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Abstract: Photocatalytic degradation is one of the environmentally friendly methods used in treat-
ing dye wastewater. In this study, a series of MXene/g-C3N4 heterostructure photocatalysts with
different loading amounts of MXene (1, 4, 8, and 12 wt.%) were successfully synthesized via the
wet impregnation method and their photocatalytic activity was evaluated via the degradation of
methylene blue under visible-light irradiation. As such, the 1 wt.% MXene/g-C3N4 heterostructure
photocatalyst achieved a high degradation of methylene blue compared to the pure g-C3N4 under
visible-light illumination of 180 min. This significant improvement was attributed to the intimate
interfacial contact, evidently from the FESEM analysis, which allows the smooth photocharge carriers
to transport between g-C3N4 and MXene. Additionally, the larger BET surface area demonstrated by
the 1 wt.% MXene/g-C3N4 heterostructure allowed this sample to have higher adsorption of dye
molecules and provided a higher number of reactive sites, which was beneficial for the enhancement
of the photocatalytic activity. Nevertheless, it was found that the excessive loading of MXene can
substantially impede photocatalytic activity. This was attributed to the decrease in the active sites,
as well as the weakened crystallinity of the MXene/g-C3N4 heterostructure photocatalyst, evident
from the FTIR and XRD analysis. All in all, this study has shown the potential of the MXene/g-C3N4

photocatalyst as a promising photocatalyst for highly efficient wastewater treatment applications.

Keywords: graphitic carbon nitride; MXene; degradation; methylene blue; wastewater

1. Introduction

Nowadays, the textile industry has proven to be one of the most important industries
to humankind as clothes serve as a basic need for humans. The textile industry has grown
rapidly over recent years, contributing 7% of total world exports worth US $1 trillion and
employing 35 million people around the globe [1]. However, the textile industry poses
a serious environmental issue as it consumes a huge amount of fresh water on a daily
basis and discharges 0.7 megatons of dyes products annually [2]. The released colored dye
can cause several environmental issues, such as contamination of viable water sources, as
well as endangering aquatic life and eventually causing harm to the human society if not
controlled. Methylene blue (MB) can be commonly found inside dye waste and its natural
composition is highly carcinogenic due to the presence of aromatic compounds and amines,
resulting in histamine poisoning [3].

In recent years, various methods for wastewater treatment, especially for methylene
blue, such as adsorption, sedimentation, filtration through a membrane, and coagulation,
has been explored [4]. Even though these methods can remove most pollutants, research
has also showed that the pollutants were not fully eliminated [5]. Other than that, the
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aforementioned environmental technologies are not very efficient for this purpose as they
demand high chemical and operational costs, generation of complex sludge, and need a
long time to work. It is important to explore new alternatives that are able to further degrade
methylene blue with low-cost materials, as well as minimize the energy required. AOP
(advanced oxidation process) is one of the viable options and is a propitious wastewater
treatment activity, capable of degrading most of the pollutants as the as-generated hydroxyl
radicals possess high oxidation prospects [6].

Photocatalysis is one of the applications of an advanced oxidation process, utilizing
solar energy to initiate the reaction, and has become a very favorable method in treating
the water pollution issues due to its sustainability and eco-friendly attributes [7]. Graphitic
carbon nitride (g-C3N4) has been a promising candidate in the photocatalytic arena as it
has high thermal and chemical durability, moderate bandgap energy (~2.7 eV), non-toxicity,
is economical, and has a high surface area for the reaction [8]. However, the performance
of g-C3N4 upon photocatalytic reaction has been limited due to its high recombination
of photogenerated electrons and holes [9]. Therefore, it is very crucial for a subsequent
treatment to further improve the photocatalytic reaction of pristine g-C3N4. In recent years,
various strategies for the improvement of g-C3N4 have been proposed, such as structural
modifying, improving crystallized structure, combining with a different photocatalyst that
has an appropriate band edge position, and loading with a co-catalyst [10]. Among the
aforementioned strategies, loading the g-C3N4 with different photocatalyst material for the
formation of the heterostructure system has shown promise in expediting the separation of
the photocharge carrier with respect to the formation of the Schottky junction [11].

