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Abstract

Background: Mutations in the gene ATP1A3 have recently been identified to be prevalent in patients with
alternating hemiplegia of childhood (AHC2). Based on a large series of patients with AHC, we set out to identify the
spectrum of different mutations within the ATP1A3 gene and further establish any correlation with phenotype.

Methods: Clinical data from an international cohort of 155 AHC patients (84 females, 71 males; between 3 months
and 52 years) were gathered using a specifically formulated questionnaire and analysed relative to the mutational
ATP1A3 gene data for each patient.

Results: In total, 34 different ATP1A3 mutations were detected in 85 % (132/155) patients, seven of which were
novel. In general, mutations were found to cluster into five different regions. The most frequent mutations included:
p.Asp801Asn (43 %; 57/132), p.Glu815Lys (16 %; 22/132), and p.Gly947Arg (11 %; 15/132). Of these, p.Glu815Lys was
associated with a severe phenotype, with more severe intellectual and motor disability. p.Asp801Asn appeared to
confer a milder phenotypic expression, and p.Gly947Arg appeared to correlate with the most favourable prognosis,
compared to the other two frequent mutations. Overall, the comparison of the clinical profiles suggested a gradient
of severity between the three major mutations with differences in intellectual (p = 0.029) and motor (p = 0.039)
disabilities being statistically significant. For patients with epilepsy, age at onset of seizures was earlier for patients
with either p.Glu815Lys or p.Gly947Arg mutation, compared to those with p.Asp801Asn mutation (p < 0.001). With
regards to the five mutation clusters, some clusters appeared to correlate with certain clinical phenotypes. No
statistically significant clinical correlations were found between patients with and without ATP1A3 mutations.
(Continued on next page)
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Conclusions: Our results, demonstrate a highly variable clinical phenotype in patients with AHC2 that correlates with
certain mutations and possibly clusters within the ATP1A3 gene. Our description of the clinical profile of patients with
the most frequent mutations and the clinical picture of those with less common mutations confirms the results from
previous studies, and further expands the spectrum of genotype-phenotype correlations. Our results may be useful to
confirm diagnosis and may influence decisions to ensure appropriate early medical intervention in patients with AHC.
They provide a stronger basis for the constitution of more homogeneous groups to be included in clinical trials.
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Background
Alternating hemiplegia of childhood (AHC) is a rare
neurological disorder characterized by transient epi-
sodes of alternating hemiplegia/hemiparesis, dystonic
attacks, paroxysmal abnormal ocular movements, epi-
leptic seizures and episodes of autonomic dysfunction
[1–3]. The disease usually starts before 18 months of
life and in the majority of patients before the age of
6 months. Plegic and tonic attacks disappear with sleep
[4, 5]. Between attacks patients have an abnormal
neurological examination often presenting ataxia, dys-
tonia and other involuntary abnormal movements, and
almost all present an intellectual disability [6, 7]. AHC
has a prevalence of 1:100,000 children [8]. Our previous
results emphasized the significant variability of the dis-
ease course between individuals and indicated no gen-
eral pattern of progression [9].
Mutations have been identified in some AHC pa-

tients in the following genes: CACNA1A [10], SLC1A3
[11], SLC2A1 [12, 13], and ATP1A2 (AHC1, MIM num-
ber 104290) [14, 15]. The majority of these cases were
atypical with features overlapping with either familial
or non-familial hemiplegic migraine. Further studies in
larger numbers of patients have failed to confirm a cor-
relation between mutations in these genes and alternat-
ing hemiplegia of childhood [5, 9, 16–20].
In 2012, mutations in the ATP1A3 gene (MIM 182350),

