
Southern Methodist University Southern Methodist University

SMU Scholar SMU Scholar

Electrical Engineering Theses and Dissertations Electrical Engineering

Summer 8-3-2022

GoLightly : A GPU Implementation of the Finite-Difference Time-GoLightly : A GPU Implementation of the Finite-Difference Time-

Domain Method Domain Method

S. David Lively
Southern Methodist University, davidlively@gmail.com

Follow this and additional works at: https://scholar.smu.edu/engineering_electrical_etds

 Part of the Electromagnetics and Photonics Commons

Recommended Citation Recommended Citation
Lively, S. David, "GoLightly : A GPU Implementation of the Finite-Difference Time-Domain Method" (2022).
Electrical Engineering Theses and Dissertations. 54.
https://scholar.smu.edu/engineering_electrical_etds/54

This Thesis is brought to you for free and open access by the Electrical Engineering at SMU Scholar. It has been
accepted for inclusion in Electrical Engineering Theses and Dissertations by an authorized administrator of SMU
Scholar. For more information, please visit http://digitalrepository.smu.edu.

https://scholar.smu.edu/
https://scholar.smu.edu/engineering_electrical_etds
https://scholar.smu.edu/engineering_electrical
https://scholar.smu.edu/engineering_electrical_etds?utm_source=scholar.smu.edu%2Fengineering_electrical_etds%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/271?utm_source=scholar.smu.edu%2Fengineering_electrical_etds%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.smu.edu/engineering_electrical_etds/54?utm_source=scholar.smu.edu%2Fengineering_electrical_etds%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalrepository.smu.edu/

GOLIGHTLY:

A GPU IMPLEMENTATION OF THE

FINITE-DIFFERENCE TIME-DOMAIN METHOD

Approved by:

Dr. Marc Christensen

Professor Ira Greenberg

Dr. Nathan Huntoon

GOLIGHTLY:

A GPU IMPLEMENTATION OF THE

FINITE-DIFFERENCE TIME-DOMAIN METHOD

A Thesis Presented to the Graduate Faculty of the

Lyle School of Engineering

Southern Methodist University

in

Partial Fulfillment of the Requirements

for the degree of

Master of Science

by

S. David Lively

(B.S.E.E, Southern Methodist University, 2008)

August 3, 2022

ACKNOWLEDGMENTS

I thank my committee for their patience, insight and unfailing encouragement.

Without them, this thesis would remain vaporware. Never give up, never surrender!

iii

Lively , S. David B.S.E.E, Southern Methodist University, 2008

GoLightly:

A GPU Implementation of the

Finite-Difference Time-Domain Method

Advisor: Professor Marc Christensen

Master of Science degree conferred August 3, 2022

Thesis completed May 2, 2022

Traditionally, optical circuit design is tested and validated using software which

implement numerical modeling techniques such as Beam Propagation, Finite Element

Analysis and the Finite-Difference Time-Domain (FDTD) method.

FDTD simulations require significant computational power. Existing installations

may distribute the computational requirements across large clusters of high-powered

servers. This approach entails significant expense in terms of hardware, staffing and

software support which may be prohibitive for some research facilities and private-

sector engineering firms.

The application of modern programmable GPUs to problems in scientific visu-

alization and computation has facilitated faster development cycles for a variety of

industry segments including large dataset visualization[21], aerospace[18] and optical

circuit design. GPU-based supercomputers such as National Labs’ Summit[13], co-

designed by NVIDIA and IBM, provide dramatically increased compute capability

while using less power than CPU-based solutions.

The FDTD algorithm maps well to the massively-multithreaded data-parallel na-

ture of GPUs. This thesis explores a GPU-based FDTD implementation and details

performance gains, limitations of the GPU approach, optimization techniques and

potential future enhancements.

iv

TABLE OF CONTENTS

LIST OF FIGURES . vii

LIST OF TABLES . viii

CHAPTER

1. Introduction . 1

2. Device Architecture . 3

2.1. CPU . 3

2.2. GPU. 3

2.2.1. SIMD. 3

2.3. Resource Limitations . 4

3. FDTD . 6

3.1. Wave equation . 6

3.2. Yee Cell. 7

3.3. Leap Frog: Stepping in Space and Time . 9

3.4. Boundary Conditions . 10

3.5. FDTD in SIMD . 11

4. Meep . 12

4.1. Modeling. 12

4.2. Performance . 12

4.3. Popularity . 13

5. GoLightly . 14

5.1. Goals . 14

5.2. Architecture . 14

v

5.3. Model Processor . 15

5.4. Simulator . 17

5.5. Visualizer . 24

5.6. Modeling approach . 29

5.7. Testing and Validation Methodology . 31

5.7.1. Analytical Result . 31

5.7.2. Numerical Result . 33

6. Results . 39

6.1. Test Environment . 39

6.2. Performance Metrics . 40

6.3. Optimization and Enhancements . 43

7. Conclusions . 45

7.1. Usability . 45

7.2. Future Work . 45

7.2.1. GoLightly Improvements . 45

7.2.2. Genetic Algorithms . 46

7.2.3. Arbitrary Domain Shape and PML Sinks 46

7.2.4. Load Balancing . 47

7.3. Final Words. 47

APPENDIX

A. APPENDIX. 48

A.1. Meep scripts . 48

A.2. GoLightly configuration . 49

REFERENCES . 51

vi

LIST OF FIGURES

Figure Page

3.1 2D TMZ Yee Cell . 7

3.2 4x4 Yee Lattice . 9

5.1 Visualizer Update Pipeline . 25

5.2 2D Whispering Gallery Mode Sensor (GoLightly) . 28

5.3 Arbitrarily-shaped source (Red pixels) . 30

5.4 Arbitrarily-shaped source after 20 frames . 30

5.5 Arbitrarily-shaped source after 100 frames . 30

5.6 TMZ Test Model . 31

5.7 Snell’s Law . 32

5.8 Plane wave with ϵR = 1 . 34

5.9 Time-averaged (RMS) output in free space ϵR = 1 . 34

5.10 Steady state with ϵR = 9 . 35

5.11 Raw monitor output with ϵR = 9 . 35

5.12 RMS output with ϵR = 9 . 36

5.13 Normalized output with ϵR = 9 . 37

6.1 GoLightly (left) vs Meep (right) output for a TMZ simulation with
a single point source and Dirichlet boundary. 39

6.2 GoLightly: seconds for 5000 frames with the given domain size 40

6.3 GoLightly: Completed E and H updates per second . 41

6.4 GoLightly vs Meep: Seconds for 5000 frames with X cells and 10
PML layers . 42

6.5 Speedup - Meep Time / GoLightly Time . 43

vii

LIST OF TABLES

Table Page

3.1 TMZ FDTD Equation Terms . 8

5.1 Model processor inputs . 15

5.2 Color component usage . 29

A.1 GoLightly Configuration . 49

viii

To Audrey, Wyatt, Walter, Gwendolyn and William

and

Morgan and Kelley

Chapter 1

Introduction

The Finite Difference Time Domain (FDTD)[22] method is an electromagnetic

wave simulation algorithm employed by many commercial simulation and design pack-

ages, as well as open source software such as MIT’s Meep[14].

Given the computationally-intensive nature of FDTD, organizations requiring sim-

ulation of large domains or complex circuits must provide significant resources. These

may take the form of leased server time or utilization of an on-site high-performance

cluster, amongst other options.

In this thesis, we explore an implementation of FDTD utilizing graphics processing

units (GPUs) via NVIDIA’s CUDA[12] language. Initially designed to perform image

generation tasks such as those required by games, cinema and related fields, modern

versions are well-suited for general computation work. GPUs are now enjoying wide

adoption in fields such as machine learning[15] and artificial intelligence[20], medical

research[17] and other areas which require rapid analysis of large datasets.

