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We compare the performance of two well-established computational algorithms for the calculation
of free-energy landscapes of biomolecular systems, umbrella sampling and metadynamics. We look
at benchmark systems composed of polyethylene and polypropylene oligomers interacting with lipid
(phosphatidylcholine) membranes, aiming at the calculation of the oligomer water-membrane free
energy of transfer. We model our test systems at two different levels of description, united-atom and
coarse-grained. We provide optimized parameters for the two methods at both resolutions. We devote
special attention to the analysis of statistical errors in the two different methods and propose a general
procedure for the error estimation in metadynamics simulations. Metadynamics and umbrella sampl-
ing yield the same estimates for the water-membrane free energy profile, but metadynamics can be
more efficient, providing lower statistical uncertainties within the same simulation time. © 2015 AIP

Publishing LLC. [http://dx.doi.org/10.1063/1.4932159]

I. INTRODUCTION

In biochemistry and biophysics, the knowledge of free
energy landscapes' is the key to the comprehension of a
plethora of phenomena. Changes in free energy regulate funda-
mental processes like protein folding,? solvation,>* enzymatic
reactions,’ protein-ligand association,® and membrane-water
partitioning.” Computer simulations, and molecular dynamics
(MD) in particular, can provide microscopic detail and
comprehension of such processes. Nevertheless, despite the
growing availability of computational resources and efficient
parallel MD software tools, the computational prediction of
the free energy landscape of realistic biological systems is still
a challenging task.

MD simulations sample the phase space according to the
Boltzmann distribution, and the rare events corresponding
to the sampling of high-energy states may not occur within
the attainable simulation times. Therefore, during the last
decades, several computational tools have been developed
specifically to address the problem of the calculation of
free energy.®!' Among the enhanced-sampling methods'?
developed to increase the sampling of all the important regions
of free energy surfaces (FESs), we can mention Umbrella
Sampling (US),® the Wang-Landau algorithm,’ the adaptive
biasing force method,'? and Metadynamics (MT).!' Each of
these methods has been originally developed having a specific
target application, on which its efficiency and limitations have
been thoroughly tested. Comparative studies focused on the
performance of different computational tools on the same
benchmark case can be obviously helpful to guide the users to
the choice of the best method.'?
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The membrane permeability and water-membrane par-
titioning of small chemical compounds and more complex
molecular structures are often difficult to measure experi-
mentally,” and therefore, computer simulations represent a
very useful tool to address this problem. In the last years,
simulations have been extensively used for studying the
interactions between various kinds of molecules and lipid
membranes.'*!* Most of these studies offer detailed free
energy profiles for the transfer of a solute from the water
phase to the center of the membrane. The US method has
been, by far, the most widely used for this kind of calculation.
To our knowledge, MT has been used for similar calculations
only in a few cases: to calculate the permeation through the cell
membrane of a boron-based S-lactamase inhibitor,?” to explore
the FES of aspirin, diclofenac, and ibuprofen embedded in lipid
bilayers,?! and to get the free energy profile of potassium ions
permeating the selectivity filter of the KcsA channel.??

In the following, we compare the efficiency of the US and
MT methods at calculating the potential of mean force associ-
ated to the transfer of hydrophobic oligomers from the water
phase to the hydrophobic core of a phospholipid membrane.
We will consider polypropylene (PP) and polyethylene (PE)
oligomers, modeling them at atomistic and coarse-grained
(CG) level. In order to properly compare method efficiencies,
adequate estimates of statistical uncertainties are needed. The
calculation of the statistical uncertainty for the US method is
not trivial, but general strategies have been developed and
implemented in the most advanced softwares, such as the
weighted histogram analysis method (WHAM).?* For MT,
both theoretical®* and the empirical”® equations have been
proposed for the calculation of statistical errors, but they are
difficult to apply to practical cases. The difficulty in providing
error estimates is generally believed to be the main drawback of

©2015 AIP Publishing LLC
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MT, and the information on the statistical uncertainty is often
omitted when MT is used. To overcome this issue, here, we
propose a general method to calculate statistical uncertainties
in MT simulations. We then discuss the similarities and
the differences in the statistical uncertainties obtained from
standard bootstrap analysis (for US calculations) and from
our method (for MT calculations). Our results show that US
and MT give virtually identical free energy profiles, and the
same statistical uncertainty can be achieved by MT using less
computational resources.

