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ABSTRACT OF THESIS 

USE OF IMAGE PROCESSING TECHNIQUES AND MACHINE LEARNING FOR 

BETTER UNDERSTANDING OF T. GONDII BIOLOGY 

Almost one in every three people worldwide is infected with Toxoplasma gondii 

(T. gondii). The biology and growth of the parasite’s bradyzoite form in host tissue cysts 

are not well understood. T. gondii’s metabolic state influences the morphology of its single 

mitochondrion, which can be visualized using fluorescence microscopy with specific dyes. 

Hence, fluorescence microscopy images of cysts purified from infected mouse brains carry 

biological information about bradyzoites, the poorly understood form of the parasite within 

them. With the help of fluorescence microscopy techniques, previous studies extracted 

images of the mitochondrion, nucleus, and the inner membrane complex (IMC) providing 

information on T. gondii’s cysts paving the way for image processing techniques and 

machine learning to analyze the bradyzoite form of the parasite. Previously, multivariate 

logistic regression (MLG) was used to classify shapes of mitochondrion. In the present 

study, in addition to the previously used MLG model, two other machine learning models, 

Support Vector Machine (SVM) and K Nearest Neighbors (KNN), were used to explore 

the possibility of better model selection for mitochondrial classification. A minimal model 

error was used to optimize the classification model performance. Error in any machine 

learning model is driven by bias, variance, and noise. Through trial and error, the optimal 

hyperparameters for each model were selected to minimize error. The dataset used 

consisted of 1940 labeled mitochondrial objects with 22 features, and consisted of five 

classes Blob, Tadpole, Donut, Arc, and Other. 50% of the dataset was used for training, 

and the other 50% was used for testing. The overall models’ accuracy of MLG, SVM, and 

KNN were 79.1%, 78.9%, and 80.3% respectively. Overall classification performance did 

not vary, but the F score for some classes like Tadpole and Donut showed improvement 

when using the two newer models. One of the 22 features used was an application of the 

Histogram of Oriented Gradients (HOG). The HOG feature was replaced with a novel 

feature that used linear regression of object boundary segments to extract the HOG for only 

the object’s boundary. The model that used Boundary HOG showed some improvement 

over the HOG feature. Finally, a new module including a graphical user interface was 

developed to process and extract shape and intensity information from TgIMC3 images 

which facilitate further investigations of the parasite biology. 

 

KEYWORDS: T. gondii Biology, Machine Learning, Model Selection, Histogram of 

Oriented Gradients 

 

 

 

Amer Asiri 

 

 

09/23/2022 



 

 

 
 
 
 
 
 
 
 
 

USE OF IMAGE PROCESSING TECHNIQUES AND MACHINE LEARNING FOR 

BETTER UNDERSTANDING OF T GONDII BIOLOGY 

 

 

By 

Amer Asiri 

 

 

 

 

 

 

 

 

 

 

 

Abhijit Patwardhan 

Director of Thesis 

 

Sridhar Sunderam 

Director of Graduate Studies 

 

09/23/2022 

            Date 

 

 

 

 

 

 



iii 

 

ACKNOWLEDGMENTS 

The following thesis, while an individual work, benefited from the insights and 

direction of several people. First, my Thesis Advisor, Dr. Abhijit Patwardhan, embodies 

the high-quality scholarship to which I aspire. In addition, Dr. Anthony Sinai provided 

instructive comments and evaluation throughout the thesis process, allowing me to 

complete this project. Next, I wish to thank the complete Thesis Committee and anyone 

who provided insights that guided and challenged my thinking, substantially improving 

the finished product. I received equally important assistance from family and friends, who 

provided on-going support throughout the thesis process. 



iv 

 

TABLE OF CONTENTS 

ACKNOWLEDGMENTS ............................................................................................................................. iii 

LIST OF TABLES .......................................................................................................................................... v 

LIST OF FIGURES ........................................................................................................................................vi 

CHAPTER 1. Introduction ............................................................................................................................. 1 

CHAPTER 2. Background ............................................................................................................................. 6 

CHAPTER 3. Methods ................................................................................................................................... 8 

Processed Images ........................................................................................................................................ 8 

Objects ........................................................................................................................................................ 9 

Features .................................................................................................................................................... 11 

Boundary HOG ......................................................................................................................................... 14 

Machine Learning Models ........................................................................................................................ 15 
3.1.1 Multivariate Logistic Regression ........................................................................................... 16 
3.1.2 Support Vector Machine ........................................................................................................ 17 
3.1.3 K Nearest Neighbor ............................................................................................................... 19 

IMC3 Processing Module ......................................................................................................................... 20 

CHAPTER 4. Results ................................................................................................................................... 22 

Boundary HOG ......................................................................................................................................... 22 

Machine Learning Models Comparison ................................................................................................... 25 

IMC3 Processing Module ......................................................................................................................... 27 

CHAPTER 5. Discussion ............................................................................................................................. 32 

REFERENCES………………… …………………………………………………………………………..35 

VITA………………………………….……………………………………………………………………..38 

  

 

 

 

 

 

 



v 

 

 

 

 

LIST OF TABLES 

Table 3.1 Description of features used to describe each object ........................... 11 

Table 4.1.1 Model with HOG feature Performance ............................................. 24 

Table 4.1.2 Model with Boundary HOG instead of HOG feature Performance .. 24 

Table 4.2.1 Classification results of the Support Vector Machine Model ............ 25 

Table 4.2.2 Classification results of the K Nearest Neighbor Model ................... 26 

Table 4.2.3 Classification results of the Multivariate Logistic Regression Model26 

Table 4.2.4 Overall Models’ Performance  .......................................................... 27 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

 

 

 

LIST OF FIGURES 

Figure 1  DAPI (a), Mito (b), and IMC (c) images of the same cyst ...................... 9 

Figure 2 An illustration of how SVM is calculated .............................................. 19 

Figure 3 The Graphical User Interface developed for the IMC3 module used to 

process TgIMC3 images. ...................................................................................... 20 

Figure 4 Extracting the boundary of a Full Moon image by thresholding for 

binarization, followed by applying morphological operations to find the edge (a). 

