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Detection and Pose Estimation of Piled  
Objects Using Ensemble of Tree Classifiers 
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Japan 

1. Introduction  

Detection and pose estimation of 3D objects is a fundamental machine vision task. Machine 
vision for bin-picking system (Figure 1 (a)), especially for piles of objects, is a classical robot 
vision task.  

To date, however, there has been only limited success in this longstanding problem (e.g., 
picking piled objects), and, to the best of our knowledge, existing algorithms (e.g., Drost, et 
al., 2010; Ulrich et al., 2009; Hinterstoisser et al., 2007) fall short of practical use in automatic 
assembly of electronic products composed of various parts with differing optical and 
surface properties as well as with differing shapes and sizes. We found that even the state-
of-the-art, commercially available machine vision software cannot be practically used for 
picking such piles of parts with unknown pose and occlusion. Specifically, as exemplified in 
Figure 1 (b), for black (or white)-colored and untextured parts with some degree of 
complexity in shape, conventional methods turned out to be of little use. 

In this chapter, we present a potential solution to this classical, unsolved problem (i.e., 
Detection and pose estimation of each of piled objects) with an efficient and robust 
algorithm for object detection together with 3D pose estimation for practical use in robot 
vision systems. We consider the detection and 3D pose estimation as a classification 
problem (Lepetit & Fua, 2006) which constitutes a preprocessing stage of subsequent model 
fitting for further precise estimation (Tateno et al., 2010), and explore the use of ensemble of 
classifiers in a form of Random Forests (Lepetit & Fua, 2006; Gall & Lempitsky, 2009; 
Shotton et al., 2011) or Ferns (Bosch et al., 2007; Oshin et al., 2009; Özuysal et al., 2010) that 
can handle multi-categories. 

Based upon sliding window approach, we formulate the problem as classifying a set of 
patches of input image (local regions) into a sufficient number of conjunct pose and location 
categories which are supported by distributed representation of leaf nodes in trees. 

Main contributions of this paper are 1) spatially restricted and masked sampling (SRMS) 
scheme, 2) voting through local region-based evidence accumulation for pose categories, 3) 
cancellation mechanism for fictitious votes (CMFV) suggesting ill-conditioned and 
degenerated sampling queries for pose estimation, altogether leading to robust detection 
and 3D pose estimation of piles of objects. 
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(a) 

 
(b) 

Fig. 1. (a) Picking system for piles of parts. (b) Parts with various shape and surface properties.  

2. Basic formulation 

Detection task of piled objects composed of the same category parts as shown in Figure 1 
(b), inherently requires following three properties. 1) Robustness to occlusion, 2) Robustness 
to high background clutters (i.e., noisy clutters are by themselves some other objects of the 
same class in the neighborhood of a specific object to be detected), 3) Robustness to drastic 
variability of object appearance due to varying pose and illumination change, especially for 
objects with higher specularity. 

In this section, we show details about basic formulation of the proposed algorithm. We 
show here a new patch based method for object localization as well as pose estimation, 
which is a class of generalized Hough transforms and similar in spirit with Hough Forests 
(Gall & Lempitsky, 2009), and the basic strategy for the improvement is given in the next 
section.  
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Through construction of trees in the training, pose classes of an object are defined in a form 
of tree-like structure and described by a set of local cues inside patches. For each tree, a set 
of patches Pi, local regions in an edge-enhanced feature image (given in subsection 3.3) can 
be defined as {Pi = (Fi, Ci)}, where Fi is the appearance of the local feature image, Ci is the 
label of the patch, Ci = (li, Posei) where li denotes its location inside the object and Posei is 
associated pose class. Whole sets of local cues {t(Fi)}, in the entire trees associated with 
particular pose of an object, constitute codebooks or dictionary of particular poses. 
Specifically, the local cues t(Fi) are binary data given by comparison of two feature values at 
given paired locations (p1,q1) and (p2,q2) and defined as: 

      
1 1 2 2

1 1 2 2
, , ,

0, , ,

1,
i i

p q p q i

if F p q F p q
t F

otherwise

        (1) 

2.1 Building ensemble of trees 

In the training phase, construction of trees goes recursively by setting patches as well as 
paired locations (sampling points) inside each patch. For a given number L of trees, we 
perform L sessions of training and prepare a set of feature images for training.  

The feature image is given by preprocessing (explained in subsection 3.3) the input image to 
obtain edge-enhancement, while suppressing noise. Since our pose classification is 
succeeded by model fitting for further precise estimation, total number of pose categories is 
determined by the resolution and accuracy requirement on the initial pose estimation 
imposed by the subsequent model fitting process (Tateno, et al., 2010), and the number 
could be huge (see Section 4). At the beginning of each training session, set of patches are 
first randomly generated subject to the condition that their locations are inside the object, 
and sampling points are probabilistically set according to the new scenario given in 
subsection 3.1. For example, in Figure 2 we have four patches for respective five pose 
categories, which amount to 20 training images. 

