
SMU Law Review SMU Law Review

Volume 75 Issue 3 Article 4

2022

Coding the Code: Catala and Computationally Accessible Tax Law Coding the Code: Catala and Computationally Accessible Tax Law

Sarah Lawsky
Northwestern University, Pritzker School of Law

Recommended Citation Recommended Citation
Sarah Lawsky, Coding the Code: Catala and Computationally Accessible Tax Law, 75 SMU L. REV. 535
(2022)
https://scholar.smu.edu/smulr/vol75/iss3/4

This Article is brought to you for free and open access by the Law Journals at SMU Scholar. It has been accepted
for inclusion in SMU Law Review by an authorized administrator of SMU Scholar. For more information, please visit
http://digitalrepository.smu.edu.

http://www.law.smu.edu/smu-dedman-school-of-law
http://www.law.smu.edu/smu-dedman-school-of-law
https://scholar.smu.edu/smulr
https://scholar.smu.edu/smulr/vol75
https://scholar.smu.edu/smulr/vol75/iss3
https://scholar.smu.edu/smulr/vol75/iss3/4
https://scholar.smu.edu/smulr/vol75/iss3/4?utm_source=scholar.smu.edu%2Fsmulr%2Fvol75%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalrepository.smu.edu/

CODING THE CODE:
CATALA AND COMPUTATIONALLY

ACCESSIBLE TAX LAW

Sarah B. Lawsky*

ABSTRACT

“Caligula posted the tax laws in such fine print and so high that his sub-
jects could not read them That’s not a good idea, we can all agree.
How can citizens comply with what they can’t see? And how can anyone
assess the tax collector’s exercise of power in that setting?”1

TABLE OF CONTENTS

I. INTRODUCTION . 536
II. THE STATE OF PLAY: ALGORITHMS,

ABSTRACTIONS, AND ACCOUNTABILITY 538
III. A SOLUTION: THE CATALA PROGRAMMING

LANGUAGE . 540
A. DOMAIN-SPECIFIC PROGRAMMING LANGUAGE 541
B. PAIR PROGRAMMING . 545
C. LITERATE PROGRAMMING . 549

IV. THE FUTURE OF CODING THE CODE 551
A. INCREASING ACCESS AND EFFICIENCY 552
B. INCREASING ACCESS TO INEFFICIENCY 553

V. CONCLUSION . 557

https://doi.org/10.25172/smulr.75.3.4.
* Stanford Clinton Sr. and Zylpha Kilbride Clinton Research Professor of Law,

Northwestern Pritzker School of Law. Thanks first to rest of the Catala team: Denis Mer-
igoux, Liane Huttner, and Jonathan Protzenko. Thanks also to Joshua Blank, Michelle
Falkoff, Jacob Goldin, Ellen Lawsky, Mattea Lawsky, Ajay Mehrotra, Jim Speta, Dennis
Ventry, and participants in the 2021 Seminar Series at the Future of Law Project, Univer-
sity of Pittsburgh School of Law, the 2021–2022 CS+Law Workshop, and the 2021–2022
Northwestern Pritzker School of Law Faculty workshop for helpful conversations and com-
ments on earlier drafts.

1. Summa Holdings, Inc., v. Comm’r, 848 F.3d 779, 781 (6th Cir. 2017) (citing
SUETONIUS, THE TWELVE CAESARS 220 (A.S. Kline trans.) (2010) (“He levied new and
unprecedented taxes, at first through tax-collectors, and then, because the amounts were so
vast, through the centurions and tribunes of the Praetorian Guard. No group of commodi-
ties or individuals escaped a levy of some kind Many offences were committed in
ignorance of the law, since the new taxes were decreed but nothing was published to the
public. After urgent representations, Caligula finally had a notice posted, in an awkward
spot in tiny letters to make it hard to copy.”)).

535

536 SMU LAW REVIEW [Vol. 75

I. INTRODUCTION

WHILE lawyers, computer scientists, law professors, and tech-
nologists argue over whether formalizing law by translating it
into computer code is practical, effective, useful, or desirable,

tax law has been formalized for years.2 Indeed, administering modern tax
law would be essentially impossible without this formalization. Tax law,
both in the United States and other countries, is complex and lends itself
to being translated into formulas and algorithms—and tax authorities
have done just this. Tax forms are formalizations.3 Tax authorities enforce
tax law using computational versions of the law.4 Taxpayers pay for com-
puter programs that prepare returns based on inputs from taxpayers.5
The question is not whether to formalize tax law but rather how to for-
malize it.

The question of how to formalize has two parts: first, how the formali-
zation would be accomplished, and second, the best version of the formal-
ization itself. This Article takes as a given that the formalization will, at
least for now, be accomplished by humans formalizing the Internal Reve-
nue Code (Code), as opposed to computers analyzing large amounts of
text to arrive at automated formalizations. While existing formalizations
in use are often implemented by computers, they were not themselves
created by computers. Indeed, many of the formalizations long predate
the adoption of automated computing. Even today, automated formaliza-
tions such as natural language processing have yet to succeed in translat-
ing tax law into computer code or other formalizations.6 Thus, any

2. To “formalize” something is to represent it in symbols using logical connectives or
similar. See generally James G. Williams, On the Formalization of Semantic Conventions, 55
J. SYMBOLIC LOGIC 220, 220 (1990) (outlining “[v]arious formalization techniques . . . used
with software systems based on traditional mathematical logic”). Computer code is a type
of formalization that is accessible by computers, a computationally accessible formaliza-
tion. See id.

3. Tax forms are formalizations of tax law, and in the United States alone, forms date
back at least to the 1800s. See Sarah B. Lawsky, Form as Formalization, 16 OHIO ST. TECH.
L.J. 114, 121 (2020); INTERNAL REVENUE SERV., DEP’T OF THE TREASURY, FORM 1040
(1864), https://www.irs.gov/pub/irs-prior/f1040—1864.pdf [https://perma.cc/9Z6L-8CNW].

4. See, e.g., Cyrille Chausson, France Opens the Source Code of Tax and Benefits
Calculators to Increase Transparency, JOINUP (Nov. 20, 2016), https://joinup.ec.europa.eu/
collection/egovernment/document/france-opens-source-code-tax-and-benefits-calculators-
increase-transparency [https://perma.cc/X2FP-PJDA] (describing source code used to cal-
culate income tax in France); INTERNAL REVENUE SERV., PUBL’N. 5336: IRS INTEGRATED

MODERNIZATION BUSINESS PLAN (2019), https://www.irs.gov/pub/irs-pdf/p5336.pdf [https:/
/perma.cc/Q2FF-QXMV] (describing significant use of computation to monitor compliance
with tax law).

5. The TurboTax tax preparation program is an example. See INTUIT TURBOTAX,
https://turbotax.intuit.com [https://perma.cc/M8MB-XGV7].

6. See, e.g., Nils Holzenberger, Andrew Blair-Stanek & Benjamin Van Durne, A
Dataset for Statutory Reasoning in Tax Law Entailment and Question Answering, in 2D

NAT. LEGAL LANGUAGE PROCESSING WORKSHOP (2020) (trying to remedy the lack of
“any strong capabilities in automatic statutory reasoning”); Marcos Pertierra, Erik
Hemberg, Una-May O’Reilly & Sarah B. Lawsky, Toward Formalizing Statute Law as De-
fault Logic Through Automatic Semantic Parsing, in 2D WORKSHOP ON AUTOMATED SE-

MANTIC ANALYSIS INFO. LEGAL TEXTS (2017). This isn’t surprising given the relatively

2022] Coding the Code 537

formalization would have to be tractable by humans. This Article, there-
fore, focuses on the second question: the best version of the formalization
itself.