located at 19q13.2 [hg19], were identified as the primary
cause of AHC [21–23] (AHC2, MIM 614820). Mutations
in ATP1A3 are found in approximately 75 % of cases and
the disease is transmitted as an autosomal dominant trait.
The mutations are usually de novo, but some have been
found to be transmitted to offspring [21]. The ATP1A3
gene (23 exons, ORF contains 3042 base-pairs) encodes
the sodium-potassium (Na+/K+) ATPase α3 subunit
(1014 amino acids) that contains 6 cytoplasmic, 10 helical
and 5 extracellular domains. Mutations in the ATP1A3
gene, are also found in patients with dystonia 12 (rapid-
onset dystonia parkinsonism; RDP, MIM 128235) [24–27]
and CAPOS (cerebellar ataxia, areflexia, pes cavus, optic
atrophy and sensorineural hearing loss, MIM 601338) syn-
drome [28]. RDP is a non-dopa-responsive dystonia, with
rapid onset of a few minutes to a few days before
stabilization. The age at onset is between 9 months [29]
and 59 years and triggering factors are physical (e.g. ex-
ercise or childbirth) or psychological stress. CAPOS
syndrome is characterized by an early-childhood onset
of recurrent episodes of acute ataxia associated with fe-
brile illnesses. These acute episodes tend to decrease
with time, but the neurologic sequelae are permanent
and progressive, resulting in gait and limb ataxia and
areflexia. Affected individuals also develop progressive
visual impairment due to optic atrophy and sensori-
neural hearing loss beginning in childhood [28]. With
the addition of our data, no less than 83 ATP1A3 muta-
tions have been described in patients with these three
disorders [30–41] (Additional file 1).
The present study describes data obtained from a large

international cohort, which is, in part, based on the ini-
tial European web-based registries ENRAH (European
Network for Research on Alternating Hemiplegia) [42]
and nEUroped (European Network on Rare Paediatric
Neurological Diseases) [43]. The aim was to identify
possible correlations between clinical phenotype and dif-
ferent ATP1A3 gene mutations. In addition, the pheno-
types of patients with and without ATP1A3 mutations
were also compared.

Methods
This work was based on the efforts of the International
Consortium for the Research on AHC (IAHCRC [44])
formed in 2012 after the identification of mutations in
ATP1A3 in AHC patients. The group involves clinicians,
geneticists and researchers from Europe, USA and
Australia and works in close collaboration with patient
organizations, most of whom had already participated in
the ENRAH and nEUroped projects.
An AHC patient database was formed within the

framework of these two projects, in which clinical data
are continuously being updated. The medical data re-
ported here were centralised from nine different coun-
tries: France (57 patients), Italy (41), Spain (16), United
Kingdom (10), USA (8), The Netherlands (7), Belgium
(7), Czech Republic (5) and Australia (4).
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Inclusion criteria
Diagnosis of AHC was based on Aicardi’s criteria, as pre-
viously reported [4, 9]: (1) onset of paroxysmal events
before 18 months of age; (2) repeated bouts of hemiplegia
involving the right and left side of the body during some
attacks; (3) episodes of bilateral hemiplegia or quadriplegia
starting either as generalization of a hemiplegic episode or
bilateral from the start; (4) other paroxysmal disturbances
including tonic/dystonic attacks, nystagmus, strabismus,
dyspnoea and other autonomic phenomena occurring
during hemiplegic bouts or in isolation; (5) immediate
disappearance of all symptoms upon sleep, with probable
recurrence of long-lasting bouts, 10–20 min after awaken-
ing; (6) evidence of developmental delay, intellectual dis-
ability, neurological abnormalities, choreoathetosis and
dystonia or ataxia; and (7) not attributable to other
disorders.

Phenotypic data—questionnaire
To assess clinical phenotype, a questionnaire was de-
signed (see Additional file 2).
Information was related to various time points or

epochs: first, lifetime information concerning different
signs and symptoms appearing at least once over a life-
time; second, time at inclusion in the database; and
third, the time period between 6 and 12 years old. Life-
time information allowed us to investigate whether a
sign/symptom was present previously, even if it was no
longer present at the time of inclusion or at 6–12 years
old. The time period of 6–12 years old was used in order
to be able to compare data at a similar age, as subjects
included had very different ages.
Details concerning paroxysmal and non-paroxysmal

features were collected for all age epochs. For plegic
and tonic attacks, the following details were noted:
semiology, frequency, length and triggering events. The
occurrence of an epileptic seizure, in contrast to other
paroxysmal events, was considered when either the
semiology of the event was definitively indicative, inter-
ictal EEG changes corroborated the clinical observa-
tions, or an epileptic event was confirmed by EEG.
Intellectual disability was categorized as “mild” (IQ of

50–69), “moderate” (IQ of 35–49), or “severe” (IQ less
than 35). The questionnaire completed by the clinicians
was based either on IQ tests, when available, or indirect
estimation of the degree of intellectual disability from
clinical description and information regarding educa-
tional placement and/or professional integration in
adulthood.

