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Abstract: Woody invasive species pose a big threat to ecosystems worldwide. Among them, Acacia 
longifolia is especially aggressive, fundamentally changing ecosystem structure through massive 
biomass input. This biomass is rarely harvested for usage; thus, these plants constitute a nuisance 
for stakeholders who invest time and money for control without monetary return. Simultaneously, 
there is an increased effort to valorise its biomass, e.g., for compost, growth substrate or as biofuel. 
However, to incentivise A. longifolia harvest and usage, stakeholders need to be able to estimate 
what can be obtained from management actions. Thus, the total biomass and its quality (C/N ratio) 
need to be predicted to perform cost–benefit analyses for usage and determine the level of invasion 
that has already occurred. Here, we report allometric biomass models for major biomass pools, as 
well as give an overview of biomass quality. Subsequently, we derive a simplified volume-based 
model (BM ~ 6.297 + 0.982 × Vol; BM = total dry biomass and Vol = plant volume), which can be 
applied to remote sensing data or with in situ manual measurements. This toolkit will help local 
stakeholders, forest managers or municipalities to predict the impact and valorisation potential of 
this invasive species and could ultimately encourage its management. 

Keywords: Acacia longifolia; allometry; biomass models; invasive species; remote sensing; biomass 
valorisation 
 

1. Introduction 
Almost all ecosystems worldwide are under intense pressure from invasive species, 

which constitute a fundamental driver of global change and biodiversity loss [1]. Among 
invasive plants, woody species, such as trees, are representing some of the most serious 
invaders worldwide [2] as they can act as autogenic ecosystem engineers, profoundly 
changing the invaded ecosystem through their own biomass [3]. Indeed, in general, 
invasive species biomass is a crucial determinant of the degree of invasion [4]. At the same 
time, aboveground biomass (AGB) plays a vital role in renewable energy transition [5] 
and carbon (C) reduction, either directly as renewable biofuel [6] or indirectly by binding 
C—for example, in compost [7]. Consequently, using invasive species AGB could create 
a win–win situation in which harvested biomass is valorised, while invasive species 
pressure on native vegetation and agricultural land is decreased. 

Using invasive species as a biomass source has several advantages, as these plants 
need to be regularly cleared to manage their spread, they typically have high growth rates 
and are abundant [8] and have been shown to be useful as feedstock for biogas, biofuels, 
bioproducts and biorefining [9]. Important candidates for this use are Acacia spp. which 
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are highly invasive in Mediterranean landscapes and there is little possibility for their total 
eradication, thus they will need to be managed and valorised in some way [10]. There are 
already several examples of their AGB use: exploitation of woody biomass for energy 
purposes [11] or as wood pellets for domestic boilers [12], as well as a vast array of 
biorefinery applications [13]. Another interesting usage of the whole plants, not just the 
woody parts, is the creation of compost from the chipped plant biomass [14]. This usage 
includes branches and foliage, which would be lost in most combustion applications. The 
first results are promising in that they show the potential use of Acacia longifolia biomass 
compost as organic amendments for agricultural purposes [15]. 

To make use of the biomass provided by invasive species, however, their location, 
abundance and total mass need to be modelled to provide stakeholders with estimates of 
the provided resources [8]. The most common methods to estimate biomass are 
combinations of remote sensing techniques and traditional allometric biomass models for 
AGB [16]. This combination is needed, as for the remote sensing techniques to yield data 
that are useful and of an acceptable certainty, local allometric models need to be 
developed [17]. Since their first use, allometric models have always been essential 
components for economic predictions, such as forest timber and biomass production; 
however, their significance is now further migrating into new areas of global importance, 
such as C accounting [18]. These models are based on the biological rule that all tree 
dimensions correlate with each other—for example, trunk diameter at breast height 
(DBH) and the whole AGB [16]. While allometric models can be very accurate for single 
tree species, they are also labour intensive as they always require plot- or plant-based 
destructive field sampling and weighing of the biomass [19], which is often only feasible 
for economically important species. Nevertheless, for invasive Acacia spp., several models 
were developed—for example, invasive A. cyclops and A. saligna in coastal areas of South 
Africa [20]—as well as for A. dealbata and A. saligna [21,22] in their respective native ranges 
in Australia. Conversely, for many very invasive species, no models are yet available, and 
a prime example is Acacia longifolia, even though it is a prolific invader in many ecosystems 
worldwide (see also Section 2.2). 

