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A B S T R A C T

Observations of the cosmic microwave background and the large
scale structure of the universe have established the concordance flat
LCDM model, predicting an accelerated expansion of the universe
via Einstein’s cosmological constant L and structure formation domi-
nated by "Cold Dark Matter" (CDM), a low-velocity fluid interacting
gravitationally only.

Despite the successes of that model and having entered the "Preci-
sion Era of Cosmology" there are still open questions. The principal
model ingredients, L+CDM, contribute to ⇠ 95% of the total energy
density of the universe, but their underlying nature is still completely
unknown. This lack of understanding is the main science driver behind
many experimental and observational missions as well as theoretical
efforts within the field of fundamental physics. Furthermore, different
cosmological observations favor different parameter values, where the
most famous discrepancy is the up to (depending on the considered
dataset) ⇠ 5s "tension" between model-dependent early-time and
direct late-time measurements of the Hubble constant H0.

The Dark Energy Spectroscopic Instrument (DESI) survey is one of
these campaigns. As the name indicates, it was launched to unravel
the mystery of dark energy by measuring millions of distant galaxy
and quasar spectra to create the largest, three-dimensional map of the
large scale structure of the universe ever obtained. From that map,
the DESI collaboration aims to extract both the expansion history
and the growth rate of structures history throughout cosmic time.
The expansion history is obtained via the so-called standard ruler
technique: distances (in function of redshift) are measured in units of
a characteristic scale, the standard ruler, which is an imprint of the
gravity-pressure waves in early universe leading to the so-called baryon
acoustic oscillations (BAO). The growth rate of structures is traced by
the measurement of the anisotropy of galaxy clustering along and
across the line-of-sight, which is induced by the peculiar velocities of
galaxies impacting the redshift measurements from their spectra. As
a consequence, distances inferred from these redshifts are distorted,
hence this effect is called redshift-space distortions (RSD). Both the BAO
and RSD observables deliver a pristine probe of the late-time dynamics
of the universe.

In the first part of this thesis we present a method to blind the
galaxy catalogs to mimic different BAO and RSD signals. Upcoming
DESI data will benefit from blinding in order to remove the impact of
confirmation bias on cosmological results. We explore two blinding
shifts at the catalog level, perturbing individual galaxy positions

xi



within the galaxy clustering catalog along the line of sight. The first one
is a purely geometrical shift based on a different expansion law. In the
second one redshifts are shifted depending on the galaxy density field
mimicking RSD with a modified growth rate. We test both blinding
shifts by performing BAO and full shape RSD analyses on original
and blinded galaxy mocks.

In the second part, we elevate the established way how BAO and
RSD analyses are performed towards including another observable, the
shape of the clustering signal as function of galaxy separations. While
the BAO and RSD incorporate the horizontal and vertical information
respectively in the clustering signal, the shape capures the "diagonal"
information. We find that this technique called ShapeFit is sufficient
to obtain cosmological constraints as tight as direct model fits to
galaxy two-point statistics while preserving the advantages of model-
independence of the standard BAO and RSD analyses.

Both parts of this thesis stress the importance of model-agnosticism
in the context of large surveys and cosmological tensions. They play
a crucial role for the DESI survey cosmological analysis providing a
road to transition from the "Precision Era" to the "Accuracy Era" of
cosmology.
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R E S U M E N E N E S PA Ñ O L

Las observaciones del fondo cósmico de microondas y de la estructura
a gran escala del universo han establecido la concordancia del modelo
plano LCDM, que predice una expansión acelerada del universo a
través de la constante cosmológica de Einstein L y una formación de
estructuras dominada por la "materia oscura fría" (CDM), un fluido
de baja velocidad que interactúa sólo gravitatoriamente.

A pesar de los éxitos de ese modelo y de haber entrado en la "Era
de la precisión de la cosmología", todavía hay preguntas abiertas. Los
principales ingredientes del modelo, L+CDM, contribuyen al ⇠ 95%
de la densidad de energía total del universo, pero su naturaleza
subyacente sigue siendo completamente desconocida. Esta falta de
conocimiento es el principal motor científico de muchas misiones
experimentales y observacionales tanto como avances teoricos en el
campo de la física fundamental. Además, diferentes observaciones
cosmológicas favorecen diferentes valores de los parámetros, con la
discrepancia más famosa siendo la "tensión" de hasta (dependiendo
del conjunto de datos considerado) ⇠ 5s entre las mediciones en
tiempo temprano dependientes del modelo y sus mediciones directas
en tiempo tardío de la constante de Hubble H0.

El cartografiado del Instrumento Espectroscópico de Energía Oscura
(DESI) es una de estas campañas. Como su nombre indica, se puso en
marcha para desentrañar el misterio de la energía oscura midiendo
millones de espectros de galaxias y cuásares distantes para crear el
mayor mapa tridimensional de la estructura a gran escala del universo
jamás obtenido. A partir de ese mapa, la colaboración DESI pretende
extraer tanto la historia de la expansión como la tasa de crecimiento
de las estructuras a lo largo del tiempo cósmico. La historia de la ex-
pansión se obtiene mediante la técnica denominada regla estándar: las
distancias (en función del corrimiento al rojo) se miden en unidades
de una escala característica, la regla estándar, que es una huella de
las ondas de gravedad-presión en el universo primitivo que da lu-
gar a las llamadas oscilaciones acústicas de bariones (BAO). La tasa de
crecimiento de las estructuras se obtiene mediante la medición de la
anisotropía de la agrupación de galaxias a lo largo y a través de la
línea de visión, que es inducida por las velocidades peculiares de las
galaxias que impactan en las mediciones de corrimiento al rojo de
sus espectros. Como consecuencia, las distancias inferidas a partir de
estos corrimientos al rojo están distorsionadas, por lo que este efecto
se denomina distorsiones del espacio de corrimiento al rojo (RSD). Tanto
los observables de BAO como los de RSD proporcionan una señal
prístina de la dinámica del universo en sus épocas tardías.
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En la primera parte de esta tesis presentamos un método de cegado
en los catálogos de galaxias que enmascara la señal real de BAO y RSD.
Los futuros datos de DESI se beneficiarán de este cegado para eliminar
el impacto del sesgo de confirmación en los resultados cosmológicos.
Exploramos dos tipos de desplazamientos para este cegado a nivel
de catálogo, perturbando las posiciones individuales de las galaxias
a lo largo de la línea de visión. El primero es un desplazamiento
puramente geométrico basado en una ley de expansión diferente. En
el segundo, los corrimientos al rojo se desplazan en función del campo
de densidad de las galaxias imitando una señal de RSD con una tasa
de crecimiento modificada. Demostramos que ambos desplazamientos
distorsionan las señales de forma coherente al realizar analisis de BAO
y RSD en los catalogos originales y ciegos.

En la segunda parte, mejoramos el estado del arte en que se realizan
los análisis BAO y RSD incluyendo un nuevo observable, la forma de la
señal de agrupamiento en función de las separaciones de las galaxias.
Mientras que las señales de BAO y el RSD incorporan la información
horizontal y vertical respectivamente en la señal de agrupamiento, la
forma capta la información "diagonal". Encontramos que esta técnica
llamada ShapeFit es suficiente para obtener mediciones cosmológicas
tan precisas como los ajustes directos del modelo a las estadísticas de
dos puntos de las galaxias, preservando al mismo tiempo las ventajas
de la independencia del modelo de los análisis estándar BAO y RSD.

Ambas partes de esta tesis subrayan la importancia del agnosti-
cismo hacia el modelo en el contexto de los grandes sondeos y las
tensiones cosmológicas. Estas, despeñan un papel crucial para el análi-
sis cosmológico del sondeo DESI, y proporcionan un camino para la
transición entre la "Era de la Precisión" a la "Era de la Exactitud" de la
cosmología.
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1
I N T R O D U C T I O N

Cosmology is the study of the origin and evolution of our universe,
from its birth until today and beyond. Since time immemorial, hu-
mankind have concerned themselves with the fundamental cosmolog-
ical questions such as “Where do we come from?”, “What gave rise to
our existence?” and “What is the origin of the world we live in?”. But
only at this particular moment and for the first time in human history,
thanks to the overwhelming technical, observational and theoretical
advancements during the past century, we understand -on a rigorous
scientific basis- how our universe evolved and how it looks like on the
very large scales.

In this chapter we will review how these recent advancements
culminate into the current cosmological paradigm and portray the
challenges and open questions modern cosmology is facing at the
moment. We will introduce the basic theoretical and observational
concepts necessary to understand the original publications presented
in chapters 2 and 3 and motivate the objectives of this thesis within
the scope of addressing these challenges. In particular, part of this
thesis and the publications [1–5] included in it, emerged from work
for the Dark Energy Spectroscopic Instrument (DESI) collaboration.
This instrument [6], which will set the new standard in large scale
structure (LSS) observations for the next decade, will be introduced in
this chapter as well.

1.1 Lcdm- the standard cosmological model

The theoretical basis of cosmology was laid out by Einstein in 1907 in
his work The Foundation of the General Theory of Relativity [7]. While the
previous notion of evolution of matter within space and time based
on Newton’s Principia [8] viewed space and time as absolute, like a
rigid stage on which matter acts upon freely, Einstein introduced the
concept of General Relativity (GR) where geometry and matter are
directly intertwined. The matter distribution defines the curvature of
spacetime, while the curvature of spacetime itself defines the trajectory
of each body within that matter distribution. This notion paved the
way for our current understanding of the universe, where not only its
constituents, but also spacetime itself is evolving throughout cosmic
time.

The first observational evidence for a dynamic spacetime geometry
was delivered by Edwin Hubble in 1929 [9], who measured the reces-
sion velocity of distant galaxies with respect to us. He found a linear
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2 introduction

relation between the velocity vgal and the distance Dgal of galaxies
hinting towards an expansion of the universe at the so-called “Hubble
rate today” defined as

H0 =
dvgal

dDgal
= 100 h

km/s
Mpc

, (1.1)

where the exact numerical value of the unitless parameter h is still of
primary interest for modern cosmology.

This observation led to the conclusion that spacetime itself is ex-
panding, which implied that at earlier times the universe was more
squeezed, hence denser and hotter than before. Ultimately, this gave
rise to the theory of the “Big Bang”, in which the universe emerged
from an initial singularity.

The general formalism can be summarized as follows. Assuming
the universe to be homogenous and isotropic at any time t, its geom-
etry can be described by the Friedmann-Lemaître-Robertson-Walker
(FLRW) metric, that relates the line element ds2 to the spacetime
coordinates (time t, radius r, solid angle W) as

ds2
= �c2dt2

+ a2
(t)

✓
dr2

1 � kr2 + r2dW2
◆

. (1.2)

This metric allows for a global curvature of spacetime parameterised
by k and scales all distances with a time-dependent scale factor a(t),
normalised to a0 = a(t0) = 1 today. Going back in time, the scale factor
decreases and reaches zero aini = a(tini) = 0 at the time tini = 0 of the
initial singularity, when the universe (and spacetime itself) was born.
Cosmology does not (and cannot) probe the origin of that singularity
nor describe the status at the precise time of the singularity. It rather
deals with the evolution of the universe just after the singularity. For
example, the determination of the age of the universe t0 is of enormous
interest in modern cosmology and closely related to determining h, as
the age of the universe can be inferred from the expansion rate H(t).

According to Einstein’s GR, the expansion rate and the curvature
of spacetime is directly linked to the energy content of the universe.
Combining homogeneity and isotropy, i.e., eq. (1.2) with GR results in
the Friedmann equation

H(t)2
=

✓
ȧ(t)
a(t)

◆2

=
8pG

3
r(t) �

k
a2 +

L
3

, (1.3)

where the dot (ẋ) denotes the derivative with respect to time t and L
is the cosmological constant featuring a constant expansion rate, hence
accelerated expansion. This new definition of the Hubble expansion
rate after the first equal sign is equivalent to eq. (1.1) considering that
the galaxies’ recession velocities within the Hubble flow are a direct
consequence of the time evolution of the scale factor.



1.1 Lcdm- the standard cosmological model 3

So, what are the constituents of the universe contributing to the
energy density r(t) in eq. (1.3)? This question has been subject to active
research in cosmology during the past century, with beneficial input
from the ongoing advancements in particle physics and astronomy.
To date, we know that the universe consists of the following stable
elementary particle species {i}

• photons (i = g),

• neutrinos (i = n),

• ‘baryonic’ matter consisting of electrons, protons, neutrons and
combinations of these, i.e., elements such as hydrogen, helium,
etc. (i = b),

• cold dark matter (i = cdm),

where cold dark matter (CDM) is a set of particles/objects only in-
teracting gravitationally, whose underlying nature is still unknown.
However, next to the cosmological evidence we will review later, there
is a plethora of astrophysical evidence pointing to its existence, such
as galaxy cluster dynamics [10], galaxy rotation curves [11] and the
displacement of the mass centers of collided galaxy clusters with
respect to their electromagnetic counterpart [12], to mention a few.

It is useful to define the relative density parameter Wi for each
specie i as

Wi =
ri

rcrit
, with rcrit =

3H2
0

8pG
, (1.4)

where rcrit is the critical density today and G the gravitational constant.
By interpreting also the curvature and cosmological constant terms in
eq. (1.3) in terms of energy density

Wk = �
k

a2
0H2

0
, WL =

L
3H2

0
, (1.5)

and grouping each specie i into relativistic radiation r = {g, n} and
non-relativistic matter m = {cdm, b}, we can write (1.3) in the conve-
nient form

✓
H(z)
H0

◆2

= Wr(1 + z)4
+ Wm(1 + z)3

+ Wk(1 + z)2
+ WL (1.6)

fulfilling by construction the so-called budget equation

1 = Wr + Wm + Wk + WL . (1.7)

Since it is more closely related to actual observations, we have re-
placed the time t and scale factor a variables by the redshift z, which
describes the relative stretching of a photon’s wavelength l due to the



4 introduction

universe expansion between the time of emission t and the time t0 of
its absorption in a telescope

z(t) =
Dl(t0, t)

l(t)
=

l(t0) � l(t)
l(t)

=
a0

a(t)
� 1 . (1.8)

In eq. (1.6) we make use of the fact that the energy density of matter
dilutes as a�3 due to the scaling with volume while radiation dilutes
as a�4 due to the additional stretching of wavelength. Also, we assume
that neutrinos are a relativistic specie, which is not strictly true due to
their non-zero mass evidenced by neutrino oscillations [13–15].

The description of the universe’s homogeneous background expan-
sion by eq. (1.6) is of fundamental importance for cosmology. First, it
sets the distances within the universe. In particular, throughout this
work we will constantly use the comoving distance DC and comoving
angular diameter distance DM of objects with respect to us defined as

DC(z) =

Z z

0
dz0 c

H(z0)
DM(z) =

c
H0

Sk

✓
DC(z)
c/H0

◆

with

Sk(x) =

8
>>><

>>>:

sin
�p

�Wkx
�

/
p

�Wk Wk < 0,

x Wk = 0,

sinh
�p

Wkx
�

/
p

Wk Wk > 0 ,

(1.9)

where DM(z) = DC(z) in case of zero curvature Wk = 0.
Moreover, eq. (1.6) implies that throughout its evolution the universe

went through a certain hierarchy of different epochs. At very early
times, the dominant energy contribution arises from radiation, which
is surpassed by the contribution of matter at the redshift of equality
between matter and radiation zeq. In case of non-flatnesss, there is
another phase of curvature domination until, at the latest times, the
universe eventually becomes “dark energy” (or cosmological constant)
dominated.

The current picture of the thermal history of our universe as sup-
ported by observations is as follows.

During a split second after the Big Bang, the universe is in a state
of accelerated expansion called inflation. This mechanism introduced
by [16–19] ensures causal connection between different patches of the
sky, flatness, and generates the initial condition of small perturbations
from homogeneity. These perturbations of order 0.001% are sourced
by initial quantum fluctuations becoming macroscopic due to inflation.
The spectrum of these primordial fluctuations PR(k) as function of
wavenumber k is predicted to be nearly scale-invariant, with scalar
amplitude As and primordial tilt (deviation from scale-invariance) ns

PR(k) = As

 
k

0.05 Mpc�1

!ns�1

. (1.10)



1.1 Lcdm- the standard cosmological model 5

After the first standard model elementary particles form in a process
called reheating, the strong force groups quarks into protons and neu-
trons, which form heavier ions within the next minute leading to the
element abundances seen today by observing spectra of very distant
systems [20] and can be predicted using “Big Bang Nucleosynthesis”
(BBN) codes such as [21].

The universe is now a hot soup made of a tightly coupled photon-
baryon pasma, in which the initial perturbations propagate as sound
waves, driven by the gravitational and pressure forces. Until the tem-
perature drops well below the binding energy between electrons and
protons which consequently, driven by the electromagnetic force, re-
combine into neutral atoms. This phase transition called recombination
takes place 380,000 years after the Big Bang, or in terms of redshift
at zrec = 1090 shortly after the time of equality between matter and
radiation at zeq = 3400. From that moment on, photons can travel
freely and we can still observe the correspondent relic radiation called
cosmic microwave background (CMB) radiation. The most precise
measurement of the CMB monopole temperature today

Tg
0 = 2.72548 ± 0.00057 (1.11)

comes from the Cosmic Background Explorer (COBE) mission [22, 23]
and its perturbations were measured in subsequent satellite missions
of the Wilkinson Microwave Anisotropy Probe WMAP [24] and Planck
[25]. The latter experiments also measured the polarisation spectra of
the CMB, which are also probed independently by the earth-based At-
acama Cosmology Telescope (ACT) [26] and the South Pole Telescope
(SPT) [27], providing additional constraining power on cosmological
parameters.

The theoretical prediction for the temperature and polarisation
anisotropies is obtained by solving the perturbed Boltzmann equations
numerically using Boltzmann codes such as CAMB [28] or CLASS [29].
All these efforts provide remarkable evidence for the Hot Big Bang
model and exquisite measurements of the energy composition of the
universe through the balance between pressure and gravity and the
strength As and tilt ns of primordial fluctuations.

After recombination, the universe enters the “dark ages”, during
which the gravitational force progressively groups the gas of neutral
hydrogen, helium and metals into denser and denser clouds until they
form the first galaxies and stars at the so-called redshift of reionisation
zreio ⇠ 10. During that process the underlying CDM is key for the gas
cooling and star formation mechanisms. Hence, from that moment
on, structures emerged that we can observe with our telescope to map
the expansion history of the universe. There is a wealth of different
tracers of the universe’s late-time dynamics. Here we point to three
different methods that have become pivotal in establishing the current
LCDM paradigm, where the latter two are of particular relevance for
this thesis.



6 introduction

The standard candle method. The absolute luminosity of Type Ia Super-
novae explosions is known theoretically (and can be calibrated using
near supernovae) and is assumed to be the same independently of
their distance to us. Hence, by measuring the apparent luminosity of
distant supernovae one can infer the redshift-distance relation. With
the launch of the Hubble Deep Field satellite mission [30] this method
led to the observational evidence, that the universe is in a state of
accelerating expansion [31, 32], hence cosmological constant or dark
energy dominated today.

The standard ruler method. As mentioned before, the initial perturba-
tions propagate as sound waves and become frozen once the baryon-
photon fluid decouples at recombination, or more precisely, at the time
of baryon drag zd ⇡ 1060. At this time, baryons do not feel the photon
pressure anymore and it occurs a bit later than recombination, since
the number of photons is much larger than the number of baryons.
The comoving distance the pressure waves have propagated is

rd =

Z •

zd

dz̃
cs(z̃)
H(z̃)

, c2
s (z) =


3
✓

1 +
4Wb(z)
3Wg(z)

◆��1

, (1.12)

where cs(z) is the sound speed of the photon-baryon fluid as a function
of redshift. This process leaves a unique imprint known as the baryon
acoustic oscillations (BAO) on the large scale clustering of, galaxies and
other CDM tracers during late times. Measuring the angle under which
this scale appears at different redshifts delivers another independent
probe of the expansion rate of the universe. This method, first applied
to data in [33, 34], has contributed to our current understanding
that the universe is flat and the most recent BAO analyses from the
Baryon Oscillation Spectroscopic Survey (BOSS) [35] and its extended
campaign (eBOSS) [36] deliver the most precise and robust standard
ruler based distance measurements to date.

The redshift-space distortions method. Finally, spectroscopic surveys
do not only measure the expansion history through BAO, but also
the structure formation history via redshift-space distortions (RSD).
These distortions arise from the fact that the galaxies we observe
have peculiar velocities that introduce an additional red- (or blue-)
shift component on top of the redshift related to the Hubble flow.
Crucially, this component is not random, since the galaxy peculiar
velocity field is correlated with the real-space galaxy overdensity field,
because of the gravitational attraction towards overdense regions.
Indeed, it is easy to show within linear perturbation theory [37], that
the bulk motion of galaxies on large scales depends on the so-called
velocity fluctuation amplitude f s8, where s8 is the matter fluctuation
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amplitude filtered on scales of 8h�1Mpc and f the logarithmic growth
rate of structures defined as

s2
8 (z) =

Z •

0
d(ln k) k3Pm(k, z)W2

TH(k · 8h�1Mpc) ,

f = �
1 + z

z
d ln D(z)

d ln z
, with D(z) =

s2
8 (z)

s2
8 (0)

(1.13)

where Pm is the matter power spectrum, WTH the spherical tophat
window function, that smoothes the fluctuations on scales of 8h�1Mpc,
and D(z) the linear growth factor. The matter power spectrum can
be seen as the evolved form of eq. (1.10), where the evolution of
perturbations from the initial random seed until the redshift z has been
consistently taken into account by solving the Bolzmann equations.
The large scale RSD lead to an apparent squashing of structures,
also known as "Kaiser-effect" [37]. On small scales comparable to
individual dark matter halo sizes however, the measurement of f s8
becomes obscured by non-linear redshift space distortions arising from
virialised objects. This almost random motion leads to a suppression in
power and elongation of structures, also known as the "Finger-of-God"
(FoG) effect [38].

In conclusion, the ability to model and measure the temperature
and polarization anisotropies of the CMB enabled us to enter the
so-called "precision era of cosmology", in which the composition of
the universe can be pinned down to percent precision, given a model.
In combination with the direct probes of the late-universe mentioned
above, this effort has nowadays established the so-called standard
flat LCDM model together with the inflationary paradigm, with free
parameters W (other choices are possible)

W = {Wb, Wcdm, h, As, ns, zreio} , (1.14)

where the energy contribution from radiation Wr is fixed by the mea-
surement of the CMB photon temperature in eq. (1.11) and by assum-
ing three standard neutrino species.

1.2 current challenges in cosmology

Despite the remarkable success of the LCDM model in fitting all
observations astonishingly well with only six parameters, it exhibits
some severe shortcomings.

First of all, it is a purely parametric model and its most important
ingredients, the cosmological constant or dark energy part ("L") and
the cold dark matter part ("CDM"), still lack physical explanation.
While the cosmological constant is a natural ingredient of GR, its
microscopic origin is completely unknown and commonly dubbed
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"dark energy" representing a fluid with equation of state w (ratio
between fluid pressure pde and density rde)

w(z) =
pde(z)
rde(z)

< �
1
3

(1.15)

leading to accelerated expansion, where w(z) = �1 is equivalent to a
cosmological constant. Finding a deviation w(z) 6= �1 would therefore
hint towards a different origin for accelerated expansion than through
L, where the nature of the corresponding dark energy fluid would
still need to be determined. For the other ingredient, CDM, many
physical explanations of its fundamental nature have been proposed,
from elementary particle candidates such as axions [39] or WIMPs
[40] to astrophysical objects such as primordial black holes (PBH) [41],
but none of them has yet been proven, neither in observations nor in
laboratories. But the search for CDM candidates is one of the main
drivers of active, multidisciplinary research of fundamental physics.

Also, the current model of inflation is completely parametric and
lacks of physical microscopic explanation. Similar to the accelerated
expansion observed today, inflation requires the presence of a fluid
with negative pressure, or a constant scalar field slowly decaying
during accelerated expansion until reaching the "ordinary" deceler-
ated expansion of radiation domination. While inflation is capable to
solve the flatness and causal horizon problems in an elegant way, the
underlying nature of such an initial scalar field is still unknown and
unfortunately very hard to probe, since there is no way to reproduce
the energy scales present at the time of inflation. Nevertheless, the
study of primordial non-Gaussianities, primordial B-modes in the
CMB polarization [42], or the gravitational wave background with the
Laser Interferometer Space Antenna (LISA) [43] could reveal more
details about the nature of inflation.

Then, there is a huge redshift range between zreio < z < zrec still
completely unexplored, hence also referred as "dark ages". Fortunately,
there is ongoing effort to map the universe during this gap in cosmic
history using line intensity mapping (LIM) [44] arising from transitions
between quantum states of the early gas.

Finally, the standard flat LCDM model exhibits some tensions when
comparing early-time versus late-time probes. In particular, the LCDM
interpretation of the CMB anisotropies [25] results in a Hubble param-
eter of

hCMB = 0.6736 ± 0.0054 , (1.16)

while the latest direct measurements of the local Hubble rate H0 using
supernovae [45] favor

hSN = 0.7304 ± 0.0104 . (1.17)

These values are in 5s tension with each other and both early time or
late time modifications to the standard model still fail to significantly
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reduce this tension [46–48]. Assuming that this tension does neither
originate from systematic nor statistical errors, finding hints for new
physics to bring late and early times in concordance is of primary
interest for modern cosmology.

Similarly, there is a mild tension between early-time and late-time
measurements in the fluctuation amplitude of perturbations. While
at time of recombination perturbations are of order O(10�5) deeply
within the linear regime, they keep growing due to the gravitational
potential reaching O(1) leading to non-linear dynamics today. Direct
measurements of the matter overdensity field s8 via weak lensing [49],
i.e., the distortion of galaxy shapes due to the matter field in between
acting as gravitational lenses, prefer values of s8 slightly lower than the
LCDM model prediction of s8 given the Planck bestfit parameters [25].
On the other hand, the BOSS+eBOSS galaxy clustering measurement
of s8 is in good agreement with the Planck prediction [36].

As already indicated, all these shortcomings lead to a plethora of
active research topics, not only in cosmology but also spanning several
disciplines in fundamental physics, from experimental accelerator and
detector physics to string theory model building. These shortcomings
are also the main science drivers for upcoming LSS surveys such as
Rubin [50], Euclid [51] and the ongoing DESI survey [52, 53], for which
the methods presented in this thesis were developed in particular.

1.3 mapping the universe with desi

The primary goal of the Dark Energy Spectroscopic Instrument [52]
is to improve our understanding of the underlying nature of dark
energy, which drives the accelerated expansion of the universe, by
creating enormous galaxy and quasar maps with unprecedented speed
and precision. DESI is located at the Mayall 4-meter telescope at
Kitt Peak National Observatory, Arizona (USA), an overview of its
intrumentation can be found in [6]. One of the main improvements
of the instrument with respect to its antecessors BOSS and eBOSS
is the focal plane: it is comprised of 5000 individually controlled
robots, that can quickly position each fiber within their patrol radius,
while for previous intruments holes needed to be drilled mechanically
into aluminium plates to position the spectrographs for each night.
Together with a substantially reduced exposure time, this allows DESI
to observe over 40 million spectra of extragalactic objects over a wide
angle and redshift range during its 5 year program. Similar to the
BOSS and eBOSS campaigns, this galaxy map will be used to apply the
BAO standard ruler technique, in order to provide a precise distance
redshift relation and hence measure the dark energy equation of
state. Furthermore, DESI will use the full shape (FS) or (BAO+RSD)
technique to measure the growth history of structures f s8(z), and
hence probe the fundamental assumptions of GR.
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To achieve this, the DESI collaboration distributed the work to be
done for the Year 1 (Y1) analysis into several key projects (KP). The
first, KP1, is the "Data Release of the Survey Validation Data Assembly"
for which the first part, the DESI Overview is already done [6] and
the validation of the scientific program and the early data release of
unblinded1 data is in progress. The second, KP2, is the "Data Release of
the Y1 data" will release the spectra and catalogs of all DESI tracers,
the BGS (bright galaxy survey, 0.1 < z < 0.5) , LRG (luminous red
galaxies, 0.4 < z < 1.1), ELG (emission line galaxies, 0.8 < z < 1.6),
QSO (quasi-stellar objects or simply: quasars, 0.8 < z < 3.5) and Lya
(Lyman-alpha, 2 < z < 5) . KP3 takes care of the "LSS catalogs and
2-point measurements", which are analysed by the KP4, KP5 and KP6
groups to extract the "galaxy BAO", "galaxy Full Shape" (FS, where
FS = BAO+RSD), and "Lya BAO". Finally, KP7 is responsable for the
"Likelihoods" necessary to carry out the cosmological analysis.

In order to extract cosmological information from a map of each
galaxy tracer (KP4, KP5, and KP6), we need to compress the informa-
tion into the summary statistics of choice. Here, we choose the galaxy
power spectrum Pg(k, µ, z) suitably binned in wavevector k, projection
of angle q with respect to the line of sight µ = cos(q), and redshift z.
But this compression on its own is, already, a non-trivial process and
topic of active research within KP3. Here we will summarize the most
important concepts necessary for qualitative understanding, but for a
full review see [54, 55].

Ideally, we would like to infer directly from the map the galaxy
overdensity field dg(r) defined as

dg(r) =
rg(r) �

⌦
rg(r)

↵
⌦
rg(r)

↵ (1.18)

with observed galaxy density rg(r) and averaged (over all angles)
density

⌦
rg(r)

↵
. However, the latter function is unknown a priori,

the selection function of galaxies (i.e., their angle-averaged number
density) as function of redshift ng(z) is obtained from the data, and
hence does not necessarily represent the underlying "true" selection
function. This is usually taken into account by imposing the so-called
integral constraint, that the fluctuations in the limit towards the largest
observable scale corresponding to the survey size should become zero
[56].

Furthermore, the selection function usually contains "holes" in re-
gions that are not observable due to the telescope position, the galactic
center, bright stars, etc. It is therefore impossible to evaluate eq. (1.18),
since the denominator becomes zero in those regions. To circumvent

1 The development of a blinding method and its validation for DESI is one of the
projects carried out in this thesis and will be introduced later in chapter 2. It will be
used for the Y1 analysis, whereas the early data release will contain only unblinded
data obtained during survey validation prior to the start of the main survey.
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this, as pioneered by [57], the denominator of eq. (1.18) is replaced by
a constant and, instead, the denominator (also called window function)
is multiplied or convolved (in case of operating in Fourier space) with
the theory model. Usually, the window function is obtained from a
synthetic catalog of random points, matching the selection function of
the data, but with significantly more objects and without clustering
signal. During that process, however, one has to be careful to define
the window function and power spectrum normalisation consistently,
otherwise the fluctuation amplitude will be biased [56, 58, 59].

Another real-world complication arises from the fact that obser-
vations might become contaminated by poor observing conditions
(clouds, seeing, skylines, etc), instrument limitations (fiber collisions),
and peculiarities of the observed region (redshift failures, trends in
magnitude-color), which need to be carefully taken into account via
systematic weights [60]. Also note that, [57] introduced the so-called
FKP weights to minimize the variance at those scales important for
BAO analysis. All these weights are not specified here for conciseness.

Last but not least, the measured redshifts and angles need to be
converted to distances, in order to compute the density field. This
conversion is usually done with the help of a fiducial cosmological
model. But since the "true" underlying redshift-distance relation is
unknown a priori, the distance scaling is allowed to vary at the model
fitting step (explained below) in a generic way representing all possible
changes in expansion history one can think of.

Once the galaxy overdensity field is obtained, i.e., eq. (1.18) includ-
ing the corrections mentioned before, we can write the galaxy power
spectrum as Fourier transforms of the real-space overdensity fields
given a galaxy pair r1, r2 within one redshift bin

Pg(k) =

Z
dr1

Z
dr2 dg(r1)dg(r2)eik·(r1�r2) , (1.19)

and compute the power spectrum multipoles for ` = 0, 2, 4 using the
Legendre polynomial base composition L`

P`

g(k) =
2` + 1

2

Z
+1

�1
dµ Pg(k, µ)L`

(µ) . (1.20)

There is a subtle point hidden in eqs. (1.19) and (1.20), related to
the definition of µ. Ideally, µ corresponds to the cosine of the angle
between k and the LOS position of the galaxy pair. However, the
latter is ill-defined in case of large angular separations. A convenient
choice for the LOS is to define it with respect to one of the galaxies
within that pair, e.g. towards r2. In that case, eq. (1.19) can be written
as a product of two separate integrals and inserted into eq. (1.20)
defining the so-called Yamamoto estimator, which has been shown to
deliver good enough precision, even for wide angles [61, 62]. Indeed,
it is shown in [63] that wide angle effects only contribute to 5% of
the systematic error in the even multipoles, while they dominate the
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error in the odd multipoles. Correcting for wide-angle effects is hence
important for studying primordial non-Gaussianities (affecting low-k
modes) and GR effects affecting the odd multipoles. This is, however,
beyond the scope of this thesis.

Again, the discussion presented here is purely qualitative, with the
purpose to emphasize the complications arising when dealing with
real data. The full relevant equations can be found in section 2 of
the published article within chapter 2, in particular see eqs. (2.4-2.6)
therein. But note, that those equations are valid for BOSS+eBOSS
dataproducts only and the exact implementation for DESI is still in
development.

Once the power spectra and their covariance (obtained from the
power spectra of mock catalogs) are measured successfully, the next
step in the spectroscopic survey pipeline is the model fitting. This
step is the principal research topic of all publications presented in this
thesis. Again, we refer to the original publications for the detailed
implementation and provide here only a brief overview of the issue at
hand.

As mentioned before, with DESI we pursue measurements of the
BAO (KP4) and FS (KP5) signals of each tracer independently in a
model-independent way, such that, subsequentely, these signals can
be interpreted in light of a cosmological model of choice (KP7). This
follows closely the strategy of BOSS and eBOSS, where the different
tracers [64–67] have been analysed individually both in Fourier space
[58, 68, 69] and configuration space [70–72].

Generally, these individual model fits to the measured two-point
statistics are performed using a fixed template of the power spectrum
(or correlation function), in most cases (but not necessarily) consistent
with the Planck cosmology. Hence, these types of fit are also referred as
fixed-template fit. The fiducial template is allowed to vary in a controlled
way, determined by a set of physical parameters Q.2 In the case of
BAO analyses, the physical parameters Q =

�
ak(z), a?(z)

 
defined

as

a?(z) =
DM(z)/rd

Dfid
M (z)/rfid

d
ak(z) =

Hfid(z)rfid
d

H(z)rd
, (1.21)

represent the distance scaling along and across the LOS in units of
the sound horizon rd from eq. (1.12). In case of FS (or BAO+RSD)
analysis the growth rate of structures f is introduced as an additional
free parameter, Q =

�
ak(z), a?(z), f (z)

 
, representing the amount of

anisotropy due to RSD in units of the fixed fiducial template amplitude
sfid

8 (z) from eq. (1.13).

2 The symbol Q is also used in the published articles of this thesis, see for instance eq.
(3.1) of chapter 2, and the discussion in section 2 of chapter 6.
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The reasoning behind fixed-template fits is that once the template-
dependent parameters Q are fitted to the data, they can be easily
converted into the template-independent quantities Q0

Q ! Q0
= {DM(z)/rd, H(z)rd, f s8(z)} (1.22)

by multiplying with the corresponding fiducial values. Of course,
there is a residual template dependence which is carefully considered
and quantified in each analysis [58, 68–72]. In general, the robustness
of these measurement in terms of model-independence is very high
as demonstrated by [73, 74] for BAO analyses and [58] for BAO+RSD
analyses. We will see later that the works presented in chapter 3 open
an additional window for increasing the robustness and template-
independence of BAO+RSD analyses.

Finally, the set of model-independent, compressed, physical param-
eters can be compared to the cosmological models of choice as in [35,
36] and the article presented in chapter 6 of this thesis, which serves
as a blueprint for the cosmological analysis envisioned for DESI.

1.4 objectives and structure of the thesis

With cosmological experiments gaining more and more precision,
and with existing tensions between various probes, demonstrating
the robustness of the observations and their analysis is crucial. The
principal aim of the work provided in this thesis is to maximize the
robustness of galaxy clustering measurements while at the same time
extracting as much information as possible from the galaxy maps. This
balancing act is represented by the two main research pillars provided
in this thesis, "Blinding" (part i) and "ShapeFit" (part ii).

The first pillar, "Blinding", is the development of a catalog-level
blinding scheme applicable for any spectroscopic survey in [1] as
a key requirement for the DESI survey in particular. Carrying out
blinded analyses is of major importance in order to reduce human con-
firmation bias. The idea behind this blinding scheme is to modify the
galaxy redshifts in such a way that they mimick a different underlying
expansion rate and growth rate of sructures, such that the physical
parameters obtained from the blinded catalog are modified. In the
article [1] which is included in chapter 2 we validate this method on
mock galaxy catalogs and demonstrate that the signal imprinted into
the catalogs indeed behaves as requested at the level of compressed
variables.

The second pillar, "ShapeFit", is an extension of the standard template-
fits extracting additional cosmological information beyond BAO and
RSD from the galaxy power spectrum measurements. This information,
captured in terms of a new physical shape parameter m fulfills two
purposes. First, it can be used to further reduce the residual fiducial
template dependence on parameters Q0. Second, when interpreted
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in light of a cosmological model, it delivers additional constraining
power, in bulk matching the "maximal achievable constraining power"
of direct model fits.

Direct model fits, or "Full Modeling (FM) Fits" as called in the pub-
lications of this thesis, are not based on a fixed template, but rather fit
the cosmological model parameters directly to the galaxy power spec-
trum multipoles, omitting the step of data compression into physical
variables. FM fits have already been used in the early SDSS analyses
[75–77], but were discontinued in subsequent data releases for several
reasons. First, the late time galaxy density fluctuations of order O(1)

(non-linear) are much harder to model than the CMB fluctuations
of order O(10�5) (completely linear), which are routinely analysed
using the FM technique. Second, there are further complications in
the measurement step summarized in section 1.3 making a cosmo-
logical interpretation, especially on large scales, difficult. Finally, the
compressed parameters have been shown to capture the information
that is most synergetic with CMB data and completely suffice to break
degeneracies. However, during the recent years FM fits have regained
attention due to the works by [78–80]. This effort has been possible
mainly due to recent advancements in fast perturbation theory calcu-
lations based on FFTLog [81, 82]. But their gain in constraining power
comes at the cost of missing transparency to where that constraining
power actually comes from and to what degree it depends on the prior
assumptions.

The goal of this thesis is to augment the standard fixed template
approach, such that even upon entering the precision era with DESI we
maintain the ability to remain as model-agnostic as possible. For that
purpose, we demonstrate explicitely on mocks [2] (chapter 3) and data
[3] (chapter 4), that ShapeFit enables to match the constraining power
of FM works while retaining the advantages (robust, fast, modular)
of the fixed template compression. In our fourth published article
[4] (chapter 5) we validate the ShapeFit accuracy by carrying out a
blind analysis on the large volume, high precision PT challenge mocks
provided by [83]. Last but not least, chapter 6 includes the submitted
article [5], where we apply ShapeFit to the final BOSS+eBOSS legacy.

We finish the thesis with a summary of the results and future
prospects with DESI in chapter 7.
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2
B L I N D O B S E RV E R S O F T H E S K Y

The implementation of an appropriate blinding strategy is a key scien-
tific requirement for the DESI cosmological analysis. The concept of
blinding data has been recognized as a priority for modern cosmologi-
cal surveys on the path towards preventing confirmation bias. Catalog
level blinding has already been applied to photometric surveys for
the weak lensing Kilo-Degree Survey (KiDS) both for ellipticities [84]
and redshifts [85]. On the other hand, the Dark Energy Survey (DES),
another photometric weak lensing survey, blinded their dataset at the
level of summary statistics [86]. Another blinding method operating
at the covariance and hence likelihood level is proposed in [87].

Within this thesis, the first (and only) catalog level blinding strategy
for spectroscopic redshift surveys is developed. While it is targeted
towards DESI, the procedure is generic for any galaxy redshift survey.
It is applied as a proof of concept to BOSS but it could be implemented
for other datasets as well. In the attached publication “Blind observers
of the sky” [1] we present and validate this simple, yet efficient,
blinding method: it introduces a shift in galaxy redshifts mimicking
both a different expansion history of the universe (hence blinding
the BAO position) and a different structure growth history (hence
blinding the RSD signal).

The structure of [1] is as follows. After introducing the basics of
BAO and RSD analyses in section 2, the exact blinding scheme is
developed in section 3. It is tested on mocks and applied o real data in
sections 4 and 5 respectively. Finally it concludes in section 6, featuring
a summary of the blinding scheme in figure 17.

This blinding method is highly practical for several reasons. It
directly blinds the observables spectroscopic galaxies are sensitive to,
and by operating at the catalog level by construction it is coherent
for any summary statistic of choice. Hence, it is well suited for the
BAO and RSD analyses of DESI. An overview of how it is being
implemented in DESI is shown in figure 1.

17
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1 Introduction

Thanks to a coordinated observational and theoretical e�ort over the past two decades, cos-

mology has entered the precision era. Precision cosmology rests on the extremely successful

standard model of cosmology, the flat ⇤CDM model, which provides a coherent and precise

description of a suite of observations ranging from the early to the late Universe. Two main

components of the model, dark energy with an equation of state parameter w = �1 equiva-

lent to a cosmological constant ⇤, and cold dark matter (CDM), are poorly understood and

may be considered as e�ective descriptions for the true model’s ingredients, which are yet to

be found.

The goal to shed light on these components and their nature, as well as exploring other

fundamental physics, is the main driver for forthcoming, observational e�orts, especially for

large-scale structure surveys as e.g. DESI [1], Euclid [2], LSST [3] and SKA [4]. Especially the

LSS experiments listed above have the potential to induce a paradigm change in cosmology,

since they will be sensitive to the cosmological parameters at nearly the same precision level

as current CMB experiments as Planck [5].

Unaccounted systematic errors may be interpreted as signs of new physics. This is a risk

that should be mitigated at all costs. Conversely however, signs of new physics may appear

– 1 –
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as unexpected results, which the experimenter might attribute to systematic errors. It is

therefore imperative to have an exquisite control on the systematic errors, which is ideally

achieved by fulfilling the following conditions:

1. All potential sources of systematic errors need to be identified.

2. Each systematic needs to be modeled appropriately.

3. Their e�ect on the posterior distribution needs to be explored and correctly included

in the systematic error budget of the final result.

While this is well known and a significant e�ort of the community is devoted to these

aims with important successes, a basic question remains to be answered: at which point the

search for further systematics may stop? This is the aspect more prone to confirmation bias:

we, as scientists and human beings, unconsciously tend to accept results faster if they are in

agreement with previous findings, than if they disagree.

One promising way of avoiding experimenter’s bias is to carry out blind data analyses,

where the original data vector is transformed as to hide the true signal in a controlled way

before running the analysis pipeline. If suitably implemented, this allows for studying the

degeneracies of systematic e�ects with theoretical models while being blind to the underlying

values of the model parameters.
1

Once the analysis of the blinded data is finalised, i.e. the

three conditions mentioned above are fulfilled, the analysis pipeline is frozen and either

applied to the original data, or the results are unblinded.

The concept of blinding has already entered several fields of natural sciences. For the

first time it was used in experimental particle physics in the 90’s for the detection of the

rare K
0

! µe decay [6]. They made use of the hidden signal box technique, that excludes

the parameter space from the analysis, where the signal is expected. The “hidden box”

is opened after the free parameters related to the experiment are fixed. There are various

blinding techniques used for di�erent problems in particle physics, which are reviewed in [7].

An alternative is adding fake signals. This method called “salting” was used by the LIGO-

Virgo collaboration to test whether the claimed sensitivity to detect a gravitational wave

event was accurate [8].

In cosmology we usually do not measure signals or events that can be separated from

a background. Instead, we observe light from the sky, compute statistical quantities from

its distribution and use these to infer the underlying cosmological model. Thus di�erent

blinding techniques need to be developed for cosmology. In general, there are three di�erent

levels, at which cosmological data can be blinded:

• Level 1: at the catalog level.

• Level 2: at the level of summary statistics.

• Level 3: at the level of cosmological parameter inference.

1In what follows we refer to the values of the model parameters preferred by the data as model’s parameters
underlying values. We prefer this nomenclature to true values which is often used, because, for example, the
model adopted could in principle be incorrect or because of sample variance the values preferred by the data
might di�er from the true ones. When dealing with mock data or when neglecting this possibility, there is a
common trend to loosely identify underlying values with true values.

– 2 –



JCAP09(2020)052

Level 3 blinding operates at the latest stage of the analysis. When fitting cosmological

parameters to the model, an unknown o�set is added to the parameters, so that the underlying

values remain unknown until unblinding. This has the advantage that the step of unblinding

can be done very fast. On the other hand, this means that it is also very easy to accidentally

unblind. This approach has been used in the analyses of distant supernovae [9, 10], as well

as in the DES Y1 analysis [11]. Level 2 blinding operates at an earlier stage; it shifts the

summary statistics by the di�erence vector between two di�erent cosmologies. This blinding

strategy is adopted for DES Y3 [12], since it is feasible for a multi-probe survey (e.g., weak

lensing + galaxy clustering). Another approach for blinding astronomical data has been

presented recently [13], that operates at the level of the covariance matrix and is well suited

for weak lensing analyses. Catalog-level or level 1 blinding operates at the earliest stage of

the analysis which may be preferable in some cases. It has been used in the KiDS-450 weak

lensing survey [14], where the ellipticities of galaxies were systematically modified, as well

as in the KiDS-450+Viking analysis [15], where the redshift distribution was shifted by a

constant factor.

Independently of the level at which it operates, it is desirable that a blinding scheme

meets the following criteria:

• it should modify the data in such a way that the e�ect on observables and best-fit

parameters can be predicted easily.

• it should make it di�cult to unblind accidentally.

• it should not interfere too much with delicate and key aspects of the analysis such as

systematic weights.

• it should not change significantly the shape of the posterior distribution.

• it should not be too numerically intensive.

• ideally it should be easy to infer (to a su�ciently good approximation) unblind pa-

rameter constraints without the need to rerun the analysis pipeline again. This is

a“nice-to-have” but not a necessary condition.
2

Inspired by these criteria, in this work we introduce a novel method of catalog-level

blinding targeted to spectroscopic galaxy surveys. The method might be interesting for clus-

tering measurements from photometric surveys (as discussed in [16, 17]) as well, especially

if the photometric errors are small enough. Most of the cosmological signal that a galaxy

redshift survey carries is enclosed in two main physical e�ects: background metric evolution

and growth of structures. The background evolution is usually tracked via the purely ge-

ometrical Alcock-Paczynski (AP) e�ect [18], which is most visible on the baryon acoustic

oscillation (BAO) feature. The most promising window into the growth of structures signal

comes from the redshift-space distortions (RSD) e�ect (pioneered by [19] and also [20, 21]).

The proposed blinding scheme a�ects both these signals.

A flowchart indicating how we envision the blinding scheme to be embedded into a galaxy

clustering pipeline is shown in figure 1. All the systematic tests are done on the catalog before

2The pipeline should be frozen before unblinding and can be re-run on the un-blinded data, but knowing
approximately the expected results makes the process more transparent and easier to interpret. Another
advantage is the possibility to finalize introduction sections and sketching results and conclusions sections of
the associated scientific papers even before the final runs on unblinded papers have finished.
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Figure 1. Flowchart of how the blinding fits in the generic workflow of a galaxy redshift survey

analysis. See text for details. In this paper we introduce a scheme for the “blind box”, carry out

multiple “blind analyses” on mock and real catalogs and check the consistency between the results

on the original catalog and the analytical prediction (fast unblinding).

blinding, but no comparison with theory or cosmological inference can be done at this stage.

Once the catalog is ready for cosmological analysis it goes through blinding (the “blind box”)

according to the procedure presented in this paper. The blinded catalog is released to the

collaboration for cosmological analyses (the “blind analysis” box). This procedure may be

reiterated whenever the methodology for systematic tests or cosmological analysis is changed.

Once the analysis is complete, all pre-determined sanity checks are satisfied and the blinded

results are obtained, the pipeline should be frozen and unblinding may be done. We propose

to unblind in two parallel steps:

1) The posterior constraints can be shifted according to analytical expectations, as derived

in sections 3.2 and 3.3. We call this process “fast unblinding”.

2) The pipeline can now be re-run on the original catalog for obtaining precise numbers

and results.

The paper is organised as follows: in section 2 we summarise the basics of BAO and

RSD analyses and introduce the nomenclature and conventions that are used in the following

sections. We present our blinding scheme in section 3 and discuss how blinding at the catalog
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level is expected to change the cosmological parameter results (“blind box” in figure 1). In

section 4 we compare this expectation to the results obtained from standard BAO+RSD

analyses of unblinded and blinded mocks (“blind analysis” box in figure 1). The robustness

of our results is tested in further detail in appendices A, B where we check for the impact of

several changes to our fiducial setup. Results from the application to the BOSS data and a

summary of our proposed blinding procedure are presented in section 5. In particular we are

interested in whether the consistency between the two parallel unblinding steps explained

before holds. We conclude with section 6.

2 Basics of BAO and RSD analyses

We start by reviewing the basic background of BAO and RSD analyses from the catalog

to cosmological parameter inference. The methods and variables presented in the following

paragraphs will be used repeatedly throughout the rest of this work, so this section serves

also to introduce and define the key quantities used.

The galaxy catalog. We start with the galaxy catalog, that contains at least three quan-

tities representing the 3D observational position ri = (RAi, deci, zi) of each galaxy, param-

eterised by its right ascension, declination and redshift. These three numbers do not su�ce

to provide a distance measure though. A reference cosmology is needed to have a unique

mapping from redshifts to distances (see next paragraph). Additionally, the catalog may also

include relevant quantities such as the average galaxy density n̄(z) and correction weights; for

example it is customary to have weights for angular systematics wsys, fiber collisions wfc and

redshift failures wrf as used for the Baryon Oscillation Spectroscopic Survey
3

(BOSS) and

also in the extended Baryon Oscillation Spectroscopic Survey
4

(eBOSS) in [22, 23] and [24].

Reference cosmology. As in most of BOSS and eBOSS analyses, we follow the fixed

template-fitting approach, where the cosmology is not varied during posterior exploration,

but a reference cosmology ⌦ref
is chosen for two di�erent purposes:

1. to convert the catalog redshifts to radial distances zi ! ri

2. to generate a power spectrum template.

In principle, the reference cosmologies for points 1 and 2 do not need to be the same. Here,

(both for simplicity and because it is widespread) we use the same reference for both points.

We assume a spatially flat model with parameters set

⌦ref
= {⌦

ref
m , ⌦

ref
b , H

ref
0 , �

ref
8 , ns

ref
, M⌫

ref
, w

ref
, �

ref
} , (2.1)

where the total matter and baryon densities ⌦m and ⌦b at present, the Hubble rate evaluated

today H0, the (linear) density fluctuation amplitude �8 (smoothed on spheres of radius

8 h
�1

Mpc, with h = H0/100 km/s/Mpc) and the primordial scalar tilt ns represent the

standard ⇤CDM parameter-basis. In addition, we consider the neutrino mass sum M⌫ , the

dark energy equation of state parameter w and the growth rate exponent �.

3https://www.sdss.org/surveys/boss/.
4https://www.sdss.org/surveys/eboss/.
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For the conversion mentioned in point 1 we need to compute the angular comoving

distance DM as a function of galaxy redshift zi and reference cosmology ⌦ref

ri = DM (zi,⌦
ref

) =

Z
zi

0
dz

c

H(z,⌦ref)
, (2.2)

where c is the speed of light and H(z,⌦ref
) is the Hubble expansion rate at a redshift z, that

in the assumed model is given by

H(z,⌦ref
) = H

ref
0

�
⌦m

ref(1 + z)3 + (1 � ⌦m
ref)(1 + z)3(1+w ref) . (2.3)

The case w
ref

= �1 corresponds to the standard ⇤CDM model. We call the distance

obtained by eq. (2.2) the reference distance, which may di�er from the underlying one. This

fact must be included in the modeling (see paragraph Alcock-Paczynski e�ect and scaling

parameters).

The computation of the template of the power spectrum requires to run a Boltzmann

code like CAMB [25] or CLASS [26] with the reference cosmological parameters as input. The

output linear power spectrum is used in the modelling as explained in paragraph BAO

anisotropic power spectrum model et seq.

Power spectrum estimator. The next step is to compute the summary statistics of

choice, which can be 2-point statistics (power spectrum and 2-point correlation function),

3-point statistics (bispectrum, 3-point correlation function), and even higher-order statistics

if needed. As throughout this work we will operate in Fourier space, we introduce the FKP

power spectrum estimator [27], which relies on computing the field

F (r) =
wFKP(r)

I
1/2
2

[wc(r)n(r) � ↵rannran(r)] , (2.4)

where n(r) and nran(r) are the number densities of the galaxies and Poisson-sampled ran-

doms, respectively, ↵ran is the ratio between the sum of weighted data galaxies and the

sum of random galaxies, and wc denotes the (combined) weight. The standard FKP weight

wFKP(r) [27] is used to minimise the variance of the power spectrum at the BAO scale. The

combined weight, wc, depends on survey characteristic corrections such as redshift failures,

fiber collisions and angular systematics. The normalisation constant I2 is given as

I2 =

Z
d

3rwFKP(r) hnwc(r)i
2

. (2.5)

The function defined in eq. (2.4) is used to build the power spectrum multipoles; for a varying

line of sight (LOS), chosen towards one of the galaxies of each pair we follow the Yamamoto

approximation to define the power spectrum estimator

P
(`)
meas(k) =

(2` + 1)

2

Z
d⌦

4⇡

Z
dr1 F (r1)e

ik·r1

Z
dr2 F (r2)e

�ik·r2L`(k̂ · r̂2)

�
� P

(`)
sn , (2.6)

where L`(x) is the Legendre Polynomial of order ` and P
(`)
sn is the Poisson shot noise term.

Higher order multipoles ` > 0 quantify the anisotropic clustering with respect to the LOS.

There are two main sources for such an anisotropy, the AP e�ect and RSD.
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Alcock-Paczynski e�ect and scaling parameters. The deviation of the reference cos-

mology (⌦ref
) from the underlying cosmology (⌦) leads to an anisotropic clustering signal

known as Alcock-Paczynski e�ect [18]. This and the variation of the acoustic scale with

respect to the fiducial template are usually accounted through scaling the wave-vector across

(?) and along (k) the LOS:

k? �! ek? = k?/↵? , kk �! ekk = kk/↵k , (2.7)

where the scaling parameters are defined as

↵?(z�) =
DM (z�) r

ref
d

D
ref
M

(z�) rd
, ↵k(z�) =

H
ref

(z�) r
ref
d

H(z�) rd
, (2.8)

where rd is the sound horizon at radiation drag. Here, we introduced DM and D
ref
M

as

shorthand notation for DM (⌦) and DM (⌦ref
) (and same for the Hubble distance c/H and

rd). The argument z� is the e�ective redshift of the galaxy sample in a given redshift bin.

The ratios between the underlying and reference distances perpendicular (DM ) and parallel

(1/H) with respect to the LOS scale the reference mapping from redshifts to distances towards

the“correct” one. The ratio of rd to r
ref
d accounts for the di�erent BAO peak position in the

reference power spectrum template with respect to the one in the measured power spectrum.

Redshift-space distortions and reconstruction. Driven by dark matter over-densities,

peculiar velocities of galaxies induce redshift-space distortions in galaxy clustering. The

measured redshift of a galaxy comes from a superposition of its Hubble flow recession velocity

vr and its peculiar velocity vp. Hence, the measured redshift-space position r (found by

transforming the observed galaxy redshift to a distance using the reference cosmology) is

displaced from the real-space position x by its peculiar velocity projected on the LOS (vp ·x̂),

where x̂ is the unit vector in LOS direction. In general, the mapping from x to r is given by

r(x) = x +
(vp(x) · x̂)x̂

aH(a)
(2.9)

with scale factor a. In the framework of Lagrangian perturbation theory the real-space

(Eulerian) position x of a particle is written as the sum of its initial (Lagrangian) position q
and a displacement vector �

x(q, t) = q + �(q, t) . (2.10)

At first order, the peculiar velocity field is related to the Lagrangian displacement field by

vp(x(q, t)) = aHf�(q, t) , (2.11)

where

f ⌘
d ln D(a)

d ln a
= (⌦m(a))

� (2.12)

is the logarithmic growth rate, which depends on the scale-independent linear growth factor

D(a), and can be expressed as function of the matter density corresponding to a scale factor

a and the growth rate exponent �, which for general relativity and w = �1 is � = 0.55 to

a very good approximation [28]. Combining eqs. (2.9), (2.10) and (2.11), and using the fact

that x̂ = r̂ yields

q(r) = r � � � f(� · r̂)r̂ . (2.13)
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Using this equation together with the fact that the number of galaxies is conserved when

transforming between real and redshift space, the displacement field is related to the smoothed

redshift-space galaxy over-density field �
red
g as [29]

� · � +
f

b
�(� · r̂) r̂ = �

�
red
g

b
, (2.14)

where b is the scale independent linear galaxy bias relating matter and galaxy over-densities,

�m = b�g. This is at the basis of the so-called density-field reconstruction procedure, whereby

eq. (2.14) is used to estimate the displacement field � given �
red
g and reference values of b

and f . Galaxies, interpreted as test particles for the velocity field, can then be moved back

to their initial Lagrangian positions q given in eq. (2.13) removing non-linear e�ects, which

sharpens the BAO feature and increases its detection significance (see [30], [31] and [32] for

reference).

BAO anisotropic power spectrum model. This model is used to describe the BAO

scale in the power spectrum multipoles via template fitting: a linear power spectrum P
ref
lin (k)

computed at the reference cosmology is used to build a template that is fitted to the oscillatory

pattern in the data by varying the scaling factors {↵k, ↵?}. The reference template is divided

into a smooth part Plin,sm and an oscillating part Olin = Plin/Plin,sm in order to separate the

BAO information from the broadband, which is marginalised over.

Following [33] we model the anisotropic galaxy power spectrum including the non-linear

damping of the BAO with two damping scales ⌃?, ⌃k as

Paniso(k, µ) = Paniso,sm(k, µ)


1 + (Olin(k) � 1) e

� 1
2

⇣
µ

2
k
2⌃2

k+(1�µ
2)k2⌃2

?

⌘�
, (2.15)

with the smooth component given by

Paniso,sm(k, µ) = B
2
(1 + �µ

2
R)

2
Plin,sm(k) , (2.16)

where B is a free amplitude parameter and � is a nuisance parameter e�ectively accounting

for linear RSD and galaxy bias. We use the factor R = 1 before density-field reconstruction

and R = 1�exp
�
�k

2
⌃

2
sm/2

�
after reconstruction with smoothing scale ⌃sm as in [33] and [34].

The coordinates used here are defined as

k = |k| , µ =
k · r

kr
(2.17)

where k is the Fourier mode and µ is the cosine of the angle between the Fourier mode and the

LOS distance vector r. The components of k across and along the LOS can be expressed as

k? = k

�
1 � µ2 , kk = µk . (2.18)

To include the AP e�ect, we rescale the wave-vector components as in eq. (2.7) to scale

the observed modes from the reference cosmology to the underlying cosmology. Combining

eqs. (2.7) and (2.17) we find the transformation

k �! ek =
k

↵?

"
1 + µ

2

 
↵

2
?

↵
2
k

� 1

!#1/2

, µ �! eµ = µ
↵?
↵k

"
1 + µ

2

 
↵

2
?

↵
2
k

� 1

!#�1/2

. (2.19)
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We write the anisotropic power spectrum as a function of the transformed parameters (ek, eµ)

and obtain its multipoles using angle-dependent Legendre polynomials. Also, we add a

polynomial expansion in terms of k accounting for nonlinear broadband e�ects and potential

di�erences between the underlying broadband and the template, that have not been included

in the modeling so far:

P
(`)
aniso(k) =

✓
r
ref
d

rd

◆3
(2` + 1)

2↵
2
?↵k

Z 1

�1
Paniso(

ek(k, µ), eµ(µ))L`(µ) dµ +

NiX

i=1

A
(`)
i

k
2�i

. (2.20)

The extra normalisation factor in front of the integral accounts for the isotropic dilation

induced by the change in volume between reference and modelled cosmology. The ratio

between the sound horizons is reabsorbed into the overall amplitude parameter B. This means

that the model consists of the physical parameters {↵k, ↵?} and the nuisance parameters

{�, Bj , A
(`)
i,j

} fitted to each redshift bin. The total number of nuisance parameters depends

on the order of the polynomial expansion and the number of disconnected patches indexed by

j of the sky observed. The dispersion scales ⌃k and ⌃? can either be varied and marginalised

over, inferred from theoretical approaches or fitted to mock survey catalogs and then fixed

in the data analysis. In this paper we follow the latter approach.

Full shape power spectrum model. While the BAO anisotropic model is tuned towards

detecting the BAO pattern only, the full shape model also extracts information from the

broadband and is not only sensitive to BAO, but to RSD and non-linear structure formation,

too. Again, we use a template-fitting procedure, but instead of the linear matter power

spectrum we use the 2-loop renormalisation perturbation theory extension described in [35]

to compute the auto- and cross- density and velocity potential power spectra P��, P�✓ and

P✓✓ of the matter field. To go from the matter to the galaxy field we need to assume a galaxy

bias model. Here, we use the model proposed by [36], consisting of four bias parameters

{b1, b2, bs2 , b3nl}. The linear galaxy bias b1 and the non-linear galaxy bias b2 are treated as

free nuisance parameters, while the other two are functions of b1, given in [37] and [38]. We

adopt the exact expressions from appendix B of [39] for the galaxy density-density, density-

velocity potential and velocity potential-velocity potential power spectra given as

Pg,��(k) = b
2
1Pm,��(k) + 2b2b1Pm,b2�(k) + 2bs2b1Pbs2,�(k) + b

2
2Pm,b22(k) +

2b2bs2Pm,b2s2(k) + b
2
s2Pbs22(k) + 2b1b3nl�

2
3(k)Plin(k)

Pg,�✓(k) = b1Pm,�✓(k) + b2Pm,b2✓(k) + bs2Pm,bs2✓(k) + b3nl�
2
3(k)Pm,lin(k)

Pg,✓✓(k) = P✓✓ .

(2.21)

To include the e�ect of RSD explained in paragraph Redshift-space distortions and recon-

struction we follow the approach of [40] writing the full shape power spectrum as

PFS(k, µ) = e
� 1

2 [kµ�P ]2
⇥
Pg,��(k) + 2fµ

2
Pg,�✓(k) + f

2
µ

4
Pg,✓✓(k) +

b
3
1A

TNS
(k, µ, f/b1) + b

4
1B

TNS
(k, µ, f/b1)

⇤
,

(2.22)

where the functions A
TNS

and B
TNS

are defined in [40]. The exponential damping term

for scales smaller than �P accounts for the so-called Fingers-of-God (FoG) e�ect [20]. This

e�ect appears at small scales, where highly non-linear velocities smear out the density field

in redshift space, such that the structures appear elongated along the line of sight and the
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power spectrum is damped. Finally, the full shape power spectrum multipoles are given as

in eq. (2.20) but without the polynomial term

P
(`)
FS (k) =

(2` + 1)

2↵
2
?↵k

Z 1

�1
PFS(

ek(k, µ), eµ(µ))L`(µ) dµ . (2.23)

The AP e�ect is included via the same transformation as in eq. (2.19). This means that there

are in total 3 cosmological parameters {↵k, ↵?, f�8} per redshift bin and 4 nuisance parame-

ters {b1, b2, �P , Anoise} per redshift bin and per observed patch of the sky. The last nuisance

parameter Anoise is used to model deviations from Poissonian shot noise in the monopole.

Note that we measure the growth rate f for a fixed value of �8 of the template. This is why

we are only sensitive to the product f�8, which is a template-independent quantity in the

wave-vector range of interest (e.g. up to k = 0.2 h Mpc
�1

, see [41] for reference).

The survey geometry. In order to compare the model power spectra to the data, we need

to take into account the selection function of the survey. This can be achieved by convolving

the model power spectrum Pmodel(k) with the survey window function W (k) to obtain the

“windowed” power spectrum Pwin,model(k)

Pwin,model(k) =

Z
dk0

(2⇡)3
Pmodel(k

0
) |W (k � k0

)|
2
. (2.24)

To avoid the computation of the expensive 3-dimensional Fourier transform, we follow the

framework of [42] extended by [43] where the window function is obtained as a pair count in

configuration space. This is more e�cient, because the convolution in Fourier space becomes

a multiplication in configuration space. The “windowed” power spectrum multipoles are then

the 1-dimensional Hankel transform of the “windowed” correlation function multipoles.

The e�ects of this transformation of the model power spectrum are purely observational,

hence it is not particularly interesting for blinding. But, we have to accept, we can only

observe the galaxy density fluctuation through a window, which is why this is an important

ingredient in BAO and RSD analyses.

3 Blinding scheme

3.1 General considerations

In this section we introduce the general idea of our blinding scheme and we derive analytic

formulae describing its e�ects. Without introducing blinding, the standard procedure for

BAO and RSD analyses is as follows. The galaxy catalog, in terms of angular positions,

redshifts and weights, forms the raw data d, the redshifts of which are transformed into

distances using a reference cosmology. Subsequently, the power spectrum of this galaxy

distribution is measured. Afterwards, a template for the power spectrum is computed at

the same reference cosmology to build the models described in section 2. Finally, the model

parameters that distort the template and are constrained with the data are

⇥(d,⌦ref
) = {↵k(z�1), . . . , ↵k(z�n), ↵?(z�1), . . . , ↵?(z�n), f�8(z�1), . . . , f�8(z�nbins)} ,

(3.1)

where nbins is the number of tomographic redshift bins analysed and z�,i denotes the e�ective

redshift of each of them. These are physical parameters (two scaling parameters and one
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growth rate) which capture where the bulk of cosmological information is contained in the

data and can be interpreted in a transparent and largely model-independent way. These

parameters can also be easily interpreted and modelled within the adopted theory and/or

specific cosmological model.

Next, the constraints on the physical parameters ⇥ are used to infer the underlying

cosmological model ⌦, which is robust to the choice of reference cosmology (especially for

BAO-only analyses, see e.g., [44, 45]), it only depends on the data:

⌦ = ⌦(⇥(d,⌦ref
)) = ⌦(d) . (3.2)

In the standard approach to BAO and RSD the derivation of ⇥ can be seen as a neces-

sary intermediate step to compress and extract the signal. This makes possible to connect,

via a model-independent set of physical parameters, the galaxy catalog to one (or several)

cosmological models in a transparent way.

Since a change in the physical parameters has a very direct and transparent e�ect on

the commonly used summary statistics (e.g., power spectra), it is much easier to understand

the e�ect of the proposed blinding procedure, by working with these parameters.

For the purpose of blinding we aim to find a transformation of the raw data

d ! d0
= d + �d (d,⌦,⌦0

) (3.3)

fulfilling the condition that the modified raw data d0
represents a Universe whose cosmological

model is ⌦0
. ⌦0

is the target blind cosmology, that we aim for. In what follows we will denote

all quantities related to the blinded catalog with a prime in contrast to quantities referring to

the original catalog, which are written without superscript. However, it is impossible to find

an exact expression for �d (d,⌦,⌦0
), as by definition we are blind towards ⌦. Hence, in the

following we use the reference cosmology ⌦ref
presented in section 2 as a starting point and

introduce a shifted cosmology ⌦shift
which depends on the same parameter set, but allowing

for a variation �⌦ with respect to the reference:

⌦shift
= ⌦ref

+ �⌦ , (3.4)

with

�⌦ = {�⌦m, �⌦b, �H0, ��8, �ns, �M⌫ , �w, ��} . (3.5)

Then we can write eq. (3.3) in terms of the reference and shifted cosmologies:

d ! d0
= d + �d (d,⌦ref

,⌦shift
) . (3.6)

Note that the shifted cosmology is just a tool to generate the perturbation in the data, so

that the results of the analysis correspond to ⌦0
instead of ⌦. Finally, using ⌦ref

and ⌦shift
,

we aim to find a relation between ⇥0
and ⇥.

