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Zusammenfassung

Datenverwaltungssysteme sehen sich einer wachsenden Nachfrage nach einer engeren
Integration heterogener Daten aus verschiedenen Anwendungen und Quellen in Echtzeit
für sowohl operative als auch für analytische Zwecke gegenüber. Die enorme Diversifi-
zierung der Datenverwaltungslandschaft hat jedoch zu einer Situation geführt, in der
zwischen hoher Betriebsleistung und enger Datenintegration abgewogen werden muss.
Der Unterschied zwischen dem Wachstum des Datenvolumens und dem Wachstum der
Rechenleistung erfordert einen neuen Ansatz für die Verwaltung vonMulti-Modell-Daten
und die Verarbeitung heterogener Arbeitslasten.

Mit PolyDBMS präsentieren wir eine neue Klasse von Datenbankmanagementsystemen,
welche die Lücke zwischen Multimodell-Datenbanken und Polystore-Systemen schliesst.
Diese neue Art von Datenbanksystem kombiniert die operativen Fähigkeiten von traditio-
nellen Datenbanksystemen mit der Flexibilität von Polystore-Systemen. Dazu gehört die
Unterstützung von Datenmodifikationen, Transaktionen sowie Schemaänderungen zur
Laufzeit. Mit der nativen Unterstützung für mehrere Datenmodelle und Abfragesprachen
stellt ein PolyDBMS eine ganzheitliche Lösung für die Verwaltung heterogener Daten dar.
Dies ermöglicht nicht nur eine enge Integration von Daten über verschiedene Anwen-
dungen hinweg, sondern erlaubt auch eine effizientere Nutzung von Ressourcen. Durch
die Nutzung und Kombination von hochoptimierten Datenbanksystemen als Speicher-
und Ausführungseinheiten profitiert diese neuartige Klasse von Datenbanksystemen von
der jahrzehntelangen Forschung und Entwicklung im Datenbankbereich.

In dieser Arbeit stellen wir die konzeptionellen Grundlagen und Modelle für den Auf-
bau eines PolyDBMS vor. Dazu gehört ein ganzheitliches Modell zur Verwaltung und
Abfrage mehrerer Datenmodelle in einem logischen Schema, welches zugleich modell-
übergreifende Abfragen ermöglicht. Mit der PolyAlgebra präsentieren wir eine Lösung
zur Repräsentation von Abfragen, welche auf einem oder mehreren Datenmodellen ba-
sieren, wobei die Semantik dieser Datenmodelle erhalten bleibt. Darüber hinaus stellen
wir ein Konzept für die adaptive Planung und Zerlegung von Abfragen auf heterogenen
Datenbanksystemen mit unterschiedlichen Fähigkeiten und Eigenschaften vor.

Die in dieser Arbeit vorgestellten konzeptionellen Beiträge materialisieren sich in Poly-
pheny-DB, der ersten Implementierung eines PolyDBMS. Polypheny-DB unterstützt das
Relationale-, Labeled-Property Graph- und Dokumenten-Datenmodell und ist damit eine
geeignete Lösung für strukturierte, halbstrukturierte und unstrukturierte Daten. Ergänzt
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wird dies durch ein umfangreiches Typensystem, welches auch Unterstützung für grosse
Binärobjekte bietet. Durch die Unterstützung mehrerer Abfragesprachen, standardisierter
Abfrageschnittstellen und einer Vielzahl von domänenspezifischen Datenspeichern und
Datenquellen bietet Polypheny-DB eine Flexibilität, welche mit bestehenden Datenma-
nagementlösungen nicht erreicht werden kann.



Abstract

Data management systems are facing a growing demand for a tighter integration of
heterogeneous data from different applications and sources for both operational and
analytical purposes in real-time. However, the vast diversification of the datamanagement
landscape has led to a situation where there is a trade-off between high operational
performance and a tight integration of data. The difference between the growth of data
volume and the growth of computational power demands a new approach for managing
multimodel data and handling heterogeneous workloads.

With PolyDBMS we present a novel class of database management systems, bridging
the gap between multimodel database and polystore systems. This new kind of database
system combines the operational capabilities of traditional database systems with the
flexibility of polystore systems. This includes support for data modifications, transactions,
and schema changes at runtime. With native support for multiple data models and query
languages, a PolyDBMS presents a holistic solution for the management of heterogeneous
data. This does not only enable a tight integration of data across different applications,
it also allows a more efficient usage of resources. By leveraging and combining highly
optimized database systems as storage and execution engines, this novel class of database
system takes advantage of decades of database systems research and development.

In this thesis, we present the conceptual foundations and models for building a PolyDBMS.
This includes a holistic model for maintaining and querying multiple data models in one
logical schema that enables cross-model queries. With the PolyAlgebra, we present a
solution for representing queries based on one or multiple data models while preserving
their semantics. Furthermore, we introduce a concept for the adaptive planning and de-
composition of queries across heterogeneous database systems with different capabilities
and features.

The conceptual contributions presented in this thesis materialize in Polypheny-DB, the
first implementation of a PolyDBMS. Supporting the relational, document, and labeled
property graph data model, Polypheny-DB is a suitable solution for structured, semi-
structured, and unstructured data. This is complemented by an extensive type system
that includes support for binary large objects. With support for multiple query languages,
industry standard query interfaces, and a rich set of domain-specific data stores and
data sources, Polypheny-DB offers a flexibility unmatched by existing data management
solutions.
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Introduction and Motivation





Data is a precious thing and will
last longer than the systems
themselves.

— Tim Berners-Lee1
Introduction

In Plato’s dialogue “Phaedrus”, Socrates tells the story of Thoth, the god of arts and
sciences, and how he presents his innovation of writing to the god-king Thamus. Thoth
argues that this elixir of memory and wisdom will make Egyptians wiser, as they will
have better capacity to remember information.

Storing and persisting information is a key factor of human development [BW06]. The
oldest cave paintings created by ancient humans to store information are over 40 000 years
old [BOB+21]. Since then, the Homo sapiens has developed more efficient techniques for
storing information. The development of the transistor in 1947 marked the beginning of
a new era (not only) for the storage of information.

We humans are the only species on this planet capable of persistently storing and preserv-
ing information—and we like doing so. According to Forbes [Pre20], the total amount
of data increased from 1.2 zettabytes (ZB) in the year 2010 to 59 ZB in 2020. This is an
almost 5 000% growth in just 10 years. In this era of Big Data, the ability to efficiently
find the famous needle in the haystack is more relevant than ever.

Database Management Systems (DBMS) are a means to organize and manage this growing
haystack of information. They store the data (i.e., the information) in an organized and
efficient form and enable it to be modified and queried. Database systems are at the
heart of almost all data processing systems, making them an essential part of most IT
infrastructure.

The increasing importance of large amounts of data for progress in all disciplines of
science and business demands for faster and more efficient approaches to storing and
querying large data collections. The discrepancy between the growth in data volume and
the growth in computing power (cf. Moore’s law) calls for new solutions.
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1.1 The Data Management Landscape

In 1970, Edgar F. Codd published a paper with the title “A Relational Model of Data for
Large Shared Banks” [Cod70]. It introduces an abstract model for data representation,
independent of how the data is physically stored. This paper laid the foundation for the
field of relational databases. Four years later, as part of a research project, IBM started the
development of System R [CAB+81]. The developed prototype did not only demonstrate
that relational databases are capable of providing good transactional performance, but it
also introduced the Structured Query Language (SQL). This marked the beginning of the
era of relational databases with SQL as their standard query language [Bat18].

In the 2000s, the World Wide Web gained increasing importance. Database systems
needed to cope with new and rapidly growing workloads. At the same time, storage cost
dramatically decreased [Pro16]. The high efficiency in terms of storage space achieved by
relational databases was no longer of utmost importance. Instead, the demand for storing
less structured data with maximum performance grew. This led to the development of
new kinds of database management systems, commonly referred to as Not only SQL

(NoSQL) systems [EN16].

These NoSQL systems did no longer follow the relational model, instead several new
data models for representing data emerged (e.g., graph [AG08] or document [HR16];
see Chapter 4). In contrast to previous systems, these new database systems were
typically developed for a specific use case. As their name implies, most of these databases
come without support for SQL. Instead, they often come with their own query language
tailored to and only supported by this specific database system. Furthermore, most NoSQL
systems also have no or only very limited support for transactions and provide only weak
data consistency guarantees [GWF+17; ZSL+14]. However, this reduction to the set of
features required for a certain application scenario reduces overhead and enables more
optimized data structures. This results in a better performance for this specific use case.
The performance for other workloads and applications is either significantly lower or
the required operations are not even supported at all (e.g., joins) [ZSL+14].

This led to the diversification of the data management landscape we are facing today.
A development already predicted in 2005 by Michael Stonebraker and Uğur Çetintemel
in their famous “One Size Fits All” paper [SÇ05]. They argue that the general-purpose
approach of relational databases will no longer be sufficient. However, they consider
that some of these specialized databases might get unified beneath “a common front-end
parser” [SÇ05].
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1.2 Optimization vs Data Integration

Data is a precious good. When properly connected, it allows deriving all kinds of
insights. With the field of Data Science, an entire discipline has grown around the effort
of extracting (generalizable) knowledge from data [Dha13]. Turing Award winner Jim
Gray even refers to data science as the fourth paradigm of science—the other three being
empirical, theoretical, and computational [HTT09].

In line with the spirit of having a specialized database for every task, several analytical
databases saw the light of day in the last two decades [ZSL+14]. However, the data from
the heterogeneous operational databases needs to be transformed and copied into the
analytical database(s). The resulting system is called a data warehouse. The frequency
at which this integration is done is called refresh interval [JLV+00]. It determines how
recent the data is. Since refreshing larger data warehouses can take hours and also causes
additional load on the operational databases [SB08], keeping data warehouses always
up-to-date is not feasible. Results derived from a data warehouse are therefore often
outdated to a certain degree [ZK01]. For many use cases, a certain degree of outdatedness
is acceptable [ASS08]. However, with businesses getting more agile, there is a growing
need for business information systems operating on the latest data [ZK01].

Besides dealing with outdated results due to time-consuming integration processes, there
is another issue caused by the growing zoo of specialized database systems: redundant and
inconsistent information. Instead of having one source of information for all applications,
there are several heterogeneous databases containing overlapping data. In order to fulfill
the demand for a tight coupling of applications and a full integration of all available
data [Sto15], an application needs to process and update data frommultiple heterogeneous
databases. The price for the operational performance gained by using specialized database
systems is therefore paid by a huge overhead and complexity for integrating applications
and keeping the data consistent. The fact that the database systems may use different
query languages and may be based on different data models, makes this even more
challenging.

An example are medical data corpora [JBP+]. The medical record of a patient stored by a
hospital consists of various kinds of structured and unstructured data including text (e.g.,
notes and examination results), images and videos (e.g., MRI or CT scans), structured
documents (e.g., blood tests), and time series data (e.g., electrocardiograms). Furthermore,
there are also invoicing data, payment histories and insurance information. Manually
transferring data between different systems and exporting them to a central document
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storage (often in form of a document or report) introduces the potential for human
errors, for instance, attaching them to the wrong patient. Moreover, maintaining patient
information in several independent applications (e.g., the software of the CT scanner)
causes administrative overhead and adds further potential for mistakes. Enabling a unified
view on all available information and data points does not only provide physicians with
a more holistic view, it also enables automated detection of anomalies and patterns in
the raw data of different examinations. Additionally, it allows searching for similar cases
taking all available data points into account.

1.3 The Case for a Polystore System?

The “One Size Fits All” article [SÇ05] from Michael Stonebraker and Uğur Çetintemel can
be seen as the starting point for the development of the so called multistore and polystore

systems. These are systems combining multiple heterogeneous data stores beneath one
facade (i.e., “a common front-end parser” as proposed in the article).

Multistores and polystores aim to solve a similar issue as data warehouses: providing
a unified view on data distributed across multiple heterogeneous databases [Sto15].
However, instead of building a data repository by copying data from the different locations
and integrating them into a unified schema, they use an approach already known from
federated databases [HM85]. A federated database systemmaps multiple database systems
into one schema without copying the data first. Instead, queries are translated into the
query language of the database where the requested data is physically located.

Unfortunately, there is no commonly agreed upon definition of what exactly constitutes
a federated database system, a multistore, or a polystore, respectively. In this thesis, we
follow the taxonomy introduced in [TCG+17]. According to this taxonomy, federated
databases enable querying multiple homogenous database systems through one query
interface using one query language. Multistore systems, in contrast, also enable the
federated access to multiple heterogeneous databases through one query interface using
one query language. Polystore systems go a step further by applying the idea of polyglot
systems to multistore systems [TCG+17]. The idea of polyglot systems is to choose the
right tool (i.e., query language) for a concrete use case (i.e., application)1. In comparison to
multistore systems, polystores therefore also offer support for multiple query languages
and interfaces. Turing Award winner Michael Stonebraker argues that polystores are

1 This should not be confused with the term polyglot persistence that is usually used from an application
perspective and describes the usage of different data storage technologies within the same application;
i.e., an application using multiple database systems.
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stepping up as successor for the unsuccessful federated databases and seek to replace
data warehouses [Sto15].

At a first glance, the ability of polystore systems to query heterogeneous database systems
using different query languages seems to be a suitable solution for achieving a tight
integration of applications and data while at the same time exploiting the benefits of
optimized databases. However, this is only the case for the analytical portion of the
workload. In order to achieve the tight integration of applications and data, transactional
workloads need to be handled as well. In addition to competitive performance for simple,
short running queries, this especially means support for data manipulation (DML) opera-
tions. However, most existing polystores do not support DML operations at all [LHC18a].
Another important feature for handling operational workloads are transactions. This
includes providing transactional guarantees (i.e., ACID guarantees [HR83]) and the ability
to enforce constraints. These are, however, features not available in existing polystore
implementations [VHS+20; LHC18a].

Hybrid transactional/analytical processing (HTAP) systems like SingleStore2 typically
provide support for data manipulation and transactions. By combining a transactional
engine (typically with a row-oriented storage layout) and an analytical engine (typically
with a column oriented engine) in one system, they can provide good performance for both
transactional and analytical workloads. This approach can be seen as the continuation
of the “One Size Fits All” paradigm. However, these systems usually require selecting
the storage engine (row store or column store) when creating the table. This limits
the advantages for mixed workload on the same data. Furthermore, those systems are
typically limited to a single data model (usually the relational model) and only support
one query language. While some systems support storing other data models, the data is
usually mapped to the primary data model; thus only the advantages of one data model
(typically the relational model) can fully be exploited.

1.4 Multimodel Databases

The idea of a DBMS supporting multiple data models is an emerging topic in the area of
database management systems. Such systems are called multimodel databases [LH19]. In
contrast to database systems based on a single data model, multimodel database systems
offer much more flexibility for representing and processing heterogeneous data.

2 https://www.singlestore.com/

https://www.singlestore.com/
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In recent years, most major database systems have been extended to support additional
data models [LH19]. This has usually been done by adding additional layers above the
existing storage engine. Graphs in SAP HANA [FCP+12], for instance, are internally
mapped to relational column storage [RPB+13]. This can impact the query performance
compared to a storagemodel optimized for a specific data model [WPW+14]. Furthermore,
multimodel databases suffer from the fact that they compete against highly optimized
systemswith—in some cases even decades—of optimization and development to efficiently
support a specific data model.

In comparison to polystore systems, most existing multimodel database systems only
support a single query language. In a recent survey on multimodel databases [LH19],
23 systems have been analyzed and compared: 20 of these systems support only one
query language, and the remaining three systems support two query languages. Another
difference between polystores and multimodel databases is their intended application:
while multimodel databases enable the efficient representation and processing of hetero-
geneous data, polystores are intended to replace data warehouses and process analytical
workloads.

1.5 Focus of Research

The enormous diversification of the data management landscape has led to a situation
where there is a trade-off between high operational performance and a tight integration
between different applications. Due to the growing discrepancy between the growth
of data and growth of computational power on one side, and more agile business and
workflows on the other side, the need for bridging this gap and providing a solution that
allows a tight integration of heterogeneous data without sacrificing the performance of
the queries or the freshness of the results is of increasing importance [VHS+20].

Since neither existing HTAP systems, multimodel database systems nor polystore systems
present a satisfying solution for handling the data and workloads resulting from the tight
integration of data between different applications, there is the need for a new kind of
database management system. This system needs to be capable of handling the demand
outlined by our research question:

How can the demand for tight integration of heterogeneous data based on dif-

ferent data models be met with competitive overall cost and performance while

allowing consistent manipulation and retrieval of data with mixed, parallel

workloads using different query languages and across data models?
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There are three major, yet to be solved, challenges arising when creating a database
system that aims to solve the demand outlined in the research question:

– The lack of a unified and holistic model for combining different data models in one
logical schema that preserves the semantics of the individual models while at the
same time enabling cross-model queries.

– The lack of a conceptual model for representing queries expressed in different
query languages and based on different data models that preserves the features
and characteristics of the query languages and enables cross-model queries.

– The challenge of adaptively planning the decomposition of queries and their assign-
ment to execution engines to exploit the benefits of the heterogeneous execution
and storage engines.

The focus of this doctoral thesis is on presenting a conceptual approach for addressing
these three research objectives. Our research is driven by empiricism and has a strong
focus on the feasibility and the implementability of the developed concepts in one holistic
system. Hence, in addition to the formal presentation and explanation of the conceptual
models provided in this thesis, all concepts are also fully implemented and thoroughly
tested in a single, fully working system.

Implementing such a system results in numerous engineering challenges. For many
individual issues, like, for instance, distributed transactions and concurrency control,
there is already preliminary work in the literature. However, the challenge is adapting and
adjusting these existing pieces from decades of database systems research and combining
them in one system. The result of this endeavor is Polypheny-DB. Using this system as
an example, we are able to present solutions for the engineering challenges, and more
importantly, demonstrate the feasibility and effectiveness of the presented concepts in
solving the research question.

Within our research, we put a strong focus on evaluations and the reproducibility of
results. An automated and reliable benchmarking of the Polypheny-DB system allows us
to gain insights by testing the behavior and measuring the impact of different approaches
or certain features on the performance. Furthermore, we consider verifying the correct-
ness of the implementation a fundamental requirement to draw conclusions about the
holistic picture and to obtain meaningful benchmarking results.
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1.6 Contributions

The contributions of this doctoral thesis can be summarized as follows:

– We propose the specifications for a new type of database management system.
These PolyDBMS bridge the gap between polystores and HTAP systems and provide
the full capabilities of multimodel database management systems. To distinguish
a PolyDBMS from existing approaches, we introduce clear and concise require-
ments. (→ Chapter 3 & Chapter 7)

– We propose a holistic model for maintaining and querying multiple data models
in one logical schema. Furthermore, we introduce a model for combining data
partitioning and data replication in a PolyDBMS system. This is further extended
by a model that defines the mapping between different data models. (→ Chapter 8)

– We present a solution for representing heterogeneous queries using a single algebra.
This PolyAlgebra allows representing queries expressed in various query languages
based on different data models while preserving the semantics of the data model.
Furthermore, it enables cross-model queries. (→ Chapter 9)

– We introduce an adaptive approach for planning the execution of queries in sys-
tems combining data replication and partitioning across heterogeneous database
systems with different capabilities and features and for mixed workloads. This
includes decomposing queries and selecting the underlying databases with the best
characteristics for executing the query. (→ Chapter 10)

– With Polypheny-DB, we present a fully working implementation of the introduced
concepts. This PolyDBMS provides the full capabilities of a database management
system including schema definition and modification at runtime, support for data
modification queries, and transactions. (→ Chapter 11)

– We introduce a novel kind of evaluation framework for automating the entire
evaluation workflow. By storing all parameters and controlling the whole setup
procedure this system makes an important contribution towards reproducible
evaluations. (→ Chapter 12)

– We present and discuss an evaluation of Polypheny-DB and the introduced con-
cepts using different benchmarks. This evaluation is done using qualitative and
quantitative methods. (→ Chapter 13 & Chapter 14)
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1.7 Outline

This thesis is structured in five high-level parts: an introductory part; a part introducing
the foundations; a conceptual part presenting the developed models; an empirical part
presenting the evaluation; and a discussion-oriented part summarizing related work and
concluding this thesis. In more detail, the reminder of this thesis is structured as follows:

In Chapter 2, we introduce a scenario motivating the need for a new kind of database
management system. The introduced scenario based on a fictive online auction house
will furthermore serve as a use case and example throughout this thesis.

In Chapter 3, we introduce a set of specifications and requirements a PolyDBMS needs
to fulfill. Furthermore, we introduce and discuss potential architectural models for
implementing a PolyDBMS. The chapter, and thus the introductory part of this thesis,
concludes with an overview of the research objectives that constitute the basis for the
research results presented in this thesis.