However, it is not only the allometric model per se that is important if it is to be used 
in an applied setting, such as biomass recovery from management, but also the feasibility 
of measuring the input variables. For example, A. longifolia grows in a shrub-like fashion 
and constitutes a plant type exhibiting multiple stems, which make conventional models 
not practical for in-field application [23]. Other potential measures used in allometry are 
the total height of the plant (H) and its canopy size, which is approximated by an ellipse 
using the largest and the smallest canopy diameters (C1 and C2). These measures, joined 
with destructive harvesting of the whole individuum, are then used to create a volume-
based biomass model for single plants, a family of models which have been successfully 
applied to various shrub species [24]. To upscale these models to the stand level, 
individual models are then coupled with density sampling to estimate stand AGB [23]. 
Another method is the direct measurements of stand variables, such as crown cover and 
total stand height [25], which can be combined to create a volume-based model [26]. The 
benefit of using volume-based models instead of diameter-based models is that they are 
easier to scale up using remote sensing methods, such as LIDAR or photogrammetry from 
unmanned aerial vehicles (UAVs) [27]. In particular, UAVs and photogrammetry have 
gained increasing traction in estimating AGB and plant volume in various settings due to 
its reduced costs, better scalability and higher data output [28]. 

Considerable effort has been invested into the development of new volume-based 
allometric models or merging existing allometric models with UAV data [29] but 
drawbacks remain, such as increased errors for smaller spatial scales [30] and for crown 
components (twigs, branches) compared to stems [31], which is problematic for carbon 
inventories and fuelwood estimations [32]. The work shown here aims to overcome these 
limitations by presenting a dual approach to biomass modelling, providing a variety of 
models for different settings, from single-tree manual measurements to stand-based 
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measurements using UAVs and photogrammetry. On the basis of destructive harvesting 
for both cases, models were combined within the same framework and estimations can be 
given for each plant compartment, using either traditional variables, such as height and 
diameter, as well as UAV-derived variables for volume determination. Ultimately, the 
objective was to create modelling tools with different levels of time/resource investment 
to choose from, depending on the stakeholders’ context. As many biomass models already 
exist, potential research gaps on volumetric biomass models concerning Acacia spp. (and 
A. longifolia in particular) were elucidated through database mining. Individual and stand 
variables as well as biomass pools were described to provide context to the models 
presented here. In order to provide accurate sampling data on both total biomass and tree 
parts, exhaustive destructive biomass harvesting was combined with compartment 
separation (trunks and branches/foliage). Additionally, as an important objective of this 
study was the prediction of biomass quality, C, nitrogen (N) and phosphorous (P) of the 
compartments were determined in the laboratory to give estimates relevant for C 
sequestration potential and ratios of biomass. To create the final biomass models to be 
used, the most parsimonious and the most precise models were selected in both the 
manual single tree and the drone-based whole stand approach. Further simplification of 
the height measurement was provided to help stakeholders obtain a volume-based model 
without the need of a high resolution DTM. Lastly, models are discussed in various 
contexts to display the usefulness for both invasion management and biomass 
exploitation to turn double negative impacts for farmer and native vegetation into a 
potential win–win situation of biomass usage and invasive species management. 

2. Results and Discussion 
2.1. Database Search for Allometric Biomass Equations 

To provide a basis for potential biomass equations to be employed on Acacia longifolia, 
the largest database on allometric biomass models available online, Globallometree [33], 
was searched automatically using R and regular expressions. In this search, 1596 entries 
for “Acacia” were found, of which 119 corresponded to the 12 Acacia species considered 
invasive in Portugal (Decreto-Lei no. 565/99, updated in Decreto-Lei nº 92/2019 to include 
all Acacia spp.). None of the reported equations was created in Europe and no equation 
was associated to Acacia longifolia. The equations used (88%) only one variable in most 
cases, which was stem diameter at breast height (DBH, 70.6%), at 10 cm (DB10, 14.3%), at 
30 cm (DB30, 3.4%) or at ground height (DB0, 2.5%). Both height (H, 3.4%) and canopy 
diameter (CD, 2.5%) were very little represented. In 14 cases, two variables were 
employed, with 11 equations using DBH with H, 1 with CD with DBH, 1 with CD and 
D30 and 1 with DB0 with H. The final purpose of the allometric models presented here 
was to create volume-based biomass estimation; however, no equations using a 
combination of H and CD or any other type of plant volume-based equation were found. 
The most common (73.9%) equation structure was Y = a + b × ln(X), with Y being biomass 
and X being the explanatory variable, followed by power equations (24.4%), which are 
also synonymous with allometric equations if defined senso stricto [34]. 

2.2. Tree and Stand Measurements 
For individual measurements, 37 trees were cut, exceeding the minimum number (n 

= 30) recommended for single, homogeneous stands [19]. For tree stands, 103 individuals 
were harvested, summing up to 119 stems in an area of ca. 275 m2 in total. Summary 
statistics for allometric and biomass related variables are shown in Table 1. Allometric 
measurements of stands and single trees were in similar ranges and thus comparable; 
however, some stands had larger volumes and stem diameters than single trees, which 
corresponded to higher overall biomass. Interestingly, while the largest stand had a trunk 
biomass only slightly larger than the largest singular tree (1.2 times), the same stand had 
more than twice (2.2 times) as much highest foliar and branch mass as the largest tree. 
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This is linked to a different allocation pattern in singular tress opposed to stands or the 
dataset as a whole. Based on allometric biomass partitioning theory, which states that leaf 
mass should scale to the power of 0.75 to total plant volume (and mass) [35,36], lines were 
fitted to overall data, singular trees and stands (Figure 1a). 