Data collection
Data collection was undertaken by the delegated partici-
pating centre managers (one per reference centre), who
completed the questionnaire either after direct contact
with patients and/or after revision of medical records,
using additional information provided by the treating
physician (paediatric neurologist or neurologist) or fam-
ily. National parent associations assisted in the collection
of data.
Research was conducted in accordance with the Dec-

laration of Helsinki, and all procedures were carried
out with the adequate understanding and written con-
sent of the subjects or their parents, according to the
appropriate national ethical committees, in accordance
with national legislation and regulations.

Mutation analysis
DNA was extracted from blood, saliva, or buccal speci-
mens from the probands and parents using standard
procedures. The 23 exons and immediately flanking
splice sites were Sanger sequenced in proband DNA
using the primers listed in Additional file 3. Technical
details of methods were reported in our previous, pri-
mary publication [21]. The mutation analysis was ex-
tended wherever possible to the parents to define if the
mutation was de novo. ATP1A3 mutations were consid-
ered as probably pathogenic if they had occurred de
novo and if the prediction tools were in favour of a
deleterious effect. To ensure no patients were analysed
more than once in this study, patients with the same
rare ATP1A3 mutation, or lack thereof, were first
assessed where possible for identical dates of birth and
gender. In cases where this approach could not be
taken based on site specific patient confidentially rules,
concordant patients were genotyped at a series of 13
polymorphic sites in the genome (Additional file 4) to
establish all patients studied were unique.
SIFT, Polyphen-2 and Mutation Taster were used for

in silico prediction of pathogenicity of the missense
mutations.
Reference sequences for corresponding ATP1A3 tran-

script and protein were [NM_152296.3] and [Uniprot
P13637], respectively.
Analysis of RNA processing was not performed in this

study.

Statistical analysis
Quantitative characteristics were described by the quar-
tiles and the minimum and maximum values. Box plots
were used to represent the distributions.
Qualitative characteristics were described by the ab-

solute and relative frequencies in each category. Hori-
zontal bar plots were used to represent the repartition
of the patients in the different categories. Statistical
comparisons were performed when groups of patients
with the three most frequent mutations (p.Asp801Asn,
p.Glu815Lys, or p.Gly947Arg) were compared, as well
as between patients with and without any mutation.
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Comparisons were performed for the time period be-
tween 6 and 12 years.
The Kruskal-Wallis test and the Fisher exact test were

used for quantitative and qualitative characteristics, re-
spectively. In order to take into account the multiplicity
of the tests, the type-I error was controlled using the
approach of Benjamin and Yekutieli [45].
Analysis was carried out using the R software, version

3.1.0 (Free Software Foundation).

Results and discussion
A total of 155 AHC patients (84 females and 71 males)
were included. At inclusion, patients were aged between
3 months and 52 years.
Thirty-four different ATP1A3 mutations were detected in

85 % (132/155) AHC patients. The most frequent were
p.Asp801Asn (43 %, 57/132), p.Glu815Lys (16 %, 22/132)
and p.Gly947Arg (12 with c.2839G >A and three with c.2
839G >C) (11 %, 15/132). All patients with p.Gly947Arg
were considered as a single group, regardless of the nucleo-
tide substitution. Less frequent mutations were p.Gly755Ser
(in three patients) and p.Ser137Tyr, p.Ser772Arg (one with
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phenotypes. p.Glu815Lys was associated with the most
severe phenotype, followed by p.Asp801Asn that ap-
peared to confer a milder phenotypic expression,
followed by p.Gly947Arg that correlated with the most
favourable prognosis. The most pronounced differences
regarding the severity of phenotypes between the three
mutations were intellectual (p = 0.029) and motor (p =
0.039) disability, as well as age at onset of seizures which
was earlier for patients with either p.Glu815Lys or
p.Gly947Arg mutation, compared to those with
p.Asp801Asn mutation (p < 0.001). In addition, there
were also apparent trends in differences of severity
regarding other aspects of the disease (language, dys-
tonia, autonomic dysfunction, epilepsy) (Fig. 1) how-
ever, these were not statistically significant, possibly due to
the small number of patients.
Differences in the length and frequency of (hemi)ple-

gic and tonic attacks was, however, less obvious. A
plausible explanation for this could be the retrospective
nature of the determination of the precise frequency
Fig. 2 Distribution of age in months at: first paroxysmal event a, first plegic
and the red crosses represent means. Some isolated values (very high or ve
and duration of attacks in patients that were ambula-
tory relative to those who were bedridden in settings in
which these features may not have been specifically
investigated.