In Chapter 4, we give an overview on the relational data model, the document data
model and the labeled property graph data model. For each data model, a formal model
is being introduced. This includes the representation of data, basic operations on the
data, and the available building blocks for defining schemas and imposing constraints.

In Chapter 5, we discuss the foundations of database systems. This includes their basic
building blocks, query optimization, and concurrency control. Furthermore, we introduce
the concept and role of transactions in a database system.

In Chapter 6, we introduce and discuss the necessary foundations of distributed systems.
This includes data partitioning and replication as well as distributed transactions and a
discussion of data freshness.

In Chapter 7, we discuss the architecture and outline the arising challenges of designing
a PolyDBMS. In addition, we present the rationale for the selection of data models that
will be used to exemplify the conceptual models.

In Chapter 8, we present a schema model for representing schemas based on differ-
ent data models in one logical schema. Furthermore, we define how schemas can be
mapped between different logical schema models and on different physical schemas. The
introduced model for combining data replication and data partitioning brings both parts
together and presents a novel concept for the efficient, cost-effective and performant
management of heterogeneous data.
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In Chapter 9, we introduce the PolyAlgebra, a concept for representing queries based
on different data models. Instead of mapping to one data model, this approach fully
preserves the semantics of the query and its data model. The physical algebra allows
expressing queries executed on multiple heterogeneous data stores and allows such
queries to be optimized.

In Chapter 10, we present our four phase query routing approach. The conceptual model
introduced in this chapter presents an adaptive solution for efficiently planning the
execution of queries across heterogeneous systems.

In Chapter 11, we give a brief overview of our implementation Polypheny-DB, including
a high-level overview on its architecture and supported features.

In Chapter 12, we present Chronos, a system for the automation of the entire sys-
tems evaluation workflow. Initially developed for the benchmarking of Polypheny-DB,
Chronos can be used to benchmark all kinds of systems.

In Chapter 13, we introduce an approach for verifying the correctness of a PolyDBMS
using randomly generated queries and comparing their result for different storage con-
figurations. This allows us to perform a qualitative evaluation of Polypheny-DB.

In Chapter 14, we present the results of the quantitative evaluation of the concepts
presented in this thesis based on our implementation Polypheny-DB. For this evaluation,
we use both custom and industry-standard benchmarks.

In Chapter 15, we discuss related research and existing database systems in the light of
the PolyDBMS concept. This overview includes both commercial database systems and
research prototypes, especially polystore systems.

In Chapter 16, we conclude this thesis by wrapping up the presented concepts and
discussing whether our implementation meets the requirements of a PolyDBMS. The
chapter—and thus this thesis—closes with an outlook on future work.



Storytelling is the most powerful
way to put ideas into the world.

— Robert McKee2
The Gavel Scenario

In this chapter, we introduce the scenario of a fictional online auction house called
Gavel. The described scenario is an extended version of a scenario already introduced
in [VSS17; VSS18]. Using Gavel as an example, we motivate the need for a new kind
of data management system. Moreover, this scenario will also serve as a use case and
example in the following chapters of this thesis.

2.1 The Scenario

The fictitious auction house Gavel is a big player in the market of online auction houses,
handling millions of auctions every day. Their business model is to offer a platform for
buying and selling used, custom-made, or antique goods offered in the form of short
running auctions. Thus, every item sold on the platform is unique and is therefore
described by a text and pictures. Besides the infrastructure for offering items and placing
bids, Gavel is also taking care of the whole payment process.

As is common for this kind of platform, Gavel charges the seller a percentage of the value
for which the item has been sold. Gavel therefore has an interest in achieving the highest
possible price for every item in order to maximize their profit.

Research on user behavior has revealed a direct correlation between the performance of
an e-commerce platform and the conversion rate (i.e., the percentage of visitors buying
something) [SN18]. For Gavel, this corresponds to the number of bids on an auction.
However, this only affects active auctions. While completed auctions remain available
for legal and transparency reasons, loading time for these outdated items is of minor
importance. It is furthermore a characteristic feature of auctions that they are most
interesting and also get clicked the most just before they end [SRJ07].
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On their platform, customers are presented a list of offerings similar to the one they
are currently looking at or have looked at. The list of offerings is provided by a product

recommendation system [KT18]. However, an issue with these systems is, that they
typically work on a dump of the product data created on a regular basis. Since Gavel’s
business model is to host short running auctions, this is problematic since it misses
recently added items. Furthermore, it should also stop advertising products similar to
something the customer just bought. The customer should not get the feeling that there
might have been a better deal.

Like for every other enterprise, business analytics are an important technique for Gavel
to steer and adapt the company. Detecting trends and adjusting the advertising and
marketing strategy is crucial to the continued success of Gavel. However, the required ETL
process for refreshing the data warehouse used for this purpose is very time-consuming
and puts significant load on the operational databases [SB08; ZK01]. The data warehouse
can therefore only be refreshed with a low frequency and is therefore usually outdated
and does no longer meet the requirements of an agile and competitive market.

2.2 Infrastructure and Requirements

The software stack used by Gavel consists of multiple applications. Most applications used
by Gavel are off-the-shelf products that come with their own database system. Gavel’s
in-house IT only develops the website that interacts with these applications through
APIs. It is therefore not possible to change the implementation of the applications.

Figure 2.1 depicts an overview of the applications and database systems currently de-
ployed by Gavel. The Auction System manages the whole auction and bidding process.
It stores all auctions and bids in a relational database. Furthermore, this application
maintains the user accounts of the customers.

All information, descriptions and images on the subject of the auction are stored in the
Auction Item Catalog. This application stores its data in a document database. This
allows storing and querying semi-structured data, such as product property lists, for all
kinds of products.

The Payment System processes payments. It is independent of the Auction System. The
information on transactions and the payment status is stored in a transactional database
system. The payment system maintains its own user database. This is redundant and
often introduces issues that require manual resolutions.
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Figure 2.1 The current state of Gavel’s application and data storage landscape. The
applications store their data in independent database systems based on
different data models and optimized for different kinds of workload. Each
database system requires a specific query language.

The list of similar offerings is compiled by the Recommender System. It operates
on data exported from the Auction System and the Auction Item Catalog at a certain
interval. This data is stored together with user tracking data in a graph database. The
integration process for building this database takes several hours. A significant portion
of the auctions has therefore already ended before this integration is completed.

Business Analytics provides valuable information on trends and allows to identifying
opportunities for adapting the business. It operates on a data warehouse with data
aggregated from the Auction System, the Auction Item Catalog and the Payment System.
The refreshing of this data warehouse takes a lot of time and also puts a significant load
on the operational databases [SB08]. It is thus done very infrequently. Decisions of the
company are therefore based on outdated data and may miss out on emerging trends.

Besides the already mentioned issues and limitations, this fragmented and independent
storage of the data also hinders the implementation of new ideas. One such idea is a more
intelligent advertising of auctions that are about to end. Offerings performing poorly
compared to similar ongoing auctions (i.e., where the highest bid is lower) should be
advertised more aggressively. This requires combining data from the Auction System, the
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Figure 2.2 The required access paths between applications and database systems to
enable the outlined features and providing a tight integration of applica-
tions and data using polyglot persistence.

Auction Item Catalog and the Payment System. Since this can only be done with the latest
data, a data warehouse with its time-consuming data integration process cannot be used.

To address these limitations and implement new and innovative features, Gavel searches
for a solution that enables a tighter integration of the data from different applications.
This is depicted in Figure 2.2. However, the IT department of Gavel does not have the
capacity to re-develop the whole stack in-house. It is therefore required to find a solution
that allows keeping the existing third-party applications. Hence, changes need to happen
entirely on the data storage and management side.

2.3 Evaluation of Existing Approaches

In this section, four potential approaches for implementing the requirements of the
Gavel scenario are being discussed. For each approach, we outline the advantages and
disadvantages and point out why it is not feasible within the constraints of this scenario.

2.3.1 Adjust Applications

A potential approach would be to adjust the applications to query other databases. This
is depicted in Figure 2.3(a). An advantage of this approach is, that it always operates on
the latest data and does not introduce any overhead for transactional queries. However,
there are several aspects that make this approach unfeasible.
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(b) Synchronizing data between the indi-
vidual databases using a custom-built
synchronization system.

Figure 2.3 Possible approaches for implementing the demands of the Gavel scenario
that keep the existing database systems.

First and foremost, there are queries joining data from different databases. These joins
need to be implemented in the applications, which can lead to massive amounts of data
that need to be transferred and processed within the applications. Another issue is
analytical queries: Executing such complex queries on database systems not optimized
for this kind of workload can take huge amounts of time and causes significant load on
the operational databases—or may even block them entirely depending on their query
isolation model.

Furthermore, changing an application is usually not possible since the source code is
not available. But even in case the source code were available, performing the changes
would result in losing the ability to directly deploy updates of the software released
by the manufacturer. The IT department of Gavel would need to apply the necessary
adjustments to every release of the software. Depending on the size and complexity of
these adjustments, the required labor quickly gets similar to an in-house development of
the entire application stack—for which Gavel does not have the capacity.

2.3.2 Data Synchronization

The idea of the approach depicted in Figure 2.3(b) is to synchronize data between the
existing database systems shipped with the applications. This would allow keeping
all database systems; including the two data warehouses and would solve one of the
issues with the previous approach, since analytical queries could be executed on database
systems optimized for this kind of workload. However, this approach is quite similar to the
current infrastructure and therefore comes with the same challenges and disadvantages.
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Identifying changes that need to be replicated to other databases can be complex and
results in significant load on the operational databases [SB08]. Depending on the database
system, this can, however, be solved using triggers. Nevertheless, what cannot be solved
is the lack of global transactions. If the same record is changed in multiple places between
two synchronization jobs, there might be conflicts.

Besides the costs and issues with synchronizing and redundantly storing data on multiple
databases, this approach does furthermore not compensate for missing features. If a
database does not support a required operation or is not optimized for a certain workload,
the performance will be poor. Furthermore, the data is always slightly outdated, which
can lead to issues with certain applications that require a high degree of freshness (e.g.,
the payment system determining the highest bid when a customer pays directly after the
auction has ended).

2.3.3 An HTAP or Multimodel Database

As introduced in Chapter 1, an HTAP system is a database management system optimized
for transactional and analytical workloads. Usually, this is achieved by storing the data in
two or more storage engines optimized for different workloads. Figure 2.4(a) depicts how
such a deployment would look like for Gavel. Instead of keeping the databases shipped
with the off-the-shelf applications, they are replaced by an HTAP system storing the data
for all applications.

The capability of an HTAP system to provide good performance for OLTP and OLAP
workloads makes a dedicated data warehouse obsolete [HLC+20; Ell14]. Storing all data
in one database system also eliminates redundancies. Most available HTAP systems also
support transactions and a large set of query features and operations. However, this
approach suffers from the same issues as the first approach: it is necessary to adjust the
applications to use the query language and data model of the HTAP system. As already
pointed out, this is not feasible.

Multimodel database systems allow to store data represented using different data models.
However, as outlined in Section 1.4, existing systems rarely support more than one query
language [LH19]. Using a multimodel database therefore still requires adjustments to
the applications. In contrast to HTAP systems, multimodel databases typically do not
support storing data in different physical layouts at the same time. This reduces the
eligibility of multimodel databases for mixed OLTP and OLAP workloads.
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Figure 2.4 Possible approaches for implementing the demands of the Gavel scenario
replacing the current databases with an available data management solu-
tion.

2.3.4 A Polystore System

In comparison to an HTAP system, polystores accept queries through multiple query
interfaces. It is therefore not necessary to modify the applications. Furthermore, some
polystores also support multiple data models. By connecting to multiple database systems
optimized for different data and workloads, polystores are able to query data physically
located on different database systems through one interface and using one query language.
Figure 2.4(b) depicts a setup where the existing databases are replaced by a polystore
system. At a first glance, polystores seem to be a perfect fit for this scenario. However,
there are some severe issues making polystores unfeasible for the Gavel scenario.

As outlined in Section 1.3, existing polystore systems lack support for transactions and
other “typical” DBMS functionality like the enforcement of constraints [Sto15]. However,
the most crucial limitation is that most existing polystore implementations do not support
data modification queries [VHS+20; LHC18a].

2.4 A New Kind of DBMS

Since none of the aforementioned approaches is a satisfying solution for the outlined
scenario, there is the need for a new kind of data management solution. This solution
needs to combine the advantages of HTAP systems, multimodel databases and polystores
and at the same time provide the full capabilities of a database management system.
Figure 2.5 depicts the envisioned solution; we call this new class of database systems
PolyDBMS.
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Figure 2.5 PolyDBMS: combining the advantages of multimodel databases, polystores
and HTAP systems.

Such a PolyDBMS needs to maintain data represented in different data models, and
provide access to this data through one logical schema that enables cross-model queries.
Furthermore, it needs to provide the ability to query and join this data using the query lan-
guages of the existing applications. There also must be means to present each application
with its expected schema and data (e.g., views).

This novel kind of database system needs to be capable of handling mixed workloads
consisting of transactional and analytical queries. The performance of the transactional
workload needs to be comparable to the performance of the current setup with individual
database systems. Furthermore, there needs to be support for data manipulation queries.
The system also needs to provide support for transactions and other typical features of a
DBMS such as the enforcement of constraints.



Innovation is an evolutionary
process, so it’s not necessary to be
radical all the time.

— Marc Jacobs3
PolyDBMS

The lack of a suitable solution for the demands outlined in Chapter 1 and Chapter 2
require a multimodel data storage and management solution that bridges the gap between
HTAP systems and polystores. With PolyDBMS, we propose a new class of database
management systems stepping up to fill this gap [VLG+21].

The concept of a PolyDBMS builds on the polystore idea and also shares some major
principles, such as support for multiple query languages. However, while polystore
systems primarily seek to replace data warehouses and target analytical workloads [Sto15;
VHS+20], the focus of a PolyDBMS is more holistic and encompasses the whole data
storage and management needs, including heterogeneous data and mixed transactional
and analytical workloads. Furthermore, a PolyDBMS combines this with the idea of a
multimodel database and enables cross-model queries.

A PolyDBMS is not only a platform for data analytics; it is a full-fledged database
management system that hides the complexity and enables all data to be maintained
using different data models. Data can be retrieved and modified using different query
languages and across different data models.

3.1 Principles & Requirements

In this section, we define the requirements and outline the core principles every Poly-
DBMS must fulfill. The specifications are intentionally implementation-agnostic and
demand only a subset of the features and capabilities provided by our implementation
Polypheny-DB (see Chapter 11).
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3.1.1 Multiple Data Models

The “variety” of data is one of the most challenging issues in the area of Big Data
Management [LHC18b]. Different database data models have been developed to logically
represent and structure the data; see Chapter 4. Besides structuring the data, the data
model also defines the set of operations that can be performed on the data [GMUW13].

Requirement 3.1 Multiple Data Models

A PolyDBMS must support at least two data models.

A motivation for this requirement is provided by the Gavel scenario introduced in
Chapter 2: the fictional auction house uses applications that rely on different data models
for storing and processing their data. The auction item catalog, for instance, stores
semi-structured data in a database based on the document model while the product
recommendation system is based on a graph data model. Migrating everything to one
data model is not feasible since the semantics introduced by the data model would be lost.
The PolyDBMS therefore needs to be capable of accommodating multiple data models.
In the Gavel scenario, for instance, support for three data models is required.

3.1.2 Polymorph and Polyglot

PolyDBMSs inherit the polymorph and polyglot nature of polystore systems. Support-
ing multiple query languages or query methods and integrating multiple storage and
execution engines is a core requirement for every PolyDBMS.

Requirement 3.2 Polymorph and Polyglot

For every natively supported data model, there needs to be support for at least one
query language based on this data model. Furthermore, a PolyDBMS needs to support
at least one data storage and execution engine for each supported data model.

SQL is often referred as the lingua franca for querying databases [BAH+19; FCP+12].
However, as pointed out in [VJ84], there is no single query language capable of accom-
modating the full variety of requirements. Furthermore, the top-ten of the DB-Engines

Ranking1 from January 2022 contains three database systems without SQL support: Mon-

1 https://db-engines.com/en/ranking

https://db-engines.com/en/ranking
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goDB2, Redis3, and Elasticsearch4. These three systems also experience a continuing
growth in popularity. Moreover, there is also not “that” one SQL, rather almost every
SQL-enabled database has its own SQL dialect.

Since Requirement 3.1 requires every PolyDBMS to support multiple data models, there
also needs to be query languages that allow exploiting the full potential of these data
models. Especially in scenarios like the one introduced in Chapter 2, the adjustment
of applications can only be avoided if the PolyDBMS supports all query languages and
interfaces used by the applications. Hence, supporting several query languages is a key
attribute of PolyDBMSs.

A PolyDBMS needs to support at least one storage and execution engine for every sup-
ported data model. Mapping data to a different data model for storage and processing can
have a significant impact on the query performance. This is demonstrated in [WPW+14],
where the performance of MySQL (a relational database management system) and HBase
(a key-value store) is compared. For the scenario considered in this paper, the presented
benchmarking results show that the key-value store is 5.24 times faster than the relational
database system.

3.1.3 Independence of Storage Configuration

The requirement for a PolyDBMS to support multiple storage and execution engines
(see Section 3.1.2) introduces a problem already known from polystore and multistore
systems: the capabilities and potentially also the result of a query depend on where (i.e.,
on which storage engine) the data is stored and the query is executed.

Requirement 3.3 Independence of Storage Configuration

The result of a query produced by a PolyDBMS must be independent of how and where
the data is physically stored and by which engine it has been processed. Furthermore,
the capabilities of the PolyDBMS regarding the available query languages, operations
and functions must not depend on the physical storage of the data.

In [Sto15], Michael Stonebraker already identified the first part of this requirement—that
the result needs to be independent of where the data is physically stored—as a major
issue with existing polystore systems.

2 https://mongodb.com/
3 https://redis.com/
4 https://elastic.co/elasticsearch/

https://mongodb.com/
https://redis.com/
https://elastic.co/elasticsearch/
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An example for this is the day of week (dow) function available in most SQL dialects.
This function takes a date or timestamp and returns an integer representing the day
of the week. However, some database systems define the first day of the week to be
Monday while others define it to be Sunday. In a PolyDBMS, the result needs to be in
line with the specification of the query language and dialect in which the query has been
expressed. Furthermore, the result must be consistent independently of the involved
execution engines. An exception are floating-point operations, which only have to be
consistent up to a data type specific precision.

In a PolyDBMS, the set of possible allocations of data to storage engines is called storage

configurations. Requirement 3.3 requires that a PolyDBMS provides the same capabilities
regardless of where the data is physically stored; hence, for all available storage con-
figurations. The available query features and operations are only defined by the query
language. A PolyDBMS must not require a specific storage configuration for providing a
specific feature of a query language. The only observable difference between different
storage configurations of a PolyDBMS may be the time a query takes to execute. The
outcome of the query and the resulting state of the data governed by the PolyDBMS must
be identical.

Both requirements also apply to data manipulation queries: a query modifying data
should always behave the same and result in the same database state, regardless of where
and how the data is physically stored. This is especially important if the PolyDBMS
supports or requires the replication of data to multiple engines. The PolyDBMS must
guarantee that these operations are consistent and reproducible regardless of the selected
storage configuration.

A PolyDBMS may reduce the set of available storage configurations to those fulfilling
this requirement. This is legitimate as long as it cannot be circumvented and effectively
prevents any configuration violating this requirement. However, limiting the set of
storage configuration may not conflict with any other requirement.

3.1.4 One Logical Schema

A pillar of the PolyDBMS idea is to foster a tight integration of applications and data by
providing a holistic view on all available data across different storage engines and data
models.
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Requirement 3.4 One Logical Schema

The entities of all data models need to be mapped into a holistic schema that enables
cross-model queries. This logical schema needs to be independent of how and where
the data is physically stored. Furthermore, the PolyDBMS needs to provide means to
define and alter the schema at runtime.

It is important that this holistic schema preserves the semantics of the individual data
models. Furthermore, this schema must also enable cross-model queries and may not
separate the schema into islands that can only be queried by a subset of the query
languages. How this logical schema is organized and represented is up to the PolyDBMS.
An approach for building such a holistic schema is introduced in Chapter 8 of this thesis.

The level of detail in which the schema is expressed depends on the data model. Schema-
optional or schema-less data models such as the document model might only define the
names of the available collections, while a relational schema can be more specific.