MXene, a new type of 2D transition metal carbide, nitride, or carbonitride, which
is obtained by etching the Ti3AlC2, has caught significant attention as a coupled photo-
catalyst material for the formation of the heterostructure system. This is attributed to its
peculiar features, including excellent stability in structure, a large number of hydrophilic
functional groups on its surface, great metal conductivity, and stronger redox reactivity
stemming from its surface terminal Ti sites [12]. In light of this, MXene has abundant
surface groups and huge exposed metal sites, which enable strong annexation with 2D
photocatalyst, making it an efficient co-catalyst to expedite photocatalytic degradation of
methylene blue [13,14]. With respect to the abovementioned intriguing features of MXene,
it is expected that the combination of MXene and g-C3N4 photocatalyst can further enhance
the photocatalytic activity of the g-C3N4 photocatalyst. In addition, encouraged by the ad-
vantages of MXene, which possesses an excellent metallic conductivity, the formation of the
aforesaid heterostructure system will induce the development of a Schottky junction, which
results in the formation of a built-in electric field. Thereinto, this phenomenon is greatly
known to significantly improve the photocharge carriers’ separation and migration within
the heterostructure system, resulting in an augmentation in photocatalytic degradation
performance.

Sparked by this inspiration, in the present work, the formation of g-C3N4/MXene het-
erostructure photocatalyst with Schottky junction was synthesized via a wet-impregnation
method. The performance of the aforesaid heterostructure photocatalyst was evaluated
using the degradation of methylene blue. Moreover, several characterization techniques
were used in order to examine the properties of the designed photocatalyst, including XRD,
FTIR, SAP, XPS, FESEM, HRTEM, and DR-UV-Vis analysis. The obtained photocatalyst
composite presents a notable improvement in photocatalytic degradation of methylene
blue. The improved photodegradation can be associated with the harmony effect of the
Schottky junction formed, as well as the 2D/2D interfacial contact between both materials,
enhancing the efficiency for separation and mobility of the photocharge carriers for photo-
catalytic reaction. On a whole, this work opens up an invigorating avenue for wastewater
treatment applications, particularly on the removal of dye, in which this work offers highly
efficient photocatalyst materials to be used with excellent performance.
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2. Materials and Methods
2.1. Materials

All of the reagents and solutions used to synthesize photocatalysts and photocatalytic
degradation studies were of analytical grade and were used without any further purifica-
tion. Urea (purity of 99%), hydrofluoric acid (assay at 49%), Ti3AlC2 (purity of 90%), and
methylene blue powder were purchased from Sigma-Aldrich company (St. Louis, MO,
USA). The deionized water was used in preparing all required aqueous solutions during
the experiments.

2.2. Photocatalyst Preparation

The g-C3N4 was synthesized using thermal polycondensation of urea by adopting
a method from the previous article [15]. Alumina crucible was filled with urea powder
until it reached 3/4 of the crucible, followed by constant heating in a furnace for 120 min at
500 ◦C with a heating rate of 5 ◦C/min. After the completion of the reaction, the furnace
was left to cool down to room temperature. The green-yellowish powder accumulated
inside the crucible was collected and crushed with a mortar.

The formation of MXene was conducted via a chemical etching process according to
the reported literature [16]. At room temperature, 1 g of Ti3AlC2 was mixed with 10 mL of
49% HF while slowly stirring the solution for 24 hrs. The precipitate of the etched formate
was collected and washed with deionized water and centrifuged until the pH value was
close to 7. The moisture of the black powder was removed by letting it dry in the oven at
60 ◦C overnight.

The composites of MXene/g-C3N4 heterostructure photocatalysts were synthesized
by using the wet impregnation method, as shown in Figure 1. Initially, 1 g of g-C3N4 was
added with 0.01 g MXene (labelled as 1 wt.% MXene/g-C3N4) and 30 mL of deionized
water. The mixture then underwent sonication for 30 min at room temperature. Then, the
mixture was stirred with heat for 45 min until a slurry was formed. The sample was left to
dry in the oven with a temperature of 60 ◦C for overnight drying. The sample was then
collected in a vial. The steps were repeated for the composites labelled as 4, 8, and 12 wt.%
MXene/g-C3N4 by changing the weight of MXene to 0.04, 0.08, and 0.12 g, respectively.
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Figure 1. Schematic diagram of the MXene/g-C3N4 photocatalyst synthesis process.