p.Glu815Lys mutation
Patients with the p.Glu815Lys mutation tended to have
an earlier age at the time of the first paroxysmal mani-
festation and first hemiplegic event, with frequent neo-
natal cases (Fig. 2a, b, Additional file 5). Relative to
patients with p.Asp801Asn and p.Gly947Arg, they
tended to have more frequent plegic attacks, but of
shorter duration and less frequent dystonic attacks
with a relatively short duration. Episodes of abnormal
ocular movements occurred in almost the same per-
centage of patients with either of the three mutations.
p.Glu815Lys patients presented the most severe cogni-

tive disability (p = 0.029), of whom half had severe and
one third moderate intellectual disability. Likewise, 78 %
presented moderate or severe language problems (age
attack b and first epileptic seizures c. Black lines represent medians
ry low) are represented by circles
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6–12 years). During adulthood, none of the seven adult
p.Glu815Lys patients were ever employed.
Patients with the p.Glu815Lys mutation also presented

the greatest motor disability (Fig. 1). At an age between
6 and 12 years old, nearly half of them walked only
with assistance and one third were wheelchair-bound
(p = 0.039). They also appeared to demonstrate a higher
degree of regression with regards to walking over time,
compared to patients with either of the two other muta-
tions, however, the period in which this occurred was
variable, making a comparison difficult.
The majority of patients with either of the three most

frequent mutations presented movement disorders over
their lifetime; 72–89 % presented movement disorders
between 6 and 12 years of age. More specifically, the
majority (71 %) of p.Glu815Lys patients had dystonia at
baseline (between paroxysmal events), and this was
moderate to severe in 56 % (Fig. 1). However, only a
third of them presented ataxia.
A greater proportion of patients with p.Glu815Lys pre-

sented epilepsy and status epilepticus, relative to patients
with either p.Asp801Asn or p.Gly947Arg (Additional
file 5). The onset of seizures occurred earlier in life for
patients with p.Glu815Lys (often during the first year of
life), relative to patients with p.Asp801Asn (p < 0.001)
(Fig. 2c).
At age 6–12 years, a majority (78 %) of patients pre-

sented episodes of autonomic dysfunction and these
patients presented more frequent attacks than patients
with the other two mutations. This is speculated to be a
precipitating factor for sudden death [9]. Four patients
included in our cohort died; three had the p.Glu815Lys
mutation and no mutation in the ATP1A3 gene was re-
ported in the fourth deceased patient.
p.Asp801Asn mutation
For patients with the p.Asp801Asn mutation, first par-
oxysmal and hemiplegic events occurred at an older
age (Fig. 2a, b, Additional file 5). They had less frequent
plegic attacks than the p.Glu815Lys group, but of lon-
ger duration and slightly more frequent tonic attacks
(Fig. 1).
The majority (69 %) presented with moderate intellec-

tual disability (p = 0.029) and 54 % had moderate or
severe language problems (age 6–12 years). Among adult
patients, one patient was independently employed and
25 % (eight patients) were working in an assisted envir-
onment. Behavioural disorders were more common in
patients with the p.Asp801Asn mutation (in more than
half the patients) compared to those with the other two
mutations.
The majority (81 %) of p.Asp801Asn patients were able

to walk independently at the age of 6–12 years (p = 0.039),
but 63 % presented ataxia. Hence, there were fewer dys-
tonic patients with p.Asp801Asn, in comparison to
p.Glu815Lys mutation, and patients with p.Asp801Asn
presented mainly mild dystonia (Fig. 1).
Fewer patients with p.Asp801Asn mutation presented

epilepsy and status epilepticus, in comparison to the
p.Glu815Lys group, and patients had rather infrequent
seizures (Additional file 5). They also had an onset of sei-
zures later in life (median 5 years), relative to patients with
either p.Glu815Lys or p.Gly947Arg mutations (p < 0.001).
At age 6–12 years, the proportion of patients with epi-