Here, we propose to shift the position ri of galaxies along the LOS in a redshift- and

density-dependent way. We avoid changing the angular positions because in current spec-

troscopic survey strategies target galaxies are selected based on the photometric surveys.

Therefore, perturbing angular positions might add unnecessary complications into e.g. fiber

collision corrections and other angular systematics. Hence, we only shift the individual galaxy

redshifts, so we can express eq. (3.6) as

z
0
i = zi + �zi(zi, ⇢(ri),⌦

ref
,⌦shift

) , (3.7)
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where ⇢(ri) denotes the galaxy density in the position of the i-th galaxy. From the parameter

basis given in eq. (2.1) here we choose to blind only for parameters that govern the late-time

evolution of the Universe, such that eq. (3.5) becomes

�⌦ = {�⌦m, 0, 0, 0, 0, 0, �w, ��} . (3.8)

Here, we choose not to blind for H0, as its value is absorbed into the unit via the factor

h. Therefore it has no impact on the galaxy catalog, only on the power spectrum template.

More general blinding, including the e�ects of other parameters such as H0, �8, M⌫ and fnl,

will be presented in a follow up paper [46].

The blinding scheme consists of two types of shifts to galaxies’ redshifts:

• A homogeneous shift according to a modified redshift-distance relation (see section 3.2).

It induces an anisotropy between radial and angular distances equivalent to the AP

e�ect and blinds the cosmological background evolution. We refer to it as AP-like

shift, �
AP

z.

• A shift based on the gradient of the reconstructed galaxy density field along the LOS

(see section 3.3). This perturbative shift is designed to imitate RSD and blind the

growth of structures, hence we refer to it as RSD-shift, �
RSD

z.

In summary �zi of eq. (3.7) is given by the combination of �
AP

zi and �
RSD

zi. In the

following subsections we describe both shifts in more detail and discuss their e�ect on the

physical parameters:

⇥ ! ⇥0
= ⇥(d0

,⌦ref
,⌦shift

) (3.9)

3.2 AP-like shift

We set o� to find the redshift dependence of �zi in eq. (3.7), such that it mimics the back-

ground expansion of a cosmology di�erent from both the reference and the underlying ones.

In practice, this a�ects the distances inferred from redshifts using the reference cosmologies,

which a�ects to the measured clustering at all scales modifying the ↵k and ↵? values.

The shift is obtained by converting the observed redshifts zi into comoving distances

DM(zi,⌦shift
) using the shifted cosmology and inverting them back to blinded redshifts z

0
i

using the reference cosmology as shown in the following sketch:
5

zi (⌦)
�shift

�����! DM(zi,⌦
shift

) = DM(z
0
i,⌦

ref
)

�ref

����! z
0
i (⌦

0
) . (3.10)

In this way we can derive the shift numerically using

�
AP

z(zi,⌦
ref

,⌦shift
) = z

0
i(⌦

0
) � zi(⌦), (3.11)

as illustrated in figure 2. This equation yields one of the two contributions to the �z to be

applied in eq. (3.7). The blinded redshifts z
0
i

appear to originate from a blinded or “fake”

cosmology ⌦0
. Any geometric measurement of the background expansion is a�ected by this

shift. Although only the radial dimension is a�ected, and not angles between objects, any

measurement of a transversal distance on a patch of the sky will also be a�ected, because

the distance to the objects is changed by the shift.

5The zi are observed redshifts so they do not have an explicit dependence on the parameters �, which
are unknown and we can’t change. However, in eq. (3.10) we leave the � dependence in the argument of zi

to stress that the observed redshifts are drawn from an (unknown) model parameterised by the (unknown)
values of the model parameters.
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Figure 2. AP-like shift ingredient: determination of the shift �
AP

zi(zi) (eq. (3.11)). In this illustra-

tion the shifted distance is obtained by a 10% decrease of the matter density ⌦m. The blue line is the

comoving angular diameter distance for the reference cosmology, the red line is the same quantity for

a shifted cosmology where only the matter density parameter has been changed. The black horizontal

line visualises where DM(zi,⌦shift
) = DM(z

0
i
,⌦ref

). See text for more details.

After shifting all galaxies individually, the e�ective redshift of a given galaxy sample,

z�, changes in a way that in general depends on the details of its initial redshift distribution

n̄(z). For simplicity, we only consider the following two cases:

• Shifted redshift cuts (or fixed distance cuts): the redshift range of the blinded sample is

changed according to the blinding scheme so that the selection of galaxies remains the

same for the pre- and post-blinded catalog. As a consequence, we expect the e�ective

redshift to be shifted according to

z
0
� = z� + �z(z�,⌦

ref
,⌦shift

) . (3.12)

• Fixed redshift cuts (or shifted distance cuts): the same redshift cuts are applied to the

post-blinded catalog as to the pre-blinded one. In this way the e�ective redshifts of

both catalogs remain nearly the same, because approximately as many galaxies enter

the redshift bin of the sample as they leave it after blinding. This is only possible if the

redshift cuts lay in regions where the galaxy density is comparable to the mean density

n̄. In this case we expect

z
0
� ' z� . (3.13)

We anticipate that we test the validity of eqs. (3.12) and (3.13) in section 4.3, where we also

motivate our recommendation to use shifted redshift cuts whenever possible.
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We can now derive an expression for the scaling parameters ↵
0
k and ↵

0
? that would be

measured from the blinded catalog. In general they can be written as:

↵
0
?(z

0
�) ⌘

D
0
M

(z
0
�) r

ref
d

D
ref
M

(z0
�) r

0
d

, ↵
0
k(z

0
�) ⌘

H
ref

(z
0
�) r

ref
d

H 0(z0
�) r

0
d

, (3.14)

but we need to express them as a function of ⌦ ref
, ⌦shift

and ⌦. Since our blinding scheme

does not change the early-time physics, the sound horizon at the baryon drag epoch is not

a�ected by the blinding, therefore

r
0
d = rd . (3.15)

Because the distances in eq. (3.14) were computed with the shifted cosmology, ↵
0
will

depend on D
shift

. But in the blind analysis we assume they were obtained with the refer-

ence cosmology and use a power spectrum template computed from the reference cosmology.

Hence, the perpendicular and parallel components ↵
0
? and ↵

0
k are

↵
0
?(z

0
�) =

DM (z�)r
ref
d

D
shift
M

(z�)rd
, ↵

0
k(z

0
�) =

H
shift

(z�) r
ref
d

H(z�) rd
. (3.16)

Finally, the ratios of the scaling parameters we would measure from the blinded catalog with

respect to the unblinded catalog can be obtained by combining eqs. (2.8) and (3.16)

↵
0
?(z

0
�)

↵?(z�)
=

D
ref
M

(z�)

D
shift
M

(z�)
,

↵
0
k(z

0
�)

↵k(z�)
=

H
shift

(z�)

Href(z�)
. (3.17)

This final result eq. (3.17) is valid for both the fixed e�ective redshift from eq. (3.13) and the

shifted e�ective redshift from eq. (3.12). The interpretation of the scaling parameters however

is di�erent in the two cases because z
0
� is di�erent. In the case of shifted redshift cuts, the

comoving distance measured from the blinded catalog is equal to the unblinded measurement,

but interpreted at di�erent redshift. If the measurements are applied to samples with the

same e�ective redshifts, the blinded distance can be obtained from the underlying distance

by multiplying it by the correction factor ↵
0
/↵.

3.3 RSD-shift

Here we propose to use a similar machinery as the density-field reconstruction procedure

to blind the catalog for the growth rate.
6

First of all, we use the reference cosmology to

transform individual redshifts into distances to obtain the original redshift-space position r
for each galaxy. Given that we do not know the underlying values of the galaxy bias and

the growth rate in eq. (2.14) a priori, we choose reference values b = b
ref

and f = f
ref

.

Moreover, we need to adopt a method in order to obtain the smoothed density field. Here

we choose to apply a gaussian filter with radius Rsm to the discrete galaxy field. With the

reference values and smoothing scale as input, we solve eq. (2.14) iteratively in Fourier space,

using the reconstruction code developed in ref. [47]. At this point, we diverge from the

standard reconstruction procedure and use the estimated displacement field to add a RSD

component that mimics a di�erent growth rate f
shift

. In this way we transform the original

redshift-space position r to the blinded redshift-space position r0
:

r0
= r � f

ref
(� · r̂)r̂ + f

shift
(� · r̂)r̂ . (3.18)

6Our numerical implementation is based on the reconstruction code used for eBOSS analysis, which is
publicly available at https://github.com/julianbautista/eboss clustering.
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Figure 3. The two panels show the same slice with sidelength 77 h
�1

Mpc and depth 50 h
�1

Mpc

of an original and blinded realisation of the CMASS North MD-Patchy mocks (see section 4.1 for

more information). The observer is located at position (0, 0), which is more than 1200 h
�1

Mpc

distant from the slice shown here. We compare the blinded and the original galaxies in two di�erent

ways. Left panel: the green contours correspond to the solution of the real-space over-density field

smoothed with a gaussian filter of radius Rsm = 10 h
�1

Mpc obtained with the iterative Fourier Space

procedure. It is used to displace original galaxy positions (blue dots) along the line of sight (blue

arrows) towards their reconstructed real-space positions (green dots) using the reference growth rate

f
ref

= 0.78. From there, the galaxies are displaced back (red arrows) towards their blinded positions

(red dots) using a di�erent growth rate f
shift

= 1.0. To make the e�ect more visible the red and

blue dots are slightly displaced horizontally. Right panel: the same slice, but here we show only the

net displacement from the original positions (blue dots) towards the blinded positions (red arrows).

Also shown are the original redshift-space over-density field (blue contours) and the blinded one (red

contours). For illustrative purposes the shift considered is rather extreme, so the “squeezing” e�ect

along the LOS can be appreciated “by eye”.

Once we have obtained the blinded redshift-space position, we can obtain the blinded redshifts

z
0
using again the reference cosmology. Contrarily to �

AP
z, the RSD-shifts are di�erent for

each galaxy, because they depend on the local matter density. Taking this into account, the

RSD-shift for the p-th galaxy is �
RSD

zp = z
0
p � zp.

This procedure is equivalent to substitute redshift-space distortions from the underlying

cosmology by those of the blinded. Hence, we expect the growth-rate measured from the

blinded catalog f
0
to di�er from the underlying value f by the di�erence between the reference

and the shifted growth rates, so we write the ansatz

f
0
= f + f

shift
� f

ref
. (3.19)

We test the validity of eq. (3.19) in section 4.4. The di�erent steps of this procedure

are visualised in the left panel of figure 3. Based on the pseudo-real-space displacement
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field � computed iteratively with f
ref

, galaxies are shifted towards their (pseudo-)real-

space position (blue arrows) and shifted back using the same displacement field, but f
shift

instead. For illustrative purposes, in this figure we show a rather extreme case (f
ref

= 0.78,

f
shift

= 1.0) where f
shift

di�ers from f
ref

by ⇠ 25%. Note that the shift is designed to be

reversible: the blinded and original catalog would be exactly the same if f
ref

= f
shift

, which

is also evident from eq. (3.19). The right panel shows the di�erence between the galaxy over-

density fields of the blinded and the original catalog. Although we show a rather extreme

case, the net squeezing of the central over-density along the y- direction can only be seen in

nuances by eye.

For surveys being split in several redshift bins (or covering di�erent galaxy samples

which span di�erent redshift ranges), the above procedure should be applied to each redshift

bin of the survey. Hence, for each bin, di�erent values for the input parameters (b
ref

, f
ref

)

as well as the shifted growth rate f
shift

need to be chosen. It is possible to treat each

bin independently, such that the overall growth history among samples cannot be modelled

before unblinding. However, a more useful approach in practice is to blind coherently among

samples by choosing a reasonable parameterisation of the redshift evolution of the growth

rate as for example eq. (2.12).

4 Test on mocks

Having described the theory of our blinding scheme, we now validate it on the (mock) galaxy

catalogs from BOSS. Their detailed specifications are described in section 4.1. We apply the

individual blinding shifts �
AP

zi, �
RSD

zi and their combination on the mock galaxy catalogs.

We treat each of the blinded mock catalogs as if it were an actual blinded measurement

and run the analysis pipeline described in section 2 with a fiducial configuration specified

in section 4.2. Finally, we quantify the performance of the studied blinding schemes by

comparing the physical parameters measured from the blinded catalog with their theoretical

expectation given by eqs. (3.17) and (3.19).

Note that throughout this paper we work in Fourier space and do not extend our analysis

to configuration space for simplicity. This is, because a correlation function analysis basically

relies on the same information content as a power spectrum analysis and our blinding scheme

a�ects both analysis types in the same way. We leave a detailed comparison of the blinding

performance for di�erent estimators for future work.

4.1 Original and blinded mock catalogs

Mock galaxy catalogs play an essential role in interpreting cosmological data. They are

calibrated on N-body simulations at a given cosmological model and correspond to inde-

pendent realisations of the galaxy distribution as observed by the galaxy survey. We use

the MultiDark-Patchy BOSS DR12 (MD-Patchy) mocks provided by [48] and [49] which

include a low redshift sample LOWZ (z� = 0.33) with roughly 350,000 galaxies and a higher

redshift sample CMASS (z� = 0.60) with roughly 800,000 galaxies.
7

The cosmological param-

eters used to generate the initial conditions of the mocks, as well as the reference cosmology

adopted to analyse the original and the blinded catalogs, are given in table 1. Note a di�er-

ence of 0.1% on rd values predicted by these two cosmology models. This shift in the BAO

7The e�ective redshifts used in this work are di�erent from the actual BOSS samples because the redshift
cuts are di�erent.
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Cosmology ⌦m ⌦bh
2

h �8 ns M⌫ [eV] rd [Mpc]

Reference 0.31 0.022 0.676 0.8288 0.9611 0.06 147.78

MD-Patchy 0.307115 0.02214 0.6777 0.8288 0.9611 0 147.66

Table 1. Values of cosmological parameters and sound horizon at radiation drag for the reference

and the MD-Patchy mocks cosmology. In both cases a flat-⇤CDM cosmology and GR are assumed,

so w = �1 and � = 0.55.

scale is reflected by the factor (rd/r
ref
d ) in the scaling parameters, ↵k and ↵?, and it is not

modified during the blinding procedure.

We employ the blinding scheme presented in section 3 to produce di�erent sets of blinded

catalogs. For one of the sets we only change the background evolution (AP only), for another

we only apply the density-dependent shift (RSD only), and finally we combine the two (Com-

bined). The values for the shifted physical parameters ⌦
shift

as well as the expectation for the

cosmological parameters ⇥ at each of the two redshift bins LOWZ (z� = 0.33) and CMASS

(z� = 0.60) are given in table 2. In addition, the parameter values of the blinded cosmology

⌦
0
, that we expect to infer from the blinded physical parameters, are also reported. Note

that these cosmological parameters di�er from the shifted cosmology used to generate the

blinded catalog. As in our blinding scheme, the background parameters ⌦
shift
m and w

shift
are

basically used to replace the reference cosmology, ⌦
ref
m and w

ref
, so for those parameters we

expect the deviation between ⌦0
and ⌦ref

to be the same as the one between ⌦ref
and ⌦shift

,

but in the opposite direction. Thus, for ⌦shift
� ⌦ref

= �⌦ we expect ⌦0
� ⌦ref

= ��⌦.

We apply relative shifts on ⌦m and w with respect to their reference values of order of

10%. We find that this corresponds approximately to 1� deviation when fitting w and ⌦m

to BAO LOWZ and CMASS data with a Planck prior on ⌦bh
2
. For the RSD-only blinding

we perform a very extreme shift with � = 0 or f(z) = 1 to fully exploit the capabilities of

our method and to make the e�ect of RSD-blinding more visible. For the combined shift we

choose a relatively moderate value.

In practice, the choice of how much the shifted values can deviate from the reference

parameters should depend on the forecasted sensitivity of the data and probably not exceed

deviations of 3�. Too large deviations can spoil the robustness of the analysis, because some

of the usually made approximations, e.g. a fixed covariance matrix computed at the reference

cosmology, might not hold.

4.2 Analysis on mocks: set up and approach

Here we present the fiducial setup of the BAO and RSD analyses. A priori, the blinded data

should be treated as if it were the original data, or in other words, the analyses should not

depend on the blinding. Therefore the methodology presented here is applied to the original

and the blinded catalogs in the same way. The general procedure is already explained in

section 2, but in the following we provide the numerical details.

For the conversion from redshifts to distances we always use the reference cosmology

given in table 1. These cosmological parameters are also used to compute the linear matter

power spectrum template with CLASS [26].

To estimate the original and the blinded power spectra we follow the steps explained in

the paragraph Power spectrum estimator of section 2. Using the distance-redshift relation

assuming the reference cosmology, we place the LOWZ and CMASS galaxies in boxes of

length Lbox = 2500 h
�1

Mpc (LOWZ) and Lbox = 3700 h
�1

Mpc (CMASS) with 512
3

grid
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Cosmology/
⌦m w �

↵k(z�) ↵?(z�) f(z�)

Physical parameter at z� 0.33 0.60 0.33 0.60 0.33 0.60

Reference ⌦
ref
m 0.31 -1.0 0.55 1.000 1.001 0.999 1.000 0.69 0.78

AP only
Shifted ⌦

shift
m 0.279 -1.1 0.55

0.964 0.980 0.950 0.970 0.69 0.78
Blinded ⌦

0
m 0.341 -0.9 0.55

RSD only
Shifted ⌦

shift
m 0.31 -1.0 0.0

1.002 1.002 1.003 1.002 1.0 1.0
Blinded ⌦

0
m 0.31 -1.0 0.0

Combined
Shifted ⌦

shift
m 0.279 -1.1 0.825

0.964 0.980 0.950 0.970 0.58 0.70
Blinded ⌦

0
m 0.341 -0.9 0.825

Table 2. In the first line of this table we provide the values of the reference cosmological parameters

that we aim to blind for {⌦m, w, �}, together with the corresponding derived values
�
↵k, ↵?, f

 
in

each redshift bin. In the following lines the cosmological parameters and expected derived parameters

are shown for each of the 3 blinding cases we investigate. The shifted cosmology is used to generate

the blinded catalog, whereas the blinded cosmology is the one that we expect to measure.

cells each. We compute the multipole power spectra in Fourier space using the Yamamoto

method [50, 51]. We interpolate galaxies on the grid by using the triangular-shaped-cloud

scheme and obtain the monopole and quadrupole in the interval 0 < k [ h Mpc
�1

] < 0.30 for

linearly binned wave vectors k with �k = 0.01 h Mpc
�1

. For both the BAO anisotropic and

the full-shape analysis we restrict our fits to 0.02 < k [ h Mpc
�1

] < 0.20.

We fit the BAO and RSD models described in paragraph BAO anisotropic power spec-

trum model and paragraph Full shape power spectrum model of section 2 to the original and

blinded power spectra using Monte-Carlo Markov Chains (MCMCs). We use the standard

Metropolis Hastings algorithm, where sequences (called chains) starting at di�erent points

sample parameter space so that the density of points sampled is proportional to the poste-

rior. Convergence is assessed by the Gelman-Rubin criterion [52] and the stopping criterion

adopted for the MCMC chains is 1 � R < 0.01 for all parameters. For the full-shape RSD

model we have 3 physical parameters and (4Nj) nuisance parameters, where Nj is the num-

ber of disconnected patches of the sky observed. For the BAO anisotropic model we have 2

physical parameters and [1 + (1 + NiN`)Nj ] nuisance parameters per redshift bin, where N`

is the number of multipoles and Ni the number of coe�cients in the broadband polynomial.

Regarding the dispersion scales ⌃k and ⌃? of eq. (2.15), we fit the mean of 1000 mock catalog

power spectra and find

⌃
LOWZ
k = 13.85 h

�1
Mpc , ⌃

LOWZ
? = 9.03 h

�1
Mpc ,

⌃
CMASS
k = 12.18 h

�1
Mpc , ⌃

CMASS
? = 7.31 h

�1
Mpc .

(4.1)

For both models we perform a joint monopole and quadrupole fit (N` = 2) for the north

and south galactic caps of LOWZ and CMASS (Nj = 2). For the polynomial broadband

expansion we go up to order Ni = 3. Hence, we have 17 free parameters for the BAO

anisotropic model and 11 for the full-shape RSD model per redshift bin. We refer to these

parameters as � = {⇥, nuisance parameters}. The prior ranges of all these parameters are

given in table 3 and they are the same for all redshift bins.

The likelihood function for the parameters � is defined as

L(�) / e
��

2(�)/2
, (4.2)
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Parameter Prior range

↵k [0.6, 1.4]

↵? [0.6, 1.4]

� [0, 30]

B [0, 20]

Ai [10
3
( h

�1
Mpc)

5�i
] [-20, 20]

f [0, 3]

b1 [0, 10]

b2 [-10, 10]

�P [ h
�1

Mpc] [0, 20]

Anoise [-5, 5]

Table 3. Uniform prior ranges for parameters used in anisotropic BAO and FS analysis. The ↵’s in

the top section are used in both BAO and FS analyses, parameters in the second and third sections

are used only in BAO and FS analysis, respectively. The Ai are the three parameters to model the

broadband.

where the �
2

is obtained by a matrix multiplication of the di�erence-vector between data

and model with the inverse covariance:

�
2
(�) =

`maxX

`,`0

kmaxX

k,k0

⇣
P

(`)
model(k, �) � P

(`)
data(k)

⌘
C

�1
(`k)(`0k0)

⇣
P

(`0)
model(k

0
, �) � P

(`0)
data(k

0
)

⌘
. (4.3)

Both data and model vectors contain (kmax �kmin)/�k entries for monopole and quadrupole

each. The covariance matrix C is assumed to be fixed, and estimated from 1000 indepen-

dent realisations per patch of the MD-Patchy mock catalogs without blinding. We do not

modify the covariance matrix when analyzing blinded catalogs (e.g. by estimating it from

1000 blinded mocks), because the blinded data should be treated as if we did not know that

it was blinded. When inverting C we apply the Hartlap correction [53] to take into account

the finite number of mock catalogs. The north and south galactic cap are assumed to be

fully independent, and therefore, their likelihoods are multiplied to obtain the combined one,

LNGC+SGC = LNGC ⇥ LSGC.

4.3 AP-like shift performance

We now focus on the performance of the geometrical blinding shift �
AP

z (section 3.2). We

apply the methodology explained in section 4.2 to the set of blinded mocks characterised

by the parameter values of row “AP only” in table 2. In this section, the blinding and

the analysis are performed on pre-reconstruction catalogs i.e., on the original ones. Results

relative to the combination of the two e�ects including reconstruction procedure are presented

in section 4.5.

We use the shifted cosmology specified in row “AP only” of table 2 to convert the original

catalog redshifts to distances, then transform them to blinded redshifts using the reference

cosmology (yielding the blind catalog). This changes the number density distribution n̄(z),

as shown in figure 4. The n̄(z) of the original catalog (blue histogram) is transformed to

the shifted distribution (orange histogram). The overlap area appears in purple. The shifted
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Figure 4. Normalised galaxy redshift distributions of LOWZ (left panels) and CMASS (right panels).

The blue area represents the original catalog galaxies and the red area the blinded catalog of a scenario

where ⌦m and w were reduced by 10%. Overlapping regions are shown in purple. The distribution

of the upper and lower panels are the same, but with di�erent cuts in redshift. If we keep the cuts

fixed (upper panels), the e�ective redshift does not change significantly after blinding. By shifting

the cuts according to the blinding scheme (lower panels) the e�ective redshift is shifted in the same

way as expected.

parameters are lowered by 10% with respect to the reference ones, thus the (shifted) dis-

tances for individual galaxies are larger, and consequently the blinded redshifts are (slightly)

increased by �
AP

z.

This naturally leads to a shift of the e�ective redshift of the sample, whose implications

for the analysis are discussed below.

The top panels of the figure 4 illustrate the “fixed redshift cuts” convention and the

bottom panel the “shifted redshift cuts”. In the “fixed redshift cuts” case, the cuts (thin

dashed lines) are decided and fixed before blinding the catalog. If the cuts are not located at

the edge of the distribution — i.e,. there is some padding — the e�ective redshift does not

change considerably after blinding, because while some galaxies leave the selected region on

one side, new galaxies enter the region from the other side. Here, we cut the original catalogs

at z = 0.17 and z = 0.42 for LOWZ, and z = 0.45 and z = 0.7 for CMASS. In both redshift

bins, after blinding, approximately 5% of galaxies leave the selected range at the top edge
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Figure 5. Measured power spectra of one LOWZ (left) and one CMASS (right) mock catalog (both

original and blinded) with the best-fit anisotropic BAO model (blue) in comparison with its blinded

counterpart (red) using the “shifted redshift cuts” convention. Data points are slightly displaced by

�k = ±0.001 h Mpc
�1

for better visibility. In all cases, both data and model prediction are divided

by the corresponding best-fit prediction of the broadband.

and about 5% enter from the bottom edge. The e�ective redshifts of the original and blinded

catalogs agree within 0.1%. However, the change of e�ective redshift highly depends on the

details of the redshift distribution, as well as the position of the cuts, so the agreement we

find between z� and z
0
� in the case of LOWZ and CMASS should not be generalised to other

galaxy samples.

In the “shifted redshift cuts” case on the other hand, the selection cuts are made in

such a way that the objects belonging to the sample are the same pre- and post-blinding.

Hence, the cuts on the blinded catalog (thin red dashed lines) are displaced from the original

cuts (thin blue continuous lines) according to �
AP

z; the measured e�ective redshifts of the

samples (thick lines) are also displaced, matching exactly the shift predicted by �
AP

z (black

dotted line).

In the next step, we measure the monopole and quadrupole power spectra of the original

and the blinded catalogs and fit to them our anisotropic BAO and full-shape RSD models

as described in section 4.2. As an example, in figure 5 we show the power spectra together

with the best-fit anisotropic BAO model for a pair of original and blinded mock with the

“shifted redshift cuts” convention. We show the oscillatory part of the power spectrum only.

After blinding, the oscillation peaks are shifted towards smaller k leading to a decrease of

the measured ↵k and ↵? with respect to the original catalog. This is consistent with our

expectation given in table 2.

In figure 6 we show a comparison between the scaling parameters corresponding to

the best-fit anisotropic BAO model of figure 5 and the expected values given in table 2. We

directly show the corresponding distances perpendicular (comoving angular diameter distance

DM (z)) and parallel (Hubble distance DH = c/H(z)) to the LOS rescaled by rd. The left
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Figure 6. Comparison of the anisotropic distance measurement between one of the original mock

realisations (filled dots) and its blinded counterpart (empty dots). The e�ective redshift positions

are di�erent in the case of shifted redshift cuts (left panel), while they are almost the same (< 0.5%

di�erence) in the case of fixed redshift cuts (right panel). Red data points mark the expected blinded

result obtained by applying eq. (3.17) to the original data. They are slightly displaced to avoid overlap;

their true redshift positions are indicated by red arrows and vertical dotted lines. The rescaling factor
p

z improves the visibility of the di�erent data points and has no physical meaning.

panel shows the results using “shifted redshift cuts” convention, where blinding changes the

e�ective redshift of the sample.

On the right panel the “fixed redshift cuts” convention is shown, where the e�ective

redshift does not change. In both cases the expectation represented by the red points matches

the blinded distance measurement very well. The error bars of the expected blinded result

are chosen to have the same size as the original error bars. As we can see, their size is similar

to the error bars obtained from the blinded data. In addition, figure 6 shows the distance-

redshift relation of the reference cosmology ⌦ ref
, that is very close to the MD-Patchy mock

underlying cosmology, and the blinded cosmology, which is the one that we would expect to

measure.

We repeat this analysis for 100 realisations (both original and blinded) pairs of mock

catalogs and test the agreement between measurement and expectation of the scaling param-

eters for each pair.
8

The overall performance is summarised in figure 7. Each dot represents the measured

values of a parameter from the blinded and original catalogs, shown in the y- and x-axis,

respectively. The scatter of the mocks is visualised by the purple 68% and 95% confidence

level contours, that were obtained by weighting each point with its corresponding uncertain-

ties for each catalog. The spread of the points parallel to the diagonal y = x indicates the

intrinsic scatter of the mocks with respect to the given parameter; in case the original and

the blinded catalog were the same, all points would be located along that diagonal. However,

by using the shifted cosmology given in table 2 we expect the points to scatter around the

dashed line described by the formula

y(x) =
↵

0
theo

↵theo
x , (4.4)

8Note that for each mock catalog 6 MCMC are run in parallel (we refer to these as sets of chains). In total
in this paper we are presenting the results of 2216 sets of MCMC chains.
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Figure 7. E�ect of AP-only shifts blinding on pre-reconstruction BAO-only analysis. The panels

show ↵k and ↵? best-fitting results for the pre-reconstruction BAO-only analysis on 100 mock reali-

sations (green dots) and their mean values (cyan stars) for the underlying cosmology and the blinded

cosmology (using only AP-like shifts). Left (right) panels display the measurements from the LOWZ

(CMASS) sample. Upper panels correspond to the “shifted redshift cuts” and lower panels to the

“fixed redshift cuts” convention. Purple regions indicate the 68% and 95% confidence level regions.

Dashed lines represent the expected shift of the mock distribution from the diagonal due to blinding.

Blue dotted lines represent the underlying values corresponding to the MD-Patchy mocks cosmology,

whereas red dotted lines show the “underlying” values of the blinded catalogs.

where ↵theo and ↵
0
theo correspond to the theoretical values given in table 2. The scatter of

points perpendicular to the line parameterised by eq. (4.4) indicates how much the mea-

surement of a single blinded mock catalog typically deviates from the expectation given the

measurement of the original mock. This deviation is purely statistical, as the overall cloud

scatters around the line predicted by eq. (4.4). For all cases there is a good agreement between

the mock distribution and the prediction of the blinded result represented by eq. (4.4).

The mean values of the mocks (cyan stars) agree very well with the theoretical values

of table 2 given by the coloured dotted lines in figure 7. Also, our results for the original

mocks are in concordance with previous analysis as in [33].

From figure 7 we can clearly appreciate that for the fixed redshift cuts case (right panels)

the scatter in direction perpendicular to the diagonal is slightly enhanced with respect to

the shifted redshift cuts case (left panels). This is because in the former case the galaxy

sample changes after blinding and thus the Fourier modes sampled, leading to a cosmic

variance e�ect. This is avoided in the latter case, where the blinded catalog contains the

same galaxies (and samples exactly the same modes) as the original catalog.

We conclude that the shifted redshift cuts case gives a blinding procedure that is a

more accurate prediction of the behaviour of each individual mock catalog. For this reason

we recommend whenever possible to adopt the “shifted redshift cuts” convention. In the
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following we always refer to the “shifted redshift cuts” convention unless explicitly mentioned

otherwise.

4.4 RSD shift performance

Here we focus on the perturbation-level blinding shift �
RSD

z (section 3.3). Starting from

the original catalogs, we generate the set blinded mocks using the parameter values of row

“RSD only” in table 2 and a reference galaxy bias value of b
ref

= 1.85. Then we apply the

methodology explained in section 4.2 to the set of blinded mocks.

The left panel of figure 8 shows the measurements obtained from 100 LOWZ mocks

for three di�erent cases. The blue (solid) lines correspond to the multipoles measured from

the original catalogs. The green (dashed) lines correspond to the catalogs obtained after

removing the redshift-space component as an intermediate step during the reconstruction

procedure using the reference growth rate and galaxy bias. The quadrupole is almost zero,

which demonstrates that reconstruction e�ciently removes the RSD-induced anisotropy on

large scales. As explained in section 3.3, for the blinding procedure we use the displacement

field obtained from the reconstructed real space positions to add a new RSD contribution

corresponding to the shifted growth rate. The multipoles measured from the blinded catalogs

are shown in red (dotted) lines.

One important ingredient of the blinding procedure is the choice of the smoothing scale

Rsm used to filter the discrete galaxy over-density field. For too-large value of Rsm the

small scale perturbations are washed out, and thus ignored. On the other hand, for a too-

small value of Rsm, the obtained field is dominated by nonlinear velocities, which cannot be

e�ciently modelled. Hence, the choice of smoothing scale implies a trade-o� between these

e�ects.

The right panel of figure 8 shows the reconstructed real space power spectra obtained

for three di�erent smoothing scales. For Rsm = 15 h
�1

Mpc we see a bump for 0.05 <

k [ h Mpc
�1

] < 0.20 indicating that anisotropies due to RSD are not properly removed. In

the same k-range, a smoothing scale of Rsm = 5 h
�1

Mpc leads to a negative quadrupole,

suggesting that it over-predicts the linear RSD anisotropies because of the superimposed

nonlinear velocities. We find that a value of Rsm = 10 h
�1

Mpc optimally reduces both

e�ects (for LOWZ and CMASS); thus we adopt this choice for the rest of this work. This

is also in agreement with previous findings as in ref. [32]. The choice of smoothing scale is

further discussed in appendix A where we show that the procedure presented here is robust

to the choice of the smoothing scale.

We apply the full shape model introduced in paragraph Full shape power spectrum

model to the blinded mocks and estimate the relevant parameters. The results for the

recovered parameters ⇥ = {↵k, ↵?, f�8} for each individual mock are summarised in figure 9.

Since the AP-like shift is not included here, we expect no deviation due to blinding

for {↵k, ↵?}. As we can see from the two left columns, on average this is indeed the case:

statistically, the recovered parameters from the blinded mocks follow this expectation. This

shows that RSD-like shifts along the LOS are not degenerate with the AP-like shifts: the

induced change of f due to blinding does not propagate into a systematic bias on ↵k, ↵?.

The expected change due to blinding of f�8 (see right columns) is given by the dashed

line parameterised as

y(x) = x + (f
shift

� f
ref

)�
ref
8 , (4.5)
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Figure 8. Left panel: measured monopole and quadrupole from 100 LOWZ SGC mocks. Thin lines

correspond to individual measurements, thick lines to their mean. Right panel: reconstructed real-

space quadrupoles for di�erent choices of smoothing scales adopted in the RSD-blinding procedure.

corresponding to eq. (3.19) multiplied by the matter density fluctuation amplitude of the

reference template �8.
9

This can be understood by considering that, in standard RSD anal-

yses, f and �8 are completely anti-correlated, and the measurements are thus sensitive to

their product only. As stated in section 3.3 here we decide to blind for f coherently following

eq. (2.12), but this choice is not unique and could be replaced by a relation that also takes

into account the di�erent evolution of �8 with �
shift

, e.g., by rescaling f
shift

accordingly.

Note that here we have deliberately chosen to show a very extreme shift towards �
shift

=

0. As presented in table 2, this corresponds to a 20% change of the growth rate parameter f

for CMASS and almost 50% for LOWZ galaxies (recall that e�ective redshifts are z� = 0.33

for LOWZ and z� = 0.6 for CMASS).

This consideration is key to understand the di�erent behaviour of the mocks in figure 9.

While the blind CMASS catalogue matches the expectation very accurately, the value of

(f�8)
0
is over predicted by ⇠ 1� for the LOWZ sample. The chosen value of �

shift
= 0, and

hence �� = 0.55 indicates the upper limit for an accurate prediction for the growth rate after

blinding. This extreme case, while very illustrative, should not be applied if possible in any

realistic blinding scenario. The resulting catalog would still be blind, but the condition to

be able to “unblind parameter values without the need to rerun the analysis pipeline” would

not be satisfied.

The predictability of the blinding procedure proposed here for shifted values deviating

by up to 20% should be more than enough given the anticipated precision level of future

galaxy surveys at all redshifts.

Another important observation from figure 9 is that even mocks that are distant from

the dashed blue line follow eq. (4.5) very well. Therefore we conclude that even for mocks

9Note that the method presented here does not allow one to blind for the value of �8 itself, as we only shift
radial and not angular positions.
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Figure 9. E�ect of RSD-only shift blinding on full shape analysis results. Best-fit physical parameters

↵k (left panels), ↵? (middle panels) and f�8 (right panel) from 100 mock realisations (green dots) and

their mean values (cyan stars) for the underlying (reference) cosmology and the blinded cosmology.

Upper panels show the measurements from the CMASS mocks, lower panels the LOWZ mocks and

the purple regions give the 1 � 2� spread of the mocks. The dashed line shows the expected shift

of the mock distribution from the diagonal due to blinding. The blue dotted lines represent the

underlying values corresponding to the MD-Patchy mocks cosmology, whereas red dotted lines show

the “underlying” values of the blinded catalogs.

with di�erent best fit parameters with respect to the reference ones, the blinding shift can

be well predicted.

4.5 Combined shift performance

Having shown the performance of the AP-like and the RSD shift individually, here we investi-

gate the performance when both shifts are combined. This provides a more realistic blinding

scenario, closer to the way we envision it to be applied to real data.

The first question to be addressed is how both shifts shall be combined. While in

principle the shifts can be applied in any order, in practice each operation on the catalog

relies on di�erent inputs, di�erent assumptions and has di�erent optimisation requirements,

and thus the order does matter.

In particular, the AP-like shift �
AP

z is cosmology-independent, as it does not depend

on ⌦ref
, but only on the input �⌦shift

propagating directly into the ↵-parameters which

describe generically the expansion history. While for this application we have decided to
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adopt a wCDM-type expansion history, it could incorporate even more general models such

as varying dark energy or modified gravity.

On the other hand the RSD shift �
RSD

z relies on additional assumptions. The RSD

blinding algorithm requires, as input, reference values for {⌦
ref
m , w

ref
} to convert redshifts to

comoving distances, and {f
ref

, b
ref

, Rsm} to find a solution for the reconstructed smoothed

real-space over-density. Although the impact of an unphysical reference cosmology on the

obtained blinded catalog is small, it is important to recognise this conceptual di�erence with

respect to the AP-like shift, which is independent of ⌦ref
.

In this case, if we were to first apply to the catalogue �
AP

z, followed by �
RSD

z, the

intended deviation from the reference cosmology induced by �
AP

z would propagate into the

calculation of �
RSD

z. We find that this leads to small but unnecessary biases contributing

to the computation of the final blinded catalog. Therefore, a more natural and recommended

choice consists in applying the shifts in reversed order. First, run the reconstruction-like

algorithm with input parameters tuned to catalogs generated from a reference cosmology

that match key properties of the sample. Second, take the RSD-blinded catalog and convert

redshifts to distances using a shifted cosmology (AP-like shift). Any biases that might occur

during the first step (RSD shift) do not propagate into the second step (AP-like shift),

because the latter is purely geometrical, homogeneous and model-independent. Another

point in favour of this order is, that it nicely matches the order of steps in which the BAO

and RSD analyses is carried out. We first convert redshifts to distances using a reference

cosmology and then measure the summary statistic of choice. The idea of our scheme is to

carry out these steps “backwards” in order to mimic a di�erent cosmology. Therefore, we

advocate to use the order “RSD shift first, AP-like shift second” for the combined blinding

shift and we adopt that strategy in what follows.

We blind the mocks according to the last entry of table 2. We carry out two dif-

ferent types of analysis: we fit the BAO anisotropic power spectrum model both to pre-

reconstruction (BAO prerecon fit) and post-reconstruction (BAO postrecon fit) mocks to

obtain constraints on the scaling parameters in section 4.5.1. In section 4.5.2 we show the

results obtained for the Full shape power spectrum model which is used to jointly fit the

scaling parameters and growth rate amplitude (FS fit).

4.5.1 BAO analysis results

Here we show the results of our BAO prerecon and postrecon fits. For reconstruction, we

follow the procedure explained in paragraph Redshift-space distortions and reconstruction

using an input growth rate f
ref

(z) corresponding to ⇤CDM (�
ref

= 0.55), a galaxy bias

of b
ref

= 1.85, and a smoothing scale of Rsm = 10 h
�1

Mpc both for the blinded and the

original mock catalogs. The impact of choosing the same growth rate in both cases is very

small as shown in more detail in section 5.

All BAO fit results obtained from the original and the blinded mocks generated using

the combined shift are shown in figure 10. For the prerecon case (left panels) we see that the

agreement between the mock distribution and the prediction (dashed line) is as accurate as

that obtained for the AP-only shift in figure 7. This suggests, that the prerecon BAO analysis

results are stable against the additional RSD shift included in this section. In other words:

modifying the RSD signal at the catalog level leaves unaltered the information extracted

from the anisotropic BAO signal, confirming the discussion of the previous subsection. The

right panels show that reconstruction reduces the intrinsic scatter along the diagonal (note

that the x-axis and y-axis scales are the same for all subplots). This is expected, as recon-
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BAO prerecon BAO postrecon

Figure 10. E�ect of AP-like+RSD shift blinding on prerecon (left panels) and postrecon (right pan-

els) BAO-only analyses. The panels show ↵k and ↵? best-fit results for 100 mock realisations (green

dots) and their mean values (cyan stars) for the underlying cosmology and the blinded cosmology

(using AP only shifts). Upper (lower) panels display the measurements from the CMASS (LOWZ)

sample. Purple regions indicate the 68% and 95% confidence level regions. Dashed lines represent the

expected shift of the mock distribution from the diagonal due to blinding. Blue dotted lines represent

the underlying values corresponding to the MD-Patchy mocks cosmology, whereas red dotted lines

show the “underlying” values of the blinded catalogs.

struction enhances the BAO peak, which increases the signal-to-noise ratio. Furthermore,

reconstruction brings the mean of the mocks (cyan star) closer to the theoretical prediction

given by the blue and red lines, in particular for CMASS.

A potential worry with this procedure is that, as shown in ref. [54], using input pa-

rameters for the reconstruction procedure significantly di�erent from the underlying ones,

may lead to biases in postreconstruction BAO analyses. Here, we find that also in the BAO

postrecon case the agreement between mock distribution and expectation is encouragingly

good.

In addition to the best-fit results, we are particularly interested in whether the blinding

scheme leads to a change of error bars, and hence the significance of the measurement.

Therefore, we show in figure 11 the errors on the scaling parameters on a mock-to-mock

basis with the same setup as in figure 10. Black lines indicate where the errors of blinded

and original mocks coincide, whereas purple dashed lines show a linear regression to the mocks

represented by green dots. Shaded contours show the 1�-region of the linear regression. The

scatter of the error bars before and after blinding is consistent with the identity line. Only

for the CMASS postrecon case we observe a small trend towards smaller errors after blinding.

Again, this could be related to a suboptimal choice of input parameters for reconstruction

as for example the galaxy bias. Also note that blind measurements make use of a covariance

matrix obtained from unblind mocks, which could propagate into an over- or underestimation

of the error bars, depending on the shifted cosmology used to generate the blinded data. But
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BAO prerecon BAO postrecon

Figure 11. E�ect of AP+RSD shift blinding on error-bars obtained from prerecon (left panels) and

postrecon (right panels) BAO fits. The shaded regions describe the 1�-region when fitting a linear

regression to the mock distribution.

as figure 11 suggests, this e�ect is very small. Therefore we argue that the overall agreement

is promising and conclude that the blinding procedure does not lead to additional biases

corrupting the significance of the blind measurements.

4.5.2 FS analysis results

The results for the FS fits are shown in figure 12. As in figure 10, the green points correspond

to the di�erent realisations and the cyan stars represent the mean of the mocks. It is possible

to appreciate that the inferred parameters from the blinded mocks are nicely aligned with

the dashed line, which is the expected “locus”. The fact that the cyan star does not coincide

with the intersection of the red and blue dotted line is not due to the blinding procedure

(in fact the systematic a�ects both determinations before and after blinding); it is possibly

caused by the modeling itself applied to “fast” mocks rather than full N-body and to the

relatively small number of realisations used.

Here, we also quantify the e�ect of the combined blinding on the recovered parameters

errors. This is illustrated in figure 13, for the same set up as in figure 12 (combined shifts, FS

fit). Again, the black diagonal line indicates where errors before and after blinding coincide

and the dashed purple line is a linear regression to the points with 1� uncertainty given by

the shaded region. Similarly to figure 11, the errors before and after blinding are centered

around the diagonal indicating no systematic change. This demonstrates that blinding does

not a�ect significantly the error-bars.

4.5.3 �
2 before and after blinding

Another important consistency check is the comparison of best fit �
2
before and after blinding.

This is shown in figure 14 for all cases discussed in sections 4.5.1 and 4.5.2. Again, each pair
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Figure 12. “Full shape” fits on mocks with combined shift blinding. Comparison of recovered values

for ↵k (left panels), ↵? (middle panels) and f�8 (right panel) from 100 mock realisations (green

dots) and their mean values (cyan stars) for the underlying (reference) cosmology and the blinded

cosmology. Upper panels show the measurements from the CMASS mocks, lower panels the LOWZ

mocks and the purple regions give the 1�2� spread of the mocks. The dashed line shows the expected

shift of the mock distribution from the diagonal due to blinding. The blue dotted lines represent the

underlying values corresponding to the MD-Patchy mocks cosmology, whereas red dotted lines show

the ‘underlying’ values of the blinded catalogs.

of mocks is represented by a green dot and the black diagonal shows where the values before

and after blinding coincide. We note that there is an intrinsic scatter of �
2

among the mocks

in a range of about 0.6 < �
2
/ndf < 1.4. In general we see that the mock distribution is

aligned with the black diagonal, meaning that blinding does not systematically change the

�
2
. However, there is some scatter around the diagonal, meaning that the blinding shift

can either improve or worsen the goodness of fit. Since this scatter is much smaller than

the intrinsic scatter of mocks, we argue that it is not relevant. Overall, the alignment along

the identity line of �
2

before and after blinding proves our blinding procedure to be stable

enough to be applied to spectroscopic galaxy survey data.

5 Worked example: application to BOSS DR12 data

We use BOSS DR12 catalog [55] to present a practical example of applying the blinding

procedure proposed in this paper to real data. The Baryon Oscillation Spectroscopic Survey
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Figure 13. E�ect of combined AP+RSD shifts blinding for full shape analysis on the errors-bars.

Errors on ↵k, ↵? and f�8 from 100 mock realisations (green dots) for the underlying (reference)

cosmology and the blinded cosmology (last entry of table 2). The errors before and after blinding

are centred around the diagonal indicating no systematic change. The dashed purple line is a linear

regression to the points and the shaded region its 1� errors.

(BOSS) [56] is part of the Sloan Digital Sky Survey III [57]. BOSS measured spectroscopic

redshifts [58, 59] for more than 1 million galaxies in an e�ective volume of Ve↵ = 7.4 Gpc
3
.

The galaxy survey includes the LOWZ sample with 361 762 galaxies [60] covering the redshift

range of 0.15 < z < 0.43 and the CMASS sample, with 777 202 galaxies at 0.43 < z < 0.70.

We proceed by applying all the steps presented in sections 3.2 and 3.3 to create a

blinded catalog. We assume the same reference cosmology as given in table 1 and use the

shifted cosmology of the “Combined” case given in table 2. We use the shifted redshift

cuts convention explained in section 4.3. Hence, the blinded catalog contains 334 053 LOWZ

galaxies in the redshift range 0.17 < z < 0.43 and 746 889 CMASS galaxies in the range

0.46 < z < 0.73; this corresponds to an e�ective redshift of 0.34 for LOWZ and 0.62 for

CMASS. Once obtained the blinded catalog, we create a synthetic random catalog matching

its number density distribution with redshift but with 50 times the number of objects. This

random catalog is used to calculate the blinded survey window function. For the power

spectrum measurement we proceed similarly to section 4.2 with the only di�erence being

that we use a finer grid with 1024
3

cells for the same volume.

The catalogs contain a certain set of weights to account for several observational e�ects:

a redshift failure weight (wrf), a fibre collision weight (wfc) and a weight (wsys) incorporating

angular systematics such as seeing conditions and stellar foreground [22]. These weights are
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Figure 14. E�ect of AP+RSD shift blinding on �
2

values from 100 mock realisations (green dots)

for all types of analysis considered here. The left, middle and right panels show the best fit �
2

for

BAO prerecon, BAO postrecon and FS respectively. The top row corresponds to CMASS and the

bottom row to LOWZ fits.

common to the original and blinded catalogs. The combined weight for each individual target

galaxy is given as

wc = wsys(wrf + wfc � 1) . (5.1)

For the power spectrum measurements we take the combined weight wc into account as

described in paragraph Power spectrum estimator.

For the fits we use a wave number range of 0.02 < k [ h Mpc
�1

] < 0.20 for the monopole

and 0.04 < k [ h Mpc
�1

] < 0.20 for the quadrupole. The cut on the largest scales is chosen to

be more conservative than in the case of the MD-Patchy mocks due to the known presence

of systematic e�ects in the quadrupole for scales larger than k = 0.04 h Mpc
�1

as shown

in [61].

For the purpose of testing the e�ect of blinding on reconstruction we apply the recon-

struction algorithm described in paragraph Redshift-space distortions and reconstruction on

the blinded catalogs. We use the reference cosmology ⌦ref
to convert redshifts to distances,

a galaxy bias of b
ref

= 1.85, and a smoothing scale of Rsm = 10 h
�1

Mpc. We create two

sets of reconstructed catalogs using two di�erent reference cosmologies. In one set we use

the reference value of the growth rate f(z) = f
ref

(z) corresponding to � = 0.55 while in

the other set we use the shifted values (see table 2) corresponding to a growth history with

� = 0.825, which is that of our target blind cosmology. We expect the choice of the reference

cosmology to deliver a more precise measurement on the reconstructed catalogs, as it would
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LOWZ CMASS

Figure 15. Full shape fit to the combined shift blinding applied to the BOSS DR12 data. 68% and

95% confidence level marginalised posteriors of the physical parameters ↵k, ↵? and f�8 obtained

when fitting the FS model to the blinded (red contours) and the original catalog (blue contours) from

LOWZ (left) and CMASS (right) galaxy samples. The dashed contours are obtained by correcting the

blinded posteriors by eqs. (4.4) and (4.5) (fast unblinding) as indicated by the arrows. Blue dotted

lines mark the best-fit parameters obtained after rerunning the FS analysis on the unblinded catalog.

correctly “undo” the RSD signal induced by blinding. To quantify the e�ect of a sub-optimal

choice of f we present results for these two representative values.

We proceed by fitting the FS model to the blinded catalogs and the BAO anisotropic

model to the reconstructed blinded catalogs with the same parameters and prior ranges as

given in table 3. Sometimes in the BOSS literature, these get referred to as “pre-recon” and

“post-recon” analyses, respectively. We fit the BAO anisotropic model to the mean of 1000

reconstructed original mock realisations with varying nonlinear damping scales. As a result

we find

⌃
LOWZ
k = 8.6 h

�1
Mpc ⌃

LOWZ
? = 5.8 h

�1
Mpc ,

⌃
CMASS
k = 4.3 h

�1
Mpc ⌃

CMASS
? = 4.3 h

�1
Mpc .

(5.2)

We keep these values fixed when analyzing the data, both for the blinded and the original

catalogs. Again, this is to follow the good practice of treating the blinded data in the same

way as if we would not know that it is blinded.

In figure 15 we present blinded two-dimensional marginalised constraints (red contours)

from the FS analysis for model parameters ↵k, ↵? and f�8 for the LOWZ (left panel)

and CMASS samples (right panel). In a similar fashion, we show the results for the BAO

anisotropic model parameters ↵k and ↵? fitted to reconstructed CMASS catalogs in figure 16.

On the left we use the reference value of the growth rate f
ref

and on the right the shifted

value f
shift

for reconstruction.
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Reference growth rate Shifted growth rate

Figure 16. Post-reconstruction anisotropic BAO fit to the combined shift blinding applied to the

BOSS DR12 data. The figure shows 68% and 95% confidence level marginalised posteriors of ↵k and

↵? obtained when fitting the BAO anisotropic model to the blinded (red contours) and the original

CMASS catalog (blue contours) post-reconstruction. In the left panel the same reference growth rate

f = 0.784 was used, while in the right panel we performed reconstruction on the blinded catalog

with f = 0.695 corresponding to the growth history we aimed to blind for. The dashed contours are

obtained by correcting the blinded posteriors by eqs. (4.4) and (4.5) (fast unblinding) as indicated by

the arrows. Blue dotted lines mark the best-fit parameters obtained after rerunning the BAO analysis

on the unblinded catalog.

Next, we unblind in two steps as anticipated in figure 1. First, from our knowledge of

�⌦ we can directly use eqs. (3.17) and (3.19) to predict the expected underlying results:

↵?(z�) =
D

shift
M

(z�)

D
ref
M

(z�)
↵

0
?(z

0
�) ,

↵k(z�) =
H

ref
(z�)

Hshift(z�)
↵

0
k(z

0
�) ,

f = f
0
� f

shift
+ f

ref
,

(5.3)

where the primed quantities are measured from the blinded data. These shifts are indicated

by the black arrows and yield the dashed contours in figures 15 and 16. Then we repeat

the analysis on the unblinded (original) catalogs with the same settings as for the blinded

catalogs. The results are represented by the blue contours in figures 15 and 16, where the

position of the corresponding best fit parameters is represented by the vertical dotted blue

lines.

LOWZ and CMASS samples have been blinded coherently, but LOWZ is at lower red-

shift and covers a smaller e�ective volume; as a result the blinding-induced shift is less

significant in LOWZ than in CMASS.

Figure 15 shows an excellent agreement between the best-fit scaling parameters obtained

from the full shape analysis of the original catalog and those obtained from the blinded catalog
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after correction of the estimated posterior. For f�8 we observe a larger di�erence between

the measured and predicted, but this is a small fraction of a standard deviation, which in any

case is consistent with the e�ect of sample variance, as observed in the mocks (see figure 12).

The size and shape of the confidence regions is also well recovered by the blinded posterior

after correction.

Figure 16 highlights the agreement of mean values and confidence regions of the scaling

parameters obtained post reconstruction from the anisotropic BAO analysis of the original

catalog and of the blinded catalog after correction. The mean values of scaling parameters are

recovered particularly accurately after unblinding (keeping in mind that reconstruction step

has been implemented on the blinded catalog). The figure also shows that the choice of the

adopted value of the growth rate parameter for reconstruction is not important: the di�erence

between the underlying and blinding values, �f ⇠ 0.09 does not lead to a significant change

for the mean values nor for the error bars. We do observe that the choice of the shifted

growth rate delivers a slightly better match between the corrected and the original posteriors

(especially regarding the shape and not so much the position of the peak), but this can be

subject to statistical fluctuations.

The results of all fits described in this section are presented in table 4. As already shown

in figures 15 and 16, the recovered mean values by applying the “correction” of eq. (5.3) to

blinded catalogs agree very well with the actual measurements from the original catalogs.

Furthermore, we see that they do not significantly change the error bars. We observe dif-

ferences of the best-fit �
2

between blinded and original catalogs, but there is no preference

towards increasing or decreasing it: for LOWZ it decreases after unblinding, while for CMASS

it increases. We argue, that this is likely to be a statistical fluctuation, that we also observed

for pairs of blinded/original mock catalogs (see for instance figure 14). All results obtained

from the original catalogs are within 1 � � agreement with previous analyses such as [62].

Though, small di�erence sourced from the di�erent choice of redshift cuts is expected.

Finally, table 4 as well as figures 15 and 16 demonstrate that the blinding procedure

presented here is suitable to be applied to a real survey and it comfortably meets all the

criteria we initially required for a good blinding scheme.

6 Conclusions and discussion

We have presented a novel catalog-level blinding scheme for galaxy redshift surveys. We have

shown how it is possible to shift the position of galaxies in a redshift- and density-dependent

way along the line of sight as to implement designed modifications to the measurements of

expansion history and growth rate. In particular it is possible to modify in a fully controlled

way, the physical parameters ↵k, ↵?, f�8, where the first two (scaling parameters) describe

the background expansion history and the latter the growth of perturbations. These pa-

rameters can be shifted coherently across redshift and galaxy samples according to a chosen

cosmological model, but shifts can also be applied in a much more flexible way. By not

altering the galaxies’ angular positions, this approach avoids adding unnecessary complica-

tions into the treatment of angular systematics and makes accidental unblinding extremely

unlikely. In addition, the blinding technique does not significantly a�ect the shape of the

marginalised posterior distributions of the measured parameters when the covariance matrix

appropriately describe the blinded statistics.

An executive summary of our blinding scheme is shown in figure 17. It can be understood

as a zoom into the “blind box” of figure 1, that shows our proposal for how to embed blinding

in standard clustering analyses.
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Fit Sample Case ↵k ↵? f�8 �
2
/ndf

FS

LOWZ

blinded 1.046 ± 0.079 0.927 ± 0.042 0.303 ± 0.091 45.3/(68 � 11)

unblinded 1.085 ± 0.082 0.945 ± 0.043 0.383 ± 0.091 45.3/(68 � 11)

original 1.086 ± 0.077 0.943 ± 0.043 0.398 ± 0.092 46.5/(68 � 11)

CMASS

blinded 0.966 ± 0.040 0.965 ± 0.020 0.370 ± 0.050 38.8/(68 � 11)

unblinded 1.017 ± 0.042 0.995 ± 0.021 0.424 ± 0.050 38.8/(68 � 11)

original 1.027 ± 0.038 0.994 ± 0.019 0.431 ± 0.047 57.8/(68 � 11)

BAO

+

post-

recon

(f
ref

)

LOWZ

blinded 0.977 ± 0.042 0.997 ± 0.033 - 61.3/(68 � 17)

unblinded 1.014 ± 0.047 1.018 ± 0.036 - 61.3/(68 � 17)

original 0.997 ± 0.039 1.036 ± 0.032 - 48.9/(68 � 17)

CMASS

blinded 0.889 ± 0.019 0.980 ± 0.015 - 45.2/(68 � 17)

unblinded 0.935 ± 0.021 1.010 ± 0.016 - 45.2/(68 � 17)

original 0.941 ± 0.018 1.008 ± 0.014 - 59.6/(68 � 17)

BAO

+

post-

recon

(f
shift

)

LOWZ

blinded 0.979 ± 0.042 0.995 ± 0.033 - 64.8/(68 � 17)

unblinded 1.015 ± 0.045 1.015 ± 0.034 - 64.8/(68 � 17)

original 0.997 ± 0.039 1.036 ± 0.032 - 48.9/(68 � 17)

CMASS

blinded 0.893 ± 0.019 0.977 ± 0.015 - 44.9/(68 � 17)

unblinded 0.940 ± 0.021 1.007 ± 0.016 - 44.9/(68 � 17)

original 0.941 ± 0.018 1.008 ± 0.014 - 59.6/(68 � 17)

Table 4. Parameter results, errors and best-fit �
2

for all the fits on BOSS LOWZ and CMASS

data presented in this section. The full chains, bestfit values and the blinded catalogs can be found

at https://github.com/SamuelBrieden/BlindingCatalogs. The first rows correspond to the FS fits

on the blinded, original and corrected catalogs. The second and third groups of rows refer to the

correction given by eq. (5.3) and visualized in figures 15 and 16. The following rows represent the

BAO anisotropic fits on reconstructed catalogs, where reconstruction of blinded catalogs was carried

out either with the reference growth rate or the shifted growth rate. Note that for the original catalogs

we always used the reference growth rate.

By applying the proposed blinding scheme to a suite of mock survey catalogs, we have

shown (either explicitely or by construction) that it satisfies all the requirements for a good

blinding procedure: i) the e�ect on observables and best-fit parameters can be predicted

easily; ii) it is di�cult to unblind accidentally; iii) it does not interfere with key analysis

aspects (especially regarding systematics); iv) it does not change significantly the error bars;

v) it is not too numerically intensive vi) it is easy to infer unblinded parameter constraints

with enough accuracy prior to rerun the analysis pipeline again on the original catalog.

In particular, we have verified and quantified the robustness and accuracy of the pro-

posed blinding scheme regarding points iv) and vi); the parameters posterior obtained for

the blind catalog can be shifted back analytically to recover to a good approximation the

posterior for the original catalog. This can be done for example, directly from the output of

MCMCs. In addition, the proposed blinding methodology fulfills points i) and v) by design.

The most numerically intensive step is the RSD-blinding step which takes as much time as

applying the reconstruction algorithm to the catalog. In our configuration using BOSS cat-

alogs this takes 5-7 minutes on a dual core CPU depending on the Sample it is applied to.

This is comparably mild given that the blinding code needs to be applied to the data once,

and not to thousands of mock realisations.
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1. Pick a reference cosmology with pa-

rameters (cosmological and physical) ⌦
ref

.

Pick a set of shift parameters �⌦ so that

⌦
shift

= ⌦
ref

+ �⌦ as described in sec-

tion 3.1. Note that given ⌦
shift

and ⌦
ref

,

⌦
blind

is known.

2. Given a set of galaxies with observed red-

shifts zi transform these into distances using

the reference cosmology.

3. Apply RSD shift from section 3.3,

eq. (3.18).

4. Apply AP-like shift of eq. (3.11).

Inputs:

measured

redshifts

Outputs:

blind

catalog +

reference

cosmology

5. This produces the blinded catalog. Dis-

tribute blinded catalog and reference cosmol-

ogy. Keep original catalog, �⌦ and ⌦
blind

hidden until “unblinding”.

Figure 17. Summary of the proposed blinding procedure presented in this paper. In case that

blinding for the growth rate is not necessary, step 3 can be skipped.

The optimal performance of the blinding (regarding points iv) and vi)) depends on the

magnitude of the blinding shift applied: the larger the shift the less robust the approach

becomes; too large deviations between the reference and the shifted cosmology can spoil

the predictability of the blinding scheme, because some of the usually made approximations

may fail (fixed covariance matrix, adoption of reference model etc.). The choice of how

much the shifted values can deviate from the reference parameters should depend on the

forecasted sensitivity of the data, and should probably not exceed deviations of 3�. We have

demonstrated how a large shift leads to a (graceful) degradation of performance by shifting

the growth rate parameter by 50%; even in this extreme case, only point vi) slightly looses

accuracy.

To satisfy all the above criteria to a high level of fidelity (especially point iv)) the

approach can be tuned (beyond setting reasonable shifts amplitudes). For example, the
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smoothing scale intrinsic to the reconstruction procedure may be adjusted to reduce noise,

but a sub-optimal choice does not a�ect the recovered parameter values. Similarly, the choice

of the linear bias parameter and the growth rate f adopted for the reconstruction step, may

a�ect the error-bars estimated from the (blinded or original) catalog, if they do not match

the “underlying values”. However, in this work we have found that the e�ect of the latter is

very small.

Another point, also common to the traditional (non-blind) analyses, is the calibration

of the mock survey catalogs used to estimate the covariance matrix. It is well known that to

yield a correct estimate of the parameters errors, the amplitude of clustering in the mocks

used to estimate the covariance must match the clustering amplitude of the data. But the

clustering amplitude is not well known when the mocks are being created (before the data

are taken and/or because the data are blind). Usually this calibration is done at the halo

occupation distribution level and on small non-cosmological scales, and in this case one has

the freedom to calibrate the mocks to the blinded data or to the original catalog. Should

the mocks be calibrated on the blind catalog, one possibility is that, at the unblinding step,

the galaxies positions in the mocks can be shifted “back” with a procedure similar to the

blinding done on the data but in the opposite direction. In this way the mocks would match

more closely the clustering properties of the original data.

Finally we have applied the procedure to the BOSS DR12 data release, which serves

also as an illustrative example of how the whole process (from original data, to build catalog,

analysis, unblinding procedure until final results) could be implemented in practice. Even

for BOSS data, we have demonstrated that the blinding procedure recovers to high accuracy

the o�cial (original) results.

However, our idea laid out in figure 1 of how to implement the blinding procedure in

the analysis pipeline can be further adapted depending on specific needs of the collabora-

tion/survey. Other ways are possible: instead of creating a single blinded catalog only, one

can create several ones to be analyzed by di�erent subgroups of the collaboration or circulate

the blinded catalogs together with the original catalog. We prioritize our proposal to create

a single blind catalog to be used by all collaboration members, because this maintains the

possibility to cross-check between subgroups. Also we prefer to leave the original catalog

hidden until unblinding, because it makes blinding more robust avoiding potential accidental

or willing unblinding.

For the magnitude of the blinding shift with respect to the anticipated (Fisher-forecasted)

sensitivity we suggested to choose values up to 3� to ensure that the assumption of a

parameter-independent (fixed) covariance does still hold. Again, this number is not set

in stone and should be chosen carefully depending both on the sensitivity of the experiment

and the “state-of-the-art” knowledge of the parameters in question. We have worked here

under the assumption that the covariance matrix is computed only once and is not changed

with the blinding/unblinding procedure. However, if computationally feasible, the covari-

ance matrix could be initially calibrated on the blinded catalogs and then re-calibrated on

the unblinded one. This approach would support larger shifts.

We have not discussed the criteria for freezing the analysis pipeline and going ahead

with unblinding because this may also be very experiment-specific. We have only commented

here that any criteria based on the value of the best-fit �
2

(whether can be deemed acceptable

or not) should take into consideration the spread in best-fit �
2

values observed in figure 14.

The spread in best-fit �
2
/ndf values for both the original catalog and the blinded one range

from ⇠ 0.5 to ⇠ 1.5. The spread induced by blinding is a fraction of that scatter and there
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is no systematic trend: blinding does not statistically alter the best-fit �
2

values, but the

criteria for defining an “acceptable” �
2

should be calibrated on a suite of survey mocks.

While we have only tested explicitly the full shape and anisotropic BAO analyses, there

is no reason to believe that the proposed scheme would not work for non-template-based

analysis methods such as EFTofLSS [63, 64]. Moreover, being only a line-of-sight shift, it

is probably possible to generalise the scheme to other tracers such as Lyman-↵, quasars or

line-intensity mapping.

To conclude, we have presented a fast, robust and reliable catalog-level blinding scheme

for galaxy redshift catalogs. Although this work is motivated to be applied to spectro-

scopic surveys, we do not see any obvious limitation for it to be used in future photometric

surveys as well. We envision that it will be of value to increase the robustness of cosmo-

logical results from forthcoming LSS surveys and making their cosmological implications

free from possible confirmation bias and experimenter’s bias. We make publicly available

at https://github.com/SamuelBrieden/BlindingCatalogs the following products: BOSSDR12

data and 100 PatchyMock catalogs, that have all been blinded using the “Combined” case

given in table 2 as well as associated power spectrum measurements, Monte Carlo Markov

chains and bestfit values for the FS and BAO (pre- and postreconstruction) models.
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HGM and SB acknowledge the support from la Caixa Foundation (ID 100010434) which code

LCF/BQ/PI18/11630024. LV acknowledges support by European Union’s Horizon 2020 re-

search and innovation programme ERC (BePreSySe, grant agreement 725327). JLB is sup-

ported by the Allan C. and Dorothy H. Davis Fellowship.

The massive production of all MultiDark-Patchy mocks for the BOSS Final Data Re-

lease has been performed at the BSC Marenostrum supercomputer, the Hydra cluster at

the Instituto de Fisica Teorica UAM/CSIC, and NERSC at the Lawrence Berkeley National

Laboratory. We acknowledge support from the Spanish MICINNs Consolider-Ingenio 2010

Programme under grant MultiDark CSD2009-00064, MINECO Centro de Excelencia Severo

Ochoa Programme under grant SEV- 2012-0249, and grant AYA2014-60641-C2-1-P. The

MultiDark-Patchy mocks was an e�ort led from the IFT UAM-CSIC by F. Prada’s group

(C.-H. Chuang, S. Rodriguez-Torres and C. Scoccola) in collaboration with C. Zhao (Ts-

inghua U.), F.-S. Kitaura (AIP), A. Klypin (NMSU), G. Yepes (UAM), and the BOSS galaxy

clustering working group. Funding for SDSS-III has been provided by the Alfred P. Sloan

Foundation, the Participating Institutions, the National Science Foundation, and the U.S.

Department of Energy O�ce of Science. The SDSS-III web site is http://www.sdss3.org/.