Multi-core CPUs excel at quickly performing disparate operations on potentially-

unrelated data. This is a requirement in traditional desktop computing. However, the

flexible architecture that provides this capability can be a liability when repeatedly

executing large batches of identical operations.

GPUs trade this flexibility for increased throughput. Modern consumer-grade

GPUs with many ALU cores are able to process thousands of threads very quickly.

Some algorithms, such as FDTD, require little or no data interdependence, no branch-

ing logic (a severe performance impediment on GPUs) and consist of short cycles of

simple operations. The power of the GPU lies in performing these simple operations

1

at large scale, with thousands of threads executed in parallel.

The following sections detail the FDTD algorithm. Later sections describe a CPU-

based implementation (MIT’s Meep) and our GPU-based GoLightly simulator. We

verify the GPU solution numerically, and compare performance between CPU- and

GPU-based implementations. Finally, we consider future applications and enhance-

ments.

2

Chapter 2

Device Architecture

CPUs and GPUs each offer advantages for different computational tasks. Multi-

core CPUs offer independent cores which are effectively discrete processors. GPUs

offer larger-scale parallelization, but require strong data and code coherence in order

to achieve acceptable performance.

2.1. CPU

Most desktop PC users typically run many different applications in parallel: a web

browser, music player, word processor and email client are a common combination.

Multi-core CPUs facilitate this by providing separate ALUs, register files and cache,

minimizing dependencies between cores on the same physical device.

2.2. GPU

Unlike CPUs, GPUs are capable of running thousands of threads in parallel using

a SIMD (single-instruction, multiple-data) model. This architecture allows rapid

processing of large datasets wherein each datum exhibits little or no interdependence.

This independence is crucial to GPU performance as detailed in subsection 2.2.1.

2.2.1. SIMD

In a SIMD[8] architecture, a core may consist of a single instruction control unit

with multiple ALUs. Separate threads load distinct data into thread-specific register

banks. The ALUs execute identical operations on each thread’s registers simultane-

ously. In this way, each register bank is analogous to a CPU thread. Where a CPU

3

thread comprises potentially-distinct code and data, concurrent SIMD threads differ

only in the data that they manipulate. However, since the same instruction must be

executed on all register sets at every step, this design is less flexible than a typical

CPU architecture where each core is truly independent.

That said, the SIMD approach provides significant benefits, including:

• Smaller die area due to reduced component count.

• Lower TDP.

• Improved code caching. Since all cores execute the same instruction, it is not

necessary for each core to maintain a separate instruction cache.

2.3. Resource Limitations

When comparing CPUs and GPUs, it is important to consider available resources.

Modern GPUs may provide 32GB (or more) of RAM. High-end devices provide on-

board solid-state FLASH storage in excess of 1TB. However, if a simulation requires

more memory than is available on the device, the application will be responsible for

swapping data between the GPU and the host system over the PCIe bus. Due to the

relatively slow speed of the PCIe bus versus the speed of onboard memory, this incurs

a severe performance penalty which can negate the speedup provided by the GPU.

In contrast, CPUs potentially have much more memory available. A modern

desktop computer may be equipped with more than 1TB of RAM. Operating systems

such as Microsoft Windows, Linux & MacOS offer the ability to swap RAM contents

to disk when an application’s requirements exceed available RAM. While this process

incurs its own performance penalty, it makes possible simulation of domains that

exceed GPU memory constraints.

For FDTD, multiple GPUs may be leveraged to overcome these limitations. In

the case where a simulation requires more memory than is available on the GPU,

4

the domain may be divided into subdomains which are assigned to dedicated de-

vices. At the end of each E or H field calculation, field values lying on the border

between subdomains may be copied from the GPU to the host, and then sent to the

GPU responsible for the adjacent subdomain. This approach significantly reduces the

quantity of data that must be transferred over the PCIe bus and therefore reduces

any performance loss due to data transfer.

5

Chapter 3

FDTD

This work models optical fields using the FDTD algorithm. FDTD eliminates any

data dependence between adjacent field components, allowing them to be updated

in parallel. This maps well to the SIMD GPU architecture described in the previous

section.

FDTD expresses Maxwell’s equations as a set of discretized time-domain equations[22].

These equations describe each electric field component in terms of its orthogonal, cou-

pled magnetic fields, and each magnetic field component as a function of its coupled

electric fields.

3.1. Wave equation

The TM wave equations for Ez, Hx, and Hy are of the form:

∂Ez

∂t
= K ∗ (∂Hx

∂y
+

∂Hy

∂x
) (3.1)

∂Hx

∂t
= K ∗ (∂Ez

∂y
) (3.2)

∂Hy

∂t
= K ∗ (∂Ez

∂x
) (3.3)

These equations state that the temporal derivative of a field is a function of the

sum of the spatial derivatives of the coupled orthogonal fields.

In order to apply these equations to a computational domain, FDTD defines

discretization strategies for simulated time and space. The simulation domain is

6

divided into cells, and each frame is updated using a fixed time step derived from

parameters such as source wavelength and simulation dimensionality.

3.2. Yee Cell

Yee[22] defines a computational unit known as a ”cell.” The cell describes how

each field component within a domain is related to its coupled fields. For instance,

each EZ field component depends on adjacent HX and HY components. The cell

format in a TMZ simulation is of the form shown in Figure 3.1.

Figure 3.1. 2D TMZ Yee Cell

More formally, we may expand the EZ wave equation, arriving at:

Ez
t+1
i,j = Ca ∗ Ez

t
i,j + Cb ∗ (Hx

t+ 1
2

i,j+ 1
2

−Hx
t+ 1

2

i,j− 1
2

) + Cb ∗ (Hy
t+ 1

2

i+ 1
2
,j
−Hxy

t+ 1
2

i− 1
2
,j
) (3.4)

7

Similarly, the 2D equations for the coupled fields Hx and Hy may be expressed as:

Hx
t+1
i,j = Da ∗Hx

t
i,j +Db ∗ (Ez

t+ 1
2

i,j+ 1
2

− Ez
t+ 1

2

i,j− 1
2

) (3.5)

Hy
t+1
i,j = Da ∗Hy

t
i,j +Db ∗ (Ez

t+ 1
2

i+ 1
2
,j
− Ez

t+ 1
2

i− 1
2
,j
) (3.6)

Table 3.1. TMZ FDTD Equation Terms

Symbol Definition Description

dx λ
10

Spatial step as a function of max source fundamental frequency

dt dx√
n
∗ 0.9 Time step between frame updates, where n is the domain dimensionality

Ca
1
ϵ0

Permittivity of free space

Cb
dt
dx

1
ϵ

Permittivity at the location i, j

Da
1
µ0

Permeability of free space

Db
dt
dx

1
µ

Permeability at the location i, j

i, j Field element location within the domain

t Current time step (tE = tH
+
−

1
2
)

EZ Electric field amplitude in Z

HX Magnetic field amplitude in X

HY Magnetic field amplitude in Y

Since Maxwell’s equations are scale-invariant, GoLightly substitutes 1 for con-

stants such as c, µ0 and ϵ0. The 0.9√
2
scalar in dt prevents aliasing, and corrects for

simulation dimensionality1.

In equations 3.4, 3.5 and 3.6, note that each Et+1
i,j field update depends only upon

the previous E value (Et
i,j), and the previous adjacent H values (H

t+ 1
2

X and H
t+ 1

2
Y).

This independence allows each field component to be updated without regard for any

other value in the same field within given time step.
1This value should be 0.9√

n
, where n is 3 for a 3D domain, 2 for a 2D domain and 1 for a 1D

domain.

