Supporting Information For:

Interfacial Oxidative Oligomerization of Catechol

Marcelo I. Guzman*, Elizabeth A. Pillar-Little, and Alexis J. Eugene

Department of Chemistry, University of Kentucky, Lexington, Kentucky, 40506, USA

Corresponding Author

*Email: marcelo.guzman@uky.edu, Phone: (859)323-2892

Content	Description	Page(s)
Figure S1	Infrared spectra time series of catechol thin films exposed to $O_3(g)$	S2
Figure S2	First-order decay of catechol in Figure S1	S2

Figure S1. Infrared spectra time series of catechol thin films exposed to 230 ppmv $O_3(g)$ at 70% RH.

Figure S2. Time series for the first-order decay of catechol thin films of exposed to 230 ppmv O₃(g) at 70% RH monitored as the corrected infrared absorbance at 1365 cm⁻¹ (see Figure S1). The red dash line corresponds to a least square fitting for a three-parameter exponential decay curve with time (*t*): [catechol]/[catechol]₀ = ([catechol]_∞/[catechol]₀) + *a exp*(-*k*_{cat+O₃}× *t*) with parameters [catechol]_∞/[catechol]₀ = 9.86 × 10⁻² for the extrapolated constant at infinite time, *a* = 9.09 × 10⁻¹ for the pre-exponential constant, $k_{cat+O_3} = 2.41 \times 10^{-1} \text{ min}^{-1}$ for the pseudo-first-order rate constant, and coefficient of determination $r^2 = 0.994$.