Boundary Histogram of Oriented Gradients of the image (b) .............................. 22 

Figure 5 Extracting the boundary of a Doritos Chip image by thresholding for 

binarization, followed by applying morphological operations to find the edge (a). 

Boundary Histogram of Oriented Gradients of the image (b) .............................. 22 

Figure 6 Example showing cropped images of the processed TgIMC3 image of 

segmentation results after threshold selection is selected (a), colored (b), and after 

applying Height transform for further segmentation (c) ....................................... 28 

Figure 7 a-e. Examples of isolated TgIMC3 objects in the IMC3 tab of the GUI 

developed to process TgIMC3 images .................................................................. 30 
 

 



1 

 

CHAPTER 1. INTRODUCTION 

The focus of the work in this thesis is to utilize fluorescence microscopy images of 

cysts harvested from mice infected with Toxoplasma gondii (T. gondii), image processing 

techniques, and machine learning methods to further the understanding of Toxoplasma 

gondii biology, of a form that is poorly understood.  

T. gondii is an Apicomplexan parasite discovered by Nicolle and Manceaux in 1908 

[1]. Since then, a large number of researchers have investigated T. gondii due to its 

prevalence and severity, especially when the immune system is weakened [1]. Almost a 

third of the world’s population is infected with some type of the parasite [1]. 

Toxoplasmosis is a disease resulting from the infection by the protozoan parasite T. gondii. 

In infected individuals, after a period of rapid growth, the parasite triggers the immune 

system which kills most but not all parasites. This is so because parasite avoids the immune 

system by entering a slow-growing stage termed a bradyzoite within structures called 

tissue cysts [2]. Tissue cysts form in in different body tissues (e.g., brain, heart, and muscle 

tissue). Fortunately, the immune system keeps the parasite under control, but does not 

eliminate the cyst stages. When the immune system is weakened, the previously dormant 

cyst form of the parasite can reactivate causing life threatening infections. For example, 

toxoplasmosis in the brain can lead to seizures and fatal illnesses like encephalitis [3]. 

There are pronounced reasons for more research on T. gondii, particularly with regard to 

the poorly understood cyst stages, because of the potential danger when the immune 

system is weakened, given the longevity of the parasite inside the hosts’ tissue, and its 

ubiquity.  
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T. gondii can infect cells in all three stages of its life cycle which include an acute 

phase, a slow growing phase and a sexual phase that is restricted to cats. Tachyzoite is the 

fast-growing cycle of the parasite and is believed to be the cause of the clinical disease [2]. 

Tachyzoites can differentiate into bradyzoites, another phase of T. gondii’s life cycle, and 

are identified as the slow-growing form [2]. Unlike tachyzoites, bradyzoites have unique 

properties that prevent the immune system from eliminating them [4]. Consequently, 

bradyzoites can live in host tissue for prolonged times. Bradyzoites’ metabolic activity is 

potentially reflected in the shape and size of its single mitochondrion, but there is little 

direct evidence of how bradyzoites’ mitochondrial morphology and its relationship to 

metabolic state are connected. Thus, a knowledge gap necessitates research on 

bradyzoites’ cellular activity. Such information is vital to the development of new drugs 

as current approved treatments do not kill this stage of the parasite.  

The bradyzoite form can remain within an intracellular cyst or reactivate by 

conversion into tachyzoites. These cysts’ tendency to erupt on a regular basis is believed 

to be the source of the long-term immunity against Toxoplasma. In the case of immune 

deficit and the instance of AIDS, the bradyzoites released after a burst of a cyst are 

transformed into tachyzoites, which due to the absence of immunity present a life-

threatening condition [3]. Due to the weakened immune system, the proliferation of 

tachyzoites is not regulated by the immune response, and the parasite causes serious 

damage to the host’s brain and other tissue sites. [2,6]. Though long viewed to be 

metabolically dormant, earlier studies established that the slow-growing bradyzoites in 

tissue cysts had a remarkable amount of metabolic activity in vivo, namely mitochondrial 

function and the ability to multiply [7]. Notably both mitochondrial function and 
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replication potential were found to be heterogeneous within a cyst suggesting the cyst 

represents a dynamic population of bradyzoites.  

Imaging techniques that quantify mitochondrial morphological information are 

necessary for understanding the metabolic activity of the T. gondii parasite. The parasite’s 

metabolic activity can be studied using fluorescence microscopy imaging targeting the 

parasite’s actively respiring mitochondria, as the shape of mitochondria can be linked to 

certain physiological states [8,9]. The electrochemical membrane potential drives the 

fluorescent MitoTracker dye buildup in the actively respiring mitochondria [10]. This dye 

is trapped in the mitochondrion and can be observed using fluorescence microscopy. 

MitoTracker assisted previous research in showing that the single parasite mitochondrion 

fragments quickly and selectively, causing an irreversibly parasitic death [8]. Mitophagy, 

autophagy-guided mitochondrial degradation, is the primary mechanism of programmed 

cell death in T. gondii due to the lack of confirmed apoptotic events [8]. 

Targeted entities, such as the respiring/active mitochondria marked with 

MitoTracker dye, corresponding nuclei marked with DNA dye 4’,6-Diamidino-2-

phenylindole DAPI, and associated parasite’s inner membrane complex marked with 

TgIMC3 can be observed in fluorescence microscopic images through illumination in an 

optical slice of tissue. DAPI (4’,6-diamidino-2-phenylindole) is a fluorescent blue dye that 

is commonly used to stain DNA in cells. In toxoplasma studies, DAPI is used to stain the 

DNA of the parasite so that it can be seen under a microscope, which allows researchers 

to visualize the nucleus of parasite. 

TgIMC3 (T. gondii inner membrane complex protein 3) was essential in studying 

the asexual reproductive activity of the parasite as it is present in higher levels in 



4 

 

developing parasites and those that are recently “born” [7]. In contrast, parasites that have 

not divided for an extended period of time contain detectably less TgIMC3 allowing for 

the discrimination of parasites based on when they were “born”.  The inner membrane 

complex is the name given to the cortical membrane complex, which is made up of 

flattened alveolar sacs supported by microtubules and intermediate filament network [11]. 

