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ABSTRACT 

A mechanical model based on a novel multiscale approach has been recently formulated in 

Massabò and Campi, Meccanica, 50(4), 2015, to study multi-layered plates with imperfect interfaces 

and delaminations loaded dynamically. The model couples an equivalent single-layer structural theory 

and a discrete-layer cohesive-crack model in order to efficiently and accurately describe both the 

global behaviour and the local perturbations of the fields generated by the inhomogeneous material 

structure and the presence of interfacial imperfections. The homogenized field equations depend on 

the global variables only so that problems characterized by a large number of layers and delaminations 

are conveniently treated and efficient and insightful closed-form solutions can be derived for relevant 

problems. The model is applied to investigate the effects of the presence of imperfect interfaces on the 

dynamic characteristics of the plates. Closed form solutions are derived for unidirectionally reinforced 

wide plates with elastic sliding interfaces. The asymptotic limits, which can be obtained through a 

perturbation analysis, define the free vibrations of fully-bonded and fully-debonded plates. Changes in 

the interfacial stiffness strongly affects natural frequencies and modes of vibration: new modes are 

activated and the cut-off frequency of the second flexural spectrum, which in fully bonded plates is 

quite large so that the spectrum is usually disregarded, decreases and vanishes for 

decreasing/vanishing interfacial stiffness.    

 

1 INTRODUCTION 

Efficient modeling of the global response of multi-layered composite structures in the elastic 

regime relies on equivalent single-layer theories, which accurately predict global displacements and 

stress resultants using a limited number of variables; these theories, however, are unable to describe 

the local perturbations of the fields, such as zig-zag through-thickness patterns and displacement 

jumps at the layer interfaces, and arise due to the inhomogeneous structure and the presence of defects. 

Discrete-layer approaches, which include layer-wise theories and cohesive-crack models for damage 

evolution, overcome these drawbacks and describe the delaminations as discrete entities; these models, 

however, depend on a large number of variables, which is related to the number of layers, typically 

require numerical solutions and are computationally expensive.  

A novel multiscale approach, which overcomes the limitations of the discrete-layer models, has 

been recently proposed by the authors in [1-3] to analyze plates with cohesive interfaces and 

delaminations. The model couples a classical single-layer theory, which describes the global response 

of the structure, and a detailed, small-scale model, which is based on a discrete-layer cohesive-crack 

approach. The coupling is performed by assuming a two length-scales displacement field, which 

depends on the global variables and on local perturbations. A homogenization technique is then 

applied to average out the small-scale variables and obtain the macro-scale displacements and the 

dynamic equilibrium equations for the global variables [1,2]. The model is based on the original 

theories proposed in [4-6], which have been corrected to make them energetically consistent. The 

homogenized equilibrium equations have forms similar to those of single-layer theories, depend on the 

same number of variables and accurately predict local stresses and displacements in plates with 

arbitrary material structure and number and status of the interfaces, including the relevant limits of 

fully-bonded and fully-debonded layers (see applications presented in [1-3]). In systems with  
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continuous stationary interfaces, the closed form solution of the equations leads to explicit expressions 

for displacements and stresses [3], which are useful in the design practice.   

In this paper the formulation of the model will be briefly recalled and new results on the problem of 

the free vibrations of wide plates with continuous purely-elastic sliding interfaces will be presented.  

 

2 MODEL: MULTISCALE APPROACH 

The model refers to multi-layered plates with imperfect cohesive interfaces and delaminations (Fig. 

1a) characterized by piece-wise linear cohesive-tractions laws (Fig. 1c), which relate the interfacial 

normal and tangential tractions (Fig.1b) to the relative sliding and opening displacements between 

adjacent layers. The piece-wise linear laws are used to approximate the different nonlinear 

mechanisms that may take place at the layer interfaces, e.g. material rupture, cohesive/bridging 

mechanisms, elastic contact or perfect adhesion. The layers are assumed to be linearly elastic and 

orthotropic, with principal material directions arbitrarily oriented with respect to the geometrical axes; 

the mass density is m .  

 

 

 

 

 

 

 

 

 

 

 
(a)                                                       (b)                                                    (c) 

 

Figure 1: (a) Multilayered plate with cohesive interfaces and delaminations. (b) Element of layer k. 