At the most abstract level, tax law should be formalized in a way that
maximizes transparency, government accountability, and accuracy.7 More
specifically, this Article describes a new programming language, Catala,
created by a team of computer scientists (Denis Merigoux and Jonathan
Protzenko) and lawyers (Liane Huttner and Sarah Lawsky).8 Catala pro-
vides a tractable and functional approach to coding U.S. tax law that of-
fers a more transparent formalization and could potentially hold the
government more accountable than the current patchwork of forms,
worksheets, and secret programs.9

While this Article describes a particular programming language, key
characteristics of this particular language could generalize to other pro-
gramming languages that formalize the law. First, Catala is a domain-spe-
cific programming language designed specifically for formalizing tax
law.10 Second, computer code is created in Catala using a well-known
approach in the field of computer science (though rarely mentioned in
legal literature) called “pair programming,” which, in this implementa-
tion, takes advantage of the knowledge of both lawyers and computer
coders.11 Third, Catala uses literate programming to create computer
code that is, among other things, easier to read and that communicates
the decisions behind the coding to the user.12

Formalizing tax law in this way won’t eliminate its ambiguities. To the
contrary, as this Article discusses, formalizing tax law using a domain-
specific programming language, pair programming, and literate program-
ming will help highlight ambiguities. Similarly, coding the Code with Cat-

small size of the Internal Revenue Code and tax regulations. This may be the only time
that someone has complained the Code and regulations are too small, but consider the
amount of text necessary to create, for example, accurate translations from English to
French, and compare that with the mere four million words of the Internal Revenue Code
and regulations. Moreover, the Code and regulations are highly stylized, and the style is
not consistent between the Code and regulations, or even within the Code.

7. See Blake L. Currey, A Shrouded Remedy: Increasing Transparency in the IRS
Advance Pricing and Mutual Agreement Program by Releasing Redacted Advance Pricing
Agreements and Increasing Administrative Disclosures, 50 SAN DIEGO L. REV. 1005, 1025
(2013).

8. See Denis Merigoux, Nicolas Chataing & Jonathan Protzenko, Catala: A Program-
ming Language for the Law, 5:77 ACM ON PROGRAMMING LANGUAGES 1, 6–7 (2021),
https://dl.acm.org/doi/pdf/10.1145/3473582 [https://perma.cc/JCR5-ZD37]. The Catala lan-
guage was designed by Merigoux, Huttner, Lawsky, and Protzenko, and the implementa-
tion was led by Merigoux. See The Catala Language, CATALA, https://catala-lang.org/en
[https://perma.cc/GCY6-M9H2], for more information about Catala.

9. See Merigoux, Chataing & Protzenko, supra note 8, at 1.
10. Catala is effective for any statute that is drafting using general rules and excep-

tions. See infra Part III.A.
11. See infra Section III.B.
12. See infra Section III.C.

538 SMU LAW REVIEW [Vol. 75

ala doesn’t facilitate predictions of how cases will come out.13 It isn’t
“machine learning” or “artificial intelligence.” Yet formalizing tax law
more completely and transparently will nonetheless have significant ben-
efits.14 But if the government does not join the private sector in making
tax law computationally accessible, codifying the Code may further in-
crease the availability of tax avoidance mechanisms.15

This Article first describes the current state of automating the applica-
tion of the U.S. tax law.16 It then explains the approach of the Catala
programming language to coding tax law and the advantages of that ap-
proach for compliance and accountability.17 The Article concludes by
considering the next steps in formalizing tax law using Catala, including
potential compliance issues that could arise from the formalization.18

II. THE STATE OF PLAY: ALGORITHMS, ABSTRACTIONS,
AND ACCOUNTABILITY

Parts of tax law are already computationally accessible. For example,
tax forms and worksheets create algorithms that allow taxpayers to com-
ply with portions of the tax law. The vast majority of U.S. taxpayers pre-
pare their returns using computer programs that are created by
companies in the private sector, but the programs are based on govern-
ment-created forms. As this Part shows, however, these formalizations do
not track the structure of the underlying law and are not transparent;
sometimes, they are even inaccurate.

Many people believe that tax law is already formalized in a way that
parallels the underlying law.19 For example, a recent article states,
“TurboTax models real-world rules (i.e., the U.S. Internal Revenue
Code), in a way that faithfully represents the logic and meaning of
them.”20 This is almost certainly not correct. TurboTax and other similar
programs do not represent the tax law in a way that faithfully represents
the law’s underlying logic.21 Rather, tax preparation programs are in-
tended to prepare tax forms, and therefore they encode tax forms and
worksheets that are created by the government.22

13. But see, e.g., Benjamin Alarie & Betinna Xue Griffin, Captive Insurance Appeal in
Reserve Mechanical Will Likely Fail, 172 TAX NOTES FED. 1431, 1434 (2021) (using a ma-
chine learning approach to predict the outcome of a particular court case).

14. See infra Section IV.A.
15. See infra Section IV.B.
16. See infra Part II.
17. See infra Part III.
18. See infra Part IV.
19. See Joshua P. Davis & Anupama K. Reddy, AI and Interdependent Pricing: Com-

bination Without Conspiracy?, 30 J. ANTITRUST, UCL & PRIV. SECTION CAL. LAWS. ASS’N.
1, 6 (2020).

20. Id. at 5.
21. Lawsky, supra note 3, at 116.
22. Anna Baluch & Eric Rosenberg, How Does Tax Software Work?, U.S. NEWS (Feb.

2, 2022), https://www.usnews.com/360-reviews/technology/tax-software/how-does-tax-
software-work [https://perma.cc/J43P-M4YQ].

2022] Coding the Code 539

Forms and worksheets are accurate, for the most part, but they are far
abstracted from the tax law. They do not track the underlying law, and
untangling how they relate to that law can be difficult. Just as revealing
formalizations increases transparency and government accountability,23

the more obscure the formalization, the less the transparency and ac-
countability. Some forms resolve structural ambiguity, hiding the resolu-
tion of an ambiguous legal questions within their drafting.24 Even forms
and worksheets that do not resolve ambiguities, however, can obscure the
law. Indeed, there is a tension between writing a form that requires the
fewest possible steps and is most efficient for a taxpayer to implement,
and writing a form that accurately reflects the structure of the language of
the law.

Similar issues arise with informal and automated guidance. As Joshua
Blank and Leigh Osofsky have described, the U.S. government regularly
provides automated tax guidance to taxpayers.25 For example, the IRS
provides the Interactive Tax Assistant, or ITA, an online tool that walks
taxpayers through various questions and provides them with tax guidance
based on their answers.26 As the ITA website describes it:

The Interactive Tax Assistant (ITA) is a tool that provides answers to
several tax law questions specific to your individual circumstances.
Based on your input, it can determine if you have to file a tax return,
your filing status, if you can claim a dependent, if the type of income
you have is taxable, if you’re eligible to claim a credit, or if you can
deduct expenses.27

The ITA is not tax preparation software, because it does not allow tax-
payers to fill out forms or submit forms to the government.28 Rather, the
ITA answers questions about taxpayers’ situations, and then taxpayers
use that information to fill out the forms separately. In some sense, the
ITA is a formalization of the law. It takes input from the taxpayer, aligns
that input with underlying tax rules, and tells the taxpayer how the law
applies to them. 29

Blank and Osofsky show that the ITA is an example of “simplexity”30:
guidance that “characterize[es] the tax law as clear and not contested,
add[s] administrative gloss to the underlying tax law and fail[s] to fully

23. See generally ADA LOVELACE INST., AI NOW INST. & OPEN GOV’T P’SHIP, AL-

GORITHMIC ACCOUNTABILITY FOR THE PUBLIC SECTOR: LEARNING FROM THE FIRST

WAVE OF POLICY IMPLEMENTATION 49–50 (2021), https://www.opengovpartnership.org/
documents/algorithmic-accountability-public-sector [https://perma.cc/67Z8-B84L] (discuss-
ing releasing source code, including for tax law implementation, as a form of transparency).

24. See Lawsky, supra note 3, at 135, for an example of a form that resolves ambiguity.
25. Joshua D. Blank & Leigh Osofsky, Automated Legal Guidance, 106 CORNELL L.

REV. 179, 184 (2020).
26. Interactive Tax Assistant (ITA), INTERNAL REVENUE SERV., https://www.irs.gov/

help/ita [https://perma.cc/8XK2-NAF3].
27. Id.
28. See id.
29. See id.
30. Joshua D. Blank & Leigh Osofsky, Simplexity: Plain Language and the Tax Law,

66 EMORY L.J. 189, 206–07 (2017).

540 SMU LAW REVIEW [Vol. 75

explain the tax law, such as by omitting exceptions or specific require-
ments.”31 Blank and Osofsky show that, often, the answers that the ITA
provides in automated tax guidance are incorrect or obscure the con-
tested government decisions that led to the answers.32 As they explain,
“[T]he difficult questions underlying such guidance [are] hidden in pro-
gramming decisions.”33 Therefore, the ITA’s simplified formalization of
the law not only misleads taxpayers with guidance that is frequently in-
correct but also obscures the actual law, thus reducing government
accountability.

