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Abstract 

 Human studies have reported clear differences in perceptual and neural processing 

of faces of different species, implying the contribution of visual experience to face 

perception. Can these differences be manifested in our eye scanning patterns while 

extracting salient facial information? Here we systematically compared non-pet owners’ 

gaze patterns while exploring human, monkey, dog and cat faces in a passive viewing 

task. Our analysis revealed that the faces of different species induced similar patterns of 

fixation distribution between left and right hemi-face, and among key local facial features 

with the eyes attracting the highest proportion of fixations and viewing times, followed 

by the nose and then the mouth. Only the proportion of fixation directed at the mouth 

region was species-dependent and could be differentiated at the earliest stage of face 

viewing. It seems that our spontaneous eye scanning patterns associated with face 

exploration were mainly constrained by general facial configurations; the species 

affiliation of the inspected faces had limited impact on gaze allocation, at least under free 

viewing conditions.  

 

Introduction 

Human faces are probably the most important visual stimuli in our social 

environment, and the processing of faces seems to involve a face-specific cognitive and 

neural mechanism (McKone et al 2006; see also Tarr and Cheng 2003). For instance, 

behavioural and neuropsychological studies have observed detrimental recognition 

performance for inverted faces rather than non-face objects (face inversion effect; e.g.  

Valentine 1988), and selective impairments of face and object recognition in neurological 
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patients (prosopagnosia and visual agnosia) (Farah 1996; Moscovitch et al 1997). Brain 

imaging studies further suggested a distributed network of brain structures, including the 

fusiform gyrus, associated with face processing (Gobbini and Haxby 2007).  

This ‘special’ processing for faces seems to be species and race-sensitive, and is 

likely associated with our extensive experience of identifying conspecific faces. 

Developmental studies revealed that 6-month-old infants perform equally well at 

discriminating individual human or monkey faces; 9-month-olds, like adults, show better 

performance for recognizing frequently-experienced human faces (Pascalis et al 2002), 

suggesting a perceptual narrowing process in the development of our highly efficient face 

perception. The holistic or configural processing for faces (i.e. perceiving relations 

among facial features and integrating all features into an individual representation of the 

face as a whole. The configural processing is often assessed by face inversion effect 

which is defined as a larger decrease in recognition performance for faces than for other 

mono-oriented objects when they are presented upside-down) is more evident with faces 

of own species or even own race than with faces of other species or other races (McKone 

et al 2006; Rhodes et al 2006; Tanaka et al 2004), implying differences in the perceptual 

processing of faces from different species and races. Human brain imaging studies further 

revealed brain waveform (i.e. face-specific N170 event-related potential component) 

differences in latency, amplitude and distribution in response to faces of humans and 

animals (i.e. apes, dogs, cats and birds) (Bentin et al 1996; Carmel and Bentin 2002; de 

Haan et al 2002; Rousselet et al 2004), and cortical face-selective region activation 

differences in amplitude in response to faces of different races (Golby et al 2001), 
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suggesting that our visual experience with different face types have profound effects on 

the neural processing of facial information. 

Could reported differences in the perceptual and neural processing of different 

face types be manifested in our gaze patterns associated with face viewing? In other 

words, do we employ a single/general oculomotor strategy to extract salient/relevant 

facial information from faces sharing similar spatial configurations (i.e. two eyes above a 

nose and a mouth)? Given the pattern of our eye movements can be modulated by 

cognitive demands and characteristics of the observed scenes (Guo et al 2006; Henderson 

2003), it is reasonable to assume that our gaze patterns would be sensitive to the species-

specific facial information. Here we systematically compared human participants’ gaze 

patterns while free-viewing faces of humans, monkeys, dogs and cats, and observed 

similar viewing patterns to different face types, suggesting the dominant role of general 

facial configuration in shaping of face-related eye scanning patterns. The species of the 

inspected faces, on the other hand, had limited impact on gaze allocation, at least in the 

adopted free-viewing tasks.  

While free-viewing conspecific faces, human adults often demonstrate a natural 

gaze bias towards the left visual field, that is, the right side of the viewee’s face is often 

inspected first and/or for longer periods (Butler et al 2005; Mertens et al 1993; Philips 

and David 1997). This left gaze bias in face exploration in healthy observers is related to 

neither handedness nor eye dominance (e.g. Leonards and Scott-Samuel 2005). Although 

human visuospatial attention bias is to the left visual field and in some cultures, a long 

practised left-to-right directional scanning bias (most notably, reading) may contribute to 

this gaze asymmetry (e.g. Nicholls and Roberts 2002; Vaid and Singh 1989), it is often 
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argued that a right hemisphere advantage in face processing (receiving visual input from 

left visual field) is the likely cause of this asymmetry (Burt and Perrett 1997; Butler et al. 

