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Biocatalytic C-H halogenation is becoming increasingly attractive due to

excellent catalyst-controlled selectivity and environmentally benign reaction

conditions. Significant efforts have been made on enzymatic halogenation of

industrial arenes in a cost-effective manner. Here we report an unprecedented

enzymatic halogenation of a panel of industrially important indole, azaindole

and anthranilamide derivatives using a thermostable RebH variant without

addition of any external flavin reductase enzyme. The reactions were

catalyzed by the RebH variant 3-LSR enzyme with the help of a co-purified

E. coli reductase identified as alkyl hydroperoxide reductase F (AhpF).
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Introduction

Halogenated arenes serve as versatile building blocks in organic synthesis and key

structural motifs in numerous natural products and drug molecules (Butler and Walker,

1993; Stürmer, 1999; Littke and Fu, 2002; Nicolaou et al., 2005). A large proportion of

drugs in clinical trials or on the market at present contain halogen atoms, which are

known to have a profound effect on the bioactivity and physicochemical properties of

small molecules (Lu et al., 2012; Xu et al., 2014). Efficient methods for selective installation

of halogen substituents are thus highly desirable. Traditional halogenation methods often

require electrophilic halogen sources that are hazardous and/or harmful to the

environment. Stereo and regioselectivity is another challenge in many cases whereby a

mixture of isomers is obtained. Enzymatic halogenation offers a highly attractive

alternative, allowing green chemistry principles (van Pée, 2012; Schnepel and Sewald,

2017; Latham et al., 2018; Fejzagić et al., 2019; Crowe et al., 2021; Paul et al., 2021) such as

less hazardous chemical synthesis and use of safer solvents. For example, the use of

halogenases in aqueous reaction media at ambient temperatures minimizes the use of
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toxic volatile organic solvents. Moreover, the reaction employs

benign halide salts as the halide source avoiding hazardous

halogenation reagents and exhibits excellent regioselectivity

thereby simplifying the product purification process.

To explore the synthetic utilities of halogenases, significant

efforts have been directed to investigate the substrate scope of these

enzymes, and several classes of electron rich arenes such as

tryptophans, tryptamines, tryptolines, anilines, phenols and

indoles have been shown to serve as substrates for halogenases

(Figure 1A) (Hölzer et al., 2001; Payne et al., 2013; Payne et al.,

2015; Shepherd et al., 2015; Andorfer et al., 2016; Andorfer et al.,

2017; Fisher et al., 2019; Gkotsi et al., 2019). For anilines and

phenols, halogenation generally occurs at the most electrophilic

sites (o- and p-substituted). When there is a strong interaction

between halogenase and the side chain of substrate at the

C3 position (i.e., tryptophans, tryptamines and tryptolines),

halogenation can be directed at less electrophilic positions, for

example C5, C6 or C7 (Dong et al., 2005; Lang et al., 2011; Payne

et al., 2015; Andorfer et al., 2016). The halogenation of indoles

without a side chain at C2 andC3 positions is not well-studied, and

most examples are limited to chlorination. Lewis et al. used two

halogenase enzymes RebH and Thal for chlorinating several indole

derivatives such as indole and 5-methylindole (Figure 1B) (Payne

et al., 2013; Payne et al., 2015; Andorfer et al., 2017). Sewald and

co-workers identified BrvH, a new FDH, for the C3-halogenation

of free indole, which showed significantly higher bromination

activity over chlorination (Neubauer et al., 2018). For instance, full

conversion of indole to bromoindole was observed in 48 h while

the chlorination proceeded only to 8.4% under similar conditions.

Recently, they also extended the substrate scope of BrvH to other

indole derivatives via virtual screening (Figure 1B) (Neubauer

et al., 2018; Neubauer et al., 2020). The same group also identified

Xcc halogenases from Xanthomonas campestris pv. Campestris

B100 could brominate 5-hydroxyindole, 5-methylindole and

indole-5-carbonitrile at C3-position with moderate to low

activity (Ismail et al., 2019). We report herein the halogenation

of an extended panel of indole, azaindole and anthranilamide

derivatives with RebH 3-LSR (3-LSR hereafter), a thermostable

variant of RebH, with focus on production of brominated

compounds, which are highly valuable precursors for transition

metal-catalyzed cross-coupling reactions (Miyaura and Suzuki,

1995; Torborg and Beller, 2009; Poor et al., 2014). Additionally,

the halogenation reactions were carried out by using endogenous

E. coli reductase, identified as AhpF, that co-purified with the

recombinant 3-LSR enzyme, thereby simplifying the enzyme

catalyzed process further by eliminating the need for any

externally produced and purified Fre enzyme.

