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Downscaling methods are used to derive stream flow at a high temporal resolution from a data series that
has a coarser time resolution. These algorithms are useful for many applications, such as water manage-
ment and statistical analysis, because in many cases stream flow time series are available with coarse
temporal steps (monthly), especially when considering historical data; however, in many cases, data that
have a finer temporal resolution are needed (daily).

In this study, we considered a simple but efficient stochastic auto-regressive model that is able to
downscale the available stream flow data from monthly to daily time resolution and applied it to a large
dataset that covered the entire North and Central American continent. Basins with different drainage
areas and different hydro-climatic characteristics were considered, and the results show the general good
ability of the analysed model to downscale monthly stream flows to daily stream flows, especially regard-
ing the reproduction of the annual maxima. If the performance in terms of the reproduction of hydro-
graphs and duration curves is considered, better results are obtained for those cases in which the
hydrologic regime is such that the annual maxima stream flow show low or medium variability, which
means that they have a low or medium coefficient of variation; however, when the variability increases,

the performance of the model decreases.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A large number of applications require the availability of stream
flow data at a detailed temporal resolution, such as water supply
reliability, reservoir operations, management of water resources,
and analysis of low frequency flow. In many cases, historical series
are composed of data at coarse temporal resolution (e.g., monthly;
see Smakhtin, 2000) and only a subset of the available stations
have data at higher temporal resolution (e.g., daily). In other cases,
for the same measurement station, older data are at coarse resolu-
tion while recent data are at higher resolution because sensors
have changed and improved over the years or automatic data
transfer systems have been installed. Looking at various global
and countrywide datasets (see Section 2.1), it can be seen that in
many cases only monthly data are available.

For these reasons, the need to downscale stream flow data
arises, especially for some applications, such as statistical studies
of extreme values or for water management purposes.
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In the case of very large basins (with an area O(Area)
>5 x 10° km?), the yearly maximum daily flow and the yearly
maximum monthly flow are comparable because the response
time of the catchment is on the order of several weeks or more
(Maidment, 1992). If we consider small and medium size basins
(O(Area) < 10 km?), the yearly maximum daily flow is smaller
than the instantaneous peak flows during a day (that is, hourly
or lower values) and is not representative of the criticality of the
flow event, and, in some cases, the yearly maximum daily flow
occurs on a different day with respect to the maximum values at
lower time scales. Daily time series can be used for water resource
management; however, they are not an optimal solution for
extreme event analyses. Finally, there is a wide range of basin cat-
egories for which carrying out extreme statistical analysis on daily
data is reliable because yearly maximum daily flow is good quan-
titative indicator of the instantaneous peak flow, and the maxi-
mum daily and monthly flows are not significantly different.

This results in the need to set up methodologies to downscale
large amounts of monthly data to daily time resolution.

Many methodologies have been presented over the past years
to disaggregate annual to seasonal flow, seasonal to sub-seasonal

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 2. The hydro-climatic characteristics of the considered basins. The histograms show the distribution of drainage area (Area), the mean annual rainfall (Annual Rainfall),

and the mean height of the basin (Mean Height).

flow, and monthly to daily flow. Lane (1979) and Salas et al. (1980)
proposed techniques to divide annual flows into seasonal flows,
Koutsoyiannis and Manetas (1996) developed a method to disag-
gregate annual flow into monthly or weekly amounts, Lall and
Sharma (1996) presented a K-nearest-neighbour (K-NN) bootstrap
approach to time series modelling and applied it to stream flow

simulation, and Tarboton et al. (1998) developed a kernel-based
approach for annual to monthly stream flow disaggregation.
More recently, Smakhtin (1999, 2000) implemented a tech-
nique to establish daily flow duration curves from monthly data
that allows establishing relationships between monthly and daily
predefined quantiles. Koutsoyiannis (2001) described a stepwise
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Fig. 3. The top panel shows the percentage of basins that belong to the various classes of CV of the AMDS (x-axis). The middle and bottom panels show the relationship
between the CV of the AMDS and the drainage area (Area, x-axis in log scale) and the mean annual rainfall (Annual Rainfall), respectively.
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Fig. 4. Power spectrum for a daily time series (red) and the corresponding monthly
time series (blue). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

disaggregation scheme that preserves certain higher-order statis-
tics maintaining their temporal and spatial dependencies. Kumar
et al. (2000) adopted a technique based on the K-nearest neighbour
with an optimization scheme for spatial and temporal disaggrega-
tion of monthly stream flows to daily flows. In general, nonpara-
metric nearest neighbour methods have been applied to a variety
of hydro-climate modelling issues, including stochastic daily
weather generation (Rajagopalan and Lall, 1999; Yates et al.,
2003). Prairie et al. (2007) presented a method to resample
monthly flow conditioned on the annual values in a temporal
disaggregation or at multiple-upstream locations. Acharya and
Ryu (2014) disaggregated monthly data at a target station based
on the monthly counterparts at a source station.