sodes of autonomic dysfunction (44 %) was almost half
that of p.Glu815Lys patients and similar to that of the
p.Gly947Arg group.
p.Gly947Arg mutation
In this group, first events occurred at an even later age,
compared to those with either p.Glu815Lys or
p.Asp801Asn, with sometimes very late onset of plegic
attacks (Fig. 2a, b, Additional file 5). Furthermore,
p.Gly947Arg patients had the least frequent plegic at-
tacks, but had a tendency to present more frequent and
longer tonic attacks (Fig. 1).
None of the patients had severe intellectual disability

and the majority (63 %) had only mild intellectual dis-
ability (p = 0 029). One of the five p.Gly947Arg adult
patients was working in an assisted environment. At age
6–12 years, only 30 % of the p.Gly947Arg group pre-
sented moderate or severe language problems. Of note, a
large proportion of patients, each with one of the three
mutations, presented dysarthria that could further com-
plicate verbal communication even in patients with mild
intellectual disability.
All but one p.Gly947Arg patients (91 %) walked inde-

pendently at the age 6–12 years (p = 0.039). The
remaining patient was able to walk with help. At base-
line, p.Gly947Arg patients appeared the least ataxic
and/or dystonic, compared to the two other groups
(Fig. 1).
Fewer patients harbouring the p.Gly947Arg mutation

presented epilepsy compared to the other two groups
(Additional file 5, Fig. 1). Surprisingly, the onset of sei-
zures for epileptic subjects with p.Gly947Arg occurred
earlier in life, relative to patients with the other two
mutations (even earlier than for p.Glu815Lys mutation)
(p < 0.001). Patients with p.Gly947Arg presented auto-
nomic attacks to the same extent as those with
p.Asp801Asn patients.

Finally ~15 % of the analysed patients were negative to
the molecular analysis of ATP1A3 gene. When the two
groups were compared, no difference was observed
regarding the frequency or length of plegic or tonic
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attacks, or the presence of abnormal ocular movements.
Moreover, intellectual disability was similarly present in
the majority of patients with and without ATP1A3 muta-
tions (Additional file 5).
No difference was reported with regards to the acqui-

sition of gait and presence of abnormal movements.
Similarly, the incidence of epilepsy and status epilepticus
was comparable between the two groups.
The absence of statistically significant differences be-

tween the mutated and non-mutated patients can be in
part explained by the small sample size (with in par-
ticular a small number of patients without mutations)
and also by the correction of the multiplicity of tests.

Mutational clusters
Heinzen et al. [21] first recognized that nearly all AHC-
causing ATP1A3 mutations affect regions in or near
transmembrane domains. Rosewich et al. [33] introduced
the notion of mutational clusters. The observation of
clustering was further confirmed in our cohort with the
addition of new mutations. We have therefore further
developed this notion within the ATP1A3 gene, and out-
line five mutational clusters situated and corresponding
to the loop formed by an extracellular domain, the two
adjacent transmembrane domains, as well as the sur-
rounding regions of the cytoplasmic domain (Fig. 3).
The distribution of the novel mutations identified in our
study, together with those previously reported, suggests
that AHC2 and RDP are associated with similar areas of
mutation clusters (Fig. 3). The clinical presentation of
patients grouped according to these mutational clusters
Fig. 3 Location of mutations in ATP1A3 gene, mRNA and protein. Numbers
acids. AHC2 mutations are presented as red dots, RDP mutations as blue d
as green dots. The p.Glu818Lys mutation found in CAPOS families is shown
phenotypes are presented as red dots with a blue dot inside. The green ci
formed by an extracellular domain, the two adjacent transmembrane dom
was investigated in order to establish whether different
clusters could be correlated with particular phenotypes.
Similarities in clinical phenotype were observed between
patients belonging to the same mutational cluster
(Table 1).

Interesting case reports within mutational clusters
We report a novel mutation in cluster 2, p.Ala264_A-
la289delinsValLeuGly, identified in a 34-year-old man
with no intellectual disability (the patient had a degree
in graphic design), but who presented motor regression
due to progressive disabling dystonia. Whereas he was
experiencing bouts of hemiplegic/dystonic attacks in a
typical AHC manner, he also presented a bi-phasic se-
vere permanent deterioration of his dystonia after stress-
ful events during adolescence (minor head trauma at
first and subsequent orthopaedic surgery with complica-
tions). We believe this patient presents an intermediate
AHC2/RDP phenotype (Table 1). This case appears even
more interesting if we consider that this cluster harbours
many mutations associated with RDP [21, 26, 27]
(Fig. 3).
With the exception of the p.Glu815Lys mutation, muta-