Il. MODEL AND METHODS
A. Force fields and system setup

Our system consists of oligomers of two common poly-
mers, PE and PP, partitioning into a model membrane made of
1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) lipids.

We performed our tests at two different levels of descrip-
tion: the united-atom (UA) level, represented with the UA
OPLS force field,”® and the CG level, represented by the
MARTINI?’ force field. In the UA model, hydrogen atoms
covalently linked to carbon atoms are not explicitly repre-
sented: they are grouped together with the adjacent carbon. The
MARTINI force field is a coarser level of approximation. It
has been developed by Marrink and co-workers for molecular
dynamics simulations of lipids,”” and later extended to
proteins,”® polymers,?”? and other species.?!*> In MARTINI,
a small number of heavy atoms (usually 4) is mapped onto one
CG interaction site. The model is parameterized to reproduce
the free energy of transfer of each building block between
polar and non-polar phases, as well as densities.

We use a small number of POPC lipids in each case:
72 in the atomistic case and 128 in the MARTINI case.
POPC membranes are centered along the z axis (normal to the
membrane plane) in the simulation box and surrounded by a
layer of water of ~2.5 nm on the two sides (as shown in Fig. 1).
Periodic boundary conditions are used, and all simulations
have been performed in the NPT ensemble at atmospheric
pressure and physiological temperature.

FIG. 1. System setup for the MARTINI US simulations. Two solutes are
placed in each US window far apart from each other, and their z coordinate is
constrained around a certain ¢; value by a harmonic potential.
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Our oligomers are (a) an 8-carbon fragment of PE,
CH;—(CH,)¢—CH3, and (b) a 7-carbon fragment of PP,
CH;—(CH-CHj;),-CHj. At CG level, we represented these
oligomers as dimers, accordingly to the models we recently
developed.®® The topology of the CG dimers does not include
any angle or dihedral potentials; thus, the only differences
between the two molecules at this level of coarse graining are
the equilibrium bond distance between the beads, the strength
of the bond, and the type of bead for non-bonded interactions
(C, for PE and SC; for PP, following the MARTINI notation).

B. Umbrella sampling

US is a biased MD method. It attempts at overcoming
the sampling problem by biasing the original potential energy
surface, so as to enhance the sampling of the unfavourable
states. In the following, we will show only the key equations
for the case of a single reaction coordinate g. The potential
energy is modified as follows:

UR) - UR) + hi(q), ey

where R is a vector of all coordinates and

1
hi(q) = Sk(a = i)’ @)

with k being a harmonic constant and g; the position along ¢
around which the sampling is enhanced.

A certain number N of simulations is needed, varying g;
in each simulation to sample all the relevant regions of the
parameter space. The result is a set of N partially overlapping
histograms, each of them providing a probability distribution
function p;(g). These probability distributions are biased by
the presence of the /;(g). The free energy, on the other hand,
can be written as a function of the unbiased probabilities, which
makes necessary to recover the total unbiased probability
distribution p*(g) from the biased ones. Here, we use the
iterative WHAM,? implemented in the GROMACS tool
g_wham.3*

Once p"(g) is known, the free energy along ¢ is obtained
by

0"(q)
Pi(q0)’

F(q) = F(q0) — kT In 3)
where gy is a reference point. For a complete description of the
US method and more details about the unbiasing procedure,
the reader is addressed to the original literature.®?

C. Umbrella sampling: Simulation setup

All US runs were performed with GROMACS 4.*> We
have defined our reaction coordinate as the z distance between
the center of mass of the oligomer and the center of mass of the
lipid membrane (as shown in Fig. 1). We restrained the distance
between the oligomer and the center of mass of the membrane,
in the direction of the bilayer normal, through the use of
harmonic potentials (see Equation (2)). Two molecules of the
same kind are put in each simulation box far apart from each
other, so that they do not interact (see Fig. 1), allowing to
double the sampling at no computational cost.



144108-3 Bochicchio et al.