The aggregation of this cortical cytoskeleton is responsible for nonsexual phases of cell 

division [11].  

Proteins that resemble intermediate filaments and have an alveolin repeat made up 

of valine- and proline-rich regions are referred to as IMC proteins [12]. Toxoplasma 

produces a family of 14 IMC proteins with an alveolin domain that are sequentially put 

together to form the cytoskeleton of budding daughter tachyzoites. These proteins serve as 

markers for various developmental stages during the budding process, and TgIMC3 is 

highly prevalent in daughter buds during asexual division [13].  

Bradyzoites have not been a subject of research from the angle of mitochondrial 

morphology dynamics. As most active infections in immunocompromised individuals are 

caused by the reactivation of a prior chronic infection, studying bradyzoite mitochondrial 

function in depth can assist in reducing the current knowledge gap on the parasite’s 

clinically important life cycles that can last in host’s tissue for decades [14]. The 

importance of this research is further reinforced by the fact that the only medications 

thought to be effective in treating this difficult-to-cure phase are thought to target the 

parasite’s mitochondrion [15, 16]. 

Automated classification of mitochondrial morphologies can be made possible 

using machine learning algorithms that learn from experts’ labeling of the known 
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morphologies. The labeled data is used to improve the algorithm’s classification accuracy 

by a step called as training. The use of labeled data for training models is termed as 

supervised machine learning. A performance comparison between different morphology 

classification techniques is essential for determining which machine learning algorithm is 

best suited for a particular application. In this thesis, a performance comparison between 

three different machine learning models; logistic regression, support vector machine, and 

K-nearest neighbor algorithm was conducted. 
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CHAPTER 2. BACKGROUND 

 To calculate the number of parasites within cysts during the bradyzoite form of 

toxoplasmosis infection our lab previously developed image processing techniques to 

quantify nuclei using DAPI stained microscopy images [7]. The research revealed that 

bradyzoites within cysts exhibited a considerable degree of varied activity through time, 

opposing the notion that bradyzoites are mostly inactive [7]. Prior to this study, the number 

and size of tissue cysts has been adopted as the defining parameters in all functional 

investigations of the parasite, including those evaluating pharmacological efficacy [7]. 

Another conclusion of the study was that equally sized cysts showed up to two folds 

difference in packing density of bradyzoite counts [14].  

This research revealed that the level of metabolic activity of bradyzoites in vivo 

was far higher than previously assumed. This included the ability to multiply within the 

tissue cyst, underscoring the need to reassess long-held assumptions about bradyzoite 

biology [7]. The hundreds of bradyzoites in each cyst are potentially great for studying and 

acquiring a variety of useful information about bradyzoites biology. One of these pieces 

of information is mitochondrial function, which is informed by its morphology, i.e. shape. 

However, it’s tedious to manually explore each mitochondrial object to determine its shape 

and there is a need for an automated process. 

Machine learning is an important tool to process large data related to T. gondii. 

Many recent studies related to bradyzoites and T. gondii data used machine learning 

algorithms to enhance the analysis of the parasite. ApiPredictor UniQE V2.0 is a software 

that uses the support vector machine learning model to predict adhesion proteins from 

amino acid sequences [17]. The program was used to identify adhesins in T. gondii’s 



7 

 

membrane [18]. AlphaFold2 is another machine learning software used to analyze protein 

structures that was utilized in researching T. gondii proteins [18]. As an example, this 

software was used to predict the folding of a T. gondii carbohydrate-binding protein, that 

is more understood in other organisms, to help develop therapeutic inhibitors [19]. The use 

of both machine learning and fluorescence images has proved advantageous for 

understanding T. gondii. HRMAn is an example of an image analysis platform that uses 

machine learning to automatically identify host-pathogen interactions from 

immunofluorescent images of T. gondii parasite [20]. 

Using a classification criterion for Mitotracker and DAPI stained images, our lab 

has used image processing techniques that utilizes experts’ knowledge to capture and count 

the images of both mitochondria and nuclei [21, 22]. Then, supervised machine learning 

algorithm was used to characterize the morphologies of mitochondrial objects [21, 22]. 

The aim of this study was to explore ways to potentially improve the classification 

performance of mitochondrial objects in the future through applying model selection 

comparisons on the current machine learning model with two other candidate models, 

replacing a feature with a version that is more related to shape of the outline of an object, 

and developing an analysis approach including a graphical user interface that facilitates 

extraction of parasite’s relative age from images that are stained for TgIMC3 protein 

coregistered with those stained for nuclei. 
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CHAPTER 3. METHODS 

Processed Images 

The chronic stage of infection was assessed using T. gondii tissue cysts from 

chronically infected CBA/J mice (Jackson Laboratories) with Type II ME49 strain (AIDS 

Resource Center) because CBA/J mice proved to have a significant number of cysts in 

their brains [23]. Following infection, a Percoll gradient was used to separate the cysts 

from the CNS and purified, as described by Watts et al [24]. DAPI (Invitrogen), 

MitoTracker (Invitrogen), and TgIMC3 (detected using an antibody against this protein at 

1:1,000 dilution) were used to mark the samples for the nucleus (based on DNA), actively 

respiring mitochondria, and inner membrane complexes. 

The cysts were set in 3 percent paraformaldehyde, put on glass slides, and cover 

slipped before imaging [23]. A grayscale AxioCam MRM digital camera was utilized with 

a Zeiss Axioplan microscope that has a 100x/1.4 numerical aperture [23]. From each cyst, 

the single z-plain image with the largest diameter was chosen because it has the potential 

to reflect the greatest number of bradyzoites among all of the cyst’s z-plain images. There 

was a possibility of overlapping objects since each z-plane image depicts a slice of the 

three-dimensional region of the cyst.  An iterative technique was used to deconvolve the 

pictures (AxioVision Deconvolution Suite; Zeiss). Image processing and machine learning 

were performed using the deconvolved frames. 

The scaled-up images had a 15.5 pixel per micron scale. The generated results were 

8-bit grayscale image files in TIF format, one designated for DAPI, another for Mito, and 

finally TgIMC3. Figure 1 illustrates an image of DAPI, Mito, and TgIMC3 triad acquired 

from the same cyst. 
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Figure 1.  DAPI (a), Mito (b), and TgIMC3 (c) images of the same cyst. 