tions in cluster 3, especially those clustering at a location
that corresponds to the transmembrane domain M6 (Fig. 3),
are associated with mild-moderate phenotype, similar to
p.Asp801Asn. Amino acid position 801 is a mutation hot-
spot and mutations occur at this position in both AHC2
(p.Asp801Asn, p.Asp801Glu, p.Asp801Tyr) [8, 21–23, 31,
33–35] and RDP (p.Asp801Tyr) [21, 26]. A novel p.Asp
801Val mutation was found in a patient with a particularly
1–23 represent gene exons; bp: base pairs; nt: nucleotides; aa: amino
ots and two rare polymorphisms identified in the general population
as a purple dot. Mutations shared between AHC2 and RDP

rcles represent the five mutational clusters that are located at the loops
ains, and the surrounding regions of the cytoplasmic domain



Table 1 Genotype—phenotype correlations

Genotype Phenotype of patients encountered in this study

Number
of patients

Age at onset: first
event/first hemiplegic
attack

Age at last
observation/
Gender

Intellectual
disability

Walking
problems

Ataxia Dystonia Hemiplegia/Double
hemiplegia attacks

Tonic
attacks

Epilepsy Other
patients’
references

Cluster 1

p.Ser137Phe 1 Unknown 20y / F ++ Unknown + + ++++ ++++ ++ [21, 31]

p.Ser137Tyr 2 4 m / 4 m 9y / F ++ - + + ++++ Unknown Remission [21, 34, 35]

2y / M + + - ++++ - -

Cluster 2

p.Ala264_Ala289delinsValLeuGly
1 2 m / 2 m 34y / M - ++ (Regression-

lost walking)
- +++ + + -

p.Ile274Asn 1 Neonatal / 33 m 10y / M + - - + +++++ + - [21, 22, 31]

p.Glu324Gln 1 1 m / 5 m 16y / M +++ ++ (Regression) - +++ ++++ ++++ - [31]

p.Leu326Arg 1 8 m / 15 m 4y / F + - - - Remission Remission - [31]

c.993 + 1_993 + 2del $ 1 12 m / 12 m 6y / M - - - + +++ + Remission

p.Cys333Phe 1 1 m / 15 m 4y / M + + (Regression) - + ++++ +++ Remission [21, 31]

p.Gly358Ser 1 Neonatal / 6 years 11y / M +++ + + +++++ ++++ ++++

Cytoplasmic domain between Cluster 2 and 3

p.Cys596Arg 1 1 m / 24 m 21y / M +++ - + + +++ +++ + [31]

p.Leu715Pro $ 1 Neonatal / 3 m 2y / M ++ ++ + + +++++ + +++++

Cluster 3

p.Gly755Ser 3 4 m / 5 m 24y / M - - Unknown ++ +++++ +++++ Remission [21, 31, 33–
35]

6 m / 8 m 8y / M + - ++ Unknown ++++ ++++ ++

6 m / 6 m 8y / M Unknown - + - ++++ - -

p.Ser772Arg 2 9 m / 9 m 20y / M ++ + + ++ + + + [22, 31, 35]

5 m / 10 m 7y / M ++ - - ++ ++++ ++++ -

p.Asn773Ser 2 mono-
zygotic
twins

Neonatal / 22 m 10y / F + - - - ++ + Remission [21]

Neonatal / 22 m 10y / F + - - - +++ ++++ Remission

p.Asp801Asn 57 2 m / 7 m (medians) Median
15.7y

++ - +++ ++ ++++ ++++ + [8, 21–23,
31, 33–35]

p.Asp801Val $ 1 21 m / 21 m 23y / M - - ++ + Remission ++++ -

p.Thr804Ile 2 2 m / 9 m 13y / F + - - + ++ ++ - [31, 33]

5 m / 5 m 10y / F ++ - + - ++ ++ -

p.Met806Arg 1 13 m / 13 m 6y / M + - - + +++ +++ Remission [21]

p.Ile810Asn £ 1 7 m / 8 m 20y / M ++ - + - +++ +++ Remission [35]
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Table 1 Genotype—phenotype correlations (Continued)

p.Ser811Pro 2 1 m / 1 m 24y / F ++ + ++ ++ +++++ +++++ ++ [21, 31]

