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NEW BEAUVILLE SURFACES AND FINITE SIMPLE

GROUPS

SHELLY GARION, MATTEO PENEGINI

Abstract. In this paper we construct new Beauville surfaces with
group either PSL(2, pe), or belonging to some other families of finite
simple groups of Lie type of low Lie rank, or an alternating group,
or a symmetric group, proving a conjecture of Bauer, Catanese and
Grunewald. The proofs rely on probabilistic group theoretical results
of Liebeck and Shalev, on classical results of Macbeath and on recent
results of Marion.

1. Introduction

A Beauville surface S (over C) is a particular kind of surface isogenous to
a higher product of curves, i.e., S = (C1 ×C2)/G is a quotient of a product
of two smooth curves C1, C2 of genera at least two, modulo a free action of a
finite groupG, which acts faithfully on each curve. For Beauville surfaces the
quotients Ci/G are isomorphic to P

1 and both projections Ci → Ci/G ∼= P
1

are coverings branched over three points. A Beauville surface is in particular
a minimal surface of general type.

Beauville surfaces were introduced by F. Catanese in [5], inspired by a
construction of A. Beauville (see [4]). Catanese was interested in finding ex-
amples of strongly rigid surfaces S, i.e., if S′ is another surface homotopically
equivalent to S then S′ is either biholomorphic or antibiholomorphic to S. In
[5] he proved that in general if C1 and C2 are two triangle curves with group
G, if the action of G on the product C1 ×C2 is free, then S = (C1 ×C2)/G
is a strongly rigid surface. Since the original example of Beauville had this
property he proposed to name these surfaces Beauville surfaces.

A Beauville surface S is either of mixed or unmixed type according re-
spectively as the action of G exchanges the two factors (and then C1 and C2

are isomorphic) or G acts diagonally on the product C1×C2. The subgroup
G0 (of index ≤ 2) of G which preserves the ordered pair (C1, C2) is then
respectively of index 2 or 1 in G.

Any Beauville surface S can be presented in such a way that the subgroup
G0 of G acts effectively on each of the factors C1 and C2. Catanese called
such a presentation minimal and proved its uniqueness in [5]. In this paper
we shall consider only minimal Beauville surfaces of unmixed type so that
G0 = G.
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Working out the definition of Beauville surfaces one sees that there is a
pure group theoretical condition which characterizes the groups of Beauville
surfaces: the existence of what in [2] and [3] is called a ”Beauville structure”.

Definition 1.1. An unmixed Beauville structure for a finite group G is
a quadruple (x1, y1;x2, y2) of elements of G, which determines two triples
Ti := (xi, yi, zi) (i = 1, 2) of elements of G such that :

(i) xiyizi = 1,
(ii) 〈xi, yi〉 = G,
(iii) Σ(T1) ∩ Σ(T2) = {1}, where

Σ(Ti) :=
⋃

g∈G

∞
⋃

j=1

{gxji g
−1, gyji g

−1, gzji g
−1}.

Moreover, τi := (ord(xi), ord(yi), ord(zi)) is called the type of Ti, and a
type which satisfies the condition:

1

ord(xi)
+

1

ord(yi)
+

1

ord(zi)
< 1

is called hyperbolic.
Therefore, the question of which finite groupsG admit an unmixed Beauville

structure was raised. This question is deeply related to the question of which
finite groups are quotients of certain triangle groups, which was widely in-
vestigated (see [7, 8] for a survey). Indeed, conditions (i) and (ii) of Defini-
tion 1.1 clearly imply that two certain triangle groups surject onto the finite
group G. However, the question about Beauville structures is somewhat
more delicate, due to condition (iii) of Definition 1.1.

In this paper we show that PSL(2, pe), and some other families of fi-
nite simple groups of Lie type of low Lie rank admit a Beauville structure.
Moreover for the alternating and symmetric groups we prove the stronger
statement that almost all of these groups admit a Beauville structure with
fixed type. For a detailed account of which other finite groups admit an
unmixed Beauville structure we refer to the introduction of [12].

The main results of this work are the following Theorems.

Theorem 1.2. Let (r1, s1, t1), (r2, s2, t2) be two hyperbolic types. Then al-
most all alternating groups An admit an unmixed Beauville structure (x1, y1;x2, y2)
where (x1, y1, (x1y1)

−1) has type (r1, s1, t1) and (x2, y2, (x2y2)
−1) has type

(r2, s2, t2).

A similar theorem also applies for symmetric groups.

Theorem 1.3. Let (r1, s1, t1), (r2, s2, t2) be two hyperbolic types, and assume
that at least two of (r1, s1, t1) are even and at least two of (r2, s2, t2) are even.
Then almost all symmetric groups Sn admit an unmixed Beauville structure
(x1, y1;x2, y2) where (x1, y1, (x1y1)

−1) has type (r1, s1, t1) and (x2, y2, (x2y2)
−1)

has type (r2, s2, t2).
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This two Theorems completely solve [3, Conjecture 7.18] by Bauer, Catanese
and Grunewald. The conjecture was inspired by the proof of Everitt [10] to
Higman’s Conjecture that every hyperbolic triangle group surjects to all but
finitely many alternating groups. The proofs of both Theorems are presented
in Section 3.1, and are based on results of Liebeck and Shalev [14], who gave
an alternative proof, based on probabilistic group theory, to Higman’s Con-
jecture. In Section 3.1 we also provide theorems similar to Theorem 1.2 and
1.3 for surfaces isogenous to a higher product not necessarily Beauville.

Next, we have the other results on Beauville surfaces.

Theorem 1.4. Let p be a prime number, and assume that q = pe is at least
7. Then the group PSL(2, q) admits an unmixed Beauville structure.

Its following Corollary is analogous to Theorem 1.2 for the family of
groups {PSL(2, p)}p prime.

Corollary 1.5. Let r, s > 5 be two relatively prime integers. Then there are
infinitely many primes p for which the group PSL(2, p) admits an unmixed
Beauville structure (x1, y1;x2, y2) where (x1, y1, (x1y1)

−1) has type (r, r, r)
and (x2, y2, (x2y2)

−1) has type (s, s, s).

This Theorem and its Corollary are proved in Section 3.2. The proof is
based on properties of the groups PSL(2, q) and on results of Macbeath [16].

