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Abstract 

 

Bivalves are a relevant ecological group, widespread in freshwater, estuarine and marine 

environments, with many edible species (such as oysters, mussels, clams). Like all other 

invertebrate groups, bivalves lack an adaptive immunity, but they are endowed with a potent and 

complex innate immune system (humoral and cellular defenses).  Bivalve immunity  displays a 

wide variety of sensitive receptors, selective effectors, and synergistic genetic regulatory networks 

that afford protection  in a fluctuating environment.  

As filter feeders, bivalves accumulate large numbers of microorganisms, mainly bacteria, that can 

either establish a commensal relationship with the host without causing diseases, or proliferate and 

invade soft tissues, resulting in high mortality. In this light, understanding the relationship between 

bivalve  immune system and bacteria has important  implications not only for protection of 

economically important species, but also for human health concern. Available data underlying the 

specificity of bivalve immune response to bacterial challenge will be summarized. 
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1. Innate immunity in bivalves: diversity and complexity  

Bivalves (Mollusca, Lophotrochozoa) are a relevant ecological group, widespread in freshwater, 

estuarine and marine environments, with many edible species. Like all other invertebrate groups, 

bivalves lack an adaptive immunity: however, they are endowed with a potent and complex innate 

immune system (humoral and cellular defenses) similar to that of vertebrates 
1
. The lack of acquired 

immunity and the capacity to form antibodies (specific response) does not mean lack of specificity: 

invertebrates have evolved genetic mechanisms capable of producing thousands of different 

proteins from a small number of genes; this diversity allows them to recognize and eliminate a wide 

range of different pathogens 
2
. 

Bivalve hemocytes are responsible for cell-mediated immunity through the combined action of the 

phagocytic process with humoral defense factors such as agglutinins (e.g., lectins), lysosomal 

enzymes (e.g., acid phosphatase, lysozyme), toxic oxygen intermediates, and various antimicrobial 

peptides 
3
.  The morphology, ultrastructure and functions of bivalve haemocytes were reviewed by 

Hine 
4
.  Granular haemocytes (basophilic and acidophilic granulocytes) form a distinct group, 

whereas agranular haemocytes are heterogeneous in appearance and ultrastructure (blast-like cells, 

basophilic macrophage-like cells,  hyalinocytes). Not all types occur in each bivalve species; 

scallops lack granulocytes, and the hyalinocyte is a poorly defined cell type in several groups; 

moreover, due to functional heterogeneity,  the functions of each haemocyte type cannot be reliably 

extrapolated between species.  In the last decade, the application of flow cytometry analysis and 

molecular characterization of different immune-related molecules has greatly improved our  

knowledge on functional characterization of hemocytes, underlying both common and distinct 

features of the immune system in different bivalve species 
1,5-8

.
 
 

In bivalves, innate immunity promotes generalized protection against not only pathogenic 

organisms (e.g. protozoa, bacteria, viruses), but also environmental stressors (e.g. presence of 

contaminants, algal toxins,  air exposure, mechanical stress, high temperatures, changes in salinity) 

9
. To afford protection  in this  fluctuating environment, bivalve immunity  displays a wide variety 
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of sensitive receptors, selective effectors, and synergistic genetic regulatory networks. Moreover, as 

filter feeders, bivalves can accumulate large numbers of microorganisms from the aquatic 

environment; this may result in a concentration of potential pathogens, mainly bacteria,  that can 

either establish a commensal relationship with the host without causing diseases, or proliferate and 

invade soft tissues, resulting in high mortality. For edible species (such as oysters, mussels, clams), 

understanding the relationship between the immune system and bacteria has two main implications: 

1) to ensure a  better protection in the intensive breeding of economically important species; 2)  to 

control potential accumulation of human pathogens of concern for public health. In this chapter, 

available data underlying the specificity of bivalve immune response to bacterial challenge will be 

summarized.  

2. Bivalves and marine bacteria 

A rich and diverse microbiota is present in the aquatic environment, and bivalves  can ingest 

many different kinds of bacteria, including some that can be pathogenic to the bivalve host 
10

. 