A leaf node is the one which contains less than a fixed number of patches or its depth is the 
maximum value a-priori set, and if it contains no patch, we call it null or terminal node. In 
the training, we set a maximum depth of node constant among trees, and starting from the 
root node, the node expansion continues until it reaches the maximum depth or terminal 
node. At each node of a tree, if it is not the terminal nor leaf node, binary tests (1) are 
performed for a set of patches inside the node, and they are partitioned into two groups 
which are respectively fed to two child nodes (Figure 3). 

We do not have a strict criterion on the training performance, a criterion on good codebooks 
being generated. One of reasonable criteria is that many of leaf nodes should have only one 
patch (i.e., single pose category) so that uniqueness of distributed representations is 
ensured, and another criterion is the diversity of sampling points so that spatial distribution 
of query points are not biased to some limited local area of the object. For the second 
criterion, because of geometrical triangulation principle, it is reasonable to consider that 
estimated pose category at wide spread positions, many of which supports the same 
category, is more credible than those from narrowly spread positions. 
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Fig. 2. (left) Schematic patch images for training; (right) Sliding window for matching. 

2.2 Detection and pose estimation by ensemble of trees 

In sliding window approach, we raster-scan the entire image using a local window of 
appropriate size, and at each position, parts detection together with pose estimation is done 
using the ensemble of classifiers . 

Decision about the classification is done based on voting the outputs of leaf nodes among 
trees, followed with thresholding. The voting stage accumulates the supporting, local 
evidences by collecting outputs of leaf nodes among trees which signify the same pose 
category. Figure 4 schematically shows concentration of specific pose category as the result 
of correct voting, and no concentration for other pose classes. For the total number of L trees, 
voting for class j is performed for each pose category, yielding score S(j) as: 

     , ,1
L

j tr
t

S j C r ,  

where r denotes relative position vector of a patch directing to the center of object, Cj,t(r) is 1, 
if, in the tth tree, class label j is detected by the patch assigned with position vector r, and 
Cj,t(r) is 0, if otherwise.  ,a b  is 1 for a = b, and 0 for otherwise. In practice, we use the 
following weighted voting given as: 

      ,, , 1
L

r k j t k
t k

S j F r r C r , 
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No.1

No.2

No.3

No.4

No.5

 
Fig. 3. Patch data partitioning. Based on a comparison of two pixel values, divide a set of 
patches into two groups with the same content (i.e., left or upper pixel value is larger or not 
than the other). 

 
Fig. 4. Observed concentration of voting for correct class. 

www.intechopen.com



 
Machine Vision – Applications and Systems 

 

168 

where Sr(j) is the score for class j at the position r, and rk is the location of patch k, F(rk) 
denotes weighting function with belle shaped envelope. Location of the object detected can 
be found by taking summation of position vectors r for patches identified as having the 
same pose category Cj(r) under the conditions that the score S(j) is maximum or ranked K (K 
is ordinarily set as 1 or 2) or above among other categories and that S is also above a certain 
threshold S0. If K is set as 2, we select the most plausible estimate in the subsequent model 
fitting process (Tateno, et al. 2010). 

3. Patch-based approach in ensemble of tree classifiers 

First, to deal with three issues given in Section 2 faced in the detection task of piled objects, 
we incorporate the SRMS scheme (subsection 3.1) in ensemble of classifiers, a class of Hough 
Forests (Gall & Lempitsky, 2009). This sampling scheme together with CMFV (subsection 
3.2) turned out to be very effective for enhancing robustness to occlusion as well as 
background clutters. The proposed method uses training images composed of only positive 
data because of SRMS as well as patch data generation inside the object. This is in contrast to 
Hough Forests which handle both positive and negative data in a supervised learning. In 
the second, we perform a series of feature extraction (subsection 3.3) for edge enhancement 
while suppressing noise, namely bilateral filter and gamma correction for smoothing, 
Laplacian filter for edge extraction, and Gaussian filters for blurring to form a channel of 
feature images fed to ensemble of trees. 

3.1 Spatially restricted and masked sampling (SRMS) 

Hough Forests (Gall & Lempitsky, 2009), a class of both random forests and generalized 
Hough transform, introduced spatial restriction in a form of patch (e.g., local region in a 
image) so that sampling queries are generated inside respective patches. In addition to this 
patch-based framework, we introduce here another spatial restriction in a form of mask 
which is the silhouette of object with particular pose. Mask defined at each node is used to 
impose probabilistic restriction onto queries so as to be inside the object with a range of 
poses. In contrast to the proposed approach, Hough Forest does not restrict location of 
patches in image. Thus, in the training phase to construct trees, each patch is set at random 
so that its centre position shall be inside the silhouette of objects to be detected, while 
respective sampling pairs of points are probabilistically set based on the conjoint mask data 
given as follows. 