8

3.3. Leap Frog: Stepping in Space and Time

In equations 3.4, 3.5 and 3.6, note the presence of a ”half step” in time (F t+ 1
2)

and space Fi+−
1
2
,j−

+
1
2
.

This t+−
1
2
represents the temporal step size between an E-field update and the

next H-field update,and visa-versa. Similarly, the spatial offset x+
−

1
2
represents the

distance between an E-field component and its adjacent, coupled H values.

Figure 3.2. 4x4 Yee Lattice

9

The spatial relationship between E and H grids is illustrated in the Yee lattice in

Figure 3.2. Note that each EZ component is in the middle of a cell, at the (i+ 1
2
, j+ 1

2
)

position where (i, j) is the upper-left corner of the cell. H components, however, are

positioned at integer coordinates.

This arrangement reflects the manner in which a wave will propagate through

the domain. In the half time step between E and H updates, the wave moves one

half-cell. If the E and H components were coincident, the simulation would degrade

to a large collection of individual disjoint points rather than a discretized connected

domain.

3.4. Boundary Conditions

Recall the HY update equation Equation 3.6, and note that it depends on two

adjacent EZ values on the X axis. The finite grid does not contain the required

information to update the H values that lie on the edge of the domain. For instance,

HY 0, 1
2
requires EZ 1

2
, 1
2
and EZ− 1

2
, 1
2
. Since the position (−1

2
, 1
2
) is outside of the domain,

the simulator cannot update this value. The simulator must take this case into

account by implementing a boundary condition, or the wave will reflect from the

domain boundaries.

We implement the Perfectly Matched Layer (PML) as described in [1]. A detailed

explanation of PML is beyond the scope of this thesis. In practice, PML adds imagi-

nary hyperplanes orthogonal to each field in the simulation. In the boundary regions,

power couples between E and H as expected, but also couples into those hyperplanes.

These impedence-matched planes are highly absorbative, and do not reflect incident

waves. Unlike the E and H interdependence, the transfer is one-way. Dielectric val-

ues in the cells in the PML describe non-physically realizable materials which force

the coupled power to decay over a number of layers. In our implementation, we use

10

10 PML layers. Given our spatial discretization interval dx = λ
10
, 10 layers span one

wavelength. Experimentation has shown this configuration to provide satisfactory

numerical stability while minimizing memory requirements.

3.5. FDTD in SIMD

FDTD’s leap-frog update method, whereby E fields and H fields are successively

calculated, is well-suited to a GPU implementation. E field values depend on adjacent

H field values, and visa-versa. Since the E-field update equation requires knowledge

only of the H field state and previous E field state, each field component can be

calculated independently with no opportunity for a race condition.

11

Chapter 4

Meep

Meep[14] is a full-featured, open-source electromagnetic simulator produced by the

Massachusetts Institute of Technology. In addition to its core FDTD-based simulation

engine, it provides a scripting interface for defining models and simulation parameters,

recording results, and other tasks.

4.1. Modeling

One limitation of Meep is it’s CSG1-based modeling language. Construction of

arbitrarily-shaped or dynamic structures using CSG is a complex process. It is worth

noting that Meep provides a ”material function” capability. This allows the user to

specify the material properties of any point in space using their own algorithm rather

than defining their model using CSG. However, to take advantage of this capability,

the user must employ additional software or custom programming.

4.2. Performance

Meep comprises a mature and highly-optimized suite of tools. It scales well across

multiple computers, relying on the MPI protocol to synchronize nodes within the

cluster.

While performant when compared to other FDTD software, Meep suffers from

the same architecture-imposed limitations of all CPU-centric implementations. The

limited number of processing cores available on a general-purpose CPU restricts the

1Constructive Solid Geometry. A method of describing manifolds as a series of boolean operations

of convex polyhedra.

12

number of data points that can be processed in parallel. This problem may be solved

by provisioning additional computers which would run in parallel, distributing the

computational load across the resulting cluster.

This sort of cluster configuration incurs its own overhead. Although a domain may

be divided into discrete subdomains and distributed across cluster nodes, the state

of cells located at the interfaces between subdomains must be synchronized between

nodes in order to maintain continuity. This exchange must occur for every calculated

time step and may necessitate use of a high-speed local network and supporting

hardware to reduce update latency.

4.3. Popularity

Meep has been widely adopted by many institutions and is frequently cited in

journals such as Nature[19][5], Computer Physics Communication[7], Physical Review

Letters[6] and others. A web search revealed over 1200 citations of the original[14]

paper. This speaks to its reliability & accuracy and indicates that it is a trusted tool.

13

Chapter 5

GoLightly

GoLightly testing is the GPU-based FDTD simulator application that is the focus

and product of this thesis. Written using a combination of C++, CUDA and OpenGL,

it provides a lightweight yet complete FDTD solution.

5.1. Goals

GoLightly is intended to address deficiencies common to CPU-based solutions. In

particular, it is designed to be fast, friendly and portable.

• Fast. An iterative design process requires rapid feedback from the simulator.

Long simulation times necessitated by existing solutions inhibit this process.

• Friendly. Definition of models and other simulation parameters should not

require expertise in software development or quasi-proprietary scripting lan-

guages.

• Portable. Ideally, the simulator should run on a high-end consumer grade laptop

and support the most common desktop operating systems (Microsoft Windows

and Apple OSX).

To meet those goals, GoLightly takes advantage of the programmable GPU avail-

able in common desktop and laptop computers, resulting in a dramatic speedup.

Rather than relying on a proprietary model definition language or limited scripting

system, we use industry-standard image file formats so that models may be defined

using robust, familiar, readily-available tools such as Adobe Photoshop and GIMP.

14

5.2. Architecture

GoLightly comprises three primary application blocks:

• Model Processor 5.3

• Simulator 5.4

• Visualizer 5.5

5.3. Model Processor

The model processor (MP) is responsible for initialization of the simulator. When

launching the simulator, a domain size and image file containing a coded image of

the desired dielectric as well as ϵmax are specified.

Table 5.1. Model processor inputs

Symbol Data Type Meaning Typical value

Width int Domain size in X 1024

Height int Domain size in Y 1024

Media float ϵmax 9

Model string Model definition stored as a bitmap filename

ϵmax float Maximum ϵ value for this model

The MP allocates arrays to hold the dielectric properties for each Yee cell. These

arrays are of the same dimensions as the domain, which may be different than the

dimensions of the model to accommodate boundary cells.

Once the model image is loaded, the MP iterates through each pixel in the image.

(See Listing 5.1), and parses each pixel to populate data structures describing the

dielectric contents of the simulation as well as source and monitor locations and

parameters.

For each cell in the domain:

15

1. Determine the normalized texel coordinate that corresponds to the current cell

position

2. Read the red (R), green (G) and blue (B) color components from the image

3. If R > 128, this texel is part of a source. Add the cell to the list of sources

4. If G > 0, this texel has non-unity dielectric. Set Cbi,j = ϵmax ∗ G
255.0

5. If B > 0, this texel is part of a monitor. Add its position to the monitor

definition with ID = B

Source code for the image processor is shown in listing Listing 5.1.