III. A SOLUTION: THE CATALA PROGRAMMING
LANGUAGE

As Part II of this Article explained, the U.S. government has already
formalized tax law. But existing formalizations often oversimplify or
translate the law incorrectly, fail to track the actual underlying law, and
obscure the formalizers’ judgments and decisions, which reduces govern-
ment accountability to taxpayers.34 Tax law can, however, be formalized
and translated into computer code in a way that is tractable, functional,
and transparent—or at least more transparent—to taxpayers. This Part
introduces the new programming language, Catala, a programming lan-
guage created specifically for the purpose of encoding tax law, as an ex-
ample of how this can be done. 35 There are three elements to Catala that
make it particularly well-suited to the task of formalizing tax law. 36

First, Catala is a domain-specific programming language: a program-
ming language created specifically for the purpose of coding the Code.37

Second, law is translated into Catala using pair programming: the pro-
gramming doesn’t need to be accomplished by lawyers trained to be com-
puter programmers or programmers in tax law, but rather can be
implemented by a team that includes at least one lawyer and at least one
programmer.38 And finally, Catala uses literate programming: in addition
to having a lawyer-friendly syntax such that the code itself is easily under-
standable by human readers, the code contains the language of the stat-
ute itself and highlights ambiguities both in the law and in the reasoning
and decisions of the programming team.39 This Part illustrates how each
element, in turn, increases tractability, accuracy, and accountability when
translating tax law into computer code.

31. Blank & Osofsky, supra note 25, at 207.
32. See id. at 208.
33. Id. at 185.
34. See supra Part II.
35. See Merigoux, Chataing & Protzenko, supra note 8, at 1.
36. For further discussion, see Liane Huttner & Denis Merigoux, Traduire la Loi en

Code Grâce au Langage de Programmation Catala, in INTELLIGENCE ARTIFICIELLE ET FI-

NANCES PUBLIQUES (Oct. 2020), https://hal.inria.fr/hal-03128248/document [https://
perma.cc/3RUZ-2BFR].

37. See infra Section III.A.
38. See id.
39. See infra Section III.C.

2022] Coding the Code 541

A. DOMAIN-SPECIFIC PROGRAMMING LANGUAGE

A domain-specific programming language is a programming language
designed for a particular purpose or application. 40 Catala is a domain-
specific programming language for the domain of coding tax law. This is
in contrast to a general-purpose programming language, which is of gen-
eral applicability and is not designed to apply in any particular area.41 A
programming language may be domain-specific in a range of ways. For
example, the notations of the language may be designed for a particular
application, or the underlying structure of the language may be consistent
with the underlying structure of the source material.42 A domain-specific
language may actually be designed to run differently—and more effi-
ciently—than a general-purpose language because its use cases are nar-
rower, and it does not have to account for every possibility.43

Catala is domain-specific in a number of ways. First, a program in Cat-
ala, unlike most programming languages, mimics the structure of legal
thinking by listing the relevant parties, structures, and variables first.44

Items are named before they are used, which allows humans looking at
the code to identify the relevant concepts before applying them.45

Second, Catala allows the programmer to define a scope—or range of
coverage—for the rule that will be coded.46 This tracks the Code’s struc-
ture, in which various rules and definitions apply only to certain por-
tions.47 Thus, the Code will explicitly state that a rule or definition

40. See Federico Tomassetti, The Complete Guide to (External) Domain Specific Lan-
guages, STRUMENTA, https://tomassetti.me/domain-specific-languages [https://perma.cc/
7JEY-ET4M].

41. A “high-level programming language,” or just a “programming language,” is how
humans usually communicate with computers. See generally NOAM NISAN & SHIMON

SCHOCKEN, THE ELEMENTS OF COMPUTING SYSTEMS: BUILDING A MODERN COMPUTER

FROM FIRST PRINCIPLES ch. 5.1.3 (2005) (“High-level programs manipulate abstract arti-
facts . . . [that] become series of binary numbers, stored in the computer’s data memory.”).
Java, C++, Python, and BASIC are all programming languages. See, e.g., Computer Pro-
gramming Languages, COMPUTER SCIENCE.ORG (June 23, 2022), https://www.computersci
ence.org/resources/computer-programming-languages [https://perma.cc/UY6S-MLGZ].
Arguably, it’s not possible to translate perfectly between natural languages (or maybe it is!
This question is truly outside the scope of this paper), but it is unproblematic, and com-
pletely commonplace, to write identical instructions in different programming languages.
The instructions from the high-level programming language are translated into machine
language, which the computer then executes. This translation is called “compiling” the
high-level language. See id.

42. See Marjan Mernik, Jan Heering & Anthony M. Sloane, When and How to De-
velop Domain-Specific Languages, 37 ACM COMPUTING SURVS. 316, 317–323 (2005).

43. Id. at 316. See Shrutarshi Basu, Nate Foster & James Grimmelmann, Property
Conveyances as a Programming Language, in ONWARD! 2019: ACM SIGPLAN INT’L
SYMP. ON NEW IDEAS, NEW PARADIGMS, & REFLECTIONS ON PROGRAMMING &
SOFTWARE 128 (2019), for an example of another law-related domain-specific program-
ming language.

44. See Huttner & Merigoux, supra note 36, at 7–8.
45. See id.
46. See id. For further discussion of the importance of scope within the Internal Reve-

nue Code, see Sarah B. Lawsky, Formalizing the Code, 70 TAX L. REV. 377, 380–81 (2017).
47. See Sarah B. Lawsky, A Logic for Statutes, 21 FLA. TAX REV. 60, 74–76 (2017)

(discussing the importance of the divisions of the Code).

542 SMU LAW REVIEW [Vol. 75

applies, for example, only for purposes of “this subchapter,”48 a particu-
lar named portion of the Code,49 “this paragraph,”50 and so forth. Catala
can define terms and delimit rules accordingly.

Most critically, Catala is structured using default logic, a nonstandard
logic that represents the underlying structure of the U.S. tax code more
accurately than does standard logic. 51 Much of the U.S. tax code (and
other tax statutes as well, including French tax law) is structured as gen-
eral rules followed by exceptions.52 This is apparent in § 121.53 The gen-
eral rule in § 61(a) is that all income, including gain from a sale, is
included in gross income.54 Section 121(a) provides an exception to
§ 61(a): it says that income from the sale of a principal residence is not
included in gross income. 55 Then, § 121(b)(1) provides an exception (or
limitation) to § 121(a): only gain up to $250,000 may be excluded.56 Sec-
tion 121(b)(2) provides an exception to § 121(b)(1): gain up to $500,000
may be excluded if the taxpayer is married filing jointly.57 And so forth.

Because the statute is structured as general rules followed by excep-
tions, it is easiest to represent the statute using a logic that itself is struc-
tured as a “logic of exceptions”: default logic. The basic idea of default
logic is that rules are prioritized, and rules of higher priority override
rules of lower priority.58 As a result, one could reach a conclusion in de-
fault logic that is entirely logically supported and then, provided with
more information, reject that conclusion.59 This is in contrast to standard
logic, where information can only be added and cannot be overridden
once proven in the system.60 Standard logic is thus “monotonic”: the set

48. E.g., I.R.C. § 708(a) (“For purposes of this subchapter, an existing partnership
shall be considered as continuing if it is not terminated.”).

49. E.g., id. § 6513(a) (“For purposes of section 6511 any return filed before the last
day prescribed for the filing thereof shall be considered as filed on such last day.”).

50. E.g., id. § 544(a)(2) (“For purposes of this paragraph, the family of an individual
includes only his brothers and sisters . . . , spouse, ancestors, and lineal descendants.”).