This combination of locality restrictions in generating sampling queries helps to enhance 
robustness against occlusion. We define a conjoint mask as a conjunction of silhouettes of 
objects with different poses in the corresponding node. A node in the tree generally contains 
multiple classes of pose, and at each node, pose categories are partitioned into two sets of 
data. Those partitioned data are fed to subsequent nodes, where partitioning follow. Here 
we show several ways of generating the mask data resulting from conjoint of composite mask 
data at each node of a tree. Here, we use the term, composite mask, for one of masks in the 
node. One way of conjoining silhouettes is taking AND operation on them for a given node 
in the tree. The resulting mask data M is thus given by  

 1 2
1 1 1

, , ,
N N N

k k k
n

k k k

M M M M
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where N is the number of mask images (i.e., number of pose classes in the current node), 
Mk=(Mk1, Mk2, …, MkN) ,and Mkj is binary data at the kth location for the jth class of pose 
categories in the current node, n is the dimension of the mask image (i.e., number of pixels).  

Another way of constructing mask data for a given node is to take OR operation on them: 

1 2
1 1 1

, , ,
N N N

k k k
n

k k k

M M M M
  

                    

Yet another way of constructing mask data in the node is to take ORs of patch data mkj 
within a composite mask image: 

 1 2
1 1 1

, , ,
N N N

k k k
n

k k k

M m m m
  

          (2) 

Here, M in eqn. (2) does not give the conjoint data of mask silhouettes, but it is sufficient for 
us since sampling pair data are to be generated inside those patches. Next, we show our 
scheme of probabilistic generation of sampling queries. For conjoint mask data M at each 
node, we define a probability density function P by simple normalization, given as follows. 

 
1 2

1 1 1

1 1

, , ,
N N N

k k k
n

k k k
n N

k
j

j k

m m m

P

m

  

 

   
  




   (3) 

Then we generate pairs of sampling points based on the probability density function (3) 
which are guaranteed to be inside either of patches. This sampling scheme together with 
CMFV in the next subsection turns out to be very effective for enhancing robustness to 
occlusion as well as background clutters. 

3.2 Cancellation mechanism for fictitious votes (CMFV) 

In automatic assembly line of manufacturing, containers are used for supplying parts. Those 
containers are usually kinds of trays or boxes made of rectangular planes. In practice, linear 
portions of a tray cause detection errors if objects to be detected are made up of many or 
longer linear portions. In such cases, it is not surprising to confuse linear portion of a tray as 
a part of object to be detected, since our method as well as randomized tree based 
approaches are based on accumulation of local evidence (e.g., comparison of feature values 
at two sampling points). This confusion resulting from such degeneration is reminiscent of 
so-called aperture problem in computer vision.  

Proposed cancellation mechanism is intended to alleviate such confusions. As in generalized 
Hough transform, we perform voting as local evidence accumulation in which each of 
evidence is obtained through sliding window. In practice, this local evidence accumulation 
can cause degenerated results which cannot be in principle disambiguated. As a result, we 
may have excessive concentration of classification results with the same localized category 
(i.e., posture observed at particular location of the object) at particular locations. In such 
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cases, we consider the result as fictitious. The criterion for this singularity is empirically set 
as a threshold, assuming appropriate probability density function. For example, if the 
number of patches used for training is much larger than the total sliding numbers, then we 
can assume Poisson distribution, and for other cases, binomial distribution. Details about 
the threshold and probability density will be given in Section 4. 

 
(a) 

     
(b) 

Fig. 5. (a) Result with CMFV, (b) Result without CMFV. 

3.3 Pre-processing: Feature extraction 

We perform a series of pre-processing to extract feature images as input to the ensemble 
classifiers. A typical feature image is an edge image. This processing includes edge 
extraction by Laplacian filter, blurring with Gaussian filters, and some other non-linear 
processing. Examples of extracted feature images are shown in Figure 6. Since edge 
extraction tends to enhance noise, blurring process is necessary for the suppression of noise, 
however, it could affect the performance, since contrast of edge image is degraded.  

2D features thus obtained with appropriate parameters are very important and they 
significantly influence the performance of randomized tree-based classifiers. These set of 
operations turn out to be important for robustness and precision of final results (see Section 4).  
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Fig. 6. Feature image obtained by edge extraction and blurring. Upper pictures are input 
images and lower ones are corresponding feature images as input to the classifier ensemble. 