1 f o r (i n t j = 0 ; j < media . S i z e . y ; ++j)

2 {

3 i n t sourceY = j ∗ he ight / media . S i z e . y ;

4 f o r (i n t i = 0 ; i < media . S i z e . x ; ++i)

5 {

6 i n t sourceX = i ∗ width / media . S i z e . x ;

7 unsigned i n t s ou r c eO f f s e t = co lorChanne l s ∗ (sourceY ∗ width +

sourceX) ;

8 unsigned i n t mediaOffset = j ∗ media . S i z e . x + i ;

9 unsigned char sourceID = imageBytes [s ou r c eO f f s e t + 0] ; // red

10 unsigned char eps i lonR = imageBytes [s ou r c eO f f s e t + 1] ; // green

11 unsigned char monitorID = imageBytes [s ou r c eO f f s e t + 2] ; // blue

12 // i s t h i s p i x e l part o f a source ?

13 i f (sourceID > 128)

14 s ou r c eO f f s e t s . push back (mediaOffset) ;

15

16 /// f i l l d e f au l t waveguide mate r i a l (parameter n)

17 i f (eps i lonR > 0)

18 {

19 // i n t e r p o l a t e n based on green value .

16

20 media . HostArray [mediaOffset] = epsilonMax ∗ eps i lonR ∗ 1 . f / 255 ;

21 }

22

23 i f (monitorID > 0)

24 {

25 // add t h i s to the l i s t o f c e l l s with t h i s monitor ID .

26 unsigned i n t moni torOf f se t = j ∗m f i e l d s [FieldType : : Ez]−>S i z e . x+i ;

27 moni to rPos i t i ons [monitorId] . push back (moni torOf f se t) ;

28 }

29

30 }

31 }

Listing 5.1. Generating a model from an image

Once the dielectric, sources and monitors are derived from the model image, the

model processor transfers control to the simulator.

5.4. Simulator

The simulator block implements the FDTD algorithm. Given the dielectric, source

and monitor configurations from the model processor, the simulator initializes the

GPU, transfers required data from host memory to the GPU, and begins the simula-

tion loop.

In addition to the dielectric and field arrays, the simulator generates a descriptor

(5.2) for each field that will be updated. This data structure is used by the kernels

to assist in handling boundary conditions (PML) and other housekeeping duties. A

similar, more compact descriptor (5.3) is generated from the host descriptor and

passed to the kernels.

17

1 s t r u c t F i e l dDe s c r i p t o r

2 {

3 /// <summary>

4 /// d e s c r i b e s a s p l i t − f i e l d boundary reg i on f o r PML

5 /// </summary>

6 s t r u c t BoundaryDescriptor

7 {

8 FieldType Name ;

9 F i e l dD i r e c t i on Di r e c t i on ;

10

11 /// CPU−r e s i d en t f i e l d s

12 f l o a t ∗Amp;

13 f l o a t ∗Psi ;

14 f l o a t ∗Decay ;

15

16 BoundaryDescriptor ∗DeviceDescr iptor ;

17

18 unsigned i n t AmpDecayLength ;

19

20 pr i va t e :

21 CudaHelper ∗m cuda ;

22 } ;

23

24

25 f l o a t DefaultValue ;

26 FieldType Name ;

27

28 dim3 S i z e ;

29 dim3 UpdateRangeStart ;

30 dim3 UpdateRangeEnd ;

31

32 vector<f l o a t> HostArray ;

18

33 f l o a t ∗DeviceArray ;

34

35 Dev i c eF i e ldDesc r ip to r ∗DeviceDesc r iptor ;

36

37 vector<GridBlock> GridBlocks ;

38 map<FieldType , shared ptr<BoundaryDescriptor>> Boundaries ;

39 } ;

Listing 5.2. Host Field Descriptor structure

1 enum c l a s s F i e l dD i r e c t i on { X,Y,Z } ;

2

3 s t r u c t Dev i c eF i e ldDesc r ip to r

4 {

5 FieldType Name ;

6 dim3 S i z e ;

7 dim3 UpdateRangeStart ;

8 dim3 UpdateRangeEnd ;

9

10 f l o a t ∗Data ;

11 } ;

Listing 5.3. Device Field Descriptor

For each loop iteration, the simulator launches a CUDA kernel to update all E

fields. Once the E update is complete, the simulator launches kernels to update all

H fields.

The three kernels required for a TMZ simulation are detailed below:

1 g l o b a l void UpdateEz (

2 dim3 threadOf f s e t

3)

4 {

19

5 unsigned i n t x = threadOf f s e t . x + blockIdx . x ∗ blockDim . x + threadIdx .

x ;

6 unsigned i n t y = threadOf f s e t . y + blockIdx . y ∗ blockDim . y + threadIdx .

y ;

7

8 i f (y < 1 | | x < 1)

9 re turn ;

10

11 f l o a t cb = Cb−>Data [y ∗ Cb−>S i z e . x + x] ;

12

13 unsigned i n t c ente r = y ∗ Ez−>S i z e . x + x ;

14 f l o a t hxBottom = Hx−>Data [y ∗ Hx−>S i z e . x + x] ;

15 f l o a t hxTop = Hx−>Data [(y − 1) ∗ Hx−>S i z e . x + x] ;

16 f l o a t dhx = (hxBottom − hxTop) ;

17

18 f l o a t hyRight = Hy−>Data [y ∗ Hy−>S i z e . x + x] ;

19 f l o a t hyLeft = Hy−>Data [y ∗ Hy−>S i z e . x + x − 1] ;

20 f l o a t dhy = (hyLeft − hyRight) ;

21

22 f l o a t ezxPs i = 0 . f ;

23 f l o a t ezyPs i = 0 . f ;

24

25 // PML

26 i f (x < 10 | | x > Ez−>UpdateRangeEnd . x − 10 | | y < 10 | | y > Ez−>

UpdateRangeEnd . y − 10)

27 {

28 ezyPs i = Ezy−>Decay [y] ∗ Ezy−>Psi [c en t e r] + Ezy−>Amp[y] ∗ dhx ;

29 Ezy−>Psi [c en t e r] = ezyPs i ;

30 ezxPs i = Ezx−>Decay [x] ∗ Ezx−>Psi [c en t e r] + Ezx−>Amp[x] ∗ dhy ;

31 Ezx−>Psi [c en t e r] = ezxPs i ;

32

33 }

20

34

35 Ez−>Data [c en t e r] = CA ∗ Ez−>Data [c en t e r] + cb ∗ (dhy − dhx) + cb ∗ (

ezxPs i − ezyPs i) ;

36 }

Listing 5.4. CUDA kernel for updating EZ

The majority of each kernel’s source performs setup and bounds checking tasks.

In each kernel, the FDTD equation implementation can be isolated to one or two

lines of code.

For example, the line (from the EZ update kernel),

1 Ez−>Data [c en t e r] = CA ∗ Ez−>Data [c en t e r] + cb ∗ (dhy − dhx) + cb ∗ (

ezxPs i − ezyPs i) ;

corresponds to the FDTD EZ equation. (See Equation 3.4)

1 g l o b a l void UpdateHx(dim3 thr eadOf f s e t)

2 {

3 unsigned i n t x = threadOf f s e t . x + blockIdx . x ∗ blockDim . x + threadIdx .

x ;

4 unsigned i n t y = threadOf f s e t . y + blockIdx . y ∗ blockDim . y + threadIdx .

y ;

5

6 i f (y >= Ez−>S i z e . y − 1)

7 re turn ;

8

9 unsigned i n t hxOf f se t = y ∗ Hx−>S i z e . x + x ;

10 #i f d e f USE MAGNETIC MATERIALS

11 f l o a t db = Db−>Data [y ∗ Db−>S i z e . x + x] ;

12 #e l s e

13 const f l o a t db = DbDefault ;

14 #end i f

15 // f l o a t ezTop = Ez−>Data [y ∗ Ez−>S i z e . x + x] ;

21

16 // f l o a t ezBottom = Ez−>Data [(y+1) ∗ Ez−>S i z e . x + x] ;