 

Since TgIMC3 stains the parasite’s membranes, the imaged results will show high 

overlap between different parasite bodies. This issue was not notable when using images 

of stained T. gondii’s nucleus and mitochondria, with DAPI and Mitotracker. Since the 

nucleus and mitochondrion of a parasite is positioned inside and relatively low in size, the 

overlap problem is not as significant as observed in images of stained membranes with 

TgIMC3. Therefore, an additional processing step that addresses the overlap between 

membranes was important for obtaining acceptable results.  

Objects 

The mitochondrial objects used in this study were categorized by experts into five 

classes. Below is a description for the distribution of objects used in comparing models’ 

performance, after expert classification of 1940 mitochondrial objects from 10 cysts [21]. 

Blob 

 

Collapsed in a round shape, with a variation in brightness and a reduced size with 

a diameter ranging between 0.5 and 1 micron. This mitochondrial shape is 

potentially caused by autophagy fragmentation. Blob count was 1249 objects, and 

it represented 64% of the dataset. 
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Tadpole 

 

Sperm-like shape, with a bulging light end and a tail or linear string-like 

protrusion that is often narrower and dimmer. Tadpole count was 226 objects, and 

it represents 12% of the dataset. 

   

Donut 

 

Ring or donut-shaped, somewhat larger than a blob, with a discernible decreased 

intensity in the middle. Considered to be the morphology of a functioning 

mitochondrion. Donut count was 61 objects, and it represents 3.1% of the dataset. 

  

Arc 

 

Typically, with arms that look like dumbbells and have a thin linkage. Not 

exclusively arc shaped, but also extend to linear shapes. Arc count was 349 

objects, and it represents 18% of the dataset. 
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Other 

 

Due to proximity and/or inadequate thresholding this class represents 

indeterminate shapes. Usually, the shape is a combination of more than one 

object. The parasite’s size is roughly about 7 x 3 microns, if any object’s size 

comes closer to that size, then the object is a mixture of many mitochondria. 

Other count was 55 objects, and it represents 2.8% of the dataset. 

Features 

Since the aim of this study was to explore whether use of other machine learning 

approaches can improve the current model’s performance, the same 22 features were used 

to describe each object [21, 22]. In addition, another feature, that was based on the 

boundary of the objects, was used to assess whether addition of this feature significantly 

improved the machine learning performance of the tested models. Table 3.1 describes the 

features used to describe each mitochondrial object. Many features, indicated with an 

asterisk, were obtained by using MATLAB’s ‘regionprops’ function [25]. 

Table 3.1 Description of features used to describe each object 

1 Area* Number of pixels in the object.  

2 Boundary 

HOG 

Number of unique gradients, in Boundary Histogram of Oriented 

Gradients, from eight different, equally sized, orientations that 

ranges from 0 to 360. The number of unique orientations present 

was determined to obtain a single value from these distributions. 

First, the eight angles of Boundary HOG were mapped to one of 

the eight orientations. Then, the length of the array computed by 

MATLAB’s function ‘unique’ was used to obtain the number of 
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unique orientations. The results range from 1 to 8 with higher 

values denoting more circular objects. 

3 Circularity* Circularity describes how circular the object is on a scale from 0 

to 1. The circularity value for a perfect circle is 1. The value of 

circularity is calculated as 4×Area×pi/ Perimeter^2. 

4 DAPI 

Distance 

The shortest distance between any nearby DAPI object extrema* 

and the centroid* of the mitochondrial object. 

5 DAPI 

Proximity 

The shortest distance between any nearby DAPI object centroid* 

and the extrema* of the mitochondrial object. 

6 Eccentricity* Returns the eccentricity of an ellipse with the same second-

moment as the object. The eccentricity of an ellipse is the ratio of 

the distance between its foci to the length of its major axis. The 

value ranges from 0 to 1. An ellipse with an eccentricity of 0 is a 

circle, and an ellipse with an eccentricity of 1 is a line segment. 

7 Extent* Represents the ratio of total pixels in the object to pixels in the 

bounding box. Calculated by dividing the area of the object over 

the area of the bounding box. 

8 Extrema 

Intensity Ratio 

After extracting the centroid* and orientation* of the objects the 

image was translated and rotated to be centered around the 

centroid, with the main axis aligned with the x-axis. The image is 

then divided in half along its major axis*, with the total of each 

half’s intensity used to calculate the ratio of the brighter half’s 

pixel intensities to the other half’s pixel intensities. 

9 HOG number 

of Peaks 

Matlab’s ‘extractHOGFeatures’ from the Computer Vision 

toolbox was used to find the histogram of oriented gradients. This 

method processed the image of the object like a single block and 

determined the magnitudes of the gradients from eight different, 

equally sized, orientations that ranges from 0 to 360. The number 

of dominant orientations present was determined to obtain a 

single value from these distributions. The magnitudes were first 

rearranged in descending order to eliminate problems caused by 

different object orientations. The array’s point where the 

difference between surrounding values exceeded the standard 
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deviation was then returned. Zero was returned if no value 

exceeded the standard deviation. This can be observed in circular 

objects [21]. 

10 Hole Count Extracted using Matlab’s ‘bwboundaries’ to get the number of 

holes within the object. 

11 Hole Size The ‘bwboundaries’ function in Matlab was used to determine 

this feature, which is the total number of pixels that make up an 

object’s holes or the sum of the areas of all holes discovered in 

the object. 

12 Major Axis 

Length* 

Calculated by finding the major axis of an ellipse with the same 

normalized second central moments as the object. 
 

13 Max 

Intensity* 

The value of the pixel with the highest intensity. 

14 Mean 

Intensity* 

Average of all the intensity values in the object. 

15 Min Intensity* The value of the pixel with the lowest intensity. 

16 Minor Axis 

Length* 

Calculated by finding the minor axis of an ellipse with the same 

normalized second central moments as the object. 

17 Mito 

Proximity 

The shortest distance between any nearby mitochondrial 

centroid’s* and the extrema* of the mitochondrial object. 

18 MSE Intensity The mean squared error between the object pixel intensities and  

the enhanced object pixel intensities.  