Bacterial pathogens can affect larvae cultured in hatchery, and adults cultured in the natural 

environment; generally, they are most virulent in during  larval stages. Larval pathogens include 

members of Vibrio, Pseudomonas, Alteromonas, Moraxella, and Aeromonas genera 
11

. Vibrios are 

also involved in diseases of juvenile and adults bivalves together with, but to  a lower extent, 

bacteria belonging to other genera 
11-13

.  

Vibrios are  Gram-negative marine bacteria widely distributed estuarine and coastal waters 

and sediments. The genus comprises human pathogens (V. cholerae, V. vulnificus, V. 

parahaemolyticus) and species pathogenic for aquatic animals
9
 (e.g., V. splendidus, V. 

aestuarianus).  Vibrios tend to be most common in warmer waters (above 17°C) and, depending on 

the species, they tolerate a range of salinities. A common trait is the presence of multiple lifestyles: 

a planktonic, free-swimming state and an adhering form on biotic and abiotic surfaces. Vibrios 

represent a high proportion of bacteria isolated from healthy and diseased bivalves, with 100-fold 
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higher concentration than in the surrounding water. For some of the bivalve-associated vibrios, the 

precise role as commensal, opportunistic or pathogenic organisms remains to be defined. 

Vibrio species associated with bivalve larvae diseases include V. anguillarum, V. 

alginolyticus, V. tubiashii, V. splendidus, V. pectenicida, and V. neptunius 
9-11

. Pathogen entry has 

been reported from brood stock, seawater and algal food 
14

. Larval vibriosis is an aggressive and 

rapidly progressing infection that affects different species and best documented in oysters. Disease 

outbreaks are characterized by bacterial swarming around the velum, loss of larval motility, 

extensive soft tissue necrosis, and rapid mortality (up to 90% within 24 hours of initial exposure to 

the most pathogenic strains). Oyster larvae cannot repair damage to the mantle during the early 

stages of infection; this capacity increases with the increasing size of the juveniles 
11

. The higher 

susceptibility of developing larvae to bacterial infection may be due to an immature immune 

system, and investment of energy in fast metabolic development for settlement. Metamorphosis was 

identified as a crucial stage when larvae increased the expression of immune-related genes and 

responded to environmental signals 
15

; however, information on ontogeny of the immune response 

in different species is still scarce.  

Vibriosis have been also described in juvenile and adult oysters, clams and mussels 
11,12

. 

Vibrios are associated to the syndromes known as Brown Ring Disease (BRD) in adult clams 
12,16

 

and Summer Mortality in juvenile oysters
13,17-19

. BRD affects both reared and wild clams 

(Ruditapes philippinarum and R.decussatus); it is  caused by V. tapetis, that was shown to be 

capable to reproduce the disease in healthy animals due to production of secreted proteins 
11,20

. An 

alteration of the calcification process of the inner surface of the valves and the presence of a brown 

deposit of conchiolin between the shell edge  and the pallial line is typical of the disease 
11

. The 

geographical  origin of the clams and environmental factors (i.e. temperature and salinity) seem to 

play a role in sensitivity to infections 
10,11

. Resistance to BRD in different clam species and stocks 

may be also related to the capacity of shell repair, as well as to the phagocytic activity of the 

hemocytes 
21-22

. Information on virulence factors of V. tapetis is scanty; recently, several protein 

Cross-Out

Replacement Text
source

Inserted Text
to be 

Inserted Text
is 

Cross-Out

Replacement Text
s (vibriosis is singular, vibrioses are plural)

Inserted Text
 

Note
not sure this is accurate, the disease is likely not caused by secreted proteins... but secreted proteins do contribute to the virulence of the pathogen...



fractions from extracellular products were shown to display biological activity towards clam 

hemocytes 
20

. 

The physiological and/or genetic status of the oysters, and multiple stressors such as 

elevated temperature, low dissolved oxygen, and limited energy resources after spawning were 

associated with Summer Mortality events 
13

. In addition, one or more infectious agents, such as 

herpes virus, OsHV1
19

, and different Vibrio species (e.g., V. aestuarianus, V. splendidus clade, V. 

harveyi) have been implicated as etiological agents 
17,18

. High temperatures might be important 

stressors by affecting host physiology and susceptibility to infection, and supporting proliferation, 

spread and virulence of thermodependent Vibrio spp 
23

.  