The logical schema needs to be adaptable at runtime. Whether this is done using data
definition queries, through a user interface, or any other approach is up to the specific
implementation of the PolyDBMS—as long as the whole schema can be altered without
restarting the PolyDBMS. Furthermore, the schema definition and altering must not
introduce an implicit mapping to another data model. This would be the case if the
data definition language is based on a data model other than the one to be defined. In
such a case, the query language might implicitly prevent the definition of schemas not
expressible by the data model the query language is based on. However, the PolyDBMS
may provide data model specific approaches for defining and altering the schema.

3.1.5 Multifaceted Schema Model

A key element of a PolyDBMS is the ability to semantically integrate and combine
entities in one logical schema (see Section 3.1.4) while at the same time exposing multiple
application specific schemas on the query interfaces. The logical schema therefore also
serves as an integrated conceptual schema.

Requirement 3.5 Multifaceted Schema Model

A PolyDBMS must provide means to individually adjust the schema that is exposed
through a specific query interface.
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This feature is especially important if a PolyDBMS is used to replace a zoo of existing
database systems without changing the corresponding applications (see the Gavel sce-
nario introduced in Chapter 2). One issue that needs to be handled are colliding names.
If, for instance, two applications expect an entity (e.g., a relational table) with the same
name (e.g., customer) but with different fields (i.e., columns), directly exposing the logical
schema required by Requirement 3.4 causes issues.

If the two customer tables of this example represent the same conceptual entity (the
customers of the company) and contain (partially overlapping) information on the same
customer, the PolyDBMS needs to provide means for integrating the data in one logical
entity but only expose adjusted subsets of this entity to the individual applications. This
also needs to be possible across data models.

Similarly, the solution provided by the PolyDBMS also needs to be capable of handling
conceptually different entities with the same name andmap them to distinct entities in the
logical schema. In the Gavel scenario, this could for example be two applications that both
maintain their internal information in tables with the name session. While both tables
have the same name and might even have the same set of fields, they are conceptually
different and need to be maintained independently. The PolyDBMS therefore needs to
provide means for performing schema integrations.

3.1.6 ACID Compliant Transactions

Operational workloads usually consist of one or more database operation grouped into a
transaction [GMUW13]. A transaction represents a unit of work that needs to be executed
in a coherent and reliable manner and independently of other transactions [EN16].
The acronym ACID [HR83] refers to a set of properties a proper transaction needs to
fulfill [GMUW13].

Transactions are a pillar of information processing [WV02]. Since PolyDBMSs seek
to provide a holistic solution for data management, handling operational workloads is
required. Support for transactions fulfilling the ACID properties is therefore mandatory
for every PolyDBMS.

Requirement 3.6 ACID Compliant Transactions

Every PolyDBMS must provide support for ACID-compliant transactions. Providing
these guarantees only for a subset of the available storage configurations is legitimate.
However, providing ACID guarantees must not limit other functionality.
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As stated in the requirement, the PolyDBMS does not need to provide support for ACID-
compliant transactions for all possible storage configurations (see Section 3.1.3). It is
therefore legitimate for a PolyDBMS to trade transaction support against performance.
However, transaction support is treated as a property of the storage configuration and
therefore falls under the requirements defined in Section 3.1.3. Hence, the PolyDBMS
must provide support for the same set of data models, query languages, operations, and
query functions, regardless of whether ACID-compliant transactions are supported for a
storage configuration or not.

3.1.7 Translytical

The term translytical refers to database management systems that, similar to HTAP sys-
tems, support heterogeneous workloads including transactional workloads and analytical
workloads [YGL+17]. Transactional workload (also referred to as OLTP or operational

workload) usually consists of short running transactions containing simple read and
write queries. Analytical workload (also referred to as OLAP ) involves complex and
often long-running queries [GMUW13]. Since the idea of a PolyDBMS is to provide a
holistic approach to data management, both transactional and analytical workloads must
be supported.

Requirement 3.7 Translytical

A PolyDBMS is optimized for heterogeneous workloads containing both, transactional
and analytical queries. Furthermore, a PolyDBMS must provide support for data modifi-
cation queries.

The performance of a PolyDBMS may depend on the storage configuration. However,
the PolyDBMS must be capable of optimizing an entity for multiple types of workload
at the same time. This can for example be done by replicating data to multiple storage
engines at the same time.

3.2 Architectural Models

There are multiple architectural approaches for implementing a PolyDBMS system. In
this section, we will first introduce two approaches that could be seen as continuations
of existing kinds of database management systems. We outline the difficulties and
disadvantages of these approaches and explain why we do not consider them practical
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Figure 3.1 A PolyDBMS following the monolithic architecture model. Queries are
accepted in different query languages. Integrated within the database are
multiple storage and execution engines.

for building a PolyDBMS. Instead, we propose a hybrid of these approaches combining
the strengths of multimodel DBMS, polystores and HTAP systems.

3.2.1 Monolithic Architecture

The monolithic architecture model depicted in Figure 3.1 describes the architectural
approach of most database management systems: one single software taking care of
query parsing, processing, execution and the storage of the data. This architecture is for
instance described by Hellerstein et al. in [HSH07].

This architecture is typical for both relational and NoSQL systems. However, there are
also multimodel databases and HTAP systems following this architectural approach, for
example SAP HANA5, ArangoDB6 or OrientDB7. The monolithic architecture approach
can be seen as the continuation of the “One Size Fits All Idea” that Stonebraker et al.
prognosed to come to an end [SÇ05].

Figure 3.1 depicts a PolyDBMS following the monolithic architecture model. This hypo-
thetical PolyDBMS supports multiple data models and query languages. The system also

5 https://sap.com/products/hana.html
6 https://arangodb.com/
7 https://orientdb.org/

https://sap.com/products/hana.html
https://arangodb.com/
https://orientdb.org/
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takes care of the whole data storage layer, storing data in multiple physical data models.
Systems implemented based on this architecture are easy to deploy since there are no
dependencies to other systems.

Another advantage of this architectural model is its potential for optimization. Building
the whole stack allows reducing overhead and aligning all components. A coherent type
system for the entire storage layer, for example, eliminates the need for type conversations.
Implementing all execution engines also makes fulfilling Requirement 3.3 (Independence
of Storage Configuration) much easier. However, the need to implement the entire stack
is also the biggest drawback of this approach. Matching the performance of existing
(domain specific) database systems with their years or even decades of optimization is
very challenging—to say the least.

While the opportunity to align all components and to optimize all aspects of the system
that comes with this architectural model might have the potential to build a system
superior in terms of performance compared to the approaches introduced in the following
sections, we argue that this advantage is of rather theoretical nature. Following this
approach means reproducing all the optimizations and tweaks that have been made,
sometimes over decades, in systems such as PostgreSQL8, Oracle9, MongoDB10 or Neo4J11.

3.2.2 Middleware Architecture

The middleware architecture is less complex than the monolithic architecture. The idea
is to benefit from the decades of research and development in database systems by using
existing, highly optimized, database systems for storing the data and executing the queries.
The task of the middleware is to select the most appropriate storage engine for executing
a query, to translate the query into the query language of the underlying database
system, and to forward the query for execution to the selected database. Furthermore, the
middleware is responsible for keeping the data consistent across the database systems.
Figure 3.2 depicts such an architecture.

An example of a system following this architecture model is Icarus [VSS17]. In this
system, all data is replicated to all underlying databases. For every incoming query, the
Icarus system selects the database system with the best characteristics for executing this

8 https://postgresql.org/
9 https://oracle.com/database/
10 https://mongodb.com/
11 https://neo4j.com/

https://postgresql.org/
https://oracle.com/database/
https://mongodb.com/
https://neo4j.com/
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Figure 3.2 A PolyDBMS following the middleware architecture model. Queries are
accepted in different query languages and are executed on one of the under-
lying database systems. For this, the query is translated by the middleware
to the query language required by the selected database system.

query, translates the query into the query language of the underlying database, executes
the query, and returns the result to the client.

An advantage of this approach is its horizontal scalability: the underlying database
systems can be deployed on different physical machines, with the middleware acting as
an intelligent load balancer over heterogeneous systems.

However, while this approach is simple, it also comes with some major issues, one being
the bad performance for modification operations [NJ00; CGP80]. Since the data is fully
replicated across all databases, every datamodification needs to be executed on all systems.
Another issue is the difficulty to keep the data stored in the heterogeneous database
consistent for arbitrary update operations: already small differences in the interpretation
of conditions in the query or the implementation of functions between the involved
databases can lead to inconsistent data. An example for this is the already mentioned
dow() function available in many (relational) database systems. This function returns the
day of the week as an integer. However, some database systems treat Sunday as the first
day of the week, while others treat Monday as the first day of the week. A query that, for
instance, updates all entries with a specific date would therefore result in inconsistent
data. Furthermore, the Requirement 3.3 (Independence of Storage Configuration) cannot
be fulfilled using this architecture either.



PolyDBMS 31

SQL

MQL

SQL

Cyph
er

Pig

SQL

MQL

MDX

SPARQL
Execution 

Engine

PolyDBMS

Figure 3.3 A hybrid of the monolith architecture and the middleware architecture for
building a PolyDBMS.

3.2.3 Hybrid Architecture

The hybrid architecture model depicted in Figure 3.3 combines the advantages of the
monolithic architecture model and the middleware architecture model. Like the middle-
ware architecture, it makes use of the enormous optimizations that went into existing
database systems by using them for storing data and executing queries. However, these
underlying databases are complemented by an execution engine within the PolyDBMS.
This execution engine compensates for missing features on the underlying databases,
which allows fulfilling Requirement 3.3 (Independence of Storage Configuration). The
execution engine also allows combining (e.g., joining) results from different underlying
database systems.

The PolyDBMS seamlessly combines replication and partitioning of the data across
the heterogeneous underlying database systems. This allows to optimize the storage
configuration according to the workload. Furthermore, the integrated execution engine
allows the evaluation of complex conditions in data modification queries and can reduce
them to basic operations that can be executed consistently on all underlying databases.
The hybrid architecture therefore applies a Local-as-View (LAV) based schema mapping
over the underlying data stores.
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Similarly to the middleware approach, this architecture is inherently distributable. This
allows for an easy horizontal scaling by deploying the underlying database systems on
different physical machines.

This architecture is more complex than the middleware architecture, but still less complex
than the monolithic approach. Since the integrated execution engine is only a fallback
and most queries are processed on the underlying database systems, the performance of
the integrated execution engine is of secondary importance.

3.3 Research Objectives

A PolyDBMS is not characterized by its architectural model but by its ability to provide
certain capabilities. Hence, every system fulfilling the requirements outlined in Sec-
tion 3.1 is a PolyDBMS. However, to our best knowledge, there is no database system
providing support for all of the requirements outlined in Section 3.1. While systems like
the three aforementioned systems SAP HANA, ArangoDB and OrientDB fulfill some of
the requirements, none of these systems fulfills all of them (see Chapter 15 for a detailed
breakdown). Furthermore, all of these systems follow the monolithic architecture ap-
proach outlined in Section 3.2.1 and therefore suffer from the drawbacks of this approach
outlined before.

In this thesis, we present the results of our research that enables to build such a PolyDBMS.
Due to the aforementioned drawbacks of systems built according to a monolithic or
middleware architecture, we consider these architectures to be inadequate for building a
PolyDBMS that is able to compete with existing systems in single-model workloads and
scenarios like the one presented in Chapter 2. The concepts presented in this thesis are
therefore based on the hybrid architecture model introduced in Section 3.2.3. In what
follows, we refer to a PolyDBMS as a system built according to this architecture.

Since such a system is an evolution and combination of existing database technologies,
there are already solid foundations and proven solutions on which we can build. However,
we identified three areas where additional research is required to address the emerging
challenges of building a PolyDBMS:

– Supporting multiple data models in one system, as it is required by Requirement 3.1,
is currently a subject of ongoing research and development. However, combining
these beneath one logical schema (Section 3.1.4) and exposing different schemas
on the interfaces (Section 3.1.5) requires further research. The required concep-
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tual model also needs to enable cross-model queries. Furthermore, it needs a
conceptual solution for combining data partitioning and data replication across het-
erogeneous data models while at the same time meeting the requirements defined
in Section 3.1.3. (→ Chapter 8)

– Due to the requirement introduced in Section 3.1.2, a PolyDBMS needs to support
multiple query languages based on different data models. This requires a model for
representing and handling these heterogeneous queries. This model must preserve
the data model specific semantics of operations and at the same time also allow
queries across data models. (→ Chapter 9)

– A database system that features multiple execution and storage engines, and repli-
cates and partitions data across these engines, requires a sophisticated model
for planning the optimal execution of queries. This includes the decomposition
of queries and the selection of the underlying database systems on which the
subqueries should be executed. The requirement of Section 3.1.7 to support trans-
actional workload consisting of short-running queries makes this even more chal-
lenging since the routing must not significantly increase the execution time of
these queries. (→ Chapter 10)

Besides these conceptual models, there are also some implementational challenges that
arise from adapting and combining existing solutions in such a system. With our im-
plementation Polypheny-DB, we demonstrate that the described concepts can be imple-
mented in a holistic system. (→ Chapter 11)
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Preface to Part II:
Outline the Field

In this part, we introduce the concepts that lay the foundations for the work presented in
this thesis. Since there is unfortunately not a single commonly agreed up on definition
for several of the important terms and concepts, another purpose of this part of the thesis
is to introduce a terminology. This allows for a more concise and stringent discussion of
the conceptual models presented in the third part of this thesis.

The purpose of this part is not to give a holistic introduction to the whole area of
data management. Since this thesis focuses on PolyDBMS built according to the hybrid
architecture approach introduced in Section 3.2.3, we only introduce foundations required
in the context of this architecture model. Furthermore, we also limit ourselves to the
topics that are relevant for the concepts presented in Part III.

As introduced in Chapter 3, a PolyDBMS built according to the hybrid architecture model
is a multimodel database management system that combines heterogeneous underlying
database systems. This combination of approaches does also reflect in the structure of
this part of the thesis.

The foundations for the multimodel nature of a PolyDBMS are outlined in Chapter 4.
This chapter gives an overview of three database data models. For each, a formal model
will be introduced. These models include the representation of data, basic operations on
the data, and the available building blocks for defining schemas and imposing constraints.

A PolyDBMS is a full-fledged database management system. Chapter 5 therefore intro-
duces the necessary foundations of database management systems. This includes the
architecture and building blocks of a database management system, transactions and
concurrency control.

Storing data across different underlying database systems requires techniques known
from distributed systems. In Chapter 6 these foundations will be introduced. This
includes an overview of data replication and data partitioning, temperature-aware data
management, distributed transactions, and data freshness.





See first that the design is wise and
just; that ascertained, pursue it
resolutely.

— William Shakespeare4
On Data Models

A fundamental characteristic of a database system is its ability to provide a level of
abstraction from the data. The schema of the database is abstracted from the way in
which the data is physically stored. The data model is a collection of concepts that can be
used to define this schema [EN16]. In the literature, the term is sometimes also used to
refer to the particular schema of the database. In this thesis, however, a clear distinction
is made between these two terms:

The database schema is the blueprint of the database. It defines the layout in which
the data is logically organized. Furthermore, the schema might also include a set of
constraints imposed on the data [EN16]. However, the level of detail with which a
schema is defined depends heavily on the data model.

The data model defines the set of building blocks available for defining the schema.
Furthermore, it might also define a limited set of operations that can be used to query and
manipulate the data [GMUW13], and provides the building blocks for defining constraints
on the data.

Over the past decades, several database data models have been proposed. One approach
to categorize these data models is based on the conceptual level at which the schema is
modeled [EN16]. As depicted in Figure 4.1, usually a distinction is made between three
levels of abstraction. In this thesis we refer to them as conceptual, logical and physical.

Conceptual data models are used to model the semantics of a real-world domain.
They provide concepts that are close to the way in which the data is perceived by the
user [EN16]. The Entity-Relationship model [Che76] proposed in 1976 by Peter Chen is a
popular approach for modeling conceptual schemas. It uses concepts such as entities,
attributes, and relationships. An entity represents a real-world object or concept, such
as a customer or product. Attributes are used to further describe an entity, for example,
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Model Purpose

Conceptual
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Implementing a
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Entity–Relationship

Relational, Document, 
Graph

Database-specific

Figure 4.1 Different levels of data models.

the name of the customer or the price of a product. With relationships, it is possible to
model associations between entities, for example, that a customer can buy a product.
Conceptual data models are typically not very detailed. They allow to model real-world
things and the relationships between them, rather than the organization of the data
about those things [Wes11]. They are used as a tool for understanding and organizing
information.

Logical data models formalize how data can be organized, queried, and modified. They
are more concrete and data-centric than conceptual models, but still independent of a
specific database product or implementation. The relational data model [Cod70] is the
most popular citizen of this class. However, other data models gain increasing importance.
Not only do they represent data differently, but they also differ in the set of provided
building blocks for defining the schema and provide a different set of operators that can
be applied to the data organized by that schema.

Physical data models are specific to the implementation of the database management
system, and dependent on specific data types and indexing mechanisms of this particular
DBMS [Nye17]. They describe the physical data structures used for storing and processing
the data on a computer system [Wes11]. Furthermore, they define low-level aspects such
as read and write operations on these data structures.

In this work, we are mainly interested in the logical data models. The term data model

therefore always refers to the class of logical data models. In the following sections, the
relational, document, and labeled property graph data models are introduced. For every
model, we follow the structure introduced by [GMUW13] and consider the following
three aspects of a data model:

– Structure of the data: The structures or building blocks provided by the data model
to define the schema. Furthermore, the way in which data accommodated by this
data model can be represented.
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– Operations on the data: The operators defined by the data model to construct
queries that can be applied to the data.

– Constraints on the data: The kinds of constraints that can be defined within this
data model and imposed on the data governed by it.

4.1 Relational Model

The relational data model has been introduced in June 1970 by Edgar F. Codd in a research
article with the title “A Relational Model of Data for Large Shared Banks” [Cod70]. It
presented a major breakthrough in data management [CMR11]. The basic principle of
the relational model is the representation of data by means of mathematical relations. A
database organized according to the relational data model is called a relational database.

4.1.1 Structure of the Data

In the relational model, data is represented as # -ary relations. An # -ary relation R is
the subset of the Cartesian product of # data domains; with # being a positive natural
number. A data domain D is a set of atomic values. It represents the possible values for
an attribute. An attribute A is the combination of a data domain and a name. The name
must be distinct within a relation.

The number of attributes of a relation is called degree. A tuple C is a list of values that is
constructed such that the first element belongs to the first attribute, the second to the
second attribute, and so on. The set of possible tuples of a relation R is therefore given
by the Cartesian product of the data domains of the attributes that belong to this relation.
Let (A1, ...,A# ) be attributes of a relation R and DOM(·) be a function returning the
domain of an attribute. A tuple C of a relation R is defined as:

C ∈ DOM(A1) × DOM(A2) × ... × DOM(A# ) (4.1)

Since data domains are a set of atomic values, structured or multi-valued entries are not
allowed in the classical relational model.1 The number of tuples of a relation is called
cardinality. In the relational model, the tuples of a relation are a set; thus, no tuple can
occur more than once.2 Furthermore, the tuples of a relation are inherently unordered.

1 This property is nowadays usually relaxed in relational database systems.
2 In relational databases systems, this is extended to allow duplicate values.
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Every relationR has a fixed schema. This schema is defined by an ordered list of attributes,
where (A1, ...,A# ) are attributes belonging to the # -ary relation R:

SCH(R) := (A1, ...,A# ) (4.2)

Formally, a relation R consists of the schema SCH(R) and an extent (i.e., the values). The
extent is a finite subset of the possible tuples:

VAL(R) ⊆ DOM(A1) × DOM(A2) × ... × DOM(A# ) (4.3)

A relational schema can consist of multiple relations {R1, ...,R" } with " ∈ N. Every
relation has a distinct name within the relational schema.

In the context of relational database systems, a relation is usually called table. The
attributes are typically called columns and the tuples are referred to as rows or records. A
data domain usually corresponds to the data types (e.g., integer, varchar, …) supported
by the database system.

4.1.2 Operations on the Data

The relational model introduced in [Cod70; Cod90], also introduces the relational algebra.
It defines multiple operators that can be applied to the data. Every operator takes one or
multiple relations as input and returns a new relation as output. For what follows, we
can restrict to unary operators taking one relation as input and binary operators taking
two relations as input.

UNARY : RINPUT → ROUTPUT

BINARY : RLEFT,RRIGHT → ROUTPUT
(4.4)

Since operators output exactly one relation, it is possible to arrange them as trees. The
resulting operator tree allows constructing complex queries using these basic operators
and involving multiple relations.
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In this section, we briefly introduce the most important operators defined by the relational
algebra. For every operation we specify the extent and the schema of the resulting output
relation.