19 Peak Count The number of peaks that remain after applying the watershed 

method (Matlab’s “watershed”) to suppress peaks that are higher 

than one standard deviation of the entire object within the 

bounding box (using height transform in Matlab’s ‘imhmin’ 

function).  
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20 Perimeter* The total number of neighboring pixels surrounding the object’s 

border. 

21 Ratio Calculated by dividing the Major Axis Length* by the Minor 

Axis Length*. 

22 std Intensity The standard deviation of pixel intensity values within the object. 

23 var Intensity The variance in pixel intensity values within the object. 

 

Boundary HOG 

Histogram of oriented gradients (HOG) is a feature descriptor algorithm commonly 

used in computer vision.  HOG breaks down an image into a set of square cells, calculates 

a histogram of oriented gradients within every cell, normalizes the output with a block-

wise pattern, and outputs a descriptor for each cell [26]. The typical way of computing 

HOG starts by extracting the horizontal and vertical gradients before calculating the HOG 

descriptor. Extracting gradients is readily accomplished by applying the following kernels 

to the image. [-1 0 1] for horizontal and [-1; 0; 1] for vertical. The orientation of each cell 

is computed using eq 1 [26].  

Ɵ =  𝑎𝑡𝑎𝑛(
𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑦

𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑥
) Equation 1. Orientation calculated through 

arctangent of vertical gradient y over horizontal gradient x 

 

This allows computing the oriented gradients matrix for each block in the image, 

using the obtained X and Y gradient matrices. Then, normalization is done for all blocks 

and the results are flattened into a 1 D feature vector [26].  

In this study, a more simplified approach of HOG, which only extracts angle 

information of boundary segments, was used. Instead of using the whole two-dimensional 

matrix of the object’s image, only the outer boundary was extracted. Then, the locations 
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of the outer layer of white pixels, the boundary, was extracted from each object using 

Moore’s Neighboring algorithm with Jacob’s stopping criterion [28]. The order of 

boundary locations must be connected for the next step of calculating the boundary 

histogram of oriented gradients (Boundary HOG). After extracting the boundaries, they 

are segmented into 8 connected segments. Each segment has the same number of pixel 

locations. Then, each segment was fitted with linear regression to extract slopes.  

𝑌(𝑋) = 𝑋 ∙ 𝛽1 + 𝛽0 Equation 2. Linear Regression  

The slope extraction method utilizes linear regression in eq 2 where Y(X) is the 

predicted value for any given value of X [27]. β1 is the extracted slope, and β0 is the 

intercept. The following regression coefficient equation (eq 3) is used to extract the slope 

of each segment along the boundary.   

𝛽1 =
∑ (𝑋𝑖−𝑥)(𝑌𝑖−𝑦)

𝑛

𝑖=1

∑ (𝑋𝑖−𝑥)2𝑛

𝑖=1

  Equation 3. Slope extraction through regression coefficient. 

x in this equation represents mean of X values, and y here represents the mean of Y values. 

The 8 slopes were then converted into signed angles that ranges between 0 and 360 

using the arctangent of the slope. The result is an array of 8 angles that describes the 

boundary of each object. Last, the 8 angles are represented in the histogram distribution of 

angles with 8 bins. 

Machine Learning Models 

One of the most challenging tasks in using machine learning for classification is 

model selection. Many researchers evaluate different models using the bias-variance trade 

off. Bias is a classification error that results from the difference between the model’s 

estimated values and true values [27]. High bias is one of the main reasons of underfitting, 

which increases error in both training and testing. Variance is another classification error 
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that is caused by the increase of the average squared differences from the mean [27]. High 

variance is one of the main reasons of overfitting, which may cause low error in training 

but high-test error.  

In this thesis, three models were evaluated, and comparison metrics were calculated 

for each model. The data were split into 50% training, 50% test. The comparison metrics 

used in this study were True Positive Rate (sensitivity), True Negative Rate (specificity), 

Precision, and F Score which is an accuracy measure that uses sensitivity and precision (eq 

4-7).  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 Equation 4.  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 Equation 5.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 Equation 6.  

𝐹 𝑆𝑐𝑜𝑟𝑒 = 2 ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 Equation 7.  

 

3.1.1 Multivariate Logistic Regression 

A logistic regression model is simply an application of the sigmoid function that is 

used to map linear weighted combination of feature values to probabilities between 0 and 

1 using eq 9 [27].  

𝑔(𝑧) =
1

1+𝑒−𝑧 Equation 8. The sigmoid function  

ℎ(𝑋) = 𝑔(𝑌(𝑋)) Equation 9. Logistic regression is the sigmoid function applied 

on a linear function. 

To use regression models for classification, a certain threshold is decided which 

separate probabilities into two discrete classes and is called a decision boundary [27]. A 
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previous study used an application of logistic regression for multi-class problems called 

multivariate logistic regression with a one vs all methodology [21]. The multivariate 

logistic regression model classifies objects based on highest computed probability [27]. 

3.1.2 Support Vector Machine 

Support Vector Machine (SVM) is a widely used supervised machine learning 

algorithm. The goal of SVM is to predict the classification of objects by finding a 

hyperplane that maximizes the distance between two classes in objects’ hyperspace (eq.10) 

[27]. Feature data points of each object are mapped into objects’ hyperspace and then the 

hyperplane with the maximum distance acts as a decision boundary [27].  

𝑦 = 𝑤 ∙ 𝑓(𝑥) + 𝑏 Equation 10. Support Vector Machine 

The predicted value of the SVM model is y, f(x) is the feature vector, w is the 

calculated feature vector weight given to f(x), and b is the model’s bias. The algorithm is 

usually used for binary classification. However, it can work for multi-class classification 

by fitting one model for each pair of classes. This process is known as one vs. one [27]. 

Another way of using SVM binary classification for multi-class applications is by fitting 

one class vs the rest for all classes. This process is called one vs. rest, which is the same 

as one vs. all [27]. SVM uses mathematical operators, known as kernels, that transform 

inputs to the desired more separable form (e.g., Linear kernel) [27]. For the SVM model 

in this study, the chosen method was one vs. one with a linear SVM kernel computed 

through MATLAB [25]. 