SDSS-III is managed by the Astrophysical Research Consortium for the Participating

Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian

– 39 –



JCAP09(2020)052

Participation Group, Brookhaven National Laboratory, Carnegie Mellon University, Univer-

sity of Florida, the French Participation Group, the German Participation Group, Harvard

University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA

Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory,

Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics,

New Mexico State University, New York University, Ohio State University, Pennsylvania

State University, University of Portsmouth, Princeton University, the Spanish Participation

Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia,

University of Washington, and Yale University.

A E�ect of choice of smoothing scale

Here we extend the discussion on the choice of smoothing scale which was touched upon

in section 4.4. Figure 8 illustrates that adopting a too small smoothing scale produces a

field dominated by nonlinear velocities, which are hard to model. A too large smoothing

scale instead washes out small scale perturbations. Since the f parameter is a�ected by

blinding only at scales above the smoothing scale, choosing a smoothing scale that is too

large compared to the smallest scales included in the analysis would yield an e�ective scale-

dependent f in the blinded catalog. When applying the RSD shift to a catalog di�erent from

BOSS, we envision that the choice of smoothing scale should be calibrated on specific survey

mocks beforehand. However, we do not expect that using a suboptimal smoothing will have

a significant impact on the results.

Figure 18 shows mean (f�8) values, errors and best-fit �
2

before and after blinding

for di�erent smoothing scales for LOWZ and CMASS mocks. We can see from the left

column, that in all cases the mean values of (f�8) are nearly identical. Only in the case of

Rsm = 15 h
�1

Mpc the distribution is slightly broadened. This is also reflected by the error

distribution presented in the middle column, showing a small increase of the errors after

blinding. For smaller smoothing scales the error bars do not deviate from the original ones.

From the right panels we see that there is a non-significant trend towards higher �
2

with

decreasing smoothing scale. Note that the overall �
2

distribution is slightly o�set from the

diagonal. This is related to the fact, that we show here a very extreme blinding shift towards

� = 1.0. We do not observe a systematic discrepancy in �
2

before and after blinding for more

realistic blinding scenarios, as shown in figure 14.

We conclude that the dependence of the performance of the blinding procedure the

specific choice of the smoothing scale is small enough, so that it does not need to be included

in the modeling when analysing blinded catalogs. However, we suggest to calibrate the

smoothing scale on mocks beforehand in order to minimise mis-estimation of the error bars.

B Impact of deviations from the reference cosmology

Here, we study whether the template used for the FS analysis has any impact on parameter

constraints when applied to blinded catalogs. Other works ([44, 45, 65]) have shown that the

model-independent template fit approach delivers robust BAO and RSD results independent

of the choice of template. To validate that these findings also hold for galaxy catalogs, that

have been modified using the blinding scheme presented here, we proceed as follows.

In addition to the reference template we generate two linear power spectra with a

cosmology far away from the reference one, that we call Low-Om and High-Om. They have
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Figure 18. This figure shows FS fit results fo RSD-only blinding on f�8, �f�8 and best fit �
2

from

100 LOWZ and CMASS realizations. Each panel compares di�erent values of smoothing scale used

during the blinding process. The black dashed line in the left panels gives the theoretical expectation

for the blinding shift. Colored dashed lines in the middle and right panels are linear regression fits to

the mock distributions.

Cosmology ⌦m ⌦bh
2

h �8 ns M⌫ [eV] rd [Mpc]

MD-Patchy 0.307115 0.02214 0.6777 0.8288 0.9611 0 147.66

Ref 0.31 0.022 0.676 0.8288 0.9611 0.06 147.78

Low-Om 0.286 0.023 0.7 0.82 0.96 0 147.15

High-Om 0.35 0.022 0.676 0.814 0.97 0.056 143.17

Table 5. Values of cosmological parameters and sound horizon at radiation drag for the MD-
Patchy mocks cosmology and the cosmologies that were used to generate the di�erent power spectrum

templates for this analysis.

either a smaller value with respect to ⌦
ref
m of ⌦

low
m = 0.286 or a higher value of ⌦

high
m = 0.35

and other di�erences are specified in table 5.

Next, we fit the FS model to the mean of 1000 original and blinded Patchy mock

catalogs using the 3 di�erent templates. We choose a wavevector range of 0.02 h Mpc
�1

<

k < 0.15 h Mpc
�1

. The mocks are blinded using the reference and shifted cosomology of the

“Combined shift” case, specified in table 2.
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Case
↵

0
k/↵k ↵

0
?/↵? f�8 � (f�8)

0

z = 0.33 z = 0.60 z = 0.33 z = 0.60 z = 0.33 z = 0.60

Expectation 0.9637 0.9502 0.9800 0.9702 0.0809 0.0541

Ref 0.960 ± 0.003 0.951 ± 0.002 0.982 ± 0.001 0.973 ± 0.001 0.091 ± 0.003 0.054 ± 0.002

Low-Om 0.965 ± 0.003 0.949 ± 0.002 0.981 ± 0.002 0.972 ± 0.001 0.078 ± 0.004 0.055 ± 0.003

High-Om 0.969 ± 0.003 0.956 ± 0.002 0.985 ± 0.002 0.978 ± 0.001 0.083 ± 0.004 0.058 ± 0.002

Table 6. The expected deviations in scaling parameters and f�8 between the original and blinded

catalogs compared to the results from the fits on the mean of 1000 LOWZ and CMASS mocks for

each template. We show ratios/di�erences instead of absolute values, because their expected values

are independent of the template. All di�erences between expectation and prediction are below the 1%

level, even for large deviations in cosmological parameters for the Low-Om and High-Om templates.

The performance of the di�erent templates in reproducing the expected shift in the FS

model parameters
�
↵k, ↵?, f�8

 
due to blinding is shown in table 6. The expectation for

the ratio of scaling parameters and di�erence in f�8 between original and blinded catalogs

for LOWZ and CMASS is given by the first row. These values are independent of the

choice of template, while the absolute values of the scaling parameters are not, because of

their dependence on the fiducial cosmology. The subsequent rows show the results obtained

from our MCMC fits to the mean of 1000 mocks using the di�erent templates described

by the cosmologies presented in table 5. We find a good agreement between theory and

expectation for all three choices of template, despite the rather extreme di�erences among

their cosmologies. This shows that galaxy clustering analyses based on a varying template

approach can be applied without a problem to blinded catalogs.
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3
E X T R A C T I N G T H E P O W E R S P E C T R U M S H A P E

The second important pillar of the research presented in this thesis
is the development of ‘ShapeFit’, as of now comprising four articles
[2–5], three of them published. ShapeFit is a tool to extract informa-
tion beyond BAO and RSD from galaxy maps. By adding a "shape"
parameter to the standard BAO+RSD analysis pipeline and adapting
the definition of the matter fluctuation amplitude, it is possible to
capture most of the cosmological information in galaxy power spectra,
that only the alternative direct model fits (or ’full modeling’ (FM) fits)
have been able to extract.

The first article [2] presented in this chapter exhibits not only the
full derivation of the relevant ShapeFit equations (section three) but
also an in-depth comparison with the alternative FM technique at
the level of cosmology inference (sections 4 and 5). Furthermore, in
section 2 it provides a deep understanding of the issue at hand, the
difference between standard fixed template fits and FM fits, where
table 2 and figures 2 and 3 are particularly relevant. Last but not least,
in section 6 we propose a new method to correct at the data-level for
the fact that the mode-averaged power spectrum measurements do not
coincide with the naive bin-average usually applied within the theory
model on large scales, we call it "geometrical effect". We run additional
systematic tests (also in numerous appendices) on the Nseries LRG
mocks before concluding in section 7. Additional systematic tests
are carried out in several appendices, where especially the result of
appendix B is interesting: it shows explicitely that ShapeFit reduces
the residual template dependence of the standard RSD analysis.1

An overview of the ShapeFit method highlighting the modifications
with respect to the standard RSD analysis is provided in figure 5.

1 In this publication the term "RSD analysis" is equal to the "FS" or "BAO+RSD analysis"
as introduced in chapter 1.3. Note that, with the advent of FM analyses the pre-existing
nomenclature became ambiguous and the community has not yet agreed on a single
naming scheme. Hence, the analysis names are chosen depending on the context,
where care is taken to provide the exact definitions of what kind of analysis is meant
by each name.
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1 Introduction

Observations of the Cosmic Microwave Background (CMB, e.g., [1, 2]) radiation have been
pivotal in establishing the standard cosmological model (the so-called �CDM model) and to
open the doors to precision cosmology. The CMB has, however, the fundamental limitation
of originating from a 2D surface at a given cosmic epoch. Observations of the Large Scale
Structure (LSS) over large 3D volumes can yield a dramatic increase in the number of
accessible modes and trace the evolution of clustering across cosmic times.

The three-dimensional clustering of galaxies is rapidly becoming one of the most promising
avenue to study cosmology from the late-time Universe. Spectroscopic galaxy redshift surveys
have witnessed a spectacular success covering increasing larger volumes: 2-degree Field
(2dF, [3]), Sloan Digital Sky Survey II (SDSS-II, [4]), SDSS-III Baryon Oscillation spectroscopic
Survey (BOSS, [5–7]), SDSS-IV extended BOSS (eBOSS, [8–10]); and this trend is set to
continue: the on-going Dark Energy Spectroscopic Instrument (DESI, [11, 12]) and up-coming
Euclid satellite mission [13], as just two examples.

Baryon Acoustic Oscillations (BAO) is an imprint in the power spectrum of sound
waves in the pre-recombination Universe o�ering a “standard ruler” observable through
galaxy clustering [14–21]. The standard approach to analyse galaxy redshift clustering, used
extensively and part of o�cial surveys’ pipelines, has used the standard ruler signature in
the galaxy power spectrum to obtain determinations of the distance-redshift relation at the
e�ective redshift of the surveys’ samples exploiting the Alcock-Paczynski e�ect [22]. The
process of density-field reconstruction, e.g., [23], is widely adopted to reduce the information
loss induced by non-linearities. In this approach, the geometric information extracted from
the BAO peak position is largely model-independent: the physical quantity constrained
is directly related to the expansion history and independent of the parametrization of the
expansion history given by specific cosmological models. The reconstruction step induces
some model-dependence but this has been shown to be very weak [24]. Redshift Space
Distortions (RSD, pioneered by [25]) arise from the non-linear relation between cosmological
distances — natural input to the theory modelling — and the (observed) redshifts. They
enclose information about the velocity field and have been used to extract constraints on the
amplitude of velocity fluctuations times the dark matter amplitude fluctuations, characterized
by the parameter combination f‡8.

BAO and RSD results and their cosmological interpretation for state-of-the-art surveys
have been presented e.g., in [26], for the SDSS-III BOSS survey, and in [27], for the SDSS-IV
eBOSS survey, and the success of this approach is behind much of the science case for
forthcoming surveys. From now on we refer to this, now standard, approach as “classic”1

The classic approach is conceptually di�erent from the way, for example, CMB data are
interpreted and from the analysis of LSS data pre-BAO era (see e.g., [28–31]). When the BAO
detection in galaxy redshift surveys became of high enough signal to noise, it was quickly
recognized that it carried most of the interesting signal, see e.g., [32, 33], and the community
then adopted the, now classic, BAO and RSD approach. BAO and RSD analyses, with
the help of a template of the power spectrum, compress the power spectrum data into few
physical observables which are sensitive only to late-time physics, and it is these observables
that are then interpreted in light of a cosmological model. CMB data analyses, on the other

1
Classic in the Merriam Webster dictionary: serving as a standard of excellence, of recognized value. We

use here the word classic as “of high quality standard in its respective genre based on judgement over a period

of time” and “can be considered as standard”.
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hand, compare directly the measured power spectrum to the model prediction, requiring
the choice of a cosmological model to be done ab initio. Recently, the development of high
performance codes based on the FFTLog algorithm [34] giving rise to fast model evaluations
of, for instance, the so-called “E�ective Field Theory of Large Scale Structure”, e.g., [35–42],
has prompted part of the community to analyse galaxy redshift clustering in a similar way
as CMB and pre-BAO era LSS data (see e.g., [28–30] and references therein), by comparing
directly the observed power spectrum, including the BAO signal, the RSD signal, as well
as the full shape of the broadband power to the model’s prediction. A full Markov Chain
Monte Carlo (MCMC) exploration of the cosmological parameter space can then be performed
obtaining cosmological constraints significantly tighter than in the standard analysis. For
example [39, 40], imposing a Big Bang Nucleosynthesis (BBN) prior, obtain a 1.6% constraint
on the Hubble constant, which is instead very mildly (≥ 10%) constrained in the standard
approach (see e.g., red contours in figure 5 of [27]). In what follows, we refer to this approach
as “full modelling”, to highlight the fact that while currently E�ective Field Theory of Large
Scale Structure is the theoretical modelling of choice for this approach, other choices are
also possible.

The additional constraining power a�orded by the second approach must arise, at least
in part, from the broadband shape of the power spectrum, but a full physical interpretation of
the origin of the extra constraining power is still lacking (but see e.g., [43] and refs. therein).

This paper serves three main objectives: 1) identify clearly where the additional in-
formation comes from and what physical processes it corresponds to, 2) bridge the classic
and new analyses in a transparent way and 3) extend the classic analysis in a simple and
e�ective manner to capture the bulk of this extra information. In passing, we also present a
new definition and interpretation of the physical parameter describing amplitude of velocity
fluctuations which further reduce the model-dependence of the traditional RSD analysis. We
stress here that the theoretical models for the power spectra adopted by the published works
of the “classic” and “full modelling” approaches are di�erent. The main motivation of this
paper is not to do a first principles comparison including all combinations of theoretical
models and fitting methodologies. In this paper we stick to the theoretical models and fitting
methodologies as adopted in the literature, using as much as possible codes made publicly
available by the authors of the relevant papers. When extending the classic approach we
will take care in introducing as minimal modifications as possible. The rest of the paper
is organized as follows: in section 2 we review the known approaches for the cosmological
interpretation of galaxy clustering. While this is background material it serves the purpose of
highlighting di�erences and similarities across approaches and make explicit their dependence
on (or independence of) assumptions about a cosmological model. Section 3 introduces the
phenomenological extension of the classic approach, which we call ShapeFit, an executive
summary of it in the form of a flowchart is presented in figure 5, and section 4 presents our
setup for its application to mock catalogs. In section 5 we show a direct comparison between
the di�erent analysis approaches and perform additional systematic tests of the proposed
ShapeFit in section 6. The conclusions are presented in section 7. The appendices present
technical details and relevant systematic tests.

2 Theoretical background

In this section we provide an overview of the most common LSS analysis strategies to date. To
understand how to compare them directly with each other, and how to interpret the resulting
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parameter constraints as done in section 2.4, it is important to spell out clearly what physical
processes, what observational features and what model ingredients are relevant for each of
the approaches. This background section serves for this purpose.

2.1 The �CDM model: notation and definitions
If not stated otherwise, we work in the flat �CDM model with the following parameter basis

� = {�i} = {Êcdm,Êb, h,‡8, ns,M‹} , (2.1)

where Êcdm and Êb are the physical density parameters of the cold dark matter and baryons
respectively. In addition, we use the subscript ‘cb’ to refer to the cold dark matter +
baryon component, m for the total matter including non-relativistic neutrinos, and � for
neutrinos. When the dimensionless Hubble-Lemaître parameter, h, is introduced H0 = h◊100
km s≠1 Mpc≠1, they are related to the energy density fractions �X for any species X œ

{b, cdm,m, r, �, �,�, . . . } for baryons, cold dark matter, matter, relativistic species, photons,
neutrinos, cosmological constant, etc., as

ÊX = �Xh
2
. (2.2)

Within the flat �CDM model these quantities fulfill the budget equation

�� + �‹,r� �� �
�r

+ �cdm + �b + �‹,m� �� �
�m

+�� = 1 (2.3)

at all times. The physical photon densiy Ê� is e�ectively fixed by the precise COBE measure-
ment of the CMB temperature T0 = 2.7255± 0.0006 [44], via

Ê� = 8fi3
T

4
0

45 (H0/h)2M2

P

= (2.472± 0.002)◊ 10≠5
, (2.4)

where MP is the Planck mass in natural units. This measurement of Ê� is commonly used
as a prior, and its central value is implicitly adopted within the term “flat �CDM”. In the
following we stick to this convention, although one could in principle allow T0 to be a free
parameter [45].

We also include the sum of the neutrino masses M‹ as a free parameter, where we choose
2 massless states (counted as radiation) and 1 massive state (counted as matter).

On the background level, assuming homogeneity and isotropy on large scales, the
geometry of the universe is fully described by the Hubble expansion rate as function of
redshift, z,

H(z) = H0

�
(1 + z)4�r + (1 + z)3�m + �� , (2.5)

where the Hubble distance DH and the comoving angular distance DM are given as

DH(z) = c

H(z) , DM (z) =
�

z

0

cdz
Õ

H(zÕ) . (2.6)

Linear perturbations in the energy density of a given species X from the homogeneous
background are encoded in the power spectrum PX(k) describing the 2-point statistics as
a function of wavevector k in Fourier space. It is written as the product of the primordial
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Cosmology Êcdm Êb h ‡8 ns M‹ [eV] �m rd [Mpc]
Planck 0.1190 0.022 0.676 0.8288 0.9611 0.06 0.31 147.78

Table 1. Reference values of cosmological parameters for the �CDM base of eq. (2.1) and its derived
parameters, the matter density parameter, �m, and the sound horizon at radiation drag, rd. As it
is customary, we report rd in units Mpc, although we use h≠1Mpc units throughout the rest of this
work. The reported parameter values are close to the Planck best-fit cosmology [2].

power spectrum PR(k) and the squared transfer function �X(k) obtained from solving the
perturbed coupled Boltzmann equations for each species X,

PX(k, z) = 2fi2

k3
PR(k)�2

X(k, z) = 2fi2

k3
As

3
k

0.05 Mpc≠1

4ns≠1

�
2

X(k, z) , (2.7)

where the standard inflationary model assumes the primordial power spectrum to be nearly
scale-invariant, with global amplitude As and scalar tilt ns.

Since the global amplitude is modulated by the transfer function as well, it is common
in LSS analyses to replace As by the total amplitude ‡8 at redshift zero as a free parameter.
In general the redshift-dependent ‡8 is defined as the matter density fluctuation at a given
redshift z smoothed on spheres of 8 Mpc/h,

‡
2

8(z) �
� �

0

d(ln k) k3
Pm(k, z)W 2

TH(k · 8h≠1Mpc) , (2.8)

where WTH is the spherical top hat filter. The “amplitude parameters”, As and ‡8, are defined
on di�erent scales and at di�erent epochs; in particular, while As is a primordial quantity
with direct interpretation in terms of early-time physics, ‡8 is a late-time quantity, with
more direct interpretation from observations of LSS clustering. Also note that the primordial
amplitude As is defined with respect to a certain pivot scale given in Mpc units, while the
scale of interest for ‡8 has h≠1Mpc units. Therefore, the wave-number k in eq. (2.7) is given
in Mpc≠1 units, while in eq. (2.8) and in what follows we write k in units hMpc≠1.

The reference cosmology �ref used throughout this work, if not stated otherwise, is given
in table 1 for the parameter base introduced in eq. (2.1) and other derived parameters. We
refer to this set of parameters as “Planck”.

2.2 Parameter dependence of the (real space) linear matter power spectrum
The main quantity needed to model the observable galaxy power spectrum multipoles is the
real-space, linear matter power spectrum, Pm(k). Here, we illustrate its dependence on key
cosmological and physical parameters. Real world e�ects such as galaxy bias are discussed in
section 2.3. As eq. (2.7) indicates, the primordial power spectrum is assumed to be a power
law with an amplitude As and a spectral slope ns. These quantities are set by the mechanism
that generated the initial conditions, but not by the subsequent evolution of the Universe.
The late-time linear matter power spectrum is not a power law; this is encoded by the transfer
function, which captures linear physics relevant after the end of inflation. As such, it depends
on the content of the Universe, and its early-time expansion history.

The primordial power spectrum is always defined for k in units of Mpc≠1. The LSS power
spectrum on the other hand is usually defined for k in units of hMpc≠1. This is intimately
related to the fact that observations measure angles and redshifts and not distances directly.
Hence, distances are obtained assuming a specific theoretical model, with specific parameters
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values, as given by the reference model. The model-dependence of this step can be made
more transparent by defining distances in units of a theoretical quantity (or “ruler”) and then
making explicit the scaling of the power spectrum and the wave vector with the theory ruler.
The use of “little h” is the classic example, with h = H0/H

ref
0 where the reference model has

H
ref
0 = 100 km s≠1 Mpc≠1. Moreover, as it will become clear below, it is useful to go beyond

h and also consider scaling of distances with respect to the BAO standard ruler, the sound
horizon at radiation drag, rd, yielding s � rd/r

ref

d
; s enters the normalization of the power

spectrum and the scaling of the wave vector in much the same way as h.
In the top panel of figure 1 we show the matter power spectrum for the “Planck”

cosmology (solid black line), and the one corresponding to a universe without baryons, where
all the matter consists of dark matter (dotted black line). The latter can be described by
only one characteristic scale, the scale of matter-radiation equality,

keq = aeqHeq = 7.46◊ 10≠2
Êcb

h

3
T0

2.7 K

4≠2

, (2.9)

which corresponds to the modes entering the Hubble horizon at the redshift of equality,
zeq, which depends on the physical density Êcb = Êcdm + Êb comprising cold dark matter
and baryons. The numerical calculation of the matter power spectrum is carried out with
the Boltzmann code CLASS [48], which uses Êcdm as input parameter. However, for some
applications it is more instructive to show the parameter Êcb.

The e�ect of baryons on the matter power spectrum is characterized by an additional
scale, the sound horizon at baryon radiation drag epoch,

rd =
� �

zd
dz̃

cs(z̃)
H(z̃) , (2.10)

where cs(z) is the sound speed of the tightly coupled photon-baryon fluid, and zd the epoch
of baryon drag. This is the maximum scale over which baryon pressure waves could have
travelled from initial times until the baryon-photon decoupling. The sound horizon has two
major e�ects on the power spectrum, which can be seen in figure 1 by comparing the dotted
to the solid black line. First, it acts as a Jeans scale, damping the power spectrum for modes
kdamp > 1/rd (green dashed line). Second, it introduces the BAO, whose peaks and troughs
locations are given by the red and blue dotted lines. Interestingly, the slope of the baryon
suppression reaches its maximum at the same scale that corresponds to the zero-crossing
before the first BAO trough at kslope = fi/rd (green dotted line). This shows that the scale of
the suppression and the BAO wiggle position are indeed directly linked to each other by rd.
We anticipate here that we will make use of this important fact in section 3.3.

In the middle panel of figure 1 we show the normalized derivative of the matter power
spectrum with respect to the base �CDM parameters introduced in section 2.1. The e�ect
of varying ‡8 (black dashed line) and ns (orange dashed line) is trivial, they just change
the power spectrum global amplitude and tilt respectively. The sum of neutrino masses
M‹ (magenta dashed line) acts as a step-like suppression at the scales at which neutrino
free streaming occurs k � 0.01h≠1Mpc. Note that the di�erential of each parameter ��i is
normalized by a factor �i as to match the e�ect of ‡8 at large scales. While varying one
parameter, all other parameters are fixed to their fiducial value in table 1. In e�ect, the
normalized derivative with respect to each parameter is the same at the smallest wavevectors
and the zero-crossing occurs at the same characteristic wavevector k � 1/(8h≠1Mpc) for the
cases where ‡8 is fixed.
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Figure 1. Top panel: linear matter (cold dark matter + baryons+ neutrinos) power spectrum Pm(k) at
z = 0 and its characteristic scales: the equality between matter and radiation keq (black dashed vertical
line), the turn-around, which coincides with keq, the BAO-peaks and -troughs (red and blue vertical
dotted lines, respectively) estimated as function of rd, and the scale where the baryon suppression
reaches its maximal slope, kslope = fi/rd (green dotted vertical line). To highlight the baryon
suppression e�ect, the black dotted line shows Pm(k) in the zero-baryon case for comparison. Middle
panel: z = 0 Pm(k) parameter dependence for varying �i œ {Êcb,Êb, h, ns,‡8,M�}. The normalization
factors �i are chosen such that all parameters have the same impact on the power spectrum as ‡8
in the large scale limit. Bottom panel: same lines as in the middle panel, but after rescaling by rd
according to eq. (2.11), so that the BAO wiggle positions overlap. In all panels, the non-shaded k-range
highlights the usual observed range for spectroscopic galaxy surveys, 0.008 � k [hMpc≠1] � 0.5. This
figure should remind the reader of the landmark works [20, 46, 47] and references therein.
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We can appreciate that the parameters {Êcb,Êb, h} have the same e�ect on the small
and large scale limit, but show di�erences at intermediate scales: the onset of suppression
on scales 0.01 < k [hMpc≠1] < 0.05 and the oscillation amplitude and position on scales
0.05 < k [hMpc≠1] < 0.5. However, from the plot it is not clear whether di�erent apparent
amplitudes are related to a pure change in amplitude or to the shift of BAO position.

Therefore, in the bottom panel of figure 1 we show the same cases after rescaling by s,
the shift in sound horizon corresponding to the shift in cosmological parameter, such that the
BAO position overlaps for all the lines,

Pm(k) ≠� P̂m(k) = 1
s3
Pm

3
k

s

4
, s = rd(�i + ��i�i)

rd(�i)
. (2.11)

Lines corresponding to a shift in parameters that leave rd unchanged (dashed lines) are, of
course, una�ected by the rescaling. For ‡8 this is not strictly correct, there is a residual
dependence on the scale in the filter function (see eq. (2.8)), as ‡8 does change after the
transformation (2.11). Here we actually used a redefinition of ‡8 introduced and motivated
in section 3.1.

On the other hand, for the parameters that have an impact on rd (solid lines), we
observe a systematically di�erent behaviour. First, the e�ect of the parameter h is completely
absorbed by the rescaling, because we express the sound horizon rd in h

≠1Mpc units. Second,
Êcb and Êb have a nearly identical e�ect on the slope, with only a small o�set coming from keq.
In fact, keq and rd are closely related within standard �CDM, as the relevant physical e�ects
leading to these scales occur at relatively adjacent times, not allowing for much freedom to
change one without changing the other. Third, while their e�ect on the slope is qualitatively
similar in the k-range of interest, Êb has a larger impact on the BAO wiggle amplitude than
Êcb. This is expected, as the amplitude depends on the ratio Êb/Êcb. Note that, to reduce
the dynamic range to display in figure 1 (and to normalize their e�ect on large scales), ��cb
has a di�erent sign than ��b . Although the e�ect of the parameters Êcb, Êb and ns on the
shape of the matter power spectrum is expected to be somewhat degenerate, the change in
slope by Êcb, Êb is scale-dependent, while for ns it is scale-independent by definition. We will
come back to this point later.

Of course what the figure shows and the discussion refers to is the e�ect of the �
parameter (� ≥ �mh in �CDM where however the ≥ sign is key as there is a rich dependence
on early-time physics in the shape of the matter transfer function see e.g., [46, 47, 49] and
the extensive discussion in [20]). These references, especially [20] as will be clear later, are
key to o�er a physical interpretation of the information provided by the power spectrum and
transfer function shape.

From this purely theoretical investigation of the linear matter power spectrum we conclude
that when trying to measure even the base �CDM parameters directly from clustering
data, without external priors or data-sets, the resulting constraints are expected to be
highly degenerate.

In particular, we have shown that the e�ect on the power spectrum slope of {Êcb,Êb, h, ns}

(or of {Êcb,Êb, ns} when removing the rd dependence) is qualitatively similar. The situation
is further complicated by the fact that we observe galaxies, which are biased tracers of the
cold dark matter + baryon power spectrum in redshift space, and with non-linear corrections
playing an important role. It is well known that using the matter power spectrum or the cold
dark matter + baryon power spectrum as an input for modelling the galaxy clustering in
redshift space can make a di�erence in the constraints of the sum of neutrino masses [50–52].
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We refer the reader to these references for more details. This is, however, beyond the scope of
this paper. In the following we stick to the convention and nomenclature of the CLASS code.

2.3 From dark matter in real space to galaxies in redshift space
We start by writing the density and velocity real space spectra for biased tracers at 1-loop
standard perturbation theory (SPT) as in [53]:

Pg,��(k) = b
2

1Pm,��(k) + 2b2b1Pm,b2�(k) + 2bs2b1Pbs2,�(k) + b
2

2Pm,b22(k) +
2b2bs2Pm,b2s2(k) + b

2

s2Pbs22(k) + 2b1b3nl‡
2

3(k)Pm,lin(k)
Pg,��(k) = b1Pm,��(k) + b2Pm,b2�(k) + bs2Pm,bs2�(k) + b3nl‡

2

3(k)Pm,lin(k)
Pg,��(k) = P�� ,

(2.12)

where Pxy with x, y = � or ◊ are the auto and cross power spectra of non-linear density (�) and
velocity (◊) perturbations, Pm,lin denotes the linear matter power spectrum and Pb2,xPbs2,x

represent 1-loop corrections to the linear bias expansion. The exact expressions for these terms
and ‡3 can be found in eq. B2- B7 of [54]. Biasing is parametrized by four bias parameters,
the first and second order biases b1, b2 [55], and the non-local biases bs2, b3nl [56]. Under the
assumption of local Lagrangian conditions these two non-local biases can be written as a
function of (b1 ≠ 1) and are not independent parameters. Some studies have shown that in
general this local condition holds for dark-matter haloes [57–59], but is not necessarily true
for galaxies with an arbitrary halo occupation distribution e.g., [60]. We follow the usual
assumption that, at the scales of interest, the galaxy velocity field is unbiased.

Going from real space to redshift space introduces an additional dependence on the angle
� of wavevectors with respect to the line-of-sight (LOS), which is usually parametrized by
µ = cos(�). It is widespread to adopt the redshift space formulation from [61] and extended
by [62],

PRSD(k, µ) =
�
1 + [kµ‡P ]2 /2

�≠2 Ë
Pg,��(k) + 2fµ2

Pg,��(k) + f
2
µ

4
Pg,��(k) +

b
3

1A
TNS(k, µ, f/b1) + b

4

1B
TNS(k, µ, f/b1)

È
,

(2.13)

where the Lorentzian damping term in front incorporates the e�ect of non-linear RSD,
also called Fingers-of-God e�ect. Here µ is the cosine of the angle to the LOS, ‡P is a
phenomenological incoherent velocity dispersion parameter, and f denotes the linear growth
rate dD/d ln a where D is the linear growth factor and a the scale factor. Eq. (2.13) describes
the so-called TNS model (see the definition of the coe�cients A

TNS
, B

TNS in [62]). We
follow the usual approach of expanding the power spectrum µ-dependence in the Legendre-
polynomials orthonormal base. This procedure allows us to describe the LOS dependence
through a series of multipoles. Although the multipole-expansion requires an infinite set
of multipoles, in practice just the first 2 or 3 non-null multipoles are used.2 The power
spectrum multipoles are thus constructed by integrating PRSD times the corresponding
Legendre polynomials over µ

P
(�)

RSD
(k) = (2¸ + 1)

�
1

≠1

PRSD(k, µ)L�(µ) dµ . (2.14)

2
In the same fashion an infinite µ-binning is required to extract the full available information, but in

practice signal-to-noise arguments limit this to just 2 or 3 bins in µ (see for e.g., [63]).
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Combining the signal from the monopole (¸ = 0) and quadrupole (¸ = 2) allows to break
the usual large-scale degeneracy between linear bias and growth of structure. Adding the
hexadecapole (¸ = 4) helps in breaking degeneracies between the AP e�ect and redshift
space distortions. Although the non-linear terms {A,B}TNS of eq. (2.13) include µ6 and µ

8

contributions, the amount of information of these in the scales of interest is very small, and
so, the information contained in the higher-order multipoles (¸ > 4). For this reason all the
cosmological analysis up-to-date stop at the hexadecapole level. We do not consider the
odd-multipoles such as the dipole (¸ = 1) and octopole (¸ = 3) in our standard cosmological
analyses. These are, by definition, zero under the flat-sky approximation and in the absence of
selection e�ects, and do not contain cosmological information. However, some recent studies
have shown that these measurements may be useful for an accurate modelling of the window
function at very large-scales (wide-angle e�ects) on real surveys [64].

2.4 Extracting cosmological information from the galaxy power spectrum:
An overview of BAO, RSD and FM analyses

A spectroscopic galaxy survey measures the redshifts of a large number of targeted galaxies
at a given angular position. The galaxies are grouped in redshift bins with di�erent e�ective
redshift. For each bin the summary statistics are measured, these are the 2-point correlation
function and power spectrum; the 3-point correlation function and bispectrum, and even higher
order moments if needed. These statistics may contain several spurious signals related to how
the observations have been performed: the angular and radial selection function [65]; the e�ect
of imaging observational systematics [9]; the e�ect of redshift failures or collisions [66, 67];
which need to be corrected either in the catalogue (usually by weighting the galaxies, or
down-sampling the random catalogue) or by accounting them in the modelling part.

In a nutshell, the standard approach, (e.g., BAO and RSD analyses, which from now on we
will refer to as “classic” approach) relies in compressing the data into physical observables that,
i) represent the universe’s late-time dynamics; ii) are as much as possible model-independent;
and iii) can be in turn interpreted in light of the cosmological model of choice.

In the case of the classic BAO analysis the physical observable is the position of the
BAO peak in the clustering signal along and across the LOS. Thus, in this approach a power
spectrum or correlation function template (computed once for a reference cosmological model)
is used to fit the data, that is separated into a wiggle or oscillatory component containing the
BAO information, and a broadband component (also referred to as non-wiggle or smooth),
which does not contain any BAO information. The smooth component is marginalized over
and the BAO position is measured by rescaling the wiggle component3 by the following free
(physical) parameters,

–‹(z) = DM (z) rref

d

D
ref

M
(z) rd

, –Î(z) = H
ref(z) rref

d

H(z) rd
. (2.15)

These are used as rescaling variables and correspond to the ratios between the underlying and
the reference distances4 across and along the LOS in units of the sound horizon at baryon
drag epoch defined in equation (2.10).

3
The BAO amplitude is also damped in the wiggle component in order to account for the bulk-flow motions.

4
The reference (sometimes referred to as “fiducial”) distances depend on the chosen model used to convert

redshifts into distances. On the other hand, the reference sound horizon is the theory prediction of the reference

model (for fixed-template approaches). Although one could choose two di�erent reference models, for the

sound horizon and the distances, is of common practice to use the same, which is the approach we follow in

this work.
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In practice, the combined scaling is applied to the model via a coordinate transformation
of wavevector k and cosine of angle with respect to the LOS µ

k ≠� Âk = k

–‹

C

1 + µ
2

A
–

2

‹
–

2

Î
≠ 1

BD1/2

, (2.16)

µ ≠� Âµ = µ
–‹
–Î

C

1 + µ
2

A
–

2

‹
–

2

Î
≠ 1

BD≠1/2

. (2.17)

Finally, the modeled power spectrum multipoles of eq. (2.14) can then be written in
terms of the transformed coordinates as

P
(�)

RSD
(k) = (2¸ + 1)

2–2

‹–Î

�
1

≠1

Pmodel(Âk(k, µ), Âµ(µ))L�(µ) dµ . (2.18)

Hence, the classic BAO analysis compresses the measured galaxy power spectrum
multipoles in a given redshift bin, into –Î, –‹, which are interpreted as the BAO peak
position information, along and across the LOS, at that redshift. These quantities describe
the geometry and expansion history of the Universe in a model-independent way. Under the
umbrella of �CDM, they can be interpreted in terms of the �m and H0rd variables. However,
the scaling parameters do not capture the e�ect that �m, H0 and the matter-radiation equality
scale have on the matter transfer function which contains extra, non-BAO-based, cosmological
information [20, 43, 68].

A widely used approach to enhance the BAO signal and obtain more stringent constraints
on cosmological parameters, is the reconstruction algorithm e.g., [23, 69, 70], that uses the
measured overdensity field to sharpen the BAO peak by partially undoing non-linear evolution.
Although it involves weak model assumptions (such as GR, linear bias, homogeneity, etc. . . ),
the bulk of information obtained after reconstruction is still purely geometric and model-
independent. In a recent work, [24] show how some of these assumptions have a negligible
impact on the final results.

In the case of the classic RSD analysis, the physical observable is not only the BAO
position, but also the anisotropy signal generated by redshift space distortions, mainly at linear
and quasi-linear scales. The analysis follows a similar strategy as the BAO analysis, with the
di�erence that the scaling parameters are applied to the full P (�)(k) template (i.e., the P (�)(k)
for a reference cosmological model) without any wiggle-broadband decomposition. Due to the
inclusion of the broadband signal, the RSD analysis is sensitive to the monopole-to-quadrupole
ratio which is parametrized by f‡8.5 The growth rate of structures f , is responsible for the
large-scale bulk velocity component along the LOS, that induces an enhanced clustering signal
in this direction. Unlike the anisotropic signal generated by the AP e�ect, the enhanced
clustering caused by the RSD does not modify the BAO peak position: this makes it possible
to disentangle the RSD from the AP e�ect, that otherwise would appear very degenerate.
Note that, what we call “classic RSD analysis” has been called Full Shape analysis in earlier
works, as it includes both the BAO and the broadband. However, this name is too easy to
confuse with what we call “Full Modelling analysis”. Hence the name RSD analysis, which
can be thought of as an enhanced BAO (or ‘BAO-plus’ as in the SDSS-IV o�cial release6)

5
To be precise, the ratio is only parametrized by f , while the absolute amplitude is given by �8, which

is fixed by the template. In practice, both parameters are very degenerate and the combination f�8 is

template-independent.
6
https://svn.sdss.org/public/data/eboss/DR16cosmo/tags/v1_0_1/likelihoods/.
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analysis, that also includes the amplitude part of the broadband and its anisotropy, induced
by RSD.

The classic RSD analysis compresses the power spectrum multipoles into –Î, –‹, f‡8,
similarly to what the classic BAO analysis does, but with the additional growth of structures
information. It is well known that in GR f is determined by �m (the growth history being
completely determined by the expansion history).7 The classic approach however, does not
make this connection and treats f‡8 as an independent quantity to be measured directly.

Therefore, in the case we assume a flat �CDM model and GR as the theory of gravity,
f‡8 is e�ectively a measurement of ‡8, as within �CDM �m(z) is obtained from –Î and –‹
and within GR the growth rate evolution f(z) is completely fixed by �m(z). Crucially, the
constraining power on ‡8 comes from the e�ect that �m(z) has on the background, not the
e�ect of the matter density on the epoch of matter-radiation equality and thus on the shape
of the transfer function. In summary, the classic RSD analysis is only sensitive to the e�ect
that �m, H0rd and ‡8 have at the level of BAO peak position and the relative amplitude of
the isotropic and anisotropic signals, but not on their e�ects on the matter transfer function
itself. This is an important point to bear in mind: the shape of the matter transfer function is
set by the physics of the early Universe (z > 1000); on the other hand, the expansion history
and growth history probed by the “classic” BAO/RSD approach is only sensitive to late-time
physics (z ≥ zsample . 1 where zsample denotes the typical redshift of the galaxy sample used
to measure the power spectrum multipoles).

“Classic” BAO and RSD analyses have in common a key aspect: the attempt to compress,
in a lossless way, the robust part of P (�)(k) signal into physical observables, that only depend
on the late-time geometry and kinematic in a model-independent way, and not on other
physics relevant to processes at play at a di�erent epoch in the Universe evolution such as
equality scale, sound horizon scale, primordial power spectrum or other quantities that enter
in the matter transfer function.

In practice, this is achieved by fixing the power spectrum template: the information
contained in the transfer function does not propagate into –Î, –‹ and f‡8. It can be
demonstrated that this assumption actually holds by testing the universality of f‡8 and the
radial and angular distances in units of rd,

DM (z)
rd

= –‹(z)D
ref

M
(z)

r
ref

d

DH(z)
rd

�
c

H(z)rd
= –Î(z)

Ë
H

ref(z) · rref

d

È≠1

c

(2.19)

when performing the fits with di�erent power spectrum templates. In the case of BAO
analysis, this universality has been demonstrated to hold impressively well even for exotic
Early Dark Energy (EDE) and �Ne� models [71]. The template independence for the RSD
analysis has been studied for eBOSS [72] yielding reassuring results.8

While BAO fits are very mildly a�ected by non-linear corrections (the reconstruction step
removes the bulk of the non-linear e�ects on the BAO signal and the small scales non-linear
corrections are marginalized), for RSD fits it is important to model the P (�)(k) up to 1-loop or
2-loop order in Perturbation Theory (PT). In the classic approach these are usually computed

7
For models where dark energy has an equation of state parameter di�erent from w = �1, this parameter

also appears with �m in the expression for f but introduces only small corrections.
8
While the small residual template dependence has been small enough (a factor 5 smaller than the statistical

errors) for eBOSS data, improvements might be needed for future data.
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once for the reference cosmology of the template, and scaled by –Î, –‹ and f‡8 accordingly
during the fit. It has been shown that the PT kernels have a very weak dependence on
cosmology [73], so that the amplitude parameters (f , ‡8) can just be a re-scaling and this is
a valid assumption.

Recently, there have been a series of works following a fundamentally di�erent route
than the classic BAO and RSD analyses and very close to the way CMB data are analysed
and interpreted.9 This approach avoids the compression step and directly fits cosmological
models to the P (�)(k) signal. We do not review the technical details of this approach here, we
direct the reader to the references for that, but highlight important similarities and di�erences
with the “classic” approach. As the parameter space is explored (usually via a MCMC), the
likelihood evaluation involves calculating for every choice of cosmological parameter values the
model prediction of the transfer function and the non-linear correction to the power spectrum
corresponding to perturbation theory frameworks such as EFT e.g., [39, 42] or gRPT [76]. We
call this approach the “Full modelling” (FM) analysis/fit in what follows. In this approach
the parameter dependence of the transfer function and the geometry are not kept separated;
in this way the information carried by the shape of the transfer function improves constraints
on cosmological parameters that are usually interpreted as purely geometrical (e.g., �m, h).

This connection between early-time transfer function and late-time background dynamics
in-built in the FM approach can be seen as an “internal model prior”. The classic fixed
template methods do not invoke a prior of that kind, as they do not establish this link. Such
approaches are not taking advantage of a model prior and are thus recognized as “model-
independent”. While it is true that the template is fixed, it has been extensively demonstrated,
that this choice does not introduce biases nor a�ect the error-bars. e.g., [71] and refs. therein.
For this reason in the “classic” approach the choice of the cosmological model matters only at
the stage of interpreting the constrains on the physical (compressed) parameters as constrains
on cosmological parameters, with the physical (compressed) parameters being e�ectively
model-independent. Of course this compression is not lossless, but, as extensively shown in
the literature (see e.g. [77]), it captures fully the relevant information and there is conscious
control on the information loss [33, 78–80]. In the FM approach on the other hand, the
cosmological model must be chosen ab initio. Figure 7 of [39] drives this point home: in the
FM approach for simple extensions of the �CDM that change late-time physics assumptions,
the resulting error-bars increase to almost match those of the classic approach.

In practice, the FM approach must “undo” the e�ect of the reference model assumed
to transform redshifts and angles into distances. This is achieved (see section 2.2. of [42])
by rescaling the modeled power spectrum multipoles from the model in consideration � to
the reference �ref . This is similar to eq. (2.18) with the only di�erence that the “– scaling
parameters” are replaced by the so-called late-time scaling parameters defined as

q‹(z) = DM (z)
D

ref

M
(z)

, qÎ(z) = DH(z)
D

ref

H
(z)

,

q0(z) =
Ë
q
2

‹(z)qÎ(z)
È1/3

= DV (z)
D

ref

V
(z)

, DV =
Ë
D

2

M (z)DH(z)
È1/3

,

(2.20)

and q0 is the late-time scaling associated to the power spectrum monopole. It describes
the volume-averaged, isotropic distance scaling and is of integral importance as we will

9
As already mentioned, and for historical completeness, this is more a going back to the way galaxy surveys

were analysed before circa 2010 rather than a radically new idea see e.g., [28–30, 63, 74, 75].

– 12 –



JCAP12(2021)054

Fit type Classic Full Modelling
BAO Fit RSD Fit FM fit

Information Source BAO Wiggles only BAO + P
(�)(k) amp. Full P (�)(k)

Plin(k) template fixed fixed varies with model
Non-linear correction marginalized over computed once varies with model
Scaling parameters free –Î, –‹ free –Î, –‹ –Î, –‹ derived by model
Linear RSD marginalized over free f f derived by model
Global amplitude marginalized over ‡8 fixed or free free ‡8 or As

–Î, –‹ can be –Î, –‹, f‡8 can be done in a single step,
Cosmological compared to any compared to any but whole fit needs
interpretation model, sensitive model, sensitive to to be repeated

to �m, H0rd, �m, H0rd, As, D(z) for each model

Table 2. Overview of the three main approaches to extract cosmological information from galaxy
surveys to date.

discuss later. The main di�erences between the FM analysis and the classic BAO/RSD
analyses are summarized in table 2.

2.5 BAO, RSD, and FM analyses: direct comparison on data
How do the di�erences between the FM and the classic approach described above translate
into di�erences in cosmological parameter constraints? In the left panel of figure 2 we show
the 1-‡ and 2-‡ confidence intervals in the Êcdm ≠ h plane obtained from fitting the flat
�CDM model to BOSS DR12 [82] data using the Boltzmann code CLASS [48] within the
cosmological Sampler MontePython10 [83] for three cases as follows. We fit the model to
the compressed variables

Ó
–Î,–‹, f‡8

Ô
obtained from the Fourier Space RSD fit [81] (grey

contours) and from the consensus BAO (post-reconstruction) + RSD fit [26] (orange contours).
Additionally, we show the constraints of the FM fit using the EFT approach and the publicly
available code with the standard settings as in [39]11 (blue contours). Recall that, as in the
baseline set up of [39] h,As and Êcdm are varied with a flat uninformative prior, tight priors
are imposed on Êb (Êb = 0.02268± 0.00038, Gaussian) and M‹ (0.06 eV < M‹ < 0.18eV, flat)
and ns is fixed to its Planck 2018 base �CDM value. It is evident that the “internal model
prior” of the FM fit leads to substantially more precise constraints than the classic method.

In past and present data releases of spectroscopic galaxy surveys, cosmological results
are almost never presented for galaxy clustering data alone, but usually in combination with
other datasets, especially with CMB data such as Planck [2]. This e�ectively fixes the sound
horizon scale and the shape of the transfer function, so that the remaining galaxy clustering
information beneficial for cosmological constraints is mostly captured by the geometrical
information alone. In this particular case, as we see in the right panel of figure 2, the FM and
RSD fits deliver e�ectively equivalent results. One may argue that the classic template-based
fits have hence been designed to constrain cosmology in combination with Planck, which
justifies fixing the template to Planck’s cosmology in the first place. We stress here that this
is not the case. Crucially, the agreement between the FM and classic fits is independent of
the template used for the classic analysis, e.g., even for a template very di�erent from the

10
The code can be found at https://github.com/brinckmann/montepython_public.

11
We use their publicly available code https://github.com/Michalychforever/CLASS-PT from [39] and its

interface with MontePython https://github.com/Michalychforever/lss_montepython.
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BOSS DR12

0.64 0.7 0.77 0.84 0.91

h
0.12 0.23 0.33 0.44 0.55

�cdm

0.64

0.7

0.77

0.84

0.91

h

RSD Fit

BAO+RSD Fit

FM Fit

Planck 2018 + BOSS DR12

0.651 0.66 0.669 0.677 0.686

h
0.117 0.118 0.12 0.121 0.123

�cdm

0.651

0.66

0.669

0.677

0.686

h

RSD Fit

BAO+RSD Fit

FM Fit

Figure 2. Posterior results of the base �CDM runs — where, following [39] h,As and Êcdm are varied,
tight Gaussian priors are imposed on Êb and M� and ns is fixed on BOSS DR12 data alone (left panel)
and in combination with Planck (right panel) in the (Êcdm≠h) plane. Grey contours correspond to the
68% and 95% confidence levels of the classic RSD-fit from [81], orange contours to the BOSS consensus
result combining RSD and BAO analyses on pre- and post-reconstructed catalogues, respectively, [26]
and blue contours to the FM-fit using the EFT approach from [39]. The red star corresponds to a
trial model close to the RSD bestfit and still within 1-‡ of the BAO+RSD constraints, but completely
excluded by the FM constraints.

Figure 3. Left panel: the datapoints correspond to the BOSS DR12 BAO+RSD consensus results
from [26]. The blue line is the model prediction from the FM bestfit, the red dashed line from the
trial model (red star in figure 2). Right panel: here both models are compared to the monopole and
quadrupole measurements from CMASS NGC. The grey dashed line corresponds to the trial model
evaluated with the classic RSD method, while the red dashed line is computed with the FM method
(with refitted nuisance in both cases).
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Planck cosmology, the obtained geometrical information would be the same. This is shown in
appendix B, see also [72] for reference.

However, in this work we are especially interested in constraining cosmology with LSS
data alone. In order to further understand, also visually, where the di�erence in constraining
power between the fitting approaches arises, let us compare two suitably chosen models
directly to the measurements.

From figure 2 (left panel) we select two models: the bestfit model from the FM fit located
at the center of the blue contours, and a trial model displayed with the red star, selected such
that it is still within the joint 1-‡ region in the Êcdm≠h plane of the BAO+RSD fit and close
to the bestfit value of the RSD fit. In figure 3 we compare the FM-bestfit model (blue solid
line) and the trial model (red dashed line) both evaluated within the EFT framework to the
data. In the left panel they are compared to the compressed variables corresponding to the
BOSS DR12 consensus values (corresponding to the orange contours in figure 2). None of the
models seems to be a particularly better fit than the other. In fact, both reside at the 1≠ ‡

boundary of the orange contour in figure 2 within the same degeneracy direction between
Êcdm and h. This is why they are basically indistinguishable in DM (z)/rd. The right panel
shows the two models in comparison with the measured P

(�)(k) signal; for conciseness we only
show the BOSS NGC sample at z = 0.61, as the picture does not change qualitatively for the
other samples. Now it is possible to appreciate that the trial model (with refitted nuisance
parameters) is a much worse fit, in fact it is completely excluded by the FM method. So why
it is still a good fit within the classic method? The grey dashed line shows the trial model
P

(�)(k) evaluated within the RSD framework as follows. We use the values of
Ó
–Î,–‹, f‡8

Ô

calculated from the trial model, apply them to the reference template and refit the nuisance
parameters to the data. Since the transfer function is not altered during that process, the
di�erence between the solid blue and the dashed grey line is purely geometrical (see left panel).
This is why the trial model monopole is basically identical to the one of the bestfit model (the
gray dashed line is indistinguishable from the blue line) and only the quadrupole shows some
(small and statistically insignificant) residual di�erences due to the AP and RSD anisotropies.

It should be noted that the perturbation theory models implemented in this comparison
are di�erent between the FM and the classic RSD methods. Later we show, that the di�erences
are unimportant in practice, as the agreement between the methods in the right panel of
figure 2 indicates. To understand the meaning and relevance of the extra information that
the FM fit captures, in the next section we show how to encode this extra information with a
simple phenomenological extension of the classic fit which will enable one to bridge the two
approaches in a transparent way.

3 Connecting FM analysis and classic RSD analysis: ShapeFit

We now proceed to present a way to connect the two “classic” and FM approaches which,
for reasons which will become clear later, we call “ShapeFit”. We will demonstrate that two
ingredients are needed to bridge the two approaches: the correct definition, application and
interpretation of the scaling parameters and the ability to model the signatures of early-time
physics in the large-scales broadband shape of the real-space matter power spectrum.

3.1 Connection: scaling parameters interpretation
The “late-time scaling” used in the FM approach (described at the end of section 2.4) takes
into account that the data is measured for a certain redshift-distance mapping corresponding
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to the reference model. Here, for purely pedagogical purpose, we review this late-time rescaling
from a di�erent point of view: what if, instead of scaling the model in consideration to the
measured data, we correct the data in order to match the model at each step. For simplicity,
we now focus on the real-space monopole data P

(0)

data
(without loss of generality) and write

conceptually12 how to scale it from the reference �ref to the model in consideration �,

P
(0)

data
(k,�) = q

3

0 P
(0)

data
(q0k,�ref) . (3.1)

It is important to note that this operation involves the “average late-time scaling
parameter” q0 defined in (2.20) at two places: inside the argument of P (0)

data
and as an overall

amplitude factor in units of volume. While this is a well known fact, we find it important to
stress the dependence on the units here in order to motivate the next steps.

Crucially, in contrast to this “late-time scaling”, we can identify an “early-time scaling”
that takes into account that the linear power spectrum template is computed for the reference
cosmology. The classic RSD analysis assumes13 that all the early-time cosmology dependence
is captured by the sound horizon scale rd (defined in eq. (2.10)). We can apply this rescaling
to the model in a similar fashion as to the data (see eq. (3.1)) by

P
lin

model(k,�) = s
3
P

lin

model(sk,�ref) with s = rd

r
ref

d

, (3.2)

where, again, we need to introduce a volume rescaling s
3 taking into account that the power

spectrum has units of volume. In this way the power spectrum amplitude is preserved when
changing s. One can see, that the early-time rescaling on the model and the late-time rescaling
on the data are very similar. The only di�erence is that the scaling with s is purely isotropic
and redshift independent, while a rescaling that involves qÎ and q‹ allows for an additional
anisotropic degree of freedom and redshift dependence. But the isotropic components of both
scalings at a given redshift, q0 and s, are indistinguishable in practice. This is the motivation
for combining both scalings into the scaling parameters

–‹(z) = q‹(z)
s

, –Î(z) =
qÎ(z)
s

, (3.3)

already introduced in eq. (2.15). Thus in the “classic” approach, instead of rescaling the data
and the model separately, –‹ and –Î are applied to the model only, for reasons of practicality.
This simply means that the data does not account for the arbitrary choice of a “fiducial”
cosmology adopted to convert observed redshifts in distances to provide the input data-
catalog, but the model is transformed into the “fiducial” coordinate system of the data instead.
Although both ways of coordinate transformation are completely equivalent, we stress the
di�erence in physical meaning here, as it is important later for the cosmological interpretation.

3.2 New scaling for the fluctuation amplitude
Having described the scaling parameters that change the modeled power spectra horizontally,
in this section we look at the parameter that captures the “vertical” information, the matter

12
Eq. (3.1) is presented only for illustrative purposes, in reality one needs to take into account the full angle

dependence as done in eq. (2.18) for example.
13

This is a very crude approximation as it just what is needed to shift the BAO bump to the equivalent

location. So it is useful pedagogically but should not be applied as is.
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fluctuation amplitude smoothed on spheres with radius of 8h≠1Mpc (see eq. (2.8)),

‡8 � ‡(R = 8h≠1Mpc,�) ,

‡
2(R,�) =

�
d(ln k) k3

Plin(k,�)W 2

TH(kR) ,
(3.4)

where WTH(kR) is the spherical top-hat filter. In the classic RSD analysis the amplitude
of the matter fluctuations is usually fixed to the reference cosmology. The logic is that a
change in ‡8 can be seen, in a very good approximation, as being completely absorbed into
the scale-independent growth rate f and the bias parameters. In this sense, it is possible to
obtain template-independent quantities just by multiplying f, b1, b2, . . . by ‡8.

However, as explained in section 3.1, the classic RSD analysis implicitly assumes the
“early-time rescaling”, which induces a change in the interpretation of ‡8 via –Î and –‹.
Therefore, ‡8 as defined in eq. (3.4) is actually not kept fixed while exploring parameter space
during the RSD fit.

This can easily be accounted for by defining the fluctuation amplitude in such a way that
it does not change during the fitting process, i.e., such that it is independent of changes in s:

‡s8 � ‡(R = s · 8h≠1Mpc,�) . (3.5)

We can show, that this quantity is indeed uniquely defined for a given reference template
independent of the value of s by plugging into the ‡(R) definition

‡
2

s8(�) =
� �

0

d(ln k) k3
Plin(k,�)W 2

TH(ks · 8h≠1Mpc)
---� � �ref

=
� �

0

d(ln k) k3
s
3
Plin(sk,�ref)W 2

TH(ks · 8h≠1Mpc)
---kÕ = ks

=
� �

0

d(ln kÕ) kÕ3Plin(kÕ,�ref)W 2

TH(kÕ · 8h≠1Mpc)

= ‡
2

8(�ref) .

(3.6)

To conclude, in the classic RSD analysis the fixed template fit allows for a dependence on
early-time physics to be parametrized by rd. Therefore it does not actually measure the
velocity fluctuation amplitude f‡8 defined at an absolute smoothing scale, but the quantity
f‡s8, where the smoothing scale is defined relative to the sound horizon scale. This fact
has been ignored in recent clustering data releases, mainly because cosmological constraints
were presented in combination with Planck data, which implies ‡s8 = ‡8. But for the scope
of constraining cosmology from galaxy clustering alone, we emphasize that the following
statement is of particular importance and an integral part of the ShapeFit presented in this
work. The three physical parameters that the classic RSD analysis actually measures at a
given redshift bin, DM/s, H ·s, and f‡(s ·8h≠1Mpc) are all given in units of the sound horizon
ratio s, whenever units of length are involved. This holds for cosmological distances and
smoothing scales in particular. It should be noted that by using this convention the question
whether to use length units of Mpc or h≠1Mpc (see [84]) does not need to be posed. For this
reason we recommend to slightly modify the interpretation of the classic RSD parametrization
of the perturbations amplitude, to use ‡s8 as a parameter and have ‡8 as a derived parameter
instead. We stress here that our proposed redefinition of f‡8 does not involve any changes on
how to carry out the fit, but becomes important at the level of interpretation (see sections 3.4
and 3.5 for details).
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Figure 4. Rescaled EH98 prediction of the power spectrum shape (colored sold lines) comparison
with the parameterization of eq. (3.7) for a = 0.6, kp = 0.03hMpc≠1. This choice fits the response
to Êm (upper panel) very well and to Êb (middle panel) less well but still su�cient for our purposes.
Dashed-dotted vertical lines show the rescaled location of keq for each model and dotted vertical lines
highlight the positions where the scale-dependent slope reaches a maximum. This position is constant
with varying cosmological parameters and very close to the expectation kp = fi/r

ref
d � 0.03hMpc≠1.

The scale independent slope fits the prediction of varying ns (bottom panel) perfectly by definition.
For the most extreme shifts in parameters we also show in dotted lines the CLASS prediction, whose
shape is matched very well by the EH98 formula.
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3.3 Modelling the linear power spectrum shape

The classic BAO and RSD approaches assume that all early-time physics is captured by
the free parameter rd.14 Yet, as discussed in section 2.2, there is additional early-time
physics signal in the power spectrum. First, information on the primordial power spectrum
independent of rd is present about the primordial amplitude As (which is completely absorbed
by ‡8) and the primordial tilt ns, which is not captured in any way within the classic approach.
Moreover, the broadband is shaped by the transfer function encoding the evolution (scale
and time dependence) of the initial fluctuations from inflation until the time of decoupling
of the photon-baryon fluid, which in a �CDM model, depends on the physical baryon and
matter densities Êm,Êb and h (see section 2.2 and the middle panel of figure 1). The bottom
panel of this figure clearly shows that even after absorbing the dependence on rd (and hence
aligning the BAO wiggle position), there is an additional dependence mostly visible in the
slope and the BAO wiggle amplitude.

This additional signal is ignored in classic BAO and RSD approaches for two main
reasons. On one hand, the BAO wiggles are the most prominent feature in the power spectrum
and their position provide the most robust standard ruler to infer the universe’s expansion
history. On the other hand, this approach decouples the early-time information from the
late-time information, that encodes the dynamics of the universe during the matter and dark
energy dominated epochs (without an internal model prior).

We present here a simple, phenomenological extension of the classic RSD fit that is able
to capture the bulk of the information coming from the early-time transfer function. We
propose to compress this additional signal into 1 or 2 e�ective parameters in such a way that
early-time and late-time information is still decoupled, but can be easily and consistently
combined at the interpretation stage when constraining cosmological parameters (i.e., the
internal model prior can be imposed at the cosmological parameters inference step, but
not before). Our goal is get the best of both approaches: on one hand to preserve the
model-independent nature of the compressed physical variables of the classic approach; and
on the other hand match the constraining power of the FM approach when interpreted within
the cosmological model parametrization of choice.

As the bottom panel of figure 1 shows, the classic RSD fit already takes into account the
change in the global amplitude due to ‡8 and h through f‡s8 and of course the BAO position
through rd. As mentioned before, the additional degrees of freedom are the slope of the
power spectrum (in a �CDM model depending on Êm,Êb, ns) and the BAO wiggle amplitude
depending on Êb,Êm. Within �CDM both e�ects are directly coupled, this is what we refer
to as the internal model prior. As we aim to find a model-independent parametrization, we
should keep both e�ects separate. Moreover, we focus only on the slope and do not model the
BAO wiggle amplitude, keeping it to the prescription provided by the perturbation theory
model at a given fixed template. We adopt this approach for two reasons. First, we expect the
bulk of the additional signal to come from the variation of the slope, not the BAO amplitude.
Second, the BAO amplitude signal is not as robust as its position. Some bias models for
example can change the BAO amplitude (see e.g., [85]) and the amount of non-linear BAO
damping is somewhat model-dependent [86].

Our Ansatz for modelling the slope of the linear power spectrum template is as follows.
We assume that the logarithmic slope consists of two components: the overall scale-independent

14
In fact, it is treated more as a unit rather than a free parameter at this step. However, when we interpret

the unit in terms of cosmological parameters we actually constrain the parameter rd.
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slope n (this is completely degenerate with ns) and a scale-dependent slope m, that follows
the transition of the linear power spectrum from the large scale to the small scale limit (in
a �CDM model this is driven by the combined e�ect of ÊbandÊm). To do so, we transform
the reference power spectrum template, Pref(k), into a new reference template, P Õ

ref
(k), via a

slope rescaling

ln
3
P
Õ
ref

(k)
Pref(k)

4
= m

a
tanh

C

a ln
A
k

kp

BD

+ n ln
A
k

kp

B

, (3.7)

where the hyperbolic tangent is a generic sigmoid function reaching its maximum slope m at
the pivot scale kp and the amplitude a controls how fast the large scale and small scale limits
are reached. The pivot scale kp introduced here should not be confused with the “primordial
pivot scale” kpiv, that is usually chosen to be kpiv = 0.05 Mpc (see eq. (2.7)). In contrast, the
pivot scale kp is chosen to coincide with kslope = fi/rd introduced in figure 1 corresponding to
the location where the slope due to baryon suppression reaches its maximum.

We test this expectation numerically by comparing eq. (2.7) to the actual power spectrum
shape (without BAO wiggles) obtained with the analytic EH98 [20] formula and its response
to the parameters Êm and Êb after rescaling each curve by the corresponding value of rd. The
latter is important, since the transformation displayed by eq. (3.7) is applied before rescaling
the template, so that we need to rescale the cosmological prediction (here given by the EH98
formula) such that it matches the value of rref

d
.

The comparison is shown in figure 4 for varying Êm (upper panel), Êb (middle panel)
and ns (bottom panel). Colored solid lines are the EH98 no-wiggle power spectra ratios with
color codes given by the adjacent color bars. The reference cosmology “Planck”, to which
they are compared, is given by table 1. We also show the position of keq after rescaling by
rd (dashed-dotted vertical lines). One can see that it is mildly a�ected by Êb (through the
weak Êb dependence of rd) and by Êm, since keq and rd scale similarly with Êm as explained
in section 2.2. For the most extreme parameter shifts, we also show the CLASS prediction
(dotted lines), which agrees with the shape of the EH98 formula very well. The dashed grey
curves correspond to the r.h.s. of eq. (3.7), where in the case of the Êm and Êb sub-panels the
slope m is given as the derivative of the colored curves at the pivot scale kp with n = 0; and
vice versa for the ns sub-panel. For the latter, as we see from the bottom panel, the agreement
between eq. (3.7) and the model is exact. This is simply because n and ns are equivalent
by definition, and this holds independent of the chosen pivot scale (as both describe a scale
independent slope). In what follows, for simplicity, we will focus on the case where n is fixed
to 0, which is equivalent to impose a prior ns = n

ref
s .

We calibrate the remaining parameters a and kp with the EH98 formula for varying Êm

and find,

a � 0.6, kp � 0.03hMpc≠1
� fi/r

ref

d , (3.8)

matching the EH98 formula at 0.5% level precision on scales 0.02 < k [h≠1Mpc] < 0.25.
The same choice of parameters also captures very well the Êb-dependence, with at most 3%
deviation in the same range of scales.

Now we have all the ingredients for the ShapeFit, where the transformation eq. (3.7) is
applied before the rescaling by –‹ and –Î. In this sense, the ShapeFit consists of applying
the classic RSD fit to a reference template P Õ

ref
(k), that is transformed at each step via (3.7)

with free parameters m (and n, if needed). In principle this transformation should be
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applied also to the reference power spectra that appear in the integrand of higher-order
perturbation corrections. In our implementation, however, in order to avoid a re-evaluation of
all perturbative terms at each step of the likelihood exploration, we apply this transformation
as if it were independent of scale. In practice this means that we pre-compute all the loop
corrections using the linear power spectrum given by Pref . During the likelihood evaluation
we transform each of these terms using eq. (3.7), taking into account the power of the linear
power spectrum used to compute them, which is a power of N + 1 for the N -loop corrections.
To be more precise, in the case of SPT we evaluate the 1-loop correction P1≠loop = P13 + P22

depending on the (new) reference linear template P Õ
ref

and the corresponding kernels Fi using
the following approximations,

P13(k) = P
Õ
ref(k)

� �

0

d
3
q P

Õ
ref(q)F3(k, q,≠q)

�

3
P
Õ
ref

(k)
Pref(k)

42

Pref(k)
� �

0

d
3
q Pref(q)F3(k, q,≠q),

P22(k) =
� �

0

d
3
q P

Õ
ref(q)P Õref(|q ≠ k|)F2(k, q ≠ k)

�

3
P
Õ
ref

(k)
Pref(k)

42 � �

0

d
3
q Pref(q)Pref(|q ≠ k|)F2(k, q ≠ k).

(3.9)

We show in appendix D that this approximation is very good and more than su�cient for
our purposes. With this, the computational time of ShapeFit is e�ectively indistinguishable
from that of the classic RSD approach, except at the MCMC level, where the posterior
sampling involves one (or two) extra parameters. It is of academic interest but still instructive
to consider how the discussion of sections 3.1 and 3.2 would change if there were no BAO.
In this case it would be misleading to interpret s as the sound horizon ratio. Nevertheless,
ShapeFit can be used in the case of zero baryons (or no-BAO) either by setting s = 1
(which is similar to the classic method where s would be set to 1 inside the – terms), or by
interpreting s not as the sound horizon ratio, but rather as the ratio of “pivot scale” kp/kref

p

(see eqs. (3.6)–(3.9)). Generally speaking, the ShapeFit parameterization does not rely on
BAO, but rather on the notion, that there is some early-time physics scale — a ruler — that
mostly defines the power spectrum shape.

3.4 Cosmological interpretation
The ShapeFit constraints on the physical and phenomenological parameters, { –Î,–‹, f‡s8,m,
n } can be then interpreted in terms of cosmological parameters. This step is, naturally, very
similar to the way standard RSD likelihoods are implemented already in the most common
cosmological inference codes. In the classic RSD approach, results on

Ó
–Î,–‹, f‡8

Ô
and their

covariance for all redshift bins are used as input for cosmological parameters inference, where
the ‰2 (or log-likelihood) is computed for the theoretical prediction for each quantity given
an input cosmological model and parameters values. For the ShapeFit the relevant aspects in
this step are the calculation of the scaling parameters, fluctuation amplitude and growth rate,
and the power spectrum slope (the only new ingredient).

Scaling parameters. The interpretation of
Ó
–Î,–‹

Ô
is exactly the same as in the classic

RSD approach. Therefore, any existing likelihood computing these quantities using eq. (2.15)
is left unchanged.
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Fluctuation amplitude and growth. The interpretation of f‡s8 is nearly the same as in
the classic RSD analysis with the only di�erence that we advocate the fluctuation amplitude
to be defined as ‡s8 instead of ‡8, see eqs. (3.5) and (3.6) and section 3.2.