Many of these techniques are quite complex and need an
optimization process to be applied; in some cases, they also need
iterative processes that could be computationally demanding
(Koutsoyiannis, 2001; Prairie et al., 2007). Several techniques
require a specific hypothesis regarding the relations of the flow
series between different nested stations and expect that complete
daily series are available on one or more stations in the analysed
catchment (Kumar et al., 2000); in this case, the disaggregation is
considered to be the solution of an optimization process for each
time step of the available data (e.g., monthly).

This work analyses a method that follows an autoregressive
approach (Rebora et al, 2006ab). It uses a filtered auto-
regressive model to generate possible daily stream flow time series
using the monthly data as input. The algorithm has a stochastic
term that allows it to produce a number of possible daily flow time
series. All of these time-series maintain the volumes at the
monthly time scale of the input data but have a different behaviour
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Fig. 5. Example of calibration on a station with Area = 147,807 km? comparing the
observed and calibrated duration curves.
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Fig. 6. Example of calibration on a station with Area = 147,807 km? comparing the
observed and calibrated probability density functions (PDFs) in terms of the
frequency histogram.

at the daily scale. It is easy to implement and not computational
demanding and can be especially useful when high temporal
resolution (e.g., daily) time series need to be generated without
the constraint of spatial disaggregation (e.g., statistical analysis).

The method was implemented, calibrated, and verified on a very
large stream flow dataset with data from 919 stream gauge stations
that covered the entire North and Central American Continent.

The paper is organized as follows: Section 2 describes the data-
set, Section 3 presents the algorithm and the calibration-validation
method, Section 4 shows the results in the study area, and, in
Section 5, comments and conclusion are reported.

2. Dataset
2.1. River discharge dataset

The discharge stations dataset is based on different data sources
providing time-series of monthly and daily discharge values. These
sources provide various compilations of national or regional
stations’ datasets.
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Fig. 7. Example of calibration on a station with Area = 147,807 km? comparing the
power spectra derived by the observed and modelled daily stream flow series.

In the following, the data sources reported are:

o The long-term mean monthly and daily discharge dataset of the
Global Runoff Data Centre (GRDC), 56002 Koblenz, Germany
(available at http://www.bafg.de/GRDC/EN/Home/homepage_
node.html); and

e The Global River Discharge Database (RivDIS v1.1) of the Water
Systems Analysis Group, Complex Systems Research Center at
the Institute for the Study of Earth, Oceans and Space, Univer-
sity of New Hampshire (available at http://www.rivdis.sr.unh.
edu/ or alternatively at http://www.sage.wisc.edu/riverdata/).

We considered North and Central America as a study area
because a large number of stations with long daily time series
are available (especially in Canada and the United States). The
sub-set of 919 stations was chosen because they have daily stream
flow time-series with durations greater than 40 years (Fig. 1).

The majority of the stations are located in the United Sates, with a
rather homogeneous distribution over the territory; only the south-
west shows alack of data, likely due in part to the presence of deserts.

The southern part of Canada is again well covered, even if the
gauge density is lower than in the United Sates, while in Mexico
and other countries in Central America, only a small number of
stations are available and they are not very well distributed over
the territory.

2.2. Meteoclimatic and digital elevation model dataset

The precipitation derived from the Climatic Research Unit (CRU)
time-series datasets of the variations in climate, with the varia-
tions in other phenomena, has been used to estimate the meteocli-
matic characteristics of the considered catchments in terms of
mean annual precipitation.