The so called V. splendidus clade constitutes a complex of phenotypically and genetically 

related species 
24

, with several members causing significant losses in the aquaculture industry 

worldwide. Studies with the V. splendidus LGP32 strain (recently assigned to the species V. 

tasmaniensis, belonging to the same clade 
25

) indicated that its virulence is linked to the outer 

membrane protein ompU 
26

. Other virulence factors are the metalloprotease Vsm 
27

, and an invasive 

serine protease Vsp specifically secreted through outer membrane vesicle production 
28

. A recent 2-

year sampling campaign in the northern Adriatic Sea (Italy) 
29

 showed that genes encoding OmpU 

protein and zinc metalloprotease are present in strains belonging to different species of the clade. 

Nasfi et al. 
26

 suggested that diverse clones of the V. splendidus clade can replace each other during 

different mortality outbreaks, probably favored by massive lateral transfer of virulence factors thus 

underlying the epidemiological risk of emergence of new virulent strains. 

The species V. aestuarianus is ubiquitous in different geographic areas. It was associated 

with oyster Summer Mortalities and its pathogenic potential was shown in experimental oyster 

challenges 
30,31

. Isolates show variable virulence likely linked  to the varying toxicity of the 

bacterial extracellular products. Those produced by V. aestuarianus 01/032, a strain isolated during 

a mortality outbreak in an experimental hatchery, caused morphological changes and 

immunosuppression in C. gigas haemocytes in vitro 
32

. These effects were ascribed to the capacity 



of the strain to produce a Vam metalloprotease that affects hemocyte morphology and impairs 

phagocytic function. GbpA (N acetyl glucosamine binding protein) and/or MSHA (Mannose 

Sensitive Hemagglutinin) adhesins are present in a large proportion of V. aestuarianus isolates 
29

; 

both ligands are involved in interactions with environmental surfaces (e.g., chitin), which might 

contribute to its the persistence in the environment 
9
. Moreover, they these adhesins may play a role 

in mediating surface interactions between bacteria and bivalve hemocytes, thus affecting the 

immune response (see below). 

3. Immune recognition 

Immune recognition is the first step of the immune response, allowing the discrimination of self-

/not self-substances. Pattern Recognition Receptors (PRRs) on the hemocyte membrane and in 

hemolymph serum play a crucial role  in activating the immune system to eliminate pathogens. 

PRRs selectively recognize a large family of conserved foreign molecules called Pathogen-

Associated Molecular Patterns (PAMPs), such as lipopolysaccharides, lipoproteins, peptidoglycans, 

lipoteichoic acids, viral dsRNA, unmethylated bacterial DNA, zymosans and heat shock proteins.   

Several groups of distinct PRRs have been identified in bivalves, including lectins,  peptidoglycan 

recognition proteins (PGRPs), Gram-negative binding proteins (GNBP), toll-like receptors (TLRs),  

scavenger receptors (SRs),  rig-like receptors (RLRs) and NOD-like receptors (NLRs) 
1,8,33

. The 

most studied PRRs show a high versatility and flexibility; however, some degree of specificity 

could be identified.   

Calcium-dependent (C-type) lectins are a superfamily of proteins that can bind  PAMPs through the 

recognition of carbohydrates, thus promoting their agglutination/immobilization and triggering 

successive immune functions, such as opsonization and phagocytosis.   Multiple lectin-related 

transcripts have been identified in different bivalve species,  that are up-regulated by immune 

challenge,  showing  a broad specificity towards microorganisms but a remarkable carbohydrate-

binding  specificity 
34

.  
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Toll-like receptors (TLRs) are involved in the molecular recognition of pathogens as well as in cell 

adhesion, signal transduction and cell growth 
35

. The search for components of the Toll signaling 

pathway has recently lead to their discovery in many bivalve models:   transcriptome analysis using 

Next Generation Sequencing (NGS) technologies lead to the identification of a vast repertoire of 

putative TLRs encoding sequences for M. edulis 
33

, R. philippinarum 
36

, and C. virginica 
37

. TRLs 

and components of the Toll-activated pathways were up-regulated  in the hemocytes of marine 

bivalves following single in vivo injection with different bacteria and PAMPs, with the majority of 

the challenges involving Vibrios as predominant marine bacteria 
38

.  