However, the slope rescaling (eq. (3.7) and section 3.3) changes ‡s8 for m,n �= 0.
Therefore, it is convenient to define the fluctuation amplitude Ap at the pivot scale kp

A
ref

p = P
lin

no≠wiggle

�
kp,�ref

�
, (3.10)

which does not change with slope by definition;15
A

ref
p is defined for the reference template. As

the analysis explores the posterior of the physical and phenomenological parameters, following
section 3.3 it is possible to recognize that the amplitude parameter becomes, internally to
the fit,

Asp = 1
s3
P

lin

no≠wiggle

3
kp

s
,�
4
, with s = rd

r
ref

d

. (3.11)

This amplitude, Asp, can be understood as the “late-time” counterpart of the amplitude of
the primordial power spectrum As, but the two quantities should not be confused. The actual
velocity fluctuation amplitude measurement is then given as fA1/2

sp , and thus

f‡s8 = (f‡s8)ref

(fA1/2

sp )ref
fA

1/2

sp . (3.12)

Eq. (3.12) can be used in order to obtain the more frequently used f‡s8 variable, although
we advocate using fA

1/2

sp for cosmological parameter inference. It should be clear (see also
section 3.5) that we only propose a reinterpretation of the amplitude parameter not a change
in the analysis or definitions.

Power spectrum slope. The new ingredient of the ShapeFit is given by the slope,
parametrized by m, n following eq. (3.7). The interpretation of the scale independent slope n
is trivial, as it can be directly related to the primordial scalar tilt ns via,

n = ns ≠ n
ref

s . (3.13)

The interpretation of the scale-dependent slope m then becomes:

m = d

dk

Q

aln
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lin

no≠wiggle

�
kp

s
,�
�
/PR

�
kp

s
,�
�

P
lin

no≠wiggle
(kp,�ref) /PR (kp,�ref)

T

V

R

b
-----
k=kp

. (3.14)

where PR (k,�) denotes the primordial density power spectrum. In case ns is varied during
the cosmological fit, eq. (3.14) has to be applied to the power spectrum obtained when ns

is fixed to the reference value. This ensures that a change in ns does not lead to a di�erent
prediction for m but only for n via eq. (3.13). In other words, n is obtained from the primordial

15
It should be noted, that the amplitude Asp needs to be obtained from the “no-wiggle” power spectrum

(given by the EH98 formula for instance), to ensure that the BAO wiggles do not influence the amplitude.

Normally, this is ensured by using �8 as the amplitude, a quantity, for which the BAO wiggles are integrated

over. But since eq. (3.7) operates in Fourier Space, it is more convenient to define the amplitude in Fourier

space as well.
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power spectrum, while m is obtained from the transfer function squared (which is the power
spectrum divided by the primordial power spectrum).

In practice, the no-wiggle linear power spectrum P
lin

no≠wiggle
is computed using the EH98

formula. While being computationally much faster this formula matches the Boltzmann code
output formally at the 5% level over a wide range of cosmologies. However, for the parameter
range investigated here and since we are considering power spectrum ratios we find 1% level
precision, suitable for this application. An implementation of the cosmological likelihood
containing the interpretation of our ShapeFit BOSS DR12 results within MontePython is
publicly available.16

3.5 ShapeFit implementation recipe
We summarize the changes to be done to the classic BAO+RSD analysis (and respective
codes) to implement ShapeFit in the flowchart of figure 5. This chart can be seen as an
executive summary of ShapeFit (upper dashed lines) from data acquisition to modelling
and its cosmological interpretation (bottom dashed lines) including all pointers to relevant
equations. In this flowchart the purple fields represent steps in the “classic” approach while
orange fields represent the ShapeFit additions. Circles represent parameters, boxes in the top
part of the diagram represent analyses steps, in the bottom part of the diagram represent
products of theoretical calculations.

4 Application to mocks of SDSS-III BOSS survey data

We now describe our fiducial analysis setup which we use to compare the ShapeFit introduced
in section 3 with the FM fit. The FM application is done following the EFT implementation
by [39]. We first present the mocks in section 4.1 and describe the model choices in section 4.2.

4.1 Mock catalogs
We apply our analysis pipeline to the MultiDark-Patchy BOSS DR12 (Patchy) mocks created
by [87, 88]. The fiducial �CDM parameters of the Multidark simulation are,

�m = 0.307115, �b = 0.048206, h = 0.6777, ‡8 = 0.8288, ns = 0.9611 . (4.1)

The mock catalogs are designed to reproduce the angular and radial selection function and
small scale clustering of BOSS DR12 data. These mocks have been used extensively in the
development of the analysis of the BOSS survey, and provide many realizations, which is crucial
for estimating covariance matrices and for stacking to reduce statistical errors. However it is
important to keep in mind that these are not full N-body runs, but are based on Augmented
Lagrangian Perturbation Theory and an exponential bias scheme. Small di�erences with
N-body mocks are not unexpected. For this reason in section 6 we also consider independently
generated Nseries mocks (see section 7.2 of [27] as well as section 2.2.2 of [72] for details)
based on full N-body runs, populated using halo occupation distribution parameters that
match Luminous Red Galaxies (LRG) observations and with the sky-geometry of BOSS DR12
CMASS northern galactic cap sample. In the remainder of this section we focus only on the
(Patchy) mocks “ngc_z3” sample located at the north galactic cap and covering a redshift
range of 0.5 < z < 0.75 with e�ective redshift ze� = 0.61. We work with all 2048 realizations
of the Patchy mocks, which are publicly available.17

16
https://github.com/SamuelBrieden/shapefit_montepython_code.

17
https://fbeutler.github.io/hub/boss_papers.html.
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and eqs. (2.5), (2.6)

Measure P �

data
(k),

Section 4.1, eqs. (4.2)–(4.4)

Obtain covariance matrix from
mocks, Section 4.1

Measure W �(s),
Section 4.1, eq. (4.5)

ShapeFit

MODEL

Create Plin(k,�ref ) e.g. with
CLASS, eq. (2.7)

Calculate Pnl(k,�ref ),
eq. (2.12)

Use shape parameters m,n to
get P Õ

nl,ref
, eqs. (3.7), (3.9)

Build P
�

RSD
(k) via –Î,–‹, f,

nuisance in eq. (2.16)–(2.18)

Apply W
�(s) to model, carry out

model fit to data + covariance
(MCMC) obtaining constrains on:

f‡s8

fA
1/2

sp

–‹–Î n m

Boltzmann code within cosmological
MCMC (e.g. CLASS + MontePython)

DM (z,�ref),
H(z,�ref) P

lin

EH

�
�ref

�

DM (z,�),
H(z,�) P

lin

EH
(�)Cosmo

eq. (3.11)
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Figure 5. Executive summary of ShapeFit (upper dashed lines) from data acquisition (“DATA”, see
sections 2 and 4.1) to modelling (“MODEL”) and its cosmological interpretation (“Cosmo”) (bottom
dashed lines, sections 2 and 3) including all relevant equations. The purple fields represent steps in the
“classic” approach while orange fields represent the ShapeFit additions. Circles represent parameters,
boxes in the top part of the diagram represent analyses steps, in the bottom part of the diagram
represent products of theoretical calculations.

– 24 –



JCAP12(2021)054

In addition to angular positions and redshifts, the catalogs provide simulated close-pair
weights wcp to account for galaxy pairs neighboured closer than the instrument angular
resolution (limited by the fiber size). Also, the catalogs contain the angle averaged number
density n̄(z) for each galaxy, which allows one to construct the FKP weight wFKP(z) =
1/(1 + n̄(z)P0) [89]. This weight is used to minimize the power spectrum variance at
P0 = 10, 000 [Mpch≠1]3, which corresponds to the galaxy power spectrum amplitude at
k ≥ 0.1hMpc≠1. We also use the random catalogs provided along with the mocks containing
–
≠1
ran = 50 times more objects than the individual mocks. They have the same selection

function but no intrinsic clustering.
We measure the multipole power spectra of each individual mock catalog. Then, we

take the mode-weighted power spectra average of all 2048 realizations, which is used as our
dataset. The error bars (including correlations between di�erent bins) are obtained from
the covariance of the 2048 mocks. At the step of covariance matrix inversion, we apply the
Hartlap correction [90] taking into account the small bias due to the finite number of mock
catalogs. We fit the mean of the 2048 mocks and rescale the covariance matrix by a factor
0.01, which corresponds to the volume of 100 stacked mocks.18 Finally, we compute the
survey window function, which is needed in order to compare theoretical models to the mock
data. Our procedure of the power spectrum estimation and the window function computation
(which is standard) is described in more detail below.

Power spectrum estimator. We place the galaxies into a cubic box with length Lbox =
3.6Gpch≠1 using the reference cosmology of table 1 (with �m = 0.31) to convert redshifts
to distances. We assign galaxies and random objects to 5123 grids using the triangular
shape cloud (TSC) grid assignment and using the interlacing technique to mitigate aliasing
e�ects [91]. Using the obtained galaxy and random densities, n(r) and nran(r), we follow
standard practice and define the FKP function as [89],

F (r) = wFKP(r)
I

1/2

2

[wcp(r)n(r)≠ –rannran(r)] , (4.2)

where the normalization factor I2 is given as

I2 =
�
d

3rwFKP(r) �wcp(r)n(r)�2 . (4.3)

We construct the power spectrum multipoles via Fourier transformations following the
Yamamoto approximation [92, 93]

P
(�)(k) = (2¸+ 1)

2

�
d�
4fi

��
dr1 F (r1)eik·r1

�
dr2 F (r2)e≠ik·r2L�(k̂ · r̂2)

�
≠ P

(�)

sn , (4.4)

that assigns the varying LOS towards one of the galaxies of each pair. The Poisson shot noise
term P

(�)

sn can be measured from the catalog and is subtracted from the monopole only, as for
¸ > 0 it is zero. However, the amplitude of the shot noise term is treated as a free parameter
in our analyses, as described in more detail in section 4.2. We measure the multipoles in bins
of �k = 0.005hMpc≠1 and make use of the scale-range 0.01 � k [hMpc≠1] � 0.15 for the
analyses in this paper.

18
We do not rescale it to a volume of 2048 mocks, since this would decrease the error bars to a level much

smaller than the model uncertainty (both of 1-loop SPT and of the semi-analytic models used to create the

mocks). The corresponding e�ective volume of the 100 stacked mocks (� 300Gpc
3

assuming the “Planck”

cosmology) is still significantly larger than the e�ective volume of the next generation of galaxy redshift surveys.
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Window function. The resulting power spectrum of eq. (4.2) contains the e�ect of the
survey selection function convolved with the actual galaxy power spectrum signal. In order to
perform an unbiased analysis we need to include the e�ect of the survey selection in the theory
model as well. We follow the formalism described in [65, 81] based on the Hankel transforms
and implemented via FFT-log [34], which relies on multiplying the Hankel transform of the
theory-predicted power spectra multipoles by the window function pair-counts functions
performed on the random catalogue,

W�(s) = (2¸+ 1)
I2–

≠2
ran

Nran�

j>i

wcp(ri)wFKP(ri)wcp(rj + s)wFKP(rj + s)
2fis2�s

L�

3xi · s
xis

4
. (4.5)

The pair-count for each s-bin is normalized by the associated volume given by 2fis2�s, where
�s is the binning size of the s-count and the j > i condition prevents double counting pairs.
The window function is normalized by I2–

≠2
ran in order to account for the di�erence in number

density between the random and data catalogue and to ensure the very same normalization
as the power spectrum computed from eq. (4.2). Normalizing both eqs. (4.2) and (4.5) by
the same I2 factor prevents spurious leakage of the small-scale fluctuations of the random
catalogue into the cosmological parameters, such as ‡8 or As, that typically could yield to
systematic shifts [94].

4.2 Priors and likelihoods
Here we present our analysis choices for the two methods we aim to compare, the ShapeFit
and the FM fit. The ShapeFit is performed in two steps.19 First, the physical parametersÓ
–Î,–‹, f,m, n

Ô
are varied along with the nuisance parameters (compression step). Second,

the results on physical parameters are treated as the new “input data” and compared to any
cosmological model of choice (cosmology inference step) As it is customary, in the cosmology
inference step the full covariance between the compressed variables is included in computing
the likelihood and the resulting parameters posterior is sampled via MCMC. The FM fit
consists of only one step, where the nuisance parameters are varied along with the cosmological
parameters, while the physical parameters are not varied, since they are derived from the
cosmological model. The fitting range in all presented runs is 0.01 � k [hMpc≠1] � 0.15

In table 3 we show the model parameters and prior choices for both methods, where
the model used for the ShapeFit is based on the 1-loop SPT +TNS model introduced in
section 2.3 and the extensions described in section 3. As a representative model of the FM fit
approach we choose the EFT implementation of [39], which is also based on 1-loop SPT, but
with a few di�erences.

It is well known that the BAO amplitude is a�ected by non-linear coupling to large scale
displacements (bulk flows), that are hard to model within Eulerian PT (at the base of 1-loop
SPT, which is used in this work). In the FM approach this is done by implementing the
so called “Infrared (IR) resummation” e�ect, that can be well described within Lagrangian
PT, via a phenomenological damping of the BAO amplitude. Since there is no equivalent IR
resummation correction in ShapeFit (at least not in this first implementation), and including
this e�ect in the FM fit broadens the constraints, we perform the ShapeFit to FM comparison
by not including IR resummation in the FM fit, but we return to this point in appendix A. It

19
Actually the ShapeFit only consists of the first step, but the second step is needed in order to compare

both analysis types.
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Parameter Prior ranges
type name SF min SF max FM min FM max

Cosmological
Êcdm [None,None] [None,None]
h [None,None] [None,None]

ln
!
1010

As

"
/ A

1/2 [None,None] [0.2, 2.0]

Physical

–Î [0.5, 1.5] –
–‹ [0.5, 1.5] –
f [0, 3] –
m [≠3, 3] –

Nuisance

b1 [0, 10] [0, 10]
b2 [-10, 10] [-10, 10]
bs2 lag. [-10, 10] lag. [-10, 10]
b3nl lag. [-10, 10] lag. 0

c0 [h≠2Mpc2] – 0 (0 ± 30)
c2 [h≠2Mpc2] – (0 ± 30)
c4 [h≠4Mpc4] – (500 ± 500)
‡P [h≠1 Mpc] [0, 10] –

Anoise / �Pnoise [h≠3Mpc3] [-5, 5] (0 ± 5000)

Table 3. Prior ranges for parameters used for the ShapeFit and the FM fit. For each, we define a case
with minimum (“min”) and maximum (“max”) freedom, where overlapping prior choices between the
two choices are written in the center. Flat priors are given as [min,max], Gaussian priors are denoted
as (mean ± std). Parameters separated by “/” correspond to di�erent conventions used between
ShapeFit and FM fit for the same physical e�ect, see text for details.

will become clear below that to see at a statistical significant level the e�ect of including or
not the IR resummation for ShapeFit a survey volume of ≥ 300 [Gpch≠1]3 would be needed.

The EFT model phenomenologically accounts for higher order non-linearities via the
so called “counterterms” parametrized by {c0, c2, c4} (see [39] for the explicit equations). In
summary, c0 e�ectively corrects for dark matter behaving di�erently than a perfect fluid on
small scales (monopole only) and {c2, c4} take into account non-linear RSD (quadrupole only).
While in the ShapeFit we use the non-linear RSD prescription of [62] (TNS model) in combi-
nation with a phenomenological Lorentzian damping parametrized by ‡P (see eq. (2.13)), the
counterterms {c2, c4} are coe�cients of a 2nd order Taylor expansion of the phenomenological
damping describing the non-linear redshift space distortions. Hence, the EFT implementation
of non-linear RSD is equivalent to our ShapeFit implementation, but with more freedom (2
parameters instead of 1).

Another di�erence is the interpretation of bias parameters, that in the ShapeFit in-
corporate an implicit scaling with ‡s8, while in the EFT fit they scale with the primordial
fluctuation amplitude as A1/2, where

A
1/2 = (As/A

Planck

s )1/2 , A
Planck

s = 2.0989◊ 10≠9
. (4.6)

Yet another di�erence concerning nuisance parameters is the convention for treating shot
noise. While the EFT implementation uses a Gaussian prior on the di�erence between the
shot noise with respect to Poisson shot noise �Pnoise = Pnoise ≠ PPoisson, we implement a flat
prior on the fractional di�erence Anoise, the amplitude of the Poisson-like, scale independent
shot noise contribution. We have tested that this does not make any di�erence in the
posterior distributions.
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Considering these di�erences in model assumptions between ShapeFit and FM fit we
adopt two di�erent nuisance parameter choices represented by a minimum freedom (“min”)
and a maximum freedom (“max”) choice. The “min” convention is oriented towards the
fiducial setup of most classic RSD analyses, where the non-local bias parameters are fixed by
the local Lagrangian (“lag.”) prediction [57, 58],

bs2 = ≠
4
7(b1 ≠ 1), b3nl = 32

315(b1 ≠ 1) . (4.7)

In the maximum freedom case bs2, b3nl and b1 are treated as independent parameters. We
employ these relations also in the FM “min” case and also fix the counterterm c0 to zero,
in order to match the ShapeFit configuration. However we keep varying the counterterms
c2, c4, as they are related to non-linear RSD, which in the ShapeFit is parametrized by ‡P as
described above. The “max” convention is oriented towards the fiducial setup of [39], where
all counterterms are varied and the Lagrangian relations are relaxed. However, the third order
non-local bias b3nl is set to zero in the EFT implementation, because it is very degenerate
with the monopole counterterm c0. We do the same here, since we try to stick to the default
configuration of [39] as close as possible. However, we vary b3nl in the ShapeFit, in order
to compensate for the fact, that c0 is not an ingredient of our model. Further tests of the
ShapeFit concerning modelling choices of non-local bias parameters are shown in sections 5.2,
6.2 and in appendix C.

Regarding the cosmological parameters, we choose a similar setup as in the baseline
analysis of [39] for the Patchy mocks varying the parameters given in the top rows of table 3.
We fix the baryon density to the value of the simulation Êb = 0.02214 and do not take into
account a varying neutrino mass, since the Patchy mocks were run with massless neutrinos.
Concerning the primordial fluctuation amplitude As, for the FM fit we adopted the convention
of [39] varying A

1/2 given in eq. (4.6). However, for the step of cosmological inference from
the compressed ShapeFit results we adopted a flat prior on ln

!
1010

As

"
. This di�erent choice

does not a�ect our cosmological results at all.

5 Results

The results of our fiducial analysis on the mocks described in section 4 is presented in two parts.
First, we present the results of the parameter compression step comparing the ShapeFit with
the classic RSD method (section 5.1). Afterwords, assuming a �CDM model, we compare the
cosmological analysis of the compressed ShapeFit results to the model’s parameter constraints
obtained with the FM method (section 5.1). We also show extensions to our fiducial analysis
by adding more cosmological parameters. In particular, we compare the performance of
ShapeFit and FM fit when varying Êb and ns in sections 5.3 and 5.4 respectively.

For the mock “data” we always use the mean of 2048 Patchy “ngc_z3” mocks, where
we rescale the covariance to the volume 100 times one of these mocks. This represents a
factor 10 times larger than most previous analyses, and significantly larger than the volume
of any single tracer or sample of forthcoming surveys. As it will be clear below, by choosing
to calibrate the covariance for such a large volume we will see systematic shifts in some
parameters which would have gone otherwise unnoticed. These shifts highlight the limitations
of the current modelling of non-linearities (see section 2.3), nevertheless, they are still below
the 1‡ expected statistical uncertainty for forthcoming surveys.
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Minimal Freedom Maximal freedom

Figure 6. Results of the classic RSD fit (grey) and the ShapeFit (green) applied to the Patchy

“ngc_z3” sample, showing the “min” (minimal freedom, non-local bias parameters to follow the
Lagrangian prediction) case on the left; and the “max” (maximal freedom, fully free non-local bias
parameters) case on the right panel. For the “min” case we report a systematic deviation of the slope
parameter from the expectation m = 0, indicating that assumptions about the biasing scheme may
introduce systematic shifts even at very large and linear scales. To make explicit and quantify biases
in recovered parameter estimates, the error-bars are relative to an e�ective volume of 300 [h≠1Gpc]3.

5.1 Parameter compression: classic RSD vs. ShapeFit
We fit the classic RSD and ShapeFit models to the mean of the Patchy “ngc_z3” mocks
using the physical and nuisance parameters of table 3. In both cases we use a template
corresponding to the Patchy cosmology of eq. (4.1), where the slope parameter m is varied in
the ShapeFit only, while it is fixed to m = 0 in the classic RSD fit by definition. We perform
the fits for the “min” and the “max” conventions, where the non-local bias parameters bs2
and b3nl are either fixed to their Lagrangian prediction of eq. (4.7) or allowed to vary freely.
The results for these cases are shown in figure 6 in the left and right panels, respectively,
where grey contours correspond to the classic RSD Fit and green contours to the ShapeFit.
The dashed lines indicate the underlying parameter values of the simulation.

The uncertainties on –Î and –‹ are very similar, almost indistinguishable, in the “classic”
and ShapeFit approaches. On the other hand, ShapeFit recovers slightly larger errors on f

than the classic approach. This can be understood by considering that while m shows no
significant correlation with the – parameters, m and f are somewhat correlated at least for a
sample with “ngc_z3” features. In the “min” case (see figure 6 left panel) we observe that the
classic RSD constraints are closer to the theoretical prediction than the ShapeFit constraints.
This is because when we enforce the non-local biases to follow the Lagrangian prediction,
the constraint on m experiences a systematic shift towards m = ≠0.036 ± 0.006, hence being
formally in 6‡ tension with the expectation, m = 0. This shift in m appears to be a much
better fit to the data (bestfit ‰2

m�=0
= 51) than in the classic RSD case, where m is forced to

zero (bestfit ‰2
m=0 = 95). Once we allow the non-local bias parameters to vary freely (“max”

case, right panel), we recover m = 0 and the constraints on the other physical parameters
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show very good agreement between classic RSD Fit and ShapeFit. Indeed, the bestfit ‰2

for both types of fit is very similar in the max case (‰2
max � 44) with a di�erence of only

�‰
2 = 0.02 between classic RSD Fit and ShapeFit.

This indicates that even seemingly reasonable and well-motivated assumptions about
bias can induce systematic errors in recovered cosmological parameters by a�ecting clustering
even on very large, linear scales, and in particular when the slope m is used for cosmological
interpretation. This finding highlights the importance of having a modelling of bias as
flexible as possible when interpreting the scale-dependence of clustering at all scales. We
speculate that Patchy mocks may have some bias signature not fully consistent with the
local Lagrangian bias scheme. This signal was not evident in the classic RSD analyses, but
when we allow m to vary this becomes important. We anticipate not finding such behaviour
in the N-body galaxy mocks describing a similar set of galaxies (as we will see in section 6.2).

In the “max” case, there are remaining biases on –Î (of order 2‡) and f (of order 1‡),
for an e�ective survey volume of 300Gpc3; such a large volume yields statistical errorbars
with similar size as the model uncertainty. The modelling of non-linearities and redshift-space
distortions will likely be improved before the on-going and future surveys are completed and
ready for cosmological interpretation. Still, our results indicate that one must be careful
with model assumptions, in particular about the galaxy bias model, as its choice can have
a significant impact on the measured slope m. We perform more tests on di�erent sets of
N-body simulations and galaxy mock catalogs in section 6. Nevertheless the right panel of
figure 6 demonstrates that ShapeFit recovers the standard “classic” compressed parameters
with e�ectively the same uncertainties as the “classic” approach. The degradation of the
constraints on f introduced by the extra parameter m (due to a small degeneracy between f

and m), is minimal, ≥ 20% for a volume of 300 [h≠1Gpc]3, which is expected to decrease for
smaller, more realistic survey volumes (for a DESI-like volume of 30 [h≠1Gpc]3 the degradation
decreases to 5%).

5.2 Cosmological results: full modelling vs. ShapeFit

Figure 7 displays the cosmological results on Êcdm, h and the derived parameters, �m, ‡8

obtained from interpreting the ShapeFit results within a �CDM model as explained in
section 3.4, as well as from the direct FM fit (for comparison we added the classic RSD results
(grey contours) as well, but also see [80]). In this case we keep Êb fixed at the mock expected
value (see section 5.3 for results varying Êb). Again, we explore the e�ect of local-Lagrangian
bias assumption through the “min” and “max” cases defined in table 3. The FM fit results
are displayed in blue (“max”) and red (“min”), while the ShapeFit results are represented by
the green (“max”) and orange (“min”) contours. We also present the results in table 4, where
we added the case of a more realisic, DESI-like-survey volume of 30 [h≠1Gpc]3 by scaling the
covariance of one Patchy mock realisation by 10 (labeled (V ◊ 10)). As table 4 indicates,
considering the latter covariance ShapeFit recovers the cosmological parameters very well in
the “max” case (within 0.5‡), while the results of the “min” case are clearly biased (by up to
2‡). In the “max” case constraints are, unsurprisingly, weaker than in the “min” case. The
same degradation in cosmological parameter constraints between the “min” and “max” cases
is observed for the FM fit, albeit it shows larger biases in the recovered parameter values.

The reason why the FM fit results do not recover the Patchy cosmology, is, at least
in part, due to the systematic error in modelling the BAO wiggle amplitudes arising from
neglecting IR e�ects.
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Figure 7. Results of the ShapeFit and FM fits to the Patchy “ngc_z3” sample compared to the
classic RSD “max” results for reference. The size of the constraints are very similar in the two
cases, indicating that ShapeFit captures the bulk of cosmological information captured by FM. The
systematic shifts associated to the FM contours are partly caused by neglecting the IR resummation
correction, which modulates the BAO amplitude, but also broadens the constraints. ShapeFit does
not use any BAO amplitude information, and therefore does not need to crucially account for any
IR resummation correction (although it could be easily incorporated). The fact that the size of the
constraints is very similar in the two cases indicates that the cosmological information enclosed in the
BAO amplitude is subdominant to the one enclosed in the large-scale shape of the power spectrum.

From 1-loop Lagrangian PT it is well known that large scale bulk flows lead to a damping
of the BAO amplitude. However, within Eulerian PT, which operates at the level of density
field instead of displacement field, this e�ect is hard to model. The state-of-the-art attempt
to model the large scale displacements within Eulerian PT, known as IR resummation, is to
phenomenologically damp only the BAO wiggles, while leaving the broadband unchanged.
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� Case Fit Mean Error, V = 3(Gpc/h)3 Bias/‡�, V = 3(Gpc/h)3
(V ◊ 100) (V ◊ 10) (V ◊ 100) (V ◊ 10)

Êcdm

min
RSD 0.1162 0.0110 0.0400 ≠0.25 ≠0.10
SF 0.1139 0.0009 0.0027 ≠5.57 ≠1.86
FM 0.1110 0.0014 0.0040 ≠5.65 ≠1.97

max
RSD 0.0997 0.0105 0.0372 ≠1.75 ≠0.69
SF 0.1167 0.0017 0.0045 ≠1.24 ≠0.50
FM 0.1136 0.0015 0.0046 ≠3.79 ≠1.21

h

min
RSD 0.6751 0.0079 0.0271 ≠0.35 ≠0.12
SF 0.6695 0.0026 0.0079 ≠3.15 ≠1.02
FM 0.6665 0.0027 0.0079 ≠4.00 ≠1.38

max
RSD 0.6611 0.0079 0.0268 ≠2.21 ≠0.75
SF 0.6729 0.0032 0.0102 ≠1.50 ≠0.49
FM 0.6670 0.0031 0.0088 ≠3.45 ≠1.26

�m

min
RSD 0.3031 0.0174 0.0620 ≠0.24 ≠0.08
SF 0.3035 0.0012 0.0039 ≠2.78 ≠0.93
FM 0.2996 0.0017 0.0049 ≠4.42 ≠1.57

max
RSD 0.2783 0.0178 0.0623 ≠1.70 ≠0.54
SF 0.3069 0.0021 0.0056 ≠0.11 ≠0.04
FM 0.3052 0.0019 0.0057 ≠1.01 ≠0.33

‡8

min
RSD 0.815 0.044 0.159 ≠0.33 ≠0.11
SF 0.838 0.010 0.029 0.88 0.30
FM 0.845 0.009 0.029 1.69 0.55

max
RSD 0.765 0.044 0.153 ≠1.48 ≠0.53
SF 0.835 0.012 0.033 0.50 0.18
FM 0.836 0.012 0.032 0.57 0.21

Table 4. This table shows parameter constraints for � = {Êcdm, h,�m,‡8} given by the corresponding
mean �̄, error ‡� and bias (�̄ ≠ �Patchy) divided by ‡� with respect to the Patchy cosmological
parameters �Patchy = {0.118911, 0.6777, 0.301175, 0.8288}. For the di�erent bias model cases “min”
and “max” we compare the results of our RSD, ShapeFit (here abbreviated as SF) and FM fits. We
carried out the fits using a covariance matrix corresponding to the volume of 100 stacked mocks
(V ◊ 100) and to 10 stacked mocks (V ◊ 10), where V = 3(h≠1Gpc)3. The mean values cited here are
obtained from the (V ◊ 100) runs, as these are more Gaussianly distributed. They do not necessarily
coincide with the mean values of the (V ◊ 10) runs due to non-Gaussianity, but we have checked that
best-fits agree with each other. Also note that we present Gaussianized errors, although in fact they
are slightly non-Gaussian, which is consistently taken into account for determining the bias.

The magnitude of this damping e�ect is inferred from theory and is, hence, highly model-
dependent, which may lead to an underestimation of the error bars as shown in [86]. This is
the reason why we designed the ShapeFit in such a way that it only extracts cosmological
information from the BAO position, the overall power spectrum normalization, and the power
spectrum slope; but not from the BAO amplitude. In order to have significant cosmological
information on the amplitude of the BAO, we require a survey volume significantly larger
than 300 Gpc3, and this is not expected to be available in the next decade. Nevertheless, one
could extend the ShapeFit by an additional parameter governing the BAO amplitude; we
leave this for future work.
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In appendix A we test the FM fit including the appropriate IR resummation correction
finding that this helps to recover the expectation values of Êcdm, h and �m within 1-‡ and ‡8

within 2-‡, albeit broadening the resulting constraints. However it is important to recall that
the Patchy mocks are not N-body and simulate non-linearities in an approximate way. Hence,
it is not guaranteed that the IR resummation scheme appropriately “describes” these mocks.

From table 4 we notice that the size of the posterior constraints on the relevant cos-
mological parameters are very similar: ShapeFit captures the same bulk of the cosmological
information extracted by the FM fit. This shows that the extra information captured by
FM compared to the classic approach is concentrated on large-linear scales and is indeed the
early-time physics imprint left on the matter transfer function.

5.3 Impact of varying �b

In the previous sections we have fixed the Êb parameter to its Patchy expected value,
Êb = 0.02214. This is motivated by the fact that usually the constrains from LSS alone
on this parameter are not competitive with CMB or BBN ones. However, in some cases
we may want to perform an analysis with no external prior constrains. In this section we
present results obtained considering Êb as a parameter free to vary with a uniform prior in
the range [0.005, 0.04].

Figure 8 shows the ShapeFit (green) and FM fit (blue) results focusing on the “max” case
only. Since the slope m is degenerate with Êb and Êcdm, ShapeFit does not constrain them
individually, resulting in fully degenerate bands. Also the constrain on h depends strongly on
the Êb-prior, as h can only be measured from the BAO position once Êcdm is fixed by the
slope. Therefore, for ShapeFit the parameters shown in the left panel Êb,Êcdm and h are
e�ectively unconstrained. Instead, it constrains the (derived) parameters �m, ‡8 and DV /rd

shown in the right panel.
The additional constraining power of the FM fit comes from the BAO amplitude only,

which breaks the degeneracy between Êb and Êcdm. Once the prior on Êb is relaxed, the
constraints on Êb are driven by the BAO amplitude, which depends linearly on Êb/Êcdm.

To show this explicitly, we consider the linear matter power spectrum obtained from
parameter combinations that follow the Êb ≠ Êcdm degeneracy of ShapeFit in figure 8. If the
power spectra obtained along this degeneracy show any di�erence, this means that there is
some information loss induced by the ShapeFit compression, that needs to be investigated.
Figure 9 displays the linear power spectra for di�erent values of Êb (green lines), where
all other cosmological parameters are read from the ShapeFit chain such as to represent
the bestfits for each value of Êb. As expected, nearly all curves share the same values of
�m, h◊ rd and hence also DV /rd, such that their BAO wiggle positions overlap with each
other. However, there is a remaining di�erence in tilt between the curves as can be seen
from the EH98 (dotted) lines. This is, because the fitting formula introduced in eq. (3.7) is
not optimized for varying Êb. As shown in figure 4 our method reproduces the Êb-behaviour
with ≥ 5% precision for the range 0.015 < Êb < 0.03 (which corresponds to a 40-‡ region
considering the BBN measurement of Êb).

Nevertheless, it is obvious from figure 9 that most of the di�erences between the green
curves are encoded in the BAO amplitude. It is important to note that the BAO amplitude
is an early-time physics imprint which, however, is heavily processed by late-time e�ects (e.g.,
non-linearities, mode-coupling, bias). This is the reason why the FM fit delivers biased results
when these late-time e�ects are not taken properly into account (see the no-IR modelling case
represented by blue contours). The e�ect of including the IR resummation correction in the
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Figure 8. Results when analysing the Patchy “ngc_z3” sample with free Êb within a flat prior
range of [0.005, 0.04]. The green contours display the results from ShapeFit, whereas the blue and
purple contours correspond to the FM fit case, with (purple) and without (blue) the IR resummation
correction (see text for more details). Since ShapeFit does not compress any BAO amplitude feature,
it is not able to break the degeneracies between Êcdm, Êb, and h (left panel), and in this case only
credconstrains individually �m, ‡8 and DV /rd (right panel). On the other hand, the FM fit does use
the BAO amplitude and therefore is able to break such degeneracies. However, for both cases explored
here, the inferred constraints result biased with respect to the expected values. This suggest that the
BAO amplitude feature is not yet a reliable probe to be used in LSS analyses.

Figure 9. Linear matter power spectrum ratio Pm(k)/P true
m (k) on scales 0.02 < k [hMpc≠1] < 0.3 for

di�erent models: the dashed purple line corresponds to the FM bestfit (purple contours in figure 8),
green lines are obtained from the green contours for di�erent values of Êb. Green dotted lines show
the corresponding EH98 approximation. For improved visibility, the curves are rescaled in amplitude
to match ‡8.
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FM fit (purple contours) is to broaden the posteriors, but not changing their peaks maxima.
As a result the posteriors are still biased, but the broadening reduces the tension with the
expected values at 2‡. We also observe that the inclusion of IR resummation correction is
to broaden the contours precisely along the degeneracy direction given by the green ones.
Therefore, we conclude, constraints on Êb,Êcdm and h from FM alone, without any prior from
early-time measurements, are not reliable at better than 25% for Êb, 10% for Êcdm and 10%
for h, when obtained with any of the state-of-the-art methods and modelling explored here.

5.4 Impact of varying ns

The constraining power of ShapeFit when adding the scalar tilt ns as an additional free
parameter in comparison with the FM fit is described here. In this case, ShapeFit needs
to be run with both slope parameters, m and n, introduced in section 3.3. Since the scale-
independent and the scale-dependent slopes have a similar e�ect on the power spectrum, m
and n are strongly anti-correlated. See the full parameter degeneracies when varying m and
n in figure 18 of appendix C for the Nseries mocks for reference. Here, in the case of the
Patchy mocks, we do not show the ShapeFit results on physical parameters for conciseness
and focus on the cosmological results.

The green contours of figure 10 display the posteriors derived from ShapeFit for the
parameters of a flat-�CDM model. As in section 5.3, the results for the FM fit are shown for
the cases where IR resummation correction is included (violet contours), and when it is not
(blue contours). Both ShapeFit and FM + IR resummation approaches recover the Patchy

cosmology very well (marked with black dotted lines). On the other hand, the FM fit results
without IR resummation are clearly biased, suggesting that the inclusion of IR resummation
is crucial for the FM fit. This can be understood by considering that ns and Êcdm have similar
e�ects on the power spectrum slope and thus for ShapeFit these two parameters are highly
correlated. The FM fit uses the additional information provided by BAO-peak amplitude in
order to break the degeneracy between ns and Êcdm, hence the blue and violet contours are
much narrower than the green contours. IR resummation a�ects the amplitude of the BAO
signal, hence it is crucial to extract unbiased constraints from this signal. ShapeFit makes no
use of the amplitude of the BAO and is hence insensitive to this.

Similar to the case when varying Êb, we conclude that FM fit constraints on ns depend on
the non-linear BAO damping model (late-time physics), while ShapeFit provides a conservative
alternative, where the BAO amplitude is not used, such that the constrains on Êcdm and ns

are purely driven by the slope (early-time physics). We note, that in this case we fixed Êb

to its underlying value. If we allow to vary both Êb and ns for the FM fit, the bias in Êb

observed in figure 8 propagates into a biased result on ns, even when the IR resummation
correction is applied.

6 Additional systematic tests on N-body catalogues

There is no perfect suite of mocks, all mocks are in some way an idealization of the survey
and/or introduce some approximations. It is important to check whether results found on
mocks are robust and not due to approximations introduced e.g., in the mock generation.
Patchy mocks explored in section 5 are not full N-body mocks, hence they are not appropriate
for determining the systematic error budget of classic RSD analyses, and even less suited for
the newly introduced shape parameter m. In other words, the number of available simulations
and the total e�ective volume they cover, makes the Patchy mocks an invaluable resource to
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Figure 10. Derived posteriors for a flat-�CDM model (for a fixed Êb) for ShapeFit (green contours)
and the FM fit to the Patchy “ngc_z3” sample. The FM results are shown for the IR resummation
correction turned on and o�, in violet and blue contours, respectively. The di�erences between
ShapeFit and FM posteriors are due to the extra constraining power from the BAO-peak amplitude
(not implemented in ShapeFit) which helps to break degeneracies along Êcdm ≠ ns. The BAO-damping
e�ect due to non-linear bulk flows, which IR resummation describes within FM, greatly reduces the
BAO-amplitude-based constraining power, and hence broadens the ns posteriors.

estimate things like error-bars. However, to investigate potential residual systematics of the
proposed ShapeFit implementation, we prefer to resort to N-body mocks.

In this section we present further tests of ShapeFit using two set of full N-body simulations.
We want to investigate further the potential systematic errors on m, seen in the Patchy

mocks, in particular those under galaxy bias conditions such as local-Lagrangian assumptions
(e.g., the left panel of figure 6).
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6.1 Systematic tests on dark matter particles in real space: geometric e�ects

We first focus on analysing the simplest possible case of a set of dark matter particles in
real space without survey geometry or selection function. We use a N-body suite of 160
simulations with a flat �CDM cosmology consistent with the Wilkinson Microwave Anisotropy
Probe bestfit cosmology (WMAP cosmology, [1]), with a box size L = 2.4Gpch≠1 and a
total number of Np = 7683 particles. The initial conditions have been generated at z = 49
by displacing the particles according to the second-order Lagrangian PT from their initial
grid points. We use the output at the three snapshots, z = 0.5, 1.0 and 1.5. Further details
on these simulations can be found in section 3.1 and table 1 of [95]. Although we have the
velocity information for each of the simulated particles, we do not apply in this case any
redshift-space distortion displacement for simplicity.

We obtain the data-vector of each of these 160 realizations at each redshift bin, consisting
of its monopole, quadrupole and hexadecapole signals between 0.02 � k [Mpch≠1] � 0.15,
sampled in bins of �k = 0.01hMpc≠1 size, and with a total number of 13◊ 3 elements. We
take the average of the 160 data-vector realizations to form the mean data-vector to use as
our dataset. The total associated volume of this data-vector corresponds to 6, 448 Gpc3. We
make use of the 160 realizations to estimate the covariance, following the same corrections as
described in section 4.1. In this section, covariance (and errors on the figures) are rescaled to
be those corresponding to the full e�ective volume available. In fact the goal is to explore
small systematic shifts, which we want to uncover and quantify with the maximum precision
a�orded by the simulations available, independently, for now, of the statistical power of
specific surveys. We fit the redshift-space distortion model of eqs. (2.12) and (2.13) with
non-local bias parameters and with the local-Lagrangian conditions of (4.7). We set n = 0
for simplicity and only focus on exploring the posteriors of {–Î, –‹, f, m}, when the rest of
four nuisance parameters are also marginalized, {b1, b2, ‡P , Anoise}. Note that since we are
fitting the data-vector corresponding to dark matter particles in real space, and we will be
using the reference template at the true own cosmology, we expect to recover –Î,‹ = 1, f = 0
and m = 0.

The dashed-empty contours of figure 11 show the posteriors of such analysis, for the 3
redshift bins in di�erent colors, as labeled. We only show the di�erence between the measured
and the expected value for the 4 relevant physical parameters, accordingly scaled as indicated
by the legend for visualization purposes. We notice that even in this highly idealized, simple
case systematic shifts are present: �sys

–�
� 0.01 (1%), �sys

–� � 0.005 (0.5%), �sys

f
� 0.003

and �sys
m � ≠0.04. Being redshift-independent indicates that these shifts are not related

to a theoretical limitation of the PT-model, or any biasing model assumption, but likely a
geometric e�ect.

In fact, as it is standard procedure, for each ki-bin (defining the power spectrum band-
power), the model is evaluated at the e�ective k-vector of that k-bin, Pmodel(ki ,e�), where
ki ,e� � �k�i is the ensemble average over all possible directions of the k-vector within the i-bin.
However, the data-vector is measured by taking the average of P (ki) across all k-directions,
P

data(ki) = �P
data(k)�i. It is clear that P data(ki) and P

model(ki ,e�) are not representing the
same quantity: P (�k�) �= �P (k)�. It is mode discreteness that generates this e�ect. For a
su�ciently large box the mode discreteness would be negligible, it is the survey geometry
that introduces it and fully specifies it, hence the name “geometric e�ect”.

Ignoring this e�ect can generate spurious signals, especially for the large-scale modes,
where the number of modes per bin is small. Ideally we would like to evaluate the model’s
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prediction for each k within the bin and take the average in the same way as when measuring
the data-vector, �Pmodel(ki)�. However this is too computationally expensive to be adopted
in a MCMC.

We propose here an approximation to account for this e�ect which is fast and su�ciently
accurate for our purposes: we add the resulting “mean” e�ect to the data.

We construct a new data-vector, P data, G
�1 :

P
data, G

�1(k) = G
≠1(k)◊ P

data(k), (6.1)

where the geometric factor, G, is defined as

G(k) � �P
model(k)�

Pmodel(�k�) , (6.2)

and where the ensemble average is taken over all directions of the k-vector. Naturally G(k)
depends slightly on the parameters at which the model, Pmodel is evaluated,20 so G is obtained
through several iterations, until we observe convergence (in practice one or two iterations
su�ce). We start by fitting the data-vector without any correction (G(k) = 1), evaluating
G(k) at the best fitting model (first trial correction), and first trial P data, G

�1(k). We repeat
this process until we observe convergence in the derived posteriors. We have found convergence
is reached by the second iteration.

Following this two-iteration process approach we produce the posteriors displayed in
figure 11 in solid contours. We notice how the systematic o�sets observed initially (empty-
dashed contours i.e., G(k) = 1) are significantly reduced (by a factor 2 to 4 depending on the
variable) when we account for the geometric correction: �sys

–�
� 0.005 (0.5%), �sys

–� � 0 (0%),
�sys

f
= 0.003 and �sys

m = ≠0.01. The geometric correction is particular important for m,
neglecting it induces a systematic shift of �m � ≠0.03. The geometric e�ect is less important
for –Î ,‹– neglecting it induces a systematic shift of 0.5%– and negligible for f . We estimate
that the residual bias on m after the proposed approximate geometric correction becomes
comparable to the statistical error for an e�ective volume greater than ≥ 400Gpc3. Without
our proposed mean correction the bias would become comparable to the statistical error
for volumes ≥ 25Gpc3. Hence this correction is important and su�cient for on-going and
forthcoming surveys. We conclude that such type of “geometric” corrections may be important
when doing precision cosmology, especially for signals on large scales (i.e., m-derived quantities
and the FM fit approach). It is important to keep in mind that the systematic shifts reported
in figure 11 depend on the size of the chosen k-bin — the smaller the size of the bin, the smaller
the required G-correction — as well as the size of the box in which the sample is embedded —
the larger the box, the smaller the G-correction — (see next section). In general, these shifts
only set a floor for the type of systematics we expect in real-life applications. Inaccuracies when
modelling galaxy bias schemes and redshift space distortions, may increase the systematic
errors reported in figure 11. We address these e�ects in the following sub-section.

20
Note that one could also leave the data-vector intact and apply this inverse correction into the model:

Pmodel, G
= G(k)� Pmodel

(k) at each MCMC step, where G would be pre-computed at a given fiducial model

in order to save computational time. This approach may seem more physically motivated but is mathematically

identical to what we follow.
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Figure 11. Posteriors derived when fitting the mean of 160 full N-body dark matter realization in
real space. The covariance has been rescaled to correspond to an e�ective volume of 2200 [h≠1Gpc]3.
We have used the model described in eqs. (2.12) and (2.13) and the local-Lagrangian bias scheme
of eq. (4.7). In the plot we only show the physical parameters p = {–Î, –�, f ,m}, although the
remaining four nuisance parameters are also varied (see text). The empty-dashed contours display the
results of fitting the data-vector without any geometric correction (as usually done), whereas the filled
contours account for the geometric correction through eq. (6.2). For all p-variables the expected value
is �p = 0. We observe that m is especially sensitive to the geometric correction with a shift of about
0.03 towards positive values, for the specific set of geometric choices: �k = 0.01hMpc≠1, size of the
periodic box, L = 2.4h≠1Gpc, and the k-range fitted, 0.02 � k [hMpc≠1] � 0.15.
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Figure 12. Posteriors from Nseries N-body mocks using P
(0,2,4) at 0.02 � k [Mpch≠1] � 0.15. In

the left panel we display the comparison of classic RSD (purple) and ShapeFit (orange), both with
local-Lagrangian bias parametrization of eq. (4.7), and ShapeFit with free non-local biases (green).
All cases correspond to the fit of the mean power spectra of the 84 independent realizations with
an associated e�ective volume of Ve� = 308Gpc3). Horizontal black-dashed lines represent the true
expected value for each compressed variable. The empty-dashed contours display the results without
any geometric correction (G = 1) and the filled-solid contours with this correction included (see
eq. (6.2) and text for details). The right panel displays the case of ShapeFit with the local-Lagrangian
bias assumption when fitting the mean of the 84 realizations (orange, same to the left panel) and
when fitting the averaged-posteriors of all 84 individual realizations (blue contours), which in this last
case represents an e�ective volume similar to BOSS CMASS NGC, 3.67 Gpc3. We note how the small
systematic errors detected in the left panel, are negligible compared to the real-life statistical errors
derived when fitting the realistic case of BOSS CMASS with a volume of 3.67 Gpc3 shown in blue in
the left panel.

6.2 Systematic tests on Nseries LRG mocks
We now explore how the compressed parametrization of ShapeFit performs when it is applied
to full N-body galaxy mocks. We employ the Nseries galaxy mocks which have been used for
determining the modelling systematic error budget in BOSS [26] and eBOSS [27] o�cial RSD
and BAO analyses.

The Nseries mocks have been generated out of 7 independent periodic boxes of 2.6h≠1Gpc
side, projected through 12 di�erent orientations and cuts, to extract, in total, 84 pseudo-
independent realizations with the sky geometry similar to the northern galactic cap of CMASS
DR12 data, for 0.43 < z < 0.7, resulting in an e�ective redshift of 0.56. The mass resolution
is 1.5 ◊ 1011

M�h
≠1, with 20483 dark matter particles per box. The identified haloes are

populated with galaxies following a halo occupation distribution model tuned to match the
clustering of LRGs observed by BOSS. As in the standard procedure adopted by the BOSS
collaboration, the covariance is estimated from the 2048 realizations of NGC CMASS DR12
Patchy mocks catalogues. Additionally, we rescale all the estimated covariance terms by a
10% factor based on the ratio of particles, as the Patchy mocks have 10% fewer particles than
the Nseries mocks due to veto e�ects on the DR12 CMASS data. The underlying cosmology
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of the Nseries mocks is close to the WMAP one and they sample a total e�ective volume
of 84◊ 3.67 [Gpc]3. Further information and details on the Nseries mocks can be found in
section 7.2 of [27], as well as section 2.2.2 of [72].

Each of the Nseries mocks cover a larger physical volume than the dark matter simulation,
so we have embedded them in a box of 4 Gpch≠1 side length. We use the same k-binning and
data-vector entries as in section 6.1, but the larger box-size implies that the mode-sampling
is much denser; this is expected to reduce the geometric e�ect seen in section 6.1.

The left panel of figure 12 displays the posteriors resulting from fitting the mean power
spectrum multipoles from the 84 Nseries mock realizations. The dashed-empty contours show
the posteriors drawn when fitting the data without any geometric-correction factor applied,
whereas the solid-filled contours are when the G-factor is applied (see eq. (6.2) for reference).
The di�erent color schemes represent di�erent types of fit or bias schemes, as labeled. The
local-Lagrangian galaxy bias conditions of eq. (4.7) are applied to the classic RSD fit (purple
contours) and to the ShapeFit (orange contours). Additionally, we also show the ShapeFit
when the locality in Lagrangian space is relaxed (green contours). While only the physical
parameters are shown, the nuisance parameters are included in the fit and marginalized over.
For the ShapeFit parametrization we have set n = 0 for simplicity. The black-dashed lines
indicate the expected values for the underlying cosmology of the Nseries mocks.

As expected, the geometric correction described in section 6.1 has a much smaller e�ect
for the Nseries mocks.

This is due to a combination of two e�ects: the statistical errors for Nseries are larger
than for the dark matter simulations, because of the smaller e�ective volume, 308Gpc3 for
Nseries and 6, 448 Gpc3 for dark matter particles boxes. Moreover the larger size of the Nseries
box, L = 4Gpch≠1, yield a finer sampling of k-modes than for the dark matter simulation,
L = 2.4 Gpch≠1, reducing the net e�ect.

We note that for the 3 studied cases, classic RSD with the local-Lagrangian bias
assumption, and ShapeFit with and without the local-Lagrangian bias assumption, the
expected parameters are recovered very well. We only detect a systematic shift on m of order
0.01 ≠ 0.02, towards negative values, similar to the one reported in section 6.1. Note that
for the Nseries mocks the recovered non-local bias parameters are very consistent with the
local-Lagrangian prediction.

Additionally, letting n and m to be simultaneously free for the local-Lagrangian bias
case, yields results very consistent with the n = 0 case (orange contours), and therefore with
the expected value (see appendix C).

The right panel of figure 12 illustrates the e�ective volume-e�ect for the ShapeFit case
with the non-local bias set to their local-Lagrangian prediction. The orange contour displays
the fit to the mean of the 84 Nseries mocks (same as in the left panel), whose associated
e�ective volume is 308Gpc3. The blue contours are the resulting posterior from averaging
the individual 84 posteriors, each of them with an associated e�ective volume of 3.67Gpc3.
For most of the parameters of interest the maxima of the posterior of the mean (orange) lies
in the same position as the maxima of the mean of individual posteriors (blue). We observe a
small displacement for f and m, indicating some non-Gaussian behaviours on the tails of the
distribution. We also note that the size of the systematic reported errors on the left plot, of
order �sys

m � 0.01≠ 0.02, are very sub-dominant with respect to the statistical errorbars of m
associated to a real-life volume, of 3.67 Gpc3, in the right panel in blue.

We conclude that for the ShapeFit analysis on Nseries mocks, with or without the
local-Lagrangian bias assumption, the errors associated to modelling systematics are negligible
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for –Î ,‹ and f , and of 0.01–0.02 on m towards negative values. We have not identified the
source of such systematic shift, but we conclude that it does not have any significant impact
when fitting actual datasets, whose statistical errorbars on m tend to be of order of 5–10
times larger. We leave a more detailed study of such systematic e�ect and its mitigation in
the next-generation of galaxy surveys for future work.

7 Conclusions

The standard (classic) approach to analyse galaxy redshift clustering, (that we refer to as
BAO and RSD analyses), is conceptually di�erent from the way, for example, CMB data are
interpreted. With the help of a fiducial template of the power spectrum, the clustering data
are compressed into few physical observables which are sensitive only to late-time physics,
and it is these observables that are then interpreted in light of a cosmological model. There
has been a renewed e�ort recently to analyse galaxy redshift clustering in a similar way as
CMB data: by comparing directly the observed power spectrum, including the BAO signal,
the RSD signal, as well as the full shape of the broadband power to the model’s prediction.
In this case, the model has to be chosen ab initio. We refer to this approach as full modelling
(FM). The resulting posterior constraints on cosmological parameters of the �CDM model, or
its simple extensions, are significantly tighter than in the classic analysis in a broad parameter
space with no Planck constraints.

In this paper we have provided a full physical understanding of where the additional
constraining power a�orded by the second approach arises, and in doing so we have bridged
the classic and new analyses in a transparent way.

The compressed physical variables of the classic approach represent the universe’s late-
time dynamics; they depend only on the geometry, expansion history and growth rate of
the Universe in a model-independent way and they can be in turn interpreted in light of the
cosmological model of choice. These variables do not capture and are insensitive to other
physics relevant to processes at play at a di�erent epoch in the Universe evolution such as
equality scale, sound horizon scale, primordial power spectrum or other quantities that enter
in the matter transfer function.

However, there is additional information in the clustering signal. Beside the primordial
tilt, the broadband of the power spectrum is shaped by the matter transfer function encoding
the evolution (scale and time dependence) of the initial fluctuations from inflation until the
time of decoupling of the photon-baryon fluid, which in a �CDM model, depends on the
physical baryon and matter densities Êm,Êb and h. This, we have shown, is located mostly
on large scales, and to a smaller extent in the amplitude of the BAO wiggles.

In the FM approach the parameter dependence of the transfer function and the geometry
are not kept separated, in this way the information carried by the shape of the transfer
function, improves constraints on cosmological parameters that are usually interpreted as
purely geometrical. This can be seen as an “internal model prior”. The classic fixed template
methods do not invoke a prior of that kind, as they do not establish this link.

We have thus extended the classic analysis with a single additional phenomenological
parameter, that captures the bulk of this extra information (section 3). We refer to this
approach as ShapeFit. The physical understanding we provide is rooted on landmark works
on the matter transfer function e.g., [20, 46, 49]. We are aware that a single parameter
like � ≥ �mh is insu�cient to correctly describe the data given the statistical power of
state-of-the-art galaxy surveys [20]. ShapeFit introduces instead an e�ective parameter, m,
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the slope of the matter power spectrum at a specific pivot scale. The ShapeFit extension of
the classic methodology captures the same broadband shape information as the FM fit by
upgrading the classic RSD fit and at the same time retaining the power of compressing the
two point statistics into well understood and model independent physical numbers that still
disentangle early from late-time physics. The ‘internal model prior ’ is not needed until the
very last step of interpreting the physical variable in light of a model.

In summary, ShapeFit:

• preserves the model-independent nature of the compressed physical variables of the
classic approach,

• disentangles early-time from late-time physical information,

• matches the constraining power of the FM approach when interpreted within the
cosmological model parametrization of choice (see figure 7),

• is a simple addition to the established “classic” codes and procedures with a simple
physical interpretation,

• the computational time is e�ectively indistinguishable from that of the classic approach
and ≥ 30 times faster than the FM approach (at the level of cosmological inference),

• reduces the (already small) template-dependence of the classic approach.

In passing we have presented (section 3.2) a new definition and interpretation of the
physical parameter describing amplitude of velocity fluctuations which further reduces the
model-dependence of the traditional RSD analysis. We recommend adopting it in classic
analyses even without ShapeFit extension.

ShapeFit does not include the additional information enclosed in the BAO amplitude
for two reasons: i) this early-time information is relevant only if no CMB or BBN prior is
adopted for Êb, ii) even though the BAO amplitude is an early-time physics imprint it is
however heavily processed by late-time e�ects (e.g., non-linearities, mode-coupling, bias) and
therefore, we argue, not robust (see figure 8).

Given the level of sophistication and the systematic control of the classic approach, we
have performed a battery of tests on mock surveys to quantify possible subtle systematic e�ects
for ShapeFit. These are presented in section 6.2 and the appendices. We have highlighted a
few systematic e�ects and proposed and tested mitigation strategies well suited to present and
forthcoming surveys. The take-home message is that the power spectrum broadband shape
is very sensitive to bias assumptions, even on large, linear scales. Therefore, we advocate
to always allow maximal freedom for the bias and nuisance parameters in forthcoming data
analyses, especially when FM and ShapeFit are used for cosmological interpretation.

We envision that the transparent physical interpretation o�ered by the simple extension
of the classic approach proposed here will be useful in analysing and interpreting the clustering
signal of current and forthcoming surveys in a robust way.
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A Impact of IR resummation on FM results

The Infrared (IR) resummation e�ects are not included in the baseline analysis shown in the
main text. This is motivated by the fact that ShapeFit does not include this e�ect in the PT
model used (in this case 1-loop SPT). The e�ect of IR resummation in the FM fit is to damp
the amplitude of the BAO feature in the power spectrum model due to late-time physics
e�ects (bulk flows), and therefore to broaden the likelihoods of those parameters sensitive to
the amplitude of the BAO features. For this reason we opted for the non-IR option in FM fit
as a baseline choice, for a fairer comparison between ShapeFit and FM fit likelihood’s shapes.

However, since the IR resummation is an integral part of EFT power spectrum modelling,
and therefore of FM fit, here we show how the likelihoods for these cases compare to each other
when fitting the Patchy mocks, in the case of Êb being fixed to its true value. Previously,
in figure 8 we have already shown how they compare for the case of a uniform and wide
prior on Êb.

Figure 13 is the analogous plot of figure 7, for the “max” case only (see text in section 4.2
for a full description of this choice), keeping the same color-code: blue for FM fit without
IR resummation correction and green for ShapeFit. In purple we show the contours for FM
fit with the IR resummation correction included. We remind the reader that ShapeFit does
not use any BAO amplitude information, and therefore is, by construction, insensitive to IR
resummation e�ects in P (k).

Figure 13 shows how the inclusion of IR resummation correction help the contours of
FM fit to shift towards the expected parameter values, at the expenses of broadening the
contours. We stress that this shift only happens when the Êb parameter is anchored to its
true value. In the case Êb is set to be free, the IR resummation correction does not produce
the required shift towards the correct position, and only broadens the contours (see figure 8).
The ShapeFit posteriors are naturally una�ected by ignoring the IR resummation correction
and recover the expected parameters’ values of the Patchy mocks cosmology.

In real-life applications (i.e., for e�ective survey volumes of . 100Gpc3) the IR resum-
mation correction does not have a significant impact in the derived cosmological parameters.
This is because the BAO amplitude information is dominated by other probes di�erent to
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Figure 13. Posteriors resulting from fitting the mean of 2048 Patchy “ngc_z3” mocks with a
covariance corresponding to 100 times the size of one single realization, and with an associated e�ective
volume of ≥ 300 Gpc3. For this case Êb has been kept fixed to its true expected value (see figure 8 for
the case where Êb is kept as a free parameter) and the “max” choice been made for the Lagrangian
bias treatment (see section 4.2). Blue and purple contours display the prediction from FM fit when
IR resummation correction is ignored or accounted, respectively. The ShapeFit inferred contours are
shown in green, where the BAO amplitude information is not used, and therefore the IR resummation
correction has no e�ect.

LSS, such as CMB- or BBN-based analyses, and getting it right from the LSS does not add
any significant information to the combined analysis. Also, for those studies doing an integral
LSS-alone analysis, the amplitude of BAO is not yet a reliable feature we should be trusting.
The reason is that the BAO damping is highly model dependent and involves non-linear
physics (including galaxy formation) that we do not understand at the level required for
precision cosmology today. A practical proof of that are the contours of figure 8, where when
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Cosmology Êm Êb h ‡8 ns M‹ [eV] Ne� �m rd [Mpc]
Planck 0.1417 0.022 0.676 0.8288 0.9611 0.06 3.046 0.31 147.78
Patchy 0.1411 0.022 0.678 0.8288 0.9611 0.0 3.046 0.307 147.64
Nseries 0.1401 0.023 0.700 0.82 0.96 0.06 3.046 0.286 147.15

X 0.1599 0.022 0.676 0.814 0.97 0.056 3.046 0.35 143.17
Y 0.1599 0.022 0.676 0.814 0.97 0.056 4.046 0.35 138.77
Z 0.2053 0.037 0.75 0.9484 0.96 0.0 3.046 0.365 123.97

Om-high 0.1417 0.022 0.595 0.7349 0.97 0.0 4.046 0.4 142.85
Om-low 0.1417 0.022 0.913 0.7983 0.97 0.0 4.046 0.17 142.85

Table 5. List of cosmological models for reference template potential dependence.

LSS data is analysed alone without any strong Êb prior, even the IR resummation approach
returns biased likelihoods for {h,Êb,Êcdm}.

B Investigating the ShapeFit template dependence

Both the classic RSD Fit and the ShapeFit are template-based fitting methods: they measure
physical parameters related to late-time dynamics of the universe given a fixed template set
by early-time physics. Keeping the template fixed and only varying it according to late-time
e�ects is an e�ective way to decouple the early-time dependence of cosmological parameters
from the late-time observations. This degree of model-independence goes at the expense
of introducing a certain “modelling systematic”, coming from the fact that the template
used for the analysis may not correspond to the underlying linear matter power spectrum
of the universe.21 It is therefore important to quantify this systematic by studying the
impact of di�erent templates on physical parameter results and this is what this appendix is
dedicated to.

There are two questions we would like to address:

• How do the classic RSD Fit and the ShapeFit compare in terms of template independence
for results on the traditional parameters –Î,–‹ and f‡8.

• What is the degree of template-dependence for the new ShapeFit parameter m.

To answer these questions we perform the classic RSD Fit and the ShapeFit for a
set of 8 di�erent template cosmologies presented in table 5. The “Planck” and “Patchy”
cosmologies are very similar (close to the cosmology preferred by Planck analysis) and have
been introduced already in the main paper, as the “Nseries” parameters corresponding to
the WMAP cosmology. We also use the “X”, “Y”, and “Z” templates, that correspond to
Êm-values extremely di�erent from the “Planck” reference, and a di�erent value of the e�ective
number of neutrino species Ne� in the “Y” case. All these templates have also been used
to study the template dependence of eBOSS results in [72]. In addition, we use templates
generated from the “Om-high” and “Om-low” cosmology, that share the same value of Êm as
“Planck”, but extremely di�erent Hubble parameters h, leading to a very high and a very low
value of �m respectively.

21
As a side-note, this modelling systematic given by the template dependence does not exist in the FM

approach, where the template is varied consistently at each step given the model, by definition. However,

avoiding this systematic goes at the expense of model dependence, as internal model priors need to be adopted.
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Figure 14. Power spectrum templates corresponding to the cosmologies of table 5 (without “Patchy”
cosmology, as it is very similar to “Planck”). In the top row, we show the linear power spectra in
dashed, the 1-loop corrections in dotted and their sum, the non-linear power spectra, in solid lines.
The bottom row shows the power spectrum ratios with respect to the “Nseries” cosmology for either
Plin or Pnl. Left panels show the spectra rescaled in amplitude by ‡8 for better visibility and for the
right panels we applied the early-time rescaling (by the sound horizon ratio) to the spectra, such that
their BAO positions match.

The linear power spectrum templates as well as the 1-loop corrections and the full
non-linear templates are also shown in figure 14 for all cosmologies except for the “Patchy”
cosmology, as it is very similar to “Planck”. From the left panels one can see that the templates
show deviations of up to 50% on large and 20% on small scales. After rescaling them via the
early-time scaling given in eq. (3.2) to match the BAO positions (right panels), the deviations
reduce to 25% and 10%, respectively. One can appreciate, even by eye, that the remaining
disagreement between the templates after rescaling is well described by a slope. This is
precisely the additional degree of freedom that ShapeFit delivers via the parameter m, which
is missing in the classic RSD fit.

Figure 15 shows the posteriors for the northern “ngc_z3” Patchy mocks analysed using
ShapeFit (solid contours) and the classic RSD (dashed contours) using some of the di�erent
templates (displayed in di�erent colours) listed in table 5 as the reference cosmology. In all
cases we set n = 0 and we allow the non-local galaxy bias parameters to vary freely. For each
case the data-vector has been constructed from the mean monopole and quadrupole signals of
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Figure 15. Comparison between templates used for the classic RSD Fit (dashed contours) and for
the ShapeFit (solid contours) on the mean of 2048 Patchy mocks with covariance for the volume of
100 realizations. We show posterior results for the physical parameters subtracted by the expectation,
relative to the error normalized to the volume of a single Patchy mock realization, ≥ 3Gpc3. For
all cases the non-local bias parameters are varied corresponding to the “max” case (see section 4.2
for details).

the 2048 realizations, and the associated covariance correspond to the volume of 100 Patchy

mocks. Each physical parameter, p, is displayed with its expected value, pexp (di�erent for
each reference template) subtracted in such a way that the expected value coincides with 0,
�p = p≠ p

exp. Additionally each �p is divided by the statistical error corresponding to one
single realization of these mocks. As already discussed above, the choice of reporting the
results for an e�ective volume of ≥ 3Gpc3 is motivated by the fact that the Patchy mocks’
accuracy in reproducing the observed clustering properties is not guaranteed much beyond
the limit a�orded by the statistics of a single realization. Moreover we follow the procedure
for template sensitivity presented in [72]. Using ShapeFit over the classic RSD method helps
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Figure 16. Results of compressed variables for all templates (see table 5) used for the classic RSD Fit
and the ShapeFit, in both cases allowing non-local bias parameters to vary (“max” case in table 3). For
each template we show the deviation �p from the expectation of p for �p œ

)
�–Î,�–�,�f‡8,�m

*

divided by the corresponding errors �‡� of each parameter when fitting the BOSS “ngc_z3” sample
using the covariance of a single realization corresponding to a volume of ≥ 3 Gpc3. The classic RSD fit
barely exceeds 0.5 �‡� while ShapeFit is bound below 0.35 �‡� deviations indicated by the grey band.
The last column shows, again in units of �‡�, the template-averaged deviation from the truth

�
��p2�

(represented by vertical histogram-bars) over-plotted with the intrinsic scatter among all templates
‡p,temp (represented by error bars) for each parameter p. It is important to note that the error bars
do not indicate the error on the error, but the statistical spread, while the histogram bar represent the
cumulative systematic bias. Hence, in case there is no systematic deviation, the error bar size is equal
to the histogram height, (as it is the case for �–� and �f‡8.).

to bring the measured value of –Î and f‡8 close to the expected value (�p = 0), removing a
weak systematic residual associated with the reference template choice, which is present for
the classic RSD analysis. –‹ is unbiased for both classic RSD and ShapeFit. The new shape
parameter m does not show any significant bias neither. The deviation with respect to the
expectation remains well below one half of the statistical error-bars expected for a volume of
about 3 Gpc3 even for the extreme case of the templates ‘X’, ‘Y’ and ‘Z’.

Figure 16 presents the displacement of the same physical variables shown in figure 15 in
1-dimensional panels, for the additional cosmologies of table 5, ‘Planck’, ‘Nseries’ and ‘Z’.

