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ABSTRACT

Bank bailouts are controversial governmental decisions, putting taxpayers’ money at risk to avoid
a domino effect through the network of claims between financial institutions. Yet very few studies
address quantitatively the convenience of government investments in failing banks from the taxpay-
ers’ standpoint. We propose a dynamic financial network framework incorporating bailout decisions
as a Markov Decision Process and an artificial intelligence technique that learns the optimal bailout
actions to minimise the expected taxpayers’ losses. Considering the European global systemically
important institutions, we find that bailout decisions become optimal only if the taxpayers’ stakes
exceed some critical level, endogenously determined by all financial network’s characteristics. The
convenience to intervene increases with the network’s distress, taxpayers’ stakes, bank bilateral credit
exposures and crisis duration. Moreover, the government should optimally keep bailing-out banks
that received previous investments, creating moral hazard for rescued banks that could increase
their risk-taking, reckoning on government intervention.

PACS numbers: 02.70.-c, 64.60.aq, 05.40.-a, 07.05.Mh, 89.65.Gh

INTRODUCTION

In times of crisis, as during the recession of 2008 or the economic disruption triggered by the COVID-19 pandemic,
governments face difficult decisions regarding bailing-out strategically important companies. In particular, large banks
and other financial institutions are critical for the stability of the financial system and are closely monitored by central
banks and government departments. It is nowadays widely understood, that the stability of the financial system cannot
be assessed focusing exclusively on each individual financial institution. The interconnections and interactions between
financial institutions are at least as important in contributing to the overall dynamics (see [2, 28, 35, 37, 39]). It thus
requires a broader approach to manage the risk that a considerable part of the financial system is disrupted (systemic
risk). A number of regulatory boards and committees, such as the US Financial Stability Oversight Council, the
European Systemic Risk Board and the Bank of England’s Financial Policy Committee, have been created in order to
identify, monitor and take actions that can remove or reduce the systemic risk. They are also tasked to look for new
methodologies and ideas from different disciplines to deepen their understanding of the complex phenomena involved
in financial crises.

For example, in order to rescue the Royal Bank of Scotland (RBS) in 2008-2009, the UK government became the
majority shareholder of the bank, purchasing shares for a total of £45.5 billion, according to [49]. The government
achieved its objective to stabilise the financial system and no depositor in UK banks lost any money. However, the
cost for taxpayers has been estimated by the Office for Budget Responsibility [53] to be in the region of £27 billion.
The price of RBS shares plummeted after the purchase and the government has since sold part of its investment at
a loss. Was this governmental intervention value for money? The National Audit Office (NAO) [48], UK’s public
spending watchdog, released a report on maintaining financial stability across the UK’s banking system, analysing
the governmental support to the banking sector and concluded that: If the support measures had not been put in
place, the scale of the economic and social costs, if one or more major UK banks had collapsed, is difficult to envision;
the support provided to the banks was therefore justified, but the final cost to the taxpayer of the support will not
be known for a number of years.

A more recent example is the COVID-19 pandemic, which has had a devastating effect on economies worldwide
with further forthcoming effects not fully observed yet. The quarter over quarter change in the US GDP fell by 31.2%
in the second quarter of 2020, while the Office for National Statistics estimated that the UK economic output fell
by 9.9% during the year 2020, the largest annual fall on record. The banks have so far weathered the storm, aided
by improved regulations and macroprudential measures introduced in the aftermath of the global financial crisis of
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2008-2009. However, no one can predict if the financial system can withstand a series of bankruptcies in the property,
aviation, creative, tourism and hospitality sectors, that might ensue as the accommodating monetary policies of central
banks are tapered due to the dramatic surge of inflation.

As the main concern is the systemic risk that a default entails, a network model is essential (see, e.g. [18, 26, 32, 44]
for recent reviews of the financial systemic risk literature). The nodes of the network are banks or other financial
institutions and their links represent mutual exposures. The connections between financial institutions can then
transfer the distress amongst them (see, e.g. [10, 33, 37]). There is a very large literature borrowing techniques
from network science (see, e.g. [16, 59]) and successfully applying them to the study of network resilience to external
shocks in order to provide useful analyses of financial systemic risk (see, e.g. [9, 33, 43]). There is also a vast literature
on governmental interventions in financial institutions, which spans across many different directions, such as post-
bailout bank performances [34], the bailout effects on the underwriting business [21], on market discipline [45] and on
sovereign risk [24], as well as the interplay amongst bailouts, banks’ risk profile and national regulation [13, 17, 42, 50].
Our work though is related to a branch of the financial systemic risk literature that analyses interventions to limit
the effects of financial crises. In particular, the relevance of bailout actions in mitigating the contagion during the
financial crisis of 2008 is evidenced in [62], while various network models of government interventions are proposed in
[4, 5, 20, 27, 47].

Although bank bailouts are among the most critical decisions a government can take, very few studies have addressed
quantitatively the problem of assessing their convenience for the taxpayers, as we do in this paper. To be more precise,
the main differences with existing literature are that: (a) our framework does not require starting the analysis with a
set of banks already in default or about to default without a government intervention, hence we allow preventive actions
before the network is compromised; (b) the previous literature considers the optimization of (multiple variations of)
functions based on social costs, system wealth and taxpayers’ bailout money – we instead focus on minimising the
loss for taxpayers during the crisis, irrespective of the size of the system’s overall wealth, which may not be directly
linked to the taxpayers’ interests; (c) our modelling approach and framework fills the gaps in literature, by allowing
the possibility that our dynamic network can be controlled by governments, at each and every time step, via injections
of additional capital in financial institutions.

In particular, we propose a mathematical framework that allows for a quantitative comparison between different
potential investments in financial institutions by the government. Our framework is based on the three following
building blocks: (a) a dynamical network model of the financial system that describes the contagion mechanism
between financial institutions (modelled as an increase in the probability of default of banks that have claims on
failed institutions); (b) a set of allowed government interventions to control the network (investments in the capital
of distressed banks); and (c) a quantitative way to assess government actions or inaction at each time step (using
artificial intelligence techniques). Our main aim is to address the eventuality that a government needs to decide
whether to bailout a financial institution or let it fail as its insolvency becomes more and more likely.

The contagion mechanism that we use is the impact that a bank default has on other banks. The impact can be
due to: (a) direct losses from cross ownership and bilateral credit exposures (for example loans, see, e.g. [60, 61]), or
(b) indirect losses due to fire selling of assets by defaulting banks, that would lower the market value of similar assets
in the balance sheet of non-defaulting financial institutions (see, e.g. [22]). In all, the impact of defaults would lower
the capital buffer of affected banks, thus weakening the entire network and its ability to withstand future shocks. In
our model, this is accounted for by an increase of the probability of default (PD) per unit time of the banks that have
claims towards the defaulted institutions. Such an existence of a PD as a characteristic of the nodes of the bilateral
credit exposures network has only recently been introduced in systemic risk evaluation studies (see, e.g. [56, 57]).

One of our main novelties with respect to the aforementioned models is that we further allow for the network to be
controlled by a government via investments in the capital of banks. Such an investment would, conversely to defaults,
decrease the banks’ PD upon receiving the additional capital. The nodes’ PD thus eventually allows us to follow
the evolution in time of our (controlled) dynamical model as there is a well defined length of time during which the
government can intervene to control the network. We provide the connection between the changes in each node’s PD
and the changes in the amount of capital due to the impact from defaults or governmental investments via the credit
risk model introduced by Merton [46]. Then, given each node’s PD, as well as the likelihood of more than one nodes
defaulting simultaneously (during the same time step), which we describe by a Gaussian latent variable model, we
follow the stochastic evolution of the network in time via a multi-period Monte Carlo simulation.

Even though government investments decrease the banks’ PD, they also increase the potential loss of this additional
capital for the government (and taxpayers) in case of default. This creates a trade-off for the decision makers. The
main aim of the government is therefore to answer the questions of whether to invest in financial institutions at each
time step, which financial institution(s) to invest in and how much to invest, in order to achieve the minimum expected
taxpayers’ loss during a crisis.

To that end, we model the system’s evolution as a Markov Decision Process (MDP) (see [11]), where the actions
(controls) are government investments in the capital of the banks at each time step, and the dynamics and negative
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rewards (losses) are linked to the financial network dynamics, each node’s (controlled) probability of default, total
asset and previous government investments (the sequence of governmental stochastic controls). However, our MDP is
both challenging to define in this setup and (even more) challenging to solve, given its following main characteristics:
(a) the MDP state definition is remarkably complex since it depends on all the parameters of the network at each
specific time; (b) the low probability of default of each node in the network translates in a high probability of not
receiving any reward signals to learn the best action, (c) the enormous number of successor states (even in very simple
networks) would normally make standard computations impossible and standard methods non-feasible.

In order to overcome these challenges, we develop an artificial intelligence technique that uses a variation of the
Fitted Value Iteration algorithm (see, e.g. [36, 58]) with bespoke characteristics that are uniquely constructed to
solve our MDP. To be more precise, we: (a) devise a particular value function parametrisation, representing the sum
of the expected direct losses per node and remaining time steps; (b) implement a learning process backwards in time
from the end of the stochastic episode (financial crisis) where the value function is known to be zero; and (c) use an
ingenious duality between the dynamics of the financial network (our nodes’ default modelling) and the MDP rewards
and transition probabilities, to reduce drastically the number of terms in many critical expressions – in particular, we
devise a technique for rewriting these expressions in terms of (the remarkably smaller) number of non-defaulted nodes
rather than successor states (according to standard theory), hence allowing their computation. Our methodology
allows us to assess the optimality of government decisions – no investment versus different types and amounts of
investment – and conclude the optimal government actions per time step and state of the network.