The complement system  pathway relies on several interacting proteins to recognize and then 

eliminate foreign microorganisms, with a pivotal role in the initiation of defence mechanisms, 

including agglutination, adhesion, opsonisation and cell lysis. Once activated, the complement 

system promotes target proteolytic reactions that operate following classical, lectin or alternative 

pathways.  C1q,  a subcomponent of the complement C1 complex, is considered to be a versatile 

PRP, binding directly to a broad range of PAMPs of bacteria, viruses, and parasites, as well as 

enhancing pathogen phagocytosis 
39

. Some C1q proteins with specific ligand recognition properties 

have been described and characterized also in bivalves: similar expression changes were observed 

in the hemocytes challenged with both Gram+ and Gram− bacteria 
40,41

.  

4. Immune signaling 

Upon the successful recognition of foreign compounds, activated PRRs trigger different 

intracellular signaling pathways that are required for the immune response. This may lead to rapid 

activation of phagocytosis, ROS production, release of pre-existing enzymes of antimicrobial 

molecules, as well as to changes in transcription of immune or stress response genes at the nuclear 

level 
42

. Among immune signaling pathways, the mitogen-activated protein kinase (MAPK), nuclear 

factor kB (NF-kB), the complement component and the Toll pathways have been investigated in 

bivalves. For a discussion of the NF-kB, complement  and Toll pathways see refs. 
1,8

.  
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Studies on components of kinase-mediated transduction pathwaysfirst revealed specificities in the 

bivalve immune response to different bacteria. In Mytilus galloprovincialis hemocytes, exposure to 

different bacterial species and strains, heterologous cytokines and natural hormones, as well as  

organic environmental chemicals, underlined the role of conserved cytosolic kinases (such as 

MAPKs and protein kinase C-PKC) and kinase-activated transcription factors (such as Signal 

Transducers and Activators of Transcription-STATs, c-AMP Responsive Element- CREB), in the 

immune response 
42

. In particular, in vitro studies showed rapid phosphorylation/ dephosphorylation 

of these signaling components in response to different stimuli, with specific time courses and 

resulting in activation of different functional immune parameters. Challenge with different bacteria 

(E. coli and V. cholerae) resulted in differential activation/inactivation  of cytosolic kinases, as well 

as of the transcription factors STAT1 and CREB 
42

.  In particular, different strains of E. coli and V. 

cholerae (E. coli MG155, a wild-type strain carrying type 1 fimbriae, and its unfimbriated 

derivative, AAEC072 fim; V. cholerae O1 El Tor biotype strain N16961, carrying MSHA, and its 

MSHA mutant) induced distinct patterns of phosphorylation of  MAPKs, in particular of the 

stress-activated p38 and JNKs, as well of PKC isoforms,  that were  related to differences in 

bactericidal activity 
43

.  The lower anti-bacterial activity of hemocytes towards the mutant E. coli 

strain and wild-type V. cholerae compared with wild type E. coli was associated with  a reduced 

capacity of activating MAPKs. Moreover, the MSHA V. cholerae strain, that was the most 

resistant to the hemocyte bactericidal activity, induced downregulation of cell signaling, strong 

lysosomal damage and  reduced hydrolytic enzyme release 
44

. These results underlined how not 

only different bacteria, but also different bacterial strains can elicit specific responses in terms of 

activation of cytosolic components of kinase-mediated signaling: these effects were ascribed to 

specific surface interactions between hemocytes and bacteria. Interestingly, the differential effects 

on immune signaling and the resulting immune response observed in vitro well correlated with the 

capacity of mussels to clear different E. coli and V. cholerae strains from their  hemolymph in vivo 

45,46
.  
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Differential responses were also observed in Mytilus hemocytes challenged with two different 

bivalve pathogens, V. splendidus LGP32 and V. anguillarum (ATCC 19264).  Functional responses 

were first observed in vivo, after challenge with heat-killed bacteria 
47

. The underlying mechanisms 

were investigated in vitro, with live bacteria, revealing differential activation of immune signaling 

by the two vibrio species 
48

.  V. splendidus LGP32 rapidly induced significant changes in hemocyte 

adhesion, lysosomal membrane stability, lysozyme release, extracellular ROS and NO production. 