2005). A recent recording of human saccadic eye movements further revealed that the 

initial gaze bias is the most evident while exploring upright faces, and is less or not 

evident while exploring inverted faces and symmetric non-face object or landscape 

images (Leonards and Scott-Samuel 2005), suggesting this gaze asymmetry is part of 

gaze patterns associated with face exploration.  

Interestingly, this face-related left gaze bias is not restricted to humans, but also 

occurs in non-human species such as rhesus monkeys (Macaca mulatta) and domestic 

dogs (Canis familiaris). In some animals such gaze asymmetry is even species-sensitive. 

For instance, domestic pet dogs only demonstrate a left gaze bias towards human faces, 

but not towards monkey or dog faces, implying a broader adaptive value of the left gaze 

bias in social species (Guo et al 2009). Given these findings, it would be interesting to 

examine whether we have similar pattern of gaze asymmetry while viewing faces of 

different species. If the left gaze bias is “an automatic, internally driven initiation of the 

saccadic exploration of faces” in humans (Leonards and Scott-Samuel 2005, p2679), then 

we are likely to demonstrate the same pattern of gaze asymmetry while exploring faces 

sharing similar spatial configurations. If, on the other hand, the left gaze bias is 

associated with processing species-sensitive facial information (Guo et al 2009), then we 

could show different degree of gaze asymmetry while inspecting faces of different 

species. In this study, our participants demonstrated a constant initial left gaze bias while 

free-viewing human, monkey, dog and cat faces, suggesting a general oculomotor 



 6

strategy to sample facial information across different species, at least for those sharing 

similar facial configurations. 

 

Materials and methods 

28 undergraduate psychology students (8 male, 20 female), age ranging from 19 

to 44 years old with the mean of 22±5.4 (Mean±SD), volunteered to participate in the 

study in return for course credit. All participants had normal visual acuity and were 

chosen from non-pet owners for monkeys, dogs and cats (to avoid potential influence of 

visual expertise effect; e.g. Tarr and Cheng 2003). Informed consent was obtained from 

each participant, and all procedures complied with the British Psychological Society 

“Code of Ethics and Conduct”, and with the World Medical Association Helsinki 

Declaration as revised in October 2008. 

Digitized grey scale face images were presented through a ViSaGe graphics 

system (Cambridge Research Systems) and displayed on a high frequency non-interlaced 

gamma-corrected color monitor (30.0 cd/mP

2
P background luminance, 100 Hz frame rate, 

Mitsubishi Diamond Pro 2070SB) with the resolution of 1024 × 768 pixels. At a viewing 

distance of 57 cm the monitor subtended a visual angle of 40 × 30°. 

Four different categories of unfamiliar face images with closed mouth and neutral 

facial expressions in full frontal view were used as stimuli (see examples in Fig.1): 10 

human faces, 10 monkey faces, 10 dog faces and 10 cat faces. All images shared similar 

spatial facial configurations, were gamma-corrected and displayed once in a random 

order at the centre of the screen with a resolution of 600 × 600 pixels (22 × 22°). 
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During the experiments the participants sat in a chair with their head restrained by 

a chin rest, and viewed the display binocularly. To calibrate eye movement signals, a 

small red fixation point (FP, 0.3° diameter, 15 cd/mP

2
P luminance) was displayed randomly 

at one of 9 positions (3 × 3 matrix) across the monitor. The distance between adjacent FP 

positions was 10°. The participant was instructed to follow the FP and maintain fixation 

for 1 sec. After the calibration procedure, the trial was started with a FP displayed on the 

centre of the monitor. If the participant maintained fixation for 1sec, the FP disappeared 

and an image was presented for 3 sec. During the presentation, the participant passively 

viewed the images with the instruction of “viewing the faces as you normally do”. No 

reinforcement was given during this procedure. It was considered that in the absence of 

instrumental responding, our participants’ viewing behaviour should be as natural as 

possible. The inter-trial interval was set to 2 sec. 

Horizontal and vertical eye positions were measured using a Video Eyetracker 

Toolbox with 50 Hz sampling frequency and up to 0.25° accuracy (Cambridge Research 

Systems). The software developed in Matlab computed horizontal and vertical eye 

displacement signals as a function of time to determine eye velocity and position. 

