial action as the input features and estimates the probability of

certain types of reactions. Specifically, the pDNN model considers the probability forecasting as

a classification problem by answering the question ‘what types of reaction an order or trade may

exert in an ad-hoc market condition; and what are the probabilities of those types of reaction’. We

compare the performance of price impact estimation of the proposed DeRecv model, the RL model

of Philip (2019), and the VAR model of Hautsch and Huang (2012). The high-frequency limit order

book data is selected from the NASDAQ and SSE market for the 21 June 2012 to 18 July 2012

period. In the permanent price impact estimation, the DeRecv model captures a smoother and

accurate relationship of the size and the permanent impact. The RL model, however, generates

noisy and step-wise estimations. Particularly, the DeRecv model generates a monotonic, smooth,

and continuous impact of the same order when the market condition changes. This is because

of the continous model of the limit order book in DeRecv. In contrast, the RL and VAR model

estimate discrete and step-wise impacts under different market conditions. In the temporary price

impact estimation, the DeRecv model provides a smooth and accurate estimation of temporary price

impact across time and is better relative to the VAR model in all experiments. The VAR model,

in contrast, provides a noisy impact, which is close but not as accurate as of the one estimated

by the DeRecv model. Consequently, our proposed DeRecv model solves the existing problems in

price impact estimation and addresses the gaps in extant literature.
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5 Appendix

The appendix contains the results of the experiments on the estimation of temporary price

impact using the DeRecv and VAR models. The experiments cover eight stocks in total, four from

NASDAQ and four from the SSE market. The estimation of the temporary price impact using the

DeRecv model is consistently monotonic and smooth across time. However, the impact estimated

by the VAR model is not smooth and contains a non-monotonic relation.
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Appendix-Figure 1
This figure illustrates the estimation of temporary price impact of buy (or sell) limit order and trade with size equal

to the depth at the best bid (or ask) level using the DeRecv and VAR models for the data of stocks from NASDAQ

between 21 June 2012 and 18 July 2012 period. The stocks include Microsoft, Apple, Amazon, and Intel
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Appendix-Figure 2
This figure illustrates the estimation of temporary price impact of buy (or sell) limit order and trade with size

equal to the depth at the best bid (or ask) level using the DeRecv and VAR models for the data of stocks from

SSE between 21 June 2012 and 18 July 2012 period. The stocks include 600104 (SAIC Motor), 600519 (Kweichow

Moutai), 600900 (Yangtze Power), and 601006 (Daqin Railway)
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