2.3. Physicochemical Characterization

The physicochemical properties of the as-prepared MXene/g-C3N4 photocatalysts
were studied via several characterization techniques. The crystallinity behavior of the
prepared photocatalysts was examined by X-ray diffraction (XRD; PANalytical model:
Xpert3 powder) with Cu-Kα radiation. Fourier transform infrared spectroscopy (FTIR)
was performed using Shimadzu 8400S within the range of 450 to 4000 cm−1 to identify the
various functional groups in the as-prepared photocatalysts. The morphological structures
of the as-prepared MXene/g-C3N4 photocatalysts were examined using HRTEM analysis
(120 kV Zeiss Libra 200), FESEM analysis (Zeiss Supra 55VP), and SAP (BET: Micromeritic
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ASAP 2000). The bandgap energy (DR-UV-Vis) and the surface chemical properties (XPS)
were measured using UV-Vis Carry 100 and Thermoscientific K-alpha, respectively.

2.4. Photocatalytic Degradation Testing

The photocatalytic degradation activities of the synthesized MXene/g-C3N4 het-
erostructure photocatalysts were evaluated by using a prepared methylene blue solution.
Firstly, 0.5 g of MXene/g-C3N4 sample was mixed with 100 mL of 10 mg/L aqueous methy-
lene blue. The pH of the reaction solution was measured in which was recorded at 8. Then,
the solution was left in the dark for one hour in order to achieve the adsorption–desorption
equilibrium [4]. Later, the experiment continued by irradiating the solution with a visi-
ble light source (500 W halogen lamp) with continuous stirring. The temperature of the
photocatalytic reaction was maintained at room temperature by using an external tabletop
fan. Subsequently, every 30 min, the methylene blue solution was extracted by using a
plastic syringe attached with a 0.45 µm filter. The results were analyzed by using a UV-Vis
spectrophotometer (UV-1800, Shimadzu) and the degradation activity of methylene blue
solution was studied using the following equation:

Degradation o f Methylene Blue (%) =

[
Abs0 − AbsF

Abs0

]
× 100 (1)

where Abs0 and AbsF are the initial and final absorbance of methylene blue solution at a
designated time.

3. Results
3.1. FTIR Analysis

Figure 2 shows the detailed structures of g-C3N4, MXene, and the as-synthesized
g-C3N4/MXene photocatalysts that were characterized by FTIR. Three distinguished char-
acterized peaks were observed. The broad adsorption peaks at 3000–3600 cm−1 indicate the
existence of the -NH functional group, allowing the N-H stretching vibrations, as well as the
termination of OH of the adsorbed hydroxyl species [17,18]. The strong peaks in the region
of 1100–1700 cm−1 indicate the C-N and C=N in the heterocycles of CN [13,19]. Other than
that, the visible peak at 800 cm−1 is attributable to the breathing mode of tri-s-triazine [15].
With regard to composites of MXene/g-C3N4, the characteristics of the g-C3N4 were well
preserved as the primary characteristic peaks of g-C3N4 were clearly observed. The results
show that the growing loading amount of MXene gradually reduced the magnitude of
peaks, indicating the reduction of some structures in g-C3N4 through the combination of
g-C3N4 with Ti3C2. The addition of larger amounts of MXene facilitated more changes that
occurred to the structure of MXene/g-C3N4 photocatalyst.
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3.2. XRD Analysis