51. See Lawsky, supra note 47, at 77–80 for a more extensive discussion of default
logic in general and this claim in particular. For a technical explanation of how Catala
implements default logic, see Denis Merigoux, Raphaël Monat & Jonathan Protzenko, A
Modern Compiler for the French Tax Code, in 30TH ACM SIGPLAN INT’L CONF. ON

COMPILER CONSTR. 71–82 (2021), https://hal.inria.fr/hal-03002266v3 [https://perma.cc/
9Y88-UE8N], and Merigoux, Chataing & Protzenko, supra note 8, at 3. The approach for
implementing default logic in these articles builds upon that of Gerhard Brewka and
Thomas Eiter. See Gerhard Brewka & Thomas Eiter, Prioritizing Default Logic, in INTEL-

LECTICS & COMPUTATIONAL LOGIC 27 (2000).
52. The general rule-followed-by-exception approach is not limited to the U.S. tax

code. This approach can be seen on inspection of various statutes, and it is explicitly rec-
ommended in both the House and Senate Legislative Drafting Manuals. See OFF. OF

LEGIS. COUNS., H.R., HOUSE LEGISLATIVE COUNSEL’S MANUAL ON DRAFTING STYLE 23
(1995); OFF. OF LEGIS. COUNS., S., LEGISLATIVE DRAFTING MANUAL 9 (1997). For further
discussion, see Lawsky, supra note 47, at 72–77.

53. See I.R.C. § 121.
54. See id. § 61(a).
55. See id. § 121(a).
56. See id. § 121(b)(1).
57. See id. § 121(b)(2).
58. See Lawsky, supra note 47, at 73–77.
59. See id. at 64.
60. See id.

2022] Coding the Code 543

of what’s proven can only grow.61 Default logic is “nonmonotonic”:
sometimes, what is proven with one set of information can be retracted
given more information.62

This is, of course, how people reason in everyday life—by accepting
and acting on conclusions but being open to rejecting those conclusions if
they learn more information. The canonical example is that of Tweety,
the bird. If someone tells you that Tweety is a bird and asks whether
Tweety can fly (and demands that you answer yes or no), you will answer
yes. But if the person adds that Tweety is a penguin, you will revise your
answer. Default logic is thus sometimes called “the logic of everyday
reasoning.”63

Deciding which logic to use is a pragmatic choice. Default logic and
standard logic can be used to represent the exact same law, both equally
and accurately. Consider, for example, the following set of rules. Section
61(a)(11) provides the general rule that income from the discharge of
indebtedness is included in gross income.64 Section 108(a)(1)(B), how-
ever, provides an exception to that rule: income from the discharge of
indebtedness is not included if the discharge occurs when the taxpayer is
insolvent.65 Section 108(a)(3) is an exception to the exception, or a limita-
tion on the exception: the insolvency exception applies only to the extent
that the taxpayer is insolvent (a taxpayer is insolvent to the extent that
the taxpayer’s liabilities exceed her assets immediately before the debt is
discharged).66

Each of these rules can be formalized individually:
s3: $X Income from Discharge of Indebtedness → Include $X67

s2: ($X Income from Discharge of Indebtedness and Insolvent) → In-
clude $X68

s1: ($X Income from Discharge of Indebtedness and Insolvent) → In-
clude ($X - Lesser($X, (Liabilities - Assets)))69

This formalization is just one of many ways to represent these rules.
The three rules track the relevant sections of the Code. Default logic now
allows these rules to be ranked. Following the rule familiar to every law-
yer that the specific controls over the general, s1, the most specific rule,
controls over s2, which in turn dominates s3.

The same set of rules could be written in a single statement in standard
logic (again, this is only one possible representation):

61. See id.
62. See id. It is useful to conceive of the law as nonmonotonic logic and defeasible

reasoning; Thorne McCarty’s work is foundational to this insight. See, e.g., L. Thorne Mc-
Carty, Some Arguments About Legal Arguments, 6 INT’L CONF. ON A.I. & L. 215, 216
(1997).

63. See Lawsky, supra note 47, at 64.
64. I.R.C. § 61(a)(11).
65. See id. § 108(a)(1)(B).
66. See id. § 108(a)(3).
67. Id. § 61(a)(11).
68. Id. § 108(a)(1)(B).
69. See id. § 108(a)(3).

544 SMU LAW REVIEW [Vol. 75

($X Income from Discharge of Indebtedness) → Include ($X -
Lesser($X, Maximum(0, (Liabilities - Assets))))70

In terms of outputs given inputs, the default logic and standard logic
representations are the same. But the representation in default logic has
several advantages. First, the standard logic translation, in this case, is
incomplete and therefore wrong. As drafted, it captures only one of many
exceptions outlined in § 108.71 Discharge of indebtedness also can be ex-
cluded if the discharge occurs in a Title 11 case,72 if the discharge is “qual-
ified farm indebtedness,”73 if the discharge occurs within a certain date
range and is related to a principal residence,74 and so forth. To write the
standard logic statement correctly, one would have to include each excep-
tion to the general rule that cancellation of indebtedness is income in
§ 108.75 The standard formalization as drafted above is, therefore, incor-
rect. If a taxpayer is not insolvent, then the standard formalization says
that the income must be included. Recall that standard logic is mono-
tonic: once something is added to the knowledge base, later information
cannot retract that knowledge. To formalize in standard logic, therefore,
one must know all the relevant exceptions.

The default logic formalization, in contrast, is incomplete but not
wrong. Other exceptions that override the initial rule could be added. No
disclaimer would be necessary for the default logic formalization because
the idea that future exceptions could provide different outcomes is built
into the idea of default logic.

Second, the standard logic representation hides the law even as it im-
plements the law. The relationship between standard logic representation
and the law itself is entirely unclear from the face of the representation.
The easiest way to satisfy oneself that the standard logic representation is
accurate is not to inspect the statute but to verify the outputs given in-
puts. For example, consider three possible situations that exhaust all rele-
vant possibilities: a taxpayer is not insolvent; a taxpayer is insolvent and
the debt relief is less than the extent of their insolvency; or a taxpayer is
insolvent and the debt relief is greater than the extent of their insolvency.

Recall that a taxpayer is insolvent if their liabilities exceed their assets.
Accordingly, if a taxpayer is not insolvent, Liabilities - Assets is less than
zero because the taxpayer’s assets exceed their liabilities. The lesser of
the amount discharged ($X) and zero is zero. The taxpayer includes $X -
0 = $X.

If the taxpayer is insolvent, Liabilities - Assets is greater than zero,
given the definition of insolvency. If the debt relief is less than the extent

70. See id. §§ 61(a)(11), 108(1)(B), 108(a)(3).
71. See id. § 108(a)(1).
72. Id. § 108(a)(1)(A).
73. Id. § 108(a)(1)(C).
74. Id. § 108(a)(1)(E).
75. Cf. Ronald M. Dworkin, The Model of Rules, 35 U. CHI. L. REV. 14, 25 (1967)

(stating that rules are “all-or-nothing” and that an “accurate” statement of a rule takes all
exceptions in account and “legal consequences . . . follow automatically”).

2022] Coding the Code 545

of insolvency, the lesser of $X and Liabilities - Assets is $X. The taxpayer
therefore includes $X - $X = 0 in their gross income; that is, that taxpayer
excludes all of the debt relief. If the debt relief is greater than the extent
of the taxpayer’s insolvency, Liabilities – Assets is less than $X, and the
taxpayer reduces the amount included in gross income by Liabilities -
Assets; that is, the taxpayer excludes debt relief only to the extent of the
excess of liabilities over assets.

The standard logic account thus hides core ideas of the statute: that
there is a general rule that all income is included, including discharge of
indebtedness income; that insolvency affects that general rule; and that
there is a limitation on the extent to which insolvency changes the general
rule.76 Put another way, the actual statute conveys ideas separate from
mere outputs. The statute identifies a baseline rule that income should
generally be included. The statute identifies a characteristic of interest:
insolvency. The statute conveys that insolvency is of interest, though, not
as an on/off switch but as related to the relationship between the tax-
payer’s assets and liabilities. A statute (even a tax statute!) does more
than just determine outputs given inputs.77

Third, and relatedly, translating the statute into default logic is easier
than translating the statute into standard logic.78 Because the underlying
logic tracks the statute, the default logic translation can simply follow the
statute itself.

Finally, if the statute changes, it will be easier to change the default
logic formalization. Removing an exception in standard logic requires un-
tangling a statement in which every word depends on every other word.
Because default logic, by contrast, tracks the statute so closely and be-
cause default logic allows for exceptions that override more general rules,
formalizing in default logic allows separate sections and subsections of
the code to remain separate. Drafting is accordingly more modular and
allows coders to swap new law in and old law out more easily.

The elements that make Catala domain-specific, including the prelimi-
nary definition of terms and concepts, the explicit statement of the scope
of application, and the underlying structure of the language, increase the
ease of coding and make the coding of the Code more accountable. As
the next two Sections show, both who drafts the computer code and the
code’s contents also increase tractability and accountability.