The introduced framework has a high potential for becoming an important tool for central banks and governments,
whose budget, data and resources could allow for a professional calibration of our model. The mathematical assessment
and dynamic optimisation of bank bailout decisions from a taxpayer’s standpoint could be a valuable quantitative tool
in their diverse toolbox (make new bailout decisions, apply on selected bailout cases to evaluate results, learn from
past experiences and actual happenings). Furthermore, our proposed methodology could have not only a practical
impact to assess government interventions, but also a significant impact on the scientific community aiming at tackling
problems of stochastic control in dynamic networks with few reward signals, as the one we solve in this paper.

RESULTS

One of the main results of our paper is the introduction of a mathematical framework, that allows governments to
assess the convenience to intervene with bailout investments in distressed banks’ equity and optimise their decisions.
In the following subsections we first present the network model of financial institutions, its dynamics and contagion
mechanism, and then propose an MDP based on the network, which will be used to model government interventions
on bailed-out financial institutions. After formulating the problem, we proceed with a methodology for solving the
MDP and some of the mathematical technicalities. Finally, we implement our framework and methodology on two
case studies and present our findings.

Network of financial institutions

We consider a network whose set I = {1, ..., N} of nodes represents financial institutions. Each node i ∈ I is
characterised at time t by a probability of default PDi(t) ∈ (0, 1] per time interval ∆t, a total asset Wi(t) and an
equity Ei(t), that is the capital used by node i as a buffer to withstand financial losses, satisfying Ei(t) ≤ Wi(t).

The edge (i, j) of the network represents the exposure of node i to the default of node j where i ̸= j ∈ I. Each edge
(i, j) is associated to a numerical value wij which depends on the contagion channels considered. For example, we
can consider only credit exposures or also the impact due to fire sales of common assets. Regarding credit exposures,
most of the times only aggregated values are available, e.g. the total amount of inter-banking assets and liabilities
for each node, and in such cases, bespoke algorithms are used to infer the network of bilateral exposures (see, e.g.
[6, 56]). To take into account government interventions aimed at limiting the overall losses, we use an adaptation of
the PD model introduced in [56] by extending it to allow the possibility for the nodes (financial institutions) to incur
also positive shocks, via investments in the nodes, rather than just negative shocks due to the default of other nodes.
The focus of this paper is also radically different from the one in [56], which focuses on the losses sustained by private
investors, since we are here exclusively interested in the losses incurred by the taxpayers. In the following, we will
measure the time in discrete time steps that are multiples of ∆t, i.e. t+ 1 is equivalent to t+∆t.

We define the total impact Ii(t) on node i at time t, due to the default of other nodes j ∈ I \ {i} in the network
and their exposure wij , by

Ii(t) :=
∑

j∈I\{i}

wijδj(t), for all i ∈ I, (1)
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where

δj(t) =

{
1, if node j defaults at time t,

0, otherwise.

The mechanism by which defaults will occur at each time step t, yielding δ·(t) = 1, will be constructed towards the
end of this section using all network information, including the probabilistic framework up to time t. The impact
Ii(t) represents a loss for the total asset Wi, which in turn decreases also the equity Ei of node i, hence reducing their
value at time t+ 1. This can be seen from the accounting equation for each node i, namely

Wi(t) = Ei(t) +Bi(t) , (2)

which states that the total asset Wi is always equal, at all times, to the equity Ei plus the total liability Bi. Note
that Bi is not affected by the losses as it is comprised of loans from other banks, deposits, etc., that are due in full
unless the bank i defaults. Hence, we have

∆Wi(t) = ∆Ei(t) , (3)

where we define ∆Xi(t) := Xi(t+1)−Xi(t). Taking into account also the potential increase ∆Ji(t) in the cumulative
investment Ji(t) of the government in node i up to time t, which will in turn increase the values of the total asset Wi

and equity Ei of node i at time t+ 1, we can write

Wi(t+ 1) = Wi(t)− Ii(t) + ∆Ji(t) and Ei(t+ 1) = Ei(t)− Ii(t) + ∆Ji(t). (4)

The probability of default PDi(t) of node i is increased by the impact Ii(t) at time t, since part of the capital buffer
(equity Ei) is lost, and decreased by the potential investment ∆Ji(t), which in turn grows the capital buffer. In order
to model the effect of the impact Ii(t) and potential investment ∆Ji(t) on PDi(t), we use here the credit risk model
introduced by Merton [46]. Alternatively, it is possible to use the first passage model introduced by Black and Cox
[15]. The ‘implied probability of default’ PDM is therefore calculated as a function of the parameters of each node:

PDM(W,E, µ, σ) := 1− Φ
((

log
W

W − E
+ µ− σ2

2

)/
σ
)
, (5)

where the term W−E represents the total liability B of each bank, Φ is the univariate standard Gaussian distribution,
µ is the drift (expected growth rate) and σ is the volatility of the geometric Brownian motion associated to the total
asset W in the Merton model. We then use (5) to obtain the probability of default of node i

PDi(t) := max{PDM(Wi(t), Ei(t), µi, σi), PDMfloor
i }, (6)

where we introduce the fixed number PDMfloor
i , whose purpose is to exclude unreasonably low probabilities of default,

essentially acting as a lower bound of the PDi. A lower bound PDMfloor
i is necessary, as no matter how well a bank

i is capitalised against losses, it can still default due to extreme events such as natural disasters, political revolutions,

sovereign defaults, etc. Without PDMfloor
i , the government would underestimate the actual probability of default

and would tend to invest more capital than it is convenient. As an example of calibration of this parameter, we can
follow the standard assumption that the PDi of a bank i ∈ I is greater or equal to the probability of default of the

country where it is based in. In this context, the PDMfloor
i would be the probability of the country hosting bank i

to default on its debt.
Now, if node i loses an amount of capital Ii(t) greater than its capital buffer (equity Ei(t)), at some time t, the

total asset Wi(t) becomes less than its liability Bi(t) and it is convenient for the shareholders to exercise their option
to default. In practice, when this occurs, we set PDi(t+1) = 1 and node i will default at time t+1. Moreover, recall
that node i may also default at any time t with probability PDi(t) due to its own individual characteristics given by
(6); see also the default mechanism described at the end of this section.

Now, when node i defaults, we denote by LGDi the loss given default of node i, which is a fixed number representing
the percentage of the cumulative investments Ji on node i by the government, that cannot be recovered after a default.
In case of default of node i, we further assume that in addition to the aforementioned loss of investments, the taxpayers’
loss Li is also comprised of a fixed percentage αi (for convenience) of the total asset Wi of the node i. That is, the
taxpayers’ overall loss Li(t) at time t is given by

Li(t) := αi Wi(t) + LGDi Ji(t) . (7)
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To complete our framework, we need to specify the probability of more than one default happening during the
same time step, given the PDi of each node i obtained as in (6). For example, if the nodes were independent,
the probability of nodes i and j defaulting at the same time step, denoted by PD[ij], would be the product of the
individual probabilities PDi and PDj . In this paper, we allow nodes to depend on each other and use a Gaussian
latent variable model (see, e.g. [55]) to calculate the probabilities of simultaneous defaults of two or more nodes. To
be more precise, the probability of a finite subset of nodes {i, j, k, ...} ⊆ I of the network defaulting at the same time,
is given by

PD[i,j,k,...] :=

∫
D

Φ′
N (u; Σ) du , (8)

where Φ′
N is the standardised multivariate Gaussian density function, with zero mean and a symmetric correlation

matrix Σ ∈ [−1, 1]N×N , given by

Φ′
N (u; Σ) :=

exp{− 1
2u

TΣ−1u}√
(2π)n |Σ|

(9)

and |Σ| is the determinant of Σ. We further note that the integration domain D in (8) is the Cartesian product of
the intervals [−∞,Φ−1

1 (PDl)] for each node l that belongs to the set of defaulting nodes {i, j, k, ...}, and the intervals
[−∞,∞] for the remaining non-defaulting nodes, where Φ1 is the univariate standard Gaussian distribution.
We are now ready to present the mechanism according to which nodes can default based on their individual

characteristics. To be more precise, at each time step t, we first sample values (x1, ..., xN ) of the random vector
X = (X1, X2, ..., XN )T with the multivariate Gaussian distribution of the underlying Gaussian latent variable model
mentioned above. Then, we assume that node i defaults according to the rule:

xi < Φ−1
1 (PDi(t)) ⇐⇒ δi(t) = 1 . (10)

The banks bailout problem as a Markov Decision Process

In this subsection, we describe the government decisions of bailing out banks as a Markov Decision Process (MDP)
driven by our framework described in the previous subsection. We firstly assume that the government estimated that
the crisis will likely be over at time M , where each time step could be interpreted to reflect the contagion effect,
which occurs across periods in our model, or the governmental review frequency of the possibility to invest in financial
institutions in the midst of a crisis. In any case, recalling that the government invests in the equity of banks and
other financial institutions, we assume that it will be able to sell the acquired shares to the private sector, after
the end of the crisis, for a price that is similar to the purchasing one. In reality, this price is directly linked to the
expectation of the future dividends to be paid by the surviving bank. The government could then realise a profit on
these investments, after a considerable rise in the aggregate stock market at the end of the crisis, from time M + 1
onwards (see [51] for a relevant research investigation), or even make a loss. Clearly, any scenario would affect the
effective taxpayers loss. In this paper though, we focus solely on the minimisation of taxpayers losses due to bailouts
and bank defaults during the crisis episode (time 0 to M), by assuming a neutral realised return on investments in
surviving institutions beyond time M .
We define the 4-tuple (S,As, Pa, Ra) of the set S of all the states of the dynamic network (namely the state space in

which the processes’ evolution takes place, leading to all possible configurations of the financial system), set As of all
actions available to the government from state s ∈ S, transition probabilities Pa(s, s

′) = P (st+1 = s′ | st = s, at = a)
between state s at any time t and state s′ at time t + 1 having taken action a ∈ As at time t, and rewards Ra(s, s

′)
(negative losses in our model) received after taking action a at any time t while being at state s and landing in state
s′ at time t + 1, where s, s′ ∈ S. Furthermore, we consider a constant discount factor γ with 0 ≤ γ < 1, so that
rewards obtained sooner are more relevant. The discounted cumulative reward G from time step t until the end of
crisis (recall that a full episode consists of M time steps) is therefore defined by

G(t) :=

M−1∑
u=t

γu−tRau
(su, s

′
u+1). (11)

In the remaining of this subsection, we expand on the 4-tuple (S,As, Pa, Ra) that defines our MDP and formulate our
stochastic control problem.