The morphologic characteristics (Area and Mean Height) were
derived using the following sources of data:

o The Digital Elevation Model (DEM) NASA Shuttle Radar Topog-
raphy Mission (SRTM) SRTM version 2 provided by the National
Geospatial-Intelligence Agency (NGA) and the National Aero-
nautics and Space Administration (NASA); and

e The NASA Shuttle Radar Topography Mission (SRTM) Water
Body Data provided by the National Geospatial-Intelligence
Agency (NGA) and the National Aeronautics and Space Admin-
istration (NASA).

2.3. Hydro-climatic characterization of the considered basins

The data presented in the previous sections were used to char-
acterize the basins upstream of the stations of the dataset and to
synthetically describe their hydrologic regime. Fig. 2 shows the
hydro-climatic characteristics in terms of drainage area, height,
and rainfall regime. Of the basins, 60% have a drainage area smaller
than 10*km? and approximately 30% have a drainage area
between 10?km? and 10° km?; 28% have an arid climate with
annual precipitation less than 500 mm, 4-5% have a tropical
climate with annual precipitation greater than 2000 mm, and the
other basins have a semi-arid, temperate, or cold climate. Approx-
imately 50% of the basins have a mean elevation lower than 500 m
while approximately 15-16% are in alpine conditions with mean
elevation greater than 2000 m.

Fig. 3 shows graphs based on the coefficient of variation (CV) of
the annual maxima daily stream flow (AMDS), which is used as an
index to describe the flow regimes of the considered stations.

The top panel of Fig. 3 indicates that approximately 28% of the
stations have a low variability of AMDS with CV < 1, approximately
30% have a CV between 1 and 1.5, approximately 30% of the
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Fig. 8. Example of calibration on a station with Area = 147,807 km?. In the bottom subplot the entire observed and modelled (calibrated) daily time series are shown. The
upper figures display the details of two specific periods.
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Fig. 9. Distribution of the maximum daily stream flow of a station with Area = 147,807 km?. The black dots are the observations, and the black lines are the fitted GEV
distributions and its 95% confidence interval. The green points are the D *+ M annual daily maxima, and the red line is the fitted GEV distribution. The blue points represent the
series of D daily maxima obtained by the average of M realizations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

stations have a CV between 1.5 and 3 displaying a quite high vari- As shown in the other two panels of Fig. 3, this variability can be
ability of AMDS, and 10% of the stations have a very high variability related to the size of the upstream catchment; however, it is
of AMDS (CV > 3). primarily due to the rainfall regime of the catchment. Arid and
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Table 1

Results of the StreamFARM validation on Test basin 1 with Area =33,910 km?2. The
Mean and the Standard Deviation of the statistics were obtained from the N (N = 100)
stream flow time series generated with StreamFARM.

Statistic Mean Standard deviation
NS on hydrograph 0.729 0.0131
NS on duration curve 0.997 0.0017
RE on hydrograph 0.3018 0.0038
RE on duration curve 0.0422 0.0015
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Fig. 10. Test basin 1 with Area = 33,910 km?. Ensemble of the possible daily stream
flow histories generated with StreamFARM compared to the observations.
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Fig. 11. Test basin 1 with Area = 33,910 km2. The observed and calibrated duration
curves. Time is on the x-axis and the daily stream flow is on the y-axis.

semi-arid catchments with total mean annual rainfall <1000 mm
can experience very different AMDS from one year to another
resulting in high values of CV.

3. Methods

3.1. Downscaling stream flow from monthly to daily series with
StreamFARM

The StreamFARM model is based on an autoregressive approach
presented by Rebora et al. (2006b) and applied by Rebora et al.

Table 2

Results of the StreamFARM validation on Test basin 2 with Area = 14,290 km?. The
Mean and the Standard Deviation of the statistics were obtained from the N (N = 100)
values obtained for each statistic.

Statistic Mean Standard deviation
NS on hydrograph -0.512 0.0906
NS on duration curve 0.957 0.0022
RE on hydrograph 213 0.0805
RE on duration curve 0.857 0.0102

(2006a) and von Hardenberg et al. (2007) for rainfall downscaling.
It is based on a filtered auto-regressive model capable of generat-
ing an ensemble of possible daily stream flow time series that
are equal to the monthly data used as input if aggregated at a
monthly scale.

The model starts from the monthly data on a specific river sec-
tion. As an example we define a time series of % months with a
monthly (averaged) time step. These data are labelled Q(T). In this
description, all of the capital letters indicate data at monthly time
steps (large scale), while all of the small letters indicate data at
daily time steps (small scale).