B. PAIR PROGRAMMING

Turning legal code into computer code by hand requires expertise in
both law and coding. One approach is to train individuals in both fields.79

Law schools could include classes on coding, or there could be training

76. See I.R.C. §§ 61(a), 121(a), (b)(1)–(2).
77. Literate programming, another aspect of Catala, also helps the computer code

convey meaning beyond outputs. See infra Section III.C.
78. See Lawsky, supra note 47, at 78.
79. See id. at 10.

546 SMU LAW REVIEW [Vol. 75

classes for coders on tax law. The concern, of course, is that it is easy to
train someone to be a poor coder, but becoming a skilled coder takes a
significant amount of time and experience. Similarly, it is challenging to
read tax statutes, let alone understand how the complex language is
meant to interact with the rest of the statute. And, even if one had suffi-
cient expertise in both tax law and coding, the task of formalizing statutes
is sufficiently subtle that it should not be left to a single person.

Pair programming is the better approach to coding the Code, though
not previously discussed in the U.S. legal literature.80 Pair programming
generally refers to two programmers working together side by side at the
same computer to write computer code.81 While pair programming isn’t
necessarily right for every project, evidence shows that pair programming
can lead to fewer bugs and better designs.82 In the usual pair program-
ming, programmers have the same or similar skill sets and use the process
to bounce ideas off each other, notice details they may have otherwise
missed working alone, and share expertise.83

Pair programming in the context of coding the Code does not involve
two coders with similar skills but rather a coder and a lawyer, people with
radically different areas of expertise.84 Pair programming in this manner
(with a lawyer and a coder) captures many of the approach’s usual advan-
tages and allows the law to be encoded without the need for one person
to be an expert in both tax law and coding. For pair programming to be
most effective, the lawyer should know a little bit about coding (so they
can read and evaluate the code the programmer is writing), and the
programmer should know a little bit about tax law. A lawyer who took a
coding class or two and a programmer who has done some reading about
tax law are a good pair for these purposes.

To demonstrate how pair programming can work, this Section de-
scribes the actual experience and process of two individuals, a lawyer (Sa-
rah Lawsky) and a coder (Jonathan Protzenko), pair programming
§ 61(a)(11) and § 108(a)(1)(B).

The lawyer provided a written description of the code section in ad-

80. Pair programming has been discussed in only one law review article as of this writ-
ing (although only in passing). See Shaanan Cohney & David A. Hoffman, Transactional
Scripts in Contract Stacks, 105 MINN. L. REV. 319, 329 n.57 (2020).

81. See generally Stuart Wray, How Pair Programming Really Works, 27 IEEE
SOFTWARE 50, 50 (2010) (providing an overview of the pair programming method).

82. See, e.g., Andrew Begel & Nachiappan Nagappan, Pair Programming: What’s In It
for Me? 2 ACM-IEEE INT’L SYMP. ON EMPIRICAL SOFTWARE ENG’G & MEASUREMENT

120 (Jan./Feb. 2008); Laurie Williams, Robert R. Kessler, Ward Cunningham & Ron Jef-
fries, Strengthening the Case for Pair Programming, IEEE SOFTWARE 19, 19 (July/Aug.
2000).

83. Wray, supra note 81, at 51–55.
84. THE SERVICE INNOVATION LAB, N.Z. DEP’T OF INTERNAL AFFS., BETTER RULES

FOR GOVERNMENT DISCOVERY REPORT 3–5 (2018), https://www.digital.govt.nz/dmsdocu
ment/95-better-rules-for-government-discovery-report/html [https://perma.cc/X8YV-
NXXX] (describing advantages of coding using an interdisciplinary team that includes both
subject area experts and coders).

2022] Coding the Code 547

vance, including the formalization provided above.85 At the meeting, the
lawyer and coder looked at the language of the code sections and talked
it through. The coder asked some questions, and the lawyer explained the
section. The lawyer provided an example with numbers so the coder
could understand the section better. This took about ten minutes total
because § 61(a)(11) and the insolvency exception in § 108 are fairly
straightforward;86 for more complex sections, this initial process alone
can take well over an hour.

The coder began by setting some terms upfront. He did not initially
understand that the taxpayer was the one whose debt was forgiven rather
than the one who repaid the debt, so he initially called the relevant varia-
ble “DEBT_REPAYMENT.” The lawyer explained the statute again, and the
coder changed the variable to “DISCHARGE_OF_INDEBTEDNESS_INCOME.”
The coder also initially wrote that DISCHARGE_OF_INDEBTEDNESS_IN-

COME increased the variable “INCOME,” but the lawyer pointed out that it
should increase the variable “GROSS_INCOME.”

The coder knew there would be exceptions. So, consistent with the ini-
tial formalization provided by the lawyer, he labeled the first rule, based
on § 61(a)(11), “delta_3,” so that he could later code “delta_2” as an ex-
ception to delta_3, and thus override delta_3.

The coder and lawyer then turned to delta_2, which was intended to
capture § 108(a)(1)(B). The coder initially defined the scope as 108a1b
(lowercase “b”); the lawyer noted that this should be 108a1B (uppercase
“B”), to track the statute. This provision, as described above, allows the
taxpayer to exclude discharge-of-indebtedness income to the extent the
taxpayer is insolvent.87

Both the coder and lawyer paused to reflect on a problem with the
statutory language. Definitions in the Code are supposed to be exten-
sional such that the definition of a term can be substituted anywhere the
term appears: “when Congress inserts a definitional section, courts re-
sort . . . to the statutory definition alone. Congress in effect replaces a
complicated and fuzzy algorithm with a simple cut-and-paste function:
Where one sees X, one shall read Y.”88

While the approach of substituting a definition for a term salva veritate
is an accurate description of how definitions should work, drafting does
not always follow this definition. Section 108(d)(3) defines “insolvent” as
follows (the exact language is important here): “For purposes of this sec-
tion, the term ‘insolvent’ means the excess of liabilities over the fair mar-
ket value of assets.”89 But § 108(a)(1)(B) says that gross income does not
include any amount that would be includible by reason of discharge of

85. See text accompanying supra notes 67–69.
86. See I.R.C. §§ 61(a)(11), 108.
87. See id. § 108(a)(1)(B).
88. Nicholas Quinn Rosenkranz, Federal Rules of Statutory Interpretation, 115 HARV.

L. REV. 2085, 2104 (2002) (internal quotations omitted).
89. I.R.C. § 108(d)(3).

548 SMU LAW REVIEW [Vol. 75

debt if “the discharge occurs when the taxpayer is insolvent.” 90 Congress
clearly did not intend for income to be excluded from gross income only
when “the taxpayer is the excess of liabilities over the fair market value
of assets,” and no one would ever interpret the statute that way. While
the coding of the statute generally attempts to follow the language of the
statute as closely as possible, it would be incorrect to define insolvent as
the Code defines the term and then write computer code that excludes
income when the statement “taxpayer = insolvent” is true. Here, there-
fore, the coder and lawyer chose to depart from the language of the stat-
ute. While this departure was necessary and reflects how this section is
always implemented, it is indeed a departure. The discussion of literate
programming below returns to this departure.91

The coder wrote delta_2 to say that the discharge-of-indebtedness in-
come should not be included in gross income under the condition of in-
solvency. As stated, the computer code does not determine whether the
statement “taxpayer = insolvent” is true. That is what the statutory lan-
guage seems to suggest, but that would be incoherent. Instead, the com-
puter code checks to see whether the statement “insolvency > 0” is true.
That is, the computer code determines whether the taxpayer has an ex-
cess of liabilities over assets.

The coder and the lawyer focused on coding the definition of insol-
vency.92 The program could ask the taxpayer to enter the extent to which
he is insolvent, or it could ask the taxpayer to enter the fair market value
of his assets and liabilities and calculate insolvency for him. The defini-
tion of insolvency is not intuitive, clear, or easy to code.93 Therefore, the
coder and lawyer decided to have the taxpayer enter the fair market
value of their assets and the amount of their liabilities.