Table 1. Allometric and biomass related variables for single Acacia longifolia trees and whole stands 
(25 m2 clear cut quadrat). H = height; D = diameter at soil height; Dmean = calculated from all D per 
plot; Hmean = predicted from all pixels per plot (mean: 52,837 pixel per plot); SOM = soil organic 
matter; F + B = combined foliage and branches; n = 11 for stands, n = 37 for singular trees; ∆ = min-
max difference (range). 

 Variable Min Max Mmean ∆ 

Trees 

Volume (m3) 2.4 169.1 26.9 166.7 
Area (m2) 1.2 24.6 7.2 23.4 

H (m) 2.1 10.6 4.9 8.5 
D (cm) 1.9 25.5 9.8 23.6 

Trunks dry (kg) 0.3 110.3 12.5 110 
Branches dry (kg) 0.1 11.2 3.3 11.1 
Foliage dry (kg) 0.2 12 4.1 11.8 

F + B dry (kg) 0.3 23.2 7.3 22.9 
Total dry biomass (kg) 0.7 129.9 19.8 129.2 

Stands 

Volume (m3) 3.9 187.5 70.5 183.6 
Area (m2) 1.2 29.2 15 28 

Number of stems 3 45 10.8 42 
Dmean (cm) 7.2 34.1 19.9 26.9 
Hmean (m) 0.4 7 3 6.6 

Trunks dry (kg) 4.3 133.6 50.2 129.3 
F + B dry (kg) 5.2 50.4 24.1 45.2 

Total dry biomass (kg) 9.5 184 74.4 174.5 
SOM (%) 0.3 1.4 0.7 1.1 

 Litter (kg/m2) <0.01 1.9 0.7 1.9 

While the overall data fitted very well into the theoretical allometric relationship with 
a power of 0.73, singular trees exhibited rapidly a plateau in foliar and branch mass, de-
viating from this assumption. If expressed as a relation between the foliar and branch 
mass fraction (FBMF) relative to total biomass in singular trees, (Figure 1b), this plateau 
can be estimated using a segmented regression approach at 0.3, a value similar as reported 
earlier in a large-scale analysis for the leaf mass fraction in the same size class [37]. In 
stands, on the contrary, the FBMF is lower when we have small stands when compared to 
small singular trees, but then drops further linearly with increasing plant biomass, how-
ever, staying above the lowest levels found for single trees. A potential reason for this 
pattern could be the rapidly increasing allocation of plant resources to the trunk mass 
fraction (TMF, the reverse of the FBMF) as plants increase trunk growth to combat light 
competition with nearby individuals [38]. Furthermore, the rapid decline in the FBMF is 
linked to plant height (Pearson’s correlation: r2 = 0.46, p < 0.001), with individual trees 
being higher than trees in whole stands (Table 1 and Figure 1a,b) requiring them to pro-
portionally investment more in stem growth vs. foliage for mechanical safety [37]. These 
observations fit well to established data that branch and foliar mass are more variable 
between species than stem or total aboveground biomass [39] and indeed, contrary to the 
foliar and branch biomass, a strong linear correlation between total aboveground biomass 
and trunk biomass was found (r2 > 0.98; p < 0.001). From a practical point of view, the data 
from destructive harvesting shown here concerning both the FBMF and the TMF are im-
portant as the FBMF is normally ignored in traditional biomass models that are concerned 
with timber production [18] and in the case presented here makes up roughly half of the 
biomass (FBFMmean = 0.48; Figure 1b,c). While this biomass might not be merchantable in 
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the traditional sense, it is an increasingly important logging residue [6] and crucial for 
fuelwood estimations and community forestry plantations [32] in developing countries. 

 
Figure 1. (a) Relationship between foliar and branch mass (FB) and total dry biomass (BM). Lines 
fitted follow the allometric relationship FB ~ a + b × BMc. (b) Regression between total biomass and 
the foliar and branch mass fraction of total biomass (FBMF). The correlation for stands is linear, 
while the correlation for trees is best described as a segmented regression after testing for a change 
in slope using Davies’ test (p < 0.05). The breakpoint was estimated at a FBMF of 0.3. Point size 
indicates plant height. (c) Regression between total C/N ratio and the foliar and branch mass fraction 
of total biomass (FBMF). Point size indicates plant height. ** = p < 0.01, *** = p < 0.001. 