4.1.2.1 Projection

The projection is a unary operator that allows to restrict all tuples of the input relation
to a specified list of attributes. All other attributes are discarded. The list of attributes of
the input relation to be preserved in the output relation is called projection list, denoted
with the symbol V . The schema of the output relation is reduced accordingly.

Let R be a relation over the attributes (A1, ...,A# ) and V be a list of attributes with
V ⊆ (A1, ...,A# ). Further, let V (·) reduce a tuple to the list of attribute specified in the
projection list V . The projection cV (·) is defined as:

cV (R) :=
{
V (C) | C ∈ R

}
SCH

(
cV (R)

)
:= V

(4.5)

4.1.2.2 Selection

The selection is a unary operator that filters the tuples of a relation according to a specified
filter predicate. The selection only affects the extent of a relation. The schema of the
output relation is equal to the schema of the input relation. The selection operator is
denoted by the symbol f .

The filter predicate i is a propositional formula consisting of attributes of the input
relation R, constant values, comparison operators (<, ≤, =, ≠, ≥, >), and the logical
operators (∧ (and), ∨ (or), ¬ (negation)). The selection operator fi (·) selects all those
tuples C of the input relation R for which i is fulfilled. With i (·) being the Boolean
function of the predicate i , the selection operator is defined as:

fi (R) := {C | C ∈ R ∧ i (C) = true}
SCH

(
fi (R)

)
:= SCH(R)

(4.6)

4.1.2.3 Cartesian Product

The Cartesian product is a binary operator that combines every tuple C ℓ from the left
input relation Rℓ with every tuple CA from the right input relation RA . The schema of
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the output relation consists of all attributes of both input relations. The extent of the
output relations contains all possible permutations of the tuples. The Cartesian product
operator × is defined as:

Rℓ × RA :=
{
C ℓ ∪ CA | C ℓ ∈ Rℓ ∧ CA ∈ RA

}
SCH(Rℓ × RA ) := SCH(Rℓ) ∪ SCH(RA )

(4.7)

4.1.2.4 Join

The join is an extension of the Cartesian product that only contains those permutations of
the tuples from the input relations Rℓ and RA where the value for a specific attribute Aℓ

in C ℓ and the value for a specific attribute AA in CA fits the criterion ⊗ ∈ {<, ≤,=,≠, ≥, >}.
More formally, with Aℓ ∈ SCH(Rℓ), AA ∈ SCH(RA ) and A(·) returning the value for
this attribute, the join is defined as:

Rℓ Z RA :=
{
C ℓ ∪ CA | C ℓ ∈ Rℓ ∧ CA ∈ RA ∧

(
Aℓ (C ℓ) ⊗ AA (CA )

)}
SCH(Rℓ Z RA ) := SCH(Rℓ) ∪ SCH(RA )\AA

(4.8)

A join can also be expressed using the Cartesian product and the selection operator

Rℓ Z RA := fi (Rℓ × RA ) (4.9)

with i := Aℓ (C ℓ) ⊗ AA (CA ). If ⊗ is the equals operator (=), this is also called an equijoin.

4.1.2.5 Set Operations

The three basic binary operations union, intersection and difference known from set theory
can also be applied on relations. However, it is required that they have the same schema.
For two input relations Rℓ and RA for which it holds SCH(Rℓ) = SCH(RA ), the three set
operations are defined as:

Rℓ ∪ RA := {C | C ∈ Rℓ ∨ C ∈ RA }
Rℓ ∩ RA := {C | C ∈ Rℓ ∧ C ∈ RA }
Rℓ\RA := {C | C ∈ Rℓ ∧ C ∉ RA }

SCH(Rℓ ⊗ RA ) := SCH(Rℓ) = SCH(RA ) with ⊗ := {∪,∩, \}

(4.10)
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4.1.3 Constraints on the Data

The relational model distinguishes between different types of constraints. A very powerful
concept are keys. In literature, the term key is typically used to identify a set of attributes
that uniquely identify every tuple of the relation. However, in this thesis, we define
a key K as an arbitrary set of one or multiple attributes (A1, ...,A:) ⊆ SCH(R). An
attribute can be part of multiple keys. There are two special types of keys: primary keys

and foreign keys.

A primary key, denoted as KPK, of the relation R consists of a subset of the attributes
KPK ⊆ SCH(R) that, in conjunction, allow to uniquely identify every tuple of the relation.

A foreign key, denoted as KFK, of the relation R consists of a subset of the attributes
KFK ⊆ SCH(R) that uniquely reference the primary key of the same or another relation.

The relational model furthermore allows constraining an attribute to a specific data type
or limiting the set of valid values to a subset of the possible values defined by the data
domain.

4.2 Document Model

The document model is designed for storing semi-structured data. This is data where
there is either no or only a very loose schema on the data. Furthermore, semi-structured
data is usually organized in some tree-like structure [Bun97]. This requires a data model
that supports such nested data structures. Databases built around the document data
model are called document-oriented databases or document stores.

Despite the popularity that document-oriented databases have gained in recent years,
there are only a few attempts at formally defining and understanding their concep-
tual properties [BCC+16]. In this section, we summarize a formal model introduced in
[BCC+16; BCC+18] that is based on the document store MongoDB3. According to the
DB-Engines ranking4 from February 2022, MongoDB is the most popular database system
based on the document data model.

3 https://mongodb.com
4 https://db-engines.com

https://mongodb.com
https://db-engines.com
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4.2.1 Structure of the Data

In the document model, data is organized as a collection of heterogeneous documents.
Each of these documents is identified by a unique identifier and contains an arbitrary set
of key-value pairs. In contrast to the relational model where the values are atomic
(see Section 4.1.1), in the document model, arbitrarily deeply nested structures are
possible. These nested structures can consist of key-value pairs (i.e., an associative
array or dictionary) and (indexed) arrays:

Array : � → + with � ⊆ N≥0

Dictionary :  → +
(4.11)

The sets+ and  consist of arbitrary atomic values. The set+ further includes the special
elements null, true, and false. We can now formalize a document as a finite unranked
node and edge labeled out-tree (a rooted directed graph where the path leading from the
root to any other node is unique). For labeling the edges, we use the two sets  and � .
For labeling the nodes, we use the set + . A labeled tree I is defined as a tuple

I := (#, �, ≺, !=, !4) (4.12)

with # being a set of nodes, � a set of edges, and ≺ a binary relation defining an order
for certain pairs of nodes in # . This partial order imposes a total order on the children of
the nodes in # . != and !4 are labeling functions:

!= : # → + ∪ {'Array', 'Dictionary'}
!4 : � →  ∪ �

(4.13)

The labeling function != is used for labeling nodes. A node labeled with an element
from + is a leaf. The function !4 is used for labeling edges. All outgoing edges of a node
labeled with ‘Array’ must be labeled using consecutive integers (from the set � ) starting
from 0, according to the order imposed by ≺. Outgoing edges of nodes labeled with
‘Dictionary’ are labeled with keys (from the set  ). Given a tree I and a node G , the
function type(G, I) can be defined as:

type(G, I) :=


leaf if != (G) ∈ +

array if != (G) = 'Array'

dict if != (G) = 'Dictionary'

(4.14)

The function root(I) returns the node acting as the root of the out-tree I, i.e., the node
without any incoming edges. If such a root node has an outgoing edge with the label id,
it is called a document.
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To get the value of a node G in I, we define the piecewise function val(G, I) as

val(G, I) :=


!= (G) if type(G, I) = leaf(
val(G1, I), ...,val(G" , I)

)
if type(G, I) = array{(

!4 (G, G1),val(G1, I)
)
, ...,

(
!4 (G, G" ),val(G" , I)

)}
if type(G, I) = dict

(4.15)
with G1, ..., G" being the children of the node G , so that they are satisfying the order
G1 ≺ ... ≺ G" . !4 (G, G′) is a shorthand for the edge labeling function !4 with G, G′ ∈ #
for which there exists an edge in �. Furthermore, we define val(I) as val(root(I), I).

4.2.2 Operations on the Data

Queries on the document data model are modeled as sequences of operators. Every
operator transforms a set of trees into another set of trees. These sets of trees are also
called forests. A forest is denoted with F .

OP : FINPUT → FOUTPUT (4.16)

To access values in a tree, concatenations of labels of adjacent edges starting from the
root of the tree, called paths, are used. A path is a finite sequence of labels. A path ?′ is a
prefix of a path ? , if and only if there is a non-empty concatenations of edge labels @ for
which ? = ?′| |@ holds (with | | being a string concatenation).

Based on [BCC+18], we introduce the following four operators operating on the data
structured according to the model outlined in Section 4.2.1: match, unwind, project, and
group.

4.2.2.1 Match

The match operator `i selects trees that satisfy the filter i . This filter is constructed
using a Boolean combination (∧ (and), ∨ (or), ¬ (negation)) of atomic conditions. These
conditions either check the existence of a path ? or the value E at a certain path ? = E for
E ∈ + . Given a forest F , and with i (·) being the Boolean function of the filter predicate i ,
the match operator is defined as:

`i (F ) := {I | I ∈ F ∧ i (I) = true} (4.17)
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4.2.2.2 Unwind

The unwind operator l? deconstructs an array at the path ? and creates separate output
trees for each item in the array. It only transforms the node specified by the path ? . The
other nodes of every input tree are duplicated, once per array element.

l? (I) :=
⋃

8< |subtree(I,?) |,8∈�
replace

(
I,subtree(I, ?),subtree(I, ? | |8)

)
l? (F ) := {l? (I) | I ∈ F ∧ type(?, I) = array}

(4.18)

With subtree(I, ?) being a function that constructs a tree with all elements below
the node specified by the path ? and with this node at the path ? as root element. The
replace(I0, I1, I2) function creates a copy of I0 where the subtree I1 is replaced by the
subtree I2 .

4.2.2.3 Project

The project operator dV transforms trees by adding, renaming or removing the nodes
and edges on a path ? . � is a sequence containing an arbitrary number of elements in
the form

– ? = true (keeping the nodes and edges on the path ?),

– ? = E (adding or overriding a leaf at the path ? with a constant value E ∈ + ),

– ? = {E0, .., E" } (adding or overriding a leaf at the path ? with an array definition),

– ? = ?′ (renaming the edges on a path ? to ?′), and

– ? = i (keeping the path ? if the Boolean expression i constructed as introduced
for the match operator in Section 4.2.2.1 is fulfilled).

There must be no pair (?, ?′) where ?′ is a prefix of ? . With the merge operator ⊕ that
merges trees with identical paths and V (I) being the application of V ∈ � on I, the project
operator can be defined as:

dV (F ) :=

⊕
V∈�

V (I)
��� I ∈ F

 (4.19)

4.2.2.4 Group

The group operator W�:� groups trees based on a sequence of grouping conditions and
aggregates values based on a sequence of aggregate specifications. Both consist of tuples
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(?1, ?2) where ?1 is a path in the set of input trees FINPUT and ?2 a path in the set of
output trees FOUTPUT.

4.2.3 Constraints on the Data

In the document model, every document has an id attribute that allows uniquely identi-
fying every document of a collection. Other than that, the document model is extremely
flexible and enforces no constraints on the data.

4.3 Labeled Property Graph Model

Graph data models are used for storing and processing network-like datasets [MSV17].
The ability to represent highly interconnected data makes them suitable for various
big data applications including social networks, bioinformatics and astronomy [SS19].
Database systems built around a graph data model are called graph databases. There are
two important graph database models, the Labeled Property Graph (LPG) [RN10] model
and the Resource Description Framework (RDF) [BM04]. For this thesis, we focus on the
LPG model.

4.3.1 Structure of the Data

A graph is a structure known from graph theory. It is composed of a set of nodes (also
called vertices or points) interconnected by a set of edges (also called lines or links). In
the graph data model, the nodes represent the entities (such as products, companies, or
people) and the edges represent the relations between these entities (such as knows, buys,
likes). Furthermore, there is an arbitrary number of key-value pairs, called properties,
associated with a node or an edge. The ability to assign properties to edges distinguishes
the LPG model from other graph data models and the relational data model.

In graph theory, a directed graph� is usually represented by an ordered pair� := (#, �)
with # being a set of nodes and � being a set of edges. An edge is represented by a pair
of nodes.

� ⊆
{
(=1, =2) | =1, =2 ∈ #

}
(4.20)
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For the LPG model, this definition needs to be extended to allow multiple edges joining
the same pair of nodes. In graph theory, such a graph is called amultigraph. The definition
of� is extended to the tuple� := (#, �,src,tgt) with � being a multiset of unordered
pairs of nodes and introducing the functions src(·) and tgt(·):

src : � → #

tgt : � → #
(4.21)

The source function src(·) assigns every edge to its source node and the target func-
tion tgt(·) assigns every edge to its target node. In graph theory, this type of graph
is called a directed multigraph. However, for the LPG model, further extensions are
required to model labels and properties on both the nodes and edges. For the labeling,
we introduce a set of node labels !# and a set of edge labels !� . Further we introduce
the labeling functions ℓ# and ℓ� :

ℓ# : # → P(!# )
ℓ� : � → !� ∪ {null}

(4.22)

With P being the power set function P(- ) := {* | * ⊆ - } for a set - .

For modeling the properties, we define % as the set of property keys and %+ as the set of
property values. Furthermore, we introduce a function val(·) which maps a node or
edge and a property key to the corresponding property value.

val : (# ∪ �) × % → %+ (4.23)

With this, a graph in the LPG model can be described by the tuple:

� := (#, �, !# , !�, % ,src,tgt, ℓ# , ℓ�,val) (4.24)

The LPG model is often described as schema-optional [SS19]. It is possible to define a
graph schema which constrains the graph and enforces a certain structure. However, in
contrast to the relational data model, a graph schema is not mandatory to represent data.
We therefore introduce the concept of graph schemas as possible constraints on the data
in Section 4.3.3.

4.3.2 Operations on the Data

Since there is no common agreement on the definition of what exactly the operators
of the LPG model are, we are oriented towards the set of operators introduced by the
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openCypher5 query language. This is not only a widely adopted query language for LPGs,
it is also the basis for the upcoming ISO/IEC GQL standard [Gre19]. The formalization
of the operators introduced in this section are based on two scientific publications: the
article on the Cypher query language [FGG+18] and an article on formalizing openCypher
queries [MSV17].

A query in the LPG model takes a graph as input and returns a graph relation as output. A
graph relation ' is a relation over a set of attributes �. The schema of the graph relation
' is a list of attributes:

sch(') := (�1, ..., �# ) (4.25)

The values for an attribute of a graph relation can be complete nodes or edges including
their properties, but also single property values. More formally, the dom(·) function
returning the data domain of an attribute is defined as:

dom(�) ⊆ # ∪ � ∪ %+ (4.26)

Similar to the relational model, we define a query as a tree of operators. For this definition
of the graph model, we limit ourselves to the following operators: the node operator
(Λ), the match operator (Θ), the unwind operator (Ω), the project operator (Π), the filter
operator (Ξ), and the union operator (∪). Except for the binary union operators, all
operators take up to one graph relation as input.

A query consists of at least one node operator and an arbitrary number of other operators,
including zero. The node operator Λ can only appear at the leaves of the query tree and
there also needs to be exactly one such operator at every leaf of the tree.

∪

Ξ

Θl

Λ

∪

Θ↑

Λ

Θ↓

Λ

Except for the node operator, all operators take either one or two graph relations as input.
The node operator takes a graph as input. The match operator takes both a graph and a
graph relation as input. All operators return one graph relation as output. The following
paragraphs introduce the elementary operators of this data model.

5 https://opencypher.org/

https://opencypher.org/


52 On Data Models

4.3.2.1 Node

The node operator ΛU,W creates a graph relation with one attribute. It has two parameters:
an attribute name U and a list of node labels W . The node operator produces a graph
relation having one attribute with the name U . The relation consists of tuples for every
node in the input graph that has all labels specified in W . For a graph � and with C [U]
returning the value of the tuple for the attribute U , the node operator can be defined as:

Λ : � → '

ΛU,W (�) := {C | C [U] ∈ � ∧ ℓ# (C [U]) = W}
sch

(
ΛU,W (�)

)
:= (U)

(4.27)

4.3.2.2 Unwind

The unwind operator Ω is a unary operator that takes a list from a specified attribute j of
the input relation and multiplies each tuple individually, resolving elements of the list to
a new attribute U . With an input relation ', the Cartesian product ×, and C [j] returning
the value of the tuple for the attribute j , the unwind operator Ωj,U (·) is defined as:

Ω : ' → '

Ωj,U (') :=
⋃

∀9∈C [j]
C × 9

sch
(
Ωj,U (')

)
:= sch('\j) ∪ (U)

(4.28)

4.3.2.3 Project

The projection operator restricts all tuples of the input relation to a specified set of
attributes. All other attributes are discarded. With an input relation ' over the attributes
(�1, ..., �# ), V being a list of attributes with V ⊆ (�1, ..., �# ), and V (C) reducing a tuple C
to the list of attributes in V , the projection ΠV (·) is defined as:

Π : ' → '

ΠV (') := {V (C) | C ∈ '}
sch(ΠV (')) := V

(4.29)
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4.3.2.4 Match

The match operator Θ is the central operator of the graph data model. It adds two
additional attributes to the graph relation if and only if there is an accordingly directed
and labeled edge to an accordingly labeled node. It has five parameters: 3 is the direction
to match 3 ∈ {↑, ↓, l}, j is the name of an attribute of the input relation ' containing
nodes, U= and U4 are the names of the two attributes to be added to the graph relation,
V= is a list of node labels V= ⊆ !# , and V4 is a list of edge labels V4 ⊆ !� . The operator is
denoted as ΘU=,V=

3,j
[U4, V4].

The attributes U= and U4 are added to those tuples of the output relation were there is
an edge with the direction specified by 3 from the node provided by the attribute j of
the input relation ' to a node in the graph � that has all labels in V= . Furthermore, the
connecting edge must have any of the labels in V4 .

Θ : �, ' → '

Θ
U=,V=

↑,j [U4, V4] (�, ') :=
{
C | C [j], C [U=], C [U4] ∈ � ∧ ℓ# (C [U=]) = V= ∧ ℓ� (C [U4]) ∈ V4

∧ src(C [U4]) = C [j] ∧ tgt(C [U4]) = C [U=]
}

Θ
U=,V=

↓,j [U4, V4] (�, ') :=
{
C | C [j], C [U=], C [U4] ∈ � ∧ ℓ# (C [U=]) = V= ∧ ℓ� (C [U4]) ∈ V4

∧ src(C [U4]) = C [U=] ∧ tgt(C [U4]) = C [j]
}

Θ
U=,V=

l,j [U4, V4] (�, ') := Θ
U=,V=

↑,j [U4, V4] (�, ') ∪ Θ
U=,V=

↓,j [U4, V4] (�, ')

sch
(
Θ
U=,V=

3,j
[U4, V4] (�, ')

)
:= sch(') ∪ (U=, U4)

(4.30)

4.3.2.5 Filter

The unary filter operator Ξ removes all tuples from the input relation that do not meet
the filter criterion. The filter criterion i is a propositional formula consisting of attributes
of the input relation ', constant values, comparison operators (<, ≤, =, ≠, ≥, >), and the
logical operators (∧ (and), ∨ (or), ¬ (negation)). With i (·) being the Boolean function of
the filter predicate i , the filter operator Ξ is defined as:

Ξ : ' → '

Ξi (') := {C | C ∈ ' ∧ i (C) = true}
sch

(
Ξi (')

)
:= sch(')

(4.31)
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4.3.2.6 Union

The union operator ∪ takes two graph relations and combines them in one output relation.
Both input relations must have the same schema. For the two input relations 'ℓ and 'A
the union operator can be defined as:

∪ : ', ' → '

'ℓ ∪ 'A := {C | C ∈ 'ℓ ∨ C ∈ 'A }
sch('ℓ ∪ 'A ) := sch('ℓ) = sch('A )

(4.32)

4.3.3 Constraints on the Data

It is possible to constrain a labeled property graph by means of a graph schema. A
graph schema defines the structure of the graph by specifying how nodes with certain
labels need to be connected with edges having a certain label. Furthermore, it specifies
the property keys of these nodes and edges and the data type of the corresponding
property values. Since the LPG model does not require an explicit data model (i.e., it is
schema-optional), a schema is considered as a constraint on the data.