Fixation locations were then extracted from the raw eye tracking data using velocity (less 

than 0.2° eye displacement at a velocity of less than 20°/s) and duration (greater than 50 

ms) criteria (Guo et al 2006).  

While determining fixation allocation within key internal facial features (i.e. eyes, 

nose and mouth), we adopted the criteria from Barton et al (2006) to consistently define 

boundaries between local facial features for different faces (for an example of defining 

human facial regions, see HTUhttp://www.perceptionweb.com/perception/misc/p5547/f3.jpgUTH). 
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Specifically, the ‘eye’ region included the eyes, eyelids and eye brows; the ‘nose’ or 

‘mouth’ region consist of main body of the nose (glabella, nasion, 

tip-defining points, alar-sidewall and supra-alar crease) or mouth (only lips were visible 

for closed mouths) and immediate surrounding area (up to 0.5° visual angle). The 

division line between the ‘mouth’ and ‘nose’ regions was the midline between upper lip 

and the bottom of the nose. Each fixation was then characterised by its location among 

feature regions and its time of onset relative to the start of the trial, and the number of 

fixations directed at each facial feature was normalized to the total number of fixations 

sampled in that trial. As the same facial feature across faces of different species often 

vary in size (i.e. dogs usually have larger noses than humans), the proportion of the area 

of a particular facial feature relative to the whole image was subtracted from the 

proportion of fixations directed at that facial feature in a given trial. Any difference in 

fixation distribution from zero means that this particular facial feature attracted more or 

less fixations than predicted by a uniform looking strategy (Dahl et al 2009). 

 

Results 

Faces of different species presented in the free viewing tasks attracted similar 

amount of attention from our participants. One way Trepeated measures Tanalysis of 

variance (ANOVA) showed non-significant differences in the number of fixations per 

image across human (7.91±0.3, Mean±SEM), monkey (7.52±0.33), dog (8.03±0.32) and 

cat faces (7.65±0.26) (F(3,108)=0.59, p=0.62).  

--- Figure 1 about here --- 

Analysis of fixation allocation revealed that immediately following the face 

presentation, the first saccade was directed at the eye region in 87%±2 of the trials 
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(averaged across participants); and during the face exploration, the vast majority of 

fixations (91%±1 of overall fixations) and viewing time (91%±0.4 of total face viewing 

time within a trial) were allocated at key internal facial features, such as eyes, nose and 

mouth. We then examined whether faces of different species attracted similar distribution 

of fixation and viewing time across these local facial features (Fig. 1). As the 

experimental design comprised four levels of face types (human, monkey, dog and cat 

faces), three levels of local features (eyes, nose and mouth) and two dependent variables 

(distribution of fixation and viewing time within faces), two two-wayT repeated measuresT 

ANOVA was carried out after averaging the proportion of fixations directed at each local 

feature (the number of fixations within each facial feature as percentage of total number 

of fixations within whole face image subtracting the proportion of the area of each facial 

feature relative to the whole image) for each face type and each participant, and after 

averaging the proportion of viewing time directed at each local feature (cumulative 

viewing time within each facial feature as percentage of total face viewing time 

subtracting the proportion of the area of each facial feature relative to the whole face) for 

each face type and each participant. 

Our analysis showed that qualitatively, faces of different species attracted similar 

patterns of fixation distribution (F(3,324)=0.61, p=0.61) and viewing time distribution 

(F(3,324)=0.43, p=0.73) across local facial features with the eyes attracting the highest 

proportion of fixations (51─59%) and viewing time (54─59%), followed by the nose 

(fixation 11─14%, viewing time 10─13%) and then the mouth (fixation -1─7%, viewing 

time -1─8%) (fixation distribution across eyes, nose and mouth: F(2,324)=742, p<0.001; 

viewing time distribution across eyes, nose and mouth: F(2,324)=781, p<0.001; Fig. 1). 
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However, the significant interaction effect between local features and face types (fixation 

F(6,324)=3.27, p=0.004; viewing time F(6,324)=2.89, p=0.01) suggested that the 

quantitative distribution of fixations and viewing time within some facial features was 

species-dependent. Specifically, human observers paid the same amount of attention to 

the eyes or nose region within faces of different species (Bonferroni correction for 

multiple comparisons, p>0.22). They also directed indistinguishable proportions of 

fixations and viewing times at the mouth region in human and monkey faces (p>0.18), 

but significantly less fixations and viewing times at the mouth region in dog and cat faces 

in comparison with the mouth region in both human and monkey faces (p<0.001). 