While these observations are interesting from an allometric standpoint, they are also 
important from a practitioner’s point of view. The green waste from harvesting or eradi-
cation can be deviated either towards green waste compost or energy production, depend-
ing on its quality and proportion of woody and leafy material [7]. The FBMF is also the 
main determinant of the total C/N ratio of the biomass harvested (Figure 1c), highly cor-
related with height (Pearson’s correlation: r2 = 0.67, p < 0.001) and is the biomass with the 
lowest C/N ratio (Table 2). This ratio is especially important for the subsequent usage, 
because a C/N ratio between 20 and 30, as measured for the FBMF, is ideal for green waste 
composting [40]. On the contrary, high C/N ratios and low N content, as measured in the 
trunk (Table 2), are important if the biomass is used for other purposes, such as fuelwood, 
because N values should not exceed 0.6% to avoid NOx emissions [41]. Therefore, using 
the data observed here, one could selectively harvest plants, using the FBMF for compost-
ing purposes and the trunk biomass for energy production. Whereas nutrient and C con-
centrations have a direct influence on the usage of the biomass, stable isotope ratios for C 
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and N are important to understand plant and ecosystem functioning. In C3 plants, such as 
A. longifolia, δ13C can be used to gain insight into plant water use efficiency [42] and the 
plants observed here exhibit significantly depleted δ13C signatures in the foliar and branch 
fraction in stands, compared to single trees and trunk fractions. Combined with a negative 
correlation of these δ13C values with stand density (r2 = 0.37; p < 0.05), these observations 
suggest increased water stress in denser A. longifolia stands. This is in line with earlier 
works that describe this invasive species as a water spender [43] and might imply in-
creased intraspecific competition as stands grow older. Contrary to δ13C, which is indi-
rectly connected to water use efficiency, the N isotope ratio δ15N can be used to more di-
rectly to trace the source of N during acquisition. As a legume, A. longifolia can fix N di-
rectly from the atmosphere with the help of mutualistic bacteria, which translates into 
foliar δ15N signatures close to 0 (‰), similar to what is observed here and earlier works 
concerning A. longifolia [43,44]. Comparable to the δ13C signatures, the δ15N of foliar and 
branch fraction in stands was more depleted than in singular trees. The δ15N signature of 
branches and foliage was furthermore correlated with its N concentration (r2 = 0.22, p < 
0.01), indicating that the signature, at least in part, traces N origin. While all values indi-
cate atmospheric N fixation, the observed depletion could be related to an increased usage 
of N from other sources, e.g., soil N or symbiotic fungi [45]. 

Table 2. Nutrient content, stoichiometric ratios and isotopic signatures of tissues collected for the 
biomass model. N = nitrogen, P = phosphorus, and C = carbon. The letters depict significant differ-
ences between the groups (pairwise Wilcoxon rank sum tests, p < 0.05); n = 11 for stands, n = 37 for 
singular trees. F + B = foliage and branches. 

 Trees  Stand 
 Trunks Branches Foliage F + B Trunks F + B 

C (%) 43.2 (0.1)a 45.1 (0.2)b 48.1 (0.2)c 47.7 (0.2)c 44.1 (0.7)ab 47.2 (0.5)c 
N (%) 0.6 (0.1)a 1.1 (0.1)b 2.3 (0.1)c 2.2 (0.1)c 0.6 (0)a 2 (0.1)c 
P (‰) 0.8 (0.1)a - 2.4 (0.2)b - - - 

C/N ratio 97.2 (10.5)ab 42.3 (2.3)a 21.7 (0.8)c 24.2 (1.1)c 72.2 (3.4)b 23.5 (0.7)c 
NP ratio 11.3 (0.8)a - 11.4 (0.7)a - - - 
δ15N (‰) −1.2 (0.1)a −1.7 (0.1)ab −1.1 (0.1)a −1.2 (0.1)a −2.2 (0.1)c −2.1 (0.2)bc 
δ13C (‰) −27.5 (0.2)a −25.9 (0.4)b −28.4 (0.2)ac −28.1 (0.3)ac −27.5 (0.2)ab −29 (0.4)c 

2.3. Allometric Equations 
Based on the database search (see Section 2.1), three equation types were selected for 

further analysis: linear models, linear models with ln-transformed independent variables 
and non-linear (power) models. For single trees, 27 separate equations and for stands 60 
equations were fitted for the different plant biomass pools as well as the extrapolated total 
C, N and P (see Supplementary Tables S1 and S2) using allometric variables shown in 
Table 1. Subsequently, for each dependent variable, equations with the lowest Bayesian 
Information Criterion (BIC) were selected (best model) and compared with the model that 
performed best with the smallest amount of variables used (most parsimonious possible) 
(Tables 3 and 4). The BIC was chosen over other important criterions, such as the AIC 
(Akaike Information Criterion) to select for models with lower numbers of parameters 
[19]. For single trees, volume was the sole independent variable retained in all cases of the 
most parsimonious models, except for foliage, branches and both combined, being re-
placed by canopy area. This is in accordance with reports considering the significance of 
canopy area for allometric models in predicting tree crown mass that consists mainly of 
branches and foliage [46]. Trunk diameter, on the other hand, was a variable retained in 
the best models for total biomass, trunk biomass and branch biomass, stressing why di-
ameter is of such importance in forestry allometry, which is mainly concerned with woody 
mass and, as this mass is the major C pool in trees, carbon markets [18]. 
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Table 3. Most parsimonious and best fit models for various dependent variables of single trees. H = 
height (m), A = area (m2), V = volume (m3), and D = diameter at soil height (cm). RMSE = root mean 
square error, Ctot = total carbon, Ntot = total nitrogen, Ptot = total phosphorus, and F + B = foliage and 
branches. Dry mass is in kg. 