The XRD analysis of the g-C3N4, MXene, 1 wt.% MXene/g-C3N4, 4 wt.% MXene/g-
C3N4, 8 wt.% MXene/g-C3N4, and 12 wt.% MXene/g-C3N4 heterostructure photocatalysts
were performed in order to examine the crystallinity behavior of the as-developed materials.
Figure 3 shows the XRD pattern of MXene, which is in agreement with the previously
reported study (JCPDS card No. 52–0975) [20,21]. By comparing the obtained results of
the as-synthesized photocatalysts, the most intense peak of MXene, which is commonly
observed at 39◦ of 2θ, disappeared, signifying the disappearance of Al after etching by
HF. In this context, the obtained results stipulate that Al managed to be removed and
MXene was successfully obtained. Additionally, the (004) peak located at 17.6◦ of 2θ was
monitored to be shifted to the higher angle, indicating an interaction between MXene and
g-C3N4. Furthermore, the (107) peak observed at 47◦ of 2θ became stronger as the amount
of MXene loading was increased in the formation of the MXene/g-C3N4 heterostructure
photocatalyst.
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On the other hand, two different diffraction peaks, located at 12.5◦ and 27.7◦ of 2θ,
were attributed to g-C3N4 footprints (JCPDS card No. 87–1526). The peaks at 27.7◦ indicate
the multilayer π-π stacking of g-C3N4, while the peak of 12.5◦ signifies the in-plane repeated
units [22,23]. The XRD patterns of MXene/g-C3N4 composites with different amounts of
MXene loaded onto the heterostructure sample show almost identical diffraction peaks.
Nevertheless, as the amount of MXene loading was increased to 12 wt.%, the peaks located
at 12.5◦, 13.9◦, and 35◦ of 2θ became weakened. Such occurrences may happen due to
the interaction between MXene and g-C3N4, which disrupts the aromatic conditions of
g-C3N4 [13,24]. As such, the obtained XRD patterns of the as-synthesized heterostructure
photocatalyst proved the successful loading of MXene onto g-C3N4. Furthermore, higher
loading of MXene leads to the shift of peak towards a higher angle, indicating stronger inter-
action of the two different materials, which leads to a further stacking distance of g-C3N4.
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3.3. Morphological Analysis

Figure 4 represents the FESEM micrograph images of the as-synthesized MXene/g-
C3N4 heterostructure photocatalysts prepared at different amounts of MXene loadings.
The FESEM images demonstrated the successful formation of layered MXene by etching
the Ti3AlC2 MAX using HF [25]. Generally, the Ti3AlC2 structures were made up of an
irregular block structure. However, after the etching process with HF, the as-prepared
MXene demonstrated an obvious stratification, evincing the successful etching process
of aluminum layers. Meanwhile, the presence of a crumple-sheet-like structure in the
composite heterostructure photocatalysts is attributed to the morphological structure of
the g-C3N4 [26,27]. All of the FESEM images displayed the encapsulation and intimate
contact between both g-C3N4 and MXene, evincing the successful development of the
heterostructure system. In addition, as both the g-C3N4 and MXene form the 2D nanostruc-
ture, intimate contact between each photocatalyst was observed. In light of this, a smooth
photocharge carrier transfer was postulated with respect to its well-matched geometrical
structure. Thereafter, the issue of the fast recombination of the photocharge carriers within
the individual photocatalyst can be mitigated. Moreover, Figure 5 represents the TEM
images of the as-synthesized MXene/g-C3N4 heterostructure photocatalysts. A typical
2D multilayered structure could be seen from the inset in Figure 5, where the interlayer
spacing measured 0.25 nm. The aforesaid interlayer spacing corresponds to the (101) crys-
tal plane of Ti3C2 MXene [25,28,29]. After the etching process of Ti3AlC2, the structure
of Ti3C2 MXene with a very small spacing has been produced. Nevertheless, the lattice
fringe of the pure g-C3N4 photocatalyst was hardly visible, presumably due to the low
crystallinity. On a whole, the FESEM and HRTEM analysis verified the successful interfacial
contact between both MXene and g-C3N4 particles, which will be beneficial for augmenting
the photocharge carriers’ separation and migration, resulting in an enhancement in the
photocatalytic degradation activity.
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3.4. BET Surface Area and Porosity Analysis

The BET specific surface area, pore volume, and pore size analyses of the as-synthesized
MXene/g-C3N4 heterostructure photocatalysts prepared at different amounts of MXene
loadings are summarized in Table 1. It was found that the BET surface areas for the pure
g-C3N4 and MXene were 4.64 and 6.26 m2/g, respectively. Upon the formation of the
MXene/g-C3N4 heterostructure system, the BET surface area was substantially increased
to 22.58 m2/g. Similarly, the pore size and pore volume of the 1 wt.% MXene/g-C3N4
heterostructure sample showed significant enhancement, at 0.123 cm3/g and 21.88 nm,
respectively. It is worth mentioning that the high BET surface area, pore size, and pore
volume are highly desirable as it is beneficial for improving the photocatalytic degrada-
tion activity of the heterostructure photocatalyst. This is explained by the fact that more
pollutants can be adsorbed via the high surface area of the designed heterostructure photo-
catalyst. As such, a higher photocatalytic degradation performance will be achieved via
the 1 wt.% MXene/g-C3N4 heterostructure sample.