1 m / 1 m 20y / F ++ ++ + ++ ++++ - +

p.Glu815Lys 22 1 m / 6 m (medians) Median 7.8y +++ ++ ++ +++ ++++ ++++ +++ [8, 21–23,
31, 33–35]

Cluster 4

p.Leu839Pro 1 Neonatal 3 m / F NA NA NA ++ + ++++ - [31, 35]

c.2542 + 1G > A 1 1 m / 10 m 26y / F ++ + - + + - +++ [21, 22, 31,
33]

p.Leu888Pro $ 1 1 m / 7 m 19y / M +++ - - ++ ++ ++ +++

p.Val919del 2 Unknown 3y / F +++ ++ + +++ +++ + [21, 31]

Neonatal / 5 m 17y / M ++ - - ++ ++++ ++++ -

p.Asp923Asn 2 4 m / 29 m 7y / F - - + - +++ - - [34, 35, 40]

11 m / 24 m 4y / F + - - + ++ - -

p.Cys927Phe 1 18 m / 18 m 15y / F ++ - + - Remission +++++ - [34]

p.Cys927Trp 1 4 m / 4 m 37y / M + - + + + Remission Remission

Cluster 5

p.Gly947Arg 15 3 m / 6 m (medians) Median 15y + - + + +++ +++ + [8, 21, 31,
33–35]

p.Glu951Lys 1 4 m / 10 m 20y / M ++ + +++ + Remission ++ -

p.Ala955Asp 1 Neonatal 4y / M +++ ++ - + +++++ ++++ ++ [21]

p.Asp992Tyr 1 4 m / 8 m 32y / M + Unknown Unknown +++ +++ ++ + [21, 34]

Novel mutations found in this study are given in bold characters. Of them, de novo mutations (both parents available and tested negative) are marked by the symbol $; Y: years, M: male, F: female, m: months; £:
p.Ile810Asn (c.2429 T > A) corresponds to the Myshkin mice mutation; Remission, means no present at the last observation; First event: first paroxysmal event of the disease, either hemiplegic or other (i.e. abnormal
ocular movements, double hemiplegia, tonic/dystonic attacks); Unknown: missed information; NA: not applicable because of young age at last observation. Reference sequences for corresponding ATP1A3 transcript
and protein were [NM_152296.3] and [Uniprot P13637], respectively
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mild phenotype, presenting a late onset of symptoms at
21 months, no intellectual disability, independent walking
and at 23 years old, no more hemiplegic attacks and only
weekly dystonic episodes.
In cluster 1 (Fig. 3, Table 1), the p.Ser137Tyr substitu-

tion was previously reported to yield a severe phenotype
[34], in contrast to our report of two patients with no
major disability.
The p.Ile274Asn mutation in cluster 2 was previously

reported to be associated with an unusual phenotype
first described in a familial case, in which the index pa-
tient presented with late-onset episodes at 3 years of age
and mild intellectual disability [21]. The patient with
p.Ile274Asn mutation in our cohort had similar charac-
teristics. In the same cluster the p.Leu326Arg mutation
was present in one patient with only mild symptoms that
resolved with use of flunarizine, with remission of hemi-
plegic attacks. Whereas a patient with the c.993 + 1_993
+ 2del mutation had no intellectual disability, another
with the p.Cys333Phe mutation had mild, and another
with the p.Gly358Ser mutation exhibited severe intellec-
tual disability, although hemiplegic attacks began un-
usually late in life in the latter.
Regarding cluster 3 (Fig. 3, Table 1), three patients

harboured the mutation p.Gly755Ser. All three presented
a mild phenotype. This is in contrast to a previous re-
port in which this mutation was associated with a severe
phenotype [34]. The p.Ser772Arg mutation was previ-
ously reported in a child with normal intellect [22], con-
trasting with two cases in our study presenting moderate
intellectual disability.
Amino acid 927 is a mutation hotspot in cluster 4.