 Most Parsimonious Model Best Model 
Y (Dry Mass) Equation RMSE Equation RMSE ΔΡΜΣΕ (%) 

Total Y ~ 0.25 + 1.46 × V 7.93 Y ~ −7.56 + 1.3 × D + 1.12 × V 7.21 9.9 
Trunk Y ~ 0.73 + 0.34 × V1.29 6.28 Y ~ −4.5 + 1.4 × 10−05 × D4.78 + 0.06 × H2.61 + 1.92 × A0.64 3.5 79.6 

Foliage Y ~ −2.48 + 3.83 × ln(A) 1.9 
Y ~ −2.48 +  

1.9 0 
3.83 × ln(A) 

Branches Y ~ −1.03 + 0.23 × D + 0.29 × A 1.55 Y ~ −1.03 + 0.23 × D + 0.29 × A 1.55 0 
F + B Y ~ 0.2 + 0.99 × A 3.28 Y ~ 0.2 + 0.99 × A 3.28 0 
Ctot Y ~ 0.25 + 0.64 × V 3.51 Y ~ −3.27 + 0.57 × D + 0.49 × V 3.18 10.3 
Ntot Y ~ −0.07 + 0.06 × V0.64 0.08 Y ~ −0.05 + 0.02 × D + 0.01 × V 0.08 2.5 
Ptot Y ~ 0.003 + 0.001 × V 0.01 Y ~ −0.01 + 0.0013 × D + 0.001 × V 0.007 14.3 

In stands, the volume and the number of stems (density) were retained in the most 
parsimonious models for all variables (Table 4), highlighting the important direct or indi-
rect effect of density through competition or tree social status on stand allometric models 
[47]. Apart from AGB pools, also models related to litter mass and SOM were elaborated. 
While these models might not have any commercial or production value, they can be im-
portant for predicting A. longifolia impact on native ecosystems. Both variables were 
highly linearity correlated (r2 = 0.72; p < 0.001), which again indicates litter accumulation 
as one of the drivers of SOM accumulation and changes underneath A. longifolia canopy 
[44]. Apart from these direct effects, modelling litter mass is also relevant for secondary 
ecosystem disservices from invasions, such as increased fuel loads that intensify wildfires 
[48]. 

Table 4. Most parsimonious and best fit models for various dependent variables of stands. Hmean = 
mean height (m), A = area (m2), V = volume (m3), and Dmean = mean diameter at soil height (cm). 
RMSE = root mean square error, Ctot = total carbon, Ntot = total nitrogen, Ptot = total phosphorus, NrS 
= number of stems, SOM = soil organic matter, and F + B = foliage and branches. Dry mass is in kg. 

 Most Parsimonious Model Best Model 
Y (Dry Mass) Equation RMSE Equation RMSE ΔΡΜΣΕ (%) 

Total 
Y ~ −31.01 + 0.22 × V1.28 + 19.96 × 

NrS0.41 7.23 
Y ~ −190.97 + 29.28 × NrS0.41 + 

0.0008 × A3.38 + 0.013 × Hmean4.51 + 
78.16 × Dmean0.24 

2.13 239.5 

Trunk Y ~ −28.52 + 0.07 × V1.43 + 18.15 × 
NrS0.36 

5.78 
Y ~ −109.35 + 21.64 × NrS0.4 + 7.7 × 

10−05 × A4 + 0.001 × Hmean5.52 + 
30.95 × Dmean0.34 

0.9 539.9 

F + B 
Y ~ 2.13 + 0.24 × V + 

0.46 × NrS 2.67 Y ~ 2.13 + 0.24 × V + 0.46 × NrS 2.67 0 

Litter 
Y ~ −0.28 + 0.02 × V + 

0.06 × NrS 0.63 
Y ~ −0.81 + 0.001 × Hmean4.13 + 

0.58 × NrS0.48 0.32 97.5 

Ctot 
Y ~ −13.79 + 0.1 × V1.27 + 

8.89 × NrS0.41 3.24 
Y ~ −107.24 + 12.9 × NrS0.42 + 

0.0004 × A3.36 + 0.007 × Hmean4.38 + 
54.39 × Dmean0.18 

0.94 244 

Ntot Y ~ −0.02 + 0.01 × V+ 
0.02 × NrS 0.09 Y ~ −2.94 + 0.0002 × V1.67 + 

1.29 × Dmean0.2 + 0.51 × NrS0.34 0.04 154.3 

SOM Y ~ 0.42 + 0.003 × V 0.16 
Y ~ 0.13 + 0.0144 × NrS − 

0.038 × A + 0.18 × Hmean + 0.019 × 
Dmean 

0.09 67.7 
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2.4. Model Simplifications towards In Situ Application 
While the allometric models shown in Section 2.3 are crucial to determine specific 