Flavin-dependent halogenases (FDHs), which require only a

halide salt, molecular oxygen and FADH2 as a cofactor, have been

emerging as a highly promising synthetic tool (van Pée and

Patallo, 2006). The expensive cofactor FADH2 can be regenerated

in situ via the use of NADH-dependent flavin reductase (Fre).

This cofactor regeneration is essential to maximize the product

formation using minimum quantities of FADH2, which typically

needs the recombinant production and purification of the Fre

enzyme. Regeneration of NADH can be further achieved with an

appropriate enzyme such as glucose dehydrogenase (GDH) using

glucose as the terminal reductant. The native RebH partner RebF

FIGURE 1
Arenes previously reported in halogenase studies; (A) Classes of compounds accepted by halogenases, (B) Indoles without a side chain at C2
and C3 as substrates for halogenases.
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is widely used for FADH2 regeneration in RebH-catalyzed

halogenation reactions. Although functionally linked and

derived from same biosynthetic gene cluster, RebF does not

have any direct interaction with RebH. The role of RebF is

simply to supply reduced FADH2 to RebH, and could

potentially be replaced by alternative Fre enzymes. Purified

flavin reductases from various microorganisms including

E. coli were reported to be used for cofactor regeneration in

enzymatic halogenation reactions (Zeng and Zhan, 2010; Menon

et al., 2016; Menon et al., 2017). In another approach, crude or

partially purified recombinant halogenases were successfully

tested for catalyzing halogenation reactions without addition

of any external Fre, possibly by utilizing an endogenous

reductase from E. coli (Keller et al., 2000; Domergue et al.,

2019). Although a particular well-studied E. coli Fre is widely

used for the former application (Spyrou et al., 1991), various

reductases could potentially be involved when crude or partially

purified halogenases are used. It is worth mentioning that

multiple Fres are generally present in every organism and thus

in the crude recombinant enzyme preparations (van Pée, 2012).

Methods

General Information

Chemicals and anhydrous solvents were obtained from Sigma

Aldrich and were used without further purification. Spectroscopic

grade solvents were purchased from Sigma Aldrich. LC–MS

analysis was performed by using an Agilent 6120 mass

spectrometer with an Agilent 1290 quaternary gradient system.

GC–MS analysis was performed by using an Agilent HP-7890

instrument with an Agilent HP-5975 with triple-axis detector and

HP-5MS capillary column by using helium as the carrier gas. High-

resolution mass spectra (HRMS) were recorded on an Agilent ESI-

TOF mass spectrometer at 3500 V emitter voltage. Exact m/z

values are reported in Daltons. Crude product and HPLC purified

fractions were freeze dried using a Labconco lyophiliser at -84°C

and 0.01 mbar vacuum.

3-LSR Expression

The 3-LSR gene was codon optimized for expression in

E. coli (sequence is presented in Supplementary Table S1) and

cloned in kanamycin-resistant pET22b plasmid in between

NdeI and XhoI restriction sites, and 6-His tag was

incorporated at the C-terminus. E. coli BL21 (DE3)

competent cell was transformed with the plasmid construct,

and used for 3-LSR protein production. For overexpression, LB

broth containing 50 μg ml−1 kanamycin was inoculated with 1%

(v/v) overnight culture and incubated at 37°C with constant

shaking at 180 rpm. The culture was induced with 0.5 mM

IPTG when Abs600 reached to 0.5, and over-expressed

overnight at 25°C. The cells were harvested by centrifugation

and stored at –80°C.

HisTrap affinity chromatography

The cells were re-suspended in HisTrap buffer A (50 mM

Tris-Cl + 500 mMNaCl +20 mM imidazole, pH 7.4) and lysed by

sonication. Cell debris and insoluble materials were removed by

centrifugation at 20,000 g for 30 min. The proteins were purified

using His GraviTrap column (GE healthcare) following

manufacturer’s protocol, and the protein was eluted in buffer

B (50 mMTris-Cl + 500 mMNaCl +500 mM imidazole, pH 7.4).

Purity of eluted fractions was analyzed by SDS-PAGE. The

fractions containing 3-LSR protein were pooled together and

concentrated using 10 kDa MWCO Amicon Ultra centrifugal

device and buffer exchanged to 50 mM phosphate buffer pH 7.5.