As defined in Section 4.3.1, !# is the set of node labels and !� is the set of edge labels.
For defining a graph schema ( , we introduce a function ℓ2 that defines the allowed labels
of an edge between a pair of node labels:

ℓ2 : (!# , !# ) → !∗� with !∗� ⊆ !� (4.33)

Furthermore, we define the two functions prop(·) and type(·). As defined in Sec-
tion 4.3.1, % is the set of property keys and %+ is the set of property values. The prop(·)
function specifies the set of properties (identified by a property key) valid for a node or
edge label. The type(·) function gives the data type for a pair of node or edge labels
and a property key.

prop : (!# ∪ !�) → %∗ with %∗ ⊆ % 

type : (!# ∪ !�) × % → �
(4.34)

The set � is the set of available data types. With this, the graph schema ( can be defined
as a tuple:

( := (!# , !�, ℓ2,prop,type) (4.35)
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[Origin: Data + Latin basus “low,
mean, vile, menial, degrading,
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allowing data to be lost in many
convenient sequences while
retaining a complete record of the
logical relations between the
missing items.

— Stan Kelly-Bootle, The Devil’s
DP Dictionary

5
On Database Systems

A database management system (DBMS) is a software to store, retrieve and manipulate
data [GMUW13]. In literature, the term database is sometimes used to refer to the
collection of data governed by the DBMS [EN16]. However, as already mentioned in
the introduction, we follow the common practice of using the terms database, database
system and database management system interchangeably. This avoids the ambiguity of
terms such as “graph database”, the established term for a database management system
based on the graph data model. In this chapter, we introduce the foundations of database
systems elementary to the concepts presented in this thesis.

5.1 Components of a Database System

While every database system has a slightly different architecture, there are some basic
building blocks that can be found in most systems. These are depicted in Figure 5.1 as
light gray. The components depicted in a darker gray can only be found in systems
supporting transactions.

It should be mentioned, that these components might be sliced differently depending
on the system. Also, the naming of the components is not standardized. We have also
deliberately omitted components such as authentication or authorization, as these are not
relevant in the context of this thesis. In this section, we describe this “smallest common
denominator” of components of a database system. The order of the paragraphs follows
the path a query takes through the components.

Query Interface. The query interface, sometimes also called client communication

manager [HSH07], is responsible for interacting with the client. A client hereby refers to
everything that directly interacts with this interface by submitting queries. This can be
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Manager

Query Interface

Database System

Figure 5.1 Basic building blocks of a database management system and their inter-
actions. The components depicted in light gray can be found in every
database system. The components depicted in darker gray only in systems
supporting transactions. The solid lines indicate the path of a query. Dashed
lines indicate interaction between components (simplified version of [EN16;
GMUW13; HSH07]).

locally or over the network. Well-known standards for this kind of communication are
the Open Database Connectivity (ODBC) or Java Database Connectivity (JDBC) protocols.
Using these protocols, the client is able to submit queries to the database system and
receive the corresponding results. The query itself is expressed using a query language
such as the already mentioned Structured Query Language (SQL) or openCypher.

Query Parser. In the query parser, the query received from the client by the query
interface is transformed into an abstract internal query representation which can be
processed by the following components of the database management system. This
internal representation does typically consist of the operators defined by the data model
the database system is based on. In a relational database system, for example, the internal
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representation is typically based on the relational algebra (see Section 4.1.2). In literature,
the query parser is sometimes also called query compiler.

Query Optimizer. The purpose of the query optimizer is to determine the most optimal
execution plan for the query received from the query parser. This is done be consider-
ing different variants for executing the query. The optimization typically includes the
rearrangement and possibly also the reordering of operations and the elimination of
redundancies [EN16]. Query optimization will be discussed in more detail in Section 5.2.
The output of the query optimizer is an execution plan.

Execution Engine. In the execution engine, the query is actually executed. In modern
systems, the execution plan is typically converted into native machine code that is
then executed in a subsequent step [EN16]. The advantage of this approach is, that the
generated code can be cached for subsequent executions of this query.

Storage Manager & Buffers. The storage manager controls the actual storage of the
data and provides basic functions to access and manipulate it. These functions are used
by the execution engine to interact with the data. The implementation of this component
depends on the type of storage media for which the database system is designed. It might
also cache recently used data.

Transaction Manager. The transaction manager maintains the state of the database

transactions. It receives transaction commands from the query interface, allowing the
client to begin and end transactions. Database transactions are discussed in more detail
in Section 5.3.

Concurrency Control. In a system that processes queries from multiple clients, it can
occur that several clients update the same data item in parallel. The concurrency control
component ensures that this happens correctly. Correctly hereby means according to the
guarantees set forth in Section 5.3. Concurrency control is discussed in more detail in
Section 5.4.

Logging & Recovery. This component handles the case when something has gone
wrong. If the database is in an inconsistent state on startup (e.g., after a crash), the
recovery kicks in and brings the database back into a valid state. This component also
allows aborting ongoing transactions (i.e., undoing the changes made in the context of
this database transaction).

Catalog. The catalog stores the metadata on the data governed by the database system,
including the schema. However, the amount of metadata depends on the data model the
database system is based on.
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DDL Processor. The DDL processor handles the execution of the Data Definition Lan-

guage. DDL statements are commands to manipulate the schema or other aspects of the
database system. The DDL processor updates the catalog and orchestrates the resulting
changes to the data.

5.2 Query Optimization

In the query optimization, a query represented using the internal query representation
of the database system is transformed into an execution plan. The goal is to find an
execution plan that is optimal in terms of execution time (i.e., where the execution time
is minimal). To find this optimal execution plan for a query, the optimizer can apply
different techniques:

– rewrite the query according to equivalence rules for the operators of the data
model (e.g., combine filter operations)

– change the order of operations (e.g., the order of joins)

– exchange operations (e.g., to use an index or a materialized view)

– eliminate unused expressions (e.g., operations of which the result is not used)

– remove redundant operations (e.g., redundant filter operations)

To find an optimal query plan, the optimizer needs a model for estimating the execution
time of a query. Typically, such a model is called a cost model. It assigns a scalar cost
value to an execution plan. These costs are determined based on statistics on the data
and various heuristics.

An interesting approach for calculating the cost of a query plan is introduced in [SLM+01].
The authors introduce a system based on a feedback loop that adjusts the cost model based
on the actual cost (i.e., execution time) of the query. A similar approach is introduced in
[HG14] for the SPARQL query language.

5.3 Database Transactions

Transactions are a central concept in database systems [EN16]. A transaction represents
a unit of work that should be treated as “a whole”. A classical example for demonstrating
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the concept of transactions is the transfer of money between two bank accounts. For
the money to be transferred, it is first withdrawn from the account of origin and then
deposited on the target account. However, if the database system fails in between, the
money is lost. By executing both, the withdrawal and the deposit within one transaction,
it is ensured that either both are executed or none.

In general, a transaction can be defined as a sequence of atomic actions. An action is either
a transaction itself (i.e., nested transactions) or something that is already guaranteed to
be executed atomic (i.e., executed as an indivisible unit). A transaction guarantees that
either all actions are executed or none are.

A database system usually guarantees the atomic execution of a single query. From
an application’s point of view, a query can therefore be treated as an atomic action.
Transactions allow grouping multiple queries and provide the application with an all or

nothing guarantee from the database system. Furthermore, it also gives the application
the ability to deliberately abort the transaction and undo the changes.

However, database transactions guarantee more than atomic execution. As introduced by
Jim Gray in [Gra81], transactions represent a contract in terms of guarantees provided
by the database system. This contract does not only include the atomic execution of the
transaction, but also guarantees that the changes are persistent and that the execution of
the transaction does not result in a state violating the constraints.

Based on the work of Jim Gray, the authors of [HR83] described these guarantees in more
detail. Furthermore, they also introduced a fourth guarantee. These four guarantees
known by the acronym ACID are:

– Atomicity. The atomicity guarantee requires that a transaction is executed as an
atomic unit [EN16]. For a transaction to have an effect on the data, all actions
within the transaction need to be successful.

– Consistency. A transaction needs to maintain the consistency of the data. Exe-
cuting a transaction must not result in a state where any constraint defined by the
schema is violated.

– Isolation. The concurrent execution of transactions must result in a state as if the
transactions would have been executed sequentially. Ensuring this is the task of
the concurrency control.

– Durability. Once a transaction has been completed, the changes performed by
this transaction need to be persistent and survive failures.
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5.4 Concurrency Control

Most database system support multiple users (i.e., clients, applications) to access the
database at the same time. This is essential since it enables data from different applications
to be integrated and stored in a single database [EN16]. However, concurrently executing
transactions (that do not guarantee isolation), can cause the database state to become
inconsistent, even when each transaction individually preserves the correctness of the
database state (i.e., provides the consistency guarantee) [GMUW13].

Concurrency control techniques enforce the isolation between transactions and implement
a certain level of “correct concurrent execution” [OV11]. This level represents a trade-
off between the performance of the database system under concurrent workloads and
the correctness and consistency of the database system. Weaker levels enable a higher
performance, but may produce incorrect results or result in an inconsistent state of the
database. Roughly, we can distinguish between three levels of isolation:

– Serial. All actions of the same transaction are executed consecutively, without
any interleaving of actions from another transactions. Thus, there can only be one
ongoing transaction in a database system at a time and therefore no concurrency.
Hence, isolation of transactions is guaranteed.

– Serializable. In this level, concurrent workloads are allowed and there can be
multiple ongoing transactions at the same time. The executions of actions from
different transactions are interleaved. However, the outcome is equivalent to at
least one of the possible serial executions of the transactions; thus, serializable also
provides isolation between transactions.

– Non-Serializable. The interleaved execution of actions from different transactions
may result in a state that cannot be obtained by a serial execution. Hence, the
database may result in an inconsistent state. Isolation is not guaranteed.

A widely-adopted technique for achieving a serializable execution of actions is the strong

strict two-phase locking (SS2PL). It uses locks to prevent concurrent transactions from
accessing or modifying the same data. There are two types of locks: shared locks and
exclusive locks. While the former only allow to read data, the latter also allow to modify
it. As the name implies, a shared lock does not prevent other transactions to also acquire
a shared lock. If a transaction cannot acquire a lock, it needs to wait until the lock is
released. A mutual blocking of two or more transactions results in a deadlock that needs
to be resolved by the DBMS (e.g., by aborting transactions).



A distributed system is one where
the failure of some computer I’ve
never heard of can keep me from
getting my work done.

— Leslie Lamport6
On Distributed Data Management

The discrepancy between the growth of data volume and the growth of computational
power limits the possibilities of vertical scaling (i.e., adding more power to a machine).
This leaves two possibilities for dealing with growing amounts of data: by developing
more efficient algorithms or by horizontally scaling the system to multiple machines—or
a combination of both approaches, which is what we propose in this thesis. While the
data models presented in Chapter 4 introduced the foundations for the first approach, in
this chapter, we introduce the foundations for the second approach.

Horizontal scaling means scaling by adding more nodes (i.e., computers, servers). This
allows to parallelize the processing of workloads. However, distribution also introduces
several new challenges. In the context of this thesis, there are two important topics:
Firstly, the management of resources in such a distributed system. This includes the
selection of distribution models (→ Section 6.1) and the efficient allocation of data to data
stores (→ Section 6.2). Secondly, ensuring the consistency of the data using distributed
transactions (→ Section 6.3) and dealing with data freshness (→ Section 6.4).

A major and also extensively studied problem in the context of distributed database
systems is concurrency control [OV11]. However, due to the architecture of a PolyDBMS,
all queries go through the PolyDBMS, acting as a central instance, allowing concur-
rency control to be handled solely in this central system, even though the queries are
executed—at least partially—in one or multiple of the underlying data stores. As long
as the concurrency control technique applied by the PolyDBMS imposes a strict execu-
tion order for conflicting transactions that all execution engines adhere to, concurrency
control is identical to a non-distributed database system. Since the SS2PL technique intro-
duced in the previous chapter guarantees such an order-preserving schedule, distributed
concurrency control is not discussed further in this chapter.
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Another major topic with distributed systems is the handling of failing nodes or network
connections. The CAP theorem [GL02] introduced by Eric Brewer states, that in such
an event, it is not possible to keep the system available and at the same time maintain
the consistency of the data. The fundamental problem behind this is, that a node in a
network cannot distinguish whether another node has failed or only the network link
between the nodes (called a network partitioning). This is also the case for a PolyDBMS
relying on underlying data stores deployed on different machines. However, due to the
architecture of a PolyDBMS where queries are only accepted by a central instance, there
is no immediate risk of inconsistencies. This would only be the case if other systems
would directly interact with the underlying data stores. Nevertheless, strategies for
handling failing data stores in a PolyDBMS or even having multiple instances of the
PolyDBMS itself would be very interesting aspects. However, this aspect will not be
considered further in the context of this thesis.

6.1 Distribution Models

In this thesis, we distinguish between partitioning and allocation. Partitioning is the
process of dividing a schema object into multiple partitions. These partitions can be
of different sizes. Allocation is the process of assigning partitions to physical storage
nodes. If the same partition is allocated to multiple nodes, this is called replication. This
is depicted in Figure 6.1. A schema object (e.g., a relation) is divided in five logical
partitions. These partitions are allocated to three nodes (i.e., database systems). Except
for the partition P1, all partitions are allocated twice; thus, they are replicated. Partition
P1 is only stored on Node A and is therefore not replicated. However, replication does
not require partitioning a schema object into multiple partitions. It is also possible to
assign the whole schema object to multiple nodes.

It can be distinguished between two fundamental forms of partitioning [OV11]: horizontal
partitioning and vertical partitioning. Both forms of partitioning split the data of a schema
object into multiple parts. However, they differ in how the data is divided and how the
schema of the partitions looks like.

In horizontal partitioning, a schema object is divided along its data. Each partition
therefore consists of the full schema of the schema object (e.g., all attributes of a relation)
but only a subset of the data (e.g., the tuples of a relation). The mapping of data items to
partition can either be specified explicitly (e.g., by lists of values for every partition) or is
done based on a round-robin or hash based approach.
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Figure 6.1 Data partitioning and allocation (based on [Dad96]).

The vertical partitioning splits the schema of a schema object into partitions containing
a subset of the schema (e.g., a subset of the attributes of a relation) and only the data
belonging to this subset of the schema (e.g., the data for these attributes of the relation).
In order to recombine the vertical partitions, there needs to be some redundantly stored
data (e.g., the primary key of a relation) that uniquely identifies the individual data items
of the partitions (e.g., the individual tuples of a relation).

It is also possible to combine vertical and horizontal partitioning. In literature, this
is usually called hybrid partitioning [Dad96]. Furthermore, both forms of partitioning
can be combined with replication [OV11]. In literature, partitioning is oft also called
fragmentation [Dad96].

The allocation problem refers to the issue of finding the optimal distribution of parti-
tions to nodes [OV11]. This heavily depends on the data and the workload. However,
based on the exhaustive analysis on the impact of data replication and data partitioning
on the query performance presented in [NJ00], we can draw some general conclusions.
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The performance of data modification queries is usually negatively affected by data
replication. This makes sense since changes need to be applied to all replicas. With
partitioning, it depends on the workload: if queries only modify individual partitions, it
can have a positive impact on the performance of data modification queries.

Read-only queries typically benefit from data replication. The same applies for parti-
tioning if only one or very few partitions are queried. If several partitions need to be
accessed, this has a negative impact on the performance of the query. In general, it can
be concluded that horizontal partitioning is beneficial for OLTP and disadvantageous for
OLAP workloads.

6.2 Temperature-aware Data Management

The storage device has a major impact on the performance of a database system [OH11].
Traditionally, database systems are built based on a two-layer architecture [Hä05] with
HDDs as persistence storage layer and the main memory as buffer and cache. In recent
years, HDDs have been replaced more and more by solid-state drives (SSDs). While SDDs
provide a higher read/write speed, they are also significantly more expensive. Together
with even faster and more expensive storage technologies like non-volatile random-access

memory (NVRAM) and very slow but also cheap archival storage systems, database
administrators can choose from a wide range of storage technologies—depending on
their budget.

However, there is a problem: as outlined by the data backup service provider BackBlaze
in a blog post [Kle17], the amount of data is growing much faster than the cost of
storage devices is decreasing. As a consequence, even maintaining current performance
is becoming more and more expensive due to the constant growth of data. Temperature-

aware data management is a technique to increase the overall performance, while at the
same time reducing storage costs. It makes use of the fact that in many scenarios, only a
fraction of the data is heavily used.

Research conducted by the database company Teradata has shown that 85% of the I/O
operations use the same 10% of data [Gra12]. While this is of course only an average
that depends on the use case, the data has been gathered from productive systems and
shows a huge potential for optimization.

In the datamanagement community it is common practice to describe the access frequency
of a certain data set by a temperature [GP87]. Data that is currently being accessed very
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frequently is referred to as hot, while data that has not been accessed for a long time is
considered cold. In between, there can be various shades of warm. Temperature-aware
data management refers to the approach of storing hot data on fast (and expensive)
storage, warm data on somewhat slower storage, and cold data on slow but also very
cheap storage.

There are various approaches for calculating the temperature of a data item. The authors
of [LLS13] suggest logging the accesses to a data item and performing an offline analysis
to estimate the access frequency. In [PD11], techniques for identifying hot and cold
data using multiple Bloom filters and in [PDN+12] using sampling-based techniques are
presented. Hot and cold data identification is also a topic of extensive discussion in the
context of flash memory devices. The authors of [HKC06] present an online approach
to hot data identification using multiple hash functions. Their work also includes an
analytical study of the probability of false identifications.

6.3 Distributed Transactions

A distributed transaction is a transaction that involves two or more participants. These
transactions also need to provide the ACID properties outlined in Section 5.3. The correct
completion of distributed transactions is ensured using consensus algorithms. A major
consensus algorithm widely used in the context of distributed database systems is the two-

phase-commit (2PC) protocol. Other well-known consensus algorithms are RAFT [OO14]
and Paxos [Lam98]. In this thesis, we focus on the 2PC algorithm.

The 2PC protocol as described in [WV02] models transactions over multiple database
systems which can be deployed on different nodes of a network. There are two roles in
the 2PC protocol: the coordinator and the participants. The coordinator role is typically
taken by the node where the transaction has been initialized [Lec18]. This coordinator is
responsible for steering the correct execution of the transaction. All database systems
involved in the transaction are called participants. The possible states and transitions of
the coordinator and the participants are depicted in Figure 6.2.

As the name implies, the 2PC protocol consists of two phases: the voting phase and the
commit phase. In the voting phase, the coordinator requests all participants to “prepare”.
If the participants are able to commit, they vote with “yes”. Otherwise, they vote with “no”.
In the commit phase, the coordinator decides based on the votes whether to commit or to
abort the transaction. However, the transaction can only be committed if all participants
have voted with “yes”. The coordinator informs the participants about its decision. The
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Figure 6.2 Possible states of the coordinator and the participants in the two-phase-
commit protocol (based on [Wan21]).

participants then execute this decision. Since the participants already confirmed in the
previous phase that they are able to commit, it is guaranteed that the commit happens
on all nodes involved in the transactions.

Without such a commit protocol, it could happen that a node is unable to commit a
transaction (e.g., because it violates a constraint). This would lead to inconsistencies
since changes would be committed on some nodes but not all nodes; a violation of the
atomicity requirement of ACID.

6.4 Data Freshness

If data is replicated in a distributed system, it can be distinguished between two forms
of update propagation: eager and lazy. These describe when changes to a data item get
applied to the nodes where a copy of the partition is physically allocated.

In systems where updates get propagated eagerly, all copies are modified immediately.
Subsequent queries can therefore read from any of the nodes and always get the latest
data. However, there are also techniques which defer the propagation to the commit
time instead of applying the change immediately on all nodes [OV11]. In this thesis,
we refer to eager propagation as synchronously applying changes to all nodes. The
main disadvantage of an eager update propagation is the usually higher response time
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of update queries since the query can not complete until all nodes have been updated.
Hence, the update speed is restricted by the slowest node [OV11].

If updates get propagated lazily, changes are not necessarily performed immediately
or even within the context of the transaction. The propagation of updates is done
asynchronously from the original transaction [OV11]. Subsequent queries therefore
might read outdated data. The main advantage of lazy update techniques is the usually
drastically lower response time since only one node needs to be updated for the query to
complete [OV11].

A consequence of systems applying a lazy update propagation strategy is that the dis-
tributed system might store multiple versions of the same data item. Nodes containing
such outdated versions of a data item are said to have a lower data freshness. However,
as outlined in [VSB+10] such slightly outdated data is acceptable for several applications.
The authors argue that this can be exploited by keeping replicas at various levels of
freshness and executing queries accepting this level of freshness on such outdated, not
yet-to-be updated partitions. Such a combination of eager and lazy replication offers a
great trade-off between the efficient usage of available resources and the response time
of update queries.