biomass pools, C, or nutrient masses, most of the variables used are difficult to obtain in 
the field without investing heavily in human resources. Plant volume, on the other hand, 
can be estimated over large scales using UAVs equipped with different types of sensors 
[28]. Thus, a simplified volumetric model would have the advantage of being easily ap-
plied over vast areas of stands if a DTM is available. Furthermore, in both single tree and 
stand cases, volume was also a variable always retained in the most parsimonious models 
for total biomass (Tables 3 and 4), making this variable a good candidate for a combined 
model. 

Combining volume data from stands and single trees, this model was fitted over the 
whole dataset (Figure 2a) and exhibits the biggest deviations for intermediate volumes 
(Figure 2b). The combined model had an RMSE of 13.47, which was 1.9 times higher than 
the RMSE of most parsimonious model of total biomass elaborated for single trees and 1.7 
times higher for stands, respectively. Nevertheless, model performance was adequate for 
both small and large volumes. To validate this model in a realistic situation, a large section 
of the study area was chosen, the total plot volume of the cut Acacia stand (Figure 5 and 
Section 3.1) was determined in QGIS from the DTM (31,711 m3) and then used to predict 
total biomass to compare with actual biomass harvested. The total fresh biomass cut was 
52,847 kg and dry weight was calculated at 31,869 kg using a water content of 60.31%, a 
value derived from the subsamples taken for total stands. The model predicted 31,141 kg 
with a 95% confidence interval between 28,079 and 34,203 kg, so model deviation from 
real data was only 728 kg, or 2.3%. This exercise contributes to evidence from a large scale, 
global database analysis of remote sensing data that proved height and canopy area to be 
good predictors of plant biomass, even without stem diameter [49]. Furthermore, the 
model developed here also fills a crucial gap in remote sensing of A. longifolia as an inva-
sive species. Recently, progress has been made in A. longifolia detection by mapping this 
species with a UAV during the flowering stage [50] as well as by using neural networks 
for UAV-based automated detection [51]. The models presented here can build on these 
presence/absence models by estimating the impact in terms of biomass, a variable crucial 
for the determination of the invasion stage [4]. 

 
Figure 2. (a) The linear volumetric allometric model combining singular trees (grey dots) and stands 
(black dots). (b) Original masses plotted by the deviation of predicted values to original values. *** 
= p < 0.001. 

Despite the usefulness of the described model for in situ application by local stake-
holders, it needs area and height as input to calculate the respective volume of the stand. 
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Determination of area is straightforward in most cases, using publicly available satellite 
imagery. Height, on the other hand, must be determined either by hand, or from any 
available DTM. The model described here used a DTM of very high definition (2 
cm/pixel), which might not always be available, thus, a minimum number of observations 
per area should be determined that still gives an accurate mean height measurement. This 
reasoning is based on an old rule of forestry, the Eichhorn’s rule, which states that a mon-
ospecific stands’ production is determined by its mean height [52]. To estimate this mini-
mum number of height observations, an iterative procedure was used on the xyz point 
clouds from the DTM available. Different numbers of height (z) values were randomly 
selected from the point clouds, then the mean height calculated and correlated with total 
biomass (Figure 3). For each number of height measurements, this procedure was re-
peated 10,000 times and the mean r calculated to smooth prediction. Then, using seg-
mented regression, a breakpoint was estimated at 18 observations per 100 m2, after which 
more height measurements do not significantly improve correlation with total biomass. 
Thus, for example, if one were to estimate mean height in a 100 m2 area, a pixel resolution 
of 20 m2 would be sufficiently accurate with 25 height measurements. Using this infor-
mation, stakeholders can either make use of existing DTM data sources, or, in small-scale 
plots, measure random height points in an A. longifolia stand manually to obtain a decent 
biomass prediction value. 

 
Figure 3. Correlation of the number of height measurements per 100 m2 with total biomass. Using 
segmented regression after testing for a change in slope with Davies’ test (p < 0.05), the point was 
estimated at 18. Nr = number; bp = breakpoint, *** = p < 0.001. 
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3. Materials and Methods 
3.1. Field Measurements 

All plants used for the work described here were sampled in an area adjacent to irri-
gated agricultural land classified as an arenosol (IUSS Working Group, WRB, 2006) in the 
perish of Longueira/Almograve, Odemira, Portugal (37°40′49.4′′ 8°45′49.9′′). The whole 
area had been clear cut 2008, followed by the rapid reestablishment of a monospecific 
Acacia longifolia stand. For the volumetric model of single plants, whole trees were col-
lected at the 8, 9 and 12 February and from 19 to 21 June 2016. Before total destructive 
biomass harvest, diameters of trunks at soil height (D), the largest diameter (C1) and the 
perpendicular diameter (C2) of plant canopy, as well as total height (H) were measured 
for each plant (Figure 4). Canopy area (A) was then calculated as a circle from the mean 
of both canopy radii (C1 and C2) and volume calculated as a cone (1/3 × A × H). After 
cutting the trees at ground height, plant material was separated manually into foliage 
(phyllodes), branches, which were defined as woody material with diameter below 1 cm 
(“twigs”, following [53]) and trunks, defined as woody material with a diameter above 1 
cm. 