Concentration of the purified protein was determined from

Abs280.

Ion-exchange chromatography

The ion-exchange chromatography was done using

RESOURCE Q column (GE Healthcare) in AKTA purifier

system. The HisTrap purified protein was buffer exchanged

and diluted 10x in buffer A (25 mM Tris-Cl buffer, pH 8.6),

and used as sample for binding in the RESOURCE Q column

pre-equilibrated with the same buffer. Unbound proteins were

removed by washing with 10 column volume buffer A and the

bound proteins were eluted by linear gradient using increasing

concentration of buffer B (buffer A+ 1M NaCl) and eluent was

collected in 1 ml fractions. The fractions were analyzed by SDS-

PAGE; the fractions containing 3-LSR proteins were pooled

together and concentrated prior to further purification by size

exclusion chromatography.

Size-exclusion chromatography

The purification was done with HiLoad 16/600 Superdex

75 pg column in AKTA purifier system, using 20 mM phosphate

buffer (pH 7.2) containing 200 mM NaCl as mobile phase. 2 ml

concentrated eluent from RESOURCE Q column was injected to

the pre-equilibrated column and eluted using the same buffer.

1 ml fractions were collected and analyzed by SDS-PAGE.

Mass spectrometry

The C7 fraction from ion-exchange purification was buffer

exchanged to 50 mM ammonium bicarbonate buffer, trypsin

Frontiers in Bioengineering and Biotechnology frontiersin.org03

Hui et al. 10.3389/fbioe.2022.1032707

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.1032707


digested and peptides were extracted according to standard

techniques (Bringans et al., 2008). Peptides were analysed by

electrospray ionisation mass spectrometry using the Shimadzu

Prominence nano HPLC system [Shimadzu] coupled to a

5,600 TripleTOF mass spectrometer [Sciex]. Tryptic peptides

were loaded onto an Agilent Zorbax 300SB-C18 column (3.5 μm)

and separated with a linear gradient of water/acetonitrile

containing 0.1% HCOOH. Spectra were analysed to identify

E. coli proteins using Mascot sequence matching software

(Matrix Science) with UniProt database. The mass

spectrometry proteomics data have been deposited to the

ProteomeXchange Consortium using the MassIVE (Wang

et al., 2018) partner repository, with the accession number

doi:10.25345/C51G0J027.

NMR spectroscopy

Proton (1H NMR, 400 MHz), carbon (13C NMR, 100 MHz)

magnetic resonance spectra were recorded on Bruker Avance III

400 MHz spectrometer using CD3OD and (CD3)2SO. Chemical

shifts for protons are reported in parts per million and are

referenced to residual proton in solvent (1H NMR: CD3OD at

3.31 ppm and (CD3)2SO at 2.50 ppm). Chemical shifts for

carbons are reported in parts per million and are referenced

to the carbon resonances of the residual solvent peak (13C NMR:

CD3OD at 49.00 ppm and (CD3)2SO at 39.52 ppm). Data are

reported in the following order: chemical shifts are given (δ);
multiplicities are indicated as s (singlet), d (doublet), t (triplet), q

(quartet) and m (multiplet).

RebF expression and purification

The RebF gene with C-terminus 6-His tag was cloned in

pET22b plasmid, and transformed in E. coli BL21 (DE3). Single

colony of transformant was used to make 10 mL overnight cuture

in LB medium containing 50 μg/mL kanamycin. The overnight

culture was diluted 100× into 1,000 mL of the same media, and

was grown at 37°C with constant shaking at 180 rpm until Abs600
reaches to 0.5. The induction was performed with 0.1 mM IPTG

and the culture was incubated for overnight at 25°C with shaking

at 180 rpm. Cells were then harvested by centrifugation and

stored at –20°C prior to purification. The protein was purified by

HisTrap affinity chromatography as described above.

AhpF expression and purification

The gene was codon optimized for expression in E. coli, and

cloned by In-Fusion cloning in pET22b plasmid double digested by

NdeI and XhoI. The protein was over-expressed in E. coli BL21

(DE3) at 16°C overnight using 0.5 mM IPTG, using LB-amp media.

The protein was purified to homogeneity in three steps: HisTrap

affinity chromatography, anion exchange chromatography and size

exclusion chromatography, similar to 3-LSR purification.