In the following, we report the steps needed to generate, in
ensemble mode, high-resolution daily discharge starting from
monthly averages.

(1) First, we estimate the slope of the power-spectrum of the
Q(T) time series. To do this we obtain the Fourier transform
of Q(T) whose power spectrum in Fourier space (reported as
a blue line in Fig. 4) is indicated as:

Q@P, (1)
where Q is the wave number (monthly data).

(2) Then, we generate a power spectrum indicated by the red
line in Fig. 4 whose spectral slope is defined according to
the power law:

o, (2)

where w is the wave number (daily data) and g represents the
first free parameter of the model, which can range from
3tol.

We use small letters and change the name of the variable
because now the signal has increased its time resolution
(from monthly to daily, even if in Fourier space) according
to the power law:

| g(@)f ~F (3)

(red line in Fig. 4).

(3) Next, we generate the Fourier spectrum by adding uniformly
and randomly distributed Fourier phases. The result is as
follows:

8(w) =| g(w) | €, (4)

where ¢(w) is uniformly and randomly distributed and
changes from one ensemble member to the next. By inverting
the Fourier spectrum we obtain a Gaussian field in physical
space, g(t), with a daily time resolution but with a Gaussian
distribution of its values.
(4) We generate a daily discharge time series via exponentiation
of the Gaussian field according to the exponential law:
a(t) = e, (5)

where o represents the second free parameter in the model.
(5) Finally, we force the discharge values, q(t), of the generated
daily discharge time series to be equal to the series Q(T) when
aggregated at a monthly scale. This guarantees that each
daily time series is equal to the monthly time series if aver-
aged at this scale. This results in the following operation:



N. Rebora et al./Journal of Hydrology 537 (2016) 297-310

2500 T 3000 T r
Observed Observed
Calibrated L Calibrated
2000 | 2500
- — 2000}
‘0 1500 "
L) o«
£ £ 1500
E 1000 - Z_§>
w w1000
500 500
| i \
0 1 1 1 1 1 1 1 1 1 1 1 1 i
1937 1938 1939 1940 1941 1970 1971 1972 1973 1974 1975 1976 1977
Time [days] Time [days]
4
10 T T T T T T T T T T T T T T T T T T T T T 3
Observed |1
Calibrated |]
— 10 3
F')w 3
£ 1
T 10 .
1 | | ] | | | | | | | | | ] 1 1 1 | ] 1 ]

10 L
1929 1932 19

34 1937 1940 1943 1946 1949 1952 1955 1958 1961 1964 1967 1970 1973 1976 1979 1982 1985 1988 1991

Time [days]

Fig. 12. Test basin 1 with Area = 33,910 km?. The observed and simulated daily stream flow time series. In the bottom panel, the entire observed and modelled daily time
series are reported. This series demonstrates the introduction of a dam that changes the river regime. The top panels represent details of two specific periods.
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panel: the CDF of NS estimated on the hydrographs.

Q(T) (6) In the following sections, we show how the values of the two
free parameters o and f can be estimated.

where Q(T) represents the time series of §(T) averaged at the 3.2. Parameter estimation
monthly scale.
The proposed model takes into account the differences in the The parameter estimation is carried out in a sub-period of the
average monthly stream flow due to changes in the discharge entire period where daily data are available for two reasons: (i)
regime (e.g., the introduction of a dam). to conduct a sample validation or (ii) a common occurrence where
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daily data are available for a reduced period of time and there is
the need to generate likely daily time series for those periods
where only monthly data are available. The estimation is per-
formed for each section referring to the duration curves obtained
by ordering the daily stream flow data; the objective is to repro-
duce the daily data from a statistical point of view, giving less
importance to the temporal history of the daily stream flow. In this
study, a unique parameter set is calibrated for each section and
used for all of the calibration-validation periods.

The calibration steps are the following:

(1) Daily time series are sorted to obtain the observed duration
curves.

(2) Daily time series are aggregated at the monthly scale to
reproduce a case where only monthly data are available.

(3) For a fixed number of values of the two StreamFARM param-
eters (o« and B), a possible daily time series is generated
starting from the monthly data.
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(4) The two StreamFARM parameters (o« and B) are tuned to

minimize the differences between the observed and mod-
elled duration curves obtained by sorting the time series.
The two considered ranges are o € [0.5-2] and g€ [1-3],
therefore 500 combinations of parameters are generated
and the best parameter set is found by minimizing the fol-
lowing objective function:

1 =] Qo—Qy
Qo.j '

Err =

Tmax =1 (7)
where T4« is the number of days of the calibration period, j is
the jth day, Q is the daily stream flow, and o and s stand for
observed and simulated variables, respectively.