Moreover, one can generalize Theorem 1.4, and prove similar results re-
garding some other families of finite simple groups of Lie type of low Lie
rank, provided that their defining field is large enough.

Theorem 1.6. The following finite simple groups of Lie type G = G(q)
admit an unmixed Beauville structure, provided that q is large enough.

(1) Suzuki groups, G = Sz(q) =2B2(q), where q = 22e+1;
(2) Ree groups, G =2G2(q), where q = 32e+1;
(3) G = G2(q), where q = pe for some prime number p > 3;
(4) G =3D4(q), where q = pe for some prime number p > 3;
(5) G = PSL(3, q), where q = pe for some prime p;
(6) G = PSU(3, q), where q = pe for some prime p.

This Theorem is proved in Section 3.3, and the proof is based on recent
probabilistic group theoretical results of Marion [18, 19], who investigated
the possible surjection of certain triangle groups onto finite simple groups of
Lie type of low Lie rank. The probabilistic group-theoretical approach was
further used and generalized in [13].

Moreover, in the same direction of Theorems 1.2 and 1.3, and inspired by
conjectures of Liebeck and Shalev [15] (see also Section 3.3.2), we propose
the following Conjecture.

Conjecture 1.7. Let (r1, s1, t1), (r2, s2, t2) be two hyperbolic types. If G is
a finite simple classical group of Lie type of Lie rank large enough, then it ad-
mits an unmixed Beauville structure (x1, y1;x2, y2), where (x1, y1, (x1y1)

−1)
has type (r1, s1, t1) and (x2, y2, (x2y2)

−1) has type (r2, s2, t2).
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This paper is organized as follows. In Section 2 we shall present the
geometrical background and explain the link between geometry and group
theory. In Section 3 one can find the proofs of the main results.

Remark 1.8. After completing this manuscript, it was brought to our
attention that Fuertes and Jones [11], have independently and simultane-
ously constructed unmixed Beauville structures for the groups PSL(2, q),
the Suzuki groups G = Sz(q) =2B2(q) and the Ree groups G =2G2(q), thus
proving some of our results appearing in Theorems 1.4 and 1.6. However,
their constructions are of different type.

2. Geometrical Background on Ramification Structures

We shall denote by S a smooth irreducible complex projective surface
of general type. We shall also use the standard notation in surface theory,
hence we denote by pg := h0(S,Ω2

S) the geometric genus of S, q := h0(S,Ω1
S)

the irregularity of S, χ(S) = 1+pg−q the holomorphic Euler-Poincaré char-
acteristic, e(S) the topological Euler number, and K2

S the self-intersection
of the canonical divisor (see e.g. [1]). In this section, C will always denote
a smooth compact complex curve and g(C) will be its genus.

Definition 2.1. A surface S is said to be isogenous to a higher product
of curves if and only if S is a quotient (C1 × C2)/G, where C1 and C2 are
curves of genus at least two, and G is a finite group acting freely on C1×C2.

In [5] it is proven that any surface isogenous to a higher product has a
unique minimal realization as a quotient (C1 × C2)/G, where G is a finite
group acting freely and with the property that no element acts trivially on
one of the two factors Ci. From now on we shall work only with minimal
realization.

We have two cases: the mixed case where the action of G exchanges the
two factors (and then C1 and C2 are isomorphic), and the unmixed case
where G acts diagonally on their product.

A surface S isogenous to a higher product is in particular a minimal
surface of general type and it has

K2
S = 8χ(S), 4χ(S) = e(S), and

(1) χ(S) =
(g(C1)− 1)(g(C2)− 1))

|G|
,

by Theorem 3.4 of [5]. Moreover, by Serrano [20, Proposition 2.2],

(2) q(S) = g(C1/G) + g(C2/G),

see also [5] paragraph 3.
A special case of surfaces isogenous to a higher product is given by

Beauville surfaces, which were also defined in [5].

Definition 2.2. A Beauville surface is a surface isogenous to a higher prod-
uct S = (C1 ×C2)/G, which is rigid, i.e., it has no nontrivial deformation.
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Remark 2.3. Every Beauville surface of mixed type has an unramified
double covering which is a Beauville surface of unmixed type.

The rigidity property of the Beauville surfaces is equivalent to the fact
that Ci/G ∼= P

1 and that the projections Ci → Ci/G ∼= P
1 are branched in

three points, for i = 1, 2. Moreover, by Equation (2) one has q(S) = 0.

In the following we shall consider only the unmixed case.
From the above Remark one can see that studying Beauville surfaces (as

well as surfaces isogenous to a higher product in general) is strictly linked to
the study of branched covering of complex curves. We shall recall Riemann’s
Existence Theorem which translates the geometric problem of constructing
branch covering into a group theoretical problem. We state it first in great
generality.

Definition 2.4. Let g′ be a non negative integer and m1, . . . ,mr be positive
integers with mi ≥ 2 for all i. An orbifold surface group of type (g′ |
m1, . . . ,mr) is a group presented as follows:

Γ(g′ | m1, . . . ,mr) := 〈a1, b1, . . . , ag′ , bg′ , c1, . . . , cr|

cm1

1 = · · · = cmr
r =

g′
∏

k=1

[ak, bk]c1 · . . . · cr = 1〉.

If g′ = 0 it is called a polygonal group, if g′ = 0 and r = 3 it is called a
triangle group.

We remark that an orbifold surface group is in particular a Fuchsian group
(see e.g. [14]).

The following is a reformulation of Riemann’s Existence Theorem:

Theorem 2.5. A finite group G acts as a group of automorphisms on some
compact Riemann surface C of genus g if and only if there are natural num-
bers g′,m1, . . . ,mr, and an orbifold homomorphism

θ : Γ(g′ | m1, . . . ,mr) → G

such that ord(θ(ci)) = mi ∀i and such that the Riemann - Hurwitz relation
holds:

(3) 2g − 2 = |G|

(

2g′ − 2 +
r
∑

i=1

(

1−
1

mi

)

)

.

If this is the case, then g′ is the genus of C ′ := C/G. The G-cover
C → C ′ is branched in r points p1, . . . , pr with branching indices m1, . . . ,mr,
respectively.