Firstly, we introduce the MDP states. The states st ∈ S, at each time t, in which the financial system may end up,
are defined by three main pillars: (a) all the parameters of the network (Wi(t), Ei(t), PDi(t), Ji(t), LGDi, αi, µi,
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σi, wij , Σij , for i, j ∈ {1, ..., N}, where wii = 0), (b) an indexed set Idef (t) ⊆ I containing all defaulted nodes prior
to time t and (c) the time to maturity M − t.
Secondly, we introduce the MDP actions and governmental policies. The MDP actions at ∈ Ast in our model are

the control variables of the government when trying to minimise the losses of the network (i.e. maximise the expected
G in (11)). They correspond to injections of capital at → ∆Ja(t) := (∆Ja

1 (t),∆Ja
2 (t), ...,∆Ja

N (t)) increasing the
government’s investments in the nodes (1, 2, ..., N), affecting their total wealth and equity according to (4), whose
updated (increased) values are denoted by

Ja
i (t) := Ji(t) + ∆Ja

i (t), W a
i (t) := Wi(t) + ∆Ja

i (t) and Ea
i (t) := Ei(t) + ∆Ja

i (t). (12)

These additional resources on one hand, make the nodes more resilient, hence diminishing their updated probability
of default PDa

i via (5)–(6), namely

PDa
i (t) := max{PDM(W a

i (t), E
a
i (t), µi, σi), PDMfloor

i } , (13)

leading to (statistically) less defaults due to the updated default mechanism (recall (10)) given by

xi < Φ−1
1 (PDa

i (t)) ⇐⇒ δai (t) = 1 , (14)

and consequently to an updated (statistically decreased) total impact

Iai (t) :=
∑

j∈I\{i}

wijδ
a
j (t), for all i ∈ I. (15)

On the other hand, these resources will be at risk in case of node i defaulting at time t, since the aforementioned (in-
creased) cumulative investment Ja

i and total wealth W a
i will both contribute towards an increased updated taxpayers’

overall loss La
i given via (7) by

La
i (t) := αi W

a
i (t) + LGDi J

a
i (t) . (16)

Recalling that each action at ∈ Ast depends on the current state st at any time t, we denote the government policy
by a function π(st) → at that indicates which action to take at each state. A policy that minimises the expected
network losses is called optimal policy and is indicated with π∗, while the action a∗t returned by π∗ given a state st
(i.e. π∗(st) → a∗t ) is then called the optimal action for that state.
Note that, the model can easily incorporate also the nature of governmental equity injections (asking banks to repay

debt, or invest in safer assets to hedge against future losses, or change their strategy in exchange for funding), that
would eventually lead to an updated µa

i (t) = µi(∆Ja
i (t)) and σa

i (t) = σi(∆Ja
i (t)) affecting only the resulting updated

probability of default PDa
i (t) in (13), while the rest of our framework and methodology would remain intact.

Thirdly, we introduce the MDP transition probabilities. Within our framework, a node that has defaulted does not
contribute to future losses and cannot become active again, i.e. the cardinality of the set of defaulted nodes |Idef (t)|
is a non-decreasing function of time t. Hence the transition probability Pa(s, s

′) from state s to s′ will be non-zero
only for states s′ that: (a) have the same number or more defaulted nodes than state s; (b) are “reachable”, in the
sense that their characteristics PDi(t+1), Wi(t+1) and Ei(t+1), for i ∈ I \ Idef (t+1) (the remaining active nodes
in s′) take values that are coherent with equations (4)–(6) after calculating the impacts Ii(t) from the newly defaulted
nodes i ∈ Idef (t+ 1) \ Idef (t) at time t. For an example on how to identify these so-called reachable states, we refer
to the Reachable MDP states example in the Methods section.

Then, for all states s′t+1 with a non-zero transition probability Pat(st, s
′
t+1), we can calculate the latter via the

Gaussian latent variable model (see also (8)–(9)). To be more precise, given the government investments relative to
action at at state st and time t, we use the updated Ja

i (t),W
a
i (t), E

a
i (t) and PDa

i (t) from (12)–(13) to calculate the
transition probability via (see also (8)) the following integral

Pat
(st, s

′
t+1) :=

∫
D

Φ′
|I\Idef (t)|(u; Σsub)du, (17)

where Φ′ is the density given by (9) with dimension equal to the cardinality of the set of surviving nodes |I \Idef (t)| ≤
N . Upon recalling the updated version of the default mechanism in (14), the integration domain D in (17) is given
by the Cartesian product of the intervals [−∞,Φ−1

1 (PDa
i )] for the additional defaulted nodes i ∈ Idef (t+1) \ Idef (t)

and the intervals [Φ−1
1 (PDa

i ),∞] for all the remaining active nodes i ∈ I \ Idef (t+ 1) at state s′t+1. The Σsub is the
sub-matrix of the original correlation matrix Σ after removing the rows and the columns corresponding to defaulted
nodes i ∈ Idef (t) at state st.
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Thus, we observe that in our model, the transition probabilities depend exclusively on the government investments
at, the resulting financial institutions’ probability of default PDa

i and the correlation structure Σij with i, j ∈ I\Idef (t)
which links the financial institutions in the network.

Fourthly, we introduce the MDP rewards. In our model the rewards take non-positive values, since their overall
maximisation has to translate for our MDP into the minimisation of the potential overall taxpayers’ losses La

i (t)
in (16) for all nodes i ∈ I \ Idef (t) after taking action at at each time t. Namely, in light of the updated default
mechanism (14), we define the reward at time t by

Rat
(st, s

′
t+1) := −

∑
i∈I\Idef (t)

(αi W
a
i (t) + LGDi J

a
i (t)) δ

a
i (t), (18)

where only the nodes defaulting at time t after taking action at, i.e. having δai (t) = 1, contribute to the sum of losses.
This means that the reward at time t can be 0, in case there are no additional defaults occurring at time t.

Finally, we are ready to define the optimal value function and present the stochastic control problem formulation.
We can now formalise the main aim of the government, which is the minimisation of taxpayers’ losses during the
crisis episode. We therefore need our model to indicate if the government should intervene and if so, which amount it
should invest for a given configuration of the financial system to achieve its aforementioned goal. This mathematically
translates to the government aiming at finding the optimal actions a∗t ∈ Ast , or equivalently the optimal policy π∗,
for successive time steps, starting from any time t and any possible state st of the dynamic network until the end of
the episode at time M , in order to maximise the expected discounted cumulative reward G(t) given by (11).

The optimal value function V∗(st) is then defined as the expected discounted cumulative reward G(t) starting from
state st at time t and following the aforementioned optimal policy π∗, given in light of the definition of rewards (in
particular their expression in (18)) by

V∗(st) := Eπ∗ [G(t) | st] = Eπ∗

[M−1∑
u=t

γu−tRau
(su, s

′
u+1)

∣∣∣∣ st] (19)

= −Eπ∗

[M−1∑
u=t

γu−t
∑

i∈I\Idef (u)

(
αi W

a
i (u) + LGDi J

a
i (u)

)
δai (u)

∣∣∣∣ st] ∀ t ∈ [0,M − 1] and V∗(sM ) := 0,

where the latter definition follows due to the time step M signifying the end of the crisis episode, when the government
can sell all its shares in the banks, thus incurring no additional losses.

Given the definition of π∗, the optimal value function V∗(st) represents the maximum expected discounted cumu-
lative reward, which translates into the minimum expected discounted taxpayers’ loss, that can be obtained amongst
all possible policies π starting from st,

V∗(st) = max
π

Eπ[G(t) | st] = −min
π

Eπ

[M−1∑
u=t

γu−t
∑

i∈I\Idef (u)

(
αi W

a
i (u) + LGDi J

a
i (u)

)
δai (u)

∣∣∣∣ st]. (20)

The optimal action value function Q∗(st, at) is the expected discounted cumulative reward we obtain, if we first
take action at while being at state st and then follow the optimal policy π∗ for any of the successive steps from t+ 1
until the end of the episode M . Mathematically, this is defined by

Q∗(st, at) := Eπ∗ [G(t) | st, at] = E
[
Rat

(st, s
′
t+1)

∣∣ st, at]+ Eπ∗

[ M−1∑
u=t+1

γu−tRau
(s′u, s

′
u+1)

∣∣∣∣ st, at]. (21)

Similarly to the previous subsection, Q∗(st, at) represents the maximum expected cumulative reward that can be
obtained when starting from st and after taking action at at time t.
The contribution of the optimal action value function in providing the desired quantitative evaluation required for

implementing the model in real-life scenarios is twofold. Firstly, notice that finding Q∗ is equivalent to solving the
MDP, since the optimal action a∗t for each state st (hence the optimal policy π∗) can be obtained by

a∗t = argmax
at

Q∗(st, at). (22)

Secondly, we use Q∗ in order to quantify the convenience to intervene Conv(st) for the government at each state st
and any time t, in the forthcoming model implementations. To be more precise, we define by Conv(st) the difference
between the optimal action value function corresponding to the best governmental intervention and the optimal action
value function associated to a0t , which denotes the inaction (no investments) at time t, when being at the state st, i.e.