Analytical LC-MS Method

Crude mixture (20 μl) was injected onto C18 analytical column

(1.8 μ packing, 2.1 × 50mm,Agilent EclipsePlus). Gradient conditions

of 10%MeCN/H2O (plus 0.1% HCOOH) held for 1 min followed by

development to 95% MeCN/H2O over 3min and reequilibration to

starting conditions over 2 min. Column temperature and flow rates

were kept constant at 25°C and 0.4 mLmin−1 respectively. UV

absorbance was detected at 254 nm and 280 nm throughout.

Semi-preparative HPLC method

900 μl of solution containing crude mixture dissolved inMeOH

was injected onto a semi-preparative C12 HPLC column (4 μ

packing, 250 × 10 mm, Phenomenex Jupiter). Starting conditions

of 40% MeCN/H2O (plus 0.1% TFA) were held for 2 min Before

development to 90% MeCN/H2O over 20 min 95% MeCN/H2O

then held for 3 min Prior to re-equilibration of starting conditions

over 3 min. Flow rates were kept constant at 5 mLmin−1. UV

absorbance was detected at 220 nm throughout.

Analytical scale biotransformation

2.0 mM substrate was mixed with NaBr (100 mM), glucose

(20 mM), FAD (300 µM), 3-LSR enzyme (50 µM), Fre (5 µM),

NADH (100 µM) and glucose dehydrogenase enzyme (0.7 µM)

in 20 mM phosphate buffer to a total volume of 200 µl. The

mixture was incubated overnight at 25°C and shaked at 180 rpm.

The reaction was stopped by heating at 95 °C for 10 min and the

precipitates were removed by centrifugation at 13,000 rpm for

10 min. Methanol (200 µl) was added to the supernatant and

analysis was performed using analytical LC-MS method.

Preparative scale biotransformation

The above reaction was scaled-up to 4ml total volume and the

mixture was lyophilized after removing the protein by heat treatment

and centrifugation. The resultant supernatant was then mixed with

methanol and purified by semi-preparative HPLC method.

Results and discussion

In this study, the RebH variant 3-LSR enzyme was

recombinantly produced in E. coli with a yield of 15 mg
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protein per liter culture. To our surprise, we discovered that

the partially purified enzyme (purified by HisTrap affinity

chromatography) was able to catalyze bromination of 5-

nitroindole (1a) without addition of any external Fre

(Table 1 entry 1) forming the monobrominated product 2a

in high HPLC yields and selectivity. Remarkably, no

multibrominated products were formed as observed by LC-

MS analysis. To further investigate, the enzyme was purified

to homogeneity with a final yield of 8.4 mg pure enzyme per

liter culture using anion exchange and size exclusion

chromatography (Figure 2A), and the purified enzyme was

found to be almost inactive if no additional Fre was added

(Table 1 entry 2). However, the activity of the purified enzyme

was restored by addition of the flavin reductase enzyme RebF.

The activity of the partially purified enzyme without external

Fre was comparable to that of the purified enzyme

TABLE 1 Bromination of 5-nitroindole with RebH 3-LSR.

Entry Halogenase used Reductase added HPLC yield (%)[a] Rentention time
(min)[b] of 2a

1 Partially purified 3-LSR[c] None 97.7 ± 2.5 4.640

2 Purified 3-LSR[d] None 6.3 ± 4.5 4.653

3 Purified 3-LSR[d] 5 µM RebF 95.6 ± 1.2 4.572

4 Purified 3-LSR[d] 50 µL fraction C7 96.5 ± 3.5 4.654

5 Purified 3-LSR[d] 5 µM purified AhpF 96.3 ± 1.5 4.571

[a] calculated from the HPLC peak area% of starting material and product; [b] A shift (up to ±0.08 min) in the retention time of 2a in HPLC was observed for samples run on different days

due to small variations in operational conditions-The product peaks for entries 1-5 were further confirmed by MS, analysis and illustrated in Supplementary Figure S9) [c] Purified by

HisTrap affinity chromatography only; [d] Purified by HisTrap, ion-exchange and size exclusion chromatography.