In addition, the last column provides a “summary statistic” of all templates to facilitate
evaluating the overall ShapeFit performance. The colored bars represent the “least squared”
deviation

�
��p2� from the truth, where we averaged over all N temp templates
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and the error bars show the intrinsic scatter of the bestfit values with template ‡temp. We can
see that the overall e�ect of ShapeFit on

�
��p2� is rather mild for –Î and –‹, but very strong
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(factor 2 improvement) for f‡8. On the other hand, ShapeFit shows significant improvement
concerning the scatter ‡temp for –Î and f‡8, but not for –‹. Ideally the cumulative systematic
bias (histogram-bars) should not be larger than the statistical scatter (error-bars). Clearly
for –Î this is not the case, but is also not a problem with the adopted compression. We
interpret it as an indication of insu�cient accuracy in the adopted theoretical modelling at
the level below or ≥ 0.25 of one standard deviation. We can thus roughly estimate that, if
the modelling is not improved, such bias may become a concern for volumes of the order of
≥ 40 Gpc3. Considering the individual templates we observe a similar trend as in figure 15:
the visible bias of the classic RSD approach for f‡8 in the X and Y cosmologies as well as
the Om-high and Om-low cases, has puzzled and worried the experts for a while. ShapeFit
helps to reduce the already small template dependence of the classic RSD analysis, even for
extreme cosmologies (such as X, and Y), completely ruled out by CMB observations; even
the parameter m does not show a significant template dependence, although we note that the
error on m may increase for an inappropriate choice of template. We argue however, that this
feature does not have a significant impact on future data analysis, as the extreme templates
studied here are used for testing purposes only.

C Full parameter-dependencies for ShapeFit
For clarity, the main text did not show the full posteriors including both physical and
nuisance parameters. It is however important to study possible correlations between the
shape parameter m and the non-local biases: correlations between nuisance parameters and
the physical parameters of interest may induce systematic biases in cosmological inference
if the modelling of nuisance e�ects is incorrect or if unsuitable priors are imposed on the
nuisance parameters. This is studied in this appendix.

In figure 17 we show the full correlations in all fitted parameters, both physical and
nuisance, for the Nseries case with m free, for the cases of local-Lagrangian (“min”case in
orange contours) and free non-local biases (“max” case in green). For comparison we also
show in purple the classic RSD case for local-Lagrangian.

On the other hand, in figure 18 we show the dependencies for the “min” case when both
m and n are freely varied within ShapeFit (green contours). We note the high correlation
between m and n. This has to do with the intrinsic degeneracy between Êb, Êm and ns

through the slope, which can only be broken by modelling the BAO amplitude and imposing
a strong prior on Êb.

The full parameter degeneracies figures make a crucially important point (as already
anticipated in section 6.2): the power spectrum broadband shape, and hence the slope m,
is very sensitive to bias assumptions, even on large, linear scales. Therefore, we advocate
to always allow maximal freedom for the bias and nuisance parameters in forthcoming data
analyses, especially for FM fits and when the slope m is used for cosmological interpretation.
Of course, this slows down MCMC chains convergence, but ShapeFit has an advantage over
the FM fit, as in the former the fit only needs to be done once, while for the latter it has to
be repeated for any model of choice.

D Impact of rescaling the non-linear template

We investigate the approximation of factorizing the parameter m and s outside the loop-integral
corrections. This approximation is particularly useful because it allows us to pre-compute
all loop-correction terms at a given reference cosmology, but varying the slope, m, and the
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Figure 17. Posterior distribution for the mean of the Nseries mocks corresponding to what is shown
in the left panel of figure 12, but in this case explicitly displaying the dependencies on nuisance
parameters, including the non-local biases. Note the strong correlation between the shape parameter
m and the non-local biases bs2 and b3nl.

BAO-template peak position, s, at each MCMC step. Note that the approximation involving s
has been extensively used in all the ‘classic’ RSD methods using the ‘fixed-template’ approach.

Figure 19 displays the di�erence between the non-linear 1-loop SPT (taking into account
the non-linear bias and TNS terms corrections) exact evaluation of the power spectrum
multipoles and the corresponding rescaling of a reference template evaluated at di�erent
values of s (±0.05, in blue) andm (±0.1, in purple), as it would be used in an actual MCMC run.
Solid/dashed/dotted lines show the di�erence for the monopole/quadrupole/hexadecapole,
relative to the amplitude of the monopole. The rest of nuisance parameters have been set to
values close to the best-fitting case for the Patchy and Nseries mocks. Of course marginalizing
over the nuisance parameters will absorb some of these di�erences (see below).
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Figure 18. Posterior distribution for the mean of the Nseries mocks, corresponding to the “min” case
shown in figure 12 (i.e., when locality in Lagrangian space is assumed), for ShapeFit with only m

varying (in orange contours), and when also n is varied simultaneously to m (green contours). For
comparison, the classic RSD is also shown in purple contours. We note the strong correlation between
n and m parameters.

We see that for both m and s the approximation is better than 2% for k � 0.15hMpc≠1,
and 3% for k � 0.20hMpc≠1. These are actually comparable to the absolute typical errors of
the model adopted in this paper (1-loop-SPT, TNS model, 1-loop bias corrections). The errors
made by factorizing m outside the loop integrals are of the same order as those introduced by
the scaling of the BAO-template peak position, for shifts of m± 0.1 and s± 0.05, respectively.
These small systematics errors are partially absorbed by nuisance parameters, such as b2 and
‡P , and not a�ecting in any significant way the cosmological parameters inference, as it can
be seen from appendix B.
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Figure 19. Systematic errors produced by rescaling the BAO-peak position s and the shape parameter
m in the fixed-template implementation, �P
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monopole, for reference. Blue lines display the e�ect of rescaling s by s = 1± 0.05 and purple lines for
m by m = 0 ± 0.1. Solid, dashed and dotted lines display the e�ect for the monopole, quadrupole and
hexadecapole, respectively. For the kmax = 0.15hMpc≠1 used in this paper, the systematic error stays
always below 2%.

We conclude that the ‘fixed-template’ implementation is a valid approach for both s-
and m-rescaling, and produces systematic errors well within the current systematic error
budget, as they are of the order of systematic errors associated to the theory model itself.
Should the maximum k be pushed so that more non-linear scales are (reliably) included
and constraints shrink significantly compared to the cases considered in this paper, this
approximation may need to be improved. We leave to future work how to do this without
representing a computational bottleneck.
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4
B R I D G I N G T H E D I V I D E

While the previous publication focused on galaxy mocks only, in the
following published letter [3] we show the ShapeFit constraints on the
observed BOSS DR12 LRG dataset. We show that the shape parameter
is indeed sufficient to establish a bridge between the standard (or
"classic") and the full-modeling types of analyses. We also provide a
cosmological interpretation of the shape parameter m in terms of the
scale of equality between matter and radiation, proportional to the
parameter combination keq µ Wmh2 in units of Mpc�1 or keq µ Wmh in
units of Mpc�1h. Based on that, we also show a measurement of the
Hubble parameter h, which is independent of the sound horizon rd.

Furthermore, this work explicitly shows that an erroneous treatment
of observational systematics as well as signals due to unknown physics
in the data (for example scale dependent bias due to primordial non-
Gaussianity) result in biased parameter constrains in FM fits. On the
other hand, ‘ShapeFit’ enables to flag such systematic uncertainties, as
it disentangles the power spectrum shape (encoded in the new ‘shape’
parameter) from the geometrical information (encoded in the other
physical parameters).

This is of particular importance for DESI, considering that espe-
cially during the data collection process (but also beyond) we need to
understand exactly which part of the observed signal leads to which
part of the cosmological constraints. By construction, ShapeFit can
disentangle the different features, which is impossible for FM tech-
niques. On top of that, by using ShapeFit it is sufficient to carry out
a systematic analysis1 only once, as the inferred systematic errors on
compressed variables can be propagated easily to the cosmological
models of choice. When using FM fits on the other hand, all system-
atic checks need to be performed for each cosmological model under
investigation, resulting in a huge burden in terms of computational
resources.

Having mentioned computational resources, it is worth noting that
ShapeFit runs are 30 times faster than state-of-the-art FM fits, since
ShapeFit is template based there is no need to reevaluate the higher or-
der PT kernel inetgrals a each step, and the cosmological interpretation
is based on linear PT only.

The letter [3] is structured as follows. In part I we shortly revisit
the differences between fixed-template and FM methods and how

1 Examples for a thorough analysis of potential systematics can be found in the official
BOSS and eBOSS collaboration papers of each tracer, e.g. [58, 68–72]. These works
include careful studies on mocks of how a variety of analysis assumptions impact the
results on compressed parameters.
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ShapeFit can bridge the two. This is shown explicitlely on BOSS data
in part II and figure 1, where the additional information coming
from m is displayed in part III and figure 2. Part III (in particular
figures 3 and 4 therein) also features two examples where unknown
observational or modeling systematics result in biased cosmological
parameters for FM. But in case of ShapeFit these are purely absorbed
by m, hence providing a robust diagnosis tool for detecting spurious
yet unknown effects before reaching the step of model-interpretation.
Conclusions and final remarks are provided in part IV.
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The traditional clustering analyses of galaxy redshift surveys compress the clustering data into a set of
late-time physical variables in a model-independent way. This approach has recently been extended by an
additional shape variable encoding early-time physics information. We apply this new technique,
ShapeFit, to SDSS-III BOSS data and show that it matches the constraining power of alternative,
model-dependent approaches, which directly constrain the model’s parameters adopting a cosmological
model ab initio. ShapeFit is ∼30 times faster, model independent, naturally splits early- and late-time
variables, and enables a better control of observational systematics.
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I. LARGE SCALE STRUCTURE CLUSTERING:
INTERPRETATION

The traditional clustering analysis of large-scale struc-
ture (LSS) galaxy redshift surveys is done by compressing
the power spectrum data products into physical variables in
a largely model-independent way. These are the well-
known Alcock-Paczynski (AP) scaling factors α⊥, αk [1]
and the amplitude of velocity fluctuations, fσ8 [2,3]. The
AP scaling factors are obtained by observing the standard
ruler provided by the baryon acoustic oscillation (BAO)
feature. The amplitude of velocity fluctuations is obtained
from the redshift space distortion (RSD) signal, which
manifests itself as the modulation of clustering amplitude in
redshift space as a function of the angle from the line of
sight. This provides a powerful compression: from power
spectrum multipoles as function of scale and redshift, to
three quantities, the physical variables, per redshift bin.
These are the physical variables that are then compared to
theory predictions, within a given cosmological model, to
constrain the numerical values of the model’s parameters.
The value of this classic approach lies in the fact that the
model dependence is introduced only at the very end of the
process, leaving most of the analysis as model independent
as possible. In addition, this approach nicely disentangles
information of the late-time universe from that of the early-
time universe, which is particularly valuable for going

beyond simple parameter fitting and pursuing ways to test
the model and its underlying assumptions. It has a draw-
back, however: the compression is not lossless. Its target is
robustness, but this comes at a cost.
This approach is conceptually different from the way in

which, for example, cosmic microwave background (CMB)
data are routinely analyzed. The CMB maps are com-
pressed into angular power spectra (as done for galaxy
clustering), but then these are directly used to constrain the
values of the parameters of an adopted cosmological
model. The so called “physical parameters” for the
CMB were actually proposed in [4]. The original goal
was to accelerate cosmological inference from CMB data,
and some of these parameters are still employed to date for
the computational speed-up they yield. But, in reality, the
physical parameters capture phenomenological signatures
of physical processes, and can then be interpreted a pos-
teriori in terms of constraints on cosmological model
parameters. The use of physical parameters in CMB
analysis to produce model-independent constraints [5,6]
and further compress CMB observations is not mainstream,
at least in part, for two reasons. The CMB gives us a
snapshot of the photon-baryon plasma at recombination, so
is located at a single cosmic epoch; moreover, CMB
photons must cross the entire Universe from the last
scattering surface to z ¼ 0, making it difficult to disen-
tangle early-times physics signatures from late-times ones
(but see [7,8]).
The galaxy power spectrum can also be interpreted in a

way completely analogous to the way the CMB is analyzed.
The development of relatively fast (significantly faster than
N-body simulations) modeling techniques for the nonlinear
galaxy power spectrum (e.g., effective field theory, EFT)
has made this “full modeling” (FM) possible over the past
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couple of years ([9,10] and references therein). It became
quickly apparent that this newer approach produces much
tighter constraints on cosmological parameters than the
classic (compressed-variables based) approach, if galaxy
clustering is analyzed without external datasets, or strong
external priors. On the other hand, in a joint CMBþ LSS
analysis (e.g., [11]) the two perform very similarly.
However, there is significant value in analyzing and

interpreting galaxy clustering alone, especially not in
combination with early-time probes. Separate analyses of
observations of disparate epochs of the Universe are key to
shed light on recent cosmological tensions (e.g., [12]),
and propose explanations in terms of deviations from the
standard cosmological model (e.g., [13]).
Until very recently, the extra signal responsible for the

spectacular improvement provided by the FM approach was
not well understood. However [14] showed that a simple,
one (phenomenological) parameter extension of the classic
approach, ShapeFit, can capturemost of this extra signal and
provides the same statistical power within a flat-ΛCDM
model. The compression that ShapeFit provides is nearly
lossless for models that are effectively described, or well
approximated, by wCDM-like models or simple variations
of the CDMmodel at horizon scales at early times.While the
classic approach (and ShapeFit) relies on a template for
compression, it has been extensively demonstrated that the
choice of the cosmological model necessary to create the
template is unimportant, does not constitute a model prior
and does not produce any significant systematic shifts under
the correct interpretation of their physical variables [14–16].
In the classic RSD fit, at a given redshift bin z, the full

power spectrum multipoles, PðlÞðk; zÞ, are compressed in
just three physical variables sensitive to late-time physics
only. These are two background-level variables that
describe the cosmic expansion in units of the standard
ruler, αkðzÞ and α⊥ðzÞ (see Sec. 2.4 of [14]); and a
perturbation-level variable that describes structures growth,
fσ8ðzÞ. The extra information that the classic RSD neglects
(and that the FM captures) is related to the shape of the
transfer function. In addition to a more appropriate defi-
nition of velocity fluctuations fσs8, ShapeFit introduces a
new variable m [see Eqs. (3.5), (3.6) and (3.12) of [14] for
definitions] which captures very well the bulk of themissing
information. The physical interpretation of this m-variable
is not any late-time physics phenomenon, but a series of
early-time processes which modulate the broadband shape
of the power spectrum (and the matter transfer function).
Hence, ShapeFit can be used to bridge the classic and

FM approaches. The connection lies on making explicit and
enforcing (or removing) a key “internal model prior” which
ties together early- and late-time compressed variables (see
[14]). While the compressed physical variables are model
independent, the internal model prior connects the signa-
ture of early-time physics on the clustering signal on large
scales, to the standard ruler signature constraining the

late-time geometry and the redshift space signature of
kinematics on the clustering.

II. APPLICATION TO SDSS-III BOSS DATA

We employ the luminous red galaxy (LRG) samples of
the SDSS-III BOSS survey [11], covering two nonoverlap-
ping redshift ranges: 0.2 < z < 0.5 (effective redshift
0.38), containing 604,001 galaxies; and 0.5 < z < 0.75
(effective redshift 0.61) containing 594,003 galaxies. As
done in BOSS official papers, we treat these two redshift
samples as uncorrelated. The effective volume traced by
these two samples is 3.7 and 4.1 Gpc3, respectively, for a
total effective volume of 7.8 Gpc3.
This same dataset yields very different cosmological

constraints when it is analyzed using the classic approach
or the FM fit (see e.g., Fig. 2 of [14] gray contours for
classic RSD alone, orange when BAO postreconstruction
information is added, blue for FM fit). Both approaches
yield very similar constraints when combined with a CMB
prior (e.g., Planck; see the right panel of Fig. 2 in [14]), as
this type of prior effectively fixes the early-time physics
information enclosed in the broadband shape.
In what follows, parameter constraints are obtained with

a standard Markov chain Monte Carlo (MCMC) posterior
sampling [17]. The modeling of the clustering signal
follows [9,14] and employs the Boltzmann solver [18]
including the EFT extension from [19]. The left panel of
Fig. 1 displays the constraints on the late-time universe
physical variables fαk; α⊥; fσ8g obtained by the classic
RSD analysis (dashed black contours) and by ShapeFit
analysis, with the extra early-time universe parameter m
(green contours), when both are applied to the high-redshift
bin of BOSS.
The constraints on the three late-time universe physical

parameters are not significantly modified by the addition of
m as a free extra variable, as m is essentially uncorrelated
with them. The small correlation between m and, e.g., fσ8
of −0.3 leads to only 5% increase in errors.
The posteriors of the left panel of Fig. 1 have been

obtained without any strong model assumption [20], and
hence are easily interpretable within a wide set of cosmo-
logical models. This model-interpretation process essen-
tially places “internal model priors” among the physical
variables, connecting them with the internal parameters of
the assumed model. This is shown by the green contours of
the right panel of Fig. 1. The ShapeFit contours of the left
panel (and additionally another set of four parameters at the
low-redshift bin, zeff ¼ 0.38) are interpreted within a flat-
ΛCDM model with a Gaussian big bang nucleosynthesis
(BBN) prior ωb ¼ 0.02268% 0.00038 [9,21–23]; the
resulting posteriors for fωcdm;Ωm; h; σ8g are drawn. The
constraints obtained by directly fitting the PðlÞðk; zÞ shape
on the same range of scales under the FM approach using
EFT theory to describe the PðkÞ modeling are shown in
blue. Note the spectacular agreement between both

BRIEDEN, GIL-MARÍN, and VERDE PHYS. REV. D 104, L121301 (2021)

L121301-2



approaches, especially considering that the green contours
are obtained from just eight variables (the four physical
variables, fαk; α⊥; fσ8; mg at two redshift bins), while blue
contours are for 224 PðlÞðk; z) measurements (28k-bins
measurements for two multipoles, two redshift bins, and
two galactic hemispheres). Another advantage of ShapeFit
over the FM approach is computational time. Once the
compressed variables are extracted (since this step is model
independent it has to be done only once) the model fitting is
very fast: one model evaluation on a single-core is 8 times
faster than the FM run. As the cosmological interpretation
of ShapeFit parameters is done without any nuisance
parameters and due to the much simpler likelihood surface,
an MCMC needs 5–10 times fewer sampled points than the
FM method for the same level of convergence. ShapeFit
yields an overall speed-up factor of 40–80.

III. THE POWER OF THE SHAPE VARIABLE

Figure 2 shows the cosmological constraints for a
standard flat-ΛCDM model, obtained from the low- and
high-redshift BOSS samples using different sets of physical
compressed variables. Gray contours arise from the classic
RSD analysis using fαkðzÞ; α⊥ðzÞ; fσ8ðzÞg, red contours
from the ShapeFit analysis, but only using mðzÞ; green
contours represent the ShapeFit analysis using the full
combination of four physical variables per redshift bin

(as for the right panel of Fig. 1). The transparent contours
are for a broad uniform prior, 0.005 < ωb < 0.04, the
opaque contours for the Gaussian BBN prior. Note that
relaxing the prior does not significantly affect the 1D
posteriors measured by the classic RSD and m-only fit, but
broadens the ShapeFit result on Ωmh by a factor ∼2.5.
The choice of parameters shown, fΩmh; hrs;ωcdm;ωbg,

highlights the complementary between the late- and the
early-time physical variables. The BAO signal naturally
constrains hrs [24], whilem constrainsΩmh, as this variable
is directly governing the shape of thematter transfer function
via matter-radiation equality epoch. The relation between m
and Ωmh is well approximated by the following fitting
formula valid in the range 0.1 < Ωmh < 0.35:

Ωmh
Ωref

m href
¼ 0.13m4 þ 0.53m3 þ 0.86m2 þmþ 1: ð1Þ

Within a ΛCDM model, the purely late-time (uncali-
brated) expansion history constrains the ratio αk=α⊥ (also
the relative isotropic signals among z bins). This can be
used to measure Ωm, which is particularly well constrained
when low- and high-z samples are combined (see Fig. 5 of
[15]). In combination with the Ωmh constraint provided by
m, it is thus possible to produce a measurement ofH0. Note
that, in spite of coming from galaxy clustering measure-
ments, such measurement of H0 is not arising only from

FIG. 1. Left panel: compressed physical parameter posteriors derived from power spectra measurements of the BOSS high-redshift
sample, zeff ¼ 0.61 (constraints from the low-redshift sample show a very similar behavior). Black dashed contours display the classic
RSD results, while novel ShapeFit results are shown in green. In both cases the one-loop standard perturbation theory has been used to
model the monopole and quadrupole signals for 0.01 ≤ k½hMpc−1' ≤ 0.15. Right panel: posteriors derived from low- and high-redshift
samples of BOSS using the same scale cuts as in the left panel. The blue contours correspond to the FM approach when a flat-ΛCDM
model (þBBN Gaussian prior on ωb) is directly fitted to the 224 power spectra multipoles bins, PðlÞðk; zÞ, using EFT to model the
power spectrum. Conversely, green contours are drawn from the eight compressed physical variables of ShapeFit, interpreted under the
same cosmological model as for the blue contours.
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late-time processes, but from a combination of early- and
late-time universe physics. Following this procedure we use
the Ωmh measurement from the m-only analysis of BOSS
LRGs data for 0.2 ≤ z ≤ 0.75 (red contours of Fig. 2,
Ωmh ¼ 0.220þ0.029

−0.019 , without the BBN prior on ωb), with
the Ωm constraint from the uncalibrated BAO of the full
BOSSþ eBOSS sample:Ωm ¼ 0.299% 0.016, see Table 4
of [15], which includes clustering measurements of low-
redshift galaxies, LRGs, emission line galaxies, quasars
and Lyman-α emission lines (or Ωm ¼ 0.330% 0.037
without Lyman-α). The Ωmh and Ωm measurements are
considered uncorrelated as they come from different
physical effects and different scales (m is almost uncorre-
lated with standard BAO variables, left panel in Fig. 1). We
find H0 ¼ 73.6þ10.5

−7.5 (or H0 ¼ 66.7þ12.1
−10.1 without Lyman-α,

where the change is solely driven by the determination of
Ωm), independent of any prior on ωb, or the absolute length
of the BAO standard ruler. We also report the value of H0

obtained from applying ShapeFit to the LRG sample in
combination of a BBN prior on ωb (this is what is shown in
the right panel of Fig. 1): H0 ¼ 66.0þ2.0

−1.7 .
To quantify the impact of the known imaging systematics

on cosmological constraints we repeat the above analysis
by setting the systematic weights to unity in the BOSS
catalogs (i.e., no correction for imaging systematic effects).
As shown in Fig. 3 the scaling parameters and fσ8 are left

largely unchanged while m is affected by a shift of about
2.4σ. Not unsurprisingly, m “absorbs” systematic effects
such as seeing, completeness or extinction angular depend-
encies: late-time physics constraints from clustering mea-
surements are significantly more robust than early-time
physics constraints.
Finally, the advantage offered by a model-independent

approach like ShapeFit can be appreciated by devising a
situation where the internal consistency check fails.
It is well known that a primordial non-Gaussianity of the

local type induces a scale-dependent bias in the clustering
of biased tracers, which is important at very large scales
[25,26]. This scale-dependent bias correction is propor-
tional to the linear bias, the non-Gaussianity parameter fNL
and has a scale dependence ∼1=k2, hence a leakage of this
signal intom can be expected. We forecast the performance
of ShapeFit and FM by generating mock power spectrum
monopole and quadrupole signals according to two-loop
resummed perturbation theory, and analyzing it as done for
the BOSS NGC 0.5 ≤ z ≤ 0.75 data with the same covari-
ance matrix. For choices of bias parameters consistent with
the bias of BOSS galaxies (b ∼ 2.2), the effective redshift
of BOSS and including only k > 0.01h Mpc−1, we find
that a fNL ¼ %60 induces a change in m of Δm ¼ ∓0.08
or, in general (linear response validated also for intermedi-
ate values), Δm ¼ −0.0013fNL, leaving all other physical
parameters unaffected. This is shown in the left panel of
Fig. 4: the presence of nonzero fNL does not bias the
recovery and cosmological interpretation of αk, α⊥ and fσ8.

FIG. 3. Effect of turning on and off the imaging systematic
weights of BOSS data: for ShapeFit in its compressed set of
physical variables (upper panels); and for the FM fit in the Ωm −
ωcdm plane (lower panel). For ShapeFit fσ8 and αk;⊥ are barely
affected by this correction, whereas m absorbs most of the effect;
for FM fit, ωcdm and Ωm are significantly biased.

FIG. 2. Interpretation within a flat-ΛCDM model with a
Gaussian BBN prior on ωb (opaque contours) and without
(transparent contours), of different physical variable constraints
from the low- and high-redshift BOSS samples. Gray corre-
sponds to classic RSD analysis based on late-time variables,
fαkðzÞ; α⊥ðzÞ; fσ8ðzÞg, red corresponds to the early-time shape
variable mðzÞ only, and their combination based on the ΛCDM
internal model prior is shown in green.
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The right panel of Fig. 4 shows the effect on ωcdm and
Ωm (other cosmological parameters are unaffected) of
applying the FM pipeline to the same datasets containing
a primordial non-Gaussian signal. Since the FM analysis
avoids the compression step, the bias induced by fNL
directly propagates into model parameters, without the
possibility to diagnose where the signal actually comes
from, as it is the case in the ShapeFit approach. This
indicates that in the presence of nonzero fNL, a FM analysis
assuming Gaussian initial conditions would recover biased
results for Ωm and ωcdm. The difference in χ2 estimation
between the fit for fNL ¼ 0 and that for fNL ¼ 60 is Δχ2 ¼
5 for FM (54 data points, ten parameters), indicating that a
“goodness-of-fit” test relying on χ2 values would not be
enough to signal any issue.
It is important to note that the scale-dependent bias

effect of fNL is usually considered negligible at scales
k > 0.03hMpc−1, hence the leakage of fNL on m for
ShapeFit and the shift in ωcdm and Ωm for FM, is expected
to become significantly more important for survey volumes
that probe scales k < 0.01hMpc−1 not included here.

IV. CONCLUSIONS

For the BOSS dataset the shape parameter efficiently
captures the extra information that FM approaches deliver.
ShapeFit, by working in terms of the compressed variables,
has essentially three main advantages over FM.

A. Model independence and computing time

Once constraints on the physical variables are obtained
they can be interpreted within multiple cosmological

models at minimum computational cost. On the other
hand, the full modeling approach requires to rerun the full
analysis for each new choice of cosmology.

B. Physical insight

The physical variables are naturally directly related to
specific physical processes that happen in the Universe at
different epochs. The scaling factors and the growth of
perturbations are sensitive only to the late-time physics of
the Universe. The shape parameter captures the shape of the
power spectrum on large scales (∼ to the horizon size at
z≳ 1000) which contains signatures of early-time physics.
For a given cosmological model the early- and late-time
effects are intrinsically related, which

(i) sets an internal model-prior implicit in the full model
approach but made explicit in the ShapeFit;

(ii) the early- and late-time physical variables can be
used to perform a powerful consistency test of the
cosmological model.

C. Systematics control

The ShapeFit analysis (as well as classic) naturally
separates the cosmological information into variables
which have very different systematic budgets. The BAO-
inferred signal has been shown to be extremely robust to
theoretical and observing systematics, with a conservative
error budget for state-of-the-art measurements of ≲1%
[27]. The amplitude of velocity fluctuation can suffer from
imaging and spectroscopic systematics if these are not
exquisitely taken into account. The current estimate for this
systematic budget is ≃2% [28]. The shape parameter can

FIG. 4. Systematic bias caused by ignoring in the modeling a fNL signal which is present in the data vector. In this case we have
imprinted a mock fNL ¼ %60 signal, which is represented by red and blue contours. For ShapeFit (left panel) this systematic effect only
impacts the shape parameter m leaving fσ8 and the scaling parameters unaffected. For the FM fit (right panel) it biases both
Ωm and ωcdm.
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severely suffer from observational large-scale systematics
(e.g., extinction, seeing, completeness). For BOSS data
we quantify that the known imaging systematic produces a
∼2.4σ shift in m if not corrected. On the other hand, it
absorbs nonstandard early-universe physics signals and
prevents them to leak into and bias the determination of
late-time parameters shaping the expansion/growth history.
We envision that the connection between the physical

variables proposed by ShapeFit and the full modeling
approach will provide a transparent bridge between model-
independent and model-dependent interpretation of forth-
coming galaxy redshift surveys and a direct physical
understanding of their clustering results.
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5
P T C H A L L E N G E : VA L I D AT I O N O F S H A P E F I T

In the publication of this chapter [4], we demonstrate the robustness of
Shapefit by applying it to the blind PT challenge initiated by [83]. The
challenge setup and our main cosmological results submitted blindly
to the challenge initiator can be found at the website [88].

For our baseline result, labeled "SIM-like", we chose the same setup
(prior knowledge on shotnoise, fitted k- and `- range, order in PT,
number of free bias parameters) as the one chosen in the baseline
FM analyses of [83]. And comparable to their case, we recover all
the varied cosmological parameters

�
Wm, h, ln(1010As)

 
well within

2s, with identical1 precision as for the other participants which used
the FM technique. Note that, the statistical error bars are obtained
from the covariance corresponding to the volume of the 10 stacked
realizations, 566 Gpch�1. This volume is 10-20 times larger than the
volume probed by future galaxy surveys such as DESI.

In addition to this remarkable result, the work presented here con-
tains another important lesson. It explicitely shows that systematics
present in either the modeling or in the data may only be spotted at
the model-agnostic compression step and remain largely unnoticed
if the model (in this case LCDM) is chosen a priori. In this particular
case, we show that the inclusion of the hexadecapole (cases labeled
"DATA-like") leads to a bias of up to 4s at the level of compressed
variables, while showing apparently phenomenal ⇠ 1s agreement at
the level of LCDM parameters.

Of course, in an ideal case (such as the PT challenge case), the
systematic effect of the hexadecapole unveils itself also in the model-
dependent analysis through the c2 statistic. In fact, this issue was
already discovered in [83], which is why the hexadecapole was not
included in their baseline analysis in the first place. Nevertheless, we
argue that for real data it might be dangerous if the only applicable
diagnosis tool for unknown systematics consists of the c2-test. This is,
because the error bar estimation might not be optimal or even biased
and hence obscure the c2 estimation. The ShapeFit methodology, on
the other hand, by construction allows for another layer of consistency
check before the model-interpretation step. In this spirit, ShapeFit
delivers a reliable basis for studying the impact of systematics.

Finally, we also provide a new type of analysis on mocks, where we
split the different mock realisations over redshift, which allows for a

1 Of course there is some scatter in constraining power among the participants, but in
general the ShapeFit error sizes match those in order of magnitude.
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more realistic scenario, in which also actual the redshift evolution of
real data is taken into account.

The publication is structured as follows. After introducing the PT
challenge setup (section 2) and summarizing ShapeFit (section 3), we
provide an overview of the methodology and different runs in section
4. We present the main result in section 5 and show additional tests
including variations from the baseline in section 6. We introduce the
split of realisations among redshift bins and present corresponding
results in section 7 before we finally conclude in section 8.

All in all, this work is an important milestone on the road towards
establishing ShapeFit as a robust tool for the DESI main analysis
pipeline.
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parameters within a given model.
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1 Introduction

With the advent of precision cosmology, our lack of understanding of the nature of the dark
components of the Universe (dark matter and dark energy) has been and continues to be the
main science driver for galaxy redshift surveys of increasingly large cosmological volumes.
The global e�ort of mapping the large scale structure (LSS) with high fidelity and over large
cosmic volumes of the Universe continues to provide data sets of unprecedented statistical
power, and ever more stringent constraints on cosmology [2, 3]. It is therefore of fundamental
importance to have accurate theoretical modeling for the key summary statistics which can
then be confronted to those measured from these surveys. As the statistical errors shrink
with the larger cosmological volumes mapped, systematic errors introduced by the theoretical
modeling should be kept under exquisite control. In this spirit, the authors of [1] launched
the (blind) PT challenge, where PT stands for “perturbation theory”. This is a N-body mock
challenge, initially used to (blindly) test E�ective Field Theory of Large Scale Structure
(EFTofLSS); the — still blind — simulations outputs were subsequently made available to
the community and several other groups have participated to the challenge with their own
theoretical modeling approaches and implementations.

To date, all the entries to the challenge have adopted modeling methodologies that fall
under the “full modeling” (FM) approach, in the terminology of [4]. This approach follows
the same philosophy as the analyses of Cosmic Microwave Background (CMB) data: the
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maps are compressed into power spectrum summary statistics (a compression that is nearly
lossless for CMB, and would be nearly lossless for LSS in the fully linear regime) and these
quantities are directly compared to theory predictions for a given cosmological model to
constrain the model’s parameters.

But this is not the main way clustering analysis of LSS galaxy redshift surveys has
been carried out for the past ≥15 years, which refs. [4, 5] refers to as “classic”. In contrast
to FM, the “classic” clustering analysis is done by first compressing the power spectrum
data into physical variables — the Alcock-Paczynski (AP) scaling factors and the amplitude
of velocity fluctuations — and then interpreting the physical variables in light of a model.
The advantage of this “classic” approach is that the (cosmological) model-dependence is
introduced at the very end of the process, at the interpretation stage, leaving most of the
analysis as model-independent as possible. It also o�ers a simple way to disentangle late-
time physics information from that coming from the early Universe. The compression aims
at isolating the part of cosmological signal which information-content is least a�ected by
systematics (see e.g., [6–9]), for this reason called BAO+RSD, where BAO stands for baryon
acoustic oscillations and RSD by redshift space distortions. This, however comes at a cost:
the compression is not lossless. By emphasising robustness and accuracy over precision, the
“classic” compressed variables approach produces less stringent constraints on cosmological
parameters than the FM approach, especially in the (minimal, flat) �CDM model.

Refs. [5] and [4] shed light on the origin, localization and physics of extra signal respon-
sible for the spectacular improvement in cosmological parameters constraints provided by
the FM over the “classic” approach. A simple, one-parameter phenomenological extension of
the “classic” approach was hence proposed: ShapeFit. It has been shown that ShapeFit can
capture most of the FM extra signal and that it provides virtually the same statistical power
in terms of cosmological parameter constraints. In [4], ShapeFit was applied to the BOSS
DR12 data and its performance compared to that of the FM approach of a specific imple-
mentation of the EFTofLSS by [10]. In this paper we present the application of ShapeFit to
the PT challenge. While the application to real data presented in [4] o�er a well-rounded
test, because real survey data include a whole suite of real-world e�ects, the sheer combined
volume of the PT challenge reduces the statistical errors to a point that they become negligi-
ble (its volume is an order of magnitude larger than that of the forthcoming galaxy redshift
surveys [11]) and clearly surfaces any residual modeling systematics. This is the added value
of the results presented in this paper.

The rest of the paper is organized as follows. In section 2 we give a brief overview of
the PT challenge set-up. In section 3 we review the “classic” and FM approaches, motivating
ShapeFit and its advantages over “classic” and FM; we briefly describe the ShapeFit com-
pression and its cosmological interpretation. In any of these analyses several di�erent choices
are possible in terms of priors, freedom given to nuisance parameters, and various (simulated)
data cuts. Section 4 presents the di�erent choices (set-ups) we explored and motivates our
two baseline set-up which results were submitted to the PT challenge. This section also in-
cludes an explanation on how to transform (cosmological) model-independent constraints on
the physical variables to constraints on the value of the cosmological parameters of a specific
model (e.g., �CDM). The main results are presented in section 5 where we also compare
the performance of ShapeFit with that of FM in one implementation of EFTofLSS, while
section 6 reports results for the other set-ups and serves to illustrate the sensitivity of the re-
covered constraints to various assumptions and modeling choices. Because the single redshift
output set-up is highly idealized, in section 7 we present results for a more realistic scenario
where di�erent redshift bins are co-analyzed. Finally, we conclude in section 8.
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2 (Blind) PT challenge set-up

The blind PT challenge was designed by [1] with the aim to provide a controlled means of
testing and benchmarking theoretical models for summary statistics of galaxy redshift sur-
veys with a particular focus on each model’s or approach’s ability to recover and constrain
cosmological parameter within �CDM. For that purpose, they carried out a suit of simula-
tions consisting in 10 realizations (which we will later refer to as # 1,. . . , 10, each of these
representing a di�erent realization of the initial conditions at a given cosmology) in cubes
of comoving side length 3840

#
h
≠1Mpc

$
with 30723 particles, where the 3 input �CDM pa-

rameters, �m, As and H0, were randomly selected from a Gaussian probability distribution
centered at the Planck fiducial cosmology with a width of 4‡ of the Planck experiment. These
randomly drawn values (which are the same for the 10 simulations) were kept secret (blind)
and not known to us or any of the participants. Other cosmological parameters such as the
primordial tilt and the baryon-to-matter ratio were fixed to �b/�m = 0.1571 and ns = 0.9649.

From the simulation output, galaxy mock catalogs were generated using the Rockstar

halo finder [12] and a Halo Occupation Distribution (HOD) description roughly matching
BOSS galaxy data. The mock catalogs of the 10 simulations were produced for three snap-
shots at redshifts z1 = 0.38, z2 = 0.51, z3 = 0.61 each, all coming from the evolution of the
same initial conditions and therefore, not independent.

Power spectra were measured from the actual galaxy positions in redshift space. The
AP distortion is later included by re-defining the k-vectors and the line-of-sight (LOS, con-
stant throughout the box) assuming a fiducial cosmology with �fid

m = 0.3 (see section III-C
of [1] for details). The Poissonian shot noise term was measured and subtracted from the
signal. The authors of ref. [1] made public the measured power spectra monopole, quadrupole
and hexadecapole for each simulation and each snapshot and the corresponding covariance
matrix [13]. The covariance matrices are provided for two di�erent scenarios: one to match
the volume and number density of BOSS data, and the other one corresponding to the sim-
ulation volume and density itself. In both cases the covariance was estimated analytically;
the correlation between di�erent multipoles ¸ at same wave-vector k is nonzero, and the cor-
relation between adjacent k-bins is ignored. Moreover, the covariance matrices are provided
individually at each snapshot and do not include any correlation among redshift bins.

Several groups have already participated in this challenge and presented their — blindly
obtained — results. Already in the initial paper by [1], results were presented by the so called
“east coast” and “west coast” teams who validated their implementations of the E�ective
Theory of Large Scale Structure (EFTofLSS) based on their works [10] and [14], respectively.
This was followed by [15] who used the PT challenge public material for testing their imple-
mentations of MONE, REPT and LPT [16]. Finally, [17] participated in the challenge using
a halo-model based emulator. Participants have kept the challenge blind for the community
by publishing their results (after unblinding) only as di�erences between input and derived
parameters values.

3 ShapeFit

3.1 Motivation
The ShapeFit methodology provides a bridge between the classic BAO+RSD approach and
the FM approach: by extending the classic fixed template fit with one extra e�ective param-
eter which captures most of the information that the classic BAO+RSD approach neglects;
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ShapeFit has been shown to match well the FM constraining power while retaining the ad-
vantages of a model-agnostic compression [4]. The advantages that the ShapeFit compression
o�ers include being:

• easy to implement, because it relies on the standard BAO+RSD analysis requiring only
minimal modifications to existing pipelines.

• easy to interpret, as the compressed parameters have an intuitive physical meaning,
easy to access via analytical formulae and/or Boltzmann codes.

• very fast, because -as a fixed template method- it does not need calls to Boltzmann
and PT codes at each evaluation step.

• computationally cheap, as it only requires a minimal set of runs for a given analysis,
that do not need to be repeated for each cosmological model under investigation.

• conveniently practical due to the reduced number of degrees of freedom (four cosmol-
ogy parameters per redshift bin) with respect to the full n-point statistics dataset
(O(100)). This eases massively the requirements on the number of mock catalogs
needed to estimate correctly the inverse covariance matrix [18–20] in a combined pre-
and post-reconstruction analysis of a real survey with overlapping redshift bins.

• robust, as it makes explicit how each physical observable correlates with systematic
uncertainties.

• highly modular, as the cosmological implications of each observable can be studied
independently.

In what follows, we summarize the most important ingredients of ShapeFit as applied to
the blind PT challenge in two steps. First, we explain the compression step based on the fixed
template (or standard ruler) method and second we explain how to interpret the compressed
parameters in terms of cosmological models. For a more comprehensive description we refer
to ref. [5], and in particular its figure 5 for a complete overview.

3.2 The ShapeFit compression
The first step in the ShapeFit pipeline consists of computing the non-linear galaxy power
spectrum in redshift space for a fiducial cosmology. This process is standard to most pre-
viously employed BAO+RSD or “Full Shape” template fits. The linear power spectrum
template is generated with the publicly available with CAMB [21] code using the CAMB
parameter file provided at the PT challenge website [13]. Since this file does not contain
information on the blinded parameters values, we choose hfid = 0.676, Afid

s = 2.05◊10≠9 and
�fid

m = 0.3. The choice of �fid
m is motivated by the fact that the same value is used by ref. [1]

for the AP distortion, while our choices for hfid and A
fid
s are arbitrary.

Next, we compute the perturbation theory (PT) kernels corresponding to the adopted
linear template. In this work we test two PT models: one-loop Standard Perturbation Theory
(1LSPT, see [22]) and two-loop Renormalized Perturbation Theory (2LRPT, see [23]). Both
models incorporate four bias parameters describing the connection between dark matter and
galaxy density fluctuations in real space: the first and second order biases, b1 and b2 [24], and
the non-local biases, bs2 and b3nl [25]. The latter are often assumed to follow the local La-
grangian relations [26–28], bs2 = ≠4/7(b1≠1) and b3nl = 32/315(b1≠1), establishing a direct
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link between the non-local biases and (b1≠1). But these relations are motivated by theoreti-
cal considerations on the dark matter to halo connection, which does not necessarily translate
equivalently into the dark matter to galaxy connection. Therefore, we may later relax this
assumption in certain occasions. Our adopted redshift space formulation is based on [29] and
extended by the TNS model [30] including a Lorentzian Fingers-of-God (FoG) suppression
term parametrized by ‡FoG. In addition, our model allows for a shot noise term whose ampli-
tude coe�cient is Anoise (see [31] for details) providing a correction which captures possible
deviations from Poissonian statistics. Since shot noise is well under control in this idealized
application, we employ a tight Gaussian prior Anoise = 1.00±0.01 by default, similar to [1]. In
a practical application, however, it is common (and recommendable) to allow for deviations
from Poissonian shot noise, which can lead to additional parameter degeneracies, which,
if non-Gaussian in a high-dimensional parameter space, can appear as mild biases when
marginalization e�ectively projects them in a lower-dimensional parameter space. Hence we
also study the impact of relaxing this prior allowing for a width of up to 30%, 1.00±0.30. To
summarize, so far we introduced six parameters per redshift bin {b1, b2, bs2, b3nl,‡FoG, Anoise}

representing our nuisance parameters ◊nuis (where di�erent priors/relations between them
are possible as explained above and as explicitly adopted later on).

As common to other standard BAO+RSD template fit pipelines, the precomputed non-
linear galaxy power spectrum in redshift space (plus modifications due to ◊nuis) is in parallel
modified by a set of physical parameters per redshift bin ◊phys =

Ó
–Î,–‹, f,m

Ô
defined in the

following. The scaling parameters –Î and –‹ add the degree of freedom of a distance dilation
along and across the line of sight respectively. The growth rate f allows for a variation in
anisotropy that enters our adopted RSD prescription. Finally, the slope m -the new ShapeFit
ingredient- is applied to the linear power spectrum a posteriori to e�ectively parametrize a
slope variation at the pivot scale kp, at which the slope between its large scale and small
scale limits reaches its maximum. In practice, this is achieved by multiplying the fiducial
linear power spectrum template with the exponential of a generic sigmoid function

P
fid

lin

Õ(k,m) = exp
A
m

a
tanh

C

a ln
A
k

kp

BDB

· P
fid

lin (k) (3.1)

and replace P fid

lin
(k) by P

fid

lin

Õ(k) in each term that depends on the linear power spectrum.As
in [5], we set a = 0.6 and kp = 0.03

Ë
hMpc≠1

È
motivated by the analytic Eisenstein and Hu,

1998 (EH98) formula [32, 33].

3.3 The cosmological interpretation

Let us now review the physical meaning and interpretation of the physical parameters ◊phys

to guide their interpretation in terms of cosmology.
It is important to keep in mind that, in the context of the fixed template approach, the

scaling parameters –Î,–‹ do not probe the absolute distance scale but rather the relative
distance with respect to the standard ruler. This standard ruler is given by the sound horizon
at radiation drag, rd, which sets the scale of the linear power spectrum template. The length
of the standard ruler is set by early-time physics and can be constrained by early-time physics
observations when interpreted within a cosmological model for the early Universe. From
late-time observations, such as LSS, and without early-time physics assumptions, the length
of the standard ruler is not known. Therefore, the scalings –Î,–‹ are interpreted as the
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ratio between the underlying (“true”) distances DÎ, D‹ and the fiducial distances Dfid

Î , D
fid

‹
respectively in units of the standard ruler rd,

–‹(z) = DM (z)/rd
D

fid

M
(z)/rfid

d

, –Î(z) = DH(z)/rd
D

fid

H
(z)/rfid

d

, (3.2)

where the distance DÎ along the LOS is the Hubble distance DH(z) = c/H(z), the distance
D‹ across the LOS is the comoving angular diameter distance DM (z) =

s
z

0
c/H(zÕ)dzÕ and

H(z) is the Hubble expansion rate.
The growth rate f is related to the logarithmic derivative of the growth factor g(a) with

respect to the scale factor a. In the context of the fixed template approach however, we need
to be careful, since the fit is carried out with fixed overall amplitude. Therefore, we need to
take into account that the estimated growth rate Âf -as well as the bias parameters- implicitly
scales with the power spectrum amplitude. Although there are several ways to describe this,
here we adopt the notation,

Âf(z) = d ln g(a)
d ln a Ap(z) , Ap =

Q

ccca

3
r
fid
d
rd

43

Plin

33
r
fid
d
rd

4
kp, z

4

P
fid

lin
(kp, z)

R

dddb

1/2

, (3.3)

where Ap is the square root of the ratio between the amplitude of the underlying power
spectrum, suitably rescaled by the choice of the fiducial sound horizon, to that of the power
spectrum of the fiducial cosmology at the pivot scale kp = fi/rd. This convention is motivated
in eqs. (3.7) and (3.8) of [5].

It is straightforward to convert Âf into the conventionally-used velocity fluctuation am-
plitude f‡8. But within ShapeFit, it is convenient to define the amplitude as in eq. (3.3),
because at the pivot scale kp -by construction- the amplitude remains constant when varying
the slope m.

The slope m is related to the smooth (no-wiggle) linear matter transfer function Tnw(k)
which in practice we recompute at each model evaluation during posterior exploration with
MCMC, and the fiducial one by

m = d

dk

Q

cccaln

S

WWWU

3
r
fid
d
rd

43

T
2
nw

33
r
fid
d
rd

4
k

4

T fid
nw

2 (k)

T

XXXV

R

dddb

-----
k=kp

. (3.4)

where the derivative is taken at the pivot scale kp.1 Following ref. [5] prescription, we use
the analytic Eisenstein & Hu 1998 (referred to as EH98) formula [32, 33] to calculate the
no-wiggle transfer function, but other methods like a numerical separation of the transfer
function into a wiggle and a no-wiggle part are also possible (see appendix D on [34]).

Given a cosmological model described by a set of cosmological parameters, the depen-
dence of the physical parameters on the cosmological parameters is enclosed in rd, DM , DH ,
g, Plin and Tnw.

1
The factor (rfid

d /rd)
3

in the numerator of eq. (3.4) was omitted in ref. [5] as it does not change the

derivative. It is included here explicitly to make more transparent the connection to eq. (3.3).
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4 Methodology

We briefly describe our adopted set-up for the ShapeFit compression and its cosmological
interpretation, as applied to the blind PT challenge data. We list several di�erent set-up
variations and motivate our baseline choice, adopted to represent our fiducial results which
were submitted to the blind PT challenge coordinator. The extensive variations on the
fiducial set-up serve to quantify the robustness of the results to these choices.

4.1 ShapeFit compression set-up
For our baseline analysis we take the average of the power spectra of all 10 realisations at
a single redshift, in this particular case we chose z3 = 0.61. We also analyzed the z1 and
z2 redshift bins, finding equivalent results. The provided covariance, corresponding to the
volume of a single realization, was rescaled to a volume of 566

#
h
≠1Gpc

$
(10 realisations).

As explained in section 3.2, we create a template using the blind PT challenge CAMB
input file, adding h

fid = 0.676, Afid
s = 2.05◊ 10≠9 and �fid

m = 0.3. We compute the first and
second-order loop corrections using PTcool [35].The ShapeFit analysis is carried out by
varying the four physical parameters, ◊phys, and several combinations of nuisance parameters.
We consider di�erent fitting configurations exploring combinations of nuisance parameters
being varied, multipoles and range of scales considered, modelling of non-linearities, which
are all listed in table 1.2 Broadly, these set-ups can be split in two categories:

1. SIM-like (also labeled as initial letter “S”). These set-ups are tuned towards fitting
a synthetic, simulated and thus idealized dataset, where the very large scales are un-
der control and the shot noise is known. Therefore, we employ a narrow 1% prior
on the shot noise amplitude Anoise and set kmin = 0.0, not imposing any large scale
cut. This is compatible with the analysis choices of other blind PT challenge partici-
pants. To be consistent with the choices of most of the other participants, we also set
kmax = 0.12

Ë
hMpc≠1

È
, fit the monopole and quadrupole only, and choose 1LSPT as

our baseline modeling for non-linearities.

2. DATA-like (also labeled as initial letter “D”). These cases are tuned towards an actual
data analysis, similar to the methodologies employed in [2, 3], where large scales are
a�ected by systematics and the shot noise value is unknown. Therefore, we allow for a
broader prior on Anoise of up to 30% and set a large-scale cut at kmin = 0.02

Ë
hMpc≠1

È
.

As in the data analyses of [2, 3] we set kmax = 0.15
Ë
hMpc≠1

È
, fit monopole, quadrupole

and hexadecapole and choose the 2LRPT as baseline modeling for non-linearities for
our template-fits.

As far as non-local bias parameters bs2 and b3nl are concerned, for the DATA-like cases
we explore all possible combinations of setting them to their local Lagrangian prediction
(“local” in the label) or varying them freely. For the SIM-like cases, we vary both parameters
freely, to explore potential deviations from the local Lagrangian dark matter-halo connection
and to enable a more direct comparison with previous analyses based on the EFT approach.
For more details, see the section 4.2 of [5]. There it is shown that varying bs2 and b3nl (labeled

2
Not all the cases presented in the table are discussed in details in the main text or shown in the figures,

but are presented in the table for completeness. In the spirit of open science, readers interested in the outputs

of specific runs can send a reasonable request to the authors.
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Case Bias ‡Anoise Model k-range Multipoles Geo Blind?
S008 bs2 , b3nl free 1% 1LSPT [0.00,0.08] ¸= 0,2 No Yes

SIM-like bs2 , b3nl free 1% 1LSPT [0.00,0.12] ¸= 0,2 Yes Yes
S1 bs2 , b3nl free 1% 1LSPT [0.00,0.12] ¸= 0,2 No Yes
S2 bs2 , b3nl free 1% 2LRPT [0.00,0.12] ¸= 0,2 No Yes

DATA-like MAX bs2 , b3nl free 30% 2LRPT [0.02,0.15] ¸= 0,2,4 No Yes
" (geo) bs2 , b3nl free 30% 2LRPT [0.02,0.15] ¸= 0,2,4 Yes No

Dbs2b3nl-20 bs2 , b3nl free 20% 2LRPT [0.02,0.15] ¸= 0,2,4 No Yes
Dbs2b3nl-15 bs2 , b3nl free 15% 2LRPT [0.02,0.15] ¸= 0,2,4 No Yes
Dbs2b3nl-5 bs2 , b3nl free 5% 2LRPT [0.02,0.15] ¸= 0,2,4 No Yes
Dbs2b3nl-1 bs2 , b3nl free 1% 2LRPT [0.02,0.15] ¸= 0,2,4 No Yes

Dbs2b3nl-1-geo bs2 , b3nl free 1% 2LRPT [0.02,0.15] ¸= 0,2,4 Yes Yes
Dbs2b3nl-1-12 bs2 , b3nl free 1% 2LRPT [0.02,0.12] ¸= 0,2,4 No Yes
Dbs2b3nl-1-20 bs2 , b3nl free 1% 2LRPT [0.02,0.20] ¸= 0,2,4 No Yes
Dbs2b3nl-1-25 bs2 , b3nl free 1% 2LRPT [0.02,0.25] ¸= 0,2,4 No Yes

Dbs2b3nl-1-12-geo bs2 , b3nl free 1% 2LRPT [0.02,0.12] ¸= 0,2,4 Yes No
Dbs2b3nl-1-20-geo bs2 , b3nl free 1% 2LRPT [0.02,0.20] ¸= 0,2,4 Yes No
Dbs2b3nl-1-25-geo bs2 , b3nl free 1% 2LRPT [0.02,0.25] ¸= 0,2,4 Yes No

Dbs2-30 bs2 free 30% 2LRPT [0.02,0.15] ¸= 0,2,4 No Yes
Dbs2-30-geo bs2 free 30% 2LRPT [0.02,0.15] ¸= 0,2,4 Yes No

Dbs2-20 bs2 free 20% 2LRPT [0.02,0.15] ¸= 0,2,4 No Yes
Dbs2-15 bs2 free 15% 2LRPT [0.02,0.15] ¸= 0,2,4 No Yes
Dbs2-5 bs2 free 5% 2LRPT [0.02,0.15] ¸= 0,2,4 No Yes
Dbs2-1 bs2 free 1% 2LRPT [0.02,0.15] ¸= 0,2,4 No Yes

Dbs2-1-geo bs2 free 1% 2LRPT [0.02,0.15] ¸= 0,2,4 Yes Yes
Db3nl-30 b3nl free 30% 2LRPT [0.02,0.15] ¸= 0,2,4 No Yes

Db3nl-30-geo b3nl free 30% 2LRPT [0.02,0.15] ¸= 0,2,4 Yes No
Db3nl-20 b3nl free 20% 2LRPT [0.02,0.15] ¸= 0,2,4 No Yes
Db3nl-15 b3nl free 15% 2LRPT [0.02,0.15] ¸= 0,2,4 No Yes
Db3nl-5 b3nl free 5% 2LRPT [0.02,0.15] ¸= 0,2,4 No Yes
Db3nl-1 b3nl free 1% 2LRPT [0.02,0.15] ¸= 0,2,4 No Yes

Db3nl-1-geo b3nl free 1% 2LRPT [0.02,0.15] ¸= 0,2,4 Yes Yes
DATA-like MIN all local 30% 2LRPT [0.02,0.15] ¸= 0,2,4 No Yes

" (geo) all local 30% 2LRPT [0.02,0.15] ¸= 0,2,4 Yes No
Dblocal-20 all local 20% 2LRPT [0.02,0.15] ¸= 0,2,4 No Yes
Dblocal-15 all local 15% 2LRPT [0.02,0.15] ¸= 0,2,4 No Yes
Dblocal-5 all local 5% 2LRPT [0.02,0.15] ¸= 0,2,4 No Yes
Dblocal-1 all local 1% 2LRPT [0.02,0.15] ¸= 0,2,4 No Yes

Dblocal-1-geo all local 1% 2LRPT [0.02,0.15] ¸= 0,2,4 Yes Yes

Table 1. Blind PT challenge set-up overview. Most fits were carried out before unblinding, but
some of them (indicated by the final column) were updated after unblinding to take into account
the geometric correction, see text for more details. Only the boldface cases were submitted to the
blind PT challenge coordinator including the DATA-like runs corrected after unblinding. These are
discussed in section 5. The other cases represent further tests of the di�erent ingredients such as the
bias option, the prior on shot noise, the PT model, the fitted scale range and the geometric correction
(Geo) presented in section 6. Unless specified otherwise in the second column, each of the non-local
bias parameters bs2 , b3nl is set to the local Lagrangian prediction. In all cases we fit the mean of all
10 realizations at the highest redshift bin z3 = 0.61 using the corresponding high-volume covariance
matrix. Not all these cases are discussed in details in the main text or shown in the figures, but are
presented here for completeness.
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“MAX” in [5]) is equivalent to the EFT case with varying bs2 and counterterm c0. In fact, c0
has been found to be very degenerate with b3nl [1, 10], hence varying only one of the two pa-
rameters is equivalent to varying only the other (or varying both). In [2, 3] on the other hand,
both bias parameters are set to their local Lagrangian predictions (labeled “MIN” in [5]).
This choice has been shown to be valid for the BOSS and eBOSS analyses which focus on BAO
scales, neglecting large-scales broadband shape information [31, 34]. As it is not clear yet
whether this strategy remains valid for upcoming surveys, we submitted to the blind challenge
both the freely varying (DATA-like MAX) and local Lagrangian (DATA-like MIN) cases. For
the submitted SIM-like case, it is important to note, we employed the “geometric correction”
introduced in section 6 of [5]. At the largest scales, where k-bins are broad and there are
few modes per bin, mode-discreteness introduces a mismatch between the conventionally av-
eraged and the mode-averaged model evaluated at each bin. The “geometric correction” is a
fast way to account for this e�ect. As we show in figure 4, this correction is important when
fitting the whole k-range, and even when applying a large-scale cut at kmin = 0.02

Ë
hMpc≠1

È
.3

The adopted parameters priors for the fits are given in the second and third sections
of table 2. The results of the three submitted fits (highlighted in boldface in table 1) are
presented in section 5. The remaining, not highlighted, cases are presented in section 6,
where further tests of the di�erent configuration ingredients such as the bias option, the
prior on shot noise, the PT choices in modeling of non-linearities, the fitted scale range and
the geometric correction are discussed.

4.2 From physical parameters to cosmological parameters constraints (and back)

While for any set of values for the cosmological parameters of a given cosmological model it
is always possible to derive the corresponding physical parameter values, the converse is not
true. There can be regions of physical parameter space that do not correspond to any choice
of cosmological parameters within the families of models under consideration. To convert the
ShapeFit constraints on the physical parameters into constraints on cosmological parameters
for a given cosmological model we proceed as described in section 3.3.

For the fiducial model we compute the quantities rfid

d
, D

fid

M
(z), Dfid

H
(z), P fid

lin
(kp, z) and the

fiducial smooth EH98 power spectrum. In-line with the blind PT challenge recommendations,
we vary

)
Êb,Êcdm, h, ln

!
1010

As

"*
while setting the neutrino mass to zero, fixing the scalar tilt

ns = 0.9649 and employing a tight Gaussian prior on the baryon to matter ratio Êb/Êm =
0.1571 ± 0.0001. This prior basically fixes Êb for a given input value of Êcdm, such that
the degrees of freedom of our �CDM fit are

)
Êcdm, h, ln

!
1010

As

"*
. With these choices we

are matching the set-up of the other blind PT challenge participants. For each choice of
cosmological parameters, and with the pre-computed values of the fiducial quantities, we
obtain model predictions for

Ó
–Î(z),–‹(z), f(z)Ap(z),m

Ô
which are then compared with

the ShapeFit constraints obtained from a cosmological MCMC using MontePython[36–38].
But note that running additional chains is actually not necessary, as they can instead be easily
obtained from the ShapeFit chains via importance sampling [39]. This way of proceeding
e�ectively imposes a �CDM prior on the ShapeFit results. With this approach it is then
possible to visualize what the ShapeFit physical parameters constraints would be in a �CDM
model by recomputing the physical parameters as if they were derived parameters of the
(�CDM) cosmological parameters.

3
We realized this fact after unblinding as explained in the second paragraph of section 5.
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Parameter Prior
type name range type

Êb [0.005, 0.04] flat
Êcdm [0.01, 0.99] flat

Cosmological
h [0.1, 3.0] flat

(�CDM Fit)
ln
!
1010

As

"
[0.1, 10] flat

Êb/(Êb + Êcdm) (0.1571± 0.0001) Gaussian
ns 0.9649 fixed

M‹ [eV] 0.0 fixed
–Î [0.5, 1.5] flat

Physical –‹ [0.5, 1.5] flat
(ShapeFit) f [0, 3] flat

m [≠3, 3] flat
b1 [0, 20] flat
b2 [-20, 20] flat

Nuisance bs2 lag. / [-20, 20] derived / flat
(ShapeFit) b3nl lag. / [-20, 20] derived / flat

‡P

#
h
≠1Mpc

$
[0, 10] flat

Anoise (1± ‡Anoise) Gaussian

Table 2. Prior ranges for parameters used for ShapeFit and the cosmological fit. Flat priors are
given as [min,max], Gaussian priors are denoted as (mean ± std). The prior knowledge about the
baryon fraction Êb/Êm = 0.1571 is implemented as a Gaussian prior with very small width, which is
equivalent to treating the ratio as fixed.

A summary of all parameters and priors used for ShapeFit and for the cosmological
�CDM fit is given by table 2.

5 Results submitted to the blind PT challenge and changes post-unblinding

The results initially presented in this section (but now slightly updated as described below)
were submitted to the blind PT challenge coordinator. After submission, the organizer
revealed to us the true underlying model values (unblinding). To keep the PT challenge
blind for the rest of the community in all figures and tables throughout this work we only
show our results as di�erences from the true values.

More specifically, for any measured parameter ◊ we show �◊ = ◊ ≠ ◊
true. This applies

both to physical and cosmological parameter constraints. Results not submitted to the PT
challenge coordinator (some computed before the unblinding, see table 1) are presented in
section 6.

We initially estimated that the geometric correction would be unimportant if a minimum
wavenumber k cut was imposed. This is certainly true for current and forthcoming surveys,
for the full PT challenge volume it is still not statistically significant — not applying the
geometric correction induces small shifts in the recovered variables, less than 1-‡ — but
the e�ect is visible under close inspection. The results initially submitted neglected the
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Figure 1. This figure shows the simulation data versus model comparison for the DATA-like MAX
case. In the upper panel we show the multipole power spectra data and bestfit model and in the
bottom panel their residuals in unit of the errors corresponding to a volume of 566

#
h
≠1Gpc

$3. The
monopole, quadrupole and hexadecapole data and bestfit are displayed as described in the legend.

geometric correction, which was then included subsequently. All the results presented here
always include the geometric correction even with a minimum k cut. As a consequence, these
results are technically not blind (see table 1 for more details) but the changes compared to
the blind version can only be appreciated upon very careful scrutiny.

The ShapeFit bestfit to the PT challenge multipoles is shown for one particular con-
figuration (DATA-like MAX) in the top panel of figure 1. Since the error bars correspond
to the mean of the realizations equivalent to 566

#
h
≠1Gpc

$
they are not visible by eye, but

from the residuals in the lower panel it can be appreciated that the model delivers a good
fit on the displayed wavevector range up to kmax = 0.15

Ë
hMpc≠1

È
. The data points mostly

remain within the 2‡ band, but for the hexadecapole there is visibly a larger scatter, the most
divergent (4.5‡) data point is at k = 0.045

Ë
hMpc≠1

È
. This hints towards a problem with the

hexadecapole related to the inhomogeneous distribution of the directions of the k-vectors,
that we will return to later.

The physical parameters constrained with ShapeFit are shown as dashed curves in the
left panel of figure 2. The SIM-like constraints (see specifications in table 1) are displayed in
green-dotted, the DATA-like MAX and MIN cases in orange and red-dotted, respectively. For
all cases we recover the true values �◊phys = 0 (indicated by black dashed lines) well within
1.5‡, except for –Î in the DATA-like cases, where we find a bias of 4≠ 5‡. In the DATA-like
cases there are four main changes compared to the SIM-like cases: use of 2LRPT instead of
1LSPT, the wider prior on the shot-noise amplitude, the higher kmax and the inclusion of
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Figure 2. These represent our main results for the blinded physical parameters (left panel) and
the blinded cosmological parameters

)
�h,��m,� ln

!
1010

As

"*
(right panel). To ensure that the

PT challenge remains blind for the rest of the community, results are visualized as di�erences from
their true values. The dashed vertical and horizontal lines guide the eye to zero di�erence. Dotted,
empty contours represent the ShapeFit (SF) results and continuous, filled contours the corresponding
(cosmological parameters) results with a �CDM prior imposed. We show the SIM-like results in green,
the DATA-like MAX case in orange and the DATA-like MIN case in red. The numerical results can
also be found in table 3.

the hexadecapole. We verify in section 6 that the inclusion of the hexadecapole drives the
systematic shift; in particular, it shifts –Î by �– = 0.005, which amounts to most4 of the
di�erence between the maximum of the green-dotted and range-dotted –Î posteriors. The
e�ect on the –’s of the inclusion of the hexadecapole has not been explored thoroughly in the
literature (but see [31] and footnote in sec B1 of [1]). The shift induced by the hexadecapole
seen here is below the 2‡ level for DESI-like survey and not significant for a BOSS/eBOSS-
like survey. We leave this to further investigation in future work. Also, the higher kmax and
the inclusion of the hexadecapole result in smaller error-bars for the –s. The size of the
error-bars on m (and somewhat on fAp) on the other hand is driven by the choice of prior
on the nuisance bias parameters.

The ShapeFit results, which are (cosmological) model-independent, can be interpreted
within the �CDM model as discussed in section 4.2. We refer to this as imposing a �CDM
prior and this case is shown as filled contours in both panels of figure 2. It is easier to under-
stand the filled contours in the left panel of figure 2 after considering the right figure panel,
where the ShapeFit+�CDM prior constraints are shown for the cosmological parameters
constrained by the analysis: h, ln

!
1010

As

"
, �m. For all cases we find excellent agreement

with the true cosmology with biases of at most 2‡. Comparing the DATA-like MIN and
MAX cases, we find that the local Lagrangian bias assumption leads to reduced error bars

4
The remaining bit of �– = 0.003 can be explained by the choice of maximum wavevector. See section 6

and figure 7 in particular.
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Type Parameter SIM-like DATA-like MAX DATA-like MIN

Physical

�–Î 0.0026± 0.0030 0.0071± 0.0019 0.0076± 0.0018
�–‹ 0.0031± 0.0020 ≠0.0002± 0.0015 ≠0.0003± 0.0012
�fAp ≠0.0035± 0.0063 ≠0.0131± 0.0111 ≠0.0101± 0.0052
�m 0.0049± 0.0071 0.0042± 0.0112 ≠0.0012± 0.0034

�CDM
��m 0.0039± 0.0021 0.0006± 0.0020 0.0008± 0.0011

Cosmological
�h ≠0.0009± 0.0034 ≠0.0059± 0.0048 ≠0.0025± 0.0018

� ln(1010
As) ≠0.0182± 0.0136 0.0168± 0.0325 ≠0.0032± 0.0121

�–Î 0.0019± 0.0012 0.0025± 0.0014 0.0013± 0.0008
�CDM �–‹ 0.0035± 0.0017 0.0028± 0.0012 0.0016± 0.0011
Derived �fAp ≠0.0024± 0.0048 0.0053± 0.0097 ≠0.0012± 0.0046

�m 0.0048± 0.0071 ≠0.0084± 0.0104 ≠0.0026± 0.0034

Table 3. Here we show the mean values and their corresponding symmetrized errorbars of the
constrained parameters for the SIM-like, DATA-like MAX and DATA-like MIN cases specified in
table 1. Using the configuration of table 2, the physical parameters are constrained with ShapeFit
and the cosmological parameters are obtained by fitting the �CDM model to the ShapeFit results.
Finally, we show again the physical parameters but this time derived from the cosmological fits, hence
with a �CDM prior. The results shown here correspond to the same results shown in figure 2.

but does not bias the cosmological results, even given the precision of the PT challenge suite
of simulations. Recall that the error-bars reported here for the PT challenge are for a vol-
ume of 566 Gpch≠1 which is about 10 times bigger than the volume covered by forthcoming
surveys. In section 6 we further investigate the various bias assumptions and discuss their
relevance for the ongoing and future surveys.

The . 2‡ deviations of the DATA-like cases in the cosmological parameter space seem
mild compared to the 4‡ deviations seen in the physical parameter space. To understand
this, in the left panel of figure 2 we show the physical parameters constraints corresponding
to the �CDM parameter constraints of the right panel. The filled contours in the left panel
are hence derived from the dashed, empty contours by imposing a �CDM prior.