Conv(st) := max
at∈Ast\{a0

t}
{Q∗(st, at)} −Q∗(st, a

0
t ). (23)
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AI technique to solve the MDP

In this subsection, we present our artificial intelligence technique to solve the MDP, driven by our dynamic network
of the financial system that can be controlled by a regulator in view of minimising the expected taxpayers’ loss.

We firstly recall a standard relationship between optimal value functions and action value functions in MDPs.
Observe that the two terms on the right-hand side in the definition (21) of the optimal action value function Q∗(st, at)
are first the immediate expected reward at time t due to taking action at and second the optimal expected discounted
cumulative reward from time t+ 1 onwards. We can therefore rewrite Q∗(st, at) from (21) in terms of the transition
probabilities (recall (17)) and the future optimal value functions V∗(s

′
t+1) defined in (19), in the form

Q∗(st, at) =
∑
s′t+1

Pat
(st, s

′
t+1)(Rat

(st, s
′
t+1) + γV∗(s

′
t+1)). (24)

It is also straightforward to see from the definitions (19) and (21) of the optimal value function V∗(st) and action
value function Q∗(st, at), respectively, that

V∗(st) = max
at

Q∗(st, at), (25)

i.e. the maximum expected discounted cumulative reward from st is the one corresponding to the maximum value of
Q∗ amongst all available potential actions at ∈ Ast at time t. Substituting the expression of (24) in (25) thus gives
the Bellman optimality equation

V∗(st) = max
at∈Ast

{∑
s′t+1

Pat(st, s
′
t+1)(Rat(st, s

′
t+1) + γV∗(s

′
t+1))

}
. (26)

Given that we have a complete description of our MDP (in particular, we have the transition probabilities
Pat

(st, s
′
t+1) and the rewards Rat

(st, s
′
t+1)), we could in theory enumerate all possible states, use Dynamic Program-

ming and the Value Iteration algorithm (see [12]) to solve our stochastic control problem. This would essentially
involve finding V∗ using the Bellman optimality equation in (26) and then calculating Q∗ via (24), thus solving the
MDP. However, applying this standard theory is not a scalable/feasible approach due to (a) the complexity of the
MDP states and (b) the enormous number of successor states s′ (for all but trivial networks), making standard
computations impossible.

We therefore propose in this paper an approach to solve the MDP, which involves the use of a variation of the
Fitted Value Iteration algorithm (see, e.g. [36, 58]) with bespoke characteristics uniquely constructed in our artificial
intelligence technique.

Our method consists of the following four steps:

(i) Devise a parametric representation V ∗(s, β) for the optimal value function V∗(s), where β is a placeholder for a
set of parameters to fit (see our construction in the Value function approximation subsection, Methods section);

(ii) Use V ∗(s, β) to devise a parametric representation Q∗(s, a, β) for the optimal action value function Q∗(s, a)
in (24) (see the Action value function approximation subsection, Methods section, for its derivation and our
technique to calculate it);

(iii) Use Q∗(s, a, β) for the right-hand side of (25) to obtain an approximate Bellman Optimality equation in order
to fit β via a learning process (see our technique in the Learning process subsection, Methods section), which
will eventually give V∗(s) ≈ V ∗(s, β

fit);

(iv) Finally, use V ∗(s, β
fit) to calculate Q∗(s, a, β

fit) ≈ Q∗(s, a), and hence solve the MDP as in the Optimal
solution of the MDP subsection, Methods section.

Each one of the aforementioned steps bares its own difficulties and technical obstacles, which we overcome in the
analysis presented in the aforementioned subsections of the Methods section.

In the following subsections, we use our artificial intelligence technique to solve the MDP in two implementation
case studies. We show how our model works and obtain qualitative results on the optimal bailout decision problem
faced by governments. A professional calibration of our model would require the effort and firepower of a central bank
or a government office, and access to sensitive data. Nonetheless, by exploring these two case studies, we provide
useful insights for whether and when taxpayers should fund bank bailouts.
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Setup of Implementation Case Studies

To illustrate how our method works and its potential, we apply our model on both a synthetic homogeneous network
(Krackhardt kite graph) and a real network of the European global systemically important institutions. Before we
present our case studies, we assign values to a set of parameters, that are common to both case studies (unless
otherwise specified). We consider a crisis episode that will last for M = 7 time steps, a discount factor γ = 0.98 and
an initial government investment Ji(0) = 0 for each node (bank or other financial institution) i ∈ I. Moreover we
assume the percentages αi of wealth loss upon default of node i to be all the same, i.e. αi = α, and we conservatively
assume that the expected value of the total wealth’s return is µi = 0, for all i ∈ I. Recall that, we are considering
equity investments by the government that can be recovered, in case of default, only after all the depositors and bond
holders are satisfied. Hence, we assume that the government loses all its investments in case of default, i.e. LGDi = 1,
for all i ∈ I. If the government is allowed to use other means besides equity investments, e.g. bond investments,
then LGDi ∈ (0, 1] (see [52] for a study on senior and subordinated recovery rates). However, this would imply
a softer effect on the solvency issues and require a modification of the probability of default formula in (13), since
the investment would not be directly affecting the equity (12) anymore. In order to take into account the average
correlation between financial institutions, we use a homogeneous correlation matrix for our nodes, which is set to
Σij = 0.5 for i ̸= j ∈ I \ Idef following [38]. The volatility σi of the total wealth’s return for each i ∈ I, is calculated
at time t = 0 by inverting (5) using the initial (known) values of PDi(0), Ei(0) and Wi(0). The values of σi, i ∈ I,
are then assumed to remain constant at successive time steps of the simulation, from t = 1 to M . Finally, we set the

floor of the probability of default for each node i as PDMfloor
i = 0.00021, which is the upper end of the AAA default

probability bracket within the internal credit rating methodology used by Credit Suisse [23]. In the sequel, we denote
the available governmental investment actions by

< node > @ < capital investment as a tenth of a percent of the total asset W >,

with the convention that an action that considers all nodes is indicated with <node>= 0. For example, 8@05 means
an investment of 50 bp W8 or 0.5%W8 in node 8, while 0@15 stands for an investment of 1.5%Wi in each node
i ∈ I \ Idef .

The common theme is that adding external resources makes the network more resilient, but such resources can be
lost in a subsequent default, which creates a trade-off for the decision maker. The optimal policy that balances this
trade-off and minimises the overall expected taxpayers’ loss is an optimal solution to our MDP, and is analysed in the
forthcoming two studies.

Case study 1: KK network

This study concerns a network with homogeneous nodes organised as the Krackhardt kite (KK) graph (Fig. 1, see
also [41]), which is referred to as the KK network. The main reason for choosing the KK graph as an underlying
network is to primarily assess whether our algorithm can distinguish between central nodes and peripheral ones. In
particular, we use the network characteristics in terms of the centrality of nodes 4, 8 and 10 (see Fig. 1), to investigate
how bailout decisions depend on the nodes’ position in the network. However, we will also investigate additional
hypotheses and reach important financial conclusions on bailout decision making.

In this case study, all the nodes (banks or other financial institutions) have total asset Wi(0) = 100 and capital
Ei(0) = 3. As shown in Figure 1, the nodes in red colour have probability of default PDi(0) = 0.01, for i ∈ {4, 8, 10},
while the others have PDi(0) = 0.001, for i ∈ I \ {4, 8, 10}. The edges between nodes are oriented and homogeneous,
assuming the value wij = 1, for all i ̸= j ∈ I. For the sake of this case study, we restrict the potential investment
amounts in each node i to be: 0, 0.5%Wi, 1%Wi, 1.5%Wi or 2%Wi. Furthermore, the government can choose at
each time step to invest in the single nodes 4, 8 or 10 or in all nodes.

The optimal action value function Q∗(s0, a0) at time t = 0 is illustrated in Figure 2 for three scenarios of percentages
of wealth loss upon default. In particular, for a “relatively low” α = 0.0001, the best action (minimising losses) is
not to invest in any bank (0@0). Moving from the top to the bottom panel (as α increases) the option not to invest
becomes more and more costly to the system. For a “relatively intermediate” α = 0.001, not investing is roughly
equally favourable to investments in single financial institutions, while for a “relatively high” α = 0.01, the best
action becomes to invest 1.5%Wi in all financial institutions (0@15). It is also interesting to note that (see Fig. 2)
irrespective of the α-value: (i) investing the maximum amount of 2%Wi in all banks (0@20) is never the best choice;
(ii) providing the minimum capital (0@05) is always the worst choice, as the additional investment is too small to
make them resilient, but still increases the funds at risk in case of default. The sensitivity of the optimal policy with
respect to α will be further examined in more detail also in our next (more realistic) case study.
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Fixing the percentage of wealth loss upon default at α = 0.0001, we now focus our analysis on the central node
4, representing a financial institution with multiple links and interconnections with its peers, versus the peripheral
node 10, representing a relatively isolated financial institution linked only with one other (see Fig. 1). The results in
Figure 3(a) conclude that investing in the central node 4 is always better than in the peripheral node 10 for the same
amount of capital and all such choices. Thus, our algorithm indeed shows a clear preference in central rather than
peripheral node investments.

However, the results change when the government had already invested even the minimum possible amount of
0.5%W10 in the peripheral node 10. In this case, Figure 3(b) with J10(0) = 0.5 concludes that a substantial additional
investment in bank 10 (namely, 10@15 or 10@20) largely outperforms any other strategy – including not investing
at all, and all types of investments in the central node 4. Such a result indicates that the optimal strategy for the
government is therefore to keep investing (sufficiently high amounts of capital) in node 10, aiming at saving this
already invested capital J10(0) = 0.5. This governmental tendency to provide capital to distressed banks if they had
already invested in them creates moral hazard, as the bank could act haphazardly relying on the implicit government
guarantee. The fact that bailouts create moral hazard has been emphasized extensively in the financial and economic
literature, both theoretically and empirically (see e.g., [1, 7, 19, 25]). Moreover, given that the assumed J10(0) = 0.5
is the worst amongst all possible investments in a single node at time t = 0 (see both Fig. 2 and Fig. 3(a)), the
suggested optimal, additional, significantly large investment in the peripheral node 10, could be also viewed as an
eventual strengthening of the originally weak investment of 0.5%W10.