17

18 f l o a t dEz = Ez−>Data [(y + 1) ∗ Ez−>S i z e . x + x] − Ez−>Data [y ∗ Ez−>S i z e

. x + x] ;

19

20 f l o a t hx = DA ∗ Hx−>Data [hxOf f se t] − db ∗ dEz ;

21

22 i f (y < 10 | | y > Hx−>UpdateRangeEnd . y − 10 | | x < 10 | | x > Hx−>

UpdateRangeEnd . x − 10)

23 {

24 /// update boundar ies

25 f l o a t decay = Hxy−>Decay [y] ;

26 f l o a t amp = Hxy−>Amp[y] ;

27 f l o a t p s i = Hxy−>Psi [hxOf f se t] ;

28

29 p s i = decay ∗ p s i + amp ∗ dEz / Conf igurat ion−>Dx;

30

31 Hxy−>Psi [hxOf f se t] = p s i ;

32 hx = hx − db ∗ Conf igurat ion−>Dx ∗ p s i ;

33 }

34

35 Hx−>Data [hxOf f se t] = hx ;

36 }

37

38

Listing 5.5. CUDA kernel for updating HX

1 g l o b a l void UpdateHy(dim3 thr eadOf f s e t)

2 {

3 unsigned i n t x = threadOf f s e t . x + blockIdx . x ∗ blockDim . x + threadIdx .

x ;

22

4 unsigned i n t y = threadOf f s e t . y + blockIdx . y ∗ blockDim . y + threadIdx .

y ;

5

6 i f (x >= Ez−>S i z e . x − 1)

7 re turn ;

8

9 unsigned i n t hyOf f se t = y ∗ Hy−>S i z e . x + x ;

10

11 #i f d e f USE MAGNETIC MATERIALS

12 f l o a t db = Db−>Data [y ∗ Db−>S i z e . x + x] ;

13 #e l s e

14 const f l o a t db = DbDefault ;

15 #end i f

16

17 f l o a t e zLe f t = Ez−>Data [y ∗ Ez−>S i z e . x + x] ;

18 f l o a t ezRight = Ez−>Data [y ∗ Ez−>S i z e . x + x + 1] ;

19

20 f l o a t dEz = ezRight − e zLe f t ;

21 f l o a t hy = DA ∗ Hy−>Data [hyOf f se t] − db ∗ (ezRight − e zLe f t) ;

22

23 i f (x < 10 | | y < 10 | | x > Hy−>UpdateRangeEnd . x − 10 | | y > Hy−>

UpdateRangeEnd . y − 10)

24 {

25

26 f l o a t p s i = Hyx−>Psi [hyOf f se t] ;

27 f l o a t decay = Hyx−>Decay [x] ;

28 f l o a t amp = Hyx−>Amp[x] ;

29

30 p s i = decay ∗ p s i + amp ∗ dEz / Conf igurat ion−>Dx;

31

32 hy = hy − db ∗ Conf igurat ion−>Dx ∗ p s i ;

33

23

34 Hyx−>Psi [hyOf f se t] = p s i ;

35 }

36

37 Hy−>Data [hyOf f se t] = hy ;

38 }

Listing 5.6. CUDA kernel for updating HY

Note that all E updates occur simultaneously, as do all H fields. However, given

the dependence between the E and H fields, the E field update kernels must complete

before the H fields are updated.

The simulator repeats this operation until the application is closed, or the desired

number of frames are completed.

Finally, the completed field arrays are copied to the host from the GPU, and saved

to disk in bitmap and CSV format for later analysis.

5.5. Visualizer

If enabled1, the visualizer application block provides interactive display of the

simulation.

When running a simulation, the user may optionally specify a visualizer update

frequency, indicating the number of simulation frames that should complete between

visualizer updates. This reduces the visualizer’s performance impact.

A window and OpenGL context are created using GLFW and the glLoadGen

OpenGL extension loader. An OpenGL pixel buffer object (PBO) is allocated to

contain a copy2 of the field that the user wishes to observe.3

1The visualizer requires some GPU overhead. As such, its use may affect simulator performance.
2The PBO may be of different dimensions than the simulation domain. Since the PBO is used

only for visualization, it is not necessary for it to contain the full-resolution field.
3The visualizer provides the ability to dynamically select which field(s) should be displayed.

24

The visualizer also creates a screen-aligned quad on which the field texture will be

rendered, and allocates a texture object which is then bound to the PBOFigure 5.1.

Figure 5.1. Visualizer Update Pipeline

25

After the required number of frames have been completed, the visualizer launches

a CUDA kernel which samples the selected field and populates the PBO.

1 g l o b a l void v i sua l i zerUpdatePrev iewTexture (

2 cudaSur faceObject t image

3 , i n t imageWidth

4 , i n t imageHeight

5 , f l o a t ∗ f i e l dData

6 , i n t f i e ldWidth

7 , i n t f i e l dHe i g h t

8 , f l o a t ∗mate r i a l s

9)

10 {

11 unsigned i n t x = blockIdx . x ∗ blockDim . x + threadIdx . x ;

12 unsigned i n t y = blockIdx . y ∗ blockDim . y + threadIdx . y ;

13 i n t readX = (in t) (x ∗ f i e ldWidth ∗ 1 . f / imageWidth) ;

14 i n t readY = (in t) (y ∗ f i e l dHe i g h t ∗ 1 . f / imageHeight) ;

15 f l o a t f i e l dVa l u e = f i e l dData [readY ∗ f i e ldWidth + readX] ;

16 f l o a t cb = mate r i a l s [readY ∗ f i e ldWidth + readX] ;

17 f l o a t 4 c o l o r = make f loat4 (f i e l dVa lue , cb , 0 , 1) ; c o l o r .w = threadIdx .

x == 0 | | threadIdx . y == 0 ;

18 sur f2Dwr i te (co lo r , image , x ∗ s i z e o f (f l o a t 4) , y , cudaBoundaryModeClamp

) ;

19 }

Listing 5.7. CUDA kernel for updating visualizer pixel buffer object

1 #ver s i on 430 core

2 uniform sampler2D CudaTexture ;

3 uniform vec2 TextureSize ;

4 uniform vec2 WindowSize ;

5 in vec3 Pos i t i on ;

6 out vec4 vColor ;

26

7 out vec3 vWorldPosit ion ;

8 out vec2 vTexCoord ;

9 void main ()

10 {

11 vec4 worldPos = vec4 (Pos i t ion , 1) ;

12 /// s c a l e down the quad coo rd ina t e s to match the t ex ture aspect r a t i o

13 i f (TextureS ize . x > TextureS ize . y)

14 worldPos . y ∗= TextureSize . y / TextureS ize . x ;

15 e l s e

16 worldPos . x ∗= TextureSize . x / TextureS ize . y ;

17 f l o a t windowAspect = WindowSize . x / WindowSize . y ;

18 i f (windowAspect > 1)

19 worldPos . y ∗= windowAspect ;

20 e l s e i f (windowAspect < 1)

21 worldPos . x /= windowAspect ;

22 i f (abs (worldPos . x) > 1) worldPos . xy /= abs (worldPos . x) ;

23 i f (abs (worldPos . y) > 1) worldPos . xy /= abs (worldPos . y) ;

24 vWorldPosit ion = worldPos . xyz ;

25 vTexCoord = vec2 (Pos i t i on . x,−Pos i t i on . y) ;

26 g l P o s i t i o n = worldPos ;

27

28 vColor = vec4 (1) ;

29 }

Listing 5.8. GLSL Vertex Shader

1 #ver s i on 430 core

2 uniform sampler2D CudaTexture ;

3 uniform f l o a t Co lorSca l e = 100 . f ;