There is no commonly agreed definition of data freshness. In [NLF99] and [Red96]
it is described as the percentage of unchanged data items. According to [CGM00], the
freshness of an object >8 at a time C can be expressed as:

� (>8, C) :=

1 if >8 is up-to-date at time C

0 otherwise
(6.1)

The average freshness of a schema object B (e.g., a table or a collection) at a time C is given
by:

� (B, C) := 1

#

#∑
8=1

� (>8, C) (6.2)

The authors of [CGM00] also introduce the notion of age, capturing the average time
since the outdated objects have been updated the last time. The age of a object >8 at time C
is given as:

�(>8, C) :=

0 if >8 is up-to-date at time C

(C −modification time of >8) otherwise
(6.3)

With this, the average age of a schema object B at a time C is given by:

�(B, C) := 1

#

#∑
8=1

�(>8, C) (6.4)
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Another metric for measuring freshness is the number of updates a data item or schema
object is behind the latest version. By [BP04], this is called obsolescence metric. The
authors also introduce a timeliness metric, that takes the update frequency of the schema
object into account. Instead of calculating the actual “outdatedness”, it is estimated based
on the time elapsed since the last update of the node in relation to the update frequency
of the schema object.
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Preface to Part III:
Dare to Try Something New

In the first part of this thesis, we have motivated the need for a new kind of database
system that is capable of efficiently handling heterogeneous data and workloads. More-
over, we concluded that a hybrid architecture combining the advantages of a monolithic
“one-size-fits-all” system and a middleware system is the most viable option. Based on
this architecture, we have identified three areas where additional research is required:

– Schema Model. Combining different data models in one logical schema that
preserves the semantics of the individual models while at the same time enabling
cross-model queries.

– Query Representation. Representing queries based on different data models in a
way that preserves the features and characteristics of the data models and enables
cross-model queries.

– Query Routing. Adaptively planning the decomposition of queries and their
assignment to execution engines to exploit the benefits of the heterogeneous
execution and storage engines.

In this part of the thesis, we present our conceptual contributions to these three areas of
research. The presented conceptual models and approaches build upon the foundations
introduced in Part II and are independent of a specific implementation.

Besides the conceptual contributions, we also introduce Polypheny-DB, a fully func-
tional implementation of a PolyDBMS and the concepts introduced in this thesis. We
present the system’s architecture and provide an overview on the available interfaces,
languages and adapters.

In more detail, this part is structured as follows: In Chapter 7, we discuss the hybrid
architecture model and motivate the selection of data models we are going to use to
exemplify the concepts. The Chapters 8, 9, and 10 present our conceptual contributions
to the aforementioned areas of research. In Chapter 11, we introduce Polypheny-DB.





We keep moving forward, opening
new doors, and doing new things,
because we are curious and curiosity
keeps leading us down new paths.

— Walt Disney7
Anatomy of a PolyDBMS

Dealing with the demand for a tight integration of heterogeneous data that is structured
according to different data models, and querying this data using different query languages
and mixed transactional and analytical workloads, requires a new kind of database
management system. In Chapter 3, we have concluded the demand for a new kind of
database management system that we have called PolyDBMS. The idea of this novel
approach is to combine the advantages of HTAP systems, polystores, and multimodel
databases in one system. This new class of system needs to be a full-fledged database
management system and, at the same time, meet the requirements outlined in Section 3.1.

Also, from an architectural point of view, our approach rethinks traditional approaches.
Instead of building a monolithic system or following the idea of a federated database
system and building a middleware (similar to most polystore systems), we opt for a
combination of both approaches. As depicted in Figure 7.1, a PolyDBMS accepts queries
expressed in different query languages and based on different data models. According to
the idea of a federated database system, underlying database systems can be utilized to
execute the queries. However, there is also an execution engine integrated within the
PolyDBMS that allows the processing of queries similar to a monolithic database system.

The idea of having something like an execution engine in a polystore-like system is
not new. However, what is new is the scope of this engine. Existing approaches follow
the idea of federated database systems as a means to replace data warehouses. Their
execution engine is used to combine results from different underlying database systems.
In a PolyDBMS, the task of the execution engine goes far beyond merging results: it is
an engine comparable with that of a monolithic system, able to handle all data models,
operators and functions supported by the PolyDBMS.
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Figure 7.1 Data models in a PolyDBMS. Queries expressed using different input query
languages (IQL) and based on different data models are accepted by the
PolyDBMS. Every IQL can access the whole logical schema. The data is
stored on data stores based on different data models. These data stores and
the integrated execution engine are used to process queries.

Another key difference to existing approaches is the role of this new class of system.
Polystore systems are pursuing the idea of replacing data warehouses and enabling
analytical queries across heterogeneous data stores (cf. Stonebraker [Sto15]). This does
not require support for data modification queries. The transactional workloads of the
applications are executed directly on the database systems by the applications. In contrast,
a PolyDBMS handles all types of workloads and is used by all applications to retrieve
and manipulate data. For the applications, the PolyDBMS appears and behaves like
a monolithic database system, hiding the underlying database systems. While these
underlying database systems might be deployed on different physical machines, they are
expected to be under the exclusive control of the PolyDBMS. In what follows, we will
refer to this underlying database systems as data stores.

By combining the advantages of heterogeneous data stores and utilizing them as execution
engines, the PolyDBMS is able to efficiently handle heterogeneous workloads. An integral
part of this architecture is the ability to replicate and partition data across these data
stores. This enables the system to be optimized according to the current workload.
However, distributing the data across multiple data stores requires maintaining a logical
schema on the PolyDBMS. Furthermore, this schema needs to track the location of
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partitions and enable a consistent mapping to the schemas of the data stores. Due to this
architecture, the PolyDBMS also needs to take care of other aspects like concurrency
control, transactions, and the enforcement of constraints.

According to the Requirement 3.4 for a PolyDBMS, support for cross-model queries
is necessary. Due to the architecture, this encompasses the handling of the potential
heterogeneity of the logical schema and the heterogeneity of the underlying data stores.
A query based on one data model can therefore join data logically governed according to
other data models, while the data is physically distributed across data stores based on yet
other data models. As outlined in Section 3.3, this requires a conceptual model for main-
taining such a schema, including defined mappings between data models. Furthermore,
a conceptual model for representing these heterogeneous queries is required.

Both the schema model and the model for representing queries depend on the supported
set of data models. Since it is not feasible to define these conceptual models for every
conceivable data model, we must limit ourselves to a selection on the basis of which we
introduce and exemplify the concepts. For this, we have identified three key characteris-
tics of a data model that are important for defining the schema and query representation
model:

Flexibility. The ability of the data model to deal with unstructured data; thus the lack
of a strict schema. The lack of a schema is more difficult to handle than a strict schema.
Consistently and reproducibly mapping schema-less data to different data models for
storage and cross model queries can be challenging.

Relationships. Expressing relationships and incorporating the explicit or implicit ability
to join or combine data. Furthermore, the amount of information that can be encoded
within these relationships.

Partitioning. The inherent possibilities to partition data governed by this data model.
This indirectly assesses the ability of the data model to deal with unconnected data.
Further, it assesses the data models ability to combine independent data using explicit
operations.

Figure 7.2 depicts these characteristics as dimensions and positions well-known data
models according to these characteristics. The distance to the axis thereby approximates
the sophistication of this data model in terms of this characteristic. As it can be seen
in the figure, there are three data models that are most distinct: the document model,
relational model, and the labeled property graph model. In the figure, these three models
are depicted with a blue dot.
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Figure 7.2 Different data models positioned according to their inherent ability to
represent unstructured data (flexibility), connections between data (rela-
tionships), and independent data (partitioning).

The figure shows two important aspects: Firstly, which data model is the most sophisti-
cated in terms of a specific characteristic. As it turns out, the document model has the
greatest ability to represent unstructured data, the LPG model is the most sophisticated
model for representing relationships, and in terms of partitioning the data, the relational
model offers the most options.

The second and maybe even more important aspect revealed by the figure is the lack
of a certain ability. Hence, for which data models it is most difficult to represent this
characteristic and provide a certain ability. As it can be seen in the figure, the three data
models marked in blue also stand out in this regard: while one of the data models always
stands out for both mapped characteristics as sophisticated in combining these aspects,
the other two data models are placed on the orthogonal axes (thus only being supported
in terms of one of the depicted characteristics).

By introducing the schema model (Chapter 8) and query representation model (Chap-
ter 9) for the relational, document, and LPG model, we make sure to cover the three
cornerstones. Other common data models should therefore be integrable as well.



All parts should go together without
forcing. You must remember that
the parts you are reassembling were
disassembled by you. Therefore, if
you can’t get them together again,
there must be a reason. By all
means, do not use a hammer.

— IBM Manual (1925)
8
Schema Model

The schema of a database system is the blueprint of how the data is structured in the
database (see Chapter 4). The level of detail and the available building blocks for defining
a schema depends on the data model. Since the schema is usually defined by a database
administrator depending on the specific use case and might also be subject to change
over time, a database system provides the means for defining and altering schemas at
runtime. In this chapter, a conceptual model for expressing and managing schemas in a
PolyDBMS is presented.

In Chapter 4 three data models have been introduced. These data models are funda-
mentally different in terms of the semantic building blocks provided to define schemas
and, more importantly, in terms of the intrinsic role of such a schema. The relational
data model enforces and requires a strictly defined schema. The document model is the
opposite, enforcing and requiring no schema at all. In the LPG model, the schema is an
optional constraint that can be applied to the data. Since a PolyDBMS needs to support
multiple data models (see Section 3.1.1), a conceptual model for building schemas based
on different data models is required (see Section 3.1.4).

The schema model being presented in this chapter is based on the three data models
introduced in Chapter 4. However, as elaborated in Chapter 7, the relational, document,
and LPG model are not only very popular and widely used database data models, but
they are also conceptually very distinct. With the conceptual model in this chapter
exemplified for these three data models, other popular data models like the wide-column,
key-value, RDF, or object-relational model can be accommodated accordingly.

In this chapter, we use a semi-mathematical notation. This allows a concrete and formal
discussion of the concepts while still maintaining a high degree of abstraction from an
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Figure 8.1 Overview of the schema model introduced in this thesis. There are four
kinds of schemas and four mappings between and within these individual
layers of the schema model.

actual implementation. A strict definition of the data models has already been introduced
in Chapter 4.

8.1 Overview

The schema model introduced in this thesis goes beyond describing an approach for
representing multimodel schemas; it defines a multi-layer concept distinguishing between
different kinds of schemas with multiple data models at each layer. Furthermore, it defines
the mappings between these different kinds of schemas. Figure 8.1 gives an overview
on our schema model for PolyDBMS systems. It is distinguished between four kinds of
schemas (i.e., layers):

Logical Schema. The central schema of the PolyDBMS accommodating different data
models. A cornerstone of this concept are the namespaces. Every namespace has a specific
data model. The building blocks (thus the semantic concepts like tables, collections, nodes,
etc.) that can be defined within a namespace correspond to this data model. Additionally,
a namespace can also contain views. These views can access entities from the same or
other namespaces. If the query defining the view accesses entities from a namespace with
a different data model, these entities are mapped to the data model of the namespace in
which the view is located. The virtual entity defined by a view always corresponds to the
semantic concepts of the namespace it resides in. Furthermore, the logical schema also
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allows defining constraints on the data. The set of available building blocks for defining
constraints depends on the data model of the namespace.

Allocation Schema. This schema is derived by applying horizontal data partitioning
and converting materialized views into entities with a certain freshness. Partitioned
entities are resolved into multiple entities. This schema also represents schema elements
that are hidden from the user (e.g., internal tuple identifiers).

Physical Schemas. The schemas materialized on the underlying data stores. Our
schema concept is based on a Local-as-View approach. A data store contains a subset of
the schema defined in the allocation layer. As a result of the PolyDBMS Requirement 3.3,
every entity (i.e., table, collection, graph, etc.) can be placed on every data store. If the
data model of an entity does not match the data model of the data store, an appropriate
mapping is performed.

Exposed Schemas. A view on the logical schema that provides access to all data entities
defined in the logical schema. Namespaces with a different data model than the one of the
query interface are mapped accordingly. The data model depends on the query language.
The schema exposed on a SQL interface, for instance, represents everything as relational
tables while for example on a Cypher interface all entities are represented as nodes and
edges. Depending on the query language, the schema might expose a hierarchical naming
structure to separate entities from different namespaces.

This layered architecture of multiple schemas does not only allow fulfilling the PolyDBMS
requirements, it also comes with several advantages: The separation between the logical
schema and the schema exposed to the clients allows a virtual mapping between data
models, enabling access to data that is structured according to a schema based on a data
model different from that of the query language. Furthermore, it also enables cross-model
queries. The exposed schema can be represented according to the requirements and
standards of each query language individually. At the same time, the logical schema
serves as the reference schema providing the full capabilities and semantics of the data
model. The concept of namespaces allows accommodating different data models beneath
a single schema.

The option to define views accessing entities defined in namespaces with different data
models adds a second approach for modeling cross-model queries. A view is a schema
object that represents the result of an arbitrary, read-only query expressed in any of
the query languages supported by the PolyDBMS. Our schema model thus provides two
approaches for mapping data between data models: Firstly, there is a defined mapping
for queries accessing schema objects of a namespace with a different data model and
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secondly, there is the view based mapping. The difference between these two approaches
is, that the first approach maps the schema to the data model of the query language and
then applies the query, while the view-based approach does the mapping on the result
represented by the view (if the query defining the view is based on a data model different
to that of the namespace). However, the schema mapping strategy itself is the same in
both cases. In what follows, we refer to this mapping strategy as virtual mapping.

The virtual mapping enables querying other data models by expressing their semantic
concepts using the building blocks provided by the accessing data model. The mapping
is done within the context of a query and is designed to represent semantic concepts
across data models. The physical mapping in contrast is applied to entire data entities.
It is optimized for an efficient storage and processing of the data stored on data stores
based on different data models.

The query defining a view can also perform cross-model queries accessing different
namespaces and might also access other views. Querying a view can therefore require
multiple mappings to be performed within a single query. Our schema model therefore
also provides the notion of materialized views. This allows to materialize the result of
such a view. Since the allocation model treats materialized views similar as other schema
objects, they can be physically stored on an arbitrary set of data stores.

The layered architecture of the schema model introduced in this chapter enables arbitrary
combinations of query languages, logical schemas and physical data stores. For example,
a query expressed in SQL can join multiple document collections that are physically
stored on a data store based on the graph data model. Due to the allocation schema,
this data can also be partitioned across multiple heterogeneous data stores. At the same
time, the schema model introduced in this chapter ensures that the semantics of the
individual data model are fully preserved. Furthermore, the schema model also achieves
a full abstraction of the exposed schema from the physical schema. The schema against
which a query is specified by the user is therefore completely decoupled from the physical
structure in which the data is stored, possibly across multiple heterogeneous data stores.

The discussion of the schema model introduced in this chapter is structured in four
sections: The first section formally introduces the building blocks of the logical schema

and its properties. In the second section, we define the virtual mapping strategy used to
derive the exposed schema and for enabling cross-model views within the logical schema.
In the third section, we introduce the physical mapping strategy required for mapping
schemas to underlying data stores with a different data model. The fourth section then
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formally introduces the data allocation concept that enables the flexibility to partition
and replicate data across heterogeneous data stores.

8.2 Logical Schema

The logical schema is the central schema of the PolyDBMS. It maintains the schema
defined by the user and specifies the structure according to which the data is being
organized. All other schemas are derived from this schema through mappings and
transformations. Since a PolyDBMS supports multiple data models, an approach is
required for accommodating schema definitions based on different data models in one
logical schema. We achieve this using the concept of namespaces.

The logical schema S of a PolyDBMS is a set consisting of a finite number (B ∈ N) of
namespaces N :

S := {N1, ...,NB} (8.1)

Every namespace N has a unique name and is of a specific data model M with M :=

{REL,DOC,LPG}. The symbolNREL, for example, denotes a namespace of type relational.

8.2.1 Relational Model

A namespace of the model relational NREL consists of a finite set of tables and a finite
set of views. Tables and views have names which are unique within this namespace. A
relational namespace NREL is defined as a triple:

NREL :=
(
name, {T1, ...,T=}, {VREL

1 , ...,VREL
< }

)
with =,< ∈ N (8.2)

A table T corresponds to a relation in the relational model introduced in Section 4.1.
However, in contrast to the set-semantic of relations which allows no duplicate tuples,
we define tables as a bag of tuples. We furthermore refer to the tuples as records. A table
is defined over an ordered, non-empty list of columns (C$!1, ...,C$!8) and a finite set of
constraints {C()'1, ...,C()'9 }. A table T can be described as a triple:

T :=
(
name, (C$!1, ...,C$!8), {C()'1, ...,C()'9 }

)
with 8, 9 ∈ N, 8 > 0 (8.3)

A column corresponds to an attribute in the relational model. Every column C$! has a
unique name within the table, a data type, a set of data type properties, and a nullability
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information. The data type corresponds to the data domain; however, in contrast to the
formal relational model, composite data types allowing non-atomic values are possible
as well.

C$! :=
(
name, type, properties, nullable

)
(8.4)

A constraint C()' has a name that is unique within the namespace and is of a specific
type. Types are primary, foreign and unique. A primary key constraint C()'PK specifies
a set of columns of the table whose values uniquely identify each record in the table. The
set of columns is represented by a key.

K�. :=
{
C$!1, ...,C$!:

}
with : ∈ N, : ≤ 8

C()'PK :=
(
name, K�.

) (8.5)

The uniqueness criterion imposed by this constraint is enforced by the PolyDBMS. The
columns building the primary key must not be nullable (i.e., are not allowed to contain
null values). Furthermore, there can only be one C()'PK per table. To enforce uniqueness
on another set of columns, uniqueness constraints can be defined. There can be multiple
uniqueness constraints C()'UNIQUE for a table. In contrast to primary constraints, the
key on which the unique constraint is defined may consist of columns allowing null
values.

C()'UNIQUE :=
(
name, K�.

)
(8.6)

Foreign key constraints express a relationship between two tables of a relational names-
pace. A foreign key C()'FK is defined by a local key and a remote key. The local key
specifies a set of columns in the table for which the constraint is defined. The remote key
specifies a key in the same or another table. There needs to be a unique or primary key
constraint for the remote key but not on the local key.

C()'FK :=
(
name, K�. LOCAL, K�. REMOTE

)
with K�. LOCAL ≠ K�. REMOTE (8.7)

In the relational model, a view VREL is modeled as a special kind of table, representing
the result of a query. Similar to a table, it has a non-empty list of columns. However,
there are no constraints.

VREL :=
(
name, query, (C$!1, ...,C$!6)

)
with 6 ∈ N (8.8)

8.2.2 Document Model

A namespace of the type document NDOC contains a set of collections and views. Both
the collection C and the view VDOC have a unique name within the namespace.

NDOC :=
(
name, {C1, ..., C8}, {VDOC

1 , ...,VDOC
:

}
)

with 8, : ∈ N (8.9)
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According to the definition introduced in Section 4.2, the document model does not
impose any schema, except that every document needs to have an _id field. A field
thereby refers to an edge in the model defined in Section 4.2. However, we extend this
and introduce the concept of defined fields. This allows to define additional fields besides
the _id that need to be present on every document. Furthermore, the fields also serve
a second purpose: they allow for a vertical partitioning of collections (see Section 8.5).
With label being a name, required being a Boolean specifying whether the field is
required on every document, type being a data type, and properties a set of data
type properties, a collection is defined as:

� := (label, required)
�T :=

(
label, type, properties, nullable, required

)
C :=

(
name, {�1, ..., �=}, {�T

1 , ..., �
T
<}

)
with =,< ∈ N

(8.10)

The set of typed fields at least contains an entry for the _id field. A viewVDOC represents
the result of an arbitrary query. It is similar to a collection; however, instead of a list of
fields, there is an arbitrary read-only query.

VDOC := (name, query) (8.11)

8.2.3 Labeled Property Graph Model

In contrast to our definition of a relational namespace or a document namespace, the
LPG namespace does not consist of entity structures like tables or collections. Instead,
the namespace itself represents one graph. Every node and every edge of this graph have
a unique identifier. This identifier is randomly generated by the PolyDBMS system.