Lastly, we perform a sensitivity analysis of the optimal action versus the duration of crisis. Irrespective of the type
of investment, the results in Figure 3(a) show that the optimal action value function Q∗ decreases in absolute value
(i.e. size of losses decreases) as the time to the end of the episode M − t decreases. The main reason is that each node
of the network is unstable with an associated probability of default per unit time, hence the shorter the time horizon
the lower the expected losses. Furthermore, the contagion has less time to propagate, which explains also why the
node’s position in the network becomes less and less relevant.

Case study 2: EBA network

After having considered a small synthetic graph in the first case study, we now study a network of the European
global systemically important institutions (GSII, see Table I) obtained from the data provided by the European Bank-
ing Authority [29], which is referred to as the EBA network. Note that, the original data do not contain the complete
bilateral network of exposures, as this is considered business sensitive information. While the specific exposure be-
tween two banks is unknown, the aggregated credit exposure of a bank versus other financial institutions is provided.
For each bank i in the set I of the European GSII, we have its total inter-bank asset

∑
j∈I wij and liability

∑
j∈I wji,

which can be used to reconstruct a network that satisfies the constrains (see, e.g. algorithms described in [6, 56]). The
reconstructed network (see Fig. 4) can be different but has similar characteristics to the actual network of bilateral
exposures. The values of total asset Wi(0) and capital Ei(0) at time t = 0 used for each financial institution i are
reported in Table I. The probabilities of default are derived using data from the credit rating agency Fitch [31] and
show that the nodes with the higher probability of default are Monte dei Paschi di Siena (MPS) and BFA (see both
Table I and Fig. 4).

To facilitate our analysis, we firstly pretend that the European Union (including the UK) is a fiscal union with
a single regulator (“government”) that is accountable to all European taxpayers. Then, we consider any individual
states’ investments in banks prior to 2014 as “private” investments, hence we set the initial regulator investments to
be Ji(0) = 0 for all i ∈ I. For the sake of this case study, we restrict the potential investment amounts to inject in
each financial institution i to be: 0, 0.5%Wi, 1%Wi, 1.5%Wi, 2%Wi, 2.5%Wi or 3%Wi. Furthermore, we assume
that the government can choose at each time step t to invest in all the nodes that are considered “risky” at that time,
defined as each financial institution i ∈ I \ Idef with PDi(t) > 0.009, according to our (arbitrarily) chosen threshold.
In this case study, the notation 0@05 thus indicates an investment of 0.5%Wi in each risky node i ∈ I \ Idef .
For a detailed quantitative and qualitative analysis, we rely on the convenience measure Conv for the government,

defined in (23), to intervene with equity investments and we analyse the system for four different percentages α ∈
{0.0001, 0.001, 0.005, 0.01} of wealth loss upon default. We observe from Figure 5(a) that, we have a convenience
Conv > 0 for higher percentages of wealth loss upon default (α = 0.01, 0.005 and 0.001), thus investing is a favourable
action, while Conv < 0 for smaller α (α = 0.0001), implying that it is not convenient for the government to invest.
This is consistent with our first case study using the KK network (previous subsection), as investing an amount of
capital is convenient only for relatively high values of α, in order to make the network sufficiently resilient.
A sensitivity analysis of the convenience to intervene for the government is further examined versus the duration

of crisis, the initial capital and the credit exposures of financial institutions:

(a) The results in Figure 5(a) further conclude that the convenience to intervene tends to be an increasing function
of the time to the end of the episode M − t when Conv > 0 and a decreasing function when Conv < 0. This
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implies that the convenience to intervene or not, weakens (decreases in absolute value) as we approach the end
of the crisis. Interestingly though, it appears that the nature of the action does not change with time, since the
function Conv does not change sign.

(b) Our results in Figure 5(b) further show that the convenience to intervene Conv is dependent on the banks’
resilience, expressed via the initial capital Ei(0) of each bank i. In particular, this severely distressed version
of the network, where the value of Ei(0) has been artificially halved compared with the original case study
(presented in Fig. 5(a)), has the effect of increasing the convenience Conv for the government to intervene for
each value of α. A more thorough analysis in Figure 6(a) further reveals that the convenience to intervene
increases on average as the financial institutions’ initial capital Ei(0) decreases, for all duration lengths of the
crisis. It is interesting to also note that, this convenience intensifies significantly for larger lengths of time until
the end of the crisis.

(c) It is also clear from the results in Figure 6(b) that the convenience to intervene increases as the bilateral credit
exposures wij between financial institutions across the whole network increase. It is interesting to further observe
that the impact of longer crisis duration on the convenience to intervene is massive.

A sensitivity analysis of the governmental optimal action is also examined versus the discount factor, the financial
institutions’ probabilities of default and credit exposures, the percentage of wealth loss upon default and the initial
capital:

(a) Our analysis in Figure 7(a) shows clearly that the optimal action value function Q∗(s0, a0) at time t = 0
decreases for all potential actions as the discount factor γ increases. That is, as the future losses become more
relevant (from the governmental point of view), the expected systemic losses increase in absolute value, while
the optimal action does not change qualitatively.

(b) Our results in Figure 7(b) then show that the optimal action value function Q∗(s0, a0) at time t = 0 decreases
(taxpayers’ losses increase in absolute value) for all potential actions, with increasing probabilities of default.
Two interesting features appearing are: (i) the initially narrowly optimal action (0@30) becomes clearly optimal
as the probabilities of default increase; (ii) the worst possible action, namely the one to avoid, changes from
the smallest possible investment of 0.5%Wi to larger investments of 1.0%Wi, 1.5%Wi in all risky financial
institutions i. That is, even these medium size additional investments are not enough to make them resilient,
but still significantly increase the funds at risk in case of default.

(c) Our results in Figure 7(c) also show that the optimal action value function Q∗(s0, a0) at time t = 0 decreases
for all potential actions, with increasing bilateral credit exposures wij between financial institutions across the
whole network. We also note that the difference in the performance of the optimal investment of a large amount
(0@30) and non investing at all, increases with greater credit exposures amongst institutions.

(d) It has already been confirmed by both case studies under consideration (KK and EBA network subsections),
that as the percentage α of potential wealth loss upon default increases, the inaction (no investments) becomes
less convenient for the government. We now aim to explore further the transition between the scenarios when it
is convenient and not convenient for a regulator to intervene, by studying the optimal action values Q∗(s0, a0)
at time t = 0 with respect to changes in α. Our results in Figure 8(a) conclude that: (i) there exists a critical
αc ≈ 0.00079 that splits the parameter space of α-values into two “wealth loss regimes” of high/low values,
reflecting governmental action/inaction, respectively; (ii) the optimal action at time 0 changes drastically (non-
smoothly) from a do not invest anything policy for α just below αc to an invest the maximum amount of
3.0%Wi in all risky institutions i (0@30) policy for α just above αc. Notice that, these actions are in fact the
two extremes. This is an interesting result as one might have expected a smoother transition between optimal
actions as α increases.

(e) We then conclude from our results in Figure 8(b), which is a severely distressed version of the original network
(presented in Fig. 8(a)), where the financial institution i’s capital Ei(0) has been artificially halved, that the
optimal action value function Q∗(s0, a0) at time t = 0 changes significantly both quantitatively and qualitatively.
Interestingly, the optimal action for α > αc becomes the considerably decreased investment of 1.5% Wi in all
risky financial institutions i (0@15), compared to the original network (see Fig. 8(a)). A more thorough analysis
in Figure 9 reveals that, as the initial capital Ei(0) decreases, the optimal investment amount indeed decreases
as well. In particular, we observe that the investment of 3.0%Wi in all risky financial institutions i, becomes
2.5%Wi when the capital decreases by 25% and 1.5%Wi when the capital decreases by 50%. Furthermore, our
results in Figure 9 reveal that the universally (for all Ei(0)) worst action is to invest the lower amount of 0.5%Wi

in all risky financial institutions i, as such an additional investment is too small to make them resilient, but still
increases the funds at risk in case of default.
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Lastly, we perform a sensitivity analysis of the aforementioned wealth loss regimes versus the financial institutions’
initial capital. We can conclude from our results in Figure 8(b) that, as the financial institution i’s capital Ei(0)
decreases, the value αc separating the two wealth loss regimes of unfavourable and favourable regulatory interventions,
is significantly lower αc ≈ 0.0005. Namely, the government is willing to intervene for much lower percentages of wealth
loss.

DISCUSSION

The main theoretical contribution of this paper is twofold. On the modelling side, we propose a framework with
a dynamic network of financial institutions, which allows governments or regulatory bodies to assess and quantify
bank bailout decisions; we further show how these decisions can be cast into actions in a Markov Decision Process
(MDP), where the states of the MDP are defined in terms of the underlying network of financial exposures and the
MDP dynamics is derived from the network dynamics. On the optimisation side, in order to identify the optimal
governmental investment policy from the taxpayers’ standpoint, for each state of the financial institutions network at
each time t, we develop a methodology involving artificial intelligence techniques that learn the optimal bailout actions
to minimise the taxpayers’ losses (for details refer to the Methods section). This methodology goes beyond standard
theory and overcomes several technical hurdles, which could also have a significant impact on tackling stochastic
control problems in dynamic networks with few reward signals.