Nevertheless, as the amount of MXene loading was increased up to 12 wt.%, the BET
surface area, pore size, and pore volume of the rest of the MXene/g-C3N4 heterostructure
samples were decreased to 13.70 m2/g, 0.033 cm3/g, and 9.535 nm, respectively. The lower
textural properties demonstrated by the 12 wt.% MXene/g-C3N4 heterostructure sample
are highly unfavorable from the photocatalytic viewpoint as this indicates that less available
active pore sites will partake in the degradation of methylene blue. Thereafter, a substantial
decrease in photocatalytic degradation activity will be monitored. Apart from that, Figure 6
shows that the as-prepared MXene/g-C3N4 heterostructure samples possessed a Type IV
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adsorption isotherm with an H3 hysteresis pattern. In particular, the observed pattern
highlights the mesoporous structure of the as-synthesized MXene/g-C3N4 heterostructure
samples, whereby pore size ranged from 2–50 nm.

Table 1. BET surface area, pore volume, and pore size of the as-synthesized MXene/g-C3N4 het-
erostructure photocatalysts.

Photocatalyst BET Surface Area (m2/g) Pore Volume (cm3/g) Pore Size (nm)

g-C3N4 4.64 0.033 28.09
MXene 6.26 0.027 16.96

1 wt.% MXene/g-C3N4 22.58 0.123 21.88
4 wt.% MXene/g-C3N4 15.66 0.036 9.377
8 wt.% MXene/g-C3N4 17.73 0.039 8.826
12 wt.% MXene/g-C3N4 13.70 0.033 9.535
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3.5. Optical Properties

The optical properties of the as-synthesized MXene/g-C3N4 heterostructure photo-
catalysts prepared at different amounts of MXene loadings were examined using UV-Vis
diffuse reflectance spectra (DR-UV-Vis). Figure 7a shows that the g-C3N4 photocatalyst
showed a light absorption capacity within the visible-light region. Similarly, the loading
of the MXene onto g-C3N4 photocatalyst further narrowed the light absorption capacity
with a slight blue shift and red shift in accordance with the amount of MXene loading. In
turn, this observation indicates the potential of the photocatalytic light absorption response
up to 48% of the total solar light energy. Moreover, as the composite MXene/g-C3N4
heterostructure photocatalysts possess a stronger visible-light absorption capacity, the en-
hancement in photothermal effect could be observed, which would be beneficial in aiding
the photocatalytic activity of the aforesaid samples. Following that, Figure 7b illustrates the
plotted and estimated bandgap energy using Tauc plot calculation. The bandgap energy of
the pure g-C3N4 was 2.61 eV. The obtained bandgap energy aligns with several previously
reported works on g-C3N4 photocatalysts [30,31]. As depicted in Figure 7b, the bandgap
energy for the 1 wt.% MXene/g-C3N4, 4 wt.% MXene/g-C3N4, 8 wt.% MXene/g-C3N4,
and 12 wt.% MXene/g-C3N4 samples were 2.53, 2.09, 2.20 and 2.31 eV, respectively.
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3.6. XPS Analysis