(5) Because the StreamFARM model is probabilistic, the calibra-
tion processes (in particular for steps 3 and 4) are repeated N
times (e.g., N = 100) generating N couples of parameters that
are all best sets (they are generally very similar) opes; and
ﬁbest,i with I = 1,2,...,N.

(6) The final calibrated parameters are estimated by averaging
the two parameters series of length N.

In Fig. 5, an example of calibrated and observed duration curves
is shown.

Fig. 6 shows a comparison of the observed and simulated
stream flow Probability Density Function (PDF).

Fig. 7 shows a comparison between the observed and simulated
power spectra of the stream flow.

In Fig. 8, a comparison between the observed daily data and a
history of the daily stream flow generated with StreamFARM is
shown. In this case, the matching between the two hydrographs
is quite good. This is not always possible, and the pattern at the
daily scale can be quite different depending on the dimensions of
the basin and its hydrological regime.

Because an interesting statistical property of a stream flow time
series is the AMDS, its distribution has been generated and com-
pared to the observations (Fig. 9). The black dots are the observa-
tions, and the black lines are the fitted GEV (Hosking and Wallis,
1993; Kottegoda and Rosso, 1997) distribution and its 95% confi-
dence intervals. StreamFARM was initially used in ensemble mode,
therefore, as results, we have a number M of possible time series of
length D (years) and D » M annual maxima that we fitted with a
GEV distribution (Fig. 9, red line and green points). For each year,
the average of the M annual maxima was calculated, and the
obtained time series of length D is plotted in Fig. 9 (blue points)
to show how representative it is of the sample. Fig. 9 demonstrates
that the three series are within the confidence intervals of the
observations and that the two modelled series of AMDS (of length
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Fig. 19. RE of the duration curves. Results are shown for different classes of CV. Left column panels: PDFs of RE. Right column panels: CDFs of RE.

D x M and of length D) are able to represent the same statistical
distribution.

4. Results
4.1. Application, calibration, and validation of two test cases

The application of the methodology was first conducted on a
test case (Test basin 1) to view the complete process of calibration
and verification of StreamFARM. Then, a second test case was con-
sidered to illustrate the possible spread of results that could be
obtained (Test basin 2); verification was achieved by calibrating
the model on a subset of daily data and by reproducing the entire
available period. Test basin 1 features the introduction of a dam
upstream of the station, which is evident from the permanent
decrease in the variance of the stream flow series after a well-
defined year. From a total sample of 68 years of data, the first
20 years were used for calibration while the entire series is used
for validation. In the validation phase, N=100 possible daily
stream flow histories were generated. The comparison was con-
ducted in terms of the Nash Sutcliffe (NS; Nash and Sutcliffe,
1970) coefficient and the relative error (RE). The RE is defined as:

71 - ‘Qsi_Qoi|
RE_niZ;iQui , (8)

where n is the length of the time series, Q is the stream flow, and s
and o stand for simulated and observed variables, respectively.

The observed and simulated stream flows were compared using
both hydrographs and duration curves. In Table 1, the average and
standard deviations of NS and RE are shown.

The values of the statistics indicate good performances, espe-
cially when the duration curves are considered. In fact, the NS
value for the duration curve is approximately 1 (meaning a perfect
matching between model and observations) and its RA is approxi-
mately 0 (RA=0 indicates a perfect match between model and
observations); moreover, the values of the statistics are stable
because the standard deviation is low with respect to the mean.
In the case of hydrographs, RE and NS perform less well because
the sub-monthly time series are likely reasonable and reproduce
the observations well (in statistical terms); however, they are far
from the real temporal sequence.

Fig. 10 shows the ensemble of daily stream flow histories gen-
erated with StreamFARM. In the test case, the observed stream
flow always lays within the ensemble; however, this is not always
respected and depends on how much the daily sequence is influ-
enced by factors that cannot be captured by the monthly time
series.