In the SIM-like case (green contours) this prior does not a�ect much –‹, fAp and m,
but significantly tightens the –Î posterior. The reason is that within �CDM there is a tight
correlation between –Î and –‹. By construction they are related for any model, because
the perpendicular distance is the integral of the parallel distance (see the definitions below
eq. (3.2)). Within �CDM however, the redshift evolution of the Hubble expansion rate is
completely determined by �m, meaning that for a given �m, –Î and –‹ are not independent.
In the ShapeFit compression with a �CDM prior, �m is constrained by m, hence –Î and –‹
become directly linked.

Considering the DATA-like cases we notice that -under the umbrella of �CDM- their –Î
posteriors agree very well with the SIM-like case, even though the pure ShapeFit constraints
show a 4‡ deviation. The filled contours are markedly shifted towards the true parameter
values compared to the dashed contours. This means that the bias in –Î observed in the
ShapeFit DATA-like cases displaces –Î to a region which is excluded by (or unphysical in)
�CDM. Hence, the �CDM prior drives –Î towards its correct value, at the expense of creating
a tension between the �CDM and the model-independent result for –Î. For the other physical
parameters the shifts induced by imposing the �CDM are much less dramatic.
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As further explored in section 6, it is important to investigate the ShapeFit model
ingredients, such as the bias assumption, the shot noise prior, and others which may be
responsible for the –Î systematic bias. Nevertheless the left panel of figure 2 highlights
an important point: some systematic biases can only be seen at the model-independent
parameter compression stage and would not be spotted in the context of direct, model-
dependent fits (especially for minimal-�CDM type-models).

Our main results are also summarized in table 3, where we show the physical parameters
constrained with ShapeFit, the cosmological results of the �CDM fits and again the physical
parameters, but this time derived from the model (which is equivalent to imposing a �CDM
prior). As discussed before, the agreement with the truth is very good, especially for the
SIM-like case. In the DATA-like cases, there are notable biases in –Î, that vanish once they
are interpreted in light of the �CDM model. Interestingly, upon this model interpretation
all the error bars decrease significantly by up to 50%, only the error on m remains stable.
This also occurs in the SIM-like case.

To quantify the apparent bias, for the two DATA-like cases we compare the correspond-
ing ‰

2-values divided by the number of degrees of freedom ndf = (Ndata ≠ Nparams) at the
model-independent ShapeFit bestfit (SF) and at the �CDM bestfit (SF+�CDM):

DATAlike MAX : ‰
2

SF/ndf = 62.2/(39≠ 10) ‰
2

SF+�CDM/ndf = 80.7/(39≠ 6)
DATAlike MIN : ‰

2

SF/ndf = 63.5/(39≠ 8) ‰
2

SF+�CDM/ndf = 79.7/(39≠ 4)
(5.1)

Note that the number of free parameters Nparams is reduced by 4 for the �CDM case, as we
fix the four physical parameters to the model prediction when evaluating the corresponding
‰

2. As argued before and shown in section 6, these relatively poor ‰2
/ndf of order ≥ 2≠ 2.5

are mostly induced by the hexadecapole.
For comparison, for the SIMlike case (without hexadecapole) we find a value ‰2

SF
/ndf =

11.3/(24≠ 10) of order ≥ 1 similar to other PT challenge participants [1].
This indicates that indeed the ShapeFit best fit without the �CDM condition imposed

is better than when imposing it. However the absolute value of the ‰2 is not a good absolute
indicator to be used to test cosmology, because the ‰2 is heavily a�ected by inadequacies of the
modeling of the signal, independently of cosmology- as seen in the hexadecapole behaviour.

Since the SIM-like case is oriented towards reproducing as much as possible the settings
chosen by the teams participating in [1], here we also show a direct comparison to one of the
EFT implementations. In particular, we choose the publicly available CLASS-PT implemen-
tation by [10] and run the EFT model5 using the same cosmological parameters and priors as
in table 2. For the EFT nuisance parameters (bias parameters and counterterms) we choose
the default configuration of [10] but without shot noise correction (i.e., shot noise correction
set to zero as shot noise is assumed to be fully under control and correctly subtracted).

The results are shown in figure 3, where the green contours are the same as the SIM-like
case in figure 2. Again, we show the physical parameters -with (filled contours) and without
(dashed, empty contours) the �CDM prior- in the left panel and the �CDM cosmological
parameters in the right panel. As we can see, the SIM-like results are in excellent agreement
with the EFT results (grey contours)- both in terms of mean parameters and errors. The
ShapeFit SIM-like case errors are somewhat smaller than for EFT, especially for the am-
plitude parameter, which might be due to the exclusion of additional significant freedom in
extra nuisance parameters, the so-called counterterms, in our model. This is further explored
in an upcoming work [34].

5
When running the EFT model the ShapeFit pipeline and results of the SIM-like configuration were frozen.
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Figure 3. Comparison of our (ShapeFit) main results using the SIM-like convention (green contours,
identical to the green contours of figure 2) with the FM case (grey contours) using the EFT implemen-
tation of [10]. In the left panel we show physical parameters constrained via the model-independent
ShapeFit (dashed, empty contours) and combined with a �CDM prior (filled contours). The right
panel displays the cosmological �CDM parameter space. See text for more discussion.

6 Additional tests

As anticipated in table 1 we perform a suite of tests to the blind PT challenge data to quantify
the e�ect of our di�erent model ingredients on the inferred parameters. These tests include
the impact of i) the geometric correction, ii) including the second order loop correction,
iii) dialing the allowed prior range on the shot noise amplitude, iv) choosing a certain bias
prescription, v) varying the maximum wave-number used for the analysis, kmax and vi)
including or not the hexadecapole. A few representative cases are illustrated in figures 4 to 7.

Figure 4 addresses points i) and ii); it shows that the e�ect of including second-order
loop corrections is completely negligible, even for a large survey volume of 566

#
h
≠1Gpc

$3.
The central values for the parameters are a�ected at the sub-percent level and the error bars
are una�ected. On the other hand, the e�ect of the geometric correction is very important,
but only for m, which induces a shift in m of 2‡ when is not taken into account. As expected,
the other parameters are relatively una�ected by this correction. This e�ect is driven by the
largest scales: when excluding the large scales by increasing kmin to 0.02

Ë
hMpc≠1

È
we find

that the e�ect of the geometric correction is reduced by a factor 5 (towards �m ≥ O(10≠3)),
which is of same order of magnitude as the 1‡ precision we find for m.

Figure 5 displays the impact of varying the amplitude of shot noise as a free parameter.
Blue contours show the Poisson prediction with a Gaussian prior of 1% standard deviation,
whereas for the orange contour this is increased up to 30%. When the shot noise prior is re-
laxed from 1% to 30% strong degeneracies appear with other bias parameters, mostly bs2 and
‡FoG, which make the multi-dimensional posteriors highly non-Gaussian. As a consequence,
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Figure 4. Left panel: comparison of the ShapeFit compressed variables either with (solid) or without
(dotted) the �CDM prior between the baseline (SIM-like, green) and two analysis variations: in the
first we do not apply the geometric correction (S1, orange) and in the second we omit the geometric cor-
rection and include the 2nd order PT term. All cases have a maximum wave-vector of 0.12

#
hMpc≠1$.

Right panel: e�ect on the corresponding cosmological parameters within �CDM model.

the marginalized low-dimensional posteriors become moderately shifted, and the constraints
on cosmological parameters degrade significantly, as shown. In terms of cosmology this degra-
dation in statistical precision highly impacts h and As, and mildly �m. Thus, we conclude
that the choice of the prior around the shot noise amplitude may not severely impact the
inferred means of cosmology, but their errors, which in addition tend to become less Gaussian.

The assumptions we make on the non-local bias parameters can highly impact the
results on the compressed cosmological parameters. In particular, we find that the non-local
bias parameter b3nl is very degenerate with m, and therefore using an incorrect value (or
functional form with (b1≠1) may translate into a systematic shift on our inferred cosmology.
When we enforce the local Lagrangian bias relation, b3nl = 32/315(b1 ≠ 1) we find that m is
biased by ≥ 0.015�m (corresponding to ≥ 1.3‡m deviation) with respect to the best-fitting
value when b3nl is allowed to freely vary. We find that this is much less a problem for bs2
than for b3nl. Inevitably, when both biases are free to vary, the error bars on cosmological
parameters increase by a factor 2 ≠ 3 due to correlations. This is illustrated in figure 6
for some representative cases. We conclude that for this particular sample, the non-local
Lagrangian biases follow the halo local Lagrangian predictions well. Consequently, the main
cosmological results are not systematically shifted when relaxing this assumption. However,
the resulting error-bars do increase significantly. When the total volume of our sample is
closer to that of forthcoming data (typically 10 to 100 times smaller than the PT challenge
sample) this can become a problem, as relaxing both non-local bias parameters significantly
weakens or, in the case of high noise samples, essentially erases the constrains on m (as will be
shown in a separate paper [34]). In these cases, using the local Lagrangian halo relation helps
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Figure 5. Impact of varying the shot noise term Anoise within 30% using a Gaussian prior (orange
contours) versus e�ectively fixing it by employing a 1% prior (blue contours). In both cases we allow
all bias parameters to vary freely and the fitted k-range is [0.02, 0.15] using 2LRPT. Compressed
variables or shown in the left and cosmological parameters in the right panel.

to constrain m, and hence use the shape of the power spectrum for cosmology constrains,
but at the expenses of being more model-dependent. Alternatively one could impose strong
Gaussian priors on higher order bias parameters, as done in most FM analyses, that would
otherwise loose a lot of their constraining power. However, from the PT challenge simulations
we do not find any strong reasons why to abandon the local Lagrangian assumption.

In addition, we compare the results obtained from di�erent k cuts at small scales.
We select kmax œ {0.12, 0.15, 0.20, 0.25}

Ë
hMpc≠1

È
, where in all cases we set the minimum

wavenumber to kmin = 0.02
Ë
hMpc≠1

È
, the model to 2LRPT, the bias parameters to follow

the local Lagrangian prediction and the shot noise amplitude prior to 1%.
In the left panel of figure 7 we show the compressed parameter results for these di�erent

kmax cases. While for kmax = 0.12
Ë
hMpc≠1

È
and kmax = 0.15

Ë
hMpc≠1

È
only –Î appears

slightly biased, the fit degrades significantly and leads to large biases once higher wave-
numbers are considered. We conclude that the 2LRPT+TNS fixed template approach with
local bias assumption is not accurate enough for describing the non-linear scales of k Ø
0.20

Ë
hMpc≠1

È
for the statistical precision of the PT challenge suite.

Finally, in the right panel of figure 7 we show the e�ect of including (or excluding) the
hexadecapole signal (¸ = 4) from PT challenge data. We see that the hexadecapole biases
–Î by �–Î = 0.005 and at the same time reduces the error bar by ≥ 50%. As anticipated
in section 5, this e�ect together with the e�ect of increasing kmax from 0.12

Ë
hMpc≠1

È
to

0.15
Ë
hMpc≠1

È
(left panel of figure 7) drives the bias in –Î observed in the “DATA-like” cases

with respect to the “SIM-like” case.
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Figure 6. This figure shows the impact of varying the non-local bias parameters b3nl and bs2 freely
(orange contours) versus setting one of them (bs2, blue contours; b3nl, violet contours) or both (red
contours) to their local Lagrangian prediction. In the left panel we show the compressed parameter
constraints for the model-independent ShapeFit (empty, dotted contours) and for the �CDM prior
(filled contours).

7 Combining all redshift bins: constructing a real data analysis scenario

So far, we have only considered cosmological analyses on individual redshift bins. In practice
however, surveys observe dark matter tracers throughout a broad redshift range. It is cus-
tomary to divide these tracers in several, and usually partially overlapping, redshift bins in
order to capture cosmological information related to the evolution of cosmic structure across
cosmic ages. In this section we analyze the PT challenge in a very similar way. In the FM ap-
proach the cosmological parameters are defined at z = 0 and therefore the redshift evolution
is somewhat predetermined within the chosen model. In the classic (and ShapeFit) approach,
the compressed variables are determined independently for each redshift bin, hence it is pos-
sible to track their time evolution in a model-independent way. The model dependence enters
at the very end, when the compressed variables are interpreted in light of a model of choice.

As a preparatory step, we analyze the redshift outputs z1 and z2 in the same way as z3
has been analyzed in section 5. In all cases considered here our baseline set-up is as follows:
we fit the monopole, quadrupole, and hexadecapole data using 2LRPT on a wavevector range
0.02

Ë
hMpc≠1

È
< k < 0.15

Ë
hMpc≠1

È
, where the non-local bias parameters are fixed to their

local Lagrangian prediction and the shot noise term is varied within a 30% Gaussian prior.
This corresponds to the set-up labeled “DATA-like MIN” in table 1.

Then, we take the following approach: we compute the average of realizations #1-3
evaluated at z1 = 0.38, realizations # 4-7 at z2 = 0.51, and realizations # 8-10 at z3 =
0.61. In this way, we reproduce the behaviour of an actual lightcone, which would capture
the full redshift range where the 3 redshift bins are independent from each other. This
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Figure 7. Left panel: comparison of the ShapeFit compressed variable constraints for di�erent
maximum scale cuts, including (in units

#
hMpc≠1$) kmax œ {0.12, 0.15, 0.20, 0.25} shown in (green,

orange, red, violet) filled contours respectively. In all cases we set the minimum scale to kmin = 0.02,
the model to 2LRPT, the bias parameters to follow the local Lagrangian prediction and the shot
noise amplitude prior to 1%. Due to the systematic bias for kmax Ø 0.20

#
hMpc≠1$, we do not

show the cosmological �CDM constraints here. Right panel: comparison of the compressed variables
between including (filled, green contours) or not (empty, black contours) the hexadecapole (¸ = 4)
from the fit. Regarding the remaining set-up, we choose the same as in the left panel, and set
kmax = 0.12

#
hMpc≠1$. Note that, therefore, the green contours are identical in both panels.

approach closely emulates a real survey catalogue, where di�erent redshift-bins are treated
as independent, as long as they are wide enough.6 Also, we retain the same e�ective number
of sampled modes (because we maintain the same volume) as for the single redshift analysis
of section 5 and the preparatory step. While in a real world application, partially overlapping
redshift bins would not be independent and would thus have a non-zero covariance, the set-
up chosen here enables us to compare more directly the findings with the main results, and
o�ers a more transparent interpretation.

In figure 8 we show the ShapeFit constraints on compressed variables (left panel) and
the cosmological parameter constraints including the �CDM prior (right panel) obtained by
analysing the data at di�erent redshifts. On one hand we show the results when analyzing
the mean of all 10 realizations evaluated at the same redshift (filled coloured contours). On
the other hand, we show the cosmological constraints obtained from the ShapeFit results, for
the case when the realizations are spread among the redshifts as described above, including
the �CDM prior (empty black contours). Note that all these cases represent constraints
based on the same comoving volume, in the coloured cases concentrated in a single redshift
bin; and in the empty black contours spread among the 3 redshift bins.

We see that all redshift bins are consistent with each other within 0.5‡, both in the
compressed parameter and in the cosmological parameter space. The small deviations may

6
This assumption is based on the Ergodic hypothesis, and it breaks down for scales comparable to the size

of the bin. For this reason it is usual to split the survey in redshift bins which are overlapping and infer their

correlation using mocks, as was done for BOSS DR12.
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Figure 8. Compressed parameter blind constraints using ShapeFit (left panel) and the corresponding
�CDM parameter constraints (right panel) obtained from analysing di�erent redshift bins at z1 = 0.38
(blue contours), z2 = 0.51 (red contours) and z3 = 0.61 (green contours). In addition, we show the
cosmological parameter constraints for the case of combining the redshifts, but conserving the total
volume, as described in the text (empty black contours). Dashed contours mark the theoretically
expected values. The evident bias in –Î is understood as discussed in section 5 and figure 2. In all
cases we show the “DATA-like MIN” set-up, as customary for a real survey application.

arise due to i) di�erences in non linear structure formation (including non linear galaxy bias
and RSD) at di�erent redshifts, both in the N-body simulation and in the fiducial template,
ii) di�erent impact of shot noise in the di�erent volumes, iii) and the degree of validity of the
assumption of local Lagrangian bias may vary for the di�erent HODs of the di�erent redshift
bins. As mentioned already in sections 5 and 6, the ShapeFit constraints on –Î are biased
in the “DATA-like MIN” case; this bias vanishes when applying the �CDM prior.

One might have expected the combined constraints (empty black contours) on cosmolog-
ical parameters to be slightly tighter than the individual redshift constraints, although the ef-
fective number of sampled modes is the same. This is because in the framework of the LCDM
model, having information at di�erent epochs (or redshift bins) helps to break degeneracies
among model parameters, more e�ectively than having more volume at a single redshift bin.
This e�ect is seen very clearly, for example, in the �m ≠ h plane for the BAO cases when
Ly-– measurements are combined with low galaxy measurements (see for e.g. figure 1 of [40]).
Here the e�ect is not really appreciable because of the smaller redshift range explored.

8 Conclusions

We have applied for the first time the (model-independent) compressed variables analysis
to the (blind) PT challenge simulations. All previous entries to the PT challenge used the
full modeling approach instead. This work thus enables a more transparent comparison
of these two complementary approaches to the cosmological analyses and interpretation of
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clustering of galaxy redshift surveys. In particular, for the compressed variables approach
we implement ShapeFit [4, 5] which is fully equivalent to the “classic” approach for the AP
and RSD parameters but includes in addition an extra e�ective parameter m which captures
the power spectrum broadband shape information.

Our chosen baseline (SIM-like) set-up in terms of range of scales, multipoles, shot noise
and bias modeling assumptions, prescription for modeling non-linearities, nuisance parame-
ters etc. was chosen to be as close as reasonably possible to the set-up of other PT challenge
entries to facilitate comparison.

The volume of the PT challenge simulations is 10 times larger than that envisioned for
future surveys, making it possible to uncover small systematic biases even below the level of
statistical significance for foreseeable practical applications.

We find that, in general, ShapeFit recovers the input parameters well within 2‡, and
this accuracy level does not vary dramatically for reasonable changes from the baseline set-
up (when changing the range of scales — within reason, — shot noise and bias modelling
assumptions, prescription for modelling non-linearities, nuisance parameters etc.).

However, we find that the inclusion of the hexadecapole induces a significant system-
atic shift on the compressed variable –Î, when extracted in ShapeFit. This shift would be
well below the 2‡ level for future surveys, but clearly indicates that the modeling of the
hexadecapole should be improved and the e�ect should be further investigated (for example,
it is well-known that the hexadecapole is very sensitive to the inhomogeneous distribution
of k-vector directions with respect to the line of sight, sec 5.1 of [41]). Nevertheless, it is
important to note that this shift is only appreciable in the ShapeFit approach, and the con-
straints it produces on the model-independent compressed variables. There is no systematic
o�set in the FM approach within a �CDM model, or when interpreting the constraints on
the compressed variables as constraints on the cosmological parameters for a �CDM model.
This is because the systematic shift in –Î happens to be in a direction that is not allowed
by (or unphysical in) a �CDM model. This teaches us an important lesson: some system-
atic biases can be seen at the model-independent compressed variables stage, which would
not be spotted in the context of direct, model-dependent fits (especially for minimal-�CDM
type-models). More explicitly, it is not su�cient to calibrate and quantify the accuracy of a
FM approach on a given family of models (say, �CDM-like models) and then extend it to a
di�erent family of models, especially if non-standard, non-trivial extensions of �CDM. Doing
so might severely underestimate the predicted accuracy of the selected FM approach.

We find that the HOD adopted by the PT challenge produces a galaxy bias which is
consistent with the local Lagrangian prescription. When analyzing real data, where we have
very little control over bias, it may be of interest to sacrifice precision for accuracy and
leave the bias parameters free; this would reduce potential biases at the expense of larger
error-bars. However, depending on the survey specifications, leaving the bias parameters
completely free might be too conservative, increasing the error-bars and reducing the signal-
to-noise for interesting signatures (see [34]).

To conclude, looking at the performance of all the PT challenge entries so far (as in this
site), the agreement is remarkable considering how di�erent the approaches are and that the
challenge is blind. Not only the statistical error bars are quite comparable — the statistical
error-bars are not blind, but all approaches require some compression and compressing can
be lossy — but that the systematic shifts (which are blind) are comparable and under control
at least for forthcoming surveys. This agreement is particularly significant when comparing
FM with compressed variable approaches given the fundamentally di�erent nature of the
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two. A direct comparison is presented in figure 3: our results and constraints are in excellent
agreement with the EFT results both in terms of mean parameters and errors. The small
residual di�erences in the size of error-bars which may be due to the priors on specific nuisance
parameters, will be explored elsewhere [34].

Because of its flexibility, speed, model-independence and, as demonstrated here, preci-
sion and accuracy, we envision that the compressed variables approach (including the Shap-
eFit extension) can o�er a valuable contribution in improving the robustness of the analysis
and interpretation of forthcoming galaxy redshift surveys.
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A Impact of IR resummation correction on ShapeFit

Since for most FM applications to galaxy power spectra it is crucial to account for large scale
bulk flows via the so-called Infrared (IR) resummation, we implement this strategy within
our ShapeFit template fits as well and test its impact. Typically, the role of IR resummation
is to damp the baryon acoustic oscillation amplitude by an exponential term depending on a
certain damping scale �(z) which depends on redshift. Formally, this damping scale depends
on the cosmological model, which is why IR resummation is not usually implemented in the
model-independent, “classic” template fits.

Here, we present an approximate scheme, where we ignore this weak cosmology de-
pendence and fix � = 3.91

#
h
≠1Mpc

$
, which is the value we obtain for the fiducial template

cosmology at z = 0.61. We adopt the implementation of IR resummation within 1LSPT given
by eq. (7.4) of [42], where the corrected, IR resummed non-linear power spectrum is written
as a function of the damping scale �, the growth factor g(z) (called D(z) in [42]) and the
linear power spectrum decomposed into a smooth (Ps) and a wiggle (Pw) part. The impact of
this correction is actually small in the BAO features compared to the standard (No IR) PT,
as the exponential factor damping the wiggles gets compensated by the (1 + k

2
g
2�2) factor

within the g2 term. Then, the e�ect of IR in the first loop correction, i.e., the g4 term, is quite
small. We do not consider the g6 factor as it represent a small correction in the k’s of interest.

In the left panel of figure 9 we show the impact of including IR resummation (empty,
dotted contours) with respect to the baseline (filled contours) on the ShapeFit compressed
parameters for either kmax = 0.12

Ë
hMpc≠1

È
(green) or kmax = 0.15

Ë
hMpc≠1

È
(red). As

expected, due to the very small correction of IR resummation on the BAO amplitude, the
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di�erences with respect to the baseline are mild. For kmax = 0.12 (green contours) the filled
and empty contours are nearly indistinguishable, while for kmax = 0.15 (red contours) we
see small di�erences below 0.2‡ for –Î,–‹, fAp and 1‡ for m. However, this is a very mild
deviation given the large volume of 566

#
h
≠1Gpc

$3 considered here. In summary the inclusion
of IR resummation corrections has no significant e�ects for the ShapeFit approach.

B Impact of the baryon density prior choice

Since there might be some confusion in the literature about this, here we test the impact of
the prior choice on the baryon density on cosmological constraints. In the case of the PT
challenge, the baryon to matter density ratio is known a priori, motivated by the baseline
�CDM Planck 2018 constraints:

Êb

Êm

= 0.1571 . (B.1)

However, in most cases in the literature where late time quantities such as the BOSS
DR12 and eBOSS DR16 data products are used to constrain cosmological parameters jointly
with early time probes, priors on the baryon density today, Êb, are adopted. These priors
can be motivated either by CMB data, or by the observation of primordial Deuterium and
Helium abundances in distant systems, often referred as “Big Bang Nucleosynthesis” (BBN)
measurements.

Therefore, it is interesting to investigate to what degree our cosmological parameter con-
straints depend on the choice of prior information about the baryon density. For that purpose,
we choose the bestfit value of Êb from our “SIM-like” run as a fiducial value. Then, we per-
form an additional cosmological fit to the “SIM-like” ShapeFit results but using a Gaussian
prior centered around that fiducial Êb value with width �Êb = 0.0001 instead of imposing
a prior on Êb/Êm as done in our baseline analysis. The width of the prior is chosen such
that Êb is e�ectively fixed to the same degree as Êb/Êm has been fixed for the baseline (see
table 2), such that there is no residual e�ect of the prior when carrying out the comparison.

The results are presented in the right panel of figure 9. The baseline “SIM-like” results
with fixed baryon to matter density ratio are shown in green, while the additional run with
fixed baryon density is shown in violet. Of course, both runs deliver the same mean results, as
the prior on Êb chosen for the violet contours is given by the bestfit value of the green contours.
While the errors on the matter density �m and the primordial fluctuation amplitude As are
insensitive to the type of baryon density prior, we see that the constraints on the Hubble pa-
rameter h become tighter by a factor 2 once we employ a prior on Êb instead of Êb/Êm. This is
in fact expected, as the former parameter contains information on h, while the latter does not.

From this we conclude that the constraints on �m and As from LSS data are more
robust and insensitive to the specific prior choice than constraints on h. Care has to be
taken in particular when showing LSS results on h, that made use of an early-time physics
assumption, as di�erent, physically well motivated assumptions can lead to subtle di�erences
in the posterior constraints.
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Figure 9. Left panel: impact on the ShapeFit compressed parameter constraints of including IR
resummation (empty, dotted contours) or not (filled contours). The results are presented for two
di�erent choices of maximum wavevector, kmax = 0.12

#
hMpc≠1$ (green) and kmax = 0.15

#
hMpc≠1$

(red), where the bias parameters follow the local Lagrangian prediction and the shot noise correction
prior is fixed to 1%. We find that including IR leads to very mild di�erences typically below 0.2‡
reaching at maximum 1‡ in m for the kmax = 0.15

#
hMpc≠1$ case. Right panel: blinded cosmologi-

cal parameters obtained for the “SIM-like” set-up choosing two di�erent implementations of baryon
density Êb prior. In green, we show the baseline case for which we use our prior knowledge that the
baryon to matter density ratio is set to Êb/Êm = 0.1571. In violet, we show the results for fixing the
baryon density Êb to its best fit value found from the baseline run. The latter choice (motivated by
BBN or CMB data) is more often used in the literature when constraining �CDM parameters using
actual survey data. We find that the �m and As constraints are insensitive to this prior choice, while
constraints on h broaden by a factor ≥ 2 when choosing a prior on the baryon to matter density ratio
rather than the baryon density itself.
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M O D E L - A G N O S T I C I N T E R P R E TAT I O N O F E B O S S
D ATA

This final chapter related to ShapeFit presents the article "Model-
agnostic interpretation of 10 billion years of cosmic evolution traced
by BOSS and eBOSS data" [5], currently under review for publication
in JCAP.

In this article we apply ShapeFit, for the first time in combination
with BAO reconstruction via the method of [89], to the BOSS+eBOSS
LRGs spanning a redshift range from 0.2  z  1.0 in three redshift
bins and the eBOSS quasars spanning 0.8  z  2.2. This represents
the most constraining published specroscopic galaxy and quasar maps
to date. Considering also the Lyman-a BAO data of [90] with 1.8 <

z < 4.0, we discuss the cosmological implications of this legacy dataset
for a variety of models. This is done in a similar manner as for the
official eBOSS analysis [36], but with addition of the measured shape
parameter and further tests of the Shapefit methodology on high
confidence mocks matching each tracer studied in the paper.

The article is structured as follows. Section 2 contains a brief sum-
mary of the different template-fit approaches that have been applied
to data so far, from the philosophy of fixing the template in general
to BAO types of analyses to RSD analysis and ShapeFit. In section
3 we present the datasets used throughout the work and provide
in section 4 the constraints on the ShapeFit compressed physical pa-
rameters. These parameters are subsequently used as input to derive
cosmological constraints on the standard flat LCDM parameters and
single parameter extensions in section 5. This section also features a
comparison between the individual tracers and a comparison with
other approaches, either FM or classic. Then, we undergo a compre-
hensive study using mocks in section 6 to obtain the systematic error
budget, and finally conclude with section 7. A suite of additional tests
is provided in various appendices.

The implications of this work for galaxy clustering analyses and
cosmology are manifold. By consistently combining ShapeFit with
the post-reconstruction BAO signals of the LRG bins at the level of
compressed variables and by considering a huge redshift range, we
are able to provide the tightest constraints on the matter density
today Wm to date from LSS alone under the assumption of standard
flat LCDM. Generally, we see that the shape m helps a lot when
constraining models from LSS alone (see abstract and section 5.4 for
exact numbers). However, once CMB data from Planck is included, the
increase in constraining power with respect to the classic BAO+RSD
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approach becomes vanishingly small. This is in line with (and justifies)
previous BOSS and eBOSS cosmological results [35, 36], which were
mostly obtained in combination with Planck.

Another interesting aspect of our work is that the influence of the
shape on cosmological parameter constraints becomes less important
the larger the considered redshift range. This is because for larger
redshift ranges the geometrical and growth information captured by
DM(z)/rd, H(z)rd, f s8(z) become pivotal in breaking parameter de-
generacies, whereas the shape, supposed to be constant at all redshifts,
does not gain much from extending the redshift range. In turn, a
significant shift in shape with redshift could serve as a smoking gun
for new physics (such as primordial non-Gaussianity) or -alternatively-
point towards unaccounted systematics.
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Abstract. We present the first model-agnostic analysis of the complete set of Sloan Digital
Sky Survey III (BOSS) and -IV (eBOSS) catalogues of luminous red galaxy and quasar
clustering in the redshift range 0.2  z  2.2 (10 billion years of cosmic evolution), which
consistently includes the baryon acoustic oscillations (BAO), redshift space distortions (RSD)
and the shape of the transfer function signatures, from pre- and post-reconstructed catalogues
in Fourier space. This approach complements the standard analyses techniques which only
focus on the BAO and RSD signatures, and the full-modeling approaches which assume
a specific underlying cosmology model to perform the analysis. These model-independent
results can then easily be interpreted in the context of the cosmological model of choice.
In particular, when combined with z > 2.1 Ly-↵ BAO measurements, the clustering BAO,
RSD and Shape parameters can be interpreted within a flat-⇤CDM model yielding h =

0.6816±0.0067, ⌦m = 0.3001±0.0057 and 10
9
⇥As = 2.43±0.20 (or �8 = 0.858±0.036) with

a Big Bang Nucleosynthesis prior on the baryon density. Without any external dataset, the
BOSS and eBOSS data alone imply ⌦m = 0.2971 ± 0.0061 and 10

9
⇥ As = 2.39

+0.24
�0.43 (or �8 =

0.857 ± 0.040). For models beyond ⇤CDM, eBOSS data alone (in combination with Planck)
constrain the sum of neutrino mass to be ⌃m⌫ < 0.40 eV with a BBN prior (⌃m⌫ < 0.082 eV)
at 95% CL, the curvature energy density to ⌦k = �0.022

+0.032
�0.038 (⌦k = 0.0015 ± 0.0016) and

the dark energy equation of state parameter to w = �0.998
+0.085
�0.073 (w = �1.093

+0.048
�0.044) at 68%

CL without a BBN prior. These results are the product of a substantial improvement of the
state-of-the-art methodologies and represent the most precise model-agnostic cosmological
constrains using spectroscopic large-scale data alone.
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1 Introduction

Observations of the Cosmic Microwave Background (CMB, e.g., [1, 2]) have been pivotal
in establishing the ⇤CDM model as the standard model for cosmology. The interpretation
of CMB observations is very sensitive to the (linear, and, within the standard cosmological
model, simple and well understood) physics of the early Universe. However, one of the main
puzzles of modern cosmology, the cosmic acceleration, is a late-time (z . 1) phenomenon,
hence cosmological constraints from the late-time Universe observations are of crucial impor-
tance to study dark energy. Complementary to Supernovae observations, which first provided
evidence for cosmic acceleration, the large-scale structure (LSS) of the Universe, provides a
unique window into the evolution of the late-time Universe.

The development of massive spectroscopic surveys of galaxies and quasars over wide
areas of the sky over the past two decades (e.g., [3–5]) has propelled the study of clustering of
LSS into the realm of precision cosmology. The clustering of galaxies and other dark matter
tracers (such as quasars or the Ly-↵ forest) provides precise measurements of the cosmic
expansion history with baryon acoustic oscillations (BAO) and measurements of the rate of
structure growth with redshift space distortions (RSD).

Perturbations in the photon-baryon fluid of the early Universe leave an imprint in the
late-time clustering of cosmic structure as a feature (the BAO, [6]) observable in the LSS
power spectrum and first detected by [4, 5]. The BAO feature offers a standard ruler whose
length can be calibrated by early-time physics, but also, when observed in the late-time
clustering, can be used to determine the expansion history of the Universe via the Alcock-
Paczynski (AP) effect [7]. The tracer’s power spectrum yields two scaling parameters –
↵k, ↵?– respectively along and across the line-of-sight (LOS) direction. The information
extracted is purely geometrical and model-independent, it is only mildly affected by non-
linear physics, making the BAO one of the most robust probes of the late-time Universe. To
reduce the potential bias on the BAO feature induced by non-linearities and to boost the BAO
signal-to-noise, it is customary to apply the reconstruction technique [8, 9]. Reconstruction
effectively generates an additional catalogue and thus additional ‘post-recon’ power spectra.
These are highly correlated to the ‘pre-recon’ ones –hence their covariances must be carefully
taken into account– but do add significant information and are used only for the BAO part
of the analysis.

Furthermore, gravitationally-induced peculiar velocities give rise to deviations from the
Hubble flow which imprint RSD on the three-dimensional map produced by redshift surveys.
Pioneered by [10], RSD enclose information about the combination of the amplitude of velocity
fluctuations with the dark matter amplitude perturbations. As such, they trace the growth
history of cosmic structures, offering thus important insights into the nature of gravity.

Most analyses of state-of-the-art surveys, e.g., [11, 12], adopt what we refer to as the
‘classic’ approach in order to extract cosmological information from the tracers’ clustering.
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With the help of a template of the power spectrum, the clustering data are compressed into
few (three per redshift interval considered corresponding to two scaling parameters and one
growth rate parameter) physical observables, or compressed variables, which are only sensitive
to late-time physics. The resulting constraints on these compressed variables can then be re-
interpreted a posteriori as constraints on (cosmological) parameters for a given cosmological
model (or family of models).

This ‘classic’ approach is conceptually different from the way, for example, the CMB
power spectrum is analyzed, and from the analysis of LSS data pre-BAO era (see for e.g.,
[13–15]), which we refer to as ‘full modeling’ (or FM). After selecting a cosmological model
ab initio, the measured power spectrum is compared directly to the model’s prediction, and
the model’s parameters are then constrained by standard statistical inference. The procedure
is repeated for every model under consideration.

If clustering is analyzed without external datasets or priors, the application of the FM
approach to state-of-the-art redshift surveys (e.g., [16–18]) produces much tighter constraints
on cosmological parameters than the classic approach. In a joint CMB+LSS analysis however
the two perform very similarly.

In other words, the compression employed by the classic approach, disentangles the
late-time physics from the early-time one, isolates the part of the cosmological signal least
affected by systematics and makes the resulting constraints as model independent as possible
(e.g., [19, 20] and refs. therein). But has the drawback that the compression is not lossless.
Full modeling approaches are model-dependent, and computationally more demanding both
in terms of analysis and of modeling of the signal, but –compared to the ‘classic’ approach–
extract additional information mostly from the broadband shape of the power spectrum.

A simple one-parameter extension of the ‘classic’ approach, ShapeFit, was proposed
by [21]. The ShapeFit phenomenological parameter m is related to the shape of the power
spectrum on very large scales and to the shape of the matter transfer function; it was designed
to capture a series of early-time processes that affect the broadband power spectrum shape
in the linear regime.

The application of ShapeFit to the large volume, high resolution, PT challenge [22]
simulations suite [23] demonstrates that this approach is effectively unbiased even for a survey
volume 10 times larger than that probed by future surveys. Ref. [24] presents the ShapeFit
analysis of the Sloan Digital Sky Survey-III BOSS data and demonstrates that it matches the
constraining power of FM approaches performed to date on the same data.

Here we consider the full BOSS and eBOSS observations campaigns [12] representing the
final use of the Apache Point Observatory 2.5m Sloan Telescope for galaxy redshift surveys
designed to measure cosmological parameters using BAO and RSD techniques. Four genera-
tions of Sloan Digital Sky Survey culminated with the eBOSS data release, which probes ⇠ 10

billion years of cosmic evolution through more than 2 million spectra. We apply the ShapeFit
analysis on these data and present the resulting constraints on the physical parameters. We
argue that ShapeFit extracts virtually all the robust and model-independent cosmological
information carried by LSS clustering. The constraints on the physical parameters are then
interpreted in light of a suite of popular cosmological models including the standard ⇤CDM
and its common one-parameter extensions.

It is worth highlighting that in producing the ShapeFit constraints on the physical
parameters, no assumption is made about the underlying cosmological model. A Friedmann-
Lemaitre-Robinson-Walker metric is assumed and thus statistical homogeneity and isotropy,
although General Relativity (GR) is not assumed on large scales. However, Newtonian dy-
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namics (hence GR) is assumed at small, mildly non-linear, scales when reconstruction is ap-
plied to boost the BAO signal. Within ShapeFit, no explicit scale-dependence of the growth
rate is considered, hence the measured growth rate should be considered as effective, suit-
ably weighted across the relevant scales. No assumption is made about early-time physics,
the nature of dark energy, of dark matter or spatial curvature. However, unless otherwise
stated, the interpretation of the constraints on the shape parameter m assumes a power-law
primordial power spectrum with fixed spectral slope; moreover a Big Bang nucleosynthesis
(BBN) prior is adopted when converting the compressed variable constraints into cosmolog-
ical parameters. Unless otherwise stated, galaxy bias is assumed to be local in Lagrangian
space. This set of assumptions only affects the shape parameter constraints and not the other
compressed variables.

The rest of the paper is organized as follows. In section 2 the theory and methodology
are described. This section is mostly a review of material covered elsewhere in the literature,
but its presentation is tuned to the current application. The data set used is presented in
section 3 along with the simulated mock surveys which are employed to estimate the relevant
covariance matrices. Model-independent results on the physical variables are presented in
section 4 and their re-interpretation under the ⇤CDM and a suite of extensions to this model
are reported in section 5. Section 6 reports a suite of systematic checks performed on synthetic
catalogues and estimates the overall systematic error budget. Finally we present the main
conclusions of this work in section 7. The appendices quantify the impact on the final results
of several assumptions ranging from the nature of tracer’s bias, fiber collisions and prior
choices.

2 Methodology, Theory and Data compression techniques

As mentioned in the introduction, there is more than a single way to perform a cosmolog-
ical analysis to spectroscopic galaxy survey data. In this section we review and summarize
approaches that are already in the literature, in particular [8, 9, 21, 25, 26] and references
therein. This section however, also serves to highlight differences, similarities and connections
among them. In this work, we focus on the fixed template approach, where the measured
galaxy power spectra are compressed into physical variables ⇥phys at each redshift bin, which
in turn can be interpreted in light of a cosmological model and its parameters ⌦. Note that,
within the compression step, the power spectra are fitted in a model-agnostic way, without
imposing any of the ⇤CDM-type of relations among (physical) parameters. In this way, (cos-
mological) model’s assumptions are introduced only at the very late stages of the analyses.
This has several advantages, for example, there is no need to re-do the fit if the cosmology
paradigm changes, or when a novel model or class of models needs to be tested. This is one of
the main reasons for adopting this philosophy of interpreting the spectroscopic data, rather
than direct fits (or full modeling fits).

All model-agnostic fixed-template compression techniques rely on two fundamental steps.
First, a fiducial cosmology ⌦fid is needed to generate a reference coordinate and unit system.
The coordinate system depends on the distance-redshift relation and the unit system depends
on the fiducial linear matter power spectrum template Plin(k,⌦fid

) as function of wavenum-
ber k. Second, the fiducial template is transformed as to be compared with the observable
galaxy power spectrum multipoles in redshift space, P

(`)
model(k,⇥model|⌦fid

) given a certain
model or compression type. Here the ‘|’ sign indicates that the dependence of the fiducial
cosmology is implicit rather than explicit. As we explain in more detail in section 3.3, the

– 3 –



final constraints on physical parameters do not depend on the template’s choice.1 The symbol
⇥model corresponds to a set of physical and nuisance parameters ⇥model = ⇥model

phys [ ⇥model
nuis

that is used to i) probe all late-time dynamics effects (geometry and/or growth) in the most
generic, model-independent way, and ii) once the physical parameters are constrained at each
redshift bin, use them to test cosmological models. This compression step is described for
three different cases in section 2.2.

In particular, we review the ‘classic’ BAO and RSD analyses in addition to the recently
introduced ShapeFit compression.

2.1 Fiducial cosmology

As anticipated above, the purpose of adopting a fiducial cosmology ⌦fid is twofold.
First, it is needed to generate a coordinate system. The galaxy positions provided by

BOSS and eBOSS are measured in terms of angles and redshifts. These coordinates are
transformed to distances based on a distance-redshift relation determined by the fiducial
cosmology, in particular (within ⇤CDM) by the matter density today ⌦m and the Hubble
expansion rate today (or ‘little h’) H0 = 100 h km/s/Mpc. This coordinate transformation
is essential to extract the full three-dimensional clustering statistics from galaxy catalogs, as
different cosmological models affect the distances along and across the LOS differently.

Second, the fiducial cosmology is needed to generate a unit system for the distances
(akin to interpreting the hatching of a ruler). This is provided by the fiducial matter power
spectrum template Plin(k,⌦fid

), whose shape is predominantly (but not solely) determined by
the sound horizon at radiation drag epoch, rd, the so-called ‘standard ruler’. In the template it
manifests itself via the location of the wiggles on one hand (measured by the BAO analysis),
and as a characteristic suppression scale on the other hand (measured by ShapeFit). The
latter effect is somewhat degenerate (at the scales of interest for galaxy clustering) with
the overall power spectrum slope determined by the scale of equality between matter and
radiation, keq, and the primordial tilt, ns. But the power of ShapeFit is to measure the slope
in a model-independent way.

In principle, one could adopt different fiducial cosmologies for the coordinate and the
unit system. But, as it is customary, here we use the same fiducial cosmology for both tasks.
For simplicity, we use the same fiducial cosmology ⌦fid employed in the official BOSS and
eBOSS analyses, with parameter values listed in table 2.

Throughout this work we denote by ‘fid’ the quantities evaluated at that cosmology.
The quantities without this notation denote the true underlying values of the sample we fit
(either mock or actual data).

2.2 Modeling the power spectrum multipoles

In general, because the power spectrum of the observed galaxy map is constructed adopting
a fiducial coordinate and unit system, the modeled power spectrum multipoles need to be
rescaled to that system in order to be compared to the data. These coordinate and unit
conversions (called late-time and early-time rescaling respectively in [21]) are almost perfectly
degenerate, which is why they are often represented by the following scaling parameters,

1Previous studies have checked that there is a residual dependence which is very sub-dominant with respect
to BOSS and eBOSS statistical errors, even for cases where this reference template is many standard deviations
away from best-fit CMB anisotropy cosmologies. For detailed studies on how the arbitrary choice of the fixed
template can impact the cosmological results, we refer the reader to Appendix B of [21].
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↵k(z) ⌘
DH(z)/rd

[DH(z)/rd]
fid

, ↵?(z) ⌘
DM (z)/rd

[DM (z)/rd]
fid

, (2.1)

where DH(z) ⌘ c/H(z) and DM (z) ⌘
R

z

0 c/H(z
0
)dz

0 are the distances along and across the
LOS respectively, with Hubble expansion rate H(z). These scaling-parameters are used to
transform the power spectrum multipoles into the correct observable coordinates in units of
the standard ruler and they are allowed to vary freely.

Note that the scaling parameters as defined in eq. (2.1) depend on the arbitrary choice of
the template, but once they are converted to the physical distances in units of the BAO scale,
DH/rd and DM/rd, this dependence vanishes. Hence, we use both notations interchangeably,
in particular we use

�
↵k, ↵?

 
when referring to the template fits and {DH/rd, DM/rd} when

referring to their cosmological interpretation.
The modeled power spectrum multipoles for a given reference template based on the

cosmology ⌦fid are usually written as,

P
(`)
model(k) =

(2` + 1)

2↵
2
?↵k

Z 1

�1
Pmodel(

ek(k, µ), eµ(µ),⌦fid,⇥model)L`(µ) dµ + g
(`)

(Xmodel) , (2.2)

where ⇥model includes physical and nuisance parameters of the compression method of choice,
g
(`)

(Xmodel) represents an arbitrary function accounting for the broadband signal which de-
pends on multipole ` and extra free nuisance parameters, Xmodel, the coordinates (k, µ) are
the wavevector in units [Mpc

�1
h] and the cosine of the separation angle, L` is the Legendre

polynomial of order ` and the rescaled coordinates (ek, eµ) are defined as,

ek =
k

↵?

"
1 + µ

2

 
↵

2
?

↵
2
k

� 1

!#1/2

, eµ = µ
↵?
↵k

"
1 + µ

2

 
↵

2
?

↵
2
k

� 1

!#�1/2

. (2.3)

The exact model implementation of Pmodel and the corresponding parameter-sets ⇥model

and Xmodel depend on the type of compression used to analyze the data. Different choices
are summarized below.

2.2.1 BAO compression

For the BAO analysis, only the oscillatory feature within the power spectrum, at wavenumbers
determined by the sound horizon at radiation drag rd, is of interest. Therefore it is customary
to separate the fiducial linear power spectrum template into a no-wiggle (P fid

nw = P
fid
lin � P

fid
wig)

and a wiggle (P fid
wig) part, such that the scaling only affects the oscillatory part O

fid
lin = P

fid
lin /P

fid
nw,

while the no-wiggle broadband shape is marginalized over. In practice, this is achieved by
setting the following model power spectrum Pmodel into eq. (2.2) [27, 28]:

PBAO(k, µ) = B
2
(1 + �µ

2
R)

2
P

fid
nw(k)


1 +

⇣
O

fid
lin(k) � 1

⌘
e
� 1

2

⇣
µ

2
k
2⌃2

k+(1�µ
2)k2⌃2

?

⌘�
, (2.4)

where B represents a global amplitude parameter, � (defined as � = f/b1)2 incorporates lin-
ear (Kaiser) redshift space distortions, the damping terms (⌃k, ⌃?) include the anisotropic,
non-linear damping of the BAO-amplitude and R is either the smoothing scale used in recon-
struction (see section 2.3), or set to zero in case the BAO fit is performed on pre-reconstruction
measurements.

2Within the BAO analysis we do not use this parameter to measure the growth rate f , but rather marginal-
ize over it.
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In addition, the broadband power spectrum is marginalized over by adding to each power
spectrum multipole the following polynomial expansion of order N = 5 for BOSS LRGs and
N = 3 for eBOSS LRGs:

g
(`)

(XBAO) =

NX

i=1

A
(`)
i

k
2�i

. (2.5)

Hence, our BAO-model is fully described by 2 physical parameters ⇥BAO
phys =

�
↵k, ↵?

 
and 23

(15) nuisance parameters for BOSS (eBOSS) LRGs ⇥BAO
nuis =

n
�, BN/S, A

(`)
i,N/S

o
per redshift

bin, where subscripts ‘N’ and ‘S’ stand for the north and south galactic caps. The damping
terms (⌃k, ⌃?) are not varied freely but are set to fiducial values estimated from the mocks
of each sample (see section 3.2).

2.2.2 RSD compression

In addition to the BAO analysis, where only the ‘horizontal’ information (coming from the
wiggle position as a function of the angle to the LOS) is considered, the RSD analysis aims
to gain cosmological insight also from the ‘vertical’ information (coming from the relative
broadband amplitude as a function of the angle to the LOS).

Therefore, the first ingredient of the RSD compression are the scaling parameters
�
↵k, ↵?

 

defined in eq. (2.1) which capture the AP-effect and are also sensitive to the absolute position
of the BAO at drag epoch. Although strictly speaking the AP effect affects all scales (and not
only the BAO scale) it has been shown (see appendix D of [21]) that the BAO signal greatly
dominates over the rest of the scales, and therefore it is common practice in the literature to
treat the BAO scale as fully degenerate with the scale dilation parameters (see also sections
2 and 3 of [21] for a further discussion on this topic).

The redshift space distortion effects on the other hand are sensitive to the following com-
bination of parameters: the growth of structure f times the amplitude of matter fluctuations
at the scale of 8 Mpc h

�1,

f(z) ⇥ �8(z) ⌘ f�8(z) = ⌦
�

m(z) ⇥

Z 1

0
dq q

2
Plin(q; z)WTH(qR8)

�1/2

(2.6)

where � = 6/11 for General Relativity, WTH is the top-hat function, which in this case
smooths the fluctuations of the matter field in a scale of R8 ⌘ 8 Mpc h

�1 .
In practice, this is implemented within the fixed template fits as follows: the amplitude

of matter fluctuations �8 is fixed by the template, which provides a ‘standard amplitude’ in
a similar fashion to the standard ruler rd. The free parameter of the RSD compression is
the growth rate f , which enters the galaxy power spectrum Pg in redshift space following the
TNS [29] model,

PRSD(k, µ) =

⇣
1 + [kµ�P ]

2
/2

⌘�2 ⇥
Pg,��(k|⌦fid,b) + 2fµ

2
Pg,�✓(k|⌦fid,b) + f

2
µ

4
Pg,✓✓(k|⌦fid)

+ b
3
1A

TNS
(k, µ, f/b1) + b

4
1B

TNS
(k, µ, f/b1)

⇤
,

(2.7)
where the density (‘��’), velocity (‘✓✓’) and cross (‘�✓’) contributions to the galaxy power
spectrum are obtained by applying two-loop Re-summed Perturbation Theory (2LRPT) to
the fiducial power spectrum template as described in [28]. The power spectrum terms also
depend on a set of bias parameters b = {b1, b2, bs2, b3nl} [30], where we assume the non-
local bias parameters to follow the local Lagrangian prediction [31–33] of the co-evolution
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model bs2 = �4/7(b1 � 1) and b3nl = 32/315(b1 � 1). We study the impact of relaxing these
assumptions in Appendix A. The functions A

TNS
, B

TNS are provided by [29] and the Fingers
of God effect (FoG, highly nonlinear RSD along the LOS on small scales, [34]) are modeled
via the Lorentzian damping term in front of eq. (2.7) with free parameter �P .

Finally, we also take into account deviations from Poisson shot noise, PPoisson, in the
monopole by setting into eq. (2.2)

g
(`=0)

(XRSD) = PPoisson

"
Anoise

↵k↵
2
?

� 1

#
, (2.8)

where the PPoisson values are provided by BOSS and eBOSS and Anoise is a free parameter for
each redshift bin. Hence, the free parameters of the RSD compression consist of 3 physical pa-
rameters ⇥RSD

phys =
�
↵k, ↵?, f�8

 
and 8 nuisance parameters ⇥RSD

nuis =

n
b
N/S
1 , b

N/S
2 , �

N/S
P

, A
N/S
noise

o

per redshift bin.

2.2.3 ShapeFit compression

The ShapeFit method is a simple, yet powerful, extension of the BAO+RSD compression, that
has been developed and validated in [21], applied to BOSS DR12 data in [24] and successfully
verified on high-volume N-body mocks [23] in the context of the blind PT challenge [22].
Below we briefly introduce the extra parameter of ShapeFit and the relevant cosmological
interpretation.

First of all, it is important to stress that in the fixed template method what is fixed is
actually not the amplitude �8 at a fixed scale R8, but the amplitude �s8 = �(Rs8) at the
scale

Rs8 ⌘ s · 8 Mpch
�1

, s =
rd

r
fid
d

, (2.9)

because all scales within the fixed template method can only be expressed in units of the
standard ruler rd. Further explanation is provided in section 3.2 of [21] and eq. (3.6) therein.

Then, in addition to the RSD compression parameters from section 2.2.2, we include
the shape parameter m proposed in [21] (same parameterization and parameter values as
eqs. (3.7) and (3.8) therein), which aims to capture information from the no-wiggle linear
matter transfer function Tnw(k). Indeed, the shape of the transfer function for any model is
predominantly determined by its slope in the transition region between the very large scales
(where Tnw(k) is constant) and small scales (where it behaves like a power law). In particular,
the scale-dependent slope reaches its maximum at the pivot scale kp = ⇡/rd ⇠ 0.03 hMpc

�1,
related to the standard ruler. In practice this scale is in a sweet spot: it is on large, linear
scales where the scale dependence of the measured galaxy power spectrum is expected to be
a faithful tracer of the transfer function shape and non-linearities are unimportant, yet it is
a scale that is small enough to be sampled reasonably well by state-of-the-art and upcoming
surveys.

Consequently, the measurement of m can be interpreted within any model of choice as

m =
d

dk

0

B@ln

2

64

⇣
r
fid
d
rd

⌘3
· T

2
nw

⇣⇣
r
fid
d
rd

⌘
· k

⌘

T fid
nw

2
(k)

3

75

1

CA

�����
k=kp

. (2.10)
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Note that, within the ⇤CDM model, m does not depend on redshift, but a suite of physical
processes might in principle introduce a (real or effective) redshift dependence 3. Hence,
when we fit the BOSS and eBOSS data, m is recovered as a function of redshift. Only in the
later stage, under the interpretation of m within a specific model, redshift-independence is
imposed.

Finally, our baseline ShapeFit parameter set for each redshift bin contains 4 physical
and cosmologically interpretable parameters ⇥ShapeFit

phys =
�
↵k, ↵?, f�s8, m

 
and the 8 nuisance

parameters ⇥ShapeFit
nuis =

n
b
N/S
1 , b

N/S
2 , �

N/S
P

, A
N/S
noise

o
already introduced in section 2.2.2. The

fits are carried out in the same fashion as described therein, so PShapeFit(k, µ) = PRSD(k, µ)

where the linear no-wiggle transfer function is modified via the shape parameter m.

2.3 Reconstruction

It is customary to use the technique of reconstruction [8] to enhance the BAO peak detection
within BAO fits.

The reconstructed catalogues are generated using the algorithm described by [9, 35]
where the underlying dark matter density field is inferred from the actual galaxy field. This
can be done efficiently only for tracers with sufficient high-density of objects, in our case the
LRG samples. During the reconstruction process, each galaxy position is displaced to the
position where this galaxy would reside if there were no bulk flows. This process successfully
removes most of the non-linear effects from the BAO feature and enhances the detection of
the BAO peak.

In this paper, as done in all similar SDSS analyses, we fit the reconstructed data with
minimal information from the broadband clustering signal, attempting to isolate the signal
of the BAO peak position along and across the LOS. This allows us to effectively constrain
only ↵k and ↵? from these catalogues.

The reconstruction process effectively produces a new catalogue of galaxies which we
refer to as the post-reconstructed (or post-recon) catalogue. Conversely, the original catalogue
takes the name of pre-reconstructed (pre-recon) catalogue. We treat the pair, reconstructed
and pre-reconstructed catalogs as two separate but correlated catalogs; as such, the data-
vectors derived from each can be combined using the appropriate correlation matrix, estimated
from mock galaxy surveys as described in section 3.3.

2.4 Adopted naming convention for methodology and analysis approaches

In the rest of this paper we adopt the following naming conventions. We refer to BAO+RSD
analyses as ‘classic’ approach and often use these two names interchangeably. This can be seen
as a data compression that extracts the BAO and RSD signature into three purely late-time
physical parameters, or physical variables, per redshift bin: {↵k, ↵?, f�s8}

4

The BAO signal is usually extracted from the reconstructed catalog. When this is not
clear from the context we refer to this as BAO post-recon (as opposed to BAO pre-recon).
The RSD analysis is always performed in the pre-recon catalogue. The BAO+RSD ‘classic’
analysis is extended by ShapeFit. We refer to this extended BAO+RSD+Shape as ShapeFit,
interchangeably. In this case the full data set is compressed into four physical parameters per

3Effects of systematics or physics beyond the ⇤CDM can leave signatures on m see [24]
4The f�s8 convention was introduced by [21] only very recently, as it represents the quantity that the ‘clas-

sic’ fixed-template approach actually measures instead of f�8. As ref. [21] clearly explains, it is straightforward
to convert between the two quantities at the cosmological interpretation step.

– 8 –



redshift bin, the forth being the shape parameter m, which is however not purely a late-time
parameter. In the case that the shape parameter m is varied during the template fit, but is
not used for the cosmological interpretation, i.e., m is marginalized but only the compressed
variables representing BAO+RSD information are interpreted, we refer to that as ‘classic’
fit as well, because effectively the results are indistinguishable [21]. When the reconstructed
catalogs are available, the full data set incorporates a stronger BAO signal by including a BAO
post-recon analysis. This represents a further improvement to the original ShapeFit proposal
and its applications to date [21, 23, 24], where the BAO signal was extracted exclusively from
the pre-recon catalog.

3 Data

We use the publicly available data from the Sloan Digital Sky Survey-III [36, 37] and -
IV [38, 39], corresponding to the respective observation campaigns, BOSS [40] and eBOSS
[41]. Both campaigns make use of two multi-object spectrographs [42, 43] installed on the
Apache Point Observatory 2.5-meter telescope located in New Mexico, USA [44] to carry out
spectroscopic measurements from photometrically selected Luminous Red Galaxies (LRGs),
Emission Line Galaxies (ELGs) and Quasar (QSO) samples, which have been used for both
clustering and Ly-↵ studies.

In this paper we focus on re-analyzing only the LRG [45, 46] and quasar clustering [47]
catalogues. For simplicity we do not re-analyse the Main Galaxy Sample (MGS) [48] and
ELG samples [49], neither the Ly-↵ forest studies [50], which would require an effort beyond
the scope of this paper.

However, in our cosmology fits later in section 5, we incorporate the eBOSS DR16
Lyman-↵ BAO-only compressed variable results of [50] obtained from their auto- (Ly↵⇥Ly↵)
and cross- (Ly↵⇥QSO) spectra measurements at redshift ze↵ = 2.33. Collectively this data
set probes the last 10 billion years of cosmic evolution through more than 2 million spectra.

To complement this ‘late-time’ data-sample for the purpose of cosmological interpreta-
tion in section 5, we include additional ‘early-time’ probes presented in section 3.4.

3.1 BOSS and eBOSS Data samples

We analyze the power spectrum multipoles –monopole, quadrupole and hexadecapole– of
the catalogues listed in table 1, consisting of a total number of 1,723,267 unique objects,
covering a redshift range of 0.2 < z < 2.2. The goal is to perform a consistent BAO,
RSD and ShapeFit-type of analysis which does not make a priori assumptions about the
true underlying cosmological model or family of models, yet at the same time maximizes the
amount of inferred cosmological information. These catalogues were originally analyzed by the
BOSS and eBOSS team, with a strong focus on BAO and RSD features: [27, 51–56] analyzed
the BOSS DR12 samples, [28, 57–59] analyzed the eBOSS DR16 samples. In addition, eBOSS
also analyzed the ELG sample [49, 60, 61], which we do not use in this paper. Finally, these
measurements were consistently combined by the BOSS and eBOSS collaboration in [62] and
[12], respectively. Additionally to the standard RSD and BAO analyses, [63, 64] performed
an analysis on BOSS data extracting also information on ⌦mh

2 from the shape of the power
spectrum. Recently, further studies have been published focusing on analyzing BOSS and
eBOSS data by fitting the full power spectrum to the prediction of a specific model (see for
e.g., [16, 17, 65–68] just as few examples). Later in section 5.4.1 we compare our results to
their findings.
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Catalogue tracer range patch objects Ref
BOSS DR12 LRG 0.2 < z < 0.5 north 429,182 [45]
BOSS DR12 LRG 0.2 < z < 0.5 south 174,819 [45]
BOSS DR12 LRG 0.4 < z < 0.6 north 500,872 [45]
BOSS DR12 LRG 0.4 < z < 0.6 south 185,498 [45]

BOSS DR12 + eBOSS DR16 LRG 0.6 < z < 1.0 north 255,741 [46]
BOSS DR12 + eBOSS DR16 LRG 0.6 < z < 1.0 south 121,717 [46]

eBOSS DR16 QSO 0.8 < z < 2.2 north 218,209 [47]
eBOSS DR16 QSO 0.8 < z < 2.2 south 125,499 [47]

Table 1. List of SDSS-III and -IV catalogues used in this paper and their number of objects. The
total number of unique objects is 1,723,267, and the total effective volume is 2.82 [Gpch

�1
]
3.

Throughout this paper we always assume that the northern and southern hemispheres
are statistically independent, as it is the common practice. In the same fashion, we consider
that the different redshift bins are independent, unless they are overlapping. This is the case
for the BOSS DR12 redshift bins at 0.2 < z < 0.5 and 0.4 < z < 0.6, for which the covariance
is inferred from a suite of mock galaxy surveys, as described in section 3.2. On the other hand
the eBOSS DR16 LRG and quasar sample do overlap in the redshift range 0.8 < z < 1.0, but
their covariance can be neglected because of the low density of objects in this range (especially
for quasars) as motivated in section 3.1 of [12].

The power spectra multipole measurements for the pre-recon LRGs and QSOs are dis-
played in figure 1 along with the BAO post-recon signal in the three LRG redshift bins as
points with error-bars. Colored dashed lines are the best-fits of the model (see section 4).
In the pre-recon panels the lower insets show residuals with respect to this model, whereas
for the post-recon panel the two insets show the BAO feature in the monopole (isotropic
BAO, upper inset) and in the µ

2-moment (anisotropic BAO, bottom inset), defined as,
P

(µ2)
⌘ P

(0)
+ 2/5P

(2). Black dotted lines in the bottom right panel display the best-fit
‘mean’ level for the broadband (no-wiggle) power. Note that the three LRG samples have
been displaced vertically for visibility.

3.2 Galaxy mocks

Galaxy survey mocks are crucial to estimate the covariance matrices for the adopted data
vectors. We employ a suite of galaxy mocks, matching the clustering properties and the sky-
geometry of the data samples presented in table 1. These consist of 2 ⇥ 2048 realizations of
the Multi-Dark Patchy mocks [69] for the northern and southern patches (hereafter Patchy
mocks), for the two BOSS DR12 LRG samples. Additionally we consider 2⇥1000 realizations
of the EZmocks [70] for the BOSS DR12 + eBOSS DR16 LRG sample, and for the eBOSS
DR16 quasar sample, also for northern and southern patches. The EZmocks are generated
from 5 different snapshots of large cubic periodic simulations based on the Zeldovich approx-
imation [71], while the Patchy algorithm is based on 4 different snapshots of Augmented
Lagrangian Perturbation Theory [72] and a bias scheme (hence the Patchy and EZmocks are
often refereed to as fast mocks). Fast mocks are well suited for evaluating covariance matri-
ces but their adoption to test or calibrate the accuracy of the adopted modeling of the signal
require some care.

In total we have 12,192 mock realizations of the pre-reconstructed catalogues. Addi-
tionally, we run the reconstruction algorithm introduced in the previous section on the LRG
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Figure 1. Measurements (points with error-bars) and best-fitting model (dashed lines with colors
matching the data points). As labeled, the panels show the pre-reconstructed monopole (top-left),
quadrupole (top-right) and hexadecapole (bottom-left) for the quasar sample and the three LRGs
redshift bins. In each panel the bottom inset shows the residuals normalized by the rms. The bottom
right panel shows the post-recon isotropic and anisotropic signals for the three LRGs redshift bins
normalized by a smooth spectrum (broadband, BB) to highlight the BAO feature. Low (and high)
LRG redshift bins are displaced vertically by �(+)0.15 for visibility.

Cosmology ⌦m ⌦b h 10 ⇥ ⌦⌫ ns As ⇥ 10
9

rd [Mpc]

Fiducial 0.310 0.0481 0.676 1.400 0.97 2.040 147.78

EZ 0.307115 0.048206 0.6777 0 0.9611 2.1151 147.66

Patchy 0.307115 0.048206 0.6777 0 0.9611 2.1476 147.66

Table 2. List of cosmology models used in this paper: the reference or fiducial cosmology used for
the fixed template (for convenience this is the same as the one used for the BOSS and eBOSS analyses
in [11, 12]) and the true underlying cosmology of the two set of mocks used in this paper.

samples, obtaining an additional set of 10,192 realizations of the post-reconstructed mocks.
Power spectrum multipoles are computed for each of these 22,384 mock realizations to ex-
tract a reliable power spectrum covariance, C

`,`
0

k,k0 , which allows us to individually fit each
redshift-sample of both data catalogues and mock catalogues. The exact setup of these fits
is described in section 3.3.

The true underlying cosmology of these mocks and the fiducial cosmology used to analyse
them can be found in table 2. Additionally, in table 3 we list the mocks’s true underlying
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distance ratios, DH/rd, DM/rd, the expected values for the scaling parameters ↵k, ?, the true
growth of structure parameter f�s8, and the expected shape parameter m when these mocks
are analyzed using the fiducial cosmology. Later in section 6 we will show how the actual
analyses on the mocks perform and how close they are to their expected values.

Redshift DH/rd [↵
exp
k � 1] ⇥ 10

2
DM/rd [↵

exp
? � 1] ⇥ 10

2
f�s8 m

exp
⇥ 10

2

0.38 24.46 �0.01 10.35 �0.09 0.4736 �1.15

0.51 22.64 0.03 13.41 �0.07 0.4806 �1.15

0.698 20.21 0.09 17.43 �0.04 0.4659 �1.15

1.48 12.92 0.21 30.11 0.04 0.3828 �1.15

Table 3. True distances, expected dilations (↵0
s), growth rate and shape (m) when Patchy and EZ

mocks are analyzed using the fiducial cosmology of table 2 as reference cosmology. Redshifts 0.38
and 0.51 correspond to the Patchy mocks true cosmology, whereas redshifts 0.698 and 1.48 to the
EZmocks true cosmology. Note that the variables DH/rd, DM/rd and f�s8 are not relative to the
choice of the fixed-template used, and therefore do not have the index ‘exp’.

3.3 Pre- and post-recon catalogue combination

The main results of this work (which are presented in section 4) are the constraints on
the compressed physical variables ⇥combined

phys = {DH/rd(z), DM/rd(z), f�s8(z), m(z)}
combined

obtained by consistently combining post-recon BAO and pre-recon ShapeFit results

⇥combined
phys = ⇥pre�recon

phys [ ⇥post�recon
phys =

{DH/rd(z), DM/rd(z), f�s8(z), m(z)}
pre�recon

[ {DH/rd(z), DM/rd(z)}
post�recon

.

(3.1)

For a combined post-recon BAO + pre-recon ShapeFit analysis it is crucial to cor-
rectly incorporate the covariance between the compressed variables from both types of fits.
Especially the scaling parameters are expected to show a strong correlation for each pair of
pre-recon and post-recon catalog. It is highly non-trivial to model this correlation analytically
due to i) the non-linear nature of the reconstruction scheme and ii) the evident differences in
the BAO and ShapeFit underlying models (especially the no-wiggle power spectrum decom-
position).

One approach would be to infer the covariance matrix of the full combined data-vector
hP

pre�recon
`

(k, z)P
post�recon
`0 (k

0
, z

0
)i and perform a simultaneous pre- and post-reconstruction

fit directly from the multipoles. On the other hand, here we follow the approach taken by
the BOSS and eBOSS team of combining the pre- and post-reconstruction results at the level
of compressed variables: ⇥pre�recon

phys [ ⇥post�recon
phys , which has the advantage of dealing with a

smaller covariance matrix than the previous approach: 12 ⇥ 12 elements for the BOSS LRG
sample, and 6 ⇥ 6 for the eBOSS LRG sample compared to 380 ⇥ 380 and 190 ⇥ 190 power
spectrum elements, respectively. Recently, [73] showed how combining the pre- and post-
recon information at the compressed variable stage only degrades the statistical precision on
5 � 10% with respect to the simultaneous pre- and post-recon fits.