(c) Piecewise linear cohesive traction law relating the tangential interfacial tractions to the sliding 

displacement. 

 

In the general formulation of the model, presented in [1] for plates and in [2] for wide plates and 

beams subjected to dynamic mechanical loading, the interfaces are assumed to be mixed-mode in 

order to allow the expected sliding and opening displacements at the layer interfaces. In [3] the model 

has been  particularized to problems with sliding only interfaces and extended to treat steady-state 

thermo-mechanical loading. Preliminary results on the free vibration problem in wide plate and beams 

can be found in [7,8].  

The model couples an equivalent first-order shear first-order normal deformation theory, which 

describes the global behavior, and a small-scale cohesive-crack model, which describes the local 

perturbations of the global fields generated by the inhomogeneous structure and the presence of the 

cohesive interfaces. The coupling is performed by first postulating a small-scale displacement field 

defined by global displacements which are enriched by local perturbations in the form of zig-zag 

functions and displacement jumps (Fig. 2). The local variables are then defined in terms of the global 

variables, through the imposition of continuity conditions for normal and tangential tractions at the 

layer interfaces which yield the macro-scale displacements. The derivation is presented in [1,2]. 

Expressions for the macro-scale displacements are presented here for the special case of wide 

plates deforming in cylindrical bending in the plane 2 3x x , where the principal material axes of the 

layers are oriented along the geometrical axes and the interfaces are assumed to be rigid against mode 

I relative displacements (sliding interfaces). The equations refer to an arbitrary piece of the cohesive 

traction law, 2
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upper-scripts on the right indicate the number of the interface and those on the left the layer; layers are 

numbered from bottom to top) (Fig. 1c). The longitudinal and transverse displacements within the 

layer k are: 
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22 0k

SR   and / 0i i

S St K   in fully bonded unidirectionally reinforced plates and the model coincides 

with classical first-order shear deformation theory. Stress and strain components in the layers are 

derived from the macro-scale displacements using constitutive and compatibility equations [2].   

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 2: Assumed displacement field: global displacements (first-order shear deformation theory) 

and local perturbations (zig-zag functions and interfacial jumps) 

 

 

The application of Hamilton principles using the macro-scale displacements, Eq. (1), yields the 

homogenized dynamic equilibrium equations [2]. For the free vibration problem, the equations in 

terms of generalized displacements take the form: 
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(5) 

 

 

The various coefficients in the equations depend on the material/geometrical properties, the lay-up 

and the stiffness of the interfaces; they can be easily calculated a priori and their full expressions are 

given in [8,9], along with the boundary conditions associated to Eqs. (3-5). 

  

 

3 FREE VIBRATIONS OF WIDE PLATES WITH ELASTIC INTERFACES 

The dynamic equilibrium equations (3-5) have been applied to solve the problem of the free 

vibrations of a simply supported unidirectionally-reinforced wide plate of length L (Fig. 3); the plate 

has n linearly elastic orthotropic layers, with relevant elastic constants LE , LTG , and LT  (L and T 

coincide with 2 3x x ), and n-1 purely elastic sliding interfaces with interfacial stiffness 
k

S SK K .  

 

 

 

 

 

 

 

 

 
Figure 3: Simply supported wide  plate with n layers and n-1 imperfect interfaces. 
 

 
The characteristic equation of the problem is given below in terms of natural vibration frequencies, 

( )j j jk  , with /jk j L  the wave number and j the mode number: 
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with 2K  a shear factor coefficient.  

The first root of Eq. (6) defines the natural frequencies, ( )I

j j m jLk E k  , associated to a 

spectrum of uniform axial vibrations of the laminate as a whole; they do not depend on the interfacial 

stiffness and coincides with those of a fully bonded plate. The second and third roots, ( )II

j jk  and 

( )III

j jk , define flexural vibration spectra with frequencies: 
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and depend on the interfacial stiffness through the coefficients 1 ,j j  . 