In the implementation of our framework and methodology in two case studies, it is evident from our analysis that
the loss for the taxpayers, as a fraction α of the financial institution’s total assets upon default, plays a central role
in systemic risk modelling. In our main case study, which uses the data relative to the European global systemically
important institutions, we find that governmental interventions do not improve the expected loss of the financial
network if α < αc, for some critical threshold value αc, which is determined by the network’s characteristics and is
decreasing as the distress of the network increases. We also find that the convenience to intervene increases for longer
crisis time horizons, smaller banks’ resilience (equity) and higher bank bilateral credit exposures. Moreover, using a
well known small graph (the Krackhardt kite network) as a simplified case study, we find that even though investing
in central nodes is a priori more favourable, the government should optimally keep investing in a node if it had already
invested in it in the past, even if that bank is not a central node in the network. The government needs to evaluate
carefully a potential investment, since the rescued financial institution could increase its risky investments knowing
that it would be bailed-out in case it became distressed again, thus leading to moral hazard.

The modelling and optimisation methods in this paper can be extended in several directions. The decision maker
could introduce a second layer of stochasticity to the model, driving the market conditions after the end of the
crisis. This would allow the additional optimisation of the sale timing and price of the acquired shares of rescued
(surviving) financial institutions, in view of maximising the taxpayers’ profits or minimising their losses from these
investments. Another possible extension could be the consideration of an action-dependent end of the crisis time
Mt := M(J1(t), . . . , JN (t)), whereby large bailout decisions could shorten the duration of the crisis. Such extensions
would require the use of other methodologies, which could lead to interesting future research projects.

METHODS

Value function approximation

In order to solve our MDP using our variation of a Fitted Value Iteration algorithm, we need a parametric rep-
resentation of the optimal value function V∗(st). In our case, we see from (20) that V∗(st) is minus the minimum
expected cumulative loss when starting from state st (i.e. the maximum expected discounted cumulative reward from
state st), incurred between time t and the end of the episode at time M .

The potential for additional losses in the financial network increases with the number of (surviving) nodes and
number of residual steps m := M − t until the end of the crisis. It is thus natural to try to approximate V∗(st) by a
(weighted) sum of the expected direct loss contributions due to each individual node at each of the remaining m time
steps (cf. optimisation criterion in (20)).

We estimate these expectations using an approximation of each node’s probability of default and overall wealth
at all remaining time steps. To do so, our methodology prescribes to firstly use the current probabilities of default
for each step to approximate the expected future impact of defaults on each node i at the next time step. These
expected impacts are then used as input in order to estimate the (expected) future wealth, equity and obtain an
updated approximate probability of default for each node i at that next time step, which closes the loop. By following
this procedure, we are then able to obtain an approximation Zik(st) of the expected direct loss contribution of each
individual node i ∈ I \ Idef (t) at each remaining time step k ∈ {1, ...,m}, for any arbitrary policy π.
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In order to obtain the matrix Z := (Zik(st)) that will be used to define our value function approximation, we
take into account potential government interventions to minimise the taxpayers’ losses. This involves a sequential
optimisation whereby, at each remaining step k, the government chooses the action ak that minimises the sum of the
contributions Zik, assuming no intervention at future steps and using the already chosen actions for previous steps.
Further mathematical details of our choice of Z in terms of the characteristics of the network are given inthe following
Value function parametrisation subsection.

Our ansatz for the parametric representation V ∗(st, β) of V∗(st) is that it is given by a linear combination of
the elements Zik, in which the coefficients (weights) β are arranged in a matrix that can change with time, i.e.
β ≡ βt := (βik(t)). Namely,

V ∗(st, βt) := −
∑
i,k

βik(t)Zik(st), for i ∈ I \ Idef (t), k ∈ {1, ...,m}. (27)

Value function parametrisation

In this subsection, we detail our choice for (Zik(st)) used in our ansatz for the value function approximation
V ∗(st, β) in (27), with node i ∈ I \ Idef (t) and artificial step k ∈ {1, ...,m = M − t}, where each k corresponds to
the time step t+ k − 1. The last step k = m therefore refers to time t = M − 1, namely the last step away from the
end of the episode. In the following, we denote by Wi, Ei and Ji the current levels of wealth, equity and cumulative
investment at time t.

We introduce the auxiliary matrix Z, with elements Zik(st; at, ..., at+k−1) representing our approximation of the
expected direct loss contribution due to the default of node i at time t + k − 1, taking into account the government
actions at+j−1 at times t + j − 1, for all j = 1, ..., k. That is, we approximate the expected values of the summands
involved in the optimisation criterion (20) via the terms

Zik :=

{
PDik Lik, if k = 1;

PDik γk−1 Lik

∏k−1
r=1(1− PDir), if k > 1,

where, the approximate probability of default of each node i at time t + k − 1 is given by a value PDik and the
approximate taxpayers’ loss by a value Lik. Note that in this approximation for a step k > 1, a node i can contribute
to the expected loss, only if it has not defaulted in the previous steps; hence, the presence of the survival probabilities
1− PDir, for all r ∈ {1, . . . , k − 1}.
To be more precise with the above approximations, we begin by approximating each node’s probability of default

(cf. its original definition in (13)) via

PDik := max{PDM(Wi + Jik − Iik, Ei + Jik − Iik, µi, σi), PDMfloor
i },

which takes into account the potential cumulative investment Jik from the government and our approximation of the
expected cumulative impact Iik on node i up to time t+ k− 1. On one hand, the cumulative investment Jik in node i
is a function of the actions (at, ..., at+k−1) that the government can take between t and t+ k− 1 and is independently
defined (via its standard definition) by

Jik(at, ..., at+k−1) :=

k∑
r=1

∆Ja
i (t+ r − 1).

On the other hand, we approximate the expected cumulative impact Iik via the approximated probability of defaults
of all nodes j ∈ H := I \ (Idef (t) ∪ {i}) at the previous time steps, which creates the desired approximation loop.
Namely, (cf. its original definition in (15)) we obtain the approximation

Iik :=


0 if k = 1;∑

j∈H PDj1wij if k = 2;

Ii k−1 +
∑

j∈H PDj k−1wij

∏k−2
r=1(1− PDjr) if k > 2.

Consequently, Iik is used as an input to approximate the taxpayers’ loss Lik due to the default of node i at time
t+ k − 1 (cf. its original definition in (16)) via

Lik := αi (Wi + Jik − Iik) + LGDi (Ji + Jik).
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At this point, we note that each Zik = Zik(st; at, ..., at+k−1)depends on the actions (at, ..., at+k−1) via the terms
Jik(at, ..., at+k−1) involved in both PDik and Lik. The only remaining task is therefore to provide an approximation for
the actions (at, ..., at+k−1) that optimise the aforementioned quantities Zik according to the objective in our stochastic
control problem defined in (20). To that end, we define the total expected direct loss contribution TL(st; at, .., aM−1)
as an approximation of the optimisation criterion in (20) for any arbitrary policy π, or equivalently any actions
at, .., aM−1. Namely, we aim at finding an approximation (at, ..., aM−1) for the actions that minimise (over all nodes
i ∈ I \ Idef (t) in any of the remaining time steps k ∈ {1, ...,m})

TL(st; at, at+1, .., aM−1) :=
∑
i,k

Zik(st; at, at+1, .., at+k−1).

To do so, we calculate each at+j−1 sequentially for each step j ∈ {1, ...,m} as follows:

at := argmin
at

TL(st; at, a
0
t+1, a

0
t+2, .., a

0
M−1)

at+1 := argmin
at+1

TL(st; at, at+1, a
0
t+2, .., a

0
M−1)

...

aM−1 := argmin
aM−1

TL(st; at, at+1, ..., aM−2, aM−1),

with a0 denoting the action corresponding to no additional government investment. Then, the specific matrix Z =
(Zik(st)) involved in our value function approximation V ∗(st, β) in (27) is defined by

Zik(st) := Zik(st; at, ..., at+k−1).

Action value function approximation

Considering now the definition (24) of Q∗(st, at) together with the approximation V ∗(st, β) in (27) of V∗(st), we
introduce Q∗(st, at, βt+1) as the parametric representation of Q∗(st, at), given by

Q∗(st, at, βt+1) :=
∑
s′t+1

Pat
(st, s

′
t+1)(Rat

(st, s
′
t+1) + γV ∗(s

′
t+1, βt+1))

=
∑
s′t+1

Pat
(st, s

′
t+1)Rat

(st, s
′
t+1) + γ

∑
s′t+1

Pat
(st, s

′
t+1)V ∗(s

′
t+1, βt+1).

(28)

However, the direct calculation of the above expressions (essential in the forthcoming Learning process subsection)
are non-feasible in the existing form, due to the enormous set of states s′t+1 that can be reached from state st, even
for relatively small networks (see the definition of the MDP for details on reachable states). In order to overcome this
hurdle, we propose the following technique, which exploits the duality between the dynamics of the financial network
(our nodes’ default modelling) and the MDP transition probabilities and rewards. To that end, we treat the two sums
on the right-hand side of equation (28) separately, and obtain the desired reformulation in the following three steps.