From the pre-recon catalogues, we extract a set of compressed elements, ⇥pre�rec
phys (z)

for each of the 12,192 pre-recon mock realizations; and from the post-recon catalogues a
compressed set of elements ⇥post�rec

phys (z) from the 10,192 realizations.
Using this information we are able to extract the block off-diagonal elements among

different overlapping samples (for BOSS DR12 0.2 < z < 0.5 and 0.4 < z < 0.6 samples), and
among the pre- and post-reconstructed catalogues (for BOSS and eBOSS LRG samples).
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All pre-recon ShapeFit fits to the mocks and the data are carried out with the parameter
and prior settings stated in table 4. For the post-recon BAO fits we use the same priors on
the scaling parameters and uninformative uniform priors on the nuisance parameters. For
all fits we follow as close as possible the configuration chosen within the official eBOSS BAO
and RSD analyses. In particular, we choose kmax = 0.15 hMpc

�1 for ShapeFit analyses of the
LRG samples and kmax = 0.30 hMpc

�1 for the ShapeFit analysis of the QSO sample and the
BAO analyses of LRGs. In all cases, we apply a maximum scale cut at kmin = 0.02 hMpc

�1

since larger scales are prone to observational systematics.

Parameter (phys.) Prior
↵k [0.5, 1.5]

↵? [0.5, 1.5]

f [0, 3]

m [�3, 3]

Parameter (nuis.) Prior
b1 [0, 20]

b2 [-20, 20] or (5 ± 2.5)

�P

⇥
h

�1
Mpc

⇤
[0, 10]

Anoise (1 ± 0.3)

Table 4. Baseline prior ranges for the physical (left) and nuisance (right) parameters used for
ShapeFit. Uniform priors are denoted as [min, max], Gaussian priors as (mean ± std). The non-local
bias parameters bs2 and b3nl are assumed to follow the local-Lagrangian prediction as function of b1

as described in section 2.

3.4 Ancillary and external ‘early time’ data

Beside the large-scale structure datasets presented above we include the following complemen-
tary data, but only at the stage of interpreting the data in the light of cosmological models
in section 5.

• BBN: By measuring the light elements’ abundances of distant absorption systems –
which serve as proxies for ‘primordial’ times and early-time physics– it is possible to
infer the physical baryon energy density fraction !b relying on our knowledge on nuclear
reaction cross sections from solar observations, and our ability to correctly model the
nuclear processes of Big Bang Nucleosynthesis (BBN) occurring only one second after
the initial singularity. In this work we adopt the value !b = 0.02235 ± 0.00037 from
[12] (see also [74]) motivated by measurements of the relative deuterium to hydrogen
abundance from [75] and solar fusion cross sections derived by [76].

• Planck: With its 2018 legacy data release [2] the Planck satellite mission provided the
most detailed temperature and polarization maps of the cosmic microwave background
(CMB) radiation ever observed. This relic radiation with mean temperature TCMB =

2.7255K [77] was emitted when nuclei and electrons recombined ⇡ 380,000 years after
the Big Bang, at redshift zrec = 1090. We make use of the latest Planck data including
the temperature and polarization auto and cross power spectra (TT, TE, EE, and lowE),
as well as the Planck lensing measurements. CMB lensing measurements are certainly
not early time, but this probe is used only in section 5 where model-dependence is
re-introduced, so early-late separation is less important.

4 Model-Independent Results

Here we present the main results of this work, obtained from the ShapeFit analysis outlined
in section 3.3. Our results are found in 4.1 and their comparison to the official eBOSS results
is in section 4.2.
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Figure 2. Main result of this paper: summary of the constraints on the compressed variables across
all samples and redshifts. Filled, colored contours show the ShapeFit results. In the DH/rd �DM/rd

plane we also show the BAO-only result (empty, purple contour) obtained combining the Lyman-↵
auto- (Ly↵⇥Ly↵) and cross- (Ly↵⇥QSO) spectra measured at ze↵ = 2.33 by [50]. These constraints
do not assume a ⇤CDM model. For comparison, we highlight the prediction for the Planck ⇤CDM
best-fit and allowed 2�-range (black line, gray bands), and analogously the ⇤CDM best-fit to the
shown dataset including the corresponding 2�-range (blue line, blue dotted lines),

4.1 BAO, RSD and Shape evolution over 10 billion years of cosmic history

ShapeFit results on the compressed parameters {DH/rd(z), DM/rd(z), f�s8(z), m(z)} are
presented jointly for all analysed redshift bins as filled colored contours in figure 2. In addition,
we show the BAO-only Lyman-↵ result of [50] (purple empty contour), which is included in
our baseline dataset for cosmological interpretation in section 5. The strength of the presented
compressed variables constraints relies on their model-independence. As inherent to the fixed
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template fits described in section 2.2, throughout the fitting process no model assumptions or
‘internal model priors’ based on ⇤CDM or any extensions to it are applied. And that is what
makes this compressed dataset such a unique and powerful probe of the underlying nature of
the Universe. Let us briefly specify the importance of model-independence for the different
pieces of information represented by these compressed variables.

• Geometry: the geometrical information is traced via the AP anisotropy in units of
the BAO scale, parameterized here by DH/rd(z) and DM/rd(z). Within any model,
the parallel, DH(z), and perpendicular, DM (z), distances with respect to the LOS are
directly linked to each other (see definition below eq. (2.1)). By allowing the parameters
DH/rd(z) and DM/rd(z) to vary freely, without any imposed correlation, we are able
to cross-check whether our fundamental assumptions (FLRW metric, homogeneous and
isotropic expansion, etc.) hold.

• Growth: the information on the history of structure growth is traced via RSD, param-
eterized here by the rescaled velocity fluctuation amplitude f�s8(z). Within Einstein’s
theory of General Relativity, the redshift evolution of this quantity is directly linked to
the matter density ⌦m, which also determines the geometry of the universe. By allowing
f�s8(z) to vary freely, on one hand we decouple these model-interdependencies between
geometry and growth, and on the other hand are able to verify the validity of Einstein’s
theory in the first place. Note that the RSD compression provides a unique dataset
on (still not sufficiently explored) large scales, that may give rise to the detection (or
ruling out) of certain modified gravity models.

• Shape: the Shape information, parameterized by m(z), incorporates a number of phys-
ical effects already described before (see section 2.2.3). Most of these effects are of pri-
mordial, ‘early-time’, origin, and are not expected to leave an imprint on the Shape that
varies with redshift, so m(z) = m. However, by constraining this parameter indepen-
dently for each redshift bin, we may be able to find hints for models that have a redshift
dependent impact on the Shape, for example due to a primordial non-Gaussianity signal
fNL, or use it as a flag for possibly unaccounted observational systematics (see [24] for
more details).

Having said that, we begin by comparing these model-independent constraints to the
standard cosmological model, the flat ⇤CDM model. In figure 2 we show the ⇤CDM best-fit
to our BOSS+eBOSS dataset as blue solid line, with the allowed 2� region indicated via the
blue dotted lines. We show the same (black line, grey bands) when considering Planck data
only. See section 5 for the exact setup of our cosmology fits.

We can appreciate that the compressed constraints are in excellent agreement with the
independent Planck-only ⇤CDM best-fit. In particular, the model-independent BAO and
AP constraints in the DH/rd � DM/rd plane follow exactly the model prediction, which
only allows a very tight relation. Therefore, there is no hint from this test of geometry that
we would need to abandon our fundamental assumptions on the homogeneous and isotropic
FLRW metric. The same holds for growth, for which the low redshift probes are in excellent
agreement with the Planck ⇤CDM prediction. However, as already noted by the eBOSS
collaboration [12], we observe a small excess of clustering of 1.5� for the QSO sample at
z = 1.48. Although this is a rather mild anomaly (if any), we investigate the consistency
between the LRG and QSO samples further in section 5.3. While our Shape measurements
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are all consistent with Planck’s ⇤CDM prediction within 1�, we note a subtle tendency of
decreasing m with decreasing redshift.

In summary, the model-independent analysis of BOSS and eBOSS galaxies and Lyman-↵
delivers a unique cross-check of our fundamental assumptions and provides further powerful
confirmation of the standard, flat ⇤CDM model.

LRG 0.2 < z < 0.5 LRG 0.4 < z < 0.6

LRG 0.6 < z < 1.0 QSO 0.8 < z < 2.2

Figure 3. Comparison between the compressed variables inferred in this paper using ShapeFit
(orange contours) and those from the official BOSS and eBOSS papers [11, 12] (purple contours) for
all individual samples. ShapeFit constraints come from only using the Fourier space signal (the power
spectrum), whereas the Alam et al. contours display the consensus between Fourier and configuration
space. For the LRG panels both approaches (orange and purple contours) display the joint analysis of
the full shape pre-recon and BAO post-recon signals. The numerical results are provided in table 5.

– 16 –



Sample (ze↵) method. DH/rd DM/rd f�8 m

LRG (0.38) Alam et al. 24.89 ± 0.58 10.27 ± 0.15 0.497 ± 0.045 �

LRG (0.38) ShapeFit 24.98 ± 0.61 10.24 ± 0.16 0.462 ± 0.045 �0.066 ± 0.042

LRG (0.51) Alam et al. 22.43 ± 0.48 13.38 ± 0.18 0.459 ± 0.038 �

LRG (0.51) ShapeFit 22.26 ± 0.53 13.30 ± 0.19 0.482 ± 0.041 �0.023 ± 0.044

LRG (0.698) Alam et al. 19.77 ± 0.47 17.65 ± 0.30 0.473 ± 0.044 �

LRG (0.698) ShapeFit 19.54 ± 0.45 17.70 ± 0.31 0.478 ± 0.043 �0.008 ± 0.052

QSO (1.48) Alam et al. 13.23 ± 0.47 30.21 ± 0.79 0.462 ± 0.045 �

QSO (1.48) ShapeFit 13.27 ± 0.50 31.01 ± 0.82 0.458 ± 0.041 �0.005 ± 0.033

Table 5. Comparison of constraints on compression parameters quoted in Alam et al.[12] using the
classic method, and the compression proposed by ShapeFit. For Alam et al. the results include both
power spectrum and correlation function, whereas for ShapeFit only the power spectrum signal is
used. In both cases the pre- and post-recon signals have been combined if available. Figure 3 displays
the triangle plots for the same samples. Note that the LRG samples at ze↵ = 0.38 and 0.51 are
correlated. The full covariance matrices for all these samples can be found in Appendix E.

4.2 Comparison with official BOSS and eBOSS results

As a next step we compare our ShapeFit constraints with the official BOSS and eBOSS results
from [11, 12]. We compare to their consensus results obtained from Fourier and configuration
space for pre-recon and post-recon catalogs where available, while our combined pre- and
post-recon constraints are obtained from Fourier Space only.

The compressed variables constraints are shown in figure 3 and table 5 for each individual
sample for ShapeFit (orange contours) and for the classic approach used by BOSS and eBOSS
(purple contours). We find that both approaches are in excellent agreement only showing small
deviations of order 0.2� and at most 1� in DM/rd for the quasars. We see that the shape
parameter is nearly uncorrelated with the other parameters, therefore we expect its effect on
their error bars to be negligible. The ShapeFit error bars are in very good agreement with the
official reported errors, although these are constructed in different way as described above: for
the official BOSS and eBOSS results there is an information gain coming from the correlation
function signal, although this might be partially compensated by the inclusion of a systematic
error contribution at the level of the compressed variables, which we do not consider here.5
However, note that most of the systematic error budget arises from modeling the two-point
statistics and the choice of fiducial cosmology (see for e.g., fig. 14 of [78]), which in ShapeFit
is already accounted for via the shape parameter m.

We conclude that our ShapeFit constraints on {DH/rd, DM/rd, f�8} are consistent with
the official results and can be safely used for cosmological parameter estimation. In this work
we are interested in using this set of parameters together with the shape m for cosmological
interpretation, see section 5. For further details on the ShapeFit systematic budget including
the systematic error on m, see section 6.2.

5 Re-introducing model-dependence: Cosmology Interpretation

The advantage of parameter compression methods such as ShapeFit is that the whole power
spectrum analysis presented before, from the performance on mocks towards the system-
atic budget determination, is performed only once, without the need to repeat it for every

5We explore the potential systematic error contribution of ShapeFit in section 6.

– 17 –



cosmological model in consideration. Therefore, once the three (four) compressed variables
are obtained with the classic fit (ShapeFit), their cosmological interpretation is much more
streamlined than for FM Fits.

In this section we are interested in the cosmological implication of the ShapeFit results
for the BOSS and eBOSS LRGs and QSOs samples described before, with particular focus
on the information gain provided by the new shape parameter m with respect to the classic
BAO+RSD approach.

The varied parameters and prior ranges for all the cosmological models considered are
provided in table 6.

We start by considering the baseline ⇤CDM model in section 5.1 and proceed with
the extended cosmologies in section 5.2. We investigate the cosmological implications of the
individual LSS tracers (LRGs, QSOs and Ly-↵) in section 5.3 and compare our results to
other fitting approaches in section 5.4.

Type Parameter (phys.) Prior Usage

Baseline ⇤CDM

!b [0.005, 0.04] Always
!cdm [0.001, 0.99] Always

h [0.2, 2] Always
ln
�
10

10
As

�
[0.1, 10] Always

ns [0.5, 1.5] With Planck
⌧reio [0.004, 1.0] With Planck

Extensions to ⇤CDM

⌃m⌫ (eV) [0.0, 1.0] Section 5.2.1
Ne↵ [0.0, 9.0] Section 5.2.2
⌦k [�0.8, 0.8] Section 5.2.3,
w0 [�1.5, �0.0] Section 5.2.4

w0 + wa [�5.0, �0.0] Section 5.2.4

Table 6. Prior ranges for the cosmological parameters. Whenever the extended parameters are not
varied, they are fixed to ⌃m⌫ = 0.06 eV, Ne↵ = 3.046, ⌦k = 0, w0 = �1, wa = 0. The reionisation
optical depth ⌧reio and scalar tilt ns are only varied when Planck data is included in the chains,
otherwise the scalar tilt is fixed to the fiducial value n

fid
s

= 0.97

5.1 Baseline ⇤CDM

We show our baseline results for the classic fit (green), that includes the BAO+RSD informa-
tion, and for ShapeFit (blue), which adds the Shape information, in figure 4. The cosmological
constraints from the BOSS+eBOSS surveys alone are shown as empty, dotted contours, while
the filled, continuous contours include the BBN-motivated Gaussian prior on !b introduced
in section 3.4. For comparison, we show the ⇤CDM constraints from Planck alone (empty,
black contours), which are in good agreement with the LSS ones.

The two panels of figure 4 correspond to the same cosmological runs, but for different
parameter bases. On the left, we show the basis of varied parameters, while on the right we
show those derived parameters that are more closely related to the physical parameters our
LSS dataset is sensitive to, presented in section 4.1. Strikingly, the left panel parameters are
quite unconstrained from LSS data alone. Both for the classic fit and for ShapeFit, there
is a perfect degeneracy between !b, !cdm and h that can only be broken via the BBN prior
or other early-time information. On the other hand, the right panel’s parameters are almost
insensitive to the BBN prior, which can be understood as follows.
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The sound horizon scale in units of the Hubble constant today, hrd, is measured from
the isotropic BAO information. Therefore, its constraints are nearly identical for the classic
fit and ShapeFit. This is not the case for ⌦m, which is determined within the classic approach
from the anisotropic BAO and AP effect alone, whereas for ShapeFit there is additional in-
formation coming from the shape m. As argued in [24] this parameter effectively constrains
the combination �0 = ⌦mh, which is also known as ‘shape parameter’ [6, 79, 80]. However,
this parameter combination does not take into account the shape sensitivity to !b due to
the baryon suppression [81]. Therefore, in the right panel we show the more complex, scale-
dependent ‘effective shape parameter’ �e↵(k) defined in eq. (30) of [6] evaluated at the pivot
scale kp introduced in section 2.2.3. This parameter is constrained very well by ShapeFit,
which propagates into an improvement of ⌦m constraint with respect to the classic fit, even
without imposing the BBN prior. Interestingly, we do not observe the same for the Hubble
constant h, which for LSS data alone remains unconstrained even after adding m. Finally,
the matter fluctuation amplitude �8 is well determined by both the classic fit and ShapeFit
through our RSD measurement of the velocity fluctuation amplitude f�s8. Note that this
constraint is completely independent of the BBN prior, whereas the constraint on the primor-
dial fluctuation amplitude As shows a certain !b-dependence. This is due to the fact that
our LSS maps are sensitive to the total matter power spectrum amplitude and are not able
to disentangle whether the amplitude is of primordial origin from inflation, from early time
evolution of the transfer function (for example related to the baryon suppression at the time
of photon decoupling) or attributed to the late-time growth of structures. Therefore, �8 is
the natural variable to express the net clustering amplitude.

Another interesting aspect, related to the two parameter bases shown in the left and right
panel of figure 4 respectively, is that for Planck alone the situation is inverted. While Planck
constraints on physical densities !b, !cdm and the Hubble parameter h are much tighter than
in the LSS case, they are of comparable size when considering the absolute matter density
⌦m and the sound horizon in units of the Hubble constant hrd, which are strongly degenerate
in the Planck case. It is interesting to note that the constraint on ⌦m from LSS alone (with
a very weak ns prior, see appendix C) is more stringent than that from Planck, yet well in
agreement. This demonstrates the complementary nature between the shown early-time and
late-time datasets.

We conclude that the shape m delivers a significant piece of information leading to
a strong improvement in ⇤CDM parameter constraints. This is related to the findings of
[82] who obtain a constraint on H0 from the galaxy power spectrum marginalizing over the
sound horizon scale. Here, for example, for ⌦m we find an improvement of factor 2 when
including the Shape. A breakdown of the combined constraining power shown here into the
contributions from individual tracers can be found in section 5.3. The exact numbers and
how they compare to other approaches can be found in table 7 of section 5.4.

5.2 Extensions to the baseline ⇤CDM model

We consider a variety of extensions to the baseline ⇤CDM model in a similar way as presented
in the official BOSS and eBOSS cosmology papers [12, 83]. Similar to those works, we focus
on models that involve neutrino physics (sections 5.2.1 and 5.2.2) and models that change the
geometry and growth history of the universe, such as curvature (section 5.2.3) and varying
dark energy (section 5.2.4).

– 19 –



Figure 4. Baseline ⇤CDM results for the classic fit (BAO+RSD information, green contours), Shap-
eFit (BAO+RSD+Shape information, blue contours) in comparison with Planck (black contours).
The filled contours include a BBN-motivated Gaussian prior on !b, while the dotted contours span
the full uniform prior range of the baryon density. The left panel shows the results in the basis of the
varied parameters, while the right panel shows the derived cosmological parameters, that are more
naturally constrained by our LSS dataset. As a result, the parameters on the right panel are (almost)
insensitive to the BBN prior, which is not the case for those on the left panel.

5.2.1 Massive neutrinos

The measurement of the sum of neutrino masses ⌃m⌫ is of major interest for the scientific
community and within reach for upcoming (and ongoing) cosmological surveys. The presence
of massive neutrinos, or any relativistic, weakly-interacting particle species, that becomes non-
relativistic once the temperature of the universe drops below its mass (also referred as ‘warm
dark matter’) leaves a unique imprint on cosmological observables. If correctly modeled and
verified for different probes, these features (described below in more detail) can lead towards
the measurement of the sum of neutrino masses.

We know that neutrinos must possess a non-zero mass from neutrino oscillation ex-
periments, that measure the mixing angle between neutrino flavours from different neutrinos
sources, such as from solar and atmospheric [84], reactor [85] and accelerator [86] origins. The
measured mixing angles can be translated into squared mass differences between the flavours.
Although these measurements do not probe the absolute mass scale of neutrinos, they can be
used to construct the minimal sum of neutrino masses allowed by the oscillation data given
that the lightest neutrino has a mass of zero. Since the oscillation data is primarily sensitive
to the squared mass differences (and not their sign), there are two possible mass hierarchies:
either the smaller mass split occurs between the lightest and the second-to-lightest neutrino
(normal hierarchy) or it occurs between the heaviest and the second-to-heaviest neutrino
(inverted hierarchy). For the normal (inverted) hierarchy, the minimum neutrino mass sum
consistent with the oscillation data is ⌃m⌫ > 0.0588 eV (⌃m⌫ > 0.0995 eV) [87].

While from particle physics experiments it is very challenging to measure the absolute
neutrino mass scale -the strongest and most recent 95% upper limit of ⌃m⌫ < 2.4 eV comes
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from the KATRIN experiment [88]- cosmological surveys are currently beating this limit
by a an order of magnitude. Intriguingly, the state-of-the-art 95% upper limit on the sum
of neutrino masses coming from the combination of Planck with BOSS+eBOSS BAO and
RSD data of ⌃m⌫ < 0.102 eV [12] is already very close to the lower limit predicted by
neutrino oscillation experiments assuming the inverted hierarchy. Upcoming surveys will
most probably either exclude the inverted hierarchy, detect a non-zero neutrino mass sum or
even discriminate between neutrino masses of the individual flavours. However, any potential
finding in this direction depends on the exact choice of underlying model. Therefore, it is
crucial to verify the implications of non-zero neutrino masses for independent probes with
robust control over any systematic effects that may arise from each probe. In this work,
we introduce the shape of the power spectrum, parameterized through m, as an additional
observable that may serve (among others) as a smoking gun towards a non-zero neutrino mass
detection.

The implications of non-zero neutrino masses for cosmology are manifold and rather
complex. Their subtle impact on cosmological observables has been reviewed in [89]. In a
nutshell, there are three main effects. First, the transition of neutrinos from relativistic to
non-relativistic species leads to a change in geometry. Depending on whether the total matter
density today !m = !cdm +!b +!⌫ or the cold dark matter + baryon density !cb = !cdm +!b

is kept fixed, either the early-time scale of equality between matter and radiation keq changes
(in the former case) or the late-time distance ladder parameterised for example through the
Hubble parameter h changes (in the latter case). This effect can be measured by combining
CMB with BAO data for example. Second, since the massive (but still very light) neutrinos
have much higher thermal velocities than ordinary matter, they do not cluster on scales smaller
than their free-streaming scale. As a consequence, they wash out small-scale perturbations
and slow down the growth of structures. This has a measurable impact on the redshift
dependence of the growth rate, assessed by RSD data. The third effect is related to the
second one. Since massive neutrinos do not only change the redshift-dependence of the growth
rate, but also its scale dependence, they induce a step-like suppression of the matter power
spectrum at their free streaming scale. This has a measurable impact on the shape parameter
m.

So far, this third effect has not been taken into account within the classic approach, for a
number of reasons. As shown in figure 1 of [21], the step-like suppression induced by massive
neutrinos is very degenerate with the other ⇤CDM parameters, in particular combinations of
!cdm, ns, �8, at least within the restricted wavenumber range of 0.02 < k

⇥
hMpc

�1
⇤

< 0.15

usually investigated in galaxy clustering. Moreover, the marginalization over bias parameters,
the FoG effect, etc., make it even harder to extract robust neutrino mass information from
the data. Finally, the BAO+RSD information is considered more robust than the Shape
information, which is subject to systematic uncertainties of observational (see section 6)
and modeling nature, such as unaccounted for scale dependent bias, relativistic effects or
primordial non-gaussianity (see [24] for the latter case). Using the ShapeFit framework,
where the shape m is measured directly with nuisance parameters already marginalized out
and the possibility to apply to it any custom systematic error budget, it is more convenient
and intuitive to test the neutrino-mass-induced shape dependence of the power spectrum.

We assume three degenerate neutrinos with effective number of neutrino species Ne↵ =

3.046, and with the mass split equally among them. As in the classic BAO+RSD approach
by [12], we compare our f�s8 measurements to the model prediction of the ‘cold’ velocity
fluctuation amplitude f�

cb
8 , obtained from the cold dark matter + baryon power spectrum Pcb
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instead of the total matter power spectrum Pm. This quantity has been shown to represent
the galaxy clustering amplitude in a more universal way, since galaxies are tracers of the
cold+baryon density field, that excludes the neutrino perturbations [90, 91]. Accordingly, we
obtain theoretical predictions for the shape m consistent with the ‘cb’ prescription by using
the cold+baryon transfer function in the nominator of eq. (2.10).

We show our constraints on ⌃m⌫ and its correlation with ⌦m, �8, and the shape m in
figure 5. Again, green and blue contours represent the classic fit and ShapeFit respectively.
Parameter constraints derived from Planck alone are shown in black. The left panel shows
parameter constraints for LSS+BBN data, while in the right panel LSS data is combined with
Planck.

From the left panel we see that the BBN+BAO+RSD data alone can not constrain
neutrino mass, due to its degeneracy with fluctuation amplitude �8. However, this degeneracy
is broken by the slope m. Hence, ShapeFit is able to provide an upper 95% confidence level
bound on the neutrino mass of ⌃m⌫ < 0.40 eV, which is the tightest neutrino mass bound
ever obtained from LSS data (in combination with the BBN prior). From Planck alone we
find ⌃m⌫ < 0.24 eV, consistent with [2].

Note that the ShapeFit constraint relies on a fixed fiducial value of the primordial tilt
ns. Letting it vary freely would completely degrade the ShapeFit neutrino mass constraint,
since the slope variation induced by ⌃m⌫ is degenerate with ns on the scales we consider
here. Planck on the other hand provides the angular power spectrum shape on a huge range
of scales, so that the scale-independent tilt can be inferred with high precision.

In the right panel we show the case where Planck data and the BOSS+eBOSS data
are fitted jointly. In this case the neutrino mass constraints become much tighter due to
the complementary information Planck provides with respect to the LSS surveys. For our
Planck+BAO+RSD dataset we find ⌃m⌫ < 0.085 eV. Note that this is slightly smaller than
the value reported in [12], we have verified that this is due to the fact that we exclude the
MGS and ELG samples from our dataset.

Interestingly, this upper bound barely changes when adding the shape m, yielding ⌃m⌫ <

0.082 eV, as the additional information within the LSS shape is superseded by the Planck
data. This can also be seen from figure 2 and has already been shown in figure 2 of [21]. We
conclude that for this specific extension to the ⇤CDM model the shape information from our
BOSS+eBOSS dataset does not add much to the information that Planck provides. This also
holds for all the other extended models analysed in this section. Therefore, in what follows,
we focus on the cosmological constraints obtained from our dataset without Planck.

Nevertheless, ⌃m⌫ < 0.082 eV at 95% C.L. implies that the minimum mass for the
inverted hierarchy is excluded at 98% C.L. (assuming Gaussian errors).

5.2.2 Varying effective number of neutrino species

Another degree of freedom related to neutrinos is the effective number of neutrino species Ne↵ .
Given the standard model of particle physics and the measurement of Z-boson decay, we know
that three neutrino species exist. However, we can not exclude that extra neutrino species
(or other weakly interacting particles) existed in the early universe, when the temperature
was higher than the energy range probed by laboratory experiments.

In this case the radiation density comprised of photons and neutrinos would change as

!r = !� + !⌫ =

"
1 +

7

8

✓
4

11

◆4/3

Ne↵

#
!� . (5.1)
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Figure 5. Neutrino mass,⌃m⌫ , bounds for different data combinations and ⌃m⌫ degeneracy with ⌦m,
�8, and the power spectrum slope at the pivot scale, m. Results obtained with the classic BAO+RSD
Fit are shown in green, while the ShapeFit results are shown in blue. In the left panel we compare
both types of fit when combined with the BBN-motivated prior on !b and with primordial tilt ns

fixed to the reference value. For comparison, we also show the constraints obtained from Planck alone
in black. In the right panel we show the results combined with Planck, allowing !b and ns to vary
freely.

Varying the parameter Ne↵ thus induces a change in the sound horizon rd and the scale of
matter and radiation equality keq while keeping the photon density (and therefore the CMB
temperature fixed). At the background level, this effect is completely degenerate with the
Hubble parameter h. Hence, extra relativistic degrees of freedom could help to reconcile the
Hubble tension. However, this degeneracy is broken at the perturbation level, where Ne↵

has a variety of subtle effects. Current CMB observations from Planck strongly disfavor
deviations from 3 neutrino species, from our Planck dataset we find Ne↵ = 2.941±0.45 (95%)
in agreement with [2].

We investigate whether ShapeFit is able to track the effect of Ne↵ on the matter power
spectrum, which are i) a smooth tilt in the transition region between the small and the large
scale limit and ii) a modulation of the BAO amplitude. ShapeFit is sensitive to effect i)
through m, but not to effect ii).

From the left panel of figure 6 we see that including m reduces the cosmological param-
eter space allowed by LSS data. But neither the classic fit nor ShapeFit (both including the
BBN-motivated prior on !b) are able to constrain Ne↵ due to its degeneracy with h. In fact,
effect i) is a pure background effect coming from the shift in keq. To capture effect ii) as
well we would need to extract the BAO amplitude from the data with ShapeFit, which is a
challenging task due to non-linear effects, such as the BAO wiggle suppression, that need to
be modeled accurately and cross-checked to be free of observational systematic effects. Note
that we do not consider here the dependence of the baryon density !b and the Helium fraction
YHe on Ne↵ within the theoretical BBN prediction. We leave this, and a more complete fitting
procedure including the BAO wiggle amplitude for future work.

When combining our LSS dataset with Planck we obtain Ne↵ = 3.16 ± 0.41 (95%) for
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Figure 6. Left panel: Cosmological constraints in the case of allowing free number of effective degrees
of freedom. Right panel: Cosmological constraints in the case of allowing for curvature.

the classic fit and Ne↵ = 3.12 ± 0.38 (95%) for ShapeFit, both consistent with the official
Planck+BAO constraint Ne↵ = 2.99 ± 0.33 (95%) from [2].

5.2.3 Curvature

Spatial curvature is usually parameterised by the curvature energy density parameter ⌦k

today entering the Friedmann equation and Hubble expansion rate with a redshift dependence
proportional to (1 + z). Also, non-zero curvature changes the geometry and as such the
comoving angular diameter distance D

⌦k=0
M

(already defined in section 2.2 below eq. (2.1)) as

D
⌦k
M

=
c

H0
Sk

 
D
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sin
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⌦k

�
⌦k > 0 .

(5.2)

While, when combining LSS data with Planck, the evidence for a flat universe with ⌦k =

0 is striking [2, 12] (see also table 9), here we are particularly interested in the constraining
power of our LSS data set on ⌦k and whether the shape m helps to break its degeneracy with
⌦m and h.

In the right panel of figure 6 we show the constraints on these cosmological parameters
along with their degeneracy with m for the classic fit (green), ShapeFit (blue) and Planck only
(black). The latter provides the tightest constraint on curvature of ⌦k = �0.0104 ± 0.0067.
Note that we also include the Planck lensing signal here, which is in agreement with a flat
universe and strongly improves constraints with respect to considering the Planck temperature
and polarization spectra only leading to ⌦k = �0.043±0.017. For the classic fit we find ⌦k =

0.047
+0.083
�0.099 and for ShapeFit ⌦k = �0.027

+0.032
�0.037 delivering an improvement in constraining

power of a factor ⇠ 2.7. As can be seen in the figure, this improvement comes from the
measurement of the shape m.
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All these results are consistent with zero curvature and their combination (either Planck+

Classic or Planck + ShapeFit) gives ⌦k = �0.0015 ± 0.0016. So, the Planck Shape informa-
tion dominates over the LSS Shape constraint and the BAO+RSD measurements alone are
sufficient due to their high degree of complementarity to Planck enabling to lift most of the
parameter degeneracies.

Note that curvature only affects the geometry and growth of the universe, it does not
leave any imprint on the galaxy power spectrum slope. Still, the slope measurement matters,
due to its sensitivity to ⌦m, which breaks the degeneracy with ⌦k. But once Planck is added,
the shape m does not further improve constraining power.

5.2.4 Varying Dark Energy

The most important science driver behind any state-of-the-art spectroscopic survey is to
unravel the nature of dark energy, which delivers the force behind the accelerated expansion
of the universe observed by many disparate probes. Currently, this accelerated expansion is
in accordance with the General Relativity prediction of Einstein’s cosmological constant ⇤,
but a microscopic explanation for this constant term in the Friedman equation, leading to a
constant expansion rate, does not exist yet.

The most general macroscopic description for this term relies in the assumption of a
fluid called dark energy with negative equation of state paramter w = pDE/⇢DE relating the
dark energy pressure pDE and density ⇢DE. The dark energy equation of state parameter w

governs the evolution of the universe at late times. In general, the scale-factor dependence
of the energy density of any fluid with constant equation of state is ⇢(a) / a

�3(1+w). For
w < �1/3, it describes a fluid giving rise to accelerated expansion. For w = �1 in particular,
the dark energy density ⇢DE remains constant yielding the same expansion rate as predicted
by a cosmological constant ⇤.

In this section we consider three cases for the evolution of the equation of state w(a)

with scale factor a,

w(a) =

8
><

>:

�1 (⇤CDM),

w0 (wCDM),

w0 + wa(1 � a) (w0waCDM),

(5.3)

where the first case is consistent with ⇤CDM, the second exhibits an equation of state constant
with cosmic time and the third allows for a time dependence phenomenologically motivated
by [92, 93].

We show the parameter constraints for the (wCDM) and (w0waCDM) cases in the left
and right panel of figure 7, respectively. Again, we display the results of the classic fit in
green, ShapeFit in blue and Planck in black, where for Planck we include the full temperature,
polarization and lensing data, as described in section 3.4.

Our findings are analog to the case of allowing for curvature in section 5.2.3. Although
varying the dark energy equation of state does not lead to a change in galaxy power spectrum
shape,6 the measurement of m breaks the degeneracy of w0 with ⌦m and h. Hence, with LSS-
only information, ShapeFit yields a constraint on the equation of state of w0 = �1.007

+0.083
�0.073,

is nearly as precise as that from the combination of Planck with the classic BAO and RSD
(w0 = �1.090

+0.050
�0.041), and a factor ⇠ 1.5 improvement with respect to the classic fit result of

w0 = �0.81 ± 0.12.
6In fact, varying dark energy does change the shape of the power spectrum at the scale of equality between

matter and dark energy. However this scale is of order k . 10�3
h/Mpc and is thus not observable.
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Figure 7. Left panel: Cosmological constraints within the w0CDM model. Right panel: Cosmological
constraints within the w0waCDM model.

The same observation holds for the (w0waCDM) case. The exact numbers are reported in
table 9. There, we also show the results after combining Planck with our LSS dataset, finding
that Planck dominates over the Shape constraints similar to the case of varying curvature.
We conclude that, due to their high degree of complementarity to Planck, the information
contained in BAO and RSD is sufficient to constrain cosmological parameters globally, i.e.,
by combining disparate probes of the universe.

Finally, we visualize the main conclusion of this section in figure 8, where we directly
compare the most important extended models investigated in this section to the compressed
data set and their ⇤CDM predictions.

Each subpanel of figure 8 shows one of the compressed, physical parameters with respect
to the Planck ⇤CDM prediction displayed via the black dotted lines as a function of redshift.
The measurements presented in section 3 and figure 2 are displayed as black data points
and the blue continuous line represents the ⇤CDM best-fit to the data set. Note that the
information contained here so far is identical to figure 2. In addition, we show the theoretical
predictions from three extensions to the baseline ⇤CDM model, selected in the following way:

• ⌫⇤CDM (magenta, sparsely dashed lines): We show the model corresponding to a
neutrino mass of ⌃m⌫ = 0.4 eV, which is excluded by ShapeFit at the 95% confidence
level. This corresponds to the 2� edge of the blue contours in the left panel of figure 5.

• o⇤CDM (red, dashed lines): We show the best-fit model to the classic data set, con-
sisting of BAO+RSD only, without the Shape information, when allowing ⌦k to vary
freely. This corresponds to the best-fit of the green contours in the right panel of figure
6.

• wCDM (green, dash-dotted lines): Again, we show the best-fit model to the classic
data set, but when allowing w0 to vary freely. This corresponds to the best-fit of the
green contours in the left panel of figure 7.
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Figure 8. Comparison of several models with respect to the compressed dataset. Each panel shows the
redshift dependence (colored lines) and measurements (black data points) of the compressed variables
rescaled to the Planck (labeled ‘P’) ⇤CDM prediction (black dotted lines). The blue, continuous lines
represent the best-fit ⇤CDM prediction to the ShapeFit dataset. The magenta, sparsely dashed lines
correspond to a ⌫⇤CDM model with ⌃m⌫ = 0.40 eV that is excluded by the ShapeFit dataset at
2�. Finally, we show the o⇤CDM (red, dashed lines) and wCDM (green, dash-dotted) models, that
deliver the best-fit to the classic dataset, but are vastly excluded by the measurement of the shape
m.

Figure 8 explicitly shows that -using LSS data alone- ShapeFit constrains models that
leave in imprint on the power spectrum slope, such as in the ⌫⇤CDM case. In addition,
ShapeFit helps to constrain models by lifting parameter degeneracies, even if the parameter
extensions themselves do not change the power spectrum slope, such as the o⇤CDM and
w⇤CDM models. For these models in particular, by focusing on the red and green lines
on figure 8, we can appreciate that the classic parameters are fitted equally well as the
concordance ⇤CDM, but these deviations from ⇤CDM, deliver a Shape prediction in strong
disagreement with the data. Therefore, the shape m is a powerful probe when constraining
models using LSS data alone.

Note that figure 8 is similar to figures 2 and 7 of the eBOSS cosmological results paper
[12], but complementary in the parameter selection of the extended models shown. While
their parameter choices are tuned to deliver a ‘good fit’ to Planck, but a ‘bad fit’ to their
presented dataset, here we tune the parameters of ⌃m⌫ , ⌦k and w0 (and the remaining
⇤CDM parameters) the other way around. As mentioned before, we select them such that
the BAO and RSD compressed variables are fit well, but are in vast disagreement with our
Shape measurement, (which is in agreement with Planck).

5.3 Consistency between individual tracers

We investigate the consistency between the different BOSS and eBOSS tracers (LRG’s, QSO’s,
Ly↵) within the baseline ⇤CDM model.

In figure 9 we show cosmological constraints from the three LRG samples at redshifts
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Figure 9. Comparison of cosmological constraints for different tracers. Empty contours show the
classic (CL) analysis (BAO+RSD for galaxies, BAO for Lyman-↵) ⇤CDM results for LRGs (red),
QSOs (light blue), Ly-↵ (purple) and all combined (green). Filled contours show the corresponding
ShapeFit (SF) ⇤CDM results via the same color scheme, but with combined results shown in blue.
Note that the green and blue contours here represent the same cases as in figure 4. In all cases a BBN
prior on !b is assumed. Dashed black lines indicate the Planck best-fit cosmology.

0.2 < z < 1.0 (red), the QSO sample at 0.8 < z < 2.2 (light blue) and the Ly↵ forest
at 1.8 < z < 4.0 (purple) each, including a BBN prior. The results are shown both for
the classic fit (empty dotted contours, labeled ‘CL’) and ShapeFit (filled contours, labeled
‘SF’) for comparison. Additionally, we show the cosmological constraints when combining all
samples (green and dark blue contours) already presented in section 5.1. The best-fit Planck
cosmology is indicated by black dashed lines.

We can appreciate the strong tightening of constraints due to the Shape for the LRG
and QSO samples, especially in the ⌦m � h plane. As expected, this effect is stronger for
the individual samples than for the combined ones, because already in the classic case the
individual samples are highly complementary in their cosmological parameter degeneracy
directions. Thus the Shape becomes less important the larger the analysed redshift range is.
Also note that the Ly↵ forest plays a crucial role breaking the degeneracies in the ⌦m�h plane
for the classic case. This is not the case for ShapeFit where the degeneracy is broken even
across a smaller redshift baseline (see the consistency between red and dark blue contours).

In the ⌦m � h plane the consistency between LRG’s and QSO’s for ShapeFit is re-
markable. However, the �8 parameter recovered by ShapeFit LRG’s and QSO’s reveals a
discrepancy of 2.1�. This should be compared to the 3.6� tension between the same samples
reported in Neveux et al. [68], who find,

�
LRG
8,z=0 = 0.760 ± 0.046 �

QSO
8,z=0 = 1.12 ± 0.10 [Neveux et al.] , (5.4)

– 28 –



whereas (using the same Gaussian priors on !b and ns as in [68]) we find,

�
LRG
8,z=0 = 0.814 ± 0.043 �

QSO
8,z=0 = 0.993 ± 0.071 [this work] . (5.5)

While the LRG results of both methods can not be directly compared to each other, since
[68] do not include the BOSS medium redshift sample at ze↵ = 0.51 and neither the BAO
post-recon information, the 1� discrepancy in �8 for QSO alone is surprising. We suggest
that it is related to the differences between the FM approach of [68] and ShapeFit, coming
from the lack of constraining power of the quasar sample alone. Nevertheless, after combining
the samples and covering a larger redshift range, our results are well in agreement with [68],
as shown in table 7.

5.4 Comparison with other approaches

In this section we compare the cosmological results presented in sections 5.1 and 5.2 to
the official eBOSS collaboration results [12] and the results obtained by other, independent
groups, who have used the same BOSS+eBOSS dataset (or a subset of it). As the initial
motivation of ShapeFit has been to provide a bridge between fixed-template (classic) and
varying-template (full modeling) approaches [24], how ShapeFit compares to each of these
very different ways of interpreting spectroscopic galaxy surveys is of particular interest.

5.4.1 Full modeling approaches

We compare our main results in light of the standard flat-⇤CDM model with three free
parameters, {⌦m, H0, As} with the most recent studies applied to the BOSS and eBOSS
samples using different full modelling approaches. The first two rows of table 7 display the
best-fitting ⌦m, H0, As

7 values for the ShapeFit approach, with and without assuming a BBN
prior on !b, and with a fixed value of ns to its reference value as described in table 6. This
is followed by the results of full modelling studies, of which four have been applied to the
BOSS DR12 LRG data, and two to the QSO and LRG eBOSS DR16 data (which contains
the BOSS DR12 data). In addition, we also include the parameters derived from applying
ShapeFit to these samples. We briefly describe below the main assumptions of these different
analyses and compare them to our findings.

In D’Amico et al. [16] the authors employ the EFT [94, 95] approach to model the
power spectrum monopole and quadrupole signals of the BOSS DR12 LRG sample split in
two redshift bins: the so called LOWZ sample, 0.15 < z < 0.43; ze↵ = 0.32 and the CMASS
sample, 0.43 < z < 0.70; ze↵ = 0.57, considering the scales k  0.20 Mpc

�1
h for CMASS

and k  0.18 Mpc
�1

h for LOWZ. For CMASS, both northern and southern samples are
considered, whereas for the LOWZ sample only the northern cap is analyzed. The !b/!m

ratio and ns index are assumed fixed at Planck’s best-fit values.
Ivanov et al. [17] also use EFT to model the power spectrum monopole and quadrupole

signals of BOSS DR12 applying the following redshift binning, 0.2 < z < 0.5; ze↵ = 0.38

and 0.5 < z < 0.75; ze↵ = 0.61; and considering the scales k  0.25 Mpc
�1

h, using both
northern and southern galactic caps. An informative prior on !b is employed motivated
Planck observations, and ns is fixed to Planck’s best-fit value. The neutrino mass is varied
within the narrow range of (0.06-0.18) eV.

7The �8 is a derived parameter, obtained from the values of the {⌦m, H0, As} parameters. However, since
some authors choose to show it (instead of reporting As) we decide to display it as well.
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Sample Priors Method / Ref. ⌦m H0

h
km/s
Mpc

i
As · 109

�8

Full ns ShapeFit 0.2971 ± 0.0061 � 2.39+0.24
�0.43 0.857 ± 0.040

!b, ns ShapeFit 0.3001 ± 0.0057 68.16 ± 0.67 2.43 ± 0.20 0.858 ± 0.036
!b
!m

, ns D’Amico [16] 0.309 ± 0.010 68.5 ± 2.2 1.52 ± 0.84 �
LRG !b, ns Ivanov [17] 0.295 ± 0.010 67.9 ± 1.1 � 0.721 ± 0.043
DR12 !b, ns Philcox [65] 0.2962+0.0082

�0.0080 67.81+0.68
�0.69 � 0.739+0.040

�0.041

!b Tröster [66] 0.317+0.015
�0.019 70.4 ± 2.4 � 0.71 ± 0.049

ns ShapeFit [24] 0.295 ± 0.014 � 2.56 ± 0.51 0.806 ± 0.065
LRG !b, ns Neveux [68] 0.315 ± 0.013 66.9 ± 1.9 � 0.763 ± 0.046
DR16 !b, ns ShapeFit 0.2984 ± 0.0066 68.20 ± 0.73 2.24 ± 0.24 0.820 ± 0.043
QSO !b, ns Neveux [68] 0.321 ± 0.016 65.1 ± 1.9 � 1.12 ± 0.10
DR16 !b, ns ShapeFit 0.350 ± 0.033 64.1 ± 3.1 3.25 ± 0.47 0.993 ± 0.072
LRG !b, !cdm, ns Semenaite [67] 0.3037 ± 0.0081 68.55+0.84

�0.94 � 0.800 ± 0.039
+QSO !b, ns Neveux [68] 0.308 ± 0.010 66.4 ± 1.4 � 0.869 ± 0.046
DR16 !b, ns ShapeFit 0.3012 ± 0.0057 68.24 ± 0.67 2.42 ± 0.20 0.860 ± 0.036

Table 7. Comparison of ShapeFit results with other full modelling approaches when analyzing BOSS
and eBOSS samples. The first column shows the used data sets in each approach, where ‘Full’ refers
to the final release of the BOSS+eBOSS dataset shown in figure 2 (LRG+QSO+Ly↵); LRG DR12
refers to the BOSS LRG sample, 0.2 < z < 0.75; LRG DR16 to the whole BOSS and eBOSS LRG
samples, 0.2 < z < 1.0; and QSO DR16 to the whole eBOSS quasar sample, 0.8 < z < 2.2. The
second column shows which parameters have either been fixed or varied within a Gaussian prior in
each analysis (see text for details). The first two rows (and also those rows labeled in bold) display
the best-fitting parameters of this work either with or without the prior on !b, motivated by BBN.
Additionally, we display the results of other studies analyzing part of the BOSS and eBOSS data
described here. All the quoted analyses assume a flat-⇤CDM model, but D’Amico et al, Ivanov et al.
and Philcox et al. (along with our results) have fixed the ns parameter to Planck best-fit finding, and
Tröster et al., Semenaite et al. and Neveux et al., allow ns to vary within a certain range (see text).
This difference may considerably enlarge the error-bars on some of the ⇤CDM parameters.

Compared to Ivanov et al. and D’Amico et al. results, our value for As (or �8) is
significantly larger. This is likely due to the fact that in their analysis the (necessary) re-
normalization of the window function is ignored. We find, however, a very good agreement for
⌦m as well as for H0, which are less affected by this effect. Our analysis returns significantly
smaller error-bars: a factor 1.8 smaller for ⌦m, a factor of 1.6 smaller for H0 compared to
Ivanov et al., a factor of 3.2 smaller for H0 compared to D’Amico et al., because our analysis
employs a larger sample, 0.2 < z < 4.0, and it employs pre- and post-recon catalogues
coherently, when available. The weaker constrain on H0 from D’Amico et al. [16] with
respect to Ivanov et al. [17] is due to the type of prior used: D’Amico et al. fix the !b/!m

ratio, whereas Ivanov et al. the baryon density !b (see the effect of this prior choice in
Appendix B of [23]).

Philcox et al. [65] use the same BOSS DR12 sample, and the same piors on wb, ⌃m⌫

and ns, as described in Ivanov et al., but additionally include the signal from the post-
reconstructed catalogues which improves the BAO constraint. This allows them to better
constrain H0 and ⌦m with respect to the corresponding pre-reconstructed study of Ivanov
et al.. Compared to Philcox et al., ShapeFit with a BBN prior yields error-bars tighter
by a factor of 1.4 for ⌦m, equal for H0, and tighter by a factor of 1.1 for �8. As before the
disagreement in the best-fit value for �8 is caused by the (non) re-normalization of the window
in their analysis. In general the agreement with the obtained ⌦m and H0 best-fit values is
very good.
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Tröster et al. [66] use the same BOSS DR12 samples as in Ivanov et al., but instead of
employing the power spectrum monopole and quadrupole signals they choose to model three
LOS-wedges of the correlation function. They employ a perturbation theory model, gRPT,
for describing the real-space statistics, combined with the TNS model from [29], and assume
the usual local Lagrangian relations for the non-local biases. They use an informative but
wider-than-usual prior on !b (about 10 times wider than the usual BBN prior from [75]). This
choice impacts the error-bars on H0, which are much wider than the above studies. They also
choose to use an uninformative wide prior on ns which also affects H0, as well as ⌦m and �8.
Similarly to the above studies, Tröster et al. does not account for the necessary normalization
of the window which impacts the recovered value of �8.

For completeness we also include the results derived from applying ShapeFit to the
BOSS DR12 LRG sample, divided in two bins as in Ivanov et al, as described in [24]. Unlike
the other studies, we do not apply any prior on !b which only allow us to report constrains
on ⌦m and As. The difference in �8 is given by the normalization of the survey window, and
the agreement for ⌦m with the other studies is very good.

Neveux et al. [68] use the power spectrum monopole, quadrupole and hexadecapole
signals of the BOSS DR12 LRG sample between 0.2 < z < 0.5, the BOSS and eBOSS LRG
samples between 0.6 < z < 1.0 and the eBOSS quasar sample between 0.8 < z < 2.2. Unlike
our main result, they do not employ any reconstruction data, nor the Ly-↵ measurements.
They describe the data using the perturbation theory implementation RegPT [96], along with
the TNS model [29] under the assumption of local Lagrangian for the non-local biases. We
choose to display their results with priors on !b and ns, to make the analysis setting closer to
ours, and also display the results for the LRG sample and QSO sample alone. For comparison
we also report our results on the same samples (see section 5.3 for a comparison of �8 under
the same prior conditions).

For the whole LRG+QSO sample we find good consistency with our results on ⌦m and
�8. However, Neveux et al. reports a value for H0 which is about 1� smaller than our finding.
This difference can be caused by the slightly different choice of priors, as well as the difference
in the data-catalogue selection: we employ the post-reconstructed catalogues, as well as the
galaxies between 0.5 < z < 0.6. The impact of this can be more clearly seen on the size of the
error-bars inferred from the LRG DR16 sample alone, where ours are significantly smaller.
The most striking result arise when the QSO sample alone is considered, as the errorbars on
⌦m and H0 are substantially smaller in Neveux et al. compared to our approach: a factor of
2 and a factor of 1.6, respectively. On the other hand the value on �8 found by Neveux et al.
is 1.4 times looser than ours. These differences deserve a more careful investigation we may
address in future work.

Semenaite et al. [67] use the data from BOSS DR12 as in Ivanov et al, along with
the eBOSS quasar sample between 0.8 < z < 2.2. They do not use any post-reconstructed
catalogue, nor eBOSS LRG data, nor Lyman-↵ data. They model three LOS-wedges of the
correlation function using a perturbation theory implementation (Respresso [96, 97]), where
the velocity power spectra are given by [98] and the redshift-space distortions are modelled
according to the TNS model [29]. Instead of using the local Lagrangian bias relations they
choose to use another approach motivated by the findings in [99]. We choose to display their
results when Gaussian priors are used around !b, !c and ns, as this is the closest choice to
our type of analysis. We find consistent results on ⌦m and H0, but a ⇠ 1� discrepancy for
�8. Their error-bars are larger than ours, partly because of not fixing ns, but also because
not employing the reconstructed catalogues, nor using the eBOSS LRG or Ly-↵ datasets.
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5.4.2 Classic approaches

The comparison with other analyses that used the classic approach, and in particular the
final cosmological analysis of eBOSS [12] serves two main purposes. We aim to i) show that
interpreting our classic dataset (without the Shape) delivers the same cosmological results as
in [12], ii) quantify the power of Shape in constraining cosmological models more in detail
than done in sections 5.1 and 5.2 and iii) quantify the differences among the compression
methods after combining with the Planck likelihood introduced in section 3.4.

All results of this paper are shown in comparison to the official BOSS+eBOSS coun-
terpart (labeled ‘(e)BOSS’) in table 8 for the ⇤CDM model and 9 for ⇤CDM extensions, in
the same format as table 4 of [12]. Note that for the fits without Planck, [12] use only the
BAO signal, while for our classic fits we always include the BAO and RSD signals. However,
for the runs labeled ‘Planck+(e)BOSS’ we use publicly available fits from [12] labeled ‘CM-
BLens+BAORSD’ therein, which include both the BAO and RSD signals. Also, note that
all results presented in this table do not rely on the BBN prior, which is the reason why H0

remains unconstrained for all runs that do not include the Planck likelihood.
Concerning i), we have already shown in section 4.2 that the agreement with [12] at the

level of compressed variables is very good. However, we investigate whether the small residual
differences leak into a measurable difference at the level of cosmological model parameters.
Note that the dataset we use in this paper is slightly different from that in [12], where they
also include isotropic BAO and RSD (assuming fixed BAO) measurements from the MGS
sample and the anisotropic BAO+RSD measurement of the ELG sample at effective redshifts
z = 0.15 and z = 0.85 respectively. We have monitored the effect of this deviation for the
⇤CDM and ⌫⇤CDM models. We find that by including the ELG and MGS data in our
pipeline we recover exactly the same ⌦m and ⌃m⌫ constraints as [12]. We therefore conclude
that the main discrepancy between the official (e)BOSS and our classic results, which always
remain well within 1�, are attributed to this slightly different choice.

⌦m H0

h
km/s
Mpc

i
As ⇥ 10

9
�8

(e)BOSS BAO 0.299 ± 0.016 � � �

Classic [this work] 0.287 ± 0.014 � 2.41
+0.26
�0.41 0.828 ± 0.048

ShapeFit [this work] 0.2971 ± 0.0061 � 2.39
+0.24
�0.43 0.857 ± 0.040

BBN + (e)BOSS 0.299 ± 0.016 67.35 ± 0.97 � �

BBN + Classic 0.287 ± 0.014 67.42
+0.84
�0.91 2.50

+0.22
�0.25 0.822 ± 0.044

BBN + ShapeFit 0.3001 ± 0.0057 68.16 ± 0.67 2.43 ± 0.20 0.858 ± 0.036

Planck 0.3178 ± 0.0079 67.13 ± 0.56 2.1
+0.028
�0.032 0.8101

+0.0062
�0.0061

Planck + (e)BOSS 0.3109 ± 0.0053 67.68 ± 0.40 � �

Planck + Classic 0.3081 ± 0.0050 67.83 ± 0.38 2.117
+0.029
�0.033 0.8089

+0.0060
�0.0064

Planck + ShapeFit 0.3067 ± 0.0047 67.94 ± 0.36 2.121
+0.030
�0.033 0.8091

+0.0057
�0.0065

Table 8. ⇤CDM model: Comparison of our Classic and ShapeFit cosmological constraints with the
official BOSS+eBOSS results that include the BAO only signal (labeled ‘(e)BOSS BAO’) without
Planck and the full BAO+RSD signals (labeled ‘(e)BOSS’) combined with Planck. We present mean
values with 68% C.L.
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About ii), in general, we see that ShapeFit tends to yield slightly larger values of ⌦m than
the classic fit. Also, the constraining power improves significantly when adding the shape m,
by a factor of about 2.5, 3, 1.5 for ⌦m, ⌦k and w0, respectively. In this way, ShapeFit delivers
competitive evidence for a flat universe (⌦k = 0) and for a standard cosmological constant
(w0 = �1). In the case of ⌫⇤CDM, ShapeFit has the ability to constrain the sum of neutrino
masses, which the classic fit is not sensitive to.

Regarding iii), when adding Planck data there is very good agreement between our
classic and the officially-reported eBOSS results. We have verified that our own Planck-only
constraints are in very good agreement with the official Planck results from [2]. As already
anticipated, for the ⌫⇤CDM case in the right panel of figure 5, the improvement of ShapeFit
with respect to the classic fit is very modest once Planck is included because the shape
information within Planck dominates over our constraint on m from the LSS maps.

Still, this comparison indicates that for upcoming galaxy survey data, for example DESI
[100], which will measure the shape more accurately, m might play a significant role for
constraining cosmology, even when including Planck.

6 Systematic checks and performance on synthetic catalogues

We aim to validate the robustness of the results presented in section 5 with respect to vari-
ations of the chosen baseline data pipeline, and to quantify the systematic error-budget of
the used approach. As the results are insensitive to reasonable deviations from the adopted
assumptions (see Appendix A), this section is likely of interest for experts, other readers may
omit it at a first sitting.

For the specific performance of the perturbation theory model used we refer to the
original ShapeFit paper [21] and PT challenge ShapeFit paper [23]. Both of them present
the comparison of the model with respect to full N-body mocks, the Nseries mocks, and
the PT challenge mocks, and both samples consist of haloes catalogues which have been
populated with galaxies following a Halo Occupation Distribution (HOD) consistent with the
LRG catalogues from BOSS data.

6.1 Galaxy fast-mocks

We start by running the same baseline setup used for the data on section 5, on the 2048
and 1000 realizations of the Patchy and EZmocks, respectively. These mocks were originally
produced for inferring the covariance matrix of the power spectra of the data, the compressed-
parameter matrix needed to combine pre- and post-recon parameters, and the correlation
among the two overlapping redshift bins. However, we need to bear in mind that these mocks
rely on approximate fast techniques and are not full N-body. Consequently, they do not
require such high computational resources as a full N-body simulation, at the expense of not
being fully accurate when describing the clustering. Therefore, they should not be used to
determine the systematic error budget of our approach. Yet, we run the full data pipeline
on them, rather than to validate the pipeline, to validate the mocks, as well as to check how
consistent data and mocks are in terms of the inferred errorbars.

Figure 10 displays the triangle plot for the four physical parameters of interest, and for
the four studied galaxy samples. The blue dots represent the result of the 2048 and 1000
realizations on the Patchy (for LRG 0.2 < z < 0.6) and EZmocks (for LRG 0.6 < z < 1.0

and QSO 0.8 < z < 2.2), respectively. The red cross displays the performance of the data,

– 34 –



as presented in table 5. The horizontal and vertical dotted black lines display the expected
values given the true cosmology of the mocks (see table 2).

We see that best-fit values of the data lie within the scatter cloud of the best-fitting
values for the mocks. This is indeed expected as the mocks were designed to reproduce the
clustering of the data. However, we do not necessarily expect that both data and mocks
share the same cosmology, even within the statistical uncertainty of the samples. When
comparing the performance of the mocks with their expected values (marked by the black
dashed lines), we find that for the DH/rd, DM/rd and f�s8 parameters, the agreement is
excellent. Indeed, the mocks were designed with the aim of being able to reproduce both
the BAO and the anisotropic clustering signal, as these are the two main scientific goals of
the BOSS and eBOSS programs. Additionally, we find that the mocks tend to have a low
value of the shape parameter, m, with respect to its expected value, with an offset of around
�0.05 to �0.10, which corresponds to 1 � 2� statistical of the BOSS/eBOSS data sample.
We explore this particular feature more in detail in section 6.2, using full N-body mocks
data (but see also Appendix A for the impact of the local bias assumption on the shape
parameter for these mocks). In short, this observed behaviour corresponds to a limitation
of the mocks (rather than to systematics of the model) due to the clustering of the mocks
in the scale range of 0.05 < k [hMpc

�1
] < 0.10. In particular, pre-virialization terms (as for

example those captured by 1-loop corrections) contribute to the clustering signal on the scales
where m is measured. But pre-virialization is not fully taken into account by the Zeldovich
approximation, which these mocks rely on (see also Appendix A). As a result the model fitting
procedure compensates by artificially lowering the best-fitting value of m.

This limitation has not been explicitly reported before because it did not impact how well
the BAO and f�s8 parameters could be recovered from these mocks, as m is very uncorrelated
with them.

The panels of figure 11 display the 1� errors corresponding to the best-fit values presented
in figure 10. For the BOSS LRG samples for 0.2 < z < 0.6 (top-left and top-right panels)
the errors for the data (red cross) are very typical compared to those of the mocks (blue
dots). The bottom sub-panels, corresponding to eBOSS LRG and QSO samples, indicate
that in some cases, the error of the data is significantly smaller than the one reported on the
mocks. This happens for the longitudinal BAO distance, DH/rd, and shape parameter, m,
in the LRG 0.6 < z < 1.0 sample, and up to some degree for all the parameters in the QSO
0.8 < z < 2.2 sample. This behaviour was already reported by the eBOSS team (see for e.g.,
the discussion in section 5.1 of [28] for the LRG sample; and section 3.2.2 of [59] for the QSO
sample) and is caused by an excess of significance in the BAO detection of both quasars and
LRGs, likely originated by noise fluctuations in the data, which were different from those in
the mocks.

We aim to use the set of best-fit values (and their errors) of the mocks to perform
quantitative tests: how their rms compares to the averaged errors, whether the distribution
is Gaussian, as well as which are the typical deviations from their expected values. All this
information is summarized in table 10, which displays the results for each of the four studied
samples (each column), and for each of the four parameters of interest, x = ↵k, ↵?, f�s8, m.
For each of these parameters we display in rows the systematic offset between the best-fit
of the mean of the mocks and its expected value, �x

av.; the systematic offset between the
mean of the best-fits of the individual mocks and its expected value, h�xi; the average of the
error-bars of the best-fits, h�xi, the rms among the best-fits, Sx; the mean of the Z-statistic,
defined as Zxi ⌘ (xi�x̄)/�xi , hZxi; and the rms of Zxi , SZx . All the x-variables of table 10 are
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Figure 10. Triangle plots for the BOSS and eBOSS samples when the ShapeFit pipeline is applied.
The four physical parameters of interest are shown in each panel: the BAO longitudinal and transverse
distances, DH/rd and DM/rd, respectively; the growth of structure f times �s8; and the shape
parameter m. Each panel displays one of the four studied BOSS/eBOSS samples, as indicated. The
blue dots display the best-fits for these parameters in each of the mock realizations: 2048 for the Patchy
mocks corresponding to the LRG samples 0.2 < z < 0.5; (ze↵ = 0.38) and 0.4 < z < 0.6; (ze↵ = 0.51);
1000 realizations for the EZmocks corresponding to LRG sample 0.6 < z < 1.0; (ze↵ = 0.70), and the
QSO sample 0.8 < z < 2.2; (ze↵ = 1.48). The red cross represents the result for the actual data, as
it is presented in table 5. The dotted black lines represent the expected values for the cosmology of
the mocks (see table 2). All cases display the inferred parameters from both northern and southern
patches. For the LRG samples, the pre-recon full shape information has been consistently combined
with the post-recon catalogue BAO signal as described in section 3.3.

expressed in units of 10
3 for better visualization. The statistics displayed in table 10 use all

the available mock realizations, 2048 for the Patchy and 1000 for the EZmocks. The fits to the
mean of the mocks offset-ed by the expected value, �x

av., correspond to the pre-reconstructed
signal only, and its covariance (and error) correspond to 100 times the covariance (10 times
the errors) of one single realization (including both northern and southern caps), and not the
error of the mean of all used mocks. This ensures that the statistical errors are sufficiently
small to clearly identify systematics relevant for the actual data sample. Unlike �x

av., the
statistics related to the average of best-fits to individual mocks, h�xi, h�xi, Sx, Zx and SZx ,
contain both pre- and post-reconstruction information combined as described in section 3.3.
All analyses are performed using the same pipeline employed to analyse the data and described
in section 2.2.
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Figure 11. Same structure and notation as in figure 10, but displaying the 1� error-bar for each
parameter of interest.

The results regarding the offset between the expected value and the best-fit to the mean
of the mocks, �x

av., show a 1� 2% deviation for ↵k; a 0� 1.7% deviation for ↵?; a 0� 0.013

deviation for f�s8; and a �0.025 deviation for m. Recall that the observed systematic offsets
on the mocks should not be used to put constraints on the systematic error budget of the
models, due to inaccuracies of the mocks when reproducing the actual clustering. However,
we see a very good agreement with the expected value given the accuracy of the actual data,
around 2% for ↵k, 1.5% for ↵?, 0.040 for f�s8 and 0.040 for m.

In ideal Gaussian conditions8 with sufficiently high signal-to-noise data (this is, large
enough number of mock realizations) both h�xi and �x

av. should coincide. We indeed find
a good agreement for ↵? and f�s8, and reasonably good for ↵k. On the other hand, m shows
significant differences, suggesting that the distribution of best-fitting values of m is skewed
towards negative values.

We now focus on the error-related quantities, h�xi and the rms of the best-fits, Sx.
When the distribution is Gaussian and the covariance correctly modelled, these two error
estimates should be very close. Indeed, we find a very good agreement among these two
statistics for ↵k, ↵? and f�s8, indicating that not only the distribution for those variables is
close to Gaussian, but also that there are no indications of covariance matrix-related issues.
We do observe differences for m, but this is not a surprise, given the non-Gaussian signature

8When the distribution of best-fitting quantities is described by a Gaussian distribution, without any
skewness or any anomalous kurtosis.
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Variable ⇥10
3 LRG(0.38) LRG(0.51) LRG(0.70) QSO(1.48)

�↵
av.

k 13.7 ± 4.0 20.4 ± 3.6 18.5 ± 3.8 �15.7 ± 5.3

h�↵ki 7.4861 12.3344 14.6305 15.0770

h�↵ki 29.9673 26.5106 30.2284 53.8854

S↵k 33.4643 27.4981 31.4638 51.8706

hZ↵ki �0.0546 �0.0406 �0.0501 �0.0851

SZ↵k
1.0723 1.0313 1.0055 0.9794

�↵
av.

? �2.4 ± 2.4 �6.2 ± 2.2 �6.8 ± 2.6 17.0 ± 3.9

h�↵?i �2.3970 �4.5816 �3.3037 32.3815

h�↵?i 16.9014 14.9603 19.9959 38.9782

S↵? 17.5587 14.6142 19.3600 35.6125

hZ↵?i 0.0043 0.0006 �0.0050 �0.0344

SZ↵?
1.0351 0.9744 0.9672 0.9215

�f�
av.

s8 3.9 ± 5.7 7.9 ± 5.0 12.7 ± 6.0 2.1 ± 4.7

h�f�s8i 5.8290 11.6461 14.5541 7.8721

h�f�s8i 48.2098 41.9628 47.7991 51.4069

Sf�s8 48.4473 40.6968 45.6538 49.9718

hZf�s8i 0.0032 0.0018 �0.0040 0.0141

SZf�s8
1.0051 0.9670 0.9539 0.9600

�m
av.

�25.0 ± 5.2 �26.0 ± 5.0 �27.2 ± 5.5 �19.0 ± 3.9

h�mi �65.3894 �56.1880 �77.3976 �58.9662

h�mi 43.3229 40.1828 48.8380 39.0732

Sm 34.1271 31.2587 40.9830 31.6964

hZmi �0.0199 �0.0126 �0.0111 �0.0178

SZm 0.7819 0.7709 0.8451 0.8216

Table 10. Statistics derived from the 2048 realizations of the Patchy mocks (for the LRG(0.38)
and LRG(0.51) samples) and from the 1000 realizations of the EZmocks (LRG(0.70) and QSO(1.48)
samples), for the four physical variables of interests, the BAO scales along and across the line of sight,
↵k, ↵?, the growth of structure f times �s8, and the shape parameter m. For each of these variables
(x = ↵k, ↵? f�s8, m) we display the fit to the mean of the mocks minus its expected value, �x

av.;
the average of individual fits minus its expected value, h�xi; the average of errors of the individual
fits, h�xi; the rms of all best-fits, Sx, the average of the Z-statistic (see text), hZxi and its rms, SZx .
The expected values for each of the samples can be found in table 3.

presented when comparing the best-fit of the mean to the average of individual best-fits.
Another way to quantify the agreement between Sx and h�xi is through the variable Zx,
which for Gaussian distributions should return a mean value of 0 and a rms of 1. Indeed we
find a very good agreement of Z = 0 ± 1 for ↵k, ↵? and f�s8. In particular, we find that
SZx tend to be slightly above or below unity by just 5% for ↵k, ↵? and f�s8, which gives an
order of magnitude on the accuracy of the errors reported on the analysis of the actual data.
For the variable m we find an offset on Z of around �0.015 and a SZm ⇠ 0.8 because of the
non-Gaussian behaviour already described.