For the sake of simplicity, graphs are hereafter shown consider-
ing only one possible daily stream flow time series generated by
StreamFARM.
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Fig. 20. The Kolmogorov-Smirnov test on AMSD. The results are presented in terms of the P-value and the percentage of stations that passed the test. Results are shown for
different classes of CV. Left column panels: PDFs of the P-value. Right column panels: CDFs of the P-value.

Fig. 11 shows the good fit between the observed and generated
duration curve, while Fig. 12 shows the results in terms of the
hydrograph; the bottom panel demonstrates that the model pro-
duces good results even after the dam is built. This can be consid-
ered a good result when applying the method in non-stationary
conditions (e.g., climate change).

In Fig. 13, a comparison between the StreamFARM simulation
and the observation is reported for another test basin (Test basin
2) with different hydro-climatic characteristics with respect to Test
basin 1. In this case, the semi-arid climate is likely the primary
cause of the very low base flow, and the daily stream flow is
strongly influenced by sub-monthly occurrences of rainfall events.
This results in poorer model performance, with a modelled stream
flow that has a larger range of variability with respect to
the observed variability, and sub-monthly flow sequences that
are sometimes far from the one that was observed. These results
are confirmed by the values shown in Table 2, with negative values
of NS for the hydrographs and larger values of the standard devia-
tion for all scores with respect to the ones reported in Table 1.

4.2. Results of the complete dataset

The procedure of calibration and verification (1/3 of the length
of the time series used for calibration) was applied to all of the

available time series with lengths greater than 40 years. The proce-
dure was applied using the following modality:

1. Calibration was conducted N (N =100) times using the mean
values of the parameters (see Section 3.2); and

2. Verification was carried out generating one possible down-
scaled stream flow history for each station.

A comparison between the observed and simulated data was
made referring to both hydrographs and duration curves.

To show the results in a synthetic way, the graphs in Fig. 14
have been constructed using the results of all of the considered sta-
tions. The top panel represents the PDF of the NS between the
observed and modelled duration curves. The bottom panel shows
the Cumulative Density Function (CDF), which decreases with
increasing x because NS tends to 1 for a perfect fit. Both graphs
show that the model reproduces the observations well from a sta-
tistical point of view (duration curved), and more than the 90% of
the 919 stations had a NS value larger than 0.95 (very good
performance).

Graphs similar to those presented in Fig. 14 have been con-
structed for the hydrographs and are shown in Fig. 15. In this case,
the results clearly perform less well because the downscaling pro-
cedure has no information about the real temporal history of the
stream flow at the daily scale. StreamFARM can only generate a
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Fig. 21. Example of a daily stream flow time-series generated with StreamFARM for a flash flood regime basin. In the top panel, all of the members are shown while, in the
bottom panel, a single member has been extracted and shown. The observed and generated hydrographs have similar characteristics (e.g., base flow and peak flows) but

different temporal sequences.

possible time series without respect to the real sequence of peak
event and recession curves and reproduces daily flow only from
a statistically point of view. In spite of this, the results are satisfac-
tory, and 60% of the stations have NS > 0.5.

Similar to Figs. 14 and 15, graphs demonstrating the relative
error (RE) were constructed (Figs. 16 and 17).

In this case, the results are better for the duration curves
because StrainFARM preserves the statistical characteristics of
the daily time series, and more than 80% of the stations had
RE < 0.1.

For the hydrographs, only 10% of the stations had RE < 0.1, and
the peak PDF was for RE = 0.3.

The presented results demonstrate the global performance of
the model on the entire dataset. As shown in Section 2, the consid-
ered basins belong to a wide range of environments, sizes, and
different hydrological regimes; therefore, it is interesting to anal-
yse the behaviour of the model for the different catchment types.

To do this, we referred to the CV as a synthetic indicator of the
hydrological regime, and we considered 4 different classes:

e CV from O to 1, low variability of AMDS;

e CV from 1 to 1.5, medium variability of AMDS;
e CV from 1.5 to 2, high variability of AMDS; and
e CV larger than 2, very high variability of AMDS.

For these CV classes, the PDFs and CDFs of NS and RE were built
with respect to the duration curves.

Both Figs. 18 and 19 demonstrate that the model performs less
well when CV increases, confirming what was intuitively expected.
High values of CV indicate that the hydro-climatic regime (arid and
semi-arid) and the drainage area (small or medium) are such that
the sub-monthly stream flow is often only poorly correlated with
the monthly mean stream flow, as a consequence StreamFARM
has greater difficulties reproducing daily values from the monthly
total volume. Regardless, the results are discrete even for high CV
values, with 80% of stations having NS values greater than 0.9 and
RE<0.3.