Step 1. We first recall (cf. the definition (21)) that
∑

s′ Pa(s, s
′)Ra(s, s

′) is the one-step expected reward after
taking action a ∈ As. We then recall that, the transition probability Pa(s, s

′) was defined through the Gaussian latent
variable model (see (17)) and observe that there is a one-to-one correspondence between additional nodes defaulting
from state s and the resulting state s′ that is reached given action a. In light of this duality, we can rewrite the first
sum in terms of the nodes of the network instead of the MDP transition probabilities and rewards, according to∑

s′t+1

Pa(st, s
′
t+1)Ra(st, s

′
t+1) = −

∑
i∈I\Idef (t)

PDa
i (t) L

a
i (t), (29)

with the updated probability of default PDa
i (t) and taxpayers’ overall loss La

i (t) after taking action at ∈ Ast at time
t, given by (13) and (16), respectively.
Step 2. The term

∑
s′ Pa(s, s

′) V ∗(s
′, β) can then be estimated via Monte Carlo simulations, which involve (a)

sampling s′ using the distribution P a
s defined by the transition probability mass function Pa(s, s

′) and (b) calculating
the expected value EPa

s [V ∗(s
′, β)] by averaging the values V ∗(s

′, β). Hence, we have∑
s′t+1

Pat(st, s
′
t+1)V ∗(s

′
t+1, βt+1) ∼ EPat

st [V ∗(s
′
t+1, β)]. (30)
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However, the non-feasibility is essentially still present here due to the enormous number of states s′t+1 involved in
Pat

(st, s
′
t+1), which defines the sampling distribution P at

st .
Similarly to Step 1, we once again use our knowledge of the underlying network dynamics to describe the right

hand side of (30) in terms of nodes defaulting instead of MDP transition probabilities. Using the duality between
states s′t+1 reached given action at and the set Idef (t + 1) \ Idef (t) of additional nodes defaulting at time t + 1, we
denote by Qat

st the probability distribution of states s′t+1, which are derived by using our Gaussian latent variable
model. In particular, sampling from distribution Qat

st translates into first simulating which nodes i default at time
t+ 1, i.e. i ∈ Idef (t+ 1) \ Idef (t), via the updated default mechanism in (14), and then we obtain the corresponding
state s′t+1 with all its resulting characteristics. Given that the distributions Qa

s and P a
s are equivalent (due to the

aforementioned duality/one-to-one correspondence), we can therefore rewrite (30) as∑
s′t+1

Pat
(st, s

′
t+1)V ∗(s

′
t+1, βt+1) ∼ EQat

st [V ∗(s
′
t+1, β)]. (31)

Step 3. Merging the expressions obtained in Steps 1 and 2, namely (29) and (31), we can eventually rewrite
Q∗(st, at, βt+1) from (28) for all t ∈ [0,M − 1], in the form of

Q∗(st, at, βt+1) = −
∑

i∈I\Idef (t)

PDat
i Lat

i + γ EQat
st

[
V ∗(s

′
t+1, βt+1)

]
. (32)

Learning process

In order to learn the parameters βik(t) we primarily need to use the Bellman Optimality Equation from (26).
Recalling the expression (25) leading to its original derivation and using the approximation Q∗(st, at, βt+1) from (28)
instead of Q∗(st, at), we can define a function VB , that we call Bellman value, by

VB(st, βt+1) := max
at

{
Q∗(st, at, βt+1)

}
= max

at

{∑
s′t+1

Pat
(st, s

′
t+1)

(
Rat

(st, s
′
t+1) + γV ∗(s

′
t+1, βt+1)

)}
.

or equivalently, using (32), we get the more computationally convenient (recall our proposed technique in the Action
value function approximation subsection) form

VB(st, βt+1) := max
at

{
−

∑
i∈I\Idef (t)

PDat
i Lat

i + γ EQat
st

[
V ∗(s

′
t+1, βt+1)

]}
. (33)

Our learning process will then compare our approximation V ∗(st, βt) from (27) of the optimal value function with
VB(st, βt+1) from (33), at each state st and at any time t, with the aim of adjusting β so that the two values come
closer. A potential issue here is that the Bellman value VB depends itself on β, which is the parameter we want to fit,
hence potentially triggering a divergent loop. In order to guarantee the convergence of our approach, we thus need
to use specific learning strategies.

To begin the procedure, we can initialise β with βik(t) = 1 for all i, k, as a natural starting point due to the
intuition behind our initial approximation V ∗(st, βt) of the optimal value function in (27), where βik(t) multiply the
approximated expected direct losses Zik(st) (recall the Value function approximation and parametrisation subsections
for more details). Then we notice that, for each state st, our approximation V ∗(st, βt) depends on β at time t, while
the corresponding VB(st, βt+1) on β at time t+1. Using this fact, in order to guarantee the convergence of our learning
process, we fit β backwards in time. This results in V ∗(st, βt) being compared at time t with a value VB(st, βt+1) that
is fixed, because βt+1 has already been fitted in the previous step (time t+1), thus solving any potential convergence
problem. This learning process then repeats the same procedure backwards in time by performing a ridge regression
comparing V ∗ with VB , by fitting β until the difference between them is “small enough”, and the procedure then
concludes successfully with obtaining βfit, i.e. the fitted parameters βt for each time t.
It is worth noting that our aforementioned approach is feasible due to the facts that: (a) the crisis has a fixed

maturity M , and (b) the value function V∗(sM ) = 0 at time M by definition (19). Consequently, we observe that
V∗(st) = 0 for all t ≥ M , while for t ∈ [0,M − 1], the backwards procedure works as follows.

The fact that V∗(sM ) = 0 further implies that at time M − 1, we have VB(sM−1, βM ) ≡ VB(sM−1), since it will
not depend on β. In view of (33), we can thus write

VB(sM−1) = max
aM−1

{
−

∑
i∈I\Idef (M−1)

PD
aM−1

i L
aM−1

i

}
= V∗(sM−1), (34)
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where the latter equality follows from (26) and (29).
Now that we can calculate the exact optimal value function V∗ for each state at time M − 1, we notice from (33)

that VB(sM−2, βM−1) ≡ VB(sM−2) is also independent of β, namely

VB(sM−2) = max
aM−2

{
−

∑
i∈I\Idef (M−2)

PD
aM−2

i L
aM−2

i + γ EQ
aM−2
sM−2

[
V∗(s

′
M−1)

]}
. (35)

We then fit β backwards in time for the decreasing sequence of time steps (M − 2, ..., 0), by creating a representative
portfolio SR of MDP states for each time step (namely, a subset of the state space S that is reachable from s0, see
the following two subsections for details) and performing a ridge regression (with a 5-fold cross-validation) comparing
V ∗(st, βt) with VB(st, βt+1). To be more precise, for time step M − 2, we compare V ∗(sM−2, βM−2) with VB(sM−2),
for all the states sM−2 ∈ SR, and we fit βM−2.
Then, for time step M − 3, we calculate from (33) that

VB(sM−3, βM−2) = max
aM−3

{
−

∑
i∈I\Idef (M−3)

PD
aM−3

i L
aM−3

i + γ EQ
aM−3
sM−3

[
V ∗(s

′
M−2, βM−2)

]}
, (36)

then compare it with V ∗(sM−3, βM−3) and hence fit βM−3, for all the states sM−3 ∈ SR.
We continue the procedure backwards in time until we successfully obtain βfit, i.e. the fitted βt for each time t.

“Reachable” MDP states example

To illustrate the implementation of our model and how to identify reachable states, we consider here a simple
example of a network with three nodes I = {1, 2, 3} and wij = 1, for all i ̸= j ∈ I, at a time t. To define state st at
time t, we assume that node 3 ∈ Idef (t) has already defaulted, while the remaining nodes have Wi(t) = 100, Ei(t) = 3
and PDi(t) = 0.001 for i ∈ I \ Idef (t) = {1, 2}.
In case the government does not intervene, the states s′t+1 that can be reached from state st are those where: (i)

all the nodes default at time t, i.e. Idef (t + 1) = I; (ii) nodes 1 and 2 are still active and Wi(t + 1), Ei(t + 1) and
PDi(t+ 1) for i ∈ {1, 2} are the same as for state st; (iii) node 1 defaults at time t while node 2 remains active, i.e.
Idef (t + 1) = {1, 3}, W2(t + 1) = 99 and E2(t + 1) = 2 (since the impact I2(t) = w21 = 1) and PD2(t + 1) needs to
take the value calculated via (6) using the W2(t+1) and E2(t+1) inputs; and (iv) node 2 defaults at time t but node
1 remains active, which is analogous to (iii) by swapping indices 1 and 2.

Now, if the government decides to invest, i.e. a → (∆Ja
1 (t),∆Ja

2 (t)) on nodes 1 and 2, respectively, at time t, we
need to update the capitals Ea

i (t) = Ei(t) +∆Ja
i (t) and total assets W a

i (t) = Wi(t) +∆Ja
i (t) for i ∈ {1, 2} according

to the government intervention (cf. (12)) and then use Ea
i (t),W

a
i (t) to calculate the updated PDa

i (t) according to
(13). Using these updated characteristics Ea

i (t),W
a
i (t) and PDa

i (t), we can then perform the same analysis as above
to identify the reachable states.

Representative portfolio SR of “reachable” states

Recall that in the Value function approximation subsection, we express our approximation V ∗(st, β) in (27) of the
optimal value function V∗(st) as a linear combination of terms Zik(st) with coefficients βik(t). In order to fit these
βik(t), our methodology in the Learning process subsection, requires the identification of a representative portfolio
SR of MDP states that can be reached at time t from the initial state s0, and for which we can calculate the Bellman
value VB using (33), equate it with V ∗(st, βt) and derive a set of linear equations in order to obtain the coefficients
βik(t) via a ridge regression.

The states st in our representative portfolio SR at each time t, are obtained in two main ways, taking into account
the trade-off between stable results and computational resources.

1st way. We obtain elements st ∈ SR from the initial state s0, after changing the time to maturity from M to
M − t (i.e. state s0 is moved forward in time) and forcing a set U of nodes to default. The representative portfolio
SR contains:

(a) the state corresponding to U = ∅;
(b) all the states corresponding to U = {i} for i ∈ I, i.e. with one additional defaulted node with respect to s0;

(c) a selection of states corresponding to |U | > 1, i.e. with multiple additional defaulted nodes – these are chosen
randomly with probabilities proportional to exp (−|U |), so that a greater importance is given to states with
fewer number of additional defaults, as they are more likely to be reached in an actual simulation.
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2nd way. In addition to the above states, we obtain elements st ∈ SR by performing a government action a0 ∈ As0

on state s0 and then move the corresponding state forward at time t, i.e. make the time to maturity equal to M − t.