--- Figure 2 about here --- 

We further examined when this differential gaze allocation to the mouth region of 

faces of different species happened during face exploration. Given that local image 

regions scoring high on saliency or relevancy measures are likely to be inspected earlier 

in picture viewing (e.g. Parkhurst and Niebur HT2003TH), analyzing sequential fixation 

placement in faces could provide valuable relevancy information about individual facial 

features in the face processing. In this study the probabilities of sequential fixation 

placement in the mouth for each of the first five fixations sampled in face viewing were 

compared across different faces types (Fig. 2). We chose to analyze the first five 

sequential fixation placements because our participants made at least 5 fixations in the 

majority (>92%) of the trials, and the initial time window of face viewing is critical in 

face processing (Dahl et al 2009). For example, a recent study by Hsiao and Cottrell 

(2008) revealed that the first two fixations in face viewing were sufficient to achieve 

optimal face recognition performance. 
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The 4 (face type) × 5 (fixation sequence) Trepeated measuresT ANOVA revealed a 

significant main effect of face type (F(3,540)=44.89, p<0.001; Fig. 2A) and fixation 

sequence (F(4,540)=16.39, p<0.001), and significant interaction effect between face type 

and fixation sequence (F(12,540)=2.37, p=0.006). Specifically, for the first fixation, the 

mouth in human faces was more likely to be inspected than the mouth in dog and cat 

faces. For the next four fixations, the mouth in both human and monkey faces had higher 

chance to be the saccade target than that in dog and cat faces (Bonferroni correction for 

multiple comparisons, p<0.01). Given that the variance in mouth size across different 

species could bias our conclusion (i.e. large mouth could have higher chance to be 

saccade destination), we performed the same analysis after normalising the probability of 

sequential fixation placement in the mouth region according to its size proportion relative 

to the whole image. For non-human faces, the probability of the mouth to be fixated was 

divided by the ratio of its size proportion relative to the human mouth (the size of the 

human month was treated as 100%, Fig. 2B).  Two way ANOVA and associated 

Bonferroni post-hoc tests reached similar conclusions as the prior-normalisation analysis. 

It seemed that gaze allocation to the mouth region was species-dependent and could 

differentiate at the earliest stage of face viewing. 

--- Figure 3 about here --- 

To examine whether the faces of different species could induce different pattern 

of gaze asymmetry in humans, we also compared the probability of sequential fixations 

directed at the left and right hemi-face of each viewed face types (all fixations to left and 

right hemi-face were included, including those outside the eye, nose and mouth regions). 

Compared with the right hemi-face, the left hemi-face (from viewer’s perspective) on 
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average attracted a higher probability of the first gaze direction after image presentation 

(72-78% across face types, Fig. 3A). 2 (left and right hemi-face) × 4 (face type) Trepeated 

measures T ANOVA revealed a significant main effect of face side (F(1,216)=175.46, 

p<0.001), but non-significant main effect of face type (F(3,216)=0, p=1) and interaction 

between face side and face type (F(3,216)=0.78, p=0.51). For the next four fixations, the 

left and right hemi-face had the same probabilities to be fixated regardless of species (Fig. 

3B). 4 (face type) × 5 (fixation sequence) Trepeated measuresT ANOVA of the probability 

of sequential fixation directed at the left hemi-face revealed a significant main effect of 

fixation sequence (F(4,540)=30.47, p<0.001), but non-significant main effect of face 

type (F(3,540)=1.35, p=0.25) and interaction between face type and fixation sequence 

(F(12,540)=0.59, p=0.85). Clearly, the left gaze bias we observed here was the most 

evident for the initial fixation, but was not species-sensitive.  

So far our analysis has revealed that the faces of different species induced similar 

patterns of gaze distribution. Only the proportion of fixation and viewing time directed at 

the mouth region was species-dependent and could be differentiated at the earliest stage 

of face viewing. It could be argued that the differences in gaze allocation to the mouth 

across face categories were driven by low-level image salience (i.e. local image contrast, 

intensity and structure) rather than anything category-specific. To examine this 

possibility, we calculated the top eight salient regions within each face image using the 

most widely used saliency model of Itti and Koch (2000), with the authors’ original 

parameters and implementation (obtained from HTUhttp://ilab.usc.eduUTH). The model compares 

local image intensity, colour and orientation, combines them into a single saliency map 

with a winner-take-all network and inhibition-of-return, and then produces a sequence of 
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predicted fixations that scan the scene in order of decreasing saliency. We chose to 

calculate the first eight salient regions within the image because our participants on 

average made between 7 and 8 fixations per images in face viewing.  