Two sources of inputs are needed to train an SVM model and find the decision 

boundary that maximally separates the two classes with a hyperplane. With a one vs one 

approach, the SVM model represents multiple binary classifiers. One classifier per each 
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pair of classes. In other words, each pair of classes is separated with a hyperplane 

neglecting the other data points from the other three classes. Therefore, the number of 

classifiers used the SVM model uses are calculated through 
𝑁(𝑁−1)

2
 , which equals 10 

binary classifiers in our situation. 

Each classifier uses the hyperplane equation (eq.10) to predict any input (x0) based 

on the predetermined decision boundary calculated in eq 11 [27]. 

𝐷 =
|𝑤∙𝑓(𝑥0)+𝑏|

||𝑤||
2

 Equation 11. Hyperplane Distance Equation  

The Euclidian norm ||w||2 is used to calculate the length of w where ||w||
2

 =

 √𝑤1
2 + 𝑤2

2 + ⋯ 𝑤𝑛
2. Support vectors are the closest distance of two datapoints from a 

different class [27]. Using the support vectors to calculate the maximal hyperplane distance 

is the main principle of support vector machine classifiers. Therefore, the maximum 

distance between two closest points from different classes in the feature space (fig.2) is 

calculated through eq 12 [27]. 

𝑤𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = arg𝑤 max (min(𝐷))  Equation 12. Hyperplane Distance Equation  
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Figure 2 An illustration of how SVM is calculated 

 

 After defining a decision boundary, predicted values above the hyperplane will be 

classified as belonging to same class. Similarly, the values on the other side of the 

hyperplane will be classified as the other class.  

3.1.3 K Nearest Neighbor 

K Nearest Neighbor (KNN) is a supervised classification algorithm suited for multi-

class classification. The algorithm classifies an object by a majority vote among its k 

nearest neighbors [27]. The k is a positive number that represents the number of nearest 

objects, from the labeled training set, in the multidimensional feature space [27]. However, 

the morphology data is imbalanced, and basic majority voting is biased towards more 

frequent classes. A way to resolve the problem of imbalanced classes is to multiply each k 

nearest neighbor by a weight that is proportional to the inverse distance from datapoint to 

be predicted. Weighted KNN favors nearby votes over farther ones. 
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Common methods to calculate the distance between objects in feature space are 

Euclidean Distance and Cosine distance [27]. In this study, Cosine Distance showed better 

prediction results than Euclidean Distance. Therefore, the KNN model used in the models’ 

performance comparison is a weighted KNN model with the cosine distance method 

computed through MATLAB [25, 29]. 

IMC3 Processing Module 

A program that includes a graphical user interface (GUI) that processes TgIMC3 

stained images, automatically selects thresholds for binarization and segmentation, and 

allows users to change threshold values for refining the results. The objective of the 

program was to extract the intensity information of each TgIMC3-stained object as this 

information can be useful in determining the age of the object. 

 
Figure 3 The Graphical User Interface developed for the IMC3 module used to 

process TgIMC3 images. 

 

Figure 3 shows a screenshot of the GUI developed for IMC3 module. The program 

can be started by selecting the Mito image, or by selecting a previously saved setting file. 
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The program will import Mito, DAPI and TgIMC3 images and process them accordingly. 

Once the image is selected, the program applied processing techniques similar to those 

used previously [21, 22]. Briefly: first, the greyscale TgIMC3 image was enhanced 

through top hat and bottom hat filters. The filters’ erosion and dilation steps used a disc 

structuring element [21, 22]. After applying the filters and histogram equalization, the 

enhanced TgIMC3 image was binarized with a specific threshold that removed the 

background and converted it to zero intensity pixels. Then, the foreground boundaries were 

extracted by using MATLAB’s function ‘bwboundaries’ [25].  

Then, the GUI will show the processed image with the selected binarization 

threshold and a white outline for the boundaries on the top right. When the users are 

satisfied with the binarization results, they can shift their attention to the top left image 

that shows the segmentation results. If the users are not satisfied with the segmentation 

results, they can make the segmentation more coarse or fine. MATLAB app designer was 

used to design the graphical user interface and code the module [25]. 
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CHAPTER 4. RESULTS 

Boundary HOG 

 
Figure 4 Extracting the boundary of a Full Moon image by thresholding for 

binarization, followed by applying morphological operations to find the edge (a). 

Boundary Histogram of Oriented Gradients of the image (b). 

 
Figure 5 Extracting the boundary of a Doritos Chip image by thresholding for 

binarization, followed by applying morphological operations to find the edge (a). 

Boundary Histogram of Oriented Gradients of the image (b). 

Before adding Boundary HOG to the mitochondrial classification model, many 

iterations of tests were used to assess the feature. One iteration included using two simple 

singular objects that possess different shapes. In figure 4, a full moon image was used to 

assess circular shapes. In figure 5, a Doritos chip was used to assess triangular objects. In 

order to extract boundary information of each image, they were converted to grayscale. 
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After extracting the grayscale of the images, an appropriate threshold was used to separate 

background from foreground. The result is a binarized version of the images with some 

dark holes in the white foreground. The holes were filled using basic morphological 

operations such as erosion and dilation. This resulted in a clean binary representation of 

the objects’ shape depicted in figures 4 and 5. Morphological operations were applied 

again to extract the object’s boundary. First, a copy of the binarized image was saved. 

Then, one layer of erosion was applied on that copy. The eroded copy of the image was 

then subtracted from the clean binarized image. The result is a binary image of the objects’ 

boundary as shown in figures 4 and 5.  

Since the boundaries were in a binary two-dimensional image format, the only steps 

left were to convert it into a one-dimensional array of neighboring points and to convert 

them to a histogram of oriented gradients. First, the white pixels’ locations in the boundary 

images were extracted in an array. Then, the array was sorted based on location using 

Moore’s neighboring algorithm. This step is essential for segmenting the boundary and 

applying linear regression. After sorting the boundary locations array, segmentation into 

ordered and equally sized arrays was used to convert the pixels’ locations into slopes. 