FIGURE 2
(A) SDS-PAGE of the 3-LSR after purification by Histrap (lane 1), anion-exchange (lane 2) and size exclusion (lane 3) chromatography. (B)
Chromatogram of anion exchange purification of 3-LSR; the fraction with Flavin reductase activity (Fraction C7) eluted before elution of the 3-LSR
protein (the main peak).
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supplemented with 5 µM RebF (Table 1 entry 3). To detect the

anticipated co-purified Fre in the partially purified enzyme,

small peaks from ion exchange and size exclusion fractions

were tested for the reductase activity by using them as Fre

source in the purified 3-LSR catalyzed halogenation. The

purified enzyme was able to catalyze the halogenation

reaction when supplemented with the fraction C7 from the

ion exchange chromatography (Table 1 entry 4, Figure 2B).

There was a small shift in retention time of the

monobrominated product 2a in HPLC for the reactions

demonstrated in Table 1 as the samples were analyzed on

different days thereby causing small variations in operational

conditions e.g. pressure, flow, temperature and solvent ratios.

To clarify further, the individual product peaks were

confirmed by MS analysis. As illustrated in Supplementary

Figure S9, the MS (ESI-) of the peak corresponding to 2a in all

the entries in Table 1 showed m/z of 239 and 241 with a

typical isotope pattern of monobrominated compounds.

Another set of MS peaks at m/z 353 and 355 was also

observed which corresponds to TFA salt of 2a as

confirmed by HRMS (Supplementary Figure S26). No

multibrominated products were detected by MS extraction

of the corresponding masses.

Remarkably, mass-spectrometry analysis of fraction

C7 identified an E. coli endogenous flavin reductase ‘alkyl

hydroperoxide reductase F’ (AhpF) as the potential enzyme for

FADH2 regeneration in the 3-LSR catalyzed halogenation

reactions (Supplementary Figure S1). Proteomics analysis of the

C7 fraction revealed 4 unique peptides covering 12.88% of the total

protein sequences for AhpF (Table 2). AhpF is one of the ten most

abundant proteins in E. coli, and is also present in other

microorganisms (Link et al., 1997; Wood et al., 2001; Jiang and

Bommarius, 2004; Dip et al., 2014). This homo-dimeric protein

was also reported to be co-purified with other recombinant E. coli

proteins (Haley, 2013; Kamariah et al., 2015; Klein et al., 2020). Its

crystal structure consists of an FAD-binding domain and an

NADH binding domain, and this protein is also known to have

NADH-dependent FAD reductase activity (Dip et al., 2014;

Kamariah et al., 2015). However, isolated AhpF was never used

as Fre in FDH catalyzed reactions although it was reported to

reduce free FAD to FADH2 in vitro (Jiang and Bommarius, 2004;

Dip et al., 2014). We recombinantly expressed and purified the

E. coli AhpF enzyme (Supplementary Figure S42) with a yield of

12 mg pure enzyme per liter culture. Activity of the purified 3-LSR

enzyme in presence of 5 µM recombinantAhpFwas comparable to

that of the purified 3-LSR supplemented with 5 µM RebF (Table 1

entry 5), which suggests co-purified E. coli AhpF was acting as Fre

in the partially purified enzyme preparations.

To explore the scope of enzymatic bromination, the

partially purified 3-LSR was used to brominate a panel of

substrates (1a-1o) in a preparative scale as shown in Table 3.

For indole halogenation, substituents at different positions

on the benzenoid ring were well-tolerated by 3-LSR as

monobrominated indoles were obtained in all cases as

determined by LC-MS analysis. NMR analysis confirmed

the formation of 3-bromoindoles (Supplementary Figure

S2) (Sana et al., 2021). In analogy to the catalytic mechanism

of tryptophan halogenases, the mechanism here is proposed to

involve a Lys79-bromoamine intermediate active species which

carries out electrophilic aromatic substitution at the most electron

rich C3-position of the indole ring followed by deprotonation of the

Wheland intermediate assisted by glutamate 346 oxygen to form 3-

bromoindoles (Figure 3) (Fraley et al., 2017; Karabencheva-

Christova et al., 2017; Schnepel and Sewald, 2017; Ismail et al.,

2019). Electron rich indoles, such as 5-methoxyindole (1e) and 7-

methylindole (1k) were brominated with good to high yields.

TABLE 2 Identification of AhpF protein from proteomics analysis of C7 fraction from anion exchange purification of 3-LSR. The sequence highlighted
in yellow shows the coverage of the total protein sequences for AhpF. PSM represents the total peptide to spectrum match.