In tax law, the excess of A over B can only ever be a positive number
or zero. The excess of $100 over $80 is $20, because $100 - $80 = $20. The
excess of $80 over $100 is zero because $80 is smaller than $100.94 The
lawyer pointed out that, while this could be coded by excluding the lesser
of Liabilities - Assets and zero, the “excess of” language occurred
throughout the Code and would arise many other times. She suggested
that the coder create an “excess_of” operator within the language, which
he did. The extent of insolvency was then defined as “excess_of(assets,
liabilities),” where the taxpayer is asked to enter amounts for assets and
liabilities.

90. Id. § 108(a)(1)(B).
91. See infra Section III.C, for discussion.
92. See I.R.C. § 108(d)(3).
93. See id.
94. One can see this in, for example, INTERNAL REVENUE SERV., DEP’T OF THE TREA-

SURY PUBL’N 4681 CANCELED DEBTS, FORECLOSURES, REPOSSESSIONS, AND ABANDON-

MENTS (FOR INDIVIDUALS) 7 (2022), in the worksheet for determining extent of insolvency.
Line 38 directs the taxpayer to subtract the fair market value of total assets from total
liabilities: “If zero or less, you aren’t insolvent.” Id. For further discussion of “excess of” in
the Internal Revenue Code and regulations, see Sarah B. Lawsky, Teaching Algorithms
and Algorithms for Teaching, 24 FLA. TAX REV. 1, 20–21 (2021).

2022] Coding the Code 549

The coder then coded “delta_1” as an exception to delta_2, indicating
that delta_1 would override delta_2. This provision tracks § 108(a)(3),
which limits the insolvency exclusion to the amount of insolvency.95 This
all took roughly an hour and resulted in a preliminary version that still
needed the syntax fixed to match the requirements of Catala. (For exam-
ple, the coder still had to actually define the “excess_of” operator within
Catala.) The pair programming session ended, and the coder took the
preliminary version to finalize on his own. Once the finalized code was
ready, it was checked by running various inputs for assets, liabilities, and
gross income to see whether it accurately captured the statutory rules.

C. LITERATE PROGRAMMING

Catala code includes extensive comments aimed at the individual
reader along with the language the computer interprets to determine
what to do.96 This approach follows the theory of literate programming.97

Literate programming is the idea (first put forward by Donald Knuth)
that a program should be thought of not only as communicating to a com-
puter what to do but also as communicating to those reading the program
what the program wants the computer to do.98 Literate programming has
become widely popular within math and science programming, for exam-
ple, and permits computational analysis in those areas to be more easily
explained, shared, and replicated.99

Finalized Catala code thus includes not only the functional code that
the computer uses to execute the program but also the actual relevant
statutory language.100 The statutory language is included as a “comment,”
which means the computer ignores that portion of the program. The stat-
utory language is there entirely for the individual reviewing the code.101

Including the relevant statutory language is straightforward because Cat-
ala is built on default logic, which allows the program to track the struc-
ture of the statute.102 Thus, the programmer may easily include with each
snippet of code the specific subsection, paragraph, or subparagraph (for
example) that the snippet encodes.

95. See I.R.C. § 108(a)(3) (2021).
96. See generally Merigoux, Chataing & Protzenko, supra note 8, at 3.
97. Literate programming has been discussed in two law review articles. Paul Ohm

claims to enact literate programming in both a law review article and a computer program,
but the article does not discuss the theory or reasoning behind literate programming. Paul
Ohm, Computer Programming and the Law: A New Research Agenda, 54 VILL. L. REV.
117, 117 (2009). Scott T. Luan discusses literate programming in the context of discussing
what should be patentable. Scott T. Luan, All That Is Solid Melts into Air: The Subject
Matter Eligibility Inquiry in the Age of Cloud Computing, 31 SANTA CLARA HIGH TECH.
L.J. 313, 350–51 (2015).

98. Donald E. Knuth, Literate Programming, 27 COMPUTER J. 98, 99 (1984).
99. Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonne E. John & Brad A.

Myers, The Story in the Notebook: Exploratory Data Science Using a Literate Programming
Tool, in CHI CONF. ON HUM. FACTORS COMPUT. SYS. 1 (2018).

100. See Merigoux, Chataing & Protzenko supra note 8, at 1, 3.
101. See id. at 1.
102. See id. at 3.

550 SMU LAW REVIEW [Vol. 75

Including the statutory language helps the reader of the computer code
track exactly what the computer code is meant to do. But the comments
can—and should—include at least two additional kinds of information
related to the sources of law and to ambiguities. First, comments can in-
clude an explanation of the coding team’s decisions, including extra-statu-
tory legal support for those decisions. Second, comments can make
explicit the ambiguities the coding team perceived and how and why the
team chose to resolve the ambiguities as they did.

The Code is not, of course, a complete statement of U.S. tax law. Regu-
lations provide an enormous amount of law, and indeed “coding the
Code,” as explained above, is better understood as “coding the Code and
regulations.” Sometimes regulations will be separately coded, but the reg-
ulations often provide details about how the Code is to be interpreted,
which is necessary to even write code for the Code in the first place. For
example, § 121 sometimes requires the taxpayer to prorate an exclusion
based on how long the taxpayer used the house for a particular pur-
pose.103 The statute says that the proportion is the ratio of the relevant
time period to two years.104 How closely must one calculate the relevant
time period? Should one round to the nearest minute? Hour? Six
months? Year? What about leap days? The regulations make this statute
administrable by saying that the calculation can be done using either
months or days; if months are used, the denominator should be 24, and if
days are used, the denominator should be 730.105 When this section is
coded using Catala, the computer code can use either days or months,
and the comments can state that the regulation supports this approach.

Literate programming also allows the coder to note when they have
departed from the language of the statute. Recall that the statutory defi-
nition of insolvent cannot possibly be the correct definition of insol-
vent,106 as it conflates the amount of insolvency with whether a taxpayer
is in the state of having more liabilities than assets. The coder can and
should choose to write code reflecting the actual meaning of insolvency.
The coder should also, however, explain the problem in the comments
and explain why they chose to resolve the issue as they did, thus increas-
ing transparency.

Literate programming can also highlight ambiguities and increase
transparency around when and how these ambiguities are resolved. Some
ambiguities can be maintained when coding. For example, “income” is an
ambiguous term not directly defined in the Code.107 Gross income in-
cludes all income, and income is, essentially, anything that makes the tax-

103. See I.R.C. § 121(c)(1).
104. See id.
105. See Treas. Reg. § 1.121-3(g)(1).
106. See discussion supra notes 89–90 and accompanying text.
107. For a vigorous discussion over how broadly the government has or should roam in

its definition of “income,” compare Alice G. Abreu & Richard K. Greenstein, Defining
Income, 11 FLA. TAX REV. 295 (2011), with Lawrence Zelenak, Custom and the Rule of
Law in the Administration of the Income Tax, 62 DUKE L.J. 829 (2012).

2022] Coding the Code 551

payer better off.108 The computer code does not need to define income
anywhere; it can ask for taxpayers to input amounts that are income and
then run calculations on those amounts. It can essentially allow the ambi-
guity of the term to remain.

Other ambiguities, however, must be resolved in order for the tax law
to be coded. A statute can leave the order in which calculations are to be
run ambiguous, for example, with different ordering leading to different
results.109 The IRS has at times resolved these ambiguities within the
forms themselves, consequently withholding from the taxpayer that any
such ambiguity existed in the first place. Without resolving the ambiguity,
the form could not exist, and neither could code that formalizes the
statute.

I’ve suggested elsewhere that when a form hard-codes an ambiguity,
the IRS could be explicit about the decision that the form has made re-
garding the ambiguity and allow the taxpayer to choose between different
interpretive approaches—essentially, providing the taxpayer with two
possible forms.110 Code that uses the literate programming approach
could explain the ambiguity in the comments, providing alternate code
that could be used if the taxpayer wished to take a different approach
than the lawyer and coder’s, or even leave the choice of which code to use
up to the user.

IV. THE FUTURE OF CODING THE CODE

Catala makes the task of translating tax law into computer code tracta-
ble. While translating the entire Code and regulations by hand is unlikely,
at least in the near future, the task of translating portions of these materi-
als could be manageable. Depending on the purpose of the translation,
even translating a small subset of the Code could be highly useful. The
partnership tax code and regulations, for example, are an almost entirely
self-contained subset.111 Significant and relevant portions of the Code
may soon be encoded using pair programming. Catala does not create
any of these possibilities, but having Catala, which is designed to code the
tax law transparently and efficiently, makes computational access to the
law more possible, along with all that would flow from that access. This
Part looks at the potential advantages and risks of coding the Code, fo-
cusing on the potential distributive effects of formalization.