Moreover, if we denote by xi ∈ G the image of ci under θ, then

Σ(x1, . . . , xr) := ∪a∈G ∪∞

i=0 {ax
i
1a

−1, . . . axira
−1},

is the set of stabilizers for the action of G on C.
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If we restrict ourselves to the case where the quotient curve is isomorphic
to P

1 then the Theorem suggests the following definition.

Definition 2.6. Let G be a finite group and r ∈ N with r ≥ 2.

• An r−tuple T = (x1, . . . , xr) of elements of G is called a spherical
r−system of generators of G if 〈x1, . . . , xr〉 = G and x1 · . . . ·xr = 1.

• We say that T is of type τ := (m1, . . . ,mr) if the orders of (x1, . . . , xr)
are respectively (m1, . . . ,mr).

• We shall denote:

S(G, τ) := {spherical r−systems for G of type τ}.

• Moreover, two spherical ri−systems T1 = (x1, . . . , xr1) and T2 =
(x1, . . . , xr2) are said to be disjoint, if:

(4) Σ(T1)
⋂

Σ(T2) = {1},

where

Σ(Ti) :=
⋃

g∈G

∞
⋃

j=0

ri
⋃

k=1

g · xji,k · g
−1.

We obtain that the datum of a surface isogenous to a higher product of
unmixed type S = (C1 × C2)/G with q = 0 is determined, once we look
at the monodromy of each covering of P1, by the datum of a finite group
G together with two respective disjoint spherical ri−systems of generators
T1 := (x1, . . . , xr1) and T2 := (x1, . . . , xr2), such that the types of the sys-
tems satisfy (3) with g′ = 0 and respectively g = g(Ci). The condition of
being disjoint ensures that the action of G on the product of the two curves
C1×C2 is free. Observe that this can be specialized to ri = 3, and therefore
can be used to construct Beauville surfaces. This description suggests the
following definition.

Definition 2.7. An unmixed ramification structure of size (r1, r2) for a fi-
nite group G, is a pair (T1, T2) of tuples T1 := (x1, . . . xr1), T2 := (x1, . . . xr2)
of elements of G, such that (T1, T2) is a disjoint pair of spherical ri−system
of generators of G.

The definition of an unmixed Beauville structure given in the introduction
is a special case of the above definition for r1 = r2 = 3. Therefore, the
problem of finding Beauville surfaces of unmixed type is now translated into
the problem of finding finite groups G which admit an unmixed Beauville
structure.

3. Ramification Structures for Finite Simple Groups

3.1. Ramification Structures for An and Sn. In this section we prove
Theorems 1.2 and 1.3. The proofs are based on results of Liebeck and
Shalev [14].
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3.1.1. Theoretical Background – Higman’s Conjecture and a Theorem of
Liebeck and Shalev on Fuchsian groups. Conder [6] (following Higman) proved
that sufficiently large alternating groups are in fact Hurwitz groups, namely
they are quotients of the Hurwitz triangle group ∆(2, 3, 7), using the method
of coset diagrams. In fact, Higman had already conjectured in the late 1960s
that every hyperbolic triangle group, and more generally – every Fuchsian
group, surjects to all but finitely many alternating groups.

This conjecture was proved by Everitt [10] using the method of coset
diagrams, and later Liebeck and Shalev [14] gave an alternative proof based
on probabilistic group theory. In fact, they proved a more explicit and
general result, which is presented below.

Note that the results of Liebeck and Shalev are applicable to any Fuchsian
group Γ, however, we shall use them only for the case of orbifold surface
groups (see Definition 2.4)

Γ = Γ(g′ | m1, . . . ,mr)

that satisfy the inequality

(5) 2g′ − 2 +
r
∑

i=1

(

1−
1

mi

)

> 0.

Definition 3.1. Let Ci = gSn

i (1 ≤ i ≤ r) be conjugacy classes in Sn, and
let mi be the order of gi. Define sgn(Ci) := sgn(gi), where sgn(gi) is the
sign of gi. Moreover define

HomC(Γ, Sn) = {φ ∈ Hom(Γ, Sn) : φ(ci) ∈ Ci for 1 ≤ i ≤ r},

where C := (C1, . . . , Cr).

Definition 3.2. Conjugacy classes in Sn of cycle-shape (mk), where n =
mk, namely, containing k cycles of length m each, are called homogeneous.
A conjugacy class having cycle-shape (mk, 1f ), namely, containing k cycles
of length m each and f fixed points, with f bounded, is called almost homo-
geneous.
Theorem 3.3. [14, Theorem 1.9]. Let Γ be a Fuchsian group, and let Ci

(1 ≤ i ≤ r) be conjugacy classes in Sn with cycle-shapes (mki
i , 1fi), where

fi < f for some constant f and
∏r

i=1 sgn(Ci) = 1. Set C = (C1, . . . , Cr).
Then the probability that a random homomorphism in HomC(Γ, Sn) has im-
age containing An tends to 1 as n → ∞.

Applying this when Γ is the triangle group ∆(m1,m2,m3), Liebeck and
Shalev [14] demonstrate that three elements, with product 1, from almost
homogeneous classes C1, C2, C3 of orders m1, m2, m3, randomly gener-
ate An or Sn, provided 1/m1 + 1/m2 + 1/m3 < 1. In particular, when
(m1,m2,m3) = (2, 3, 7), one can choose C1, C2 and C3 as conjugacy classes
of even permutations and this gives random (2, 3, 7) generation of An.

Using Theorem 3.3, Liebeck and Shalev deduced the following Corollary
regarding symmetric groups.
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Corollary 3.4. [14, Theorem 1.10]. Let Γ = Γ(0|m1, . . . ,mr) be a polygonal
group which satisfies the above inequality (5), and assume that at least two
of m1, . . . ,mr are even. Then Γ surjects to all but finitely many symmetric
groups Sn.

3.1.2. Beauville Structures and Ramification Structures for An and Sn.

Proof of Theorem 1.2. Assume that (r1, s1, t1) and (r2, s2, t2) are two hyper-
bolic types and that n is large enough. By the following Algorithm 3.5, we
choose six almost homogeneous conjugacy classes in Sn, Cr1 , Cs1 , Ct1 , Cr2 ,
Cs2 , Ct2 , of orders r1, s1, t1, r2, s2, t2 respectively, such that they contain
only even permutations, and they all have different numbers of fixed points.