We conclude that the mocks describe well the expected clustering for the BAO variables,
↵k and ↵?, as well as for the anisotropic clustering, f�s8. They fail to reproduce accurately
the signal of the shape parameter m, under-estimating its value by about �0.025, which
corresponds to 1/2 to 2/3 of 1� error for the data. We explain this effect as due to the
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inaccuracy of fast techniques implemented in the production of the mocks. Both Patchy and
EZmocks are based on the Zeldovich approximation that does not fully account for the effect
of pre-virialization, which slightly boosts the amplitude of the shape of the power spectrum
at the scales where m is sensitive, 0.05 < k [hMpc

�1
] < 0.10.

The statistics of the errors for ↵k, ↵? and f�s8 show a very good agreement with the
Gaussian statistics and confirm that the errors of the data are accurate at 5% level. For the
variable m we report a non-Gaussian distribution which tend to skew the distribution towards
negative values.

6.2 Systematic error budget

In the previous section we have reported how the pipeline used for the data performed on
the EZ and Patchy mocks. However, these mocks are based on fast methods, such as the
Zeldovich approximation, and they do not describe the power spectrum clustering at the
precision level required for setting the systematic error budget. For this reason we aim to
test the performance of the pipeline on full N-body mocks. We focus on two sets, the Nseries
mocks and the PT challenge mocks, which we briefly describe below.

The Nseries mocks9 consist of 84 pseudo-independent realizations of the BOSS CMASS
northern geometry within redshifts 0.43 < z < 0.70; (ze↵ = 0.56), which were used by the
BOSS team to set the official systematic error budget of the BAO and RSD measurements
in the final cosmology paper [11]. The Nseries mocks have been generated out of 7 fully
independent periodic boxes of 2.6 h

�1
Gpc box side. For each of these cubic boxes 4 different

orientations of the CMASS northern geometry are fitted, and each of these fitted orienta-
tions are applied on 3 pre-rotation positions of the box, where the 3 Cartesian positions and
velocities are swapped, to extract all 7 ⇥ 4 ⇥ 3 = 84 pseudo-independent realizations with
BOSS northern geometry. The mass resolution is 1.5 ⇥ 10

11
M�h

�1, with 2048
3 dark matter

particles per box. The identified haloes are populated with galaxies following a HOD model
tuned to match the clustering of LRGs observed by BOSS. These mocks are analyzed using
the covariance matrix extracted from the Patchy mocks with the same sky geometry as these
Nseries mocks. The matrix elements of this covariance are rescaled by 10% in order to ac-
count for the difference in particles between the Patchy mocks. This difference arises from
veto mask effects which are not implemented in the Nseries mocks. The underlying cosmology
of these mocks is consistent with the Wilkinson Microwave Anisotropy Probe (WMAP, [1])
best-fitting cosmology, h = 0.7, ⌦m = 0.286, ns = 0.96, ⌦b = 0.047, �8 = 0.820. In to-
tal, these 84 pseudo-independent mocks have an associated effective volume of 106 Gpc

3
h

�3.
Many previous works [18, 28, 53, 55–57, 102–106] make use of these 84 realizations, as if they
were independent, to test their pipelines. This is only a good approximation when we exclu-
sively focus on RSD- and BAO-related quantities. When we also want to test for the shape
of the power spectrum, the additional realizations coming from the pre-rotations and the
inherent real-space volume overlap among cuts, end up producing a severe under-estimation
of the errors of parameters sensitive to the real space power spectrum on large scales, such
as m. For this reason, we opt to carefully select a subset of these 84 skycuts to reduce the
overlapping effect. In order to do so, we compute the cross power among the 12 different
skycut orientations (including the pre-rotations) for each of the 7 boxes (12 ⇥ 11/2 = 66

cross-power combinations for each box), and average each of these 66 cross spectra among
the 7 independent realizations. We then select those 6 orientations per box whose k-mode-
weighted added cross-power-spectrum-squared k-bins is closer to 0. This is motivated by the

9The Nseries mocks are publicly available in [101] .
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fact that partially overlapping samples should have cross-power signal different than 0. We
refer to this subset of 6 ⇥ 7 = 42 realizations as the Nseries-Z10, with a effective volume of
53 Gpc

3
h

�3. Additionally, we consider the 7 fully independent Nseries cubic boxes, with a
total effective volume of 80 Gpc

3
h

�3.
The PT challenge mocks [22, 107] consist of 10 independent realizations in periodic

boxes whose comoving side length is 3840 [h
�1

Mpc] with 3072
3 particles, where the 3 input

⇤CDM parameters, ⌦m, As and H0, were randomly selected from a Gaussian probability
distribution centered at the Planck fiducial cosmology.11 Halo catalogues are identified by
using Rockstar halo finder [108]. Additionally, these haloes are populated using a HOD
description roughly matching BOSS LRG galaxy data. Here we only focus on the snapshot
produced at z = 0.61. The mocks are analyzed using an analytically estimated covariance
(also provided by the PT-Challenge team), where the correlation between different multipoles
at the same wave-vector k is non-zero, and the correlation between adjacent k-bins is ignored.
In total, these mocks have an associated effective volume of 566 Gpc

3
h

�3.

�x ± 2� Nseries-Z Sky Nseries Box PT challenge 1� error of data
↵k 0.0066 ± 0.0088 0.0082 ± 0.0076 0.0077 ± 0.0036 [0.022 � 0.038]

↵? �0.0038 ± 0.0054 �0.0021 ± 0.0043 �0.0003 ± 0.0024 [0.014 � 0.028]

f�s8 �0.0056 ± 0.0115 �0.007 ± 0.010 �0.0039 ± 0.0049 [0.041 � 0.045]

m �0.014 ± 0.013 �0.009 ± 0.012 �0.0012 ± 0.0068 [0.033 � 0.052]

⌦m �0.0048 ± 0.0050 �0.0026 ± 0.0043 0.0008 ± 0.0022 0.0057

H0 �0.10 ± 0.75 �0.16 ± 0.70 �0.24 ± 0.36 0.67

As ⇥ 10
9

0.033 ± 0.103 0.008 ± 0.093 �0.007 ± 0.053 0.20

Table 11. Systematic offsets found when fitting the mean of the 42 Nseries-Z skycut mocks (ze↵ =

0.56; Ve↵ = 53 [Gpch
�1

]
3), the Nseries cubic mocks (ze↵ = 0.50; Ve↵ = 80 [Gpch

�1
]
3), and the PT

challenge mocks (ze↵ = 0.61; Ve↵ = 566 [Gpch
�1

]
3
]), for the four compressed physical variables of

interest, x = ↵k, ↵?, f�s8 and m; as well as for the three cosmology variables, x = ⌦m, H0 and As,
derived from the interpretation of the physical variables within a ⇤CDM model. For both Nseries
and PT challenge mocks, the error-bars represent the 95% confidence level (2�). For reference we
also quote the 1� statistical error for the full data sample, which spans along four LRG and QSO
sub-samples within 0.2 < z < 2.2, and therefore we just display the interval set by the largest and
smallest error (see table 5 for the statistical error for each of the samples). The errors of the cosmology
variables have the 2.1 > z Ly-↵ contribution and the BBN prior, as described in section 3.4. The
analysis of data and mocks is done using the same pipeline assumptions as described in section 3.
Unlike the LRG samples of the data, the Nseries or PT challenge mock data do not include the
reconstruction signal.

Table 11 summarizes the observed offsets for these two sets of N-body mocks. The
Nseries results are displayed for the power spectrum average of the 42 realizations of the
‘Nseries-Z Sky’ sample, and for the power spectrum average of the 7 cubic boxes, ‘Nseries
Box’. For reference the results from the average of the power spectra of the full 84 Nseries
skycut mocks can be found in the panels of figure 12 of Ref. [21] in orange contours. On
the other hand, the PT challenge results correspond to the DATA-like MIN in table 3 and
red contours in fig. 2 of Ref. [23]. For each variable, we report the difference between the

10The indices for these realizations are {3, 6, 7, 8, 9, 12} + 12i, for i = 0, . . . , 6.
11These randomly drawn values were kept secret (blind) and not publicly known. Other cosmological

parameters such as the primordial tilt and the baryon-to-matter ratio were fixed to ⌦b/⌦m = 0.1571 and
ns = 0.9649.
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measured parameter and the expected quantity given the known cosmology of each set of
mocks. The errors represent the 95% confidence level (i.e., they represent the 2� contours)
and correspond to the error of the mean. In order to set the systematic error budget we follow
a similar criterion to the eBOSS team analysis: for each variable, when the observed offset
on the mean of the mocks is within the 2� confidence interval, the precision of the mocks’
effective volume is not sufficiently high to resolve potential systematics deviations. When a
systematic offset detected on the mocks (at > 95% confidence level, given the mocks statistics)
represents a significant fraction of the 1� statistical error of the data, we add this contribution
in quadrature to the 1� statistical error of the data to account for the systematic error12.
For reference, we display the 1� statistical error inferred from the data in the last column of
table 11. For the physical variables we display the interval between the smallest and largest
error found for the four redshift bins, whereas for the cosmology variables we simply quote
the errors when all the samples (including Ly-↵) are considered, along with the BBN prior, as
described in section 4 and 5. Note that, unlike the PT- and Nseries mocks, the analysis of the
data combines measurements at different redshifts, which allows to break degeneracies in the
⇤CDM variables and greatly reduce the error bars. For this reason the data, with an effective
volume of the galaxy sample corresponding to 2.82 [Gpch

�1
]
3 has errorbars on {⌦m, H0, As}

comparable to the ones of the mock samples with much larger effective volumes.
Among the physical variables, we find that the Nseries-Z result for m is off by ⇠ 2�,

which represent a 1/2 to 1/4 contribution to the statistical 1� error of the data. This discrep-
ancy vanishes when m is inferred from the Nseries boxes (m is well within the 2� expected
deviation), and it also not present for the PT challenge mocks (well within 1� expected
deviation). Unlike the PT challenge mocks, the Nseries skycut realizations are not fully in-
dependent. When considering the full 84 realizations we find �m ± 2� = �0.0172 ± 0.0093,
a 3.8� deviation from its expected value (see orange contours of fig. 12 of Ref. [21]), which
is off by 1.5� from the Nseries box results. Since both Nseries Sky and Nseries Box contain
almost the same objects, this result is highly inconsistent. This discrepancy between sky-
cuts and boxes motivated us to investigate effect of the overlap among the full 84 Nseries
sky realizations. Indeed, because certain patches of the boxes are repeated among the 84
realizations, the parameter errors estimated from the mean of the 84 Nseries sky mocks is
under-estimated, and in particular, this under-estimate is expected to be more severe at large
scales, where the shape parameter m is measured. By selecting those 42 realizations with less
cross power among the realizations coming from the same box, we choose those realizations
that are more independent (or less correlated), which helps to bring together the results from
the Nseries Sky and boxes. We conclude that there may be still some residual overlap in
the Nseries-Z sample, which slightly drives the deviation of m away from the Nseries Box
results, slightly outside the 2� confidence interval. Since no relevant deviation is observed in
the cases where the samples are fully independent, we do not consider necessary to add any
systematic contribution to m.

We find ↵k is biased by 4.2� in the PT challenge, as well as 2.1� on the Nseries Box
mocks, in both cases the systematic shift is of similar magnitude, +0.0077 and +0.0082,
respectively. This represents a 1/3 to 1/5 of the statistical error of the data. As explained in
Ref. [23], the origin of this systematic is related to the hexadecapole signal. Certainly, when
repeating the fit on the mean using only the monopole and quadrupole signals we find an offset

12The eBOSS team followed the conservative approach of adding the 2� interval as a systematic error,
when no-systematic error could be determined. We do not follow this approach in this paper and add no error
budget when the deviation is found to be within 2� of the mean of the mocks.
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of �0.003 ± 0.011 for the Nseries Boxes; and 0.0040 ± 0.054
13 for the PT challenge mocks,

both cases perfectly compatible with the expected result within the 2� interval. However,
the impact of this systematic error on the cosmology variables is non-existent. This may
seem paradoxical at first sight, but is related to the effect of the model-prior. As discussed in
Ref. [23], both ↵k and ↵? variables are related via geometrical arguments within the ⇤CDM
model (as well as many other cosmology models). This tight relation in the parameter space of
the ↵’s forbids the region where the systematic on ↵k extends (and also limits the constraining
power of the hexadecapole when the geometrical relation between ↵k � ↵? is imposed by the
model). This can be seen in the left panel of fig. 2 of Ref. [23] (see red contours corresponding
to the pipeline choices used in this paper), where the dashed empty contours display the
parameter space allowed by the ⇤CDM model, and the solid filled contours are those directly
inferred from the model-agnostic analysis.

Focusing on the systematics of the ⇤CDM parameters, we find that, from the PT chal-
lenge, Nseries-Z and Nseries Box mocks, all the three parameters are within the 95% con-
fidence level drawn from the set of mocks, showing no hint of systematics. Because of the
large effective volume of Ve↵ = 566 [Gpch

�1
]
3 of the PT challenge mocks, the shift associated

to the 95% is also considerably smaller than the size of the 1� statistical error-bar –3 times
smaller for ⌦m, 2 times smaller for H0 and 4 times smaller for As– demonstrating that the
total effective volume of these mocks is sufficiently high to limit the potential systematics on
the data below a threshold which is significantly smaller than the statistical errors. Therefore
we conclude that 1) we do not detect significant modeling systematics to be added to the
cosmology variables, and 2) the precision in determining such systematics is small enough to
make them negligible for the current BOSS+eBOSS combined catalogues.

7 Discussion and Conclusions

We make use of the final BOSS and eBOSS catalogues, product of four generations of Sloan
Digital Sky Survey, representing a two decades long effort. BOSS and eBOSS probe over
10 billion years of cosmic evolution through more than 2 million spectra and represents the
state-of-the art three-dimensional map of LSS to date. It will remain unrivaled until the
next generation surveys [100, 109, 110] release their catalogues. The LSS clustering in BOSS
and eBOSS catalogues has been analyzed by the SDSS collaboration using what we refer to
as the ‘classic’ approach, where the clustering information is compressed into three physical
parameters as a function of redshift: the line-of-sight and plane-of-the-sky apparent shift of
the location of the standard ruler BAO feature in Fourier space which yields geometrical
information on the expansion history and the amplitude of the redshift space distortions
on linear scales which yields information on the linear growth rate of perturbations. But
LSS clustering encloses extra cosmologically-relevant signal, most of which can be extracted
from the large-scales Shape of the power spectrum. This is what the proposed ShapeFit
[21] approach does. We extend the original ShapeFit formulation to include the post-recon
BAO information, correctly accounting for the pre-recon and post-recon compressed variables
covariance.

Then we apply the ShapeFit analysis on the BOSS and eBOSS data and present the
resulting constraints on the physical parameters, which are summarized in Fig. 2. These
can subsequently be interpreted in terms of a variety of cosmological models, to produce

13As in table 11, the errors correspond to the 95% confidence level.
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constraints on each model’s parameters. The standard ⇤CDM model, with parameters cali-
brated from CMB observations, provides a good fit to the recovered compressed parameters
which were derived independently of the model, offering a powerful consistency check for the
underlying model’s assumptions.

For the extensions to the ⇤CDM model considered here (models with spatial curvature,
dark energy equation of state parameter not equal to -1, both constant and varying in redshift
according to the w0 � wa parameterization, non-zero neutrino masses, and extra effective
neutrino species), we find that the Shape improves the determination of the matter density
parameter ⌦m, further helping to break parameter degeneracies. This additional information
comes from the signature of physical processes around matter-radiation equality and is thus
a late-time probe of early-time physics. This information is highly complementary to that
captured by BAO and RSD signals. When BOSS and eBOSS data are analyzed in combination
with CMB data, the additional constraining power of the Shape compared to BAO+RSD is
unimportant. It is worth mentioning, however, that ShapeFit -assuming a power law power
spectrum with fixed spectral index and a BBN prior on the physical baryon density- provides
from late-time observations alone a bound on the sum of neutrino masses of ⌃m⌫ < 0.4 eV
(95% confidence), consistent with ⌃m⌫ < 0.24 eV provided by CMB alone including lensing.
ShapeFit in combination with Planck data yields ⌃m⌫ < 0.082 eV, the tightest bound on the
sum of neutrino masses from cosmology to date. The spatial curvature constraints from LSS
alone improves by a factor 2.7 from the measurement of the Shape.

For dark energy models with constant equation of state parameter and w0 � wa param-
eterization, the ShapeFit approach produces constraints on cosmological parameters compa-
rable to those obtained by the combination of CMB+BAO+RSD. In other words, ShapeFit
provides a late-time probe that can, in some cases, substitute the use of CMB data and yet
achieve comparable statistical power.

It is important to stress that the compressed variables approach has several advantages
compared to the alternative, full modeling (FM) approach where power spectra are directly
compared to theory predictions for a given cosmological model to constrain the model’s pa-
rameter. In the FM approach, the model needs to be chosen ab inito, hence the full analysis
must be repeated to explore different models or families of models. As table 7 summarizes,
the compressed variables can be translated very quickly and at low computational cost into
cosmological parameters for any cosmological model of choice. Section 5.4.1 and Ref. [24]
further show that this compression is effectively lossless at least for ⇤CDM.

The compression aims at isolating the part of the signal whose information content
is least affected by systematics. The compressed variables approach is model-agnostic; the
model-dependence is introduced only at the interpretation stage, at the very end of the pro-
cess. The physical parameters, capturing the effect on clustering of the physical processes at
play, offer a simple way to disentangle late-time physics information from imprints of early-
Universe physics. This is of value for going beyond simple parameter-fitting and for pursuing
ways to test the model and its underlying assumptions. For a given cosmological model,
constraints on the model’s parameters come from a variety of signatures of disparate physi-
cal processing acting at different cosmic epochs; early-and late- time effects are intrinsically
related. However, by measuring them separately as in the compressed variable approach,
the early- and late-time physical variables provide a powerful consistency test of the cosmo-
logical model. The establishment of the ⇤CDM model as the standard cosmological model,
along with the avalanche of data in the first decade of the 2000’, has transformed cosmology
into a precision science. In precision cosmology the parameters of a given model (especially
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the ⇤CDM model and simple, one-parameter extensions) are measured incredibly precisely.
But precision is meaningless without accuracy: the standard cosmological model is likely an
effective model, as a first-principle physical understanding of dark matter and dark energy
is still lacking. To move beyond precision cosmology, it is important to devise analyses and
approaches that are as much as possible model-independent or model agnostic, and that make
possible to test (some of) the model’s underlying assumptions. ShapeFit represents an effort
in this direction.

A Impact of the non-local Lagrangian bias in the shape parameter

Here we explore the correlations arising between the shape parameter m and the non-local
bias parameters when we drop the local-Lagrangian bias assumption.

We start by fitting the mean of the EZ mocks under different assumptions for m, b3nl

and bs2. In order to avoid any interference with the survey geometry, or with the intrinsic
redshift evolution within light-cone of the mock, we fit the averaged power spectrum of the 479
independent realizations of the EZmocks periodic cubic boxes. These boxes, whose length
size is L = 5Gpch

�1 and output redshift z = 0.675, are one of the 5 snapshots used to
construct the full EZ light-cone mocks, which are utilized to derive the covariance of the
data. The covariance matrix for this specific analysis is derived from the 479 independent
realizations of the boxes. As a data vector, we consider the mean of the 479 realizations,
but use the scaled covariance corresponding to just one of the cubic boxes, which has around
100 times the number of galaxies of the full north and southern light-cones combined from
0.6 < z < 1.0. This ensures that the statistical errors are sufficiently small for identifying
systematics relevant for the actual data sample.

Model Baseline Expected value Recovered value �
2
/d.o.f.

cosmology m
exp

⇥ 10
3

m ⇥ 10
3

Local, m free Fiducial �11.5 �36.7 ± 7.4 46.0/(39 � 8)

Local, m free EZ (true) 0 �29.5 ± 7.2 46.0/(39 � 8)

Local, m ⌘ 0 EZ (true) 0 0 68.2/(39 � 7)

b3nl free, m free EZ (true) 0 16 ± 11 38.1/(39 � 9)

b3nl free, m ⌘ 0 EZ (true) 0 0 38.5/(39 � 8)

bs2 free, m free EZ (true) 0 �28 ± 11 44.5/(39 � 9)

bs2 free, m ⌘ 0 EZ (true) 0 0 55.1/(39 � 8)

Table 12. Constraints derived from the mean of 479 independent EZmock realizations of periodic
cubic boxes at z = 0.675. We display the expected and measured values of m and the minimum �

2

value for different setups and baseline cosmologies. ‘Local’ stands for the fiducial setup used for the
main analysis of the paper, in short this is ` = 0, 2, 4 and 0.02 < k [hMpc

�1
< 0.15 and assuming for

bs2 and b3nl the local Lagrangian relations. Variations of this Local set up model are: m ⌘ 0 i.e., fixing
the m parameter to 0, and/or allowing b3nl and bs2 to float free. The associated error corresponds to
just one of the boxes, which has around 100 times the number of galaxies of NGC+SGC 0.6 < z < 1.0

LRG sample. When b3nl is set to be local, it takes the value of ⇠ 0.11 (given by the value of
b1 ⇠ 2.1). When it is set to be free it is constrained to be b3nl = �0.44 ± 0.12 when m is set to 0; and
b3nl = �0.54 ± 0.13 when m is free (in this case b3nl and m have a cross-correlation factor of �0.6).
Similarly, when letting bs2 free we find bs2 = 2.45 ± 0.92 for m ⌘ 0, and bs2 = 1.3 ± 1.6 when m is
free to vary. For the local Lagrangian bias case we find bs2 ⇠ �0.64 given the value of b1 ⇠ 2.1.
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Table 12 reports the results of fitting the signal from the EZmocks cubic boxes. For
conciseness we show the best-fit values of m and the minimum �

2 obtained for different
pipeline choices: ‘Local’ is the fiducial pipeline used in the main analysis of this paper where
the non-local biases are kept fixed to their local Lagrangian predictions; m can be freely varied
(along the rest of parameters as described in section 2.2.2) or can be fixed to m ⌘ 0 when doing
the fit. In addition, we show the results for the baseline cosmology set to the fiducial case
(used through the main text of this paper) and the own true cosmology of the EZmocks (see
table 2 for the details on these two baseline cosmologies). Note that this baseline cosmology
is used exclusively for computing the template of our model.1415 For reference, we add the
expected value of m, which by definition is 0 when the own true cosmology of the mocks is
used as a baseline cosmology model. Under this simplistic approach we see how the recovered
m value is shifted away from its expected value when the ‘Local’ set up with m freely varied
is used. For both fiducial and EZ cosmologies we find that m moves towards negative values
by about 0.025 � 0.030. This result is in line what found in figure 10 when the individual
light-cone Patchy and EZmocks were analyzed, and thus excludes that spurious effects of the
modelling of the window, or the intrinsic redshift evolution for the light-cone mocks can be
the cause for this mismatch when recovering m. When we force m to be 0 we find that the
value of best-fitting �

2 significantly increases, just confirming that m = 0 is not a desired
solution for the EZmocks. We then consider two follow up variations of this set up, allowing
b3nl and bs2 to freely vary, with and without setting m = 0. We find that allowing bs2 to
be free, does not help significantly to recover the expected m. On the other hand, we find
that when b3nl is freely varied, we recover a more consistent m, at the same time that the
best-fitting �

2 reduces significantly. For this specific case we find that the best-fit value for
b3nl is b3nl(m ⌘ 0) = �0.44 ± 0.12 and b3nl(m free) = �0.54 ± 0.13; whereas for the local case
b3nl(local) ⇠ 0.11. We discuss below the physical interpretation of these results.

Figure 12 shows the performance of four representative models described in table 12: (top
panel) red lines correspond to the models with m ⌘ m

exp
= 0; blue lines to the models with

m as a free parameter; solid lines to models with b3nl set to its local Lagrangian prediction;
dashed lines to the models where b3nl is free; for all cases bs2 is set to is local Lagrangian
prediction. Black dots with errorbars correspond to the measured signal from the cubic
EZ mocks. As in table 12, the error-bars correspond to 1� of the volume of a single cubic
realization. The bottom sub-panel display the ratio between the mocks measurement and the
model best-fit, using the same color scheme. We see how floating m free with local b3nl (solid
blue line) produces a power spectrum similar to that obtained by setting m = 0 and floating
b3nl free (red dashed line), illustrating the degeneracy between m and b3nl. We also see very
clearly how the signal (or feature in the power spectrum) responsible for obtaining a m 6= m

exp

when b3nl is local, is localized mainly at k ' 0.045 hMpc
�1 (solid red squares deviating

from the horizontal black dotted line in the bottom sub-panel). As we have commented in
Sec 6.2 this behaviour is a spurious signal caused by the method adopted to produce the fast
EZmocks. The EZmocks rely on the Zeldovic approximation thus miss to include key pre-
virialization terms which slightly affect the amplitude of the power spectrum at large scales.

14Since the signal is measured from the Cartesian positions of galaxies in the periodic boxes, we do not
require any cosmology for transforming redshifts into comoving distances, and therefore no Alcock-Paczysnki
effect is induced.

15In all the fits we include the grid correction for which P (hki) 6= hP (k)i as described in eq. 6.1-6.2 of
[21], although for such large box it turns out to be a minor correction on m for the k range considered,
0.02 < k [Mpc�1

h] < 0.15, which shifts 4 units of m ⇥ 103 towards positive values.
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Figure 12. Performance of some of the models listed on table 12 (lines with colours) on the average of
the 479 realizations of the periodic cubic EZmocks (black dots with error-bars). Red colour represents
models where m has been set to be 0 (its expected value), blue colour represents models with m freely
varied; solid lines represents models with Local Lagrangian conditions for b3nl, and dashed where
b3nl is freely varied. In all cases the models employ the true base-line template from the EZmocks.
Although only the monopole is shown, we simultaneously fit the three relevant multipoles within the
range 0.02 < k [hMpc

�1
] < 0.15, as for the data. The best-fitting values for m, b3nl and minimum �

2

are displayed in table 12.

These missing negative terms, are responsible for an excess of power in the EZmocks at large
scales, mimicking the effect of a non-local bias, and thus pushing the recovered m to negative
values under the local Lagrangian bias assumption for b3nl (or pushing b3nl away from its local
prediction for m = 0). This is supported by the results obtained when fitting m on N-body
mocks, such as the PT challenge mocks (see [23] and section 6.2) where for a similar HOD
we find results consistent with m = 0, as well as for the local Lagrangian prediction on b3nl

and bs2.
The choice of assuming the local Lagrangian prediction on our main pipeline analysis

applied for the data is hence well justified: when analyzing N-body mocks populated by
galaxies following realistic HOD models, we find no sign of departure from locality. However,
we want to test the impact of relaxing this assumption on the data, to quantify how much
our results would change. This is displayed in figure 13 for the LRG 0.2 < z < 0.5 sample:
the b3nl(bs2) bias parameter is allowed to depart from its local prediction in the left(right)
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panel. For each type of bias we show 3 cases: its local case (purple contours), the case
where its value is set to 0 (orange contours) and the case where we float this parameter free
with a tight Gaussian prior around the value preferred by the EZmocks. Although we know
that the best-fit value of b3nl and bs2 for the EZmocks is an unphysical artifact of the fast
techniques employed to generate these mocks, we assume those best-fitting non-local bias
results as extreme cases if, mistakenly, the non-local parameters of the data were fixed by the
signal of the EZmocks. In addition, table 13 reports the best-fit values of m for the 4 data
samples when b3nl is kept to be local16, when it is set to 0, and when is freely varied with a
tight Gaussian prior around the preferred value when fitting the EZmocks.

Figure 13. Impact of the assumptions for the non-local biases, b3nl (left panel) and bs2 (right panel)
on the cosmology parameters for the LRG sample 0.2 < z < 0.5 data sample for the pre-reconstruction
catalogue only. The colours represent different choices on these bias parameters, as indicated in the
legend. The green contours display the results with the written Gaussian prior on these non-local
bias parameters (motivated by the value preferred by the EZmocks), the orange contours the results
when setting these biases to 0; the purple contours the results of setting them to the local Lagrangian
prediction (fiducial pipeline choice for these work). See table 13 for the numerical values of the left
panel, along with the results when fitting the other data samples.

From the right panel of figure 13 we see that the impact of the choosing bs2 to be local,
0, or to be set around the value preferred for the EZmocks, has a very minor impact on m,
and no impact at all on the rest of physical parameters. From the left panel we conclude that,
if b3nl departs from locality, fixing it to b3nl = 0 has no impact on the physical parameters,
but setting it around the best-fit value preferred by the mocks, shift m by 1.5�.

Table 13 displays the effect of changing the assumption on the locality of b3nl for the
four studied samples. As seen in the left panel of figure 13 for the LRG 0.2 < z < 0.5 sample,
only when b3nl departs from locality and it is set around the preferred value for the EZmocks,
the locality assumption has a noticeable impact on the best-fit m, yet no impact on the rest
of the physical parameters. This shift in m oscillates between 0.5� and 1.5� with respect to
the local case, always towards positive values.

16Note that the values of m for the b3nl local cases of the LRG samples are slightly different from those
reported by table 5, as in this case we only use the pre-reconstruction catalogues for simplicity.
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Sample b3nl local b3nl = 0 b3nl = �0.5 ± 0.1

LRG 0.2 < z < 0.5 �0.075 ± 0.042 �0.063 ± 0.042 �0.009 ± 0.045

LRG 0.4 < z < 0.6 �0.033 ± 0.044 �0.021 ± 0.044 0.041 ± 0.047

LRG 0.6 < z < 1.0 �0.019 ± 0.052 �0.012 ± 0.053 0.017 ± 0.055

QSO 0.8 < z < 2.2 �0.005 ± 0.033 0.002 ± 0.033 0.028 ± 0.035

Table 13. Best-fit m values under different assumptions on b3nl for the four different data samples
(pre-reconstruction only). bs2 is assumed local Lagrangian.
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Figure 14. Posteriors for the pre-recon only BOSS+eBOSS LRG sample 0.6 < z < 1.0. For clarity
only the nuisance parameters of the NGC are shown (although the SGC is simultaneously constraint).
The purple contours display the results when both b3nl and bs2 are set to their local Lagrangian
predictions; the orange contours when they are freely varied with a wide uniform prior of 0 ± 20.

We conclude that the effect of bs2 being local, or being set to the two explored non-local
options has no impact at all on the physical parameters given the statistical precision of the
data. The effect of b3nl is more important, as anticipated at the beginning of this appendix.
Although the local and b3nl = 0 choices show no significant difference among them given the
size of statistical errors of the data, setting it to �0.5 ± 0.1 significantly shifts the m best-fit
values, by around 1.5�. Although there is no strong evidence that the observed galaxies
have such strong non-local behaviour (such extreme b3nl values), the strong correlation found
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between b3nl and m indicates that - for present and forthcoming surveys - the interpretation
of the shape m as a cosmology observable, regardless whether is done via the ShapeFit
compression or via direct fits to the full P (k) shape, relies on certain assumptions about the
bias properties of the studied sample of galaxies. The other compressed parameters (and thus
the cosmology extracted from them) are insensitive to these assumptions.

Finally, in figure 14 we display the full triangle plot of the pre-recon posteriors for the
LRG eBOSS 0.6 < z < 1.0 NGC sample, for the case where both bs2 and b3nl are set to
their local Lagrangian prediction (purple contours) and where they are floated free with a
wide uniform prior between 0 ± 20. We see how in the case the two non-local parameters are
allowed to float free the constrains on m largely degrade, returning essentially no-information
from the shape. In addition, we see that both bs2 and b3nl hit the conservative prior limits,
again indicating that the shape of the power spectrum is unable to simultaneously constrain
bs2, b3nl and m from power spectrum data alone. Because of this we do not report any
preference of the data for non-local bias values. The inclusion of higher-order statistics in
future data analysis may help to mitigate these large degeneration directions observed among
{b3nl, bs2, m}.

B Fiber collision effect in the quasar sample

We aim to account for one of the main observational systematic effect of the eBOSS quasar
samples, the fiber collisions. This effect is caused by the physical size of the optical fibers,
which cannot be placed in the BOSS and eBOSS plates sufficiently close to each other to
collect the spectra of imaging targets closer than a limiting angular size of 62”, which for the
quasar sample represents a physical distance of ⇠ 0.9 Mpch

�1. Imaging targets closer than
this minimum angular separation will have spectroscopic redshifts only if they lie in regions
of the sky that have observed by more than one plate.

Thus, the eBOSS quasar catalogues tends to miss the redshift information of objects in
regions where the density of objects is high. Not correcting by the effect of fiber collisions
induces a change in the 3D clustering of the quasars (especially along the LOS), which can
potentially bias the physical parameters we measure.

The fiber collision effect is imprinted in the EZmock quasar sample, and therefore by
computing the physical parameters with and without the correction we can quantify the
effect and validate the correction technique. We follow the approach proposed by [111] which
accounts for the effect of fibre collisions in the modelling part (i.e., it does not correct the data
catalogues, but the fitted model), which is also followed by the eBOSS quasar team analysis
in Fourier space [59], as well as in configuration space [58].

In short, we modify the measured power spectrum by the following scale-dependent
correction, P

true
`

(k) = P
meas.
`

(k) � �P`(k), where �P`(k) has two additive components, the
uncorrelated and correlated,

�P
uncorr
`

(k) = �fs(2` + 1)L`(0)
(⇡Dfc)

2

k
)W2D(kDfc), (B.1)

�P
corr
`

(k) = �
(2` + 1)fsD

2
fc

4

`
0
maxX

`0=0

Z
kmax

kmin

qdq P`0(q)

Z min(1,q/k)

max(�1,�q/k)
dµL`(µ)

⇥ L`0(kµ/q)W2D(qDfc), (B.2)
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Figure 15. Left panel presents the close pair (CP in the figure legend) correction proposed by [111]
implemented for the quasar sample according to eqs. (B.1)-(B.2). The solid/dashed lines display the
total �P`(k) correction for the northern/southern galactic cap, and the colors correspond to different
`-multipoles, as displayed. The right panel displays the impact that ignoring the close pair correction
has in physical parameters inferred from the mean power spectra of the 1000 realizations of quasar
EZmocks: the fiber collision effect has been simulated in the EZmocks catalogues, and the (red) green
contours show the analysis (not) correcting for them. The size of the contours correspond to a volume
100 times the volume of the data. Although not shown, the minimum �

2 improves when correcting
for the close pairs from 202.7/(168 � 12) down to 132.1/(168 � 12), mainly due to the shift in the
hexadecapole signal at all scales.

where, W2D(x) ⌘ 2J1(x)/x is the top-hat function in 2D, and J1 is a Bessel function of the first
kind and of order 1. The total effect of these collisions is �P`(k) = �P

uncorr
`

(k) + �P
corr
`

(k).
As suggested in [59] we take f

NGC,SGC
c = 0.36, 0.45 (the fraction of objects affected by the

fiber collisions in the northern and southern caps) and Dfc = 0.9 Mpch
�1 (the collision radius

at the effective redshift of the quasars, z = 1.48). Although `
0
max and kmax should extend

to infinity, and kmin to 0, for practical reasons we choose `
0
max = 8, kmin = 10

�3
hMpc

�1

and kmax = 0.4 hMpc
�1. As discussed in [111] the effect of truncating kmax only affects the

amplitude of the correction of the monopole, which is in any case re-absorbed by the free
parameter which regulates the amplitude of shot noise. With these numbers, [59] determined
that for the eBOSS quasars only 5% of the collisions were correlated (being actually groups of
quasars physically close to each other), which implies that the dominant part of the �P`(k)

shift is P
uncorr
`

(k), which is independent of the underlying true clustering of the quasars.
The left panel of figure 15 displays the total shift �P`(k), for the northern (solid) and

southern (dashed) patches, where the different colors stands for the different `-multipole
contributions as indicated. Our analysis is insensitive to an overall scale-independent shift in
P

(0) as we are marginalizing over the amplitude of the shot noise.
Relative to the statistical error-bar of the quasar sample, the largest effect turns out to

be in the hexadecapole, as is the multipole less affected by the bias parameters, which can
also in part absorb part of the fiber collision effects. We find results very consistent with
those shown in fig. 8 of [59].

The right panel of figure 15 displays how the best-fit physical parameters shift when the
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mocks with the effect of fiber collisions imprinted are (not) corrected according to eqs. (B.1)-
(B.2) in (red) green contours. We fit the mean of the 1000 realizations of the EZmocks
(northern and southern caps), although the plotted errors correspond to 10 times of the
statistical error of one realization. We report a change on DM/rd, DH/rd and f�s8, which
shifts the uncorrected mocks best-fitting values towards the expected values according to
table 3. On the other hand, m is barely affected by the fiber collision. This behaviour is
expected, as most of the signal of m comes from the derivative of P

(0) at scales of k ⇠

0.05 Mpc
�1

h, which are barely affected by fiber collisions. Overall, the reported shift on the
mocks represents a fairly small fraction of the error of the data, which is typically 10 times
larger than the errors displayed by the plot.

DH/rd DM/rd f�s8 m �
2
min

CP corr. 13.27 ± 0.50 31.01 ± 0.82 0.468 ± 0.042 �0.005 ± 0.033 117.0

CP uncorr. 13.11 ± 0.49 31.23 ± 0.82 0.482 ± 0.042 �0.009 ± 0.034 117.5

Table 14. Effect of the fiber collisions on the best-fitting physical parameters of actual quasar data
sample. CP corr. stands for the results when the fitted model accounts for the close pairs corrections
via eqs. (B.1)-(B.2); CP uncorr. display the best-fits when this correction is ignored. Along with the
best-fitting values we also report the valaue of the minimum �

2 with 168-12 degrees of freedom.

Table 14 presents the results of performing the fit of the actual quasar data taking into
account the close pair correction of eqs. (B.1)-(B.2) (CP corr.), or ignoring it (CP uncorr.). We
observe a fairly small shift, which cannot be distinguished from the intrinsic cosmic variance
noise. However, as for the mocks, we see that DH/rd tends to increase by 1/3�, DM/rd

and f�s8 tend to decrease by 1/4� and 1/3�, respectively. On the other hand, m is barely
affected (⇠ 1/10�). We also report a slight improvement of the minimum �

2
min value of the

fit, mainly due to an increase of the hexadecapole signal.
In summary, we see that the close pairs correction has a measurable effect only when the

effective volume of the sample is about ⇥100 the effective volume of the actual eBOSS data
quasar sample, which shifts the posteriors of the BAO distances and f�s8 by a magnitude
of . 2�, whereas the shape parameter m is unaffected. Nevertheless, for correctness, we do
include this correction in our main analysis of the data, but we do not expect that inaccuracies
on the exact free parameters of this model, such as the values of fc have any significant effect
on the final results of this paper.

C Impact of the prior assumptions

We discuss the motivations for and the effects of including certain priors in the analysis
presented in the main text. We divide this appendix in two sections, the first one about the
priors on nuisance parameters for the model-agnostic fit to the measured power spectra, and
the second about the priors set during the interpretation of the compressed physical variables
within a certain cosmology model.

C.1 Prior assumptions on the model-agnostic analysis

In section 2.2.2 we have described the parametrization of the galaxy/quasar P
(`)

(k) model,
with a set of physical and nuisance parameters. Among the nuisance parameters, the ampli-
tude of shot noise Anoise and the second order bias b2, are not particularly well constrained
by power spectrum data alone, especially when the signal-to-noise ratio is not very high. As
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Figure 16. Posteriors for the pre-recon only BOSS+eBOSS LRG sample 0.6 < z < 1.0. In purple
the constraints using uniform wide priors for Anoise and b2; in green when a Gaussian prior of 1 ± 0.3

is set for Anoise; and in dark orange when additionally a Gaussian prior of 5 ± 2.5 is also set for b2.
For the rest of parameters uniform wide priors are used as presented in table 4.

shown in table 4 for all the samples we have set a Gaussian prior around the Poissonian noise
prediction for the amplitude of shot noise, allowing a 30% deviation at 1�. This is a Gaussian
prior of Anoise = 1 ± 0.3, for both northern and southern sample parameters. We know that
halo-exclusion and the intrinsic clustering signal of the galaxy and quasar samples can induce
some deviations from the pure Poissonian case, Anoise = 1, but having this noise deviating by
more than ⇠ 0.6 (2� of our Gaussian prior) is actually extremely unphysical. Nevertheless,
we display in figure 16 the effect of this Gaussian 30% prior in green contours compared to the
case with uniform wide priors on Anoise in purple contours, for the LRG 0.6 < z < 1.0 sample.
Although setting this Gaussian prior has some impact in some of the nuisance parameters,
it barely has any impact on the physical variables, such as the BAO scaling distances, the
growth, or the Shape.

In addition to the prior on Anoise we include a wide Gaussian prior around b2 when
analyzing the LRG 0.6 < z < 1.0 sample. This choice is motivated by the multi-modal
posterior this sample presents in the absence of this prior, and the strong degeneracy between
the amplitude of shot noise and b2 (see again purple and green in figure 16 for b2). In
particular, we find that b2 prefers either b2 ⇠ 5 with Anoise ⇠ 1, or b2 ⇠ �5 with Anoise ⇠ 1.5.
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This long degeneracy could be also restricted by imposing a tighter prior on Anoise, but we
decide that setting an additional Gaussian prior on b2 around 5, with a wide ±2.5 deviation at
1� amplitude is a cleaner approach to remove this spurious result. This feature only appears
for the LRG sample at 0.6 < z < 1.0, but not at the other two LRG samples due to the larger
effective volume. We show in dark orange contours of figure 16 the effect of the combination
of both Gaussian priors on Anoise and b2.

In summary, the inclusion of the Gaussian priors on Anoise (in all the samples) and
of b2 (in the LRG 0.6 < z < 1.0 sample) help to increase the convergence of the Monte
Carlo Markov Chains and barely affects the posteriors of the physical parameters. For both
parameters, having this priors help to exclude the unphysical results where the amplitude of
shot noise significantly departs from its Poissonian prediction.

C.2 Prior assumptions within a specific cosmology model

To extract tight cosmological constraints from LSS data alone, in particular from the BOSS
and eBOSS maps presented here, it is necessary to impose physical Gaussian priors on some
parameters to break degeneracies.

One of these parameters is the baryon density !b, which is well measured by BBN and
the CMB, so it is instructive to adopt this measurement within the cosmological analysis.
The impact of this prior assumption is already discussed in depth in section 5.1, !b is very
degenerate with h and !cdm, but it does not affect the constraints on ⌦m and �8 (see figure
4).

Another parameter that we do not vary freely in our baseline analysis is the spectral
tilt ns. Instead, we keep it fixed to the fiducial value n

fid
s = 0.97. The reasoning is that

the limited range of scales we consider for galaxy clustering are not sufficient to determine
the scale-independent tilt with high accuracy, while the Planck temperature and polarization
power spectra cover significantly larger, linear scales, that enable a precise determination of
ns. Due to its degeneracy with the shape m, allowing it to vary freely in the cosmological
ShapeFit analysis would significantly degrade the constraining power of m. As shown in [21],
it is possible to measure both m and ns from the galaxy power spectra independently, but
in this work we rely on the well measured knowledge on the scale independent tilt from the
CMB and infer cosmological constraints from m only.

In the left panel of figure 17 we show the impact of relaxing the prior ns = n
fid
s (blue

contours) by allowing to vary ns within a Gaussian prior probability distribution centered at
the value n

Planck
s = 0.9649 measured by Planck, with a width of �ns = 0.02, which is 5⇥

larger than the Planck measured standard deviation (red contours). We can see that this has
no impact on h and �8, but slightly degrades our ⌦m constraints. While our baseline analysis
returns ⌦m = 0.3001 ± 0.0057, here we find ⌦m = 0.2987 ± 0.0073.

We hence conclude that our baseline ⇤CDM results are robust even under systematic
deviations of ns from the Planck measured value.

D Smoothing the BAO wiggles

To obtain the shape m prediction for any combination of cosmological parameters we need
to infer the matter transfer function ‘no-wiggle’ shape Tnw (or power spectrum shape Pnw),
entering eq. (2.10). However, this quantity with removed BAO signal is not a direct output
of Boltzmann codes, and must hence be inferred in an additional step.
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Figure 17. Left panel: Comparison between cosmological ⇤CDM parameter constraints when varying
the spectral index ns under a Gaussian prior (red contours) with respect to our baseline of fixing it
to the fiducial value (blue contours). Right panel: Comparison of constraints for different BAO
smoothing methods to determine the shape parameter m. We use either a numerical method to
remove the BAO feature from the linear power spectrum (red contours) or the EH98 fitting function
(blue contours).

Several numerical methods exist to extract the BAO signal from a fiducial power spec-
trum template, for example, in our BAO analysis we use the method from [112]. However,
this method involves a polynomial fitting routine, which does not return stable results for all
cosmological parameter combinations. Even for methods that rely on simple numerical func-
tions such as fast Fourier transforms or interpolation (see for instance [113]) it is a non-trivial
task to obtain stable results across cosmological parameter space. As argued extensively in
appendix A of [114], this is because the BAO are a relatively minor signal compared to the
broadband. Finding a universal numerical BAO extraction method is further complicated by
the fact that other features in the linear power spectrum -determined by the matter-radiation
equality turnover and baryon suppression scales- show a rich cosmology dependence. Any nu-
merical method relying on a set of hyperparameters, such as the one presented in [115], must
therefore be validated to deliver standardizable results against that cosmology dependence.
Since such a validated method does not yet exist in the literature, in this work we use the
analytic EH98 formula [6] to obtain our Shape predictions.

The drawbacks of the EH98 formula are its inaccuracy of up to 5% and its lack of
validity beyond ⇤CDM and simple parameter extensions of varying neutrino mass ⌃m⌫ ,
effective number of neutrino species Ne↵ , curvature ⌦k or dark energy equation of state w.
While the EH98 formula is still sufficient for the range of models explored in this paper, an
alternative numerical method would be beneficial for future applications.

Here, we present a new numerical method as such an alternative and compare its per-
formance with respect to the baseline EH98 formalism. The building block of this numerical
smoothing is given by the following scipy (and numpy) functions:

i) We use the find_peaks function from scipy.interpolate to find the minima and

– 54 –



maxima of the gradient (using numpy.gradient) of the input spectrum. The scales at
which these minima and maxima are found represent the nodes, that we require the
output smooth function to cross. We start looking for peaks at a certain scale kstart,
which is our first hyperparameter. By default, we set kstart = 0.02

⇥
hMpc

�1
⇤

ii) We use the interp1d function from scipy.signal to interpolate two smooth functions
crossing all minima (maxima) identified with the help of the peak finder in i) and
combine both curves into the final output by computing their average. The order j of
the spline interpolation is our second hyperparameter. By default we perform quadratic
interpolation, i.e. we set j = 2.

As argued before, we aim to establish a “standardizable” method, which delivers results inde-
pendent of the hyperparameters.17 To achieve this goal we proceed as follows:

1. We start with our fiducial linear matter power spectrum P
fid
lin obtained from the Boltz-

mann code CLASS using the fiducial values of table 2 and calculate the corresponding
smooth EH98 power spectrum P

fid
EH98.

2. We calculate the ratio P
fid
lin /P

fid
EH98 to divide out the power spectrum dependence on the

turnover scale keq, which is excellently modeled via the EH98 formula.

3. We apply the numerical smoothing (steps i) and ii)) with that ratio as input.

4. We multiply the de-wiggled output with P
fid
EH98 to obtain P

fid
num.

5. Given a cosmology ⌦ different from the fiducial cosmology ⌦fid, we compute the ratio
Plin/PEH98 for that cosmology after rescaling them by the sound horizon ratio s = rd/r

fid
d

(as for the nominator of eq. (2.10)).

6. We “standardize” that ratio by dividing it by the pre-computed ratio for the fiducial
cosmology, i.e. we compute (Plin/PEH98)/(P

fid
lin /P

fid
EH98).

7. We use this “standardized” ratio as input for the numerical smoothing, steps i) and ii).

8. We multiply the de-wiggled output with PEH98 · (P
fid
lin /P

fid
EH98) to obtain the final numer-

ically smoothed power spectrum Pnum.

Note that steps 1.-4. are carried out only once to generate the fiducial templates, while steps
5.-8. need to be performed at each step in cosmlogical parameter space. From our tests using
MCMC’s we found that the “double standardization” procedure described here is sufficient
to deliver stable results. In this way we can get rid of the dependence on keq (through the
division by the EH98 formula) and the baryon suppression and onset of oscillation (through
the division by the fiducial template ratio). If not taken into account, both of these effects
can lead to artificial discontinuities in the determination of the shape m.

We explain this procedure visually and compare it to the pure EH98 smoothing method
in figure 18. The top panel shows the ratio of s

i/j-rescaled power spectra Px(⌦i
)/Py(⌦j

),
where the subscripts x, y either stand for the linear power spectrum (‘lin’) or for the no-wiggle
linear power spectrum obtained via the analytic (‘EH98’) formula or the numerical method

17While we leave the demonstration of its independence from the hyperparameters for future work, here we
argue why our method is well suited to be "standardizable”: because we cancel out the standard ruler rd and
turnover scale keq power spectrum dependence.
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(‘num’) described here. The superscripts i, j either stand for the fiducial cosmology (‘fid’)
of table 2 or a cosmology (empty superscript) with displaced matter density �!m = �0.02.
In most cases the denominator is given by P

fid
num = Pnum(k,⌦fid

) as reference, but also other
cases are displayed for comparison. The exact values of the sub- and superscripts are specified
in the legend, where the dependencies P (. . . ) are not written out for simplicity.

From the top panel of figure 18 we can appreciate the difference in Shape between the
s-rescaled power spectrum of the displaced cosmology (purple line) and the fiducial power
spectrum (black line). Their ratio (red, dotted line) still shows some residual wiggles due
to the difference in BAO amplitude between the two cosmologies. Its residual with respect
to the EH98 function (red, dotted line of bottom panel) is used as input for our numerical
smoothing function (step 6). The advantage of using the residual power spectrum ratio as
input is that the numerical method is more precise (and in particular more independent of the
hyperparameters) the smaller the BAO amplitude. This is simply because with smaller ampli-
tude there is less room left for possible numerical smoothing solutions. In fact, if the residual
BAO amplitude is zero, all numerical smoothing operations would deliver identical results.
The final numerically smoothed spectrum Pnum/P

fid
num (red, dashed lines) can be compared to

the baseline EH98 result PEH98/P
fid
EH98 (blue, dashed lines) in both panels. We see that they

are in nearly perfect agreement for k < 0.05
⇥
hMpc

�1
⇤

and reach at most a 2% discrepancy
at k = 0.1

⇥
hMpc

�1
⇤
. Since we measure the slope at pivot scale kp = 0.03

⇥
hMpc

�1
⇤

(black,
dotted lines), both methods deliver the exact same cosmological constraints, as demonstrated
for our baseline ⇤CDM model in the right panel of figure 17. However, to achieve this result
it is very important to use for each cosmology the same BAO wiggle removal procedure as for
the fiducial power spectrum template. This is because, in absolute terms, the EH98 prediction
(blue, dotted lines) is quite different from the numerical calculation, in this case up to 5%
and even up to 2% at kp.

E Full data-vectors and covariances

We list the full covariances and data-vectors corresponding to the compressed set of variables
of the samples used in this paper. These results correspond to those listed in table 5, but
explicitly displaying the cross correlation among parameters. Unlike in table 5 we display the
f�s8 parameter (see section 2.2.3 for its definition), which is slightly different from the usual
f�8 parameter which has been reported before.

The two BOSS LRG overlaping samples at 0.2 < z < 0.5; ze↵ = 0.38 and 0.4 < z <

0.6; ze↵ = 0.51 correspond to,

D
LRG

(0.38, 0.51) =

0

BBBBBBBBBB@

DH/rd(0.38)

DM/rd(0.38)

f�s8(0.38)

m(0.38)

DH/rd(0.51)

DM/rd(0.51)

f�s8(0.51)

m(0.51)

1

CCCCCCCCCCA

=

0

BBBBBBBBBB@

24.979

10.239

0.47323

�0.066479

22.256

13.302

0.48109

�0.022856

1

CCCCCCCCCCA

, (E.1)
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Figure 18. Comparison between the different BAO smoothing methods, the baseline EH98 method
(blue, labeled ‘EH98’) and the numerical method (red, labeled ‘num’), where the final results relevant
for ShapeFit are represented by the dashed lines and the dotted lines display intermediate steps.
In the top panel we show the fiducial power spectrum in black and the s-rescaled spectrum of a
different cosmology with reduced matter density �!m = �0.02 in purple. Both are divided by the
numerically smoothed fiducial power spectrum P

fid
num to visualize their difference in Shape. The ratio

of both spectra, which serves as input for our numerical smoothing method (step 6 in text, where
here we exclude the EH98 factors in the top panel, but include them in the bottom panel) is given
by the red dotted line. The blue dotted lines show the ratio of the EH98 method with respect to the
numerical method, which deviate from each other by up to 5%. Note, however, that ShapeFit relies
on the relative shift in Shape with respect to the fiducial, which does not show any difference between
methods at the pivot scale kp (black, dotted lines).

with covariance

C
LRG

(0.38; 0.51) = 10
�3

· (E.2)
0

BBBBBBBBBB@

370.75 �29.539 �11.436 �1.3729 108.63 �8.6873 �3.2297 �0.87764

24.259 2.9207 �0.52414 �8.0277 �4.2352 1.0342 �0.25930

2.1106 �0.073861 �3.1726 �0.29013 0.70911 0.071011

1.7474 �0.94588 �0.58482 0.097818 0.74692

277.21 �34.533 �7.9761 �1.5555

35.805 2.8011 �0.36639

1.6569 �0.18942

1.9244

1

CCCCCCCCCCA

.

The BOSS and eBOSS LRG sample, 0.6 < z < 1.0; ze↵ = 0.698 has,

D
LRG

(0.698) =

0

BB@

DH/rd

DM/rd

f�s8

m

1

CCA =

0

BB@

19.542

17.700

0.47947

�0.008019

1

CCA , (E.3)
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and the following covariance,

C
LRG

(0.698) = 10
�3

0

BB@

201.75 �46.049 �5.4088 �2.7122

93.889 5.0808 �0.51303

1.8683 �0.70222

2.6965

1

CCA . (E.4)

Finally, the quasar sample at 0.8 < z < 2.2; ze↵ = 1.48 has,

D
QSO

(1.48) =

0

BB@

DH/rd

DM/rd

f�s8

m

1

CCA =

0

BB@

13.274

31.007

0.46773

�0.005327

1

CCA , (E.5)

and covariance,

C
QSO

(1.48) = 10
�3

0

BB@

245.99 �16.412 �7.8840 �4.4936

669.76 20.710 �5.9721

1.7861 0.086278

1.0934

1

CCA . (E.6)

We provide these compressed parameter covariances, the power spectra measurements, power
spectrum covariances and window matrices employed in this analysis in [116].
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S U M M A RY O F R E S U LT S A N D F U T U R E P R O S P E C T S

Thanks to overwhelming technological and observational advance-
ments over the past three decades, cosmology has become a precision
science. This is mainly based on three grounds. First, observations of
the CMB, from its monopole temperature with COBE in the 90’s until
mapping its tiny fluctuations with Planck in the recent years, brought
to us deep understanding of the early-time processes of the universe.
Secondly, direct measurements of the cosmic acceleration through SN
and BAO have extended our understanding towards the late-time dy-
namics of the universe. Finally, this is accompanied by further insight
from measurements of the growth rate of cosmic structures through
weak lensing and RSD.

Instead of separating between early-time and late-time physics, these
recent developments can also be categorized as model-dependent
versus model-independent. The former category is represented by
CMB and lensing observations while the latter is represented by SN
observations on one hand and on the other hand by the BAO and RSD
signals of galaxy clustering, the main topic studied in this thesis.

To put it in a nutshell, the common theme of the work presented in
this thesis is a model-agnostic analysis of galaxy clustering observa-
tions extracting as much information as possible but maximizing the
robustness at the same time. In this spirit, part ii, "ShapeFit", provides
an improved tool to compress in a model-independent way galaxy
power spectra into physical parameters, which are easily interpretable
for a wide family of cosmological models. Part i, "Blinding", presents a
way to blind galaxy catalogs, such that their analysis is not influenced
by any model expectations. By putting the model interpretation at
the very last step in the analysis pipeline, also ShapeFit contributes
towards avoiding confirmation bias during the analysis. Hence, both
of these research pillars go hand in hand, and being of major interest
for spectroscopic surveys, both are expected to play an important role
at the interface between observational data and theoretical models.

We now summarize the most important findings and discuss the
future prospects for each of these pillars.

7.1 blinding

The publication [1] within chapter 2 presented the first method to blind
spectroscopic galaxy catalogs, such that their inferred summary statis-
tics coherently mimick a different expansion history, parameterised by
the model-independent, distance scaling parameters a?(z) and ak(z)
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across and along the line-of-sight (LOS), and a different growth rate
history parameterised by the velocity fluctuation amplitude f s8. While
the expansion law blinding leads to a coherent, redshift-dependent
blinding-shift on galaxy LOS positions (redshifts), the growth-rate
blinding is obtained by calculating the gradient of the overdensity
field of the galaxies, meaning that the blinding shift in galaxy LOS po-
sition (redshift) involve a local dependence. This makes it impossible
to accidentally unblind the blinded catalogs obtained with our method.
The reason why we only blind the galaxy positions along the LOS
and do not modify their angular positions is that they are targeted
based on pre-determined photometric catalogs. Since these are already
publicly known, and modifying the angular positions would lead to
uncontrolled implications concerning angular systematics, we decided
to only blind for the new spectroscopic infomation, which are the
precise redshifts.

By blinding 400 realizations of the mock galaxy catalogs for extreme
shifts in target blind parameters, we show that our catalog-level blind-
ing scheme returns robust results compared to the analytic prediction,
with a statistical fluctuation below 5% of the intrinsic RMS scatter
of the mocks and a negligibly small systematic deviation. Also the
inferred parameter errors and c2 values remain stable between fitting
the pre- and post- blinding data. While the demonstrated analyti-
cal predictability is encouraging and stresses the robustnesss of our
method, we note that in a real analysis we suggest the collaboration
pipeline to rerun on the full datavector after unblinding, in addition
to a simple analytic transformation of the blinded results. Both results
can finally be compared for consistency, as done in figures 15 and 16
of [1], also see figure 1 therein for the global set-up.

While the presented blinding scheme operating along the LOS as
presented in [1] is already part of the official DESI analysis pipeline,1

due to its high applicability we envision it to be applied to other
galaxy surveys such as Euclid or Rubin as well. Beyond that, it could
be easily applied to other tracers such as Lyman-a, quasars or line-
intensity mapping. As a next step, we attempt to extend our blinding
scheme towards other cosmological signals such as primordial non-
Gaussianity and massive neutrinos. Since these signals do not only
imply an anisotropy along the LOS but also manifest themselves as
isotropic scale-dependent shifts in the summary statistics, and since
we do not aim to modify the angular galaxy positions, we need to
blind the weights attributed to each galaxy. This method is currently
under investigation and could also be used to blind for the Shape
signal introduced in our work on ShapeFit.

1 Indeed, its validation on early DESI data is subject to an ongoing project of the author
of this thesis.
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7.2 shapefit

ShapeFit is an extension of the standard BAO+RSD template fits incor-
porating one or two additional parameters capturing the broadband
shape of the matter power spectrum. Its full derivation and application
to fast mocks is presented in the publication [2] within chapter 3 and
its first application to actual data, in this case to BOSS DR12, in the
letter [3] within chapter 4. We validated our method on high precision
and high volume N-body simulations within the context of the blind
PT challenge in the publication [4] within chapter 5 and apply it to the
BOSS+eBOSS legacy LRG and QSO catalogs in the submitted article
[5] presented in chapter 6.

In chapter 3, we show that our fixed-template method is capable
of reproducing the results of more complex FM techniques, both in
terms of mean values and standard deviations of cosmological param-
eters when adopting the standard LCDM model with conventional
priors on the CMB temperature (from FIRAS), the baryon density
(from BBN), and the spectral tilt (from CMB). But we see that once
the baryon density prior and/or the spectral tilt prior is relaxed, the
ShapeFit results are more conservative than for the FM technique, be-
cause in these cases parts of the signal that ShapeFit does not include
(such as the BAO amplitude) become important to break parameter
degeneracies. However, we have shown that on the other the ShapeFit
constraints are more robust in these cases than the FM constraints,
which depend on the exact implementation of non-linear corrections
to the BAO amplitude for example. An important advantage of Shap-
eFit is its capability to separate the information in the data coming
from purely late-time dynamics (such as expansion rate evolution and
growth rate evolution) from the physics at play at early times, from in-
flation until the time of decoupling of the photon-baryon fluid. Within
FM approaches however, the cosmological parameters that govern
the early-time physics are influencing at the same time the late-time
dynamics of the universe, what makes it impossible to disentangle
the two. This is what in our work we refer to as the internal model
prior, which is purposely broken within our ShapeFit parameter com-
pression. Other advantages of ShapeFit encompass its speed and its
physical intuition provided by the compression of O(102) datapoints
into just four numbers per redshift bin.

In chapter 4, we show that when applied to BOSS DR12 data, again,
we can reproduce the FM results from other works with ShapeFit.
Furthermore, we show that the interpretation of the shape parameter m
in combination with a prior on the matter density Wm = 0.299 ± 0.016
from Table 4 of [36] provides a constraint on the Hubble constant of
h = 0.736+0.105

�0.075 without a prior on wb from BBN. This is of particular
relevance in context of the still unresolved Hubble tension, as ShapeFit
naturally incorporates a method to measure h independently of the
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sound horizon rd. In this way, ShapeFit offers a model-independent
route for such a constraint, which since then has only been obained
via a modification of the model-dependent FM analysis [91]. Our
publication [3] within chapter 4 also directly shows the cosmologi-
cal implications of the internal model prior assumed in FM types of
analyses. We show that m is subject to systematic shifts in case that
the observational systematics are not properly taken into account or
in presence of primordial non-Gaussianity, while these effects do not
bias the other, late-time, physical parameters. While ShapeFit allows
to disentangle the different physics at play, the naive FM fit does not
distinguish between the early-time and late-time signals resulting in a
bias of cosmological parameters without the diagnosis step of parame-
ter compression in between. This is one of the major reasons (among
other advantages already specified) why we advocate ShapeFit for the
cosmological analysis of LSS surveys instead of FM techniques.

In chapter 5 we validate the ShapeFit compression method by par-
ticipating in the blind PT challenge launched by [83]. For our baseline
set-up labeled ’SIM-like’ we obtain the following constraints on the
(blinded) cosmological parameters: D ln

�
1010As

�
= �0.018 ± 0.014,

DWm = 0.0039 ± 0.0021 and Dh = �0.0009 ± 0.0034, remaining below
2s deviations for a volume of 566

⇥
h�1Gpc

⇤3, which is 10-20 times
larger than the volume probed by future galaxy surveys. For the same
set-up, we find that also our compressed parameter constraints on�

ak, a?, f , m
 

are unbiased. For certain deviations from our baseline
set-up, i.e. different modeling choices on galaxy bias and shotnoise
amplitude and choosing different redshift bins, we do not find any sig-
nificant deviation from our baseline set-up. However, when icreasing
the scale range beyond kmax = 0.15 hMpc�1, our constraints become
biased due to neglecting higher order terms in PT becoming relevant
given the small covariance of the PT challenge simulation. We also
observe a bias in ak of 4s when including the hexadecapole signal,
where the origin for that bias is still under investigation. Interestingly,
this bias does not occur in the cosmological parameter space, since
the direction of the bias in the ak � a? is excluded by the LCDM
model a priori. This serves as an explicit example why direct model
fits (or FM fits) are not practical for systematic analyses, since the
conclusions would always depend on the exact model assumptions of
choice. Therefore, we recommend to use the ShapeFit methodology
for such systematic tests, as it is i) generic enough to find and explore
all possible effects of systematics and ii) precise enough to capture
nearly the same information content as other FM techniques.

Finally, in chapter 6 we apply ShapeFit to the full BOSS+eBOSS LRG
and quasar maps and infer the cosmological implications of this legacy
dataset when combined with the Lyman-a tracer. Comparing with our
ShapeFit results the standard flat-LCDM model we obtain, without
any external dataset, Wm = 0.2971 ± 0.0061 and 109 ⇥ As = 2.39+0.24

�0.43



7.3 concluding remarks 245

(or s8 = 0.857 ± 0.040). For models beyond LCDM, BOSS+eBOSS
data alone constrain the sum of neutrino mass to be Smn < 0.40
eV with a BBN prior at 95% CL, the curvature energy density to
Wk = �0.022+0.032

�0.038 and the dark energy equation of state parameter
to w = �0.998+0.085

�0.073 at 68% CL without a BBN prior. For the latter
two parameters the newly added shape parameter helps to shrink
the error bars with respect to the corresponding reported values in
[36] by factors ⇠ 3 and ⇠ 2 respectively. However, we find that in
combination with the most recent CMB data from Planck [25] the
shape does not deliver any extra information. We also find that for
standard LCDM type of models the gain from the shape decreases the
larger the redshift range of the considered LSS dataset.2 This result
is of particular relevance for the DESI collaboration, which aims to
report cosmological results obtained from the combination of all its
tracers combined, covering a redshift range of 0.1 < z < 4.0. Note,
that most of the FM techniques proclaiming spectacular improvement
in cosmological constraints of factors 10-20 have been obtained from
individual tracers, but shrank to factors 2-3 once obtained from the full
redshift range, in line with our findings. Concerning our systematic
tests on mocks, we find that fast mocks that rely on certain approxima-
tions such as the Patchy mocks [92] and EZmocks [93] are well suited
to reproduce the expected BAO and RSD variables but fail when it
comes to the shape. In fact, these kind of fast mocks are not intended
for precision analyses, their original purpose is providing covariance
matrices. Hence, we carried out systematic checks using the full N-
body Nseries mocks on top of the previously analysed PT challenge
mocks finding no relevant systematic biases given the precision of
the analysed dataset. Therefore, we conclude that ShapeFit is a robust
method o extract cosmological information from galaxy surveys.

7.3 concluding remarks

To conclude this thesis, we would like to evaluate the impact of this
work on the scientific community. The two research pillars presented
here resulted in two important methodologies that are now part of
the key cosmological analysis of DESI. This campaign is currently in
the state of data collection and has already surpassed the number
of galaxy spectra measured from all previous spectroscopic galaxy
surveys combined. Its Year 1 analysis will have probed five times
the effective volume of its preceding BOSS+eBOSS experiment. The
author of this thesis is highly involved in this effort, which will remain
unrivaled for the next decade. The synergies, however, with soon to
be launched LSS surveys such as Rubin and Euclid will be immense.

2 However, models predicting an effective change of the slope as a function of redshift
and tracer, should benefit of such type of analysis.
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Beyond this contribution of the practical implementation of these
methods into the DESI pipeline, the fundamental value of the two
research pillars presented in this thesis rely in their philosophy of
model-agnosticism.

In fundamental physics, there is a constant interplay between the-
oretical and experimental physics; the former relying on deduction,
i.e., going from the general to the specific, the latter on induction, i.e.,
going from the specific to the general.

In fundamental cosmology, it is impossible to carry out experiments;
there is only one single "experiment", the universe, in which we reside.
Of course, there are different windows, through which we can observe
the universe, but in the end all these observations probe just a single
"experiment".

For that reason, cosmology tends to rely heavily on deductions start-
ing from given models, and as cosmologists we tend to trust the
-apparently- established models. Blinding and ShapeFit provide layers
of protection against such unconscious confirmation bias. Despite all
the recent successes of the standard LCDM model, emerged during
the proclaimed "precision era of cosmology", it is important to bear in
mind that it is an effective model, for which 95% of its ingredients are
still unknown. Therefore, it is of fundamental importance to treat new
incoming data with the least amount of prior assumptions, relaxing
even established model relations, such that we are allowed to learn
what the data tells us (induction), rather than to reproduce what the
models tell us (deduction).

By putting the weight more into the induction side, we hope that
the effort of this thesis will prove useful for the transition from the
"precision era" to the "accuracy era" of cosmology.
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