 
Figure 4. Overview of sampling scheme, summarising field measurements taken, sampled biomass 
pools and variables measured by lab analysis. 

For the volumetric model based on photogrammetry, all trees in 11 square plots of 
ca. 25 m2 were collected on 13 and 14 October 2019. Before total destructive biomass har-
vest, all stems in the plots were counted (NrS) and their diameter at soil height measured 
to determine a mean diameter (Dmean) per plot (Figure 4). Furthermore, one pooled soil 
sample (10 cm topsoil, with 3 subsamples) was taken per stand for soil organic matter 
(SOM) determination and a 1 m2 litter sample collected. Squares were delineated using a 
high-precision GPS (see Section 3.2). For stand biomass separation, biomass was harvested 
as described for individual trees; however, foliage and branches were sampled as a single 
pool (F + B). For both individual trees and stand biomass, each of the separated plant ma-
terial was then weighed to determine wet weight with a spring scale (CR-300, Gram Pre-
cision, Barcelona, Spain) and subsequently subsamples were taken to determine dry 
weight. The final biomass harvest occurred between December 2019 and January 2020 in 
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a total area of 8831 m2. In this case, biomass was harvested, chipped and then weighed 
together in a certified lorry weighing scale. 

3.2. Drone Flight, GPS Points and Data Analysis 
The drone flight was performed by the Terradrone company, using a SenseFly eBee 

(SenseFly, Cheseaux-sur-Lausanne, Switzerland) on 26 September 2019 on a clear-sky 
day. The flight altitude was 100 m, and the drone was equipped with two types of sensors: 
senseFly S.O.D.A. (SenseFly, Cheseaux-sur-Lausanne, Switzerland) and Sequoia Multi-
spectral (Parrot, Paris, France). Using the sensor data, maps were created (Figure 5) with 
an image resolution of 2 cm per pixel and projected in the ETRS89 PT TM06 coordinate 
system with a total mapped area of 58,415 m2. A digital terrain model was created using 
structure from motion image processing techniques to create point clouds. Subsequently, 
GPS points were added to create 11 plots of ca. 5 × 5 m for later plant removal using an 
RTK: Leica GS10 high-precision receiver (Leica Geosystems AG, Hexagon, Stockholm, 
Sweden) and CHCNAV HCE320 data controller (Shanghai Huace Navigation Technology 
Ltd., Shanghai, China). GIS data analysis was performed using QGIS [54], area and vol-
ume was calculated per plot using the processing toolbox: Raster analysis > Raster surface 
volume. Volume was estimated from the whole digital terrain model; for area calculation, 
only pixels above 30 cm from the soil level were considered. As the whole study site was 
flat, the soil level was interpolated from nearby areas without vegetation (no further than 
5 m from the harvested plots). The mean height per plot was calculated from z of the 
original point clouds (xyz file). 
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Figure 5. Zoom in on the study area. (a) Overview of the area surrounding the study site, which is 
situated in an agricultural area south of Vila Nova de Milfontes, Odemira, Portugal. (b) Close up of 
study site (marked in red), indicating the 3 different sampling sites (red boxes, density indicated in 
white letters) and the total biomass harvested (area outlined in green). (c) Zoom in on the sampling 
sites. Zoom (b,c) are with overlay of the digital terrain model (in tones of grey, darker grey indicates 
lower areas, and lighter grey higher areas). 

3.3. Sampling, Dry Weight Determination and Total P 
Subsamples gathered in the field (see Section 3.1) for individual trees consisted of 50 

phyllodes, 3 representative pieces of trunk material and 10 representative pieces of 
branches for each tree. In the case of stands, bags of ca. 20 litres of phyllode-branch 
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material were harvested, as well as 5 representative trunk pieces. All subsamples were 
then dried at 70 °C until constant weight in a fan oven, following guidelines suggested by 
[53] to determine fresh weight/dry weight ratio. For SOM determination, soil samples 
were sieved with a 2 mm mesh sieve and then ignited in a muffle oven (600 °C, 6 h) to 
determine organic matter by loss on ignition. For total P of individual plant material, sam-
ples were ground to a fine powder in a ball mill (Retsch, Haan, Germany), ignited in a 
muffle oven (600 °C, 6 h) and subsequently acid-extracted (HCl, 1 M). Then, a malachite-
green-based microscale method was employed as described by [55]. The colorimetric 
method was executed in 250 μL 96-well flat-bottom microtiter plates and analysed in a 
microplate reader (Rainbow, Tecan, Männedorf, Switzerland). For each single assay, a 
separate triplicate calibration curve was produced with KH2PO4 as a serial dilution in ul-
trapure water. 