By Theorem 3.3, the probability that three random elements (x1, y1, z1)
(equivalently (x2, y2, z2)) whose product is 1, taken from the almost homo-
geneous conjugacy classes (Cr1 , Cs1 , Ct1) (equivalently (Cr2 , Cs2 , Ct2)) will
generate An, tends to 1 as n → ∞.

This implies that if n is large enough, one can find six elements x1, y1, z1,
x2, y2, z2 in An of orders r1, s1, t1, r2, s2, t2 respectively satisfying the follow-
ing properties.

• x1 ∈ Cr1 , y1 ∈ Cs1 , z1 ∈ Ct1 , x2 ∈ Cr2 , y2 ∈ Cs2 , z2 ∈ Ct2 .
• x1y1z1 = x2y2z2 = 1 and 〈x1, y1〉 = 〈x2, y2〉 = An.
• For any choice of integers lx1

, ly1 , lz1 ,lx2
, ly2 , lz2 , if the six elements

x
lx1
1 , y

ly1
1 , z

lz1
1 , x

lx2
2 , y

ly2
2 , z

lz2
2 are not trivial, then they all belong

to different conjugacy classes in Sn, since they all have different
numbers of fixed points, and hence Σ(x1, y1, z1)

⋂

Σ(x2, y2, z2) =
{1An}.

Therefore, if n is large enough, the quadruple (x1, y1;x2, y2) is an un-
mixed Beauville structure for An, where (x1, y1, z1) has type (r1, s1, t1) and
(x2, y2, z2) has type (r2, s2, t2). �

Algorithm 3.5. Choosing six almost homogeneous conjugacy classes Cr1 ,
Cs1, Ct1 , Cr2, Cs2, Ct2 in Sn, of orders r1, s1, t1, r2, s2, t2 respectively, such
that they contain only even permutations, and they all have different numbers
of fixed points.

Step 1: Sorting r1, s1, t1, r2, s2, t2.
Let m6 ≤ · · · ≤ m1 be the sorted sequence whose elements are exactly

r1, s1, t1, r2, s2, t2. Since n can be as large as we want, we may assume that
n > 100m1.

Step 2: Choosing even integers k′i (1 ≤ i ≤ 6).
For 1 ≤ i ≤ 6, let

k′i =

{

⌊n/mi⌋ if it is even,

⌊n/mi⌋ − 1 otherwise.

Observe that for 1 ≤ i ≤ 6,

k′imi ≤ n ≤ (k′i + 2)mi.
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Step 3: Choosing even integers ki (1 ≤ i ≤ 6) s.t. for every 1 ≤ i 6= j ≤ 6,
kimi 6= kjmj.

Starting from i = 6 and going down, set ki = k′i if k
′

imi 6= kjmj for all
j > i. It may happen that for some i < j, k′imi = kjmj . In this case, we
shall replace k′i by ki, by choosing it from the set {k′i − 2l : 1 ≤ l ≤ 5}
such that for every j > i, kimi 6= kjmj . Note that by our assumption, the
integers ki (1 ≤ i ≤ 6) are positive.

Step 4: Defining the conjugacy classes Ci (1 ≤ i ≤ 6).
Assume that n is large enough and let Ci (1 ≤ i ≤ 6) be conjugacy classes

in Sn with cycle shapes

(mki
i , 1fi), where fi = n− kimi.

Observe that the conjugacy classes Ci (1 ≤ i ≤ 6) satisfy the following
properties:

(i) For every 1 ≤ i ≤ 6, sgn(Ci) = 1, since Ci contains an even number
of cycles (as the ki-s are even).

(ii) Set f := 12m1. Then for every 1 ≤ i ≤ 6,

fi = n− kimi ≤ (k′i + 2)mi − (k′i − 10)mi = 12mi ≤ 12m1 = f,

and hence it is bounded independently of n.
(iii) For every 1 ≤ i 6= j ≤ 6, fi 6= fj, since kimi 6= kjmj .

(iv) Let ci ∈ Ci be some element, then any non-trivial power clii has
exactly fi fixed points.

(v) By (iii) and (iv), for any 1 ≤ i 6= j ≤ 6 and any two integers li, lj ,

if the powers clii and c
lj
j are not trivial, then they belong to different

conjugacy classes in Sn.

Step 5: Defining the conjugacy classes Cr1 , Cs1 , Ct1 , Cr2 , Cs2 , Ct2 .
Let kr1 , ks1 , kt1 , kr2 , ks2 , kt2 (respectively fr1 , fs1 , ft1 , fr2 , fs2 , ft2) be the

elements of the set {k1, . . . , k6} (respectively {f1, . . . , f6}), ordered by the
same correspondence between {r1, s1, t1, r2, s2, t2} and {m1, . . . ,m6}.

Now, Cr1 , Cs1 , Ct1 , Cr2 , Cs2 , Ct2 are the six conjugacy classes in Sn with

cycle-shapes (r
kr1
1 , 1fr1 ), (s

ks1
1 , 1fs1 ), (t

kt1
1 , 1ft1 ), (r

kr2
2 , 1fr2 ), (s

ks2
2 , 1fs2 ), (t

kt2
2 , 1ft2 )

respectively.

In a similar way, we prove Theorem 1.3 regarding the symmetric groups.

Proof of Theorem 1.3. Assume that (r1, s1, t1) and (r2, s2, t2) are two hy-
perbolic types, such that at least two of (r1, s1, t1) are even and at least two
of (r2, s2, t2) are even, and that n is large enough. By slightly modifying
Algorithm 3.5, we may choose six almost homogeneous conjugacy classes
Cr1 , Cs1 , Ct1 , Cr2 , Cs2 , Ct2 in Sn, of orders r1, s1, t1, r2, s2, t2 respectively,
such that two classes of Cr1 , Cs1 , Ct1 and two classes of Cr2 , Cs2 , Ct2 contain
only odd permutations, and all these classes have different numbers of fixed
points.
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By Theorem 3.3 and Corollary 3.4, the probability that three random
elements (x1, y1, z1) (equivalently (x2, y2, z2)) whose product is 1, taken
from the almost homogeneous conjugacy classes (Cr1 , Cs1 , Ct1) (equivalently
(Cr2 , Cs2 , Ct2)) will generate Sn, tends to 1 as n → ∞.