A different number of windows and a different force
constant for the restraining potential are used in UA-OPLS
and MARTINI simulations. In the UA case, k is set to
3000 kJ mol~! nm™2, and 35 windows with a width of 0.1 nm
are used, thus sampling the distance between the polymers and
the center of mass of the membrane between 0 and 3.5 nm. In
the CG case, instead, k is set to 1000 kJ mol™' nm™2, and 40
windows with a width of 0.1 nm are used. This increase in the
sampled distances with respect to the atomistic case is needed
due to the greater thickness of the CG membrane. For both the
UA and CG cases, our choice of k parameters leads to optimal
overlapping of the US histograms, as shown in Figure S1 of
the supplementary material.*?

D. Umbrella sampling: Error estimation

The GROMACS tool g_wham34 allows an estimation of
the error on the recovered free energy profile through a boot-
strap analysis. Bootstrapping is a resampling technique which
permits to estimate the statistical error of a quantity which is
computed from a large set of observations, without repeating
the observations multiple times.*° It works by estimating the
probability distribution underlying the observations using a
single set of real observations, and then generating fake obser-
vations based on that distribution. In our umbrella sampling
windows, each position along the reaction coordinate can be
considered as a set of independent observations. Alternatively,
each complete histogram can be considered as an individual
observation. Both options are implemented in g_wham, and
they are called, respectively, bootstrapping of trajectories (b-
traj) and bootstrapping of histograms (b-histo). However, one
has to be careful because to be able to use the bootstrapping
of histograms without severely underestimating the error,
multiple independent simulations for each window would be
needed.** In our case, we have only two histograms for each
window (due to the two images of the dimer in each simulation
run); hence, the only feasible choice is the b-traj option.

To bootstrap the trajectories, an estimation of the inte-
grated autocorrelation time (IACT) of the reaction coordinate
in each window is needed.** We used the GROMACS tool
g_analyze to estimate the IACTs, with the option -ee, which
performs a block averaging:®’ the set of points is divided into
blocks and averages are calculated for each block. The error e
for the total average is calculated from the variance between
averages of all the blocks. An analytical block average curve
can also be defined, assuming that the autocorrelation is a
sum of two exponentials. Two characteristic times t; and 1,
are obtained by fitting this curve to e2. A complete derivation
can be found in Ref. 38. In our approximation, the IACT of
each window is T, (the longest one). The IACTs calculated in
this way (see Figure 2) are then used with g_wham to collect
independent observations and obtain the free energy profile
with its relative error.

E. Metadynamics

In metadynamics, a single biased MD run is performed
to derive the free energy landscape of the system under study.
Contrary to what happens in US, the bias of metadynamics

J. Chem. Phys. 143, 144108 (2015)
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FIG. 2. Integrated autocorrelation times for US simulations. The peak po-
sition roughly corresponds to the lipid head region. The different positions
of the UA and CG peaks are coherent with the different thickness of the
membrane in the two models.

is thought to encourage the exploration of the unfavorable
states by kicking the system out of the most favorable ones.
Once one or more reaction coordinates are defined, a history
dependent bias potential V(f) is constructed as a sum of
gaussian functions of the selected reaction coordinates. The
potential acts at every time step directly on the microscopic
coordinates of the system, with the aim to push the system
away from already visited configurations. When a single
collective coordinate ¢ is used, the potential has the form,

(_(q - q(t’))z)

202

Volg.t) = w )" exp @

t'<t
where w is the height of each gaussian function, o its width,
and ¢(¢’) the position at which the gaussians are centered at
the discrete times ¢’ (which are separated by At). So for every
At, the history dependent potential is updated, and while the
simulation goes on, it fills the underlying free energy surface
helping the crossing of the energy barriers. When the motion
of the system along ¢ has become diffusive (in other words,
when the free energy profile has been flattened), it means that
the simulation has converged, and the free energy profile is
given by (minus) the total biasing potential,

F(q) = —Vs(q,1). ©)

After convergence, the free energy profile should not
change anymore, presenting only a global shift due to the
continuous process of adding gaussians. However, due to
the finite size of the gaussians and the finite value of the
diffusion coefficient along ¢, the profile will always present
spurious oscillations around the real FES.* This issue could
be addressed via the use of the Well-Tempered Metadynamics
(WT-MT).* In this upgraded version of the MT algorithm,
the height of the gaussians is decreased during the MT run,
according to the assignment of a further parameter, called bias
factor. We thus tried to find an optimal set of parameters to
be used with the WT-MT algorithm. Overall, our conclusion
is that for our specific case, it is the standard MT algorithm to
offer the best performances. More details on the optimization
of the WT-MT algorithm can be found in the supplementary
material, and all the metadynamics results presented in the
following are obtained with the standard MT algorithm.*?
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F. Metadynamics: Simulation setup