The p.Cys927Tyr and p.Cys927Phe mutations have pre-
viously been reported in patients with AHC [23, 34] and
we identified a new mutation, p.Cys927Trp. The two
patients harbouring the p.Cys927Phe and Cys927Trp
mutations respectively had rare or no hemiplegic attacks
with age.
The precise pathological mechanism resulting from

ATP1A3 mutations so far remains obscure. Amino acids
801 and 947 are located on the transmembrane do-
mains M6 and M9, respectively, whereas amino acid
815 has an intracellular location. It is so far unclear
what effect these mutations have on the α3 subunit, but
based on preliminary studies [21], protein expression
levels appear to be largely unaffected. Such mutations
may therefore lead to hypomorphic effects which may
influence ATPase activity. Weigand and colleagues [46]
initially suggested that binding of the α3 subunit to
ouabain may play a possible pathophysiological role.
However, unlike the p.Asp801Asn mutation, both the
p.Glu815Lys and p.Gly947Arg mutations prevent bind-
ing of the α3 subunit to ouabain, yet these latter muta-
tions, according to our results, were associated with
very different phenotypes. Thus, although the role of
endogenous ouabain should further be investigated, it
cannot explain differences in phenotype alone. A more
recent study [47] attempted to explore the molecular
pathological mechanisms concerning the three most
frequent mutations. Authors suggested that loss of for-
ward cycling function was unlikely to underlie the ob-
served clinical heterogeneity in AHC, and the extent of
dominant negativity was similar between p.Asp801Asn,
p.Gly947Arg and p.Glu815Lys. But proton current ampli-
tude was profoundly reduced in the mutation p.Glu815Lys
compared to p.Asp801Asn and p.Gly947Arg mutations.
The large multinational sample of AHC patients in-

cluded in our study provides a statistically strong con-
firmation of the rate of different ATP1A3 mutations.
Mutation in the ATP1A3 gene was identified in 85 %
patients (78–100 % in other series) [8, 21–23, 31, 33–
35, 48], with the p.Asp801Asn, p.Glu815Lys and
p.Gly947Arg mutations present in 43, 16 and 11 %, re-
spectively (31–39 %, 20–23 % and 15 %, in other series)
[33, 35, 48]. Overall, 34 different mutations were iden-
tified, of which 7 have not been described previously.
Within the limit of our present knowledge, we have de-

fined distinct clinical profiles for patients harbouring each
of the three most frequent mutations, with the most se-
vere phenotypic expression associated with p.Glu815Lys,
followed by p.Asp801Asn and lastly p.Gly947Arg. The
more pronounced phenotypic expression associated with
p.Glu815Lys, relative to other ATP1A3 mutations, is in
agreement with a recent study [31]. Previous studies in
smaller cohorts of 35 and 51 patients, reported the sever-
ity of the p.Glu815Lys mutation concerning neonatal on-
set, motor disability and presence of status epilepticus and
respiratory paralysis in the former [34] and a correlation
with epilepsy in the latter [35]. The larger number of pa-
tients studied per mutation in this study provides a more
comprehensive description of clinical profiles, allowing
different clinical profiles to be compared.
We have further described a number of aspects of

AHC that appear to be specific to certain mutations. Al-
though some of the differences observed were not statis-
tically significant, it should be emphasized that this may
be due to the small number of patients with a given mu-
tation, combined with the phenotypic complexity of the
disorder. Indeed, when taken separately, the different
major symptoms of AHC (such as epilepsy, movement
disorders and cognition) are known to involve different
neuronal networks, although these unavoidably interact.
Such “symptoms” may even be considered as diseases
per se. Each of these “major symptoms” may have their
proper index of severity and it should be kept in mind
that it is the combination of all these components that
determines the severity of the AHC disorder as an entity.
It could be hypothesized that a given mutation
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influences only one or more of these “major symptoms”,
while sparing others. If this is the case, only studies with
much larger cohorts may eventually better highlight the
specific role of each mutation.

Conclusion
Our study shows, based on a very extensive multi-
national cohort, that the phenotypic variation observed
in AHC patients is mirrored in the heterogeneity of mu-
tations affecting the ATP1A3 gene. We have described
the clinical profiles of patients harbouring the three
most frequent mutations (p.Glu815Lys, p.Asp801Asn
and p.Gly947Arg) and reported extensive clinical infor-
mation for patients with less common mutations, by
considering the different mutations within specific clus-
ters. Our results support the notion that, although it is
clear that the α3 subunit is implicated in the pathogen-
esis of AHC, the presence of individual variability in
patients with the same mutation implies that other
modifier genes or epigenetic factors play a role and this
should be investigated in future studies.
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