3.4. C/N Analysis 
Dry organic matter (trunks, foliage and branches) was ground to a fine powder in a 

ball mill (Retsch, Haan, Germany). An amount of 5 ± 0.2 mg of the powder was packed 
into tin capsules. Stable isotope ratio analysis was performed at the Centro de Recursos 
em Isótopos Estáveis—Stable Isotopes and Instrumental Analysis Facility, at the 
Faculdade de Ciências, Universidade de Lisboa—Portugal. δ13C and δ15N in the samples 
were determined by continuous flow isotope mass spectrometry (CF-IRMS) [56], on a 
Sercon Hydra 20-22 (Sercon, UK) stable isotope ratio mass spectrometer, coupled to a Eu-
roEA (EuroVector, Pavia, Italy) elemental analyser for online sample preparation by Du-
mas-combustion. Delta calculation was performed according to δ = [(Rsample − Rstandard)/Rstand-

ard] × 1000, where R is the ratio between the heavier isotope and the lighter one. δ15NAir 
values are referred to air and δ13CVPDB values are referred to PDB (Pee Dee Belemnite). The 
reference materials used were USGS-25, USGS-35, BCR-657 and IAEA-CH7 [57]; the la-
boratory standard used was Wheat Flour Standard OAS/Isotope (Elemental Microanaly-
sis, Okehampton, UK). Uncertainty of the isotope ratio analysis, calculated using values 
from 6 to 9 replicates of laboratory standard interspersed among samples in every batch 
of analysis, was ≤0.1‰. The major mass signals of N and C were used to calculate total N 
and C abundances, using Wheat Flour Standard OAS (Elemental Microanalysis, Oke-
hampton, UK, with 1.47% N, 39.53% C) as elemental composition reference materials. 

3.5. Statistical Analysis 
Statistical analyses were performed with the package “stats” using version R 3.3.2 

[58] and executed on Rstudio (IDE Version 1.3.959). For multiple comparisons with une-
qual sample size and non-normal data distribution (Table 2), a pairwise Wilcoxon rank 
sum test was performed. Figure 3 was created by using an algorithm that made use of the 
original point clouds (xyz file) from the digital terrain model derived by photogrammetry 
(see Section 3.2). The procedure randomly sampled heights (z) for each plot from n = 1 to 
400 times per plot, calculated a mean of these heights and then created a linear model 
between mean height and harvested biomass to obtain Pearson’s r. To smooth out r, this 
was repeated 10,000 times and subsequently the mean r for each set of mean heights/bio-
mass was plotted against the number of measurements. Lastly, a breakpoint regression 
was applied using the segmented.lme() function of the segmented package [59] to obtain 
the minimal amount of observations needed to get the highest resulting r. The breakpoint 
of the model (and models presented in Figure 1) was tested for significance using the Wald 
test with anova.lme(). 

The database search was performed on the Globallometree [40] global database using 
“Acacia” as the keyword for selecting the correspondent equations and entries. The da-
taset was then exported as a csv file and further analysed using R with regular expres-
sions. Linear regressions were performed after verifying assumptions using the Breusch–
Pagan Test for homoscedasticity and the Shapiro–Wilk Normality Test on the regression 
model residuals. Non-linear regressions (Figure 1 and allometric equations) were 
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performed using the nlsLM() function from the minpack.lm package [60]. Allometric mod-
els were fitted and their BIC (Bayesian Information Criterion) was calculated. Then, for 
“best models”, the model with the lowest BIC was chosen while the model with the lowest 
BIC and the lowest number of variables was selected for “most parsimonious models”. 

4. Conclusions 
The objective of this work was to provide models for biomass and nutrient pools of 

the woody invasive Acacia longifolia. Ultimately, these models can help to map invasion 
impact, calculate biomass quantity and quality (C/N ratios, etc.) prior to harvest for a cost–
benefit analysis or estimate fuel load and associated risks concerning wildfires. More com-
plex models (Tables 3 and 4) can be used by scientists and forest managers to ask questions 
requiring more specific answers, justifying the additional effort to measure all the neces-
sary variables. However, the combined, volumetric model (Figure 2), on the other hand, 
may be considered a user-friendly equation that can be scaled up easily via remote sens-
ing, thus providing a less accurate, but more convenient estimation. Lastly, making use of 
the high-precision DTM used in this work, an estimation of minimum height measure-
ments per area was calculated (Figure 3), which could be crucial for local stakeholders 
who need to perform manual measurements or have data with low resolution available. 
In summary, this work provides a toolbox to model A. longifolia mass that can be adopted 
by a wide range of users and contributes to its control, either by providing necessary in-
formation for its valorisation or modelling its impact at a large scale. 
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