As outlined in Section 4.3, the LPG model can be described as schema-optional. This
means, there can be a schema, but it is not mandatory. A schema can be enforced using a
special graph. With G being such a graph defining a graph schema, a namespace NLPG

is defined as:

NLPG :=
(
name, G, {VLPG

1 , ...,VLPG
:

}
)

with : ∈ N (8.12)

With ℓ being labels and ? := (key, type, type_properties) being a tupel of a
property key and a data type specifications, the graph schema G is defined as:

% := {?1, ..., ?8} with 8 ∈ N
6 :=

(
ℓfrom, ℓto, ℓedge, %from, %to, %edge

)
G := {61, ..., 6<} with< ∈ N

(8.13)
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It specifies that every edge connecting a node with the label ℓfrom to a node with the label
ℓto, can have the label ℓedge. Further, it specifies that in this case the node with the label
ℓfrom must have the set of properties specified by the set %from, the node with the label ℓto
must have the set of properties specified by the set %to and the edge must have the set of
properties specified by the set %edge. There can be multiple entries for the same pair of
labels ℓfrom and ℓto. If there is a graph schema for a namespace, the graph must adhere to
this schema.

Similar to the relational and document namespace, a view in the namespace NLPG

represents the result of an arbitrary query. A view VLPG is defined as:

VLPG := (name, query) (8.14)

8.3 Virtual Mapping

An important part of the PolyDBMS concept is the ability to access data represented
in different data models using any of the supported query languages. This requires a
mapping between schemas based on different data models. In this section, we define
the mappings between the relational, document, and LPG data models. The introduced
mappings are designed so that they can be done on-the-fly and potentially be implemented
using operators of the data model to be mapped.

Since the data model is defined by the namespace, an approach for accessing other
namespaces is required. As it is already common in several query languages like SQL
or the MongoDB query language, the hierarchy can for instance be expressed as a path
using a language-specific separation character.

The arrows in the headings of the following sections indicate the direction in which
the schema is being mapped. The section “Relational → Document” for example, spec-
ifies the strategy for mapping a relational schema to a document schema. This is for
instance required when accessing a relational schema with a query language based on
the document data model.

In the formal definitions of the schema mappings presented in this and the next section,
we use c8 (·) to reference the 8-th element of a tuple (with 8 = 1 being the first element
of the tuple). For simplicity reasons and in order to keep the definitions concise, the
formal definitions do not consider views. However, if not specified otherwise, the schema
mappings can be applied identically to views.
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8.3.1 Relational → Document

Themapping of a relational schema to a document schema is trivial: a table is represented
as a collection. Every record of the table is represented as a document containing a field
for each column of the table. The optional constraints of a relational table are not mapped,
since they are enforced using the native form. More formally:

NREL ↦→ NDOC(
name, {T1, ...,T=}, {...}

)
↦→

(
c1

(
NREL), 1 , {}

)
1 :=

{(
c1(T ), {}, dtf(T )

) ��� T ∈ c2
(
NREL)} (8.15)

The dtf(·) function that maps a relational table to a set of typed fields in the document
model is defined as:

dtf(T ) :=
{(
c1(C$!), c2(C$!), c3(C$!), c4(C$!), true

) ��� C$! ∈ c2(T )
}

(8.16)

8.3.2 Relational → LPG

From the perspective of the LPG model, the tables of the relational model are viewed
as labels. For every record of the table, a node is created having the name of the table
as a label. Columns of the table are represented as properties of that node. The edges
between the nodes are constructed based on the existing foreign key constraints. The
name of the foreign key constraint is used as label for the edge. The edge points from
the table referenced by K�. LOCAL to the table referenced by K�. REMOTE.

NREL ↦→ NLPG(
name, {T1, ...,T=}, {...}

)
↦→

(
c1

(
NREL), gs(

NREL), {}) (8.17)

The set of node labels encompasses all table names{
c1() )

��� T ∈ c2
(
NREL)} (8.18)

while the set of edge labels consists of the names of all foreign key constraints{
c1

(
C()'FK

) ��� T ∈ c2
(
NREL) ∧ C()'FK ∈ c3

(
T

)}
. (8.19)

With tab(·) returning the table T referenced by a key K�. , we can define the graph
schema function gs(·). This function takes a relational namespace NREL and returns a
graph schema G.
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gs
(
NREL) := {(

1 , 2 , 3 , 4 , 5 , {}
) ��� T ∈ c2

(
NREL) ∧ C()'FK ∈ c3

(
T

)}
1 := c1

(
tab

(
c2(C()'FK)

) )
2 := c1

(
tab

(
c3(C()'FK)

) )
3 := c1

(
C()'FK

)
4 :=

{(
c1(C$!), c2(C$!), c3(C$!)

) ��� C$! ∈ c2
(
tab

(
c2(C()'FK)

) )}
5 :=

{(
c1(C$!), c2(C$!), c3(C$!)

) ��� C$! ∈ c2
(
tab

(
c3(C()'FK)

) )}
(8.20)

This approach does not result in a graph that uses the full potential of the graph model
since, for example, join tables required for modeling m-to-n relationships are not resolved
and foreign key columns are not filtered from the list of properties. However, this
transformation can be done within the query and does not require any artificial names
to be generated.

8.3.3 Document → Relational

For this mapping, we use the previously introduced notion of defined fields. A collection is
mapped to a table with the defined fields as columns. Furthermore, there is an additional
column named _data containing all other fields and nested structures represented as
JSON. Since it can be specified whether a defined field is required on every document,
the table may contain null values for those columns where the required flag is not set.
For typed fields, the specified data type is being used. For non-typed fields, the special
data type JSON is being used. This type represents nested data as JSON.

NDOC ↦→ NREL(
name, {C1, ..., C8}, {...}

)
↦→

(
c1

(
NDOC), tab(

NDOC), {}) (8.21)

The function tab(·), mapping a document namespace NDOC to a set of relational tables{
T1, ...,T8

}
is defined as:

tab
(
NDOC) := {(

c1(C), col(C), {}
) ��� C ∈ c2

(
NDOC)} (8.22)

The mapping function col(·) is defined as follows:

col(C) := 1 ∪ 2 ∪
{(
_data, JSON, {}, true

)}
1 :=

{(
c1(� ), JSON, {}, ¬

(
c2(� )

) ) ��� � ∈ c2(C)
}

2 :=
{(
c1

(
�T), c2 (�T), c3 (�T), c4 (�T) ∨ ¬

(
c5(�T)

) ) ��� �T ∈ c3(C)
} (8.23)
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In case the mapping is done on the result of a relational view, the list of columns defined
for every relational view is used as a projection list, reducing the result to a defined list
of columns. Since the relational model is strictly typed, the values are converted into the
type specified by the list of columns in the definition of the view. If a value cannot be
converted to the specified data type, null is being used.

8.3.4 Document → LPG

Document schemas are mapped to LPG schemas by considering a document as a node.
All fields of the document containing atomic values (no subdocuments) are represented
as properties of the node. Subdocuments are represented as individual nodes without a
label. The subdocument is linked by the parent document using an edge having the name
of the corresponding field as label. Arrays are represented similarly, using the index as
label. Substructures are treated accordingly, resulting in a tree structure that mimics the
tree structures of a document. From the graph perspective, a document namespace is
accessed using the name of a collection as a label.

NDOC ↦→ NLPG(
name, {C1, ..., C8}, {...}

)
↦→

(
c1

(
NDOC), null, {}) (8.24)

The set of node labels contains the names of all collections in the namespace:{
c1(C)

��� C ∈ c2
(
NDOC)} (8.25)

The set of edge labels contains the names of all non-atomic typed and untyped fields of
all collections in the namespace:{

c1(� ∗)
��� � ∗ ∈ (

c2(C) ∪ c3(C)
)
∧ C ∈ c2

(
NDOC)} (8.26)

8.3.5 LPG → Relational

In the relational context, an LPG namespace is accessed using a specific label of the
graph as table name (e.g., SELECT * FROM mygraph.employee, with mygraph
being the name of the namespace and employee the label). All nodes with this label
are represented as records of this table. The table has three columns: An id column
containing the unique id of the node, a properties column containing a map with the
property key and value pairs and a labels column containing a list of all labels of this
node.



88 Schema Model

NLPG ↦→ NREL(
name, G, {...}

)
↦→

(
c1

(
NLPG), ntab(

NLPG) ∪ etab(
NLPG), {}) (8.27)

Since the mapping of the schema optional LPG graph to the relational schema does not
depend on the optional graph schema but on the labels present in the graph at the time
of mapping, we define a function labelsOf(·) that returns the set of node labels of a
graph namespace. With this function, we can define the function ntab(·) that maps an
LPG namespace NLPG to a set of relational tables

{
T1, ...,T9

}
:

ntab
(
NLPG) := {(

G, NCOL, {}
) �� G ∈ labelsOf

(
NLPG)} (8.28)

NCOL is identical for all node mappings:

NCOL :=
( (
id, STRING, {...}, false

)
,(

properties, STRING MAP, {...}, false
)
,(

labels, STRING LIST, {...}, false
) ) (8.29)

Edges are also represented using tables, mimicking a join table. However, they are
not accessed directly by their label but mapped based on the nodes they connect, by
using two node labels separated by an “->” as table name (e.g., SELECT * FROM

mygraph.employee->department). This table contains all edges from nodes with
the label “employee” to nodes with the label “department”. The table contains a record for
every edge between those two nodes in this direction. The table has four columns: The
first column has the name of the outgoing node label (in our example this is “employee”)
and contains the unique ID of this node. The second column has the name of the target
node label (“department” in our example) and contains the unique ID of the target node.
The third column has the name “label” and contains the label of the edge, and the fourth
column contains a map with key-value pairs of the properties of the edge.

More formally, the set of edge tables is obtained by considering all permutations of two
node labels. Since there can also be edges referencing the same node, the G = ~ case is
deliberately included. The function maps an LPG namespace NLPG to a set of relational
tables

{
T1, ...,T9

}
.

etab
(
NLPG) := {(

G->~, ECOL, {}
) �� G,~ ∈ labelsOf

(
NLPG)} (8.30)
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Figure 8.2 An LPG graph is logically mapped to a document by the label “person” (e.g.,
using the following MQL query: db.person.find()). For the depicted
graph and query, the result would consist of four documents. In the figure,
two of these documents are depicted as trees.

The set of columns of an edge table is defined as:

ECOL :=
( (
src, STRING, {...}, false

)
,(

tgt, STRING, {...}, false
)
,(

properties, STRING MAP, {...}, false
)
,(

labels, STRING LIST, {...}, false
) ) (8.31)

8.3.6 LPG → Document

From the document perspective, an LPG namespace is accessed using a specific label.
This label is considered as collection with each node with this label represented as a
document. All parts of the graph reachable from this node are added to the document as
arbitrarily deeply nested structures. The label and properties of an edge are represented
as a nested structure with the linked node. If an LPG node has a property with the same
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name as an outgoing edge, or if there are multiple outgoing edges with the same label,
arrays are being used.

Since LPGs may contain cyclic structures that cannot be represented in a tree, such cycles
must be handled and labeled accordingly. This handling is done individually for every
branch of the tree. If a node of the LPG graph has already been mapped as a parent node
in the tree, a special marker field is inserted. This field contains the linked node and the
properties of the edge. Self-references are handled similarly using a special field in the
respective (sub)document. Figure 8.2 exemplifies this mapping.

More formally, the resulting schema of this mapping can be defined as follows:

NLPG ↦→ NDOC(
name, G, {...}

)
↦→

(
c1

(
NLPG), dcol(

NLPG), {}) (8.32)

Since we are mapping schemas that are both schema optional, the no complex schema is
required. Thedcol(·) function thus only returns a set of document collections containing
one collection for each node label in the graph. These collections only enforce an _id
field:

dcol
(
NLPG) := {(

G, {}, { 1 }
) ��� G ∈ labelsOf

(
NLPG)}

1 :=
(
_id, UNIQUE ID, {}, false, true

) (8.33)

8.4 Physical Mapping

The physical schema is the schema maintained on the underlying data stores. Due to the
PolyDBMS Requirement 3.3, a model is required for mapping logical schemas of different
data models to a physical schema for storing and processing the data. The physical
schemas are hidden from the user (a consequence of Requirement 3.4). The mapping to
a physical data store is different from the virtual mapping between the logical schema
models introduced in Section 8.3. While the virtual mapping maps a namespace and
makes its semantic concepts available using building blocks of a different data model, the
physical mapping maps individual entities to the data model of an underlying data store.
It is thus optimized for efficiently storing and processing data and avoids redundancies.
Since even the capabilities of data stores based on the same data model vary significantly,
the mappings introduced in this section should be seen as a vanilla approach. The actual
mapping strategy should be adjusted further for every supported data store to fully
exploits its capabilities.
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In the following sections, we define strategies for mapping logical schemas based on
a data model different from the native data model of the data store. The arrows in the
headings of the following sections indicate the direction of the mapping. In the section
“Relational→ Document” for instance, it is outlined how a relational schema is physically
stored in a database based on the document data model.

8.4.1 Relational → Document

Storing relational tables in a document database is straightforward. Every table is mapped
to a collection on the document database. Every record of the table is represented as a
document, storing the values for the columns of the table as fields of the document. The
primary key of the table is used as value for the _id field.

T ↦→ C(
name, (C$!1, ...,C$!8), {...}

)
↦→

(
c1(T ), {}, 1

)
1 :=

{(
c1(C$!), c2(C$!), c3(C$!), c4(C$!), true

) ��� C$! ∈ c2(T )
} (8.34)

8.4.2 Relational → LPG

For storing relational tables in an LPG database, the table names are used as labels. Every
record of a table is represented as a node with this label. The columns are represented as
properties using the column name as the property key. Such graphs do not contain any
edges.

T ↦→ NLPG(
name, (C$!1, ...,C$!8), {...}

)
↦→

(
c1

(
T

)
, null, {}

) (8.35)

The set of node labels consists of the table name:
{
c1(T )

}
8.4.3 Document → Relational

A document schema is mapped to a relational data store by mapping a collection to a
table. The table has at least two columns: An _id column storing the value of the primary
key and a _data column containing the values for all fields and eventual nested structures
encoded as JSON. If there are defined fields for the logical collection to be mapped, these
fields are mapped to individual columns. Every document of the collection is stored as a
record of the table. Since it can be specified whether a defined field is required on every
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document, the table may contain null values for those columns where the required flag
is not set.

C ↦→ T(
name, {�1, ..., �=}, {�T

1 , ..., �
T
<}

)
↦→

(
c1(C), 1 ∪ 2 ∪ 3 ∪ 4 , {}

) (8.36)

1 :=
{(
_id, UNIQUE ID, {}, true

)}
2 :=

{(
_data, JSON, {}, true

)}
3 :=

{(
c1(� ), JSON, {}, ¬

(
c2(� )

) ) ��� � ∈ c2(C)
}

4 :=
{(
c1

(
�T), c2 (�T), c3 (�T), c4 (�T) ∨ ¬

(
c5(�T)

) ) ��� �T ∈ c3(C)
}

8.4.4 Document → LPG

Document schemas are physically mapped to LPG-based data stores similar to the virtual
mapping outlined in Section 8.3.4, mimicking the tree structure of a document using
nodes and edges. This approach enables push down of operations, significantly reducing
the amount of data that needs to be streamed and processed by the PolyDBMS.

C ↦→ NLPG(
name, {�1, ..., �=}, {�T

1 , ..., �
T
<}

)
↦→

(
c1

(
C
)
, null, {}

) (8.37)

The set of node labels contains only the name of the collection to be mapped:{
c1(C)

}
(8.38)

The set of edge labels contains the names of all non-atomic typed and untyped fields of
the collection: {

c1(� ∗)
��� � ∗ ∈ (

c2(C) ∪ c3(C)
)}

(8.39)

8.4.5 LPG → Relational

LPG graphs are stored in a relational database using four tables: node, edge, nodeProperty,
and edgeProperty. The node table has two columns: one for storing the unique ID of
a node and one for storing a label. Since a node can have multiple labels, there can be
multiple entries for an LPG node in this node table. Similarly, the edge table stores all
edges. It has four columns: the unique ID of the edge, the label of the edge, the unique
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ID of the source node, and the unique ID of the target node. Since an edge in the LPG
model can only have one label, there is only one entry per edge.

The two property tables store the properties of the edges and the nodes, respectively. Both
tables have the same set of columns: a column for the unique ID of the corresponding
node or edge, a column for the property key, and a column for the property value. There
is an entry for each property of every node or edge.

While this approach requires joining the tables, it does not require any serialization or
deserialization. This allows to push down parts of the query. Furthermore, the ability to
filter for certain labels or properties massively reduces the amount of data that needs to
be streamed to the PolyDBMS and handled in its integrated engine.

NLPG ↦→
{
T1, ...,T4

}(
name, G, {...}

)
↦→

{
NODE_TAB, EDGE_TAB, NPROP_TAB, EPROP_TAB

}
NODE_TAB :=

(
node,

{
1 , 2

}
, {}

)
EDGE_TAB :=

(
edge,

{
1 , 2 , 3 , 4

}
, {}

)
NPROP_TAB :=

(
edge,

{
1 , 5 , 6

}
, {}

)
EPROP_TAB :=

(
edge,

{
1 , 5 , 6

}
, {}

)
1 :=

(
id, STRING, {...}, false

)
2 :=

(
label, STRING, {...}, false

)
3 :=

(
source, STRING, {...}, false

)
4 :=

(
target, STRING, {...}, false

)
5 :=

(
key, STRING, {...}, false

)
6 :=

(
value, STRING, {...}, true

)

(8.40)

8.4.6 LPG → Document

The mapping of LPG graphs to document databases is similar to the approach used to
map LPG graphs to relational databases outlined above. However, instead of four tables,
the mapping is done using two collections: node and edge. Nodes are represented as
documents using the unique ID of the node as value for the _id field of the document.
The properties of the node are stored as additional fields of the document. The labels of
the node are stored as a list. Edges are represented similarly; however, since edges only
have one label, the label of an edge can be stored using a single field in the document.
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NLPG ↦→
{
C1, C2

}(
name, G, {...}

)
↦→

{
NODE_COLLECTION, EDGE_COLLECTION

}
NODE_COLLECTION :=

(
node, {},

{
1 , 2

})
EDGE_COLLECTION :=

(
edge, {},

{
1 , 3

})
1 :=

(
_id, UNIQUE ID, {}, true

)
2 :=

(
_labels, STRINGLIST, {}, true

)
3 :=

(
_label, STRING, {}, true

)
(8.41)

8.5 Allocation of Data

After we have introduced the logical schema model (Section 8.2) and how logical schemas
are mapped to physical schemas (Section 8.4), this section introduces a model for putting
both together. Instead of simply allocating a namespace to one underlying data store,
our model allows to replicate and partition data across multiple underlying data stores.
Furthermore, it provides the capabilities to adjust the allocation depending on the access
frequency and allows to delay the update on some of the replicas. This enormous flexibility
clearly sets this model apart from existing polystore and multimodel database systems.

8.5.1 Replication and Partitioning

As introduced in Section 6.1, we can distinguish between data replication and data parti-

tioning. For the latter, it can furthermore be distinguished between vertical partitioning

and horizontal partitioning. While these two terms have their origin in the relational data
model, we decided to use them for this schema model as well. Similar to our definition
in Section 6.1, we use horizontal to refer to the partitioning that only affects the data
and keeps the schema identical on all partitions. Vertical partitioning in contrast affects
both the schema and the data. While support for replication or partitioning of data is not
required by the definition of a PolyDBMS introduced in Chapter 3, we consider it crucial
for providing high query performance.

In a PolyDBMS with multiple, heterogeneous underlying data stores, replicating data on
multiple data stores allows optimizing for different kinds of queries. Vertical partitioning
allows to reduce the storage overhead by only storing certain parts of a schema object
(e.g., certain columns of a table) on specific data stores. With horizontal partitioning, it
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is possible to implement load-balancing between multiple data stores or—in combination
with the concept introduced in Section 8.5.3—to optimize the performance for frequently
used data.

Our schema model supports arbitrary combinations of horizontal and vertical data
partitioning and data replication. The only constraint is, that there is the same set of
schema object parts (e.g., columns of a table) for all partitions of an entity (e.g, a table)
assigned to a particular data store.