These responses were associated with rapid and persistent activation of p38 MAPK and PKC 

isoforms. On the other hand, V. anguillarum showed a reduced capacity to stimulate functional 

immune responses, in line with reduced activation of p-38 MAPK and PKC with respect to V. 

splendidus. 

Overall, these studies underlined the specificity of kinase-mediated signaling activated by bacterial 

challenge in mussel hemocytes: however, the identification of these signaling components, 

evaluation of protein expression and their activation state (phosphorylation), were based on the 

utilization of heterologous antibodies, and on the use of specific pharmacological inhibitors of their 

mammalian counterparts. Homologues to MAPK pathway constituents were first sequenced in 

oyster 
49

 and manila clam 
50

. More recently, NGS analyses on R. philippinarum 
51

 and C. virginica 

52
 have helped to finally identify a functionally conservative set of regulated transcripts associated 

with MAPK pathways. Recent advancements in transcriptomics and data mining pipelines have also 

enabled the discovery of JAK/STAT homologues in M. edulis 
33

.  

5. Immune Effectors  

Defense responses involve phagocytosis of foreign materials,  ROS production and release of 

hydrolytic enzymes, lectins and anti-microbial peptides by the hemocytes 
3
. Bivalve hemolymph 

serum contains a wide range of different secreted components that participate in agglutination, 

opsonization, degradation, encapsulation of microorganisms, as well as in clotting and wound 

healing 
3,9

. An overview of the most recent accomplishments in the fields of antimicrobial peptides, 

lysozymes, cytokines and acute phase processes that depend on perforins, immune cell activation 
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and antioxidant enzymes is given in Bassim et al.
8
. Additionally, proteins involved in metal 

homeostasis, such as ferritin and metallothionein,  were identified in bivalves following exposure to 

pathogens or PAMPs and are thought to be part of the elicited anti-microbial processes 
51

.  

Induction of many cellular and serum functional immune parameters by different stimuli, including 

in vitro and in vivo challenge with live and heat-killed bacteria and PAMPs, has been evaluated in a 

large number of studies on different bivalve species. Although quantitative differences could  be 

observed in different experimental conditions,  no clear evidence of specificity emerged from these 

studies,  and therefore data are not reported this chapter. An exception to this is represented by 

antimicrobial peptides (AMPs), small cationic peptides with a remarkable structural diversity, 

engaged in the destruction of bacteria inside phagocytes, before being released into hemolymph to 

participate in systemic responses 
1
. In Mytilus, different AMPs (including defensins, mytilins, 

myticins) share antibacterial and antifungal properties; on the other hand, Mytimycin (MytM), was 

identified as the first strictly antifungal protein from mollusks 
52

. 

  

6. Specificity of the immune response to pathogenic vibrios : role of surface interactions and 

serum soluble components 

The specificity of bivalve immune response has been investigated mainly in bivalve species 

susceptible to infection by certain Vibrio spp. and strains. However,  a limited number of studies 

focused on the mechanisms underlying differential responses of bivalves to different pathogenic 

vibrios, in particular with those strains associated with oyster  summer mortalities as described 

above. The first work describing specific mechanisms involved in the interactions between bivalve 

hemocytes and bacteria was that of Duperthuy et al. 
26

, with oysters and the oyster pathogen V. 

splendidus  LGP32. In C. gigas, LGP32 uses the OmpU protein to attach and invade the hemocytes 

through Cg-EcSOD (extracellular superoxide dismutase), the major plasma protein, that acts as an 

opsonin mediating recognition and promoting phagocytosis. In this process, Cg-EcSOD is 

recognized through its RGD (Arg-Gly-Asp) sequence by hemocyte -integrins, leading to 
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subversion of the cell actin cytoskeleton, inducing the expression of trafficking genes, and resulting 

in actin and clathrin polymerization. Capable of intracellular survival, LGP32 was shown to escape 

from host cellular defenses by avoiding acidic vacuole formation and by limiting ROS production. 

A different situation was observed in M. galloprovincialis,  that is resistant to LGP32 infection 
53

. 