GROMACS 4, patched with the PLUMED version 2.1
plugin,*! is used for MT calculations. A single solute molecule
is placed in each simulation box, and the same reaction
coordinate as in US is used: the distance along the z axis
between the center of mass of the molecule and the center of
mass of the lipid membrane. Some important parameters must
be set before launching a simulation: the height (w) and the
width (o) of each gaussian, and the time interval at which the
gaussians are inserted (Af). The choice of these parameters
is not straightforward, and they influence both the precision
and the speed of the calculation.”*?* The smaller is the ratio
w/At the smaller will be the error, but the corresponding
computational cost will be higher. Our final choice is the
result of an optimization procedure that is described in detail in
the supplementary material.*> We identified for the MARTINI
calculations the values of w = 0.2 kJ/mol, o = 0.12 nm, and
At = 1 ns as a good compromise between speed and accuracy.
As for the UA runs, w is the same as in the MARTINI case, but
o is reduced to 0.1 nm due to the smaller z edge of the box.

G. Metadynamics: Convergence and error estimation

The feature that is commonly accepted as an indication of
convergence for MT simulations is the diffusive behaviour,
i.e., in our case, a situation in which the solute freely
moves between the water slab and the membrane without any
preferential site. In Fig. 3(a), the z component of the solute
trajectory, in a CG run, is shown. Initially, the solute is confined
in the lipid tails region (the center of mass of the membrane
is set to z = 0). After about 2 us, the biasing gaussians let the
solute overcome the energy barrier represented by the polar
head region and explore the water phase.

)
fad
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4 1 IR 3 I s LRI R RET
0 1000 2000 3000 4000 5000 6000 7000 8000
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=
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Unfortunately, it is not trivial to identify precisely when
the diffusive regime has been reached. A practical method to
assess the convergence of MT simulations is based on moni-
toring the free energy difference between the bulk water region
and the center of the membrane. In Fig. 3(b), one can see that in
the CG simulations, convergence is achieved after about 3 us.

Following the example of Ref. 20, we want to calculate
the free energy profile as an average of a certain number
of different profiles obtained after convergence. Each of the
profiles can be seen as the sum of the real free energy profiles
and random oscillations. If these profiles are independent,
they can be averaged and the error on each point can be
assumed to be the standard error of the mean. The problem
is that, given the nature of the MT continuous algorithm,
two consecutive profiles calculated after convergence will be
correlated. Thus, to be able to calculate the standard error
of the mean, the decorrelation time (expressed as number of
gaussians deposited) has to be identified. We estimate this
decorrelation time calculating the time evolution of free energy
difference between the bulk water region and the center of
the membrane (after convergence), and then doing a block
averaging of this quantity. The error coming from the block
averaging is initially increasing with the size of the blocks,
due to the above mentioned correlations (see Fig. 3(c)). The
size of the blocks from which the error stops increasing is
our estimation of the decorrelation time. For the CG case, it
corresponds to 500 deposited gaussians.

We considered each of the two sides of the bilayer as inde-
pendent profiles, doubling the statistics. This is somehow the
equivalent of using two molecules at a fixed distance in the US
simulations. Before averaging the independent profiles, each
of them is shifted to have a mean value of zero. Then the result
of the average is shifted again setting the free energy minimum
at zero (to compare it with the results from US simulations).