Total peptide 4

Unique peptide 4

Coverage (%) 12.88

Annotated peptide sequence Sequence positions PSM

K.HTAIDGGTFQNEIIDR.N 150–165 1

K.VHVDEYDVDVIDSQSASK.L 274–291 2

K.LIPAAVEGGLHQIETASGAVLK.A 292–313 11

R.NMNVPGEDQYR.T 327–337 59

>AhpF
LDTNMKTQLKAYLEKLTKPVELIATLDDSAKSAEIKELLAEIAELSDKVTFKEDNSLPVRKPSFLITNPGSNQGP
RFAGSPLGHEFTSLVLALLWTGGHPSKEAQSLLEQIRHIDGDFEFETYYSLSCHNCPDVVQALNLMSVLNPRIKHTAIDGGTFQNEITDRNVMGVPAVFVNGKEFGQG
RMTLTEIVAKIDTGAEKRAAEELNKRDAYDVLIVGSGPAGAAAAIYSARKGIRTGLMGERFGGQILDTVDIENYI
SVPKTEGQKLAGALKVHVDEYDVDVIDSQSASKLIPAAVEGGLHQIETASGAVLKARSIIVATGAKWRNMNVPGEDQYRTKGVTYCPHCDGPLFKGKRVAVIGGGNSG
VEAAIDLAGIVEHVTLLEFAPEMKADQVLQDKLRSLKNVDIILNAQTTEVKGDGSKVVGLEYRDRVSGDIHNIEL
AGIFVQIGLLPNTNWLEGAVERNRMGEIIIDAKCETNVKGVFAAGDCTTVPYKQIIIATGEGAKASLSAFDYLIRTKTA
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TABLE 3 Halogenation of indoles and other substrates by partially purified 3-LSR.

Entry Substrates Products (HPLC yield,
%)[a]

1

R = NO2, 1a <2a, >99

2 R = CN, 1b 2b, 55

3 R = CO2H, 1c 2c, 33

4 R = CO2Me, 1d 2d, 86

5 R = OMe, 1e 2e, 40

6 R = Br, 1f 2f*, 48

7 R = Cl, 1g 2g*, 38

8 R = F, 1h 2h*, 30

9

R = CO2H, 1i 2i, 49

10 R = F, 1j 2j*, 83

11

R = Me, 1k 2k, 82

12

R1 = R2 = H, 1l 2l, 98

13 R1 = Br, R2 = H, 1m 2m*, 14

14 R1 = H, R2 = OMe, 1n 2n*, 98

15

1a 2a’, 99

16

1o
2o, >99

[a] calculated from the HPLC peak area% of starting material and product. Only mono halogenated products were observed. * These products were not isolated.
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Interestingly, indole derivatives containing electron withdrawing

substituents such as 5-nitroindole (1a), methyl indole-5-

carboxylate (1d) and halogen substituted indoles (1f-1h, 1j and

1m) were also effective substrates showing moderate to high yields

of the corresponding monobrominated products. Carboxylic

functionalities were well tolerated as shown by the examples 1c,

1d and 1i. Azaindoles, which serve as isosteres of indoles in

medicinal chemistry, were brominated efficiently despite the

presence of a π-electron deficient pyridine ring (1l-n). This

indicates that the propensity of bromination is not simply

determined by substitution kinetics but there are other factors

at play, for example, interactions between indole and the

active site of halogenase. NMR analysis identified

C3 position as the halogenation site of the azaindole

compounds. Chlorination of 1a was also achieved in a high

yield when NaBr was replaced by NaCl (entry 16).

Remarkably, the anthranilamide derivative 1o was

efficiently brominated by 3-LSR to give 2-amino-5-

bromobenzamide (2o) in high selectivity. It is noteworthy

that di- or tri-halogenated products were not observed in any

of these cases as confirmed by LC-MS analysis.

In conclusion, we have established a panel of indole,

azaindole and anthranilamide compounds that are

substrates for the thermostable RebH variant 3-LSR.

Indoles and azaindoles without any substituents at C2/

C3 positions were brominated at the most electrophilic site

to give 3-bromoindole derivatives. Interestingly, high

conversion levels were achieved using partially purified 3-

LSR without addition of any external flavin reductase enzyme.

Further investigation confirmed that AhpF, an endogenous

E. coli flavin reductase enzyme co-purified with the 3-LSR, and

catalyzed the NADH-dependent FAD regeneration for

constant supply of the co-factor FADH2 essential for FDH

catalyzed halogenation reactions. The co-purification of AhpF

with the halogenase enzyme 3-LSR simplifies the overall

catalytic process eliminating the need for additional

production and purification of Fre enzyme.
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