Therefore, if n is large enough, there exists a quadruple (x1, y1;x2, y2)
which is an unmixed Beauville structure for Sn, where (x1, y1, z1) has type
(r1, s1, t1) and (x2, y2, z2) has type (r2, s2, t2). �

Moreover, since Theorem 3.3 and Corollary 3.4 apply to any polygonal
group, one can modify Algorithm 3.5 and deduce the following Corollaries.

Corollary 3.6. Let τ1 = (m1,1, . . . ,m1,r1) and τ2 = (m1,1, . . . ,m1,r2) be two
sequences of natural numbers such that mk,i ≥ 2 and

∑rk
i=1(1− 1/mk,i) > 2

for k = 1, 2. Then almost all alternating groups An admit an unmixed
ramification structure of type (τ1, τ2).

Corollary 3.7. Let τ1 = (m1,1, . . . ,m1,r1) and τ2 = (m1,1, . . . ,m1,r2) be two
sequences of natural numbers such that mk,i ≥ 2, at least two of (mk,1, . . . ,mk,rk)
are even and

∑rk
i=1(1−1/mk,i) > 2, for k = 1, 2. Then almost all symmetric

groups Sn admit an unmixed ramification structure of type (τ1, τ2).

3.2. Beauville Structures for PSL(2, pe). In this section we prove Theo-
rem 1.4 and Corollary 1.5. The proof is based on well-known properties of
PSL(2, pe) (see for example [9, Go, 21]) and on results of Macbeath [16].

3.2.1. Theoretical Background I – Properties of PSL(2, pe). Let q = pe,
where p is a prime number and e ≥ 1. Recall that GL(2, q) is the group
of invertible 2 × 2 matrices over the finite field with q elements, which we
denote by Fq, and SL(2, q) is the subgroup of GL(2, q) comprising the ma-
trices with determinant 1. Then PGL(2, q) and PSL(2, q) are the quotients
of GL(2, q) and SL(2, q) by their respective centers.

When q is even, then one can identify PSL(2, q) with SL(2, q) and also
with PGL(2, q), and so its order is q(q − 1)(q + 1). When q is odd, the
orders of PGL(2, q) and PSL(2, q) are q(q − 1)(q + 1) and 1

2
q(q − 1)(q + 1)

respectively, and therefore we can identify PSL(2, q) with a normal subgroup
of index 2 in PGL(2, q). Also recall that PSL(2, q) is simple for q 6= 2, 3.

One can classify the elements of PSL(2, q) according to the possible Jordan
forms of their pre-images in SL(2, q). The following table lists the three types
of elements, according to whether the characteristic polynomial P (λ) :=
λ2 − αλ+ 1 of the matrix A ∈ SL(2, q) (where α is the trace of A) has 0, 1
or 2 distinct roots in Fq.
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element roots canonical form in order in conjugacy classes
type of P (λ) SL(2,Fp) PSL(2, q)

two conjugacy classes

unipotent 1 root

(

±1 1
0 ±1

)

p in PSL(2, q), which

α = ±2 unite in PGL(2, q)

split 2 roots

(

a 0
0 a−1

)

divides 1
d
(q − 1) for each α:

where a ∈ F
∗

q d = 1 for q even one conjugacy class
and a+ a−1 = α d = 2 for q odd in PSL(2, q)

non-split no roots

(

a 0
0 aq

)

divides 1
d
(q + 1) for each α:

where a ∈ F
∗

q2
\ F∗

q d = 1 for q even one conjugacy class

aq+1 = 1 d = 2 for q odd in PSL(2, q)
and a+ aq = α

The subgroups of PSL(2, q) are well-known (see [9, 21]), and fall into the
following three classes.

Class I: The small triangle subgroups.
These are the finite triangle groups ∆ = ∆(l,m, n), which can occur if

and only if 1/l + 1/m+ 1/n > 1.
This inequality holds only for the following triples:

• (2, 2, n) : ∆ is a dihedral subgroup of order 2n.
• (2, 3, 3) : ∆ ∼= A4.
• (2, 3, 4) : ∆ ∼= S4.
• (2, 3, 5) : ∆ ∼= A5.

Moreover, if at least two of l,m and n are equal to 2 or if 2 ≤ l,m, n ≤ 5,
then a subgroup of PSL(2, q) which is generated by three elements x, y and
z = (xy)−1, of orders l,m and n respectively, may be a small triangle group
(for a detailed list of such triples see [16, §8]).

Class II: Structural subgroups.
Let B be a subgroup of PSL(2, q) defined by the images of the matrices

{(

a b
0 a−1

)

: a ∈ F
∗

q, b ∈ Fq

}

,

and let C be a subgroup of PSL(2,Fq) defined by the images of the matrices
{(

t 0
0 tq

)

: t ∈ Fq2 \ Fq, tq+1 = 1

}

.

Any subgroup of PSL(2, q) which can be conjugated (in PSL(2,Fq) to a
subgroup of either B or C is called a structural subgroup of PSL(2, q).

Class III: Subfield subgroups.
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If Fpr is a subfield of Fq, then PSL(2, pr) is a subgroup of PSL(2, q).
If the quadratic extension Fp2r is also a subfield of Fq, then PGL(2, pr) is
a subgroup of PSL(2, q). These groups, as well as any other subgroup of
PSL(2, q) which is isomorphic to any one of them, will be referred to as
subfield subgroups of PSL(2, q).

3.2.2. Theoretical Background II – Generation Theorems of Macbeath. Let
(α, β, γ) ∈ F

3
q, and denote

E(α, β, γ) := {A,B,C ∈ SL(2, q) : ABC = I, trA = α, trB = β, trC = γ}.

Since all elements in PSL(2, q) whose pre-images in SL(2, q) have the
same trace are conjugate in PGL(2, q), all of them have the same order in
PSL(2, q). Therefore, we may denote by Ord(α) the order in PSL(2, q) of
the image of a matrix A ∈ SL(2, q) whose trace equals α.

Example 3.8. Ord(0) = 2, Ord(±1) = 3 and Ord(±2) = p.

Theorem 3.9. [16, Theorem 1]. E(α, β, γ) 6= ∅ for any (α, β, γ) ∈ F
3
q.