1 . 1 L L 1
0 100 200 300 400 500 600 700 800
block size [number of gaussians]

free energy [kJ/mol]

. . . ! . . .
0 05 1 15 2 25 3 35 4
distance from the center [nm]

FIG. 3. MT error estimation illustrated in the case of the PP MARTINI dimer. (a) z component of the distance between the solute and the membrane center as
more and more gaussians are deposited. Coloured lines indicate the points at which the first three free energy profiles are calculated after the diffusive regime
has been reached; (b) free energy difference between water and the center of the membrane. The grey vertical line indicates convergence; (c) block averaging of
the free energy difference of panel (b) (after convergence). When the block size exceeds 500 gaussians, the error stops increasing with the block size, indicating
decorellated values; (d) free energy deposited between the profiles calculated every 500 gaussians (colours corresponding to panel (a)).
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We propose also a simple visual criterion to estimate
how much sampling is needed (i.e., how many gaussians
have to be added) to obtain independent free energy profiles.
If we calculate the free energy deposited between each
of the calculated profiles, we find curves that are overall
flat, presenting local random oscillations (see Fig. 3(d)).
The average free energy deposited (around 3 kJ/mol in the
example) is more than the amplitude of the oscillations
(around 2 kJ/mol). This means that enough “sand” has been
deposited to completely cover the previous hills, obtaining an
uncorrelated curve. This happens approximately at the same
number of gaussians (500) found with the previous criterion.

lll. RESULTS AND DISCUSSION

Let us start comparing the MT and US free energy profiles
obtained using the coarse grained MARTINI model. We report
in Fig. 4 free energy profiles for PE and PP CG dimers,
obtained using a total simulation time of 8 us with both
techniques (the total time in US is the sum of the time duration
of all simulation windows). It can be noticed that the energy
profiles obtained with the two methods are fully compatible,
both for PE and PP. When looking at the error bars, one easily
notices that the MT ones are on average smaller. The profile
obtained with US looks generally smoother, but this is an
intrinsic characteristic of the WHAM, which shifts the free
energy profile obtained from each window to make the whole
function continuous.??

To understand how the statistical uncertainties (errors)
behave in the two methods, we discuss the dependence of the
error bars from the total simulation time and the position along
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FIG. 4. Free energy profiles obtained with the MARTINI coarse-grained
energetic model for PE (top panel) and PP (bottom panel). Here the error
bar in each point is the standard error of the mean of the shifted profiles used
for the average.
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FIG. 5. Dependence of the error bars on the total simulation time and on the
position along the reaction coordinate in MT and US, in the case of a PP
MARTINI dimer.

the reaction coordinate. The result of this test is presented in
Fig. 5 for the case of the PP MARTINI dimer. Since the MT
simulation is considered to be converged after 3 us, a minimum
time of 4 usisrequired to start estimating the free energy profile.
This corresponds to the average of 4 independent profiles (since
we consider the two sides of the membrane as independent).
The very low statistics is reflected in large standard errors for
the MT profile and in the corresponding large fluctuations, as
can be seen in Fig. 5. The US error bars, in contrast, present a
much smoother behaviour, but their average amplitude is not
much different from the MT ones. Increasing the simulation
time to 8 us, the statistics for the MT grows to 20 independent
profiles, and the errors of the MT simulation become much
smaller than those of US (especially in the water region).

These results indicate that by increasing the total simula-
tion time, the errors in MT, calculated in the way we proposed,
decrease much faster than in US. This is true for the set of opti-
mized gaussian parameters reported in Section II. For instance,
if one uses w = 1 kJ/mol, the MT error bars result bigger than
the US ones. However, the time required to roughly fill the
free energy well decreases, giving a faster (but less precise)
estimation of the free energy difference between water and the
membrane interior. Therefore, the appropriate choice of the
parameters depends very much on the aim of the calculation:
the parameters suggested in this work are suited for obtaining
a smooth and precise free energy profile in every region.

The behaviour of the error bars as a function of the reaction
coordinate value deserves a separate discussion. For US, in the
WHAM method, the value of the free energy in the center of the
membrane is set to zero, and thus, it has zero error by default.
Then the error increases monotonically going further from the
center, with a considerable jump around 2.5 nm. This distance
corresponds to the water-membrane interface. The jump in the
error is due to the fact that the IACTs are much bigger than
in the other regions, as shown in Fig. 2, thus reducing the
number of independent samples available to the bootstrapping
procedure. At the water-membrane interface, auto-correlation
times are in fact more than one order of magnitude bigger
than in the inner part of the membrane, while in the water
region, they fall to much lower values. This last behaviour is
expected, since the mobility in water is much bigger than inside
the membrane. Correspondingly, the error of US simulations
stops increasing once in the water region.
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The MT error is in general more evenly distributed over the
whole range of the reaction coordinate. This is especially true
when one looks at the curves corresponding to the total simu-
lation time of 8 us. From this analysis, we can comment that
the error in US has some criticality where the system presents
strong anisotropy (e.g., the membrane-water interface), hence
higher autocorrelation times. The error in MT is less heavily
affected by such features (after convergence is reached).