In the fully bonded limit, when SK  , Eq. (6) modifies into the characteristic equation of 

Timoshenko beam theory and the dispersion curves of the two flexural spectra in (8) are presented in 

Fig. 4, which shows j j m L
r E     versus /j jk k r j r L  , with /r I h  the radius of 

gyration and I the centroidal moment of inertia. The curves correspond to different values of the 

relative axial and shear stiffness, 2/ 60,  200,  L LTE K G     (solid, dashed, dotted lines). The 

second flexural spectrum, which corresponds to vibrations dominated by shear deformations [9], is 

characterized by a cutoff frequency for 0jk  , which is equal to 
21/ / L

III

jco LT EK G    and is 

derived through a perturbation analysis of the problem. In the limit for 0   the dispersion curve 

tends to the solution of a thickness-shear beam with 
III k

j jk   [9]. 

In the fully debonded limit, when 0SK  , a perturbation analysis of Eq. (6) yields the  

characteristic equation: 
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The equation highlights the presence of only one flexural spectrum with frequency equal to that of 

a Rayleigh beam of thickness /h n , with n the number of layers, which is shown in Fig. 5a and is 

given by: 
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The other two spectra coincide and the natural frequencies are: 
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These spectra are associated to displacement fields characterized by longitudinal vibrations in the 

absence of transverse displacements. The first is a field of axial vibrations which are uniform in the 

thickness and coincides with the classical longitudinal vibration mode of a homogeneous beam. The 

second is characterized by uniform shear deformations (thickness-shear mode [9]) and interfacial 

sliding and has zero mean value of the longitudinal displacements over the thickness.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Dispersion curves associated to the flexural spectra of a fully bonded simply supported wide 

plate (spectra coincide with those of a Timoshenko beam with elastic moduli LLE E ). Solid, dashed 

and dotted lines correspond to 2/ 60,  200,  L LTE K G    , respectively. 

 
For imperfect interfaces, the natural frequencies of vibration and dispersion curves vary between 

the two limiting solutions derived above in accordance with the solution, Eq. (8). They are shown in 

Figs. 5a,b. Results are presented for dimensionless interfacial stiffness / G ,20,  5, 1, 0S LTK h   , 

where / GS LTK h    defines the fully bonded limit (solid upper curves) and / G 0S LTK h   the fully 

debonded limit (solid lower curve, Eqs. (10),(11)). The first flexural spectrum, Fig. 5a, is limited from 

below by the Rayleigh solution for a plate with thickness h/n; the dispersion curve is very closed, over 

the range of wave number examined, to the solution of a Timoshenko plate of the same thickness, 

which is depicted by the dotted curve (discrepancies are found for larger wave numbers).  The 

dispersion curves associated to the second flexural spectrum highlight the modifications induced by 

the presence of imperfect interfaces to the cutoff frequency for 0jk  , which progressively decreases 

and vanishes on decreasing/vanishing the interfacial stiffness.  
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4 CONCLUSIONS 

The multiscale model formulated in [1-3] and recalled in this paper allows the efficient solution of 

multi-layered plates with arbitrary layup, and numbers of layers and imperfect interfaces and 

delaminations subjected to thermo-mechanical loading. This is done through homogenized equilibrium 

equations which depend on a limited number of variables equal to that of classical equivalent single-

layer theories. The accuracy of the approach has been verified with exact analytical solutions [1-3]. In 

this paper closed-form solutions have been obtained for the natural frequencies and modes of vibration 

of unidirectionally-reinforced wide plates with elastic sliding interfaces. The solutions highlight the 

important role played by the imperfections and allow parametric analyses which can be useful for the 

optimal design of the material/structure systems. New modes of vibration are activated and the cut-off 

frequency of the second flexural spectrum, which in fully bonded beams is quite large so that the 

spectrum is usually disregarded in the analyses, decreases and vanishes for decreasing/vanishing 

interfacial stiffness.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                                     (b) 

 

Figure 5: Dispersion curves associated to the first, (a), and second, (b),  flexural spectra of a simply 

supported wide plate with 6 unidirectionally reinforced layers and sliding interfaces controlled by a 

linear interfacial traction law with 2
ˆ ˆk k

S SK v  , for 1,..., 1k n  . Results are presented for 
2

55/ 60LE K C    and 55/ C ,20,  5, 1, 0SK h    (upper solid, dashed, dash-dot, small dash, lower 

solid). Note the different scales used for the two spectra. 
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