108. Comm’r v. Glenshaw Glass Co., 348 U.S. 426, 429–431 (1955) (income includes
“accessions to wealth, clearly realized, and over which the taxpayers have complete
dominion”).

109. For an example of such ambiguity, see Lawsky, supra note 3, at 126–31 (describing
an ambiguity in § 165(h) in the order in which certain calculations are to be performed).

110. See id. at 144–47 (describing a range of options, including, but not limited to,
locked-in forms (the current approach); providing multiple forms; or providing no form at
all).

111. The entirety of Subchapter K is devoted to tax partnerships. I.R.C. subt. A, ch. 1,
subch. K.

552 SMU LAW REVIEW [Vol. 75

A. INCREASING ACCESS AND EFFICIENCY

Formalizing the tax law has the potential to make tax law more easily
administrable in ways that will redound to the benefit of middle- and low-
income taxpayers. First, formalizing the law using Catala in a way that is
faithful to the underlying structure of the law and open about the ambi-
guities that remain will obviate the need for other formalizations, includ-
ing forms and “simplexified” automated guidance. 112 Instead of creating
separate formalizations for forms (the ITA and so forth), the IRS could
draw on the underlying formalization of the law itself. This would allow
the IRS to provide more accurate guidance to taxpayers who cannot af-
ford to hire a professional to assist them with tax returns. The IRS would
also be largely spared from having to create forms—a time-consuming
process that, for some forms, is an annual task.113

Second, the formalization will make it easier for the government to
provide online tax preparation services, as opposed to outsourcing those
services to for-profit entities. Although the vast majority of individual
taxpayers file their taxes electronically,114 the IRS does not currently pro-
vide an online interface for preparing tax returns. Rather, the IRS relies
on for-profit companies (such as Intuit, which makes TurboTax, and
H&R Block) to create online filing options, including free filing options
for low-income taxpayers. 115 Indeed, until very recently, the IRS’s con-
tract with these companies barred the IRS from creating its own online
filing option.116 The online filing option was recently sent into disarray as
reporters uncovered unethical behavior by for-profit companies involved
in free filing, which caused the two largest companies involved in free
filing to withdraw from the program.117 The Taxpayer Advocate Service
identified the state of the free filing program as one of the most serious
problems facing the IRS.118 Computationally accessible tax law will make
the free filing program and other online filing options easier to improve.
The government could provide online tax preparation options itself, and
if the formalization of the tax law is public, it would be fairly straightfor-
ward for other not-for-profit entities to take advantage of the computa-
tional accessibility of the tax law to create or improve programs to allow
online filing.

112. See Blank & Osofsky, supra note 25, at 179–80.
113. See generally Prior Year Forms and Instructions, INTERNAL REVENUE SERV.,

https://www.irs.gov/forms-pubs/prior-year [https://perma.cc/ANY5-EST7] (providing ac-
cess to the 2020 and 2021 versions of various tax forms).

114. In fiscal year 2020, over 94% of individual tax returns were filed electronically. See
INTERNAL REVENUE SERV., DEP’T OF THE TREASURY, 2020 DATA BOOK 2 (2021).

115. Laurel Wamsley, H&R Block, TurboTax Accused of Obstructing Access to Free
Tax Filing, NPR (May 7, 2019), https://www.npr.org/2019/05/07/720941665/la-city-attorney-
sues-intuit-and-h-r-block-alleging-they-undermine-free-tax-fili [https://perma.cc/C74G-
X5J2].

116. See id.; Dylan Matthews, The IRS Has a Big Opportunity to Fix the Way Americans
File Taxes, VOX (Aug. 13, 2021), https://www.vox.com/policy-and-politics/22596072/irs-
turbotax-hr-block-free-file-tax-return [https://perma.cc/3JRE-9VJS].

117. See Matthews, supra note 116.
118. See NAT’L TAXPAYER ADVOC., ANNUAL REPORT TO CONGRESS 45 (2019).

2022] Coding the Code 553

B. INCREASING ACCESS TO INEFFICIENCY

Coding tax law could also provide a path to tax avoidance, however,
making it especially critical that the government, as well as private tax-
payers, have access to computationally tractable law. In particular, coding
tax law could make it much easier to create certain types of tax
shelters.119

Some tax shelters achieve results by giving legislatively unintended
meanings to words.120 Some tax shelters simply employ falsehoods—in-
flating the amount of a charitable contribution, for example.121 But
others work by chaining together disparate rules to create a tax avoidance
situation.122 While individuals may be adept at expanding the definition
of terms or lying about a valuation, computers are far better than humans
at looking at large numbers of permutations of increasingly complex rules
and fact patterns and finding combinations of rules, structures, and facts
that minimize the amount of tax owed.123

The transaction in Summa Holdings, Inc. v. Commissioner is an exam-
ple of such a chaining tax shelter. 124 In that case, taxpayers used “domes-
tic international sales corporations,” or DISCs, to transfer money into
their sons’ Individual Retirement Accounts (IRAs), which subsequently
accrued tax-free gains.125 DISCs were designed by Congress to incen-
tivize exporting goods.126 A portion of a DISC’s profits is deemed distrib-
uted each year. 127 An IRA may own an interest in a DISC but must pay
an unrelated business tax on dividends from the DISC at the corporate
tax rate.128

119. Michael J. Graetz, 100 Million Unnecessary Returns: A Fresh Start for the U.S. Tax
System, 112 YALE L.J. 261, 278 (2002).

120. For example, Notice 2015-73 describes basket option contracts, in which the tax-
payer attempts to expand the concepts of “options” and “own” beyond a meaning accept-
able to the IRS, even while working within the text of the statute. I.R.S. Notice 2015-73,
2015-46 I.R.B. 660.

121. For example, in syndicated conservation easement transactions, as described in
Notice 2017-10, taxpayers claim a deduction based on “overvaluation of the [donated] con-
servation easement”—that is, they get an inflated charitable deduction. I.R.S. Notice 2017-
10, 2017-4 I.R.B. 544.

122. See Graetz, supra note 119, at 277–78.
123. See Erik Hemberg, Jacob Rosen, Geoff Warner, Sanith Wijesinghe & Una-May

O’Reilly, Tax Non-Compliance Detection Using Co-Evolution of Tax Evasion Risk and
Audit Likelihood, in 15TH INT’L CONF. A.I. & L. 79, 79–80 (2015) (using a computer pro-
gram to simulate the co-evolution of tax evasion and auditing to demonstrate how tax
shelters could be developed).

124. See Summa Holdings, Inc. v. Comm’r, 848 F.3d 779, 783–84 (6th Cir. 2017).
125. See id.
126. See id. at 782. The original version of the DISC was subject to an adverse ruling by

the GATT and WTO on the grounds that the DISC was an export subsidy—the DISC
described in Summa is a modified version of a DISC, what’s known as an IC DISC. See
UNITED STATES TAX LEGISLATION (DISC), L/4422–23S/98, REPORT OF THE PANEL

PRESENTED TO THE COUNCIL OF REPRESENTATIVES ¶¶ 3–5, 17 (Nov. 12, 1976). The profits
of a DISC are not subject to corporate taxation, but rather are taxed to the DISC share-
holders when the profits are distributed or are deemed distributed. See Summa, 848 F.3d at
783.

127. See Summa, 848 F.3d at 782.
128. See id.

554 SMU LAW REVIEW [Vol. 75

The tax shelter worked as follows.129

Roth IRA Roth IRA

JC Holding

JC Export
(DISC)

The Benenson family owned Summa Holdings, the parent corporation of
a manufacturing group of corporations.130 The two children of the Benen-
son family each established a Roth IRA and put in $3,500.131 The adults
in the Benenson family could not have established a Roth IRA, as they
earned far in excess of the amount above which one cannot contribute to
a Roth IRA.132 Each Roth IRA then paid $1,500 for shares of a new
DISC, JC Export, before selling their shares of JC Export to a corpora-
tion, JC Holding.133 After the sale, each Roth IRA owned 50% of JC
Holding, and JC Holding owned 100% of JC Export.134

Due to a series of agreements between Summa Holdings and JC Ex-
port, Summa paid JC Export over $5 million over the course of six
years.135 JC Export distributed the money to JC Holding, which in turn
paid the required 33% income tax on the dividends and distributed the
balance to the Roth IRAs.136 The Tax Court recharacterized these pay-
ments as dividends from Summa to its shareholders, followed by (exces-
sive) contributions to the Roth IRAs.137 The Sixth Circuit overturned the
Tax Court and upheld the original characterization of the transactions.138

The Benenson family used this structure to bypass the contribution limits
on the Roth IRAs. 139

This successful tax shelter was created not by exploiting ambiguity in a
term or lying about valuation or some other fact but rather by “chaining”

129. See id. at 783–84.
130. See id. at 783.
131. See id.
132. See id. at 783–84.
133. See id. at 783.
134. See id.
135. See id. at 784.
136. See id.
137. See id.
138. See id. at 780–81.
139. See id.