Another possible feature used for the detection task is 2.5 D map (depth map data) 
obtained by any three dimensional measurement (e.g., stereo vision, triangulation by 
structured pattern projection, TOF, etc.) method. Various features can be used, in 
principle, as channels of input to the ensemble classifiers. In this paper we confine to 2D 
edge-enhanced image as input. 

4. Experiments 

We used five classes of parts in printers (i.e., inkjet and laser beam printers) for training and 
testing. Those parts are of plastic mold and many of them are either black or white. Images 
of parts are taken by Canon EOS Kiss X2. Training image is taken for a single object with  
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Fig. 7. Detection results for various objects. Correctly detected parts are shown by 
superimposed CAD image.  
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particular pose in a flat background (Figure 2 left). The number of pose categories is 
dependent on the resolution and accuracy requirement as initial estimate of pose which is 
given as input to the model fitting. Based on experiments, we empirically set the number of 
basic pose as follows. Pose categories necessary for the initial estimate in the model fitting 
are found to be defined by every 162 viewpoints evenly distributed on a geodesic dome and 
it was found necessary to discriminate poses for every 8 degree in-plane rotation, which 
results in total number of poses, 162 x 45 = 7620. In the training, we set 100 patches for each 
pose category. The size of input image is 660 x 640 pixels, and the size of patches is 50 x 50 
pixels which is set constant for the five parts. Maximum depth of trees is empirically set 
from 15 to 30, which is dependent on the shape of parts. 

Feature extraction was obtained by Laplacian filtering followed with blurring using 
Gaussian filter as shown in Figure 6. After the feature extraction, ground truth data given by 
(1) are taken for the respective patch images using queries generated by the probabilistic 
sampling in subsection 3.1. 

4.1 Detection results 

We show some detection results for piles of parts in Figure 7 obtained using the proposed 
SRMS as well as CMFV (Section 3) with the number of trees 32. We indicate here correct 
detections by superimposing CAD data of corresponding pose category. We do not use 
depth map data at all in the detection as well as training process. 

4.2 Benchmarking 

We compared the proposed method with the state-of-the-art, commercially available 
machine vision software (HALCON 9.0 produced by company MVTec). Technology related 
with the reference software can be found in Ulrich et al. (2009), which relies on  edge-based 
fast matching scheme. Here we show some results in Figure 8. As is evident from this figure, 
it is very difficult for the reference software to detect and estimate 3D pose in the case of 
parts with white surface properties. Moreover, for black parts in Figure 1 (b) it was entirely 
unable to detect. 

Since our method as well as the reference software HALCON in this comparative experiment 
is 2D-based, it is essentially hard to estimate rotation angle in depth. Our criterion for 
correct detection is based on the requirement set by model fitting process, which is given by 
allowable error in position and pose. Maximum allowable error for ‘correct’ result was given 
by approximately 10% of size in terms of positional error and approximately 10 deg. in 
terms of in-plane angle error measured in the image. 

Shown in Figure 9 is a kind of ‘RPC’ curves for varying number of trees in the case of the 
piled parts shown in the upper picture in Figure 8, the reference software HALCON could 
detect up to only three parts, whereas proposed method could detect increasing number of 
parts on the order of 20 with growing number of trees. 

For the five classes of parts shown in Figure 1 (b), the number of correctly detected parts and 
average detection time are as follows. It is clear that the proposed method outperforms the 
reference software HALCON in terms of precision and detection time. For fair comparison, 
we set the same criterion on correct detection.  
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Fig. 8. Results obtained for the reference software HALCON (9.0). 

 
Fig. 9. RPC-like curve obtained for the reference software HALCON (9.0). 
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 Class 1 Class 2 Class 3 Class 4 Class 5 Detection time (s) 
Proposed alg. 20 10 14 10 5 5.8 
Ref. Software H 3 0 5 0 0 30.4 

In the table above, we show processing times as compared with the reference software 
(HALCON). It clearly shows that the proposed algorithm significantly outperforms the 
reference software in terms of processing speed. 

5. Discussion and conclusions 

In this chapter, we proposed a new algorithm based on ensemble of trees for object 
localization and 3D pose estimation that works for piled parts. We define pose estimation as 
classification problem which provides initial estimate for the subsequent model fitting 
processing to obtain further precise estimation.  

One important aspect of object detection in the bin-picking task is that it is sufficient to 
localize and estimate the pose of one ‘adequate’ object for picking. In fact we used the 
number of parts detected as measure of ‘recall’ in the RPC-like curve (Figure 9). The 
proposed method significantly outperformed the state of the art, commercially available 
software in terms of precision and processing speed.  
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