LGP32 was rapidly phagocytized by the hemocytes, where it induced lysosomal damage; when 

internalized, it remained viable and culturable within intracellular vacuoles apparently escaping 

lysosomal degradation through disregulation of  phosphatidylinositol 3 Kinase (PI-3K) signaling, 

leading to impairment of the endo-lysosomal system. However, interactions with hemolymph 

soluble factors were not crucial in determining the effects of this strain on mussel hemocytes. 

Actually, in mussels, the major plasma protein is  the ‘extrapallial fluid major protein’ (EP protein), 

that shares no sequence homology with CgEcSOD 
54

.  The effects of LGP32 in mussels were 

confirmed in vivo, following injection with bacteria, where no bactericidal activity towards V.s. was 

observed at different times post injection; this strain was actually able to grow within mussel 

hemolymph, leading to stressful conditions in the hemocytes. However, this effect was transient, 

and  hemocytes showed the capacity to recover at longer times post-injection. Overall, these data 

indicated that the mechanisms involved in promoting LGP32 adhesion and invasion in oyster and 

mussel hemocytes may be profoundly different, resulting in different effects. Moreover, these data 

underlined the role of species-specific interactions of soluble hemolymph proteins with different 

vibrio strains 

Previous studies showed that in mussels soluble hemolymph components can play a key role  in 

mediating the interactions between bacteria and hemocytes. In M. galloprovincialis, serum soluble 

factors specifically bind mannose-sensitive bacterial ligands (i.e., type 1 fimbriae of E. coli and 

MSHA pilus of V. cholerae), thus promoting efficient adhesion to and killing by hemocytes
43-46

. 

Preliminary data indicated that a thermolabile protein fraction, with a MW>10kD may be involved 

in this process 
55

. The possible interactions between mussel hemocytes, soluble opsonins  and 

MSHA carrying bacteria are depicted in Fig. 1. 
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As mentioned above, MSHA  adhesins are also present in a large proportion of environmental 

isolates of V. aestuarianus 
29

. V. aestuarianus pathogenicity to C. gigas has been demonstrated by 

experimental challenge 
32

;  on the other hand,  V. aestuarianus isolates were only moderately 

pathogenic to M. galloprovincialis 
18,56

. The different sensitivity to infection of the two bivalve 

species may partly depend on their different capability to kill invading pathogens through the action 

of soluble hemolymph  components 
3,44

.  

The role of mannose-sensitive interactions in V. aestuarianus 01/032 sensitivity to killing by M. 

galloprovincialis and C. gigas hemolymph was recently investigated 
57

. Although 01/032 bacteria 

adhered to hemocytes of both  bivalves, they were sensitive to the bactericidal activity of whole 

hemolymph from mussel but not from oyster; in addition, adhesion to mussel (but not oyster) 

hemocytes was affected by D-mannose. The mussel hemolymph protein responsible for promoting 

mannose-sensitive interactions of V. aestuarianus 01/032  with  the hemocytes, thus serving as an 

opsonin, was identified as the extrapallial protein precursor (EP) of M. edulis 
57

. EP,  the major  

plasma protein in Mytilus, is an acidic glycoprotein with a high histidine content that can  bind Ca
2+ 

and heavy metals 
54

. Recently, by a MS-based approach, a complex and anomalous N-glycan 

structure was determined in M. edulis EP. Such unique structure and calcium and heavy metal 

binding properties suggest a possible role for this protein in multiple biological functions, including 

shell formation, metal ion transportation, and detoxification 
58

. Interestingly, EP also shows a 

conserved domain homologous to MgC1q6, a complement component identified in M. 

galloprovincialis 
41

. These data ascribe to mussel EP the additional role of mediating specific 

immune  interactions against bacteria carrying D-mannose sensitive ligands. 

7. Conclusions 

Increasing knowledge on bivalve immunity is revealing a complex innate immune system able to 

recognize and eliminate a wide range of invading microorganisms in a fluctuating environment. 

Studies with different bacterial species and strains will help understanding the mechanisms 



underlying the specificity of bivalve immune response, thus contributing to develop innovative 

solutions and tools for the prevention, control and mitigation of bivalve disease in farmed species. 
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Legend to Figure 1 – Schematic representation of the interactions between Mytilus hemocytes, 

soluble hemolymph components and bacteria carrying the D-Mannose sensitive MSHA adhesin. 