Definition 3.10. Let (α, β, γ) ∈ F
3
q. We say that (α, β, γ) is singular if

α2 + β2 + γ2 − αβγ = 4.

Let l = Ord(α), m = Ord(β) and n = Ord(γ). We say that (α, β, γ) is
small if at least two of l,m, n are equal to 2 or if 2 ≤ l,m, n ≤ 5.

Theorem 3.11. [16, Theorem 2]. (α, β, γ) ∈ F
3
q is singular if and only if

for (A,B,C) ∈ E(α, β, γ), the group generated by the images of A and B is
a structural subgroup of PSL(2, q).

Theorem 3.12. [16, Theorem 4]. If (α, β, γ) ∈ F
3
q is neither singular nor

small, then for any (A,B,C) ∈ E(α, β, γ), the group generated by the images
of A and B is a subfield subgroup of PSL(2, q).

Macbeath [16] used these generation theorems of PSL(2, q) to prove that
PSL(2, q) can be generated by two elements one of which is an involution.
Moreover, he classified all the values of q for which PSL(2, q) is a Hurwitz
group, namely a quotient of the Hurwitz triangle group ∆(2, 3, 7). In addi-
tion, he deduced the following.

Corollary 3.13. [16, Theorem 7]. If p is an odd prime, then PSL(2, p) can
be generated by two unipotents whose product is also unipotent.

3.2.3. Beauville Structures for PSL(2, pe).

Proof of 1.4. It is known by [2, Proposition 3.6] (and can be easily verified)
that PSL(2, 2) ∼= S3, PSL(2, 3) ∼= A4 and PSL(2, 4) ∼= PSL(2, 5) ∼= A5 do
not admit an unmixed Beauville structure.

Case q = pe odd.
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Let q ≥ 13 be an odd prime power, then we will construct an unmixed
Beauville structure for PSL(2, q), (A1, B1;A2, B2), of type (τ1, τ2), where

τ1 =

(

q − 1

2
,
q − 1

2
,
q − 1

2

)

and τ2 =

(

q + 1

2
,
q + 1

2
,
q + 1

2

)

.

Let r = q−1
2

(respectively r = q+1
2
), and note that r > 5. Let α be a trace

of some diagonal split (respectively non-split) element A ∈ SL(2, q) whose
image in PSL(2, q) has exact order r, and note that α 6= 0,±1,±2, since A
is neither of orders 2 or 3 nor unipotent (see Example 3.8).

Observe that (α,α, α) is a non-singular triple. Indeed, the equality 3α2−
α3 = 4 is equivalent to (α− 2)2(α+ 1) = 0, but the latter is not possible.

By Theorem 3.9, E(α,α, α) 6= ∅, and since (α,α, α) is not singular nor
small, for (A,B,C) ∈ E(α,α, α), one has A 6= ±B, and moreover, the image
of the subgroup 〈A,B〉 is a subfield subgroup of PSL(2, q), by Theorem 3.12.

However, since the order of A is exactly q−1
2

(respectively q+1
2
) then the

image of the subgroup 〈A,B〉 is exactly PSL(2, q).

Observe that q−1
2

and q+1
2

are relatively prime. Hence, if A1, A2 ∈

PSL(2, q) have orders q−1
2

and q+1
2

respectively, then every two non-trivial

powers Ai
1 and Aj

2 have different orders, thus

{g1A
i
1g

−1
1 }g1,i ∩ {g2A

j
2g

−1
2 }g2,j = {1},

implying that Σ(A1, B1, C1) ∩Σ(A2, B2, C2) = {1}, as needed.
For smaller values of q, a computer calculation (using MAGMA) shows

that PSL(2, 7) admits an unmixed Beauville structure of type ((4, 4, 4), (7, 7, 7)),
PSL(2, 9) ∼= A6 admits an unmixed Beauville structure of type ((4, 4, 4), (5, 5, 5)),
and PSL(2, 11) admits an unmixed Beauville structure of type ((5, 5, 5), (6, 6, 6)).

Case q = 2e even.

Let q ≥ 8 be an even prime power, then we will construct an unmixed
Beauville structure for PSL(2, q), (A1, B1;A2, B2), of type (τ1, τ2), where

τ1 = (q − 1, q − 1, q − 1) and τ2 = (q + 1, q + 1, q + 1).

Let r = q − 1 (respectively r = q + 1), and note that r > 5. Let α be a
trace of some diagonal split (respectively non-split) element A ∈ PSL(2, q) =
SL(2, q) of exact order r, and note that α 6= 0, 1, since A is neither unipotent
nor of order 3 (see Example 3.8). Then the claim follows as in the previous
case by considering (A,B,C) ∈ E(α,α, α).

�

Observe that the above proof actually shows that the group PSL(2, q) can
admit many Beauville structures of various types. On the other hand, if the
types are fixed then we can deduce the following.

Corollary 3.14. Let p be an odd prime, and let r, s > 5 be two relatively
prime integers each of which divides either p−1

2
or p+1

2
or p. Then PSL(2, p)

admits an unmixed Beauville structure of type ((r, r, r), (s, s, s)).
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Proof. If each of r and s divides either p−1
2

or p+1
2

then the result follows
from the proof of Theorem 1.4. Otherwise, if r = p (or s = p) then it relies
on Corollary 3.13 as well. �

proof of Corollary 1.5. Without loss of generality we may assume that s is
odd. By the Chinese Remainder Theorem there exists a unique integer
0 ≤ x < 2rs solving the system of simultaneous congruences

x ≡ 1 mod 2r, x ≡ −1 mod s.

Note that such x necessarily satisfies that r | x−1
2

and s | x+1
2

.
Moreover, by Dirichlet’s Theorem, the arithmetic progression Ar,s :=

{2rsn+ x : n ∈ N} contains infinitely many primes.
By Corollary 3.14 the group PSL(2, p) admits an unmixed Beauville struc-

ture of type ((r, r, r), (s, s, s)). �

The following two Remarks explain why Theorem 1.2 fails to hold in its
great generality for the family of groups PSL(2, q).

Remark 3.15. Note that unlike the case of Alternating groups, for the
group PSL(2, p), the condition that r and s are relatively prime is also
necessary.