The elemental and surface chemical properties of the 1 wt.% MXene/g-C3N4 het-
erostructure photocatalyst were examined via XPS analysis. Figure 8 delineates the XPS
spectrum of C 1s, Ti 2p, O 1s, and N 1s. As displayed in Figure 8a, three significant peaks
were observed in the C 1s spectrum. Accordingly, the observed peaks, located at 281.5,
284.8, and 286.3 eV, confirm the presence of the C-Ti, C-C, and C-O bonds, respectively,
in the 1 wt.% MXene/g-C3N4 heterostructure photocatalyst [13,24]. The reason behind
the observed peaks is the presence of the g-C3N4 particles in the heterostructure sample.
Moreover, the peaks located at 284.8 eV are attributable to the C-C adventitious carbon that
was used as the energy reference in fitting the XPS spectrum of the 1 wt.% MXene/g-C3N4
heterostructure photocatalyst.
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Additionally, Figure 8b shows the Ti 2p spectrum, composed of two deconvoluted
peaks located at 458.5 and 469.4 eV. The observed peaks were well-matched with the Ti 2p3/2
and Ti 2p1/2 of the Ti-C bond [21,32,33]. The aforesaid deconvoluted peaks demonstrated a
strong peak, which was presumably due to the potential of the oxidation on the surface of
the MXene, which later converted into Ti-O bonds. Furthermore, the O 1s energy spectrum
in Figure 8c exhibited a peak located at 530.1 eV, which can be ascribed to the absorbed
hydroxyl group. Apart from that, Figure 8d shows three peaks, deconvoluted at 399.6,
401.7, and 405.8 eV. The three peaks observed coincided well with the C-N=C, C-N-H, and
C=N bonds, which originated from the parental g-C3N4 and MXene particles [34,35]. It is
worthwhile to note that all of the XPS peaks showed a shift to higher and lower binding
energies in comparison to the standard parental g-C3N4 and MXene peaks. The shifting
phenomenon of the observed peaks signifies the presence of interfacial photocharge carriers
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transfer within the 1 wt.% MXene/g-C3N4 heterostructure photocatalyst, which will be
beneficial for the photocatalytic degradation activity.

3.7. Photocatalytic Degradation Performance Testing

Figure 9 shows the results of MB degradation, with different compositions of the
as-synthesized MXene/g-C3N4 heterostructure photocatalyst. For the first hour of inves-
tigation, the degradation was commenced under dark conditions and further continued
for another 3 h with the presence of light irradiation. In this study, the photocatalytic
degradation of MB was determined at 664 nm due to the absence of blue shift of the main
peak of MB during the photocatalytic experiment [36].
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The efficiency for degradation of the as-prepared samples was calculated by using the
equation stated in Section 2.4. The photocatalytic activity of the as-synthesized MXene/g-
C3N4 heterostructure photocatalyst indicates that the performance of the heterostructure
samples was ordered as 1 wt.% MXene/g-C3N4 sample > 4 wt.% MXene/g-C3N4 sample >
8 wt.% MXene/g-C3N4 sample > pure g-C3N4 sample > 12 wt.% MXene/g-C3N4 sample.
In this regard, the 1 wt.% MXene/g-C3N4 sample exhibited the highest degradation activity
within 180 min. This is explained by the fact that the aforesaid sample possessed a higher
BET surface area, pore size, and pore volume, which was beneficial for improving the
photocatalytic reaction. In light of this enhancement, more methylene blue compounds
can be adsorbed via the 1 wt.% MXene/g-C3N4 sample, whereby more active radicals can
be generated to further degrade the methylene blue molecules and eventually attain the
complete removal of the recalcitrant pollutant.

Furthermore, the narrow bandgap energy of this heterostructure sample is highly fa-
vorable for the photocatalytic reaction as more light can be absorbed, thus generating more
photocharge carriers to participate in the photocatalytic reaction. As mentioned earlier, the
intimate contact between g-C3N4 and MXene particles, evident from the FESEM analysis,
firmly implies that the aforesaid heterostructure system allows mobility of the smooth
photocharge carriers, which significantly hindered the potential of the photocharge carri-
ers’ recombination. In turn, this phenomenon allows the MXene/g-C3N4 heterostructure
photocatalyst to perform better than the pure g-C3N4. Nonetheless, a reverse scenario was
demonstrated by the 12 wt.% MXene/g-C3N4 sample. The overloading of the MXene onto



Energies 2022, 15, 955 12 of 16

the g-C3N4 photocatalyst leads to a detrimental photocatalytic performance. This is consis-
tent with the SAP analysis in Section 3.4, whereby the BET surface area, pore size, and pore
volume substantially decreased as the amount of MXene loading was increased [2,37,38].