Out of 10 images per face category, no human mouth could be classified within 

the top eight salient image regions. The mouth in two monkey faces and one dog face 

was ranked as the third salient region within the image, and only one cat mouth was 

ranked as the eighth salient image region. If our gaze allocation to the mouth was purely 

driven by the local image salience, then the mouth in monkey faces should attract more 

fixations than the mouth in dog and cat faces. Human mouth, on the other hand, should 

not attract any fixations at all. As can be seen in Fig. 1A, our participants’ gaze 

allocations to the mouth region in viewing faces of different species were completely 

different from those predicted by the saliency map. It seems that the higher proportion of 

fixations and viewing times directed at human and monkey mouths could not be fully 

accounted for by low-level local image salience. 

 

Discussion 

 Viewing of conspecific faces in humans is associated with a stereotypical pattern 

of eye movements. Among various internal and external local facial features, eyes, nose 

and mouth attract the majority of fixations with the eye region being inspected first and 

most frequently (Althoff and Cohen 1999; Barton et al 2006; Guo et al 2003; Heisz and 

Shore 2008; Stacey et al 2005). In this study we extended this finding to faces of different 

species, including less frequently encountered face types (i.e. monkey faces). Our overall 

viewing patterns to human, monkey, dog and cat faces were almost identical. Regardless 
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of species, the eyes were often inspected first and attracted the highest proportion of 

fixations and viewing times, followed by the nose and then the mouth region. 

Furthermore, a consistent left gaze bias was associated with the initial stage of face 

exploration irrespective of face types. It seems that under free-viewing conditions we 

tend to use a general oculomotor strategy to sample facial information across different 

species, at least for those sharing similar facial configurations (i.e. vertical bilateral 

symmetry of the spatial arrangement of two eyes above a nose and a mouth). In other 

words, human-face-like visual images would trigger stereotypical eye scanning pattern 

automatically, regardless of observer’s perceptual expertise/experience. 

Recent behavioural and neurophysiological studies suggest a species-sensitive 

face processing. The differences in perceptual and cognitive processing of different face 

types, however, are more quantitative rather than qualitative. For instance, although 

human observers perform better at differentiating human faces which involves a more 

holistic processing strategy (i.e. more evident face inversion effect for human faces than 

monkey faces; McKone et al 2006; Mondloch et al 2006), human and monkey faces share 

very similar facial configurations and can be categorized into the same perceptual group 

in category identification tasks (Campbell et al 1997). Furthermore, the face-specific 

N170 ERP component elicited in humans by human faces is as large and distinctive as 

that elicited by monkey faces, only peaks up to 10 ms earlier (Carmel and Bentin 2002; 

Rousselet et al. 2004). It seems that although our face perception is species-sensitive, the 

faces from those species sharing similar facial configurations have limited influence on 

the face processing.   
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Our quantitative comparison of gaze allocation to individual facial features also 

demonstrated a limited influence of face types on fixation distribution. After adjusting for 

the variance in size of local facial features across species, our analysis revealed that the 

proportion of fixations and viewing times directed at the eyes or nose region were 

indistinguishable across human, monkey, dog and cat faces. The mouth region in human 

and monkey faces, on the other hand, attracted significantly more fixations and longer 

viewing times than that in dog and cat faces. Analysis of sequential fixation placement in 

the mouth region further revealed that such difference in gaze allocation started to 

differentiate at the earliest stage of face exploration, namely from the first fixation. As 

different facial features could provide different types and amounts of facial information 

(i.e. the eyes contain critical information about face identity and social attention, the 

mouth is crucial for fast detection and recognition of some facial expressions) (Heisz and 

Shore 2008; HTSchyns TH et al 2007), the differential gaze allocation to the mouth could reflect 

a different viewing strategy/sensitivity to sample relevant facial information from 

different species. Given the relevance and importance of the human mouth in 

transforming a range of diagnostic expression cues in our social communication, and the 

high similarity in spatial configuration between human and monkey faces, it is quite 

possible that during free exploration we involuntarily direct a substantial amount of 

attention to human and monkey mouths to evaluate subtle expression and emotion cues. 