Indeed, assume that r and s are not relatively prime, and let d be a prime
divisor of gcd(r, s). Then either d = p, or d divides p−1

2
, or d divides p+1

2
.

Let A1 and A2 be two elements in PSL(2, p) of orders r and s respectively,

and write r = r′d and s = s′d. Assume that d divides p−1
2

(or p+1
2

), then

Ar′

1 and As′

2 are both of exact order d, hence the cyclic subgroups 〈Ar′

1 〉 and

〈As′

2 〉 are conjugate in PSL(2, p), implying that there exist some integers k, l

such that Ar′k
1 and As′l

2 are conjugate to the same element of order d.

If d = p then Ar′

1 and As′

2 are both of order p, and so they can be conju-

gated in PSL(2, p) to the image of some matrix

(

1 ai
0 1

)

, where a1, a2 ∈ F
∗

p.

Since half the elements in S := {k : 1 ≤ k ≤ p − 1} are squares in F
∗

p and

half are non-squares, there exist k, l ∈ S such that Ar′k
1 and As′l

2 are both

conjugate in PSL(2, p) to the image of

(

1 1
0 1

)

.

Remark 3.16. Note that Corollary 3.14 does not hold for the family of
groups {PSL(2, pe)}p prime, e∈N, since one cannot fix a hyperbolic type (r, s, t)
and hope that almost all groups G = PSL(2, pe) where r, s and t all divide
|G|, will be quotients of ∆(r, s, t).

Indeed, Macbeath [16, Theorem 8] proved that PSL(2, pe) is a Hurwitz
group, namely a quotient of ∆(2, 3, 7), if either e = 1 and p = 0,±1 (mod 7),
or e = 3 and p = ±2,±3 (mod 7). Recently, Marion [17] showed that this
phenomenon occurs in general for any prime hyperbolic type. Namely, he
showed that if (r, s, t) is a hyperbolic triple of primes and p is a prime num-
ber, then there exists a unique integer e such that PSL(2, pe) is a quotient
of the triangle group ∆(r, s, t).



NEW BEAUVILLE SURFACES AND FINITE SIMPLE GROUPS 15

Interestingly, this situation is different for other families of groups of Lie
type of low Lie rank (under the assumption that (r, s, t) are not too small),
as was shown in recent results of Marion [18, 19], which are detailed in
Theorem 3.17 below.

3.3. Beauville Structures for Other Finite Simple Groups of Lie

Type. In this section we prove Theorem 1.6 regarding certain families of
finite simple groups of Lie type of low Lie rank. The proof is based on recent
results of Marion [18, 19]. Moreover, we discuss some Conjectures on finite
simple groups of Lie type in general.

3.3.1. Beauville Structures for Finite Simple Groups of Low Lie Rank.
Theorem 3.17. [18, Theorems 1,2,4] and [19, Theorem 1]. Let G be one
of the finite simple groups of Lie type listed below, and let (p1, p2, p3) be a
hyperbolic triple of primes p1 ≤ p2 ≤ p3, such that lcm(p1, p2, p3) divides
|G|, which, moreover, satisfy the conditions given bellow.

(1) Suzuki groups, G =2B2(q), where q = 22e+1;
(2) Ree groups, G =2G2(q), where q = 32e+1;
(3) G = G2(q), where q = pe for some prime number p > 3, and

(p1, p2, p3) /∈ {(2, 5, 5), (3, 3, 5), (3, 5, 5), (5, 5, 5)};
(4) G =3 D4(q), where q = pe for some prime number p > 3, and

(p1, p2, p3) are distinct primes, s.t. {p1, p2} 6= {2, 3};
(5) G = PSL(3, q), where q = pe for some prime p, and (p1, p2, p3) are

odd primes;
(6) G = PSU(3, q), where q = pe for some prime p, and (p1, p2, p3) are

odd primes.

Then, if φ ∈ Hom(∆, G) is a randomly chosen homomorphism from the
triangle group ∆ = ∆(p1, p2, p3) to G, then

lim
q→∞

Prob{φ is surjective } = 1.

Now we have all the ingredients needed for the proof of Theorem 1.6.

Proof of Theorem 1.6. (1) Let G =2B2(q), where q = 22e+1, then

|G| = q2(q2 + 1)(q − 1).

Since q2 + 1 ≡ 0 (mod 5), there are at least two prime numbers, 5 and
some r > 5, which divide |G|. Indeed, q − 1 ≡ 1 (mod 3). Moreover q − 1
is not a power of 5 since 5 ≡ 1 (mod 4), but q − 1 ≡ 3 (mod 4). If q is
large enough, then, by Theorem 3.17, the two triangle groups, ∆(5, 5, 5)
and ∆(r, r, r), surject onto G, and hence G admits a Beauville structure of
type ((5, 5, 5), (r, r, r)).

(2) Let G =2G2(q), where q = 32e+1, then

|G| = q3(q − 1)(q3 + 1).

Since q3 + 1 ≡ 0 (mod 7), there are at least two odd prime numbers, 7 and
some r (7 6= r > 3), which divide |G|. Indeed, q − 1 is not divisible by 3
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nor by 4. Moreover q − 1 is not a power of 7 since 7 ≡ −1 (mod 8), but
q − 1 ≡ 2 (mod 8). If q is large enough, then, by Theorem 3.17, the two
triangle groups, ∆(7, 7, 7) and ∆(r, r, r), surject onto G, and hence G admits
a Beauville structure of type ((7, 7, 7), (r, r, r)).

(3) Let G = G2(q), where q = pe for some prime number p > 3, then

|G| = q6(q − 1)2(q + 1)2(q2 − q + 1)(q2 + q + 1),

and so there are at least two distinct prime numbers, r, s ≥ 7, which divide
|G|. To see this, for example, notice that q2 + q + 1 and q2 − q + 1 are odd,
coprime, and not divisible by 5. So there exists a prime r ≥ 7 that divides
|G|. To find s is enough to prove that q2 + q + 1 or q2 − q + 1 are not
powers of 3. For this is enough to prove that, if they are divisible by 3, are
not divisible by 9. If q2 + q + 1 is divisible by 3, then q ≡ 1 (mod 3), and
q2 + q + 1 ≡ 3 (mod 9). If q2 − q + 1 is divisible by 3, then q ≡ 2 (mod 3),
and q2 − q + 1 ≡ 3 (mod 9). If q is large enough, then, by Theorem 3.17,
the two triangle groups, ∆(r, r, r) and ∆(s, s, s), surject onto G, and hence
G admits a Beauville structure of type ((s, s, s), (r, r, r)).