Using linear regression, each segmented array was transformed into a slope (from multiple 

locations array into a numeric variable). The slopes were then converted into angles 

between 0 and 360 using the arctangent function described in the methods section. The 

resulting angles are plotted in histograms of oriented gradients depicted in figures 4 and 5.   

The resulting boundary histogram of oriented gradients for a full moon shows a 

uniform distribution of angles. Circular objects should show uniformity in their boundary 

angles. On the other hand, the boundary histogram of oriented gradients for the Doritos 
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chip showed three main clusters of angles, and two singular angles out of these clusters. 

Triangular objects should only show 3 clusters of angles in their histogram of oriented 

gradients. However, the left side of the Dorito chip’s triangle is curved. This curvature was 

captured by the Boundary HOG method, which attests to the precision of this approach. 

Therefore, Boundary HOG was tested as a feature in the models used in this study. 

 

Table 4.1.1 Model with HOG feature Performance. 

 Blob Tadpole Donut Arc Other 

Sensitivity 0.952 0.359 0.2 0.639 0.242 

Specificity  0.712 0.964 0.996 0.902 0.992 

Precision 0.836 0.605 0.6 0.616 0.5 

F Score 0.89 0.451 0.3 0.627 0.327 

Table 4.1.2 Model with Boundary HOG instead of HOG feature Performance. 

 Blob Tadpole Donut Arc Other 

Sensitivity 0.959 0.305 0.2 0.644 0.273 

Specificity  0.72 0.963 0.997 0.899 0.99 

Precision 0.841 0.557 0.667 0.609 0.5 

F Score 0.896 0.394 0.308 0.626 0.353 

 

Table 4.1.1 shows the performance of the 22 previous features trained and tested 

using MLG model. Table 4.1.2 shows the result of the model when the HOG feature is 

replaced with Boundary HOG. Since the only difference between the two models is 

changing one feature out of 22 features, there was no expectation of remarkable difference 

in the results. The overall performance accuracy was very similar, and slight gains and 

losses were observed. Contrary to what’s expected though, Blob and Donut classification 

performance did not decrease when using boundary HOG instead of HOG. Slight drops in 
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classification performances of Blob and Donut classes were expected because of the 

similarity between the two classes when we only consider the objects’ boundaries. 

Nonetheless, the classification performance of Blob and Donut objects slightly increased.  

Machine Learning Models Comparison 

Table 4.2.1 Classification results of the Support Vector Machine (SVM) Model. 

 Blob Tadpole Donut Arc Other 

Sensitivity 0.941 0.405 0.312 0.705 0.062 

Specificity  0.784 0.969 0.987 0.891 0.996 

Precision 0.813 0.93 0.959 0.866 0.942 

F Score 0.872 0.564 0.471 0.777 0.116 

 

According to Table 4.2.1, the classification sensitivity of the SVM model was most 

sensitive to classifying Blob over any other class with a true positive rate (TPR) of 94.1%. 

The Arc class came second with a TPR of 70.5%. The model was not very sensitive to 

Tadpole, Donut, and “Other” classes. However, classes with low TPR had very high 

specificity score. This means that if the model classified an object among the low TPR 

classes, the classification accuracy was greater than 93%. Blob and Arc had a specificity 

score of 78.4% and 89.1% respectively. Blob had the highest sensitivity and lowest 

specificity score. However, most Blob were classified as Blob correctly in the SVM model. 

The reason for the drop in specificity score and precision of Blob is that low TPR classes 

were misclassified as Blob. The quality of the SVM classifier was considered very good 

since most classes have higher than 90% precision score, and no class dropped below 80% 

in precision score. Therefore, the F score was higher than the quantitative performance of 

all classes, except for Blob which decreases slightly. 



26 

 

Table 4.2.2 Classification results of the K Nearest Neighbor (KNN) Model. 

 Blob Tadpole Donut Arc Other 

Sensitivity 0.936 0.473 0.625 0.668 0.25 

Specificity  0.794 0.962 0.985 0.918 0.992 

Precision 0.82 0.926 0.976 0.89 0.97 

F Score 0.874 0.626 0.762 0.763 0.398 

 

The overall accuracy of the KNN model was the highest among the three models. 

KNN models does not perform well in unbalanced datasets but using a weighted KNN 

solved that issue and this turned out to be a good model choice. Table 4.2.2 shows that the 

KNN model was more sensitive to Blob, Donut, and Arc classes than to Tadpole and Other. 

The Specificity of each class were above 90% except for Blob with a 79.4% specificity 

score. Since the unbalanced dataset is biased toward Blob, it was expected that more 

objects will be classified as blobs hence the lower specificity and precision scores for 

blobs. Nonetheless, the precision scores for all classes reflects the quality of the KNN 

model. Therefore, like SVM, the F scores of all classes in the KNN model were better than 

the sensitivity, except for Blob, due to increase in the high precision score. 

Table 4.2.3 Classification results of the Multivariate Logistic Regression (MLG) Model. 

 Blob Tadpole Donut Arc Other 

Sensitivity 0.939 0.398 0.473 0.684 0.178 

Specificity  0.802 0.967 0.986 0.893 0.994 

Precision 0.892 0.622 0.519 0.583 0.576 

F Score 0.915 0.484 0.479 0.63 0.257 

 

The MLG model results in Table 4.2.3 showed similar overall performance but was 

lower in precision scores compared to SVM and KNN models. The specificity score of 
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Blob classification is negligibly higher than the two models, and there was no notable 

difference in the other classes specificity scores. The precision scores for MLG were the 

lowest. All classes were below 90% in precision, and most were around 60%, which 

lowered the models’ F scores.  

Table 4.2.4 Overall Models’ Performance %. 

SVM KNN MLG 

78.9% 80.3% 79.1% 

 

Overall models’ performance was calculated through dividing the number of 

correctly classified objects by the number of all classified objects for each model. Table 

4.2.4 shows that the three models did not vary materially in their overall performance. All 

models had an overall accuracy around 80%. All models showed high precision score 

except for MLG. While the three models did not materially differ in sensitivity, the quality 

of SVM and KNN models were higher than MLG. All models performed poorly in 

classifying Other objects. Moreover, the KNN model was better than SVM and MLG in 

classifying Donut objects. 