4 in vec2 vTexCoord ;

5 in vec3 vWorldPosit ion ;

6 in vec4 vColor ;

27

7 out vec4 fragmentColor ;

8 vec4 sa tu ra t e (vec4 va l) { re turn clamp (val , vec4 (0) , vec4 (1)) ; }

9 void main () {

10 vec2 texCoord = vTexCoord / 2 + vec2 (0 . 5) ;

11 vec4 t e x e l = texture2D (CudaTexture , texCoord) ;

12 f l o a t r = t e x e l . r ∗ ColorSca l e ;

13 f l o a t b = −r ;

14 f l o a t d i e l e c t r i c = t e x e l . g ;

15 f l o a t g = (d i e l e c t r i c >= 0 . 5) ? 0 : d i e l e c t r i c ∗ 2 ;

16 vec4 t = sa tu ra t e (vec4 (r , g , b , 1)) ;

17 f ragmentColor = sa tu ra t e (vec4 (r , g , b , 1)) ;

18 }

Listing 5.9. GLSL Fragment Shader

A completed PBO is bound to a uniform input for a shader (Listing 5.8, List-

ing 5.9) listing which renders the texture to the visualizer window. This process

runs until canceled. In order to reduce GPU overhead, the texture is updated at the

frequency requested by the user when the simulation was launched.

Figure 5.2. 2D Whispering Gallery Mode Sensor (GoLightly)

28

5.6. Modeling approach

For simplicity, models are defined in any of a number of standard four-channel,

32-bit color image formats. In a 32bpp image, each pixel has 8-bit red, green, blue

and alpha values. As mentioned in the model processor (section 5.3) section, each

component is used to indicate some data about a given point in the simulation domain

as detailed in Table 5.2.

Table 5.2. Color component usage

Component Meaning Interpretation

Red Source normalized wavelength of the source

Green Dielectric ϵr = green ∗ ϵmax

255.0

Blue Monitor ID of the monitor to which this texel belongs

Alpha Reserved Reserved for future use.

Whenever a non-zero blue (monitor) value is encountered, it is treated as an

identifier (”ID”) of a monitor. If the given ID has not yet been encountered, a new

monitor is created. Any subsequent locations with the same ID are added to the

corresponding monitor. This allows monitors to be of any shape or size.

Using a tool such as Adobe Photoshop or Microsoft Paint, the user can specify all

required simulation input - sources, monitors and dielectric - in an intuitive fashion.

Alternatively, these bitmaps could be generated by a custom tool which would voxelize

a CAD model, assigning color components based on the model’s metadata or object

properties.

A significant advantage of this approach over the CSG method used in Meep is

that all constructs - sources, monitors and dielectric - can be of any shape that can

be drawn in a bitmap.

29

Figure 5.3. Arbitrarily-shaped source (Red pixels)

Figure 5.4. Arbitrarily-shaped source after 20 frames

Figure 5.5. Arbitrarily-shaped source after 100 frames

30

5.7. Testing and Validation Methodology

In order to validate the GPU simulation results, a 2D TMZ simulation was exe-

cuted.

Figure 5.6. TMZ Test Model

As can be seen in Figure 5.6, the simulation includes a plane wave source (red

line), monitors for incident and transmitted waves (blue), and a dielectric slab with

ϵR = 9 (green). An additional monitor at the source location is not clearly visible

due to it’s relatively low ID (B = 5).

The simulation was first run with ϵR = 1 to record the incident magnitude in

absence of any reflective interfaces. The simulation was then run with ϵR = 9 to record

combined incidence and reflection, as well as transmittance within the dielectric.

In a post-processing step, the reflective magnitude was found by subtracting the

incident wave magnitude obtained from the ϵR = 1 simulation from the combined

incidence and reflection magnitudes obtained from the ϵR = 9 simulation.

Validation was performed by comparing the theoretical Fresnel coefficients for the

test model with the time-averaged power (RMS) recorded during the simulation.

5.7.1. Analytical Result

In the test configuration, a normalized (λ = 1) TMZ plane wave is normally

incident upon a dielectric interface with ϵR = 9.

31

Figure 5.7. Snell’s Law

Snell’s Law states that the ratio of the refractive indices of the media at an inter-

face, along with the angle of incidence, determine the angle of transmittance. (See

Figure 5.7)

Mathematically, this relationship may be expressed as

n1 sin θ1 = n2 sin θ2 (5.1)

In the test model, the index n2 is calculated using the formula:

n =
√
ϵ0ϵRµ0µR (5.2)

In our simulator, ϵ0 and µ0 are normalized to 1. Similarly, in the non-magnetic

media used in this case,

µR = 1 (5.3)

Using our test value of ϵR = 9 gives

n2 =
√
9 = 3 (5.4)

32

For a normally-incident plane wave, the incident and refraction angles are

θI = 0 (5.5)

and

θT = 0 (5.6)

Evaluating the Fresnel equations for the reflection and transmission of a TMZ

wave,

r =
n2 cos θI − n1 cos θT
n1 cos θT + n2 cos θI

(5.7)

t =
2n1 cos θI

n1 cos θT + n2 cos θI
(5.8)

gives the coefficients:

r =
3 ∗ 1− 1 ∗ 1
1 ∗ 1 + 3 ∗ 1

=
1

2
(5.9)

t =
2 ∗ 1 ∗ 1

1 ∗ 1 + 3 ∗ 1
=

1

2
(5.10)

Given a dielectric constant ϵR = 9, the reflection and transmission coefficients are

equal.

5.7.2. Numerical Result

The observed steady-state output of the simulation for the baseline case (ϵR = 1)

is show in Figure 5.8.

33

Figure 5.8. Plane wave with ϵR = 1

The time-averaged (RMS) numerical output for the incident and transmitted mon-

itors is

Figure 5.9. Time-averaged (RMS) output in free space ϵR = 1

As expected, the incident and transmitted magnitudes equal the source magni-

tude, offset by the time it takes for the wave to propagate from the source to the

monitors.

The observed output of the same simulation, executed with dielectric constant

34

ϵR = 9 is show in in Figure 5.10.

Figure 5.10. Steady state with ϵR = 9

Note the difference in λ once the wave enters the dielectric (green area). The raw

output from this simulation is shown in Figure 5.11.

Figure 5.11. Raw monitor output with ϵR = 9

The time-averaged power for the monitors is shown in Figure 5.12.

35

Figure 5.12. RMS output with ϵR = 9

Note the peak in the source value. This occurs when the reflected wave reaches the

source monitor. Subtracting the incident magnitude from the simulation with ϵR = 1

from the second simulation with ϵR = 9 gives the following result (Figure 5.13)

36

Figure 5.13. Normalized output with ϵR = 9

In this case, the average of each of the relevant values are determined to be:

Iavg = 0.96214...

Tavg = 0.4882...

Ravg = 0.484...

Conservation of energy requires that the sum of the transmitted (T) and reflected

(R) magnitudes equals the incident magnitude (I).

I = T +R (5.11)

The computed error of the analytical result is

Ierror = |Iavg − (Tavg +Ravg)

Iavg
| (5.12)

37

Gives

|0.9621−(0.4882+0.4843)
0.9621

| = 1.011%

Comparing to the analytically-derived Fresnel coefficients,

T =
Tavg

Iavg
=

0.4882219...

0.962135...
= 0.507 (5.13)

R =
Ravg

Iavg
=

0.484332...