2022] Coding the Code 555

apparently unrelated provisions of the Code to create an unintended tax
savings opportunity—one that followed the letter of the law closely
enough that a federal circuit court upheld the structure.140 As the court in
Summa described the shelter, this gap in taxation was created by the com-
plexity of the Code itself.141

This returns to the epigram for this Article: Judge Sutton’s statement in
the Summa Holdings case, in which he says “we can all agree” that citi-
zens should be able to “see” the tax law.142 He continues, “The Internal
Revenue Code improves matters in one sense, as it is accessible to every-
one with the time and patience to pore over its provisions.” 143 He then
upholds the structure just described in Summa because the taxpayers
“complied in full with the printed and accessible words of the tax laws.
The Benenson family, to its good fortune, had the time and patience (and
money) to understand how a complex set of tax provisions could lower its
taxes.”144

If the corpus of tax law is made available to computation, however,
neither time, patience, nor money may be necessary to determine how a
complex set of tax provisions can lower a taxpayer’s taxes. A computer
might be able to sort through various permutations of law, regulations,
and fact patterns to find similar opportunities for chaining. A computer
could check for opportunities for regulatory arbitrage—situations in
which “[t]wo transactions with identical cash flows receive differ-
ent . . . treatment” under the tax law—or it might be able to find situa-
tions in which “[t]he same transaction receives different . . . treatment
[under the tax law] in the future than it does today.”145 If such a program
is developed, the marginal cost of developing a tax shelter will drop to
zero. As the IRS shuts down one shelter, another shelter will be mar-
keted to take its place. And even if, in theory, anyone could generate a
tax shelter, tax shelters benefit only the wealthy.146

Generating tax shelters from computationally accessible tax law has
been proven possible.147 Catala itself does not create that possibility, but
it does make it tax law more computationally accessible, because it tracks
the Code’s structure closely. And once tax law is computationally accessi-
ble, tax shelters will be easier to generate.

140. See id. at 784.
141. See id. at 790.
142. Id. at 784.
143. Id. at 781.
144. Id.
145. Victor Fleischer, Regulatory Arbitrage, 89 TEX. L. REV. 227, 244 (2010).
146. See generally DAVID CAY JOHNSTON, PERFECTLY LEGAL: THE COVERT CAM-

PAIGN TO RIG OUR TAX SYSTEM TO BENEFIT THE SUPER RICH—AND CHEAT EVERYBODY

ELSE passim (2005) (outlining the myriad tax loopholes used by large corporations and the
super-rich); Henry Ordower, The Culture of Tax Avoidance, 55 ST. LOUIS L.J. 47, 123–24
(2010).

147. See Jacob Rosen, Computer Aided Tax Avoidance Policy Analysis (May 8, 2015)
(M.S. thesis, Massachusetts Institute of Technology) (on file with the Massachusetts Insti-
tute of Technology); Hemberg, Rosen, Warner, Wijesinghe & O’Reilly, supra note 123, at
79–88.

556 SMU LAW REVIEW [Vol. 75

If the IRS has its own computationally accessible tax law, it could use
its own computer programs to create and flag tax shelters. The IRS al-
ready lists transactions it considers tax shelters, but this is done ex post
based on shelters it has encountered from taxpayers. 148 Having its own
computationally accessible tax law could permit the IRS to list problem-
atic transactions ex ante.149 Defining tax shelters is notoriously diffi-
cult.150 But with computationally accessible tax law, instead of attempting
to characterize or theorize the type of transaction not permitted, the IRS
could essentially brute force the problem with its own program and pro-
vide a list of forbidden transactions. Allowing private individuals or in-
dustries to create computationally accessible tax laws without the
government’s also having such a corpus could be disastrous, as wealthy
taxpayers could potentially identify and implement tax shelters at little or
no marginal cost.

Ideally, the computer code of the tax law and the programs necessary
to use this code would not be limited to the government but open-source
and accessible to all. This openness would increase transparency and ac-
countability, which are benefits on their own. Open source tax code
would also give individuals and nonprofits the ability to flag tax shelters
for the government. The tax bar has a long history of working with the
government to improve tax law and administration.151 Nonetheless, pri-
vate tax lawyers work primarily for their clients, not for the government,
and when it comes to tax enforcement in general and tax shelters in par-
ticular, private tax lawyers, as David Schizer has explained, in many ways

148. See Treas. Reg. § 1.6011-4(b)(2) (“A listed transaction is a transaction that is the
same as or substantially similar to one of the types of transactions that the Internal Reve-
nue Service (IRS) has determined to be a tax avoidance transaction and identified by no-
tice, regulation, or other form of published guidance as a listed transaction.”); I.R.C.
§ 6501(c)(10) (extending period of limitations with respect to undisclosed listed transac-
tions); id. § 6707(a) (imposing penalties for undisclosed listed transactions). The reportable
transactions regime, including listing specific transactions that the IRS or Treasury deems
problematic, has its own problems. For example, the target activities are often either too
broadly or too narrowly defined, and the concept of “similarity” can be difficult to capture.
See, e.g., Joshua D. Blank & Ari Glogower, The Trouble with Targeting Tax Shelters, 74
ADMIN. L. REV. 69, 77 (2022).

149. It may be impossible for the IRS to generate all possible shelters, because there
may be no limit to how long the chain of statutes and regulations could be. (An interesting
question, and again totally outside the scope of this Article, is whether it would ever be
possible to show that no further shelters could be generated.) One could imagine a system
in which the IRS classified transactions by number of statutory steps in the chain and
banned all transactions with more than a certain number. This might allow an exhaustive
listing of shelters, which in turn might be able to address some of the problems currently
facing listed transactions as described in Blank & Glogower, supra note 148.

150. Michael Graetz has perhaps the best explanation: “It is easy to define a tax shelter
for the press or the layman: Tax shelters are ‘deal[s] done by very smart people that, absent
tax considerations, would be very stupid.’ But translating this definition into legislative
language to defeat tax-shelter transactions and to justify enhanced penalties is another
matter altogether.” Graetz, supra note 119, at 278 (internal citations omitted).

151. For example, the American Bar Association Tax Section and the New York State
Bar Association Tax Section regularly provide analysis and comments on proposed regula-
tions. See Section of Taxation, AM. BAR ASS’N, https://www.americanbar.org/groups/taxa
tion [https://perma.cc/K4UY-BHNR]; Tax Section, N.Y. STATE BAR ASS’N, https://
nysba.org/committees/tax-section [https://perma.cc/ZX5X-EZB5].

2022] Coding the Code 557

“outmatch” the government in staffing, resources, and knowledge.152

Open source code for the tax law could help others with an interest in
locating and shutting down shelters balance that mismatch.

V. CONCLUSION

Tax law is already formalized, in a patchwork of inaccessible, obscure,
and sometimes inaccurate formalizations, thus reducing both the general
usefulness of the formalizations and government accountability. The new
programming language Catala is designed to formalize tax law accurately
and accountably. This formalization could have benefits for tax law ad-
ministration and for government accountability, but formalizing tax law
could also make tax shelters easier to create. Private individuals and busi-
nesses therefore have a significant incentive to use Catala or another do-
main-specific language to codify tax law to their own benefit. To
affirmatively help taxpayers and tax administration, and to guard against
increased tax avoidance, the government should act as soon as possible to
create a computationally accessible version of tax law.

152. David M. Schizer, Enlisting the Tax Bar, 59 TAX L. REV. 331, 331 (2006).

558 SMU LAW REVIEW [Vol. 75

	Coding the Code: Catala and Computationally Accessible Tax Law
	Recommended Citation

	44658-smu_75-3