Optimal solution of the MDP

Finally, we use the (fitted) optimal value function V ∗(s, β
fit), with βfit obtained in the Learning process subsection,

together with equation (32) to calculate Q∗(s, a, β
fit), hence solving the MDP. The resulting optimal action value

function is

Q∗(st, at) ≈ Q∗(st, at, β
fit) = −

∑
i∈I\Idef (t)

PDat
i Lat

i + γ EQat
st

[
V ∗(s

′
t+1, β

fit)
]
. (37)
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SYMBOL W E PD BANK
BFA 235 12 0.0116 BFA
MPS 201 7 0.0093 Monte dei Paschi di Siena
UNI 1034 45 0.0017 Unicredit
INT 696 38 0.0017 Intesa Sanpaolo
CAI 377 19 0.0017 La Caixa
BNP 2253 70 0.001 BNP Paribas
BAR 1940 59 0.001 Barclays
CAG 1723 71 0.001 Credit Agricole
DEB 1659 63 0.001 Deutsche Bank
SAN 1456 64 0.001 Santander
RBS 1411 51 0.001 RBS
SOC 1409 47 0.001 Societe Generale
BPC 1337 50 0.001 BPCE
ING 1164 41 0.001 ING
LOY 1107 46 0.001 Lloyds
BBV 723 42 0.001 BBVA
CMU 695 37 0.001 Credit Mutuel
COM 656 25 0.001 Commerzbank
DAN 494 19 0.001 Danske Bank
ABN 421 16 0.001 ABN Amro
DZB 356 13 0.001 DZ Bank
DNB 332 15 0.001 DNB
SEB 310 13 0.001 SEB
LBW 290 13 0.001 LBBW
BLB 275 10 0.001 Bayern LB
SWE 249 10 0.001 Swedbank
KBC 232 14 0.001 KBC
POS 223 7 0.001 Banque Postale
ERS 219 11 0.001 Erste Group
NLB 216 7 0.001 NordLB
HLB 199 8 0.001 Helaba
HSB 2680 117 0.0004 HSBC
RAB 728 34 0.0004 Rabobank
NOR 655 25 0.0004 Nordea
HAN 334 11 0.0004 Handelsbanken

TABLE I: European Union’s Global Systemically Important Institutions (GSII). The total asset (W) and
Tier 1 capital (E) are expressed in billions of EUR. The data are from the European Banking Authority (EBA) [29]
and are relative to the end of 2014. The probabilities of default have been derived using data from the Fitch credit

rating agency [31].
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FIG. 1: Krackhardt Kite (KK) network. The KK network is used to assess how bailout decisions are influenced
by node centrality. The ten nodes of the graph in I = {1, ..., 10} represent financial institutions, which are identical

apart from their probabilities of default (PD) at time 0, which are PDi(0) = 0.01, for i ∈ {4, 8, 10}, and
PDi(0) = 0.001, for i ∈ I \ {4, 8, 10}. They all have a normalised total asset Wi(0) = 100 and capital Ei(0) = 3. The
edges between nodes, representing claims between financial institutions, are oriented and homogeneous, assuming

the value wij = 1, for all i ̸= j ∈ I.
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FIG. 2: Optimal action value function Q∗ for the Krackhardt Kite (KK) network. The optimal action
value function Q∗(s0, a0) at time t = 0 for different actions a0 (a government investment of 0, 0.5, 1, 1.5 or 2 in the
equity of the nodes) and values of percentage wealth loss upon default α (0.0001, 0.001 and 0.01). In the legend, the
colours identify the nodes {0, 10, 4, 8} in the figure (0 represents all nodes). On the x axis, the ActionID 0@0 means
no investment, 0@05 means investing 0.5 in all the nodes, 10@05 means investing 0.5 in node 10, etc. For a small

value of α = 0.0001, the best action is not to invest (0@0). As α increases, so does the convenience of investing more
capital. For α = 0.01 the best action (corresponding to smallest loss) is to invest 1.5 in all the nodes (0@15). It is

never convenient to invest the maximum amount of capital (0@20), while investing 0.5 in all the nodes (0@05) is the
worst action for all values of α, as the additional capital is not enough to strengthen the network and it is at risk

following potential defaults.
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b) KK network with pre−existing investment: 0.5 at node 10
 

FIG. 3: Optimal action value function Q∗ for the Krackhardt Kite (KK) network as a function of time
to the end of crisis. The results are obtained for the percentage α = 0.0001 of wealth loss upon default, and focus
on nodes 4 (central node) and 10 (peripheral node). In the legend, the ActionID 0@0 means no investment, 0@05
means investing 0.5 in all the nodes, 10@05 means investing 0.5 in node 10, etc. a The algorithm feels the network
structure and suggests to invest in node 4 (leading to smaller loss) rather than node 10. b In case the government

had previously invested in node 10, the government needs to protect its investment by optimally risking an
additional investment in node 10.

FIG. 4: Maximum spanning tree of the European Banking Authority (EBA) network. The network of
the European Union’s Global Systemically Important Institutions (GSII) has been reconstructed from aggregated

data available at the EBA website [29]. Each node represents a financial institution (see Table I), its colour
represents its probability of default (PD), and darker edges identify stronger exposures.
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FIG. 5: The convenience to intervene Conv for the European Banking Authority (EBA) network as a
function of time to the end of crisis. a The Conv (in millions of EUR) defined in Eq. (23) is positive for higher
percentages of wealth loss upon default (α = 0.01, 0.005, 0.001), thus investing is a favourable action. Conversely,

Conv < 0 for smaller α (α = 0.0001), implying that it is not convenient for the government to invest. Conv tends to
be an increasing function of the time to the end of the crisis when positive, and a decreasing function when negative.
b A severely distressed version of the network, where the banks’ capital Ei(0) has been artificially halved (all other
characteristics are the same). We observe that such a distress has the effect of increasing Conv for each value of α.

FIG. 6: The convenience to intervene Conv for the European Banking Authority (EBA) network as a
function of the time until the end of crisis. The values of Conv (in millions of EUR) are obtained for the
percentage α = 0.005 of wealth loss upon default. a We consider different percentages (50%, 75%, 100%) of the
initial capital Ei(0) available to financial institutions i at time t = 0. Conv tends to increase on average as the

financial institutions’ initial capital Ei(0) decreases. It is also interesting to note that, this convenience intensifies for
larger lengths of time until the end of the crisis. b We consider different multipliers (1, 1.5, 2) of the bilateral credit
exposures wij of financial institutions i to the default of j at time t = 0. Conv increases as the wij ’s increase and

the impact of longer crisis duration on Conv is massive.
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FIG. 7: The optimal action value Q∗(s0, a0) for the European Banking Authority (EBA) network at
time t = 0. In the legend, ActionID 0@0 means no investment, 0@05 means investing 0.5 in all the nodes, etc. The
results are obtained for the percentage α = 0.005 of wealth loss upon default. a As a function of discount factor γ,
Q∗(s0, a0) decreases, for all potential actions a0, as γ increases. b As a function of the percentage increase of the

probabilities of default PDi(0) of financial institutions i at time 0, Q∗(s0, a0) decreases, for all potential actions a0,
as PDi(0) increase. c As a function of the magnitude of multiplier of the bilateral credit exposures wij of financial

institutions i to the default of j, Q∗(s0, a0) decreases, for all potential actions a0, as wij increase.

αcαcαcαcαcαcαcαcαcαcαcαcαcαcαcαcαcαcαcαcαcαcαcαcαcαcαcαc−350

−300

−250

−200

−150

−100

0.0005 0.0006 0.0007 0.0008

A
ct

io
n 

Va
lu

e 
  (

m
. E

U
R

)

ActionID

●

●

●

●

●

●

●

0@0

0@05

0@10

0@15

0@20

0@25

0@30

a) EBA network

αcαcαcαcαcαcαcαcαcαcαcαcαcαcαcαcαcαcαcαcαcαcαcαcαcαcαcαc
−225

−200

−175

−150

−125

−100

0.0005 0.0006 0.0007 0.0008

α

A
ct

io
n 

Va
lu

e 
  (

m
. E

U
R

)

ActionID

●

●

●

●

●

●

●

0@0

0@05

0@10

0@15

0@20

0@25

0@30

b) EBA network with half capital E
 

FIG. 8: The optimal action value Q∗(s0, a0) for the European Banking Authority (EBA) network at
time t = 0 as a function of the percentage α of wealth loss upon default. In the legend, the ActionID 0@0

means no investment, 0@05 means investing 0.5 in all the nodes, etc. a There is a critical value of α given by
αc ≈ 0.00079, beyond which the inaction of the government is no longer optimal. In particular, for α just above the

critical αc, the best action becomes the investment of 3.0%Wi in all risky financial institutions i (0@30). b A
severely distressed version of the network, where the banks’ capital Ei(0) has been artificially halved (all other

characteristics are the same). We observe that such a distress affects Q∗(s0, a0) at time t = 0 and the value αc at
which a regulatory intervention becomes favourable is lower, namely αc ≈ 0.0005. The optimal action becomes the

investment of 1.5% Wi in all risky financial institutions i (0@15).
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FIG. 9: The optimal action value Q∗(s0, a0) for the European Banking Authority (EBA) network at
time t = 0 as a function of the percentage of initial capital Ei(0) available to financial institutions i at
time t = 0. In the legend, 0@0 means no investment, 0@05 means investing 0.5 in all the nodes, etc. The results
were obtained for the percentage α = 0.005 of wealth loss upon default and show that the best action a∗ amongst

a0’s (corresponding to the highest Q∗(s0, a0) value) decreases (0@30 → 0@25 → 0@15) as Ei(0) decrease.