0.962135...
= 0.503 (5.14)

The error contribution of each component may be expressed as:

Terror = |1− Tcomputed

Tanalytical

| = |1− 0.507

0.5
| = 1.4% (5.15)

Rerror = |1− Rcomputed

Ranalytical

| = |1− 0.503

0.5
| = 0.6% (5.16)

Careful analysis of different simulation results indicates that this error is due to

floating-point precision errors. As every frame output depends on the state of the

previous frame, small errors are compounded over time. This error may be minimized

through use of fixed-point or double-precision data types.

38

Chapter 6

Results

In order to gauge the practical benefit of the GPU-based FDTD implementation,

we compare execution time of GPU and CPU implementations. We measure perfor-

mance as a function of total execution time for a given domain size and number of

time steps or frames, as well as number of cell operations completed per second.

Figure 6.1. GoLightly (left) vs Meep (right) output for a TMZ simulation with a

single point source and Dirichlet boundary.

6.1. Test Environment

Tests were performed on a 2015 Dell XPS 9550 with 32GB of RAM, Intel i7 2600

CPU and NVIDIA 960M GPU with 640 cores and 1GB of VRAM. GoLightly GPU

39

tests were executed under Microsoft Windows 10, while Meep CPU tests were run

under Ubuntu Desktop version 16.04.

6.2. Performance Metrics

Metrics were calculated using domain sizes ranging from 128x64 to 8192x4096 over

5000 frames. (In this case, a frame represents a complete time step wherein all E and

H fields are updated.) For benchmarking purposes, the visualizer was disabled.

Figure 6.2. GoLightly: seconds for 5000 frames with the given domain size

Figure 6.2 shows that computation time increases linearly as a function of simu-

lation domain size.

40

Figure 6.3. GoLightly: Completed E and H updates per second

Note that GPU throughput (represented in Figure 6.3 as “cell” operations per

second) increases dramatically as the domain size increases, until GPU initialization

overhead is overcome by computation time.

41

Figure 6.4. GoLightly vs Meep: Seconds for 5000 frames with X cells and 10 PML

layers

In Figure 6.4, note some CPU performance variance near the middle and end of the

graph. Multiple runs consistently exhibited this behavior. While the cause of these

variances is not clear, it has been reproduced on different hardware and operating

system versions. This may be caused by several factors, including:

• Memory alignment. When reading or writing from memory, CPUs perform best

when dealing with boundary-aligned data. The dimensions of the simulation

domain affect this alignment.

• Multi-tasking preemption. In multitasking operating systems such as Linux or

Windows, background tasks may preempt foreground tasks, resulting perfor-

mance degradation.

• Memory latency. Relatively slow access to out-of-core memory may cause a

42

pipeline stall.

Figure 6.5. Speedup - Meep Time / GoLightly Time

Figure 6.5 shows a speedup ranging from 1.2 to 12, depending on the domain size.

At lower resolutions, the overhead of initializing assets on the GPU and transferring

results to the CPU may require more time than the simulation. In that case, the

CPU may outperform the GPU solution.

6.3. Optimization and Enhancements

Although a 1100% speed increase is significant, there is much room for improve-

ment. GPUs provide different memory spaces that vary in capacity and access speed.

In addition to global device memory, each warp1 has shared memory2 and local mem-

1A wave, wavefront or warp is a group of 32 (NVIDIA) or 64 (AMD) threads allocated to a

common stream processor unit.
2Shared memory is physically local to the ALU and accessible by all threads within the warp.

43

ory3.

While global memory is the most flexible and plentiful - typically on the order of

gigabytes on current generation-hardware - it is also the slowest.

Shared memory is common to all threads in a wave. It can be used for intra-thread

synchronization and resource sharing, and is significantly faster than global memory.

Finally, local memory provides thread-local storage. Local memory provides the

lowest latency of all memory spaces.

In its current form, GoLightly makes little use of shared or local memory. Modi-

fying the application to take advantage of those would likely improve performance.

3Each thread has local memory which is not accessible to any other thread.

44

Chapter 7

Conclusions

Using the GoLightly simulator, we have shown a speedup potential of up to 12

times that achieved by CPU-based solutions.

7.1. Usability

Although the software, in its current state, may not be suitable for production, it

is clear that a GPU-based approach offers substantially-improved performance. This

results in increased productivity and, ultimately, better products. Eliminating the

script-only modeling approach enforced by other packages makes utilization of this

application significantly easier and, therefore, accessible to a wider audience.

7.2. Future Work

The vastly-improved performance afforded by this system presents some interest-

ing opportunities:

7.2.1. GoLightly Improvements

Care must be taken during the design process to avoid nonsensical monitor con-

figurations, such as disjoint or outlying pixels, or inconsistent thickness due to shape

aliasing. A model validation step could correct model errors. Sub-pixel averag-

ing would increase effective domain resolution near dielectric boundaries and reduce

structure aliasing.

45

7.2.2. Genetic Algorithms

Genetic algorithms[9][4] are intended to let software take over a part of the design

process. By defining a problem in terms of a number of inputs and creating a fitness

function, an application can potentially test many different designs and use a feedback

loop to suggest new permutations. This approach has been shown to be successful

in such diverse fields as antenna design[3], turbine design[10] and pharmaceutical

research[2].

A fast FDTD implementation will facilitate application of this technique to op-

tical circuit design. By defining a problem domain in terms of desired package size,

available inputs, allowed waveguide shape and dielectric properties, and designing an

appropriate fitness function, software will be able to rapidly evaluate different designs

and suggest new permutations. This may also dramatically reduce time-to-market

and reveal new research avenues.

7.2.3. Arbitrary Domain Shape and PML Sinks

Given the flexible voxel-based model definition used in GoLightly, it becomes

possible to create completely arbitrary domain shapes. Non-rectangular domains with

PML ”sinks” at any desired position within the domain would allow the designer to

more tightly fit the computational domain to the circuit in question while ignoring

irrelevant or uninteresting areas.

PML sinks would potentially increase performance by reducing memory require-

ments. If large sections of a domain could be surrounded by PML, those sections are

effectively disjoint from the rest of the domain and therefore may be ignored and, in

fact, removed from the simulation.

Although the current implementation treats the domain as a regular grid of iden-

tical blocks, this is a programming convenience and is not dictated by the FDTD

46

algorithm.

In addition to non-rectangular domains, non-rectangular cell shapes could improve

simulation fidelity. For example, in a TMZ simulation, each EZ component could be

treated as the center of a hexagonal grid cell. As such, it would be updated using

three derivatives instead of two. While this would increase the computation cost for

each E cell by roughly 50% (in a two-dimensional domain), the improved fidelity may

justify the cost in experiments where improved accuracy is valuable. Inclusion of the

aforementioned PML sink capability could offset this cost.

7.2.4. Load Balancing

Although we have shown that a GPU implementation of FDTD can outperform

a CPU implementation, CPUs should not be ignored. It is possible to divide com-

putational load between the CPU and GPU in a manner analogous to that used to

distribute load between machines in a cluster.

When combined with load balancing between separate machines, this technique

would allow the GPU to act as an additional cluster node, providing a more ideal

solution which, rather than trading a CPU for a GPU, utilizes the power of both.

7.3. Final Words

The field of general-purpose GPU computing offers potential yet to be realized

in areas where it shows the most promise. Leveraging this underutilized, commonly-

available resource may enable more efficient design iteration and facilitate exploration

of more sophisticated waveguide architectures.

47

Appendix A

APPENDIX

A.1. Meep scripts

The shell script shown in Listing A.1 calls Meep in a loop, increasing the domain

size from 128x64 cells (not including PML layers) to 8192x4096 cells in increments of

128x64 cells.