IMC3 Processing Module 
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Figure 6 Example showing cropped images of the processed TgIMC3 image of 

segmentation results after threshold selection is selected (a), colored (b), and after 

applying Height transform for further segmentation (c).  

Using MATLAB’s ‘imhmin’ function enabled a manual H-minima transform for 

segmenting the processed TgIMC3 image and yielded satisfactory segmentation results. 

Each colored object in Figure 6 represents an TgIMC3 segmented object. The smaller 

objects are processed as noise and were removed from the extracted results.  

The segmented objects intensity metrics can provide valuable information about 

the age of the parasite as this protein’s intensity is inversely related to the recency i.e., 

when the parasite is born. Building a graphical user interface and subsequent processing 

to quantify object’s intensities from TgIMC3 images was the first step implemented in this 

module.  
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Figure 7 a-e. Examples of isolated TgIMC3 objects in the IMC3 tab of the GUI 

developed to process TgIMC3 images. 

 

 

The extracted information of each TgIMC3 object can be visualized using the 

graphical user interface as depicted in the examples in Figure 7 a-e. From a drop-down 

list, the user can navigate to each TgIMC3 object in the cyst. The user can also go through 

images in a sequence going from left to right. Below the drop-down list is a numeric 

indicator that shows the sum of intensities in that object. The sum of intensities was 

extracted from the original TgIMC3 image using the mask (green trace).  

Another numeric indicator in TgIMC3 GUI is the mean of intensities. Since the 

sum of intensities are heavily influenced by the TgIMC3 object mask size, the mean of 

e 

d 
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intensities can also be used to estimate the TgIMC3 object’s age. Below the intensity 

information indicators are three images with each representing an aspect of the TgIMC3 

object. The left image in the red box of figures 7a-e represents the traced boundary for the 

object with size indicators. In the middle, an enhanced version of the object to visualize 

the object. The image in the right side of the red box shows the TgIMC3 object location in 

the cyst overlayed with DAPI objects.  
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CHAPTER 5. DISCUSSION 

Boundary HOG usefulness is not limited to the approach used in this study. This 

study focused on the number of unique angles in the histogram only. When Boundary 

HOG was used for classification of popular open-source datasets (results not included), 

the results showed notable accuracy without using other descriptive features. Even when 

the HOG number of peaks feature was expected to perform better, unique Boundary HOG 

approach was better. Boundary HOG information neglects the object’s texture information 

but was better in classifying Blob and Donut objects, which have similar boundary 

information. The other 21 features, like hole or no hole and intensity metrics, must have 

played a role in improving the classification performance of Boundary HOG model.  

The current Machine Learning Model, MLG, does provide the required 

performance, but the exploration of different ML models was helpful to evaluate the 

current model and possibly use a more robust ML algorithm in the future once there are 

significant improvements in performance and explainability using a different ML model. 

Since the results showed no notable differences between the three models, then we can 

conclude that the current model is sufficient for the study purposes. Furthermore, using 

the other two models when desired will most likely yield similar results, and hence moving 

forward using any ML model among the three is acceptable in similar future studies. Even 

though the classification models showed similar overall prediction accuracy, the prediction 

accuracies of each class were notably different. 

It is important to note that in this batch of mitochondrial objects, only 55 objects 

out of 1940 objects were in the “Other” class. And since the dataset were divided in half, 

this must have skewed the results towards the more frequent objects. Although, the Donut 
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class had similar number of objects, all Donut objects shared similar features which 

contributed to better classification results for Donut. Based on the provided results, we can 

conclude that two important factors contributed to the classification accuracy of each class. 

The first factor is the similarity of features among the class’s objects. The second factor is 

the frequency of objects in the training dataset. 

The simplicity of KNN, by finding the 10 nearest objects in the model, might have 

played a role in the superior classification of Donut objects. The Donut class was only 

3.14% of the dataset. Without using weights on KNN, the Donut class would have been 

neglected and would have shown lower model performance results. The use of weighted 

KNN showed better classification performance with unbalanced datasets, especially in 

classifying lower represented classes such as Donut and Other which made up 3.14% and 

2.84%, respectively, of the dataset. 

The best approach to improve the classification performance is through tackling the 

error problem resulting from noise, bias, and variance simultaneously. For example, 

reducing bias through using balanced training dataset introduce noise and variance that 

yields a worse model. The best noise reduction technique is choosing the right feature sets. 

The current model has 22 features, which means that the bias problem is being considered, 

but the noise problem has not been addressed. Therefore, there is a need for a study that 

measures which features contribute the most to the models’ performance. Adding more 

features or pruning some of the already existing features might improve the model as well.  

The TgIMC3 module was developed in a user-centered approach. In the GUI 

development for the module, users’ input highly influenced the GUI design and 

functionality. For example, the original plan for segmentation was to make it fully 
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automated. However, some segmented results were not optimal and there was a need for 

better segmentation. Using the segmentation window as shown in in figures 7a-e- users 

can adjust, i.e. “tweak” segmentation threshold and immediately visualize the segmented 

results. To allow better visualization of segmentation results, the segmented objects were 

colored with six different colors (Cyan, Yellow, Green, Orange, Blue, and Magenta) 

sequentially from left to right.  The color choice was evaluated with users for better 

visualization. The end result of the module was computation of sum and average of 

intensities within each segmented object. The expectation was that because the intensity 

of each object being reflective of the extent to which the protein TgIMC3 was present in 

that parasite, these intensities would allow for determination of the recency, i.e., relative 

age of the parasites. 

 

In summary, our study showed that although boundary HOG did not remarkably 

improve the prediction accuracy of the models, it could be a promising feature especially 

when the feature set is pruned. The comparison among the three ML models suggests that 

while any of the three would yield performances that would be acceptable from a biology 

perspective, when the data sets grow in the future, exploration of use of models other than 

MLG may be worthwhile. The developed module for processing of TgIMC3 images 

resulted in satisfactory segmentation of objects as determined by expert users and thus 

permits evaluation of intensity-based measurements for the imaged parasites. Further 

development of the module to incorporate orientations of the detected objects would be 

necessary to extract additional information about spatial localization of the objects within 

the cysts. 
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