(4) Let G =3D4(q), where q = pe for some prime number p > 3, then

|G| = q12(q − 1)2(q + 1)2(q2 − q + 1)2(q2 + q + 1)2(q4 − q2 + 1),

and so there are at least six distinct primes, p1 = 2, p2 = 3, p3, p4, p5, p6,
which divide |G|. Indeed, we can choose for example p3 = p, and p4 and
p5 as in (3). For p6 it is enough to notice that q4 − q2 + 1 is odd, not
divisible by 3, and coprime to q2 + q + 1 and q2 − q + 1. If q is large
enough, then, by Theorem 3.17, the two triangle groups, ∆(2, p3, p5) and
∆(3, p4, p6), surject onto G, and hence G admits a Beauville structure of
type ((2, p3, p5), (3, p4, p6)).

(5) Let G = PSL(3, q) (resp. G = PSU(3, q)), where q = pe for some
prime p, then

|G| =
1

d
q3(q − 1)2(q + 1)(q2 + q + 1),

(resp. |G| = 1
d
q3(q − 1)(q + 1)2(q2 − q + 1) ), where d = 1 or 3.

Hence, there are at least two distinct odd prime numbers, greater then 3,
r and s, which divide |G|. Indeed, if p = 2 and e > 1 it is clear, if p = 3
and e > 1 then at least one between (q − 1) and (q + 1) is not a power
of two, hence we can choose r, then proceed as in (3). Else take r = p
and proceed as in (3). If q is large enough, then, by Theorem 3.17, the two
triangle groups, ∆(r, r, r) and ∆(s, s, s), surject onto G, and hence G admits
a Beauville structure of type ((s, s, s), (r, r, r)). �

3.3.2. Conjectures on Finite Simple Classical Groups of Lie Type. Liebeck
and Shalev raised the following Conjecture in [15] regarding finite simple
classical groups of Lie type.

Conjecture 3.18 (Liebeck-Shalev). For any Fuchsian group Γ there is an
integer f(Γ), such that if G is a finite simple classical group of Lie rank
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at least f(Γ), then the probability that a randomly chosen homomorphism
from Γ to G is an epimorphism tends to 1 as |G| → ∞.

If this Conjecture holds, it immediately implies that any finite simple
classical group G of Lie rank large enough admits an unmixed Beauville
structure. Indeed, let s and t be two distinct primes greater than 3, then
the triangle groups ∆(s, s, s) and ∆(t, t, t) will surject onto G, if G is of Lie
rank large enough, yielding a Beauville structure of type ((s, s, s), (t, t, t))
for G. Moreover, this Conjecture inspired us to formulate Conjecture 1.7.
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[4] A. Beauville, Surfaces Algébriques Complex. Astérisque 54, Paris (1978).
[5] F. Catanese, Fibred surfaces, varieties isogenous to a product and related moduli spaces.

Amer. J. Math. 122, (2000) 1–44.
[6] M.D.E. Conder, Generators for alternating and symmetric groups. J. London Math.

Soc. 22 (1980) 75–86.
[7] M.D.E. Conder, Hurwitz groups: a brief survey. Bull. Amer. Math. Soc. 23 (1990)

359-370.
[8] M.D.E. Marston, An update on Hurwitz groups. Groups, Complexity and Cryptology

2, no. 1, (2010) 35–49.
[9] L. E. Dickson. Linear groups with an exposition of the Galois field theory. (Teubner,

1901).
[10] B. Everitt, Alternating quotients of Fuchsian groups. J. Algebra 223 (2000) 457–476.



18 SHELLY GARION, MATTEO PENEGINI

[11] Y. Fuertes, G. Jones, Beauville surfaces and finite groups. J. Algebra 340 (2011),
13–27.

[12] S. Garion, On Beauville Structures for PSL(2, q), Preprint availiable at
arXiv:1003.2792.

[13] S. Garion, M. Larsen, A. Lubotzky, Beauville surfaces and finite simple groups, to
appear in J. Reine Angew. Math.

[Go] D. Gorenstein, Finite groups. Chelsea Publishing Co., New York, 1980.
[14] M.W. Liebeck, A. Shalev, Fuchsian groups, coverings of Riemann surfaces, subgroup

growth, random quotients and random walks. J. Algebra 276 (2004) 552–601.
[15] M.W. Liebeck, A. Shalev, Fuchsian groups, finite simple groups and representation

varieties. Invent. Math. 159 (2005) no. 2, 317–367.
[16] A. M. Macbeath, Generators of the linear fractional groups, Number Theory (Proc.

Sympos. Pure Math., Vol. XII, Houston, Tex., 1967). Amer. Math. Soc., Providence,
R.I. (1969) 14–32.

[17] C. Marion, Triangle groups and PSL2(q), J. Group Theory 12 (2009) 689-708
[18] C. Marion, Triangle generation of finite exceptional groups of low rank. Preprint.
[19] C. Marion, Random and deterministic triangle generation of three-dimentional clas-

sical groups I. Preprint.
[20] F. Serrano, Isotrivial fibred surfaces. Annali di Matematica. pura e applicata, Vol.

CLXXI, (1996) 63–81.
[21] M. Suzuki, Group Theory I. Springer-Verlag, Berlin, 1982.

Shelly Garion, Max-Planck-Institute for Mathematics, D-53111 Bonn, Ger-

many

E-mail address: shellyg@mpim-bonn.mpg.de

Matteo Penegini, Lehrstuhl Mathematik VIII, Universität Bayreuth, NWII,

D-95440 Bayreuth, Germany

E-mail address: matteo.penegini@uni-bayreuth.de

http://arxiv.org/abs/1003.2792

	1. Introduction
	2. Geometrical Background on Ramification Structures
	3. Ramification Structures for Finite Simple Groups
	3.1. Ramification Structures for An and Sn
	3.2. Beauville Structures for PSL(2,pe)
	3.3. Beauville Structures for Other Finite Simple Groups of Lie Type

	References