3.8. Possible Route for Photodegradation of Methylene Blue over MXene/g-C3N4
Heterostructure Photocatalyst

Figure 10 demonstrates the active site radical trapping experiments in order to verify
the role of relative active species that contributed during the photocatalytic degradation
of methylene blue using the 1 wt.% MXene/g-C3N4 sample. The radical trapping experi-
ment was conducted in the similar protocols used in Section 2.4. In this experiment, the
methanol, 2-propanol, and AgNO3 were used as a scavengers for •O2

−, •OH, and e−

species, respectively. In view of this radical trapping experiment, it was found that the
addition of AgNO3 as an electron scavenger had a substantial effect on the photocatalytic
activity of the 1 wt.% MXene/g-C3N4 sample. Meanwhile, the addition of methanol and
2-propanol had mediocre effects on the activity of the 1 wt.% MXene/g-C3N4 sample. By
confirming the active sites contributing to the photocatalytic reaction, the electron is likely
to take a major role in degrading the methylene blue compounds, whereby the •O2

− and
•OH radicals further support the degradation process. Subsequently, the active radicals
will attack the positive carbon compounds of the methylene blue, consecutively degrading
methylene blue into biodegradable by-products that can be adsorbed by the designed
photocatalyst [39]. Then, the initial compound of methylene blue can break into smaller
and more decomposable oxidation by-products, which are relatively less toxic and even less
harmless compared to their initial compounds. The intermediates develop hydroxylation
by-products and are later mineralized into CO2 and H2O after being attacked by the active
site radicals.
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Based on the abovementioned analysis, the mechanism of the degradation of methy-
lene blue via the 1 wt.% MXene/g-C3N4 photocatalyst was postulated and calculated as
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illustrated in Figure 11. The valence band (VB) and conduction band (CB) of the aforemen-
tioned photocatalyst were calculated based on the following equation:

EVB = X − Ee +
1
2

Eg (2)

ECB = EVB − Eg (3)

where the EVB, ECB, X, and Eg correspond to the valence band potential, conduction band
potential, absolute electronegativity, and bandgap energy, respectively. More detailed expla-
nations on the abovementioned equation have been explained in the previously reported
work [8]. The value for the Ee, X, and Eg were 4.5, 4.64, and 2.61 eV, respectively. Thereafter,
the calculated EVB and ECB of the g-C3N4 were 1.445 and −1.165 eV, respectively. There-
after, under light illumination, the g-C3N4 photocatalyst absorbed the photon energy, thus
initiating the generation of the electron and hole to partake in the photocatalytic reaction.
As the MXene is not a visible-light absorption material, the MXene acts as an electron
acceptor with respect to its well-matched band edge position, thus allowing the electrons
at the conduction band of g-C3N4 to quickly transfer to MXene (EF = −0.53 eV vs. NHE).
Subsequently, the photoexcited electrons further attacked the methylene blue compound
and further degraded it into intermediate by-products. In addition, as the EF of MXene
is more negative than the standard O2/•O2

−, the superoxide radicals (•O2
−) are readily

produced upon excitation of electrons and further assist the degradation of methylene blue.
On the other hand, the holes at the valence band of g-C3N4 can further oxidize to produce
the •OH radicals, thus attacking and degrading the methylene compounds.
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4. Conclusions

In conclusion, the work presented here demonstrated that an excellent photocatalytic
degradation of methylene blue can be achieved via MXene/g-C3N4 heterostructure pho-
tocatalysts. The designed 1 wt.% MXene/g-C3N4 heterostructure photocatalyst exhibited
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the best photocatalytic performance within 180 min. Undoubtedly, the high BET surface
area, stronger XRD crystallinity structures, and narrower bandgap energy play a vital
role in improving the photocatalytic activity of the aforesaid heterostructure photocatalyst.
Furthermore, it was found that the e− was confirmed to play a major role in the studied
photocatalytic reaction. This enhancement originated from the critical roles of MXene
that helped to impede the recombination of the photocharge carriers and, thus, further
augmented the photocatalytic reaction. On a whole, this work presents MXene as a new al-
ternative that will further improve charge separation and transportation, as well as further
promotes the degradation of dye in wastewater under solar irradiation.
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