Let us now discuss the results for the case of OPLS-
UA simulations. Fig. 6 shows the results obtained with the
united-atom model and a total simulation time of 1.8 us for
both US and MT. The time interval between two consecutive
gaussian depositions in the MT runs has been set ten times
smaller (Ar = 0.1 ns) than in the CG case, to compensate for
the reduced MD time step used.

In this case, the free energy difference between water
and the center of the membrane shows large fluctuations
and correlation times are much longer. The block averaging
analysis does not produce clear results as in the case of
MARTINI simulations. Thus, we decided to average the
profiles without caring for the amount of correlation, and then
consider the standard deviation as an upper limit for the error.
In Fig. 6, the error bars reported are the standard deviations.

We note that the MT simulations results are once
again comparable with the US results, and that the average
uncertainty is similar, despite the MT errors are certainly
overestimated. In fact, error bars are bigger for MT than for
US in the inner parts of the membrane; they are similar in the
central part of the profiles and smaller in the water region.

A comparison between Figs. 4 and 6 shows that the errors
for both techniques are significantly larger in OPLS-UA than
in MARTINI simulations. This is a direct consequence of the
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diffusive regime. The slower dynamics in UA-OPLS leads to less frequent
crossing of the water-membrane interface in the same time intervals.

total simulation time used, which is much smaller for UA-
OPLS simulations. The use of a smaller total simulation time
is imposed by the bigger computational effort required for
simulating a system in which all heavy atoms are explicitly
taken into account. In US, the bootstrapping involves less
independent points because of the shorter trajectories but also
because the IACTs are almost everywhere higher (see Fig. 2).

In MT, a key parameter governing the error is the rate at
which the gaussians are inserted. The need to use a smaller
total time forces us to use a higher rate of insertion, and thus
leads to less precise MT calculations. There is also another
problem: the dynamics itself is slowed down with respect
to the MARTINI case, and, as a consequence, crossing the
water-membrane interface is less frequent. Thus, the solute
remains stuck in the water region or in the membrane region
for relatively long times, even after convergence (see Fig. 7).
Increasing the total simulation time for MT OPLS-UA simu-
lations would allow a more rigorous estimate of the statistical
uncertainties (as used in the MARTINI simulations), leading
to smaller uncertainties. Overall, our results suggest that the
performance of MT is superior to US even in the OPLS-US
case, if the choice of the simulation parameters is appropriate.

IV. CONCLUSIONS

In the present work, we have compared the efficiency of
two common methods for free energy calculations, US and MT.
We applied such methods to the calculation of the partitioning
of small molecules, namely, PE and PP dimers, between water
and a POPC lipid membrane. Calculations were performed
at two different levels of description, united atoms (UA-
OPLS) and coarse-grained (MARTINI). Our results indicate
that both methods can produce reliable free energy profiles
with a reasonable computational effort. The US technique,
that is the most commonly used for this type of calculations, is
straightforward for what concerns the calculation of the profile
through the WHAM method. The calculation of the error
is rather straightforward too, once the integrated correlation
times for each window have been estimated, and consist in
a bootstrapping of trajectories as already implemented in the
g_wham GROMACS tool. On the contrary, MT requires the
proper setting of some key parameters to really shine. In
particular, a proper choice of the height and the width of the
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gaussians, as well as their rate of insertion (which should be a
compromise between precision and time consumption), has to
be made. Here, we have proposed good simulation parameters
for MT, as well as a general methodology for the calculation
of the statistical uncertainties, which makes use of a single
MT run. We could not apply the same rigorous procedure for
the calculation of uncertainties in the atomistic case, due to
the significantly higher computational cost required to reach
convergence in atomistic simulations. Overall, the MT method
proved to be able to recover the free energy profiles with
a smaller uncertainty within the same total simulation time
(or alternatively with the same error but with a smaller total
simulation time). The present work offers useful guidelines
for the efficient use of MT for the calculation of the water-
membrane free energy of transfer.
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