Our participants (non-pet owners) did not engage similar gaze distribution in the viewing 

of dog and cat faces as they may not have interest and/or perceptual experience in 

processing subtle emotion cues from dog and cat mouths.  It would be interesting to 



 16

address this possibility by comparing gaze patterns in the viewing of dog/cat faces 

between pet owners and non-pet owners.  

It could be argued that the difference in the proportion of fixations directed at the 

mouth region of different face types is due to the differences in local image structural 

properties (i.e. size, local contrast and local image structure). Although it is difficult to 

control these variables in realistic face photos, our previous studies have revealed that the 

physical properties of local facial features cannot account for normal fixation distribution 

within the faces. Taking the eye region as an example, for faces used in this study the eye 

region on average only occupied 7-9% of image size, but attracted disproportionately 58-

68% of total fixations. Changing its location or surrounding context but keeping intact 

local structure and contrast (i.e. by scrambling faces) would significantly reduce the 

number of attracted fixations (Guo et al 2003, 2007). Furthermore, local facial regions 

with high image salience (based on the calculation of local image physical properties) are 

not necessarily correlated with the gaze distribution in face viewing. For example, with 

relatively high local contrasts and complex local structures (higher spatial frequency and 

frequent variances in local orientation/curvature), regions of human hairline are often 

regarded as the most salient facial regions by the classical saliency models such as the 

one proposed by Itti and Koch (2000), but they received few, if any fixations from our 

participants during face exploration. Hence the gaze distribution within a face is more 

likely dependent upon the amount of available facial information contained within each 

facial feature, rather than constrained by their simple physical properties. 

Taken together, it seems that our spontaneous viewing pattern in face exploration 

is largely constrained by the facial configurations. But during the course of exploration, 
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the prior knowledge/experience about certain face types could influence the detailed 

distribution of fixations directed at the mouth region. The study of gaze pattern, therefore, 

may help to reveal the effect of such prior knowledge or other semantic factors on 

perceptual processing of faces.  

It remains to be seen to what extent our findings can be generalized to different 

task contexts. By the presentation of static face images or dynamic video recordings, 

previous studies have suggested a modulatory role of task-based top-down guidance in 

determining fixation allocation in face exploration (e.g. Buchan et al 2000; Malcolm et al 

2008). For example, while judging which of the two simultaneously presented human 

faces was similar to a prior presented face in visual appearance, identity or expression, 

participants made a significant shift from more scanning of upper- than lower-face in 

identity judgements, to more scanning of lower- than upper-face in expression 

judgements. No such shift was observed in judging appearance similarity for faces 

differed on identity or expression, suggesting a top-down task effect on gaze behaviour 

(Malcolm et al 2008). It will be interesting to examine whether we adopt similar task-

dependent gaze patterns while processing specific facial information from non-human 

faces.  
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Figure 1, (A) Number of fixations directed at eyes, nose and mouth regions as percentage 
of total number of fixations within whole face image of different species (human, 
monkey, dog and cat faces). (B) Cumulative viewing time directed at eyes, nose and 
mouth regions as percentage of total face viewing time. The proportion of the area of 
each facial region relative to the whole image was subtracted from the proportion of the 
fixations directed at each corresponding facial part. Any difference in fixation 
distribution from zero means that this particular facial region was inspected more or less 
than predicted by a uniform looking strategy. Errors bars indicate standard error of mean.  
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Figure 2 
 
 
 
 
 
 
 
 
 
 
 
  A                  Original data       B             Normalized data  

0

10

20

30

1 2 3 4 5
Fixation sequence

Pr
ob

ab
ili

ty
 o

f m
ou

th
 

to
 b

e 
fix

at
ed

 (%
) Human Monkey

Dog Cat

 

0

10

20

30

1 2 3 4 5
Fixation sequence

 
 

  
 
 
Figure 2, (A) The probability of the mouth region as the destination of first five fixations 
while free-viewing faces of different species. (B) Normalised probability of sequential 
fixation placement in the mouth region according to its size proportion relative to the 
whole image. For non-human faces, the probability of the mouth to be fixated was 
divided by the ratio of its size proportion relative to human mouth (the size of human 
month was treated as 100%). Errors bars indicate standard error of mean. 
 



 22

Figure 3 
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Figure 3, (A) The probability of initial fixation directed at left and right side of presented 
faces. Errors bars indicate standard error of mean. (B) The probability of sequential 
fixation directed at the left side of presented faces of different species. 