Basins with low CV show very good results. They have a more
stable hydrologic regime likely due to a combination of various
factors, such as a medium or large area, a regular rainfall regime,
and, in some cases, the influence of melting snow that can con-
tribute to maintaining a stable hydrological regime through the
different seasons.

As a final analysis to evaluate the performance of the Stream-
FARM model, we analysed its ability to reproduce AMDS. There-
fore, we executed the Kolmogorov-Smirnov test (KS-test) on
each pair of observed and modelled AMSD series to determine if
they belonged to the same statistical distribution. The test was
performed with a 5% of significance level and furnished two out-
puts: the first is the binary decision if the two series are or are
not from the same distribution and the second is the P-value,
which is near 0 if the two series are from different distributions
and near 1 if they are from the same distribution.

The results are presented in Fig. 20 for the aforementioned
classes of CV. For each CV class, there is always a percentage of
sections where the KS-test is not passed and the P-value is low,
illustrating that StramFARM is unable to generate a correct distri-
bution of AMSD in some situations. Contrary to what happens in
the case of the analysis on hydrographs and duration curves, there
is no degradation in the results with increasing CV values; for CV
values in the range 1.5-2, 84% of the stations pass the test, and,
for CV values larger than 2, 91% of the stations pass the test.

Therefore, in spite of the fact that in some conditions Stream-
FARM does not give very good results when describing all of the
hydrological conditions of a station, it can return good results
when reproducing some particular statistical properties
(i.e., annual daily maxima).

5. Conclusions
In this study, we presented a downscaling algorithm that down-

scales monthly stream flows to daily stream flows. It performs a
time disaggregation and, through the use of a stochastic term,
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can be used in ensemble or probabilistic mode to generate a num-
ber of possible daily time series. The algorithm has two parameters
that can be calibrated to reproduce the duration curves for periods
in which daily data are available and can then be applied in situa-
tions in which only monthly data are available.

The method was applied to a large dataset that covered all of
North and Central America with good results in terms of reproduc-
ing duration curves and even modelling hydrographs. The consid-
ered stations have upstream drainage areas in the range of 103-
10% km? and are located in zones that have different climatology
(Peel et al., 2007). StreamFARM has therefore been applied to a
variety of basins with a wide range of hydrologic regimes. The
results highlight that the model performs better for basins with a
low CV on AMDS (a catchment with temperate or cold climates)
than those with a high CV on AMDS (a catchment with arid or
semi-arid climates). Conversely, the results are both stable and
good when the distribution of AMDS is considered as a term of
comparison.

Possible limitations can arise for cases in which the maximum
daily flow frequently occurs in a month where the maximum
monthly flow occurs or when flood events are uncorrelated to
the seasonal trend of flow volumes, that is, cases where snowmelt
has strong effects on the monthly runoff volume or cases where
small basins have flash flood regimes. In these cases, StreamFARM
can partially compensate for the lack of information if it is well
parameterized. The model will generate low frequent flows in peri-
ods that can be potentially different from reality; however, it will
maintain the likely statistical and physical characteristics. In
Fig. 21, we show an example of a basin in a flash flood regime;
in the upper panel, the 100 ensemble members of the daily stream
flow are shown, while in the lower panel, only 2 extracted mem-
bers are shown. The time series generated with StreamFARM are
reasonably realistic stream flow realizations for the considered
basin (e.g., similar low flow values and peak flows); however, the
temporal sequence is quite different from the observations, this
is especially evident when analysing the peak flow events.

In the future, work can be performed regarding the parameter-
ization of the model. A seasonal parameterization may reduce
some of the limitations found in this first application. The possibil-
ity of adding a regional approach that relates basin morpho-
climatic characteristics (such as Area, Slope, and Annual rainfall)
to the model parameters could be investigated to apply the model
when only monthly data are available, and it is not possible to
carry out a calibration on a single station. This could be an interest-
ing issue because it would allow the model to be applied to certain
basins by exploiting the availability of data in other basins that
have similar characteristics, climatology, and flow regimes.
Another issue to investigate is the possibility of adapting the

method to different time scales, for example, to downscale daily
data to hourly data.
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