1 f o r ((w=128; w <= 8192 ; w+=128))

2 do

3 echo ”width ” $w ;

4 echo ” he ight ” $ ((w / 2)) ;

5 meep dw=$w dh=$ ((w/2)) benchmark . c t l

6 done ;

Listing A.1. Meep shell script

The Meep CTL code in Listing A.2 defines a simulation with a dielectric block

with ϵmax = 9. The simulation is run for 5000 frames for each domain size calculated

in Listing A.1. During testing, the simulation is timed and the results are written to

a CSV file for later analysis.

1 (de f ine−param dw 4096)

2 (de f ine−param dh 2048)

3 (s e t ! geometry− l a t t i c e (make l a t t i c e (s i z e dw dh no−s i z e)))

4 (s e t ! geometry (l i s t

5 (make block (c ente r 256 0) (s i z e 512 i n f i n i t y i n f i n i t y)

6 (mate r i a l (make d i e l e c t r i c (e p s i l o n 9))))))

7 (s e t ! s ou r c e s (l i s t

48

8 (make source

9 (s r c (make continuous−s r c (f requency 0 . 15)))

10 (component Ez)

11 (c en t e r 128 0))))

12 (s e t ! pml−l a y e r s (l i s t (make pml (th i c kne s s 1 . 0))))

13 (s e t ! r e s o l u t i o n 1)

14 (run−un t i l 5000)

Listing A.2. Meep simulation CTL script

A.2. GoLightly configuration

Unlike Meep, GoLightly encodes most simulation parameters in an image file,

typically generated in an image editing tool such as Adobe Photoshop or Microsoft

Paint. That process is detailed in section 5.3.

Additional parameters may be specified on the command line or in a text file.

Valid options in the configuration text file are:

Table A.1. GoLightly Configuration

Option Description

model image file with encoded dielectric, source and monitor properties

nogl disable OpenGL visualizer

lambda source wavelength

runlength number of frames to run the simulation

media ϵmax for visualizer contrast scaling

output output path for images and numerical data

paused start simulation paused, for debugging and timing

width domain width if scaling model

height domain height if scaling model

benchmark on / off to enable benchmark data collection

For instance, one of the configuration files used while validating the simulator’s

49

functionality is shown below.

1 model=coup l e r . psd

2 nogl

3 runlength=5000

4 benchmark=true

5 width=8192

6 he ight=4096

7 lambda=10

8 media=9

Listing A.3. Samply GoLightly Configuration File

50

REFERENCES

[1] Berenger, J.-P. A perfectly matched layer for the absorption of electromag-
netic waves. Journal of Computational Physics 114, 2 (1994), 185 – 200.

[2] Chi, H.-M., Moskowitz, H., Ersoy, O. K., Altinkemer, K., Gavin,
P. F., Huff, B. E., and Olsen, B. A. Machine learning and genetic al-
gorithms in pharmaceutical development and manufacturing processes. Decis.
Support Syst. 48, 1 (Dec. 2009), 69–80.

[3] Globus, A., Hornby, G., Linden, D., and Lohn, J. Automated antenna
design with evolutionary algorithms.

[4] Goldberg, D. E. Genetic Algorithms in Search, Optimization and Machine
Learning, 1st ed. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1989.

[5] Krogstrup, P., Jørgensen, H. I., Heiss, M., Demichel, O., Holm,
J. V., Aagesen, M., Nygard, J., and i Morral, A. F. Single-nanowire
solar cells beyond the shockley-queisser limit. Nature Photonics 7, 4 (2013),
306–310.

[6] Levin, M., McCauley, A. P., Rodriguez, A. W., Reid, M. H., and
Johnson, S. G. Casimir repulsion between metallic objects in vacuum. Physical
review letters 105, 9 (2010), 090403.

[7] Liu, V., and Fan, S. S 4: A free electromagnetic solver for layered periodic
structures. Computer Physics Communications 183, 10 (2012), 2233–2244.

[8] Massingill, B. L., Mattson, T. G., and Sanders, B. A. Simd: An
additional pattern for plpp (pattern language for parallel programming). In
Proceedings of the 14th Conference on Pattern Languages of Programs (New
York, NY, USA, 2007), PLOP ’07, ACM, pp. 6:1–6:15.

[9] Mitchell, M. An Introduction to Genetic Algorithms. MIT Press, Cambridge,
MA, USA, 1998.

[10] Mosetti, G., Poloni, C., and Diviacco, B. Optimization of wind turbine
positioning in large windfarms by means of a genetic algorithm. Journal of Wind
Engineering and Industrial Aerodynamics 51, 1 (1994), 105 – 116.

51

[11] Nickolls, J., Buck, I., Garland, M., and Skadron, K. Scalable parallel
programming with cuda. Queue 6, 2 (Mar. 2008), 40–53.

[12] NVIDIA Corporation. NVIDIA CUDA C programming guide, 2010. Version
3.2.

[13] NVIDIA Corporation. U.s. to build two flagship supercomputers for national
labs, 2014.

[14] Oskooi, A. F., Roundy, D., Ibanescu, M., Bermel, P., Joannopoulos,
J. D., and Johnson, S. G. MEEP: A flexible free-software package for electro-
magnetic simulations by the FDTD method. Computer Physics Communications
181 (January 2010), 687–702.

[15] Raina, R., Madhavan, A., and Ng, A. Y. Largescale deep unsupervised
learning using graphics processors. In International Conf. on Machine Learning
(2009).

[16] Rodriguez, P., Pattichis, M., and Jordan, R. Parallel single instruc-
tion multiple data (simd) fft: Algorithm and implementation. Tech. Rep.
HPCERC2003-002, January 2003.

[17] Shi, L., Liu, W., Zhang, H., Xie, Y., and Wang, D. A survey of gpu-
based medical image computing techniques. Quantitative Imaging in Medicine
and Surgery 2, 3 (2012).

[18] Strzodka, R., Cohen, J., and Posey, S. Gpu-accelerated algebraic multi-
grid for applied {CFD}. Procedia Engineering 61 (2013), 381 – 387. 25th Inter-
national Conference on Parallel Computational Fluid Dynamics.

[19] Vynck, K., Burresi, M., Riboli, F., and Wiersma, D. S. Photon man-
agement in two-dimensional disordered media. Nature materials 11, 12 (2012),
1017–1022.

[20] Wu, R., Zhang, B., and Hsu, M. Clustering billions of data points us-
ing gpus. In Proceedings of the combined workshops on UnConventional high
performance computing workshop plus memory access workshop (2009), ACM,
pp. 1–6.

[21] Xie, J., Yu, H., and Ma, K.-L. Interactive ray casting of geodesic grids.
Computer Graphics Forum 32, 3pt4 (2013), 481–490.

[22] Yee, K. Numerical solution of initial boundary value problems involving
maxwell’s equations in isotropic media. IEEE Transactions on Antennas and
Propagation 14, 3 (1966), 302–307.

52

	GoLightly : A GPU Implementation of the Finite-Difference Time-Domain Method
	Recommended Citation

	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Device Architecture
	CPU
	GPU
	SIMD

	Resource Limitations

	FDTD
	Wave equation
	Yee Cell
	Leap Frog: Stepping in Space and Time
	Boundary Conditions
	FDTD in SIMD

	Meep
	Modeling
	Performance
	Popularity

	GoLightly
	Goals
	Architecture
	Model Processor
	Simulator
	Visualizer
	Modeling approach
	Testing and Validation Methodology
	Analytical Result
	Numerical Result

	Results
	Test Environment
	Performance Metrics
	Optimization and Enhancements

	Conclusions
	Usability
	Future Work
	GoLightly Improvements
	Genetic Algorithms
	Arbitrary Domain Shape and PML Sinks
	Load Balancing

	Final Words

	APPENDIX
	Meep scripts
	GoLightly configuration

	REFERENCES