A data entity is the structure holding the data. In namespaces of the type relational or
document, the data is held by tables (T ) or collections (C). Furthermore, data is also
represented by views (V). If the result represented by a view is physically stored, the
view is called a materialized view. In namespaces of type LPG, the data is held by the
namespace (NLPG) itself. A data entity � is therefore defined as:

� ∈
{
T , C,NLPG,VREL,VDOC,VLPG

}
(8.42)

Every data entity � has a horizontal partition function r . A partition function maps a
value E to a partition % :

r : E ↦→ % (8.43)

In our model, all data entities have a partition function assigned, making all entities par-
titioned. However, this partition function can be the NONE partition function, assigning
all data to one partition. Besides the NONE partition function available for every data
model, the set of partition functions depends on the data model of the namespace. For
relational namespaces, we define a HASH , LIST and RANGE partition function. All three
partition functions are applied on a partition column C$!% ∈ T . The RANGE partition
function needs to be applied to a column with a numerical data type while the LIST

function requires a string or integer type. The HASH partition function can be applied to
an arbitrary data type.

rHASH :
(
T ,�$!%

)
↦→ (%1, ..., %=)

rLIST :
(
T ,�$!% ,

(
{E1, ..., E8}1, ..., {E1, ..., E 9 }=

) )
↦→ (%1, ..., %=)

rRANGE :
(
T ,�$!% ,

(
(Emin, Emax)1, ..., (Emin, Emax)=

) )
↦→ (%1, ..., %=)

(8.44)

Since the list of values and the list of min and max pairs specified for the list and range
partition function do not need to be closed (i.e., there might be values that do not appear
in the sets or intervals), both partition functions define an unbound partition for all those
records. However, the specified mapping must be unambiguous.
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For the document model, a HASH partition function is defined similarly to the relational
model. However, this function always operates on the _id field of the documents. For
LPGs, horizontal partitioning is more complex. Graph partitioning—which is the theory
of reducing a graph into mutually exclusive sets of nodes—is typically considered an
NP-hard problem [OW05]. We, therefore, decided to define the horizontal partitioning of
LPGs based on the node and edge labels. With ℓ being a node or edge label, the partition
function is defined as:

rLABELS :
(
NLPG,

(
{ℓ1, ..., ℓ8}1, ..., {ℓ1, ..., ℓ9 }=

) )
↦→ (%1, ..., %=) (8.45)

The set of node labels must not overlap. If a graph is partitioned, the PolyDBMS does
not allow edges between nodes residing in different partitions. Further, it does not allow
assigning labels belonging to different partitions to the same node. An edge connecting
two nodes must have a label belonging to the set of labels of the corresponding partition.
Hence, the partitioning enforces unconnected subgraphs.

A vertical partition entity � is the substructure of a data entity that is subject to vertical
partitioning. In the relational model, these are the columns (C$!) of a table and in the
document model the typed (�T) and untyped (� ) fields of a document. In the LPG model,
vertical partitioning is done on the properties of a node or edge (?).

� ∈
{
C$!, �, �T, ?

}
(8.46)

With ℓ being a label and %� being a partition of the data entity �, a partition group� of
an entity � is defined as:

�� :=
(
ℓ, {%1� , ..., %

9

�
}
)

(8.47)

A data placement ! describes the mapping of data to underlying data stores. The mapping
of an entity � to a data store � is described by a pair

!�� :=
({
(�1

�, Υ1), ..., (�=�, Υ=)
}
,
{
�1�, ..., �

<
�

})
(8.48)

with Υ ∈ {EAGER, LAZY} describing the update strategy of the data placement (see
Section 8.5.2). With a function � (!) that returns the data entity of a data placement, an
underlying store can be described by a set of data placements:

� := {!1, ..., !=} ∀ !8, ! 9 ∈ � : � (!8) ≠ � (! 9 ) (8.49)

Since the set of partition groups and the set of vertical partition entities are independently
defined for the entire data placement !�

�
, and since there can only be one data placement

for an entity assigned to a specific data store, the constraint that all partitions placed on
a data store must have the same set of vertical partition entities is fulfilled.
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8.5.2 Data Freshness

In Section 6.4, we have introduced the concept of data freshness in the context of dis-
tributed database systems. Depending on the strategy with which updates are propagated
in the distributed system and depending on the distribution protocol, individual sites can
have outdated versions of certain elements. It depends on the use case and often also on
the type of query, whether a certain degree of outdatedness is an issue or not [ASS08].

In the context of a PolyDBMS, this is interesting since it allows to increase the performance
of OLTP workloads by applying data manipulation operations only to a subset of the
stores immediately; on the other data stores, the operations are deferred. The update
strategy Υ ∈ {EAGER, LAZY} is defined individually for every partition group placed on
a data store. EAGER means that DML operations are applied immediately while LAZY

allows data manipulation operations to be executed later, resulting in outdated data.

A read-only query can specify a required level of data freshness. This model defines
data freshness based on the time elapsed since the partition has been refreshed the last
time. If there are no deltas to be applied, the partition is always considered up-to-date.
With CB being the timestamp of the last DML operation applied to the data store, Cnow
being the current timestamp, 3 the accepted outdatedness, and = the number of pending
DML operations, the freshness function is defined as:

freshness(Cstore, Cnow, 3, =) :=

true if = = 0

(Cnow − Cstore) ≤ 3 else
(8.50)

The function returns true iff the freshness requirements of the query can be fulfilled. It
is applied for every partition accessed by the query.

8.5.3 Temperature-aware Data Management

As outlined in Section 6.2, temperature-aware data management refers to the concept
of storing frequently used data in faster (but usually also more expensive) data stores
while old and only rarely accessed data is stored on slower (but also cheaper) storage.
In the context of a PolyDBMS with its heterogeneous data stores, this is even more
interesting. Besides replicating frequently used data to stores running on faster storage
(e.g., in-memory), data can also be replicated to a larger set of heterogeneous data stores.
This allows to optimize frequently used data for a large spectrum of workloads without
huge storage costs.
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The partition group � introduced above allows grouping multiple partitions and allows
assigning them a label. Since themapping of partitions to partition groups can be changed,
temperature-aware data management can easily be implemented in the above model
using two partition groups, one with the label “hot” and one with the label “cold”. A
partition group assignment function p assign a partition % to partition group � :

p : % ↦→
{
�HOT,�COLD}

(8.51)

The assignment is done based on the access frequency and is updated at a certain interval.
To avoid partitions oscillating between hot and cold, a hysteresis is specified. HT is the
hot threshold and CT is the cold threshold. It holds: HT > CT . With 5 (%) being a function
that returns the access frequency of a partition and 6(%) returning the current partition
group of a partition % , the assignment function p is defined as:

p(%) :=


�HOT if 5 (%) > HT

�COLD if 5 (%) < CT

6(%) else

(8.52)

Instead of assigning the hot partition group only to one or multiple high-performance
data stores, it can additionally also be assigned to the data stores holding the cold
partition group. This approach is especially beneficial if there are analytical queries since
it eliminates the need to union the data from the stores holding the hot and the cold data
together. However, this impacts the performance of data modification queries on the
“hot” data since the data also needs to be updated on the slower data store holding all
data.

However, this can be compensated by combining the temperature-aware data manage-
ment with the previously introduced data freshness. Since the update strategy Υ can be
set individually for every partition group assigned to a data placement, the hot partition
group can be allocated with an eager update strategy to the high-performance data stores
and with a lazy update strategy to the cold stores. This results in high performance
for transactional workload including data manipulation queries on the current data
while still being able to execute analytical queries—for which slightly outdated data is
acceptable—on the cold data store. If the latest data is required, the query can always be
executed on a different data store or the queued delta operations can be applied prior to
the query.



Trees sprout up just about
everywhere in computer science.

— Donald E. Knuth9
Query Representation

A PolyDBMS is inherently a multimodel system that must deal with multiple data models
at different stages in the query processing and execution process. According to the
requirements introduced in Section 3.1, a PolyDBMS must accept queries expressed in
query languages based on different data models, internally support multiple data models,
and maintain storage and execution engines based on different data models.

A challenge in such a system is the representation of a query in a form that can be
processed and enables cross-model queries. The combinatorial complexity of multiple
query languages, data models, and data stores requires a single form of representation.
The operators are defined by the data model. Since the approach to represent a query
needs to preserve the semantics of the data model the query language is based on,
mapping every query to a single data model (for instance the relational data model) is
not feasible.

Figure 9.1 depicts the various data models that can be found in a PolyDBMS. According
to Requirement 3.2, every PolyDBMS needs to support multiple query languages. In the
figure, these are depicted as Input Query Language (IQL). All IQLs are translated into
a representation based on one of the algebras defined by the native data models of the
PolyDBMS. “Native” thereby refers to data models supported by the PolyDBMS to define
the logical schema.

In the processing stage, the single algebras are represented using an algebra that is
constructed as a superset of the data model specific algebras. This algebra is called logical

algebra. Besides the model specific operators, it also contains a set of special operators
for handling DML queries and modeling the enforcement of constraints. Furthermore,
the views introduced in Chapter 8 are expanded in this stage.
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Figure 9.1 The sets of operators (i.e., algebras) used to express queries through various
stages. IQLs are the input query languages, the query languages supported
by the PolyDBMS (e.g., SQL). DSQLs are the data models of the query
languages of the underlying data stores. Engine is the set of operators of
the integrated execution engine of the PolyDBMS (see hybrid architecture
model; Section 3.2.3).

In the final implementation step, the logical algebra is converted into a representation
based on the physical algebra. This algebra is based on the operators of the query
languages of the underlying data stores and the operators of the integrated engine of the
PolyDBMS (see architectural model in Section 3.2.3).

The query representation model introduced in this chapter allows representing queries
based on different data models. For this, we have chosen an approach similar to that
introduced for the schema model in Chapter 8. The PolyAlgebra introduced in this chapter
is constructed as a superset of the algebras of the data models supported by the PolyDBMS.
Together with this PolyAlgebra, this chapter also introduces how the enforcement of
constraints and the consistent handling of data modification queries can be expressed
using the proposed form of query representation.

9.1 The PolyAlgebra

A fundamental idea of the PolyAlgebra concept is to consider not only the logical data
models supported by the PolyDBMS but also the query languages of the underlying
data stores and the integrated engine as distinct set of operations. This allows operators
from different data models to be added to the same query plan and also enables a partial
transition from a logical representation to a physical representation.

The PolyAlgebra A is a set of operators A =
{
>1, ..., >#

}
. In Chapter 4, symbols for some

of these operators were defined. This would allow queries based on these operators to
be formally specified in an algebraic notation. However, for the sake of clarity, we have
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Match
condition: =(auction_id, 85697)

DOC

Algebra

Name

Parameters

Output

Input

Figure 9.2 Graphical representation of an operator. The name of the operator is de-
picted bold and the algebra to which it belongs is specified in the upper-
right corner. The box furthermore contains the values for the parameters
of the operator.

decided against such a notation in most cases. Instead, the examples in this chapter are
represented using a graphical representation in which operators are depicted as boxes.
Figure 9.2 depicts the structure of such an operator box.

The PolyAlgebra is a superset of the logical algebra AL and the physical algebra AP:

A := AL ∪ AP (9.1)

The logical algebra is itself a superset of the algebras of the data models supported by the
PolyDBMS plus a set of common operators. In this chapter, we exemplify the PolyAlgebra
for the relational, document, and LPG data models. However, the presented concepts can
also be applied to a different set of data models. The logical algebra AL is defined as:

AL := AREL ∪ ADOC ∪ ALPG ∪ ACOMMON (9.2)

The operators constituting the sets AREL, ADOC, and ALPG have been introduced in
Chapter 4. The set of common operators ACOMMON contains special operators such
as operators for converting between data models or for modeling the enforcement of
constraints. These operators will be introduced in more detail in the course of this
chapter.

The selected architecture model for a PolyDBMS makes use of multiple heterogeneous
execution engines to process queries. Primarily, it can be distinguished between the inte-
grated execution engine of the PolyDBMS and the underlying data stores. Determining
the optimal strategy for executing queries (i.e., decomposing the query and selecting
where the subqueries should be executed), is called query routing and will be discussed
in Chapter 10.

As mentioned before, every underlying data store provides its own set of operators.
Together with the operators of the integrated execution engine, these operators form the
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physical algebra; see Figure 9.1. While the logical algebra provides a logical representation
of a query, the physical algebra describes where and how a query is executed. It is an
intermediate representation which is used by the PolyDBMS to implement the query
on the underlying data stores using their native query method (i.e., query language).
Furthermore, it contains the instructions for the integrated execution engine of the
PolyDBMS. While the logical algebra refers to the entities defined in the logical schema,
the physical algebra refers to the entities defined in the physical schema.

Database systems typically do not expose their internal query representation, but expect
queries to be expressed in a query language (e.g., SQL). The PolyDBMS must therefore
interact with its underlying data stores using these query languages. The operators that
comprise the physical algebra are therefore defined based on the structure and operators
of these query languages. A convenient side effect is that data stores supporting the
same query language can use the same or a similar set of operators.

More formally, the physical algebra is a superset of the algebra of the integrated engine
of the PolyDBMS AENG and the algebras of the available data stores

{
ADS1, ...,ADS=}

where = ∈ N is the number of data stores available to the PolyDBMS. With this, AP can
be defined as:

AP := AENG ∪
( ⋃
G∈N,G≤=

ADSG

)
(9.3)

9.1.1 Preserving Semantics

With the PolyAlgebra, we introduce an approach to represent queries originating from
different query languages and based on different data models using a single algebra. This
algebra consists of the algebras defined by the data models supported by the PolyDBMS
and thus contains multiple operators for similar concepts originating from different data
models. This is different from the typical approach of defining a single algebra based
on a data model that incorporates features from all supported data models; which we
will refer to as unified approach. In a PolyDBMS, this requires similar operators from
different data models to be merged into one operator that encompasses the semantics of
the data model specific operators. However, we see three strong arguments against the
unified approach and in favor of our PolyAlgebra approach:

Firstly, the preservation of the data model specific semantics of the operators: A unified
approach comes with the risk of implying a specific data model, since the dependencies
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and the meaning of a certain combination of operators can be different between data
models. Ensuring the semantics are preserved through all stages of query processing
and optimization is challenging.

Secondly, the mapping from and to the algebra: If a query language is based on a data
model similar to one of the data models supported by the PolyDBMS, the operators
of the query language can be mapped to the operators defined by the data model of
the PolyDBMS without a sophisticated logic. With a unified approach, the mapping is
much more complex since the operators themselves are much more complex in order
to encompass the different semantics. Furthermore, this complex mapping needs to be
done individually for each supported query language and data store, duplicating and
spreading logic across the PolyDBMS which is also suboptimal from an implementation
perspective.

Thirdly, the expandability: This is much easier in the PolyAlgebra approach than in the
unified approach. If the PolyDBMS is extended to support an additional data model, an
additional set of operators can be added to the PolyAlgebra without any modifications to
the operators of other data models. In the unified approach, such an extension might
require complex changes to the operators to encompass the additional semantics and
behavior. These changes then in turn require changes to all adapters and query language
translators.

However, including the full set of operators from all supported data models in the
PolyAlgebra has one main disadvantage: it results in a larger set of operators that need
to be handled. However, from an implementational point of view, this can also be seen
as an advantage since less complex operators are easier to implement and maintain.

9.1.2 The Scan Operator

For the algebras composing the PolyAlgebra, we refer to the operators introduced in
Chapter 4. However, we have not introduced an approach for specifying which data the
operators should be applied on. In Section 8.5, we have defined a data entity � as the set
of schema objects that represent the individual entities holding the data:

� ∈
{
T , C,NLPG,VREL,VDOC,VLPG} (9.4)

In namespaces of the type relational or document, the data is held by tables T or col-
lections C. In namespaces of type LPG, the data is held by the namespace itself NLPG.
Furthermore, data is also represented by views V .
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Since databases usually consist of multiple such data entities, a special operator is required
to select the data entity holding the data the operators should be applied on. This operator
is called scan operator. There is one such operator for every supported data model, taking
a schema object � as parameter and returning the data as specified by the corresponding
data model.

The LPG algebra has two result representations: graph and graph relation. This is required
since the match operator needs to operate on the whole graph in order to match paths
and build a graph relation. The LPG node operator introduced in Section 4.3 is thereby
subsumed in the match operator. It therefore takes a graph as input and returns a graph
relation as output. The union operator is defined for both graph and graph relation. All
other LPG operators solely operate on graph relations.

Besides the scan operator there is also the value operator. This operator can be seen as
a special form of the scan operator, which instead of a data entity directly specifies the
data. This for instance allows to model insert operations; see Section 9.3.

9.1.3 Query Plans

As outlined in Chapter 4, queries can be represented as operator trees. We refer to these
trees as query plans. With an operator > ∈ A and a list of parameters (E1, .., E<), a query
plan @ can be represented by a tuple:

@ :=
(
>, (E1, .., E<) , (@1, ..., @=)

)
with =,< ∈ N (9.5)

We refer to a query plan as logical query plan if all operators belong to the logical
algebra AL and as physical query plan if all operators belong to the physical algebra AP.
The process of converting a logical query plan into a physical query plan and optimizing
it for an efficient execution is called query planning and query optimization. This will be
discussed in Chapter 10 in the context of query routing.

Figure 9.3 depicts a logical query plan. Every valid tree must either have a value or a
scan operator at each of its leaves. The query plan depicted in this example joins two
relational tables and filters by a specific attribute. The plan is not optimized and solely
consists of logical operators.

Since this representation allows query plans to contain arbitrary combinations of opera-
tors from different data models (i.e., from different data models), a mechanism is required
to convert the output of an operator to fit the expected input of its parent operator. In
order to model this mapping as part of the query plan, we introduce converter operators.



Query Representation 105

Project
attributes: [title, start_date, email]

Filter
condition: =(user_id, 34)

Inner Join
condition: =(user, user_id)

Project
attributes: [user_id, email]

Project
attributes: [title, start_date, user]

SELECT 
a.title, 
a.start_date, 
u.email

FROM 
auction_view a, 
user u 

WHERE 
a.user = u.user_id AND
u.user_id = 34

Scan
entity: auction_view

Scan
entity: user

REL

REL

REL

REL REL

RELREL

Figure 9.3 An example of a query plan consisting of relational operators. It represents
the SQL query depicted on the left side.

These operators take a result represented according to one data model and convert it into
another data model. The conversion is done according to the definitions for mapping the
schema provided in Section 8.4.

9.2 Push Down

Every data store needs to provide support for a scan operator that reads and streams the
whole data of a specified data entity. For modifying data, each data store furthermore
needs to provide support for a modify operator, a value operator, a basic filter operator,
and a basic project operator. Basic in this case means, that only a small subset of the
functionality is required. The filter operator needs to support an equality comparison
of a field or attribute with a provided value. The project operator needs at least support
removing attributes or paths and adding attributes or paths with a specified value. These
operators are required to implement DML queries as described in Section 9.3.

To meet the independence of storage configuration requirement demanded by the Poly-
DBMS Requirement 3.3, the integrated engine of the PolyDBMS must provide full support
for all operators supported by the PolyDBMS except for the scan and themodify operator.
Since the PolyDBMS relies on its underlying data stores for persisting data, support for
these two operators is only mandatory on the underlying data stores. The integrated en-
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Figure 9.4 Query plans of the same cross-model query at different stages.

gine of the PolyDBMS operates on data streamed from one or multiple of the underlying
data stores.

Since reading a data entity from an underlying data store and streaming the whole data
into the integrated execution engine of the PolyDBMS is expected to be less efficient than
executing the query on the underlying data store, the PolyDBMS makes use of additional
operators provided by the data stores. This avoids IO heavy data streaming and makes
use of the optimizations of the data store (see Section 3.2.3). This execution of an operator
on an underlying data store is referred to as push down.

Figure 9.4 depicts the various representations of a query that retrieves all auctions
belonging to the category with the ID 67 and having at least a certain similarity to a
specified vector. This similarity is calculated using the distance function d. This function
returns the Euclidean distance between two vectors. The depicted logical plan on the
left side is the result of a query based on the relational model (e.g., SQL). Since auction
is a collection of documents, there are two approaches for querying it from a relational
context (see Section 8.3.3): directly or by means of a view. In this example, the query
operates on a view that has been defined using a query language based on the document
data model. Thus, the query plan obtained when expanding the view contains operators
from the relation algebra and from the document algebra.
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LPG
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Figure 9.5 Structure of different data manipulation operations represented as query
plans using the PolyAlgebra. The left plan shows a relational insert query,
the plan in the middle an update of a collection in a document model, and
the one on the right depicts the deletion of an edge in an LPG graph.

To execute this query plan, it needs to be implemented using operators of both the
underlying data stores and the integrated execution engine of the PolyDBMS. In this
example, we assume that the auction collection is neither replicated nor partitioned.
Hence, there is only one data store holding the data. In Figure 9.4 the operators of this
data store are labeled as DS1 while the operators of the integrated execution engine are
labeled as ENG.

The third query plan (physical) depicted in the figure is not optimized at all. The whole
data of the collection is read from the data store and converted to the internal represen-
tation of the PolyDBMS. All operators are implemented using the integrated execution
engine. To improve the performance, in the fourth plan, some of the operators are
implemented using operators of the underlying data store (i.e., they are pushed down).
Since the underlying data store in this example does not support the distance function d,
some parts of the query still need to be executed using the integrated engine. However,
the amount of data that needs to be streamed to and processed by the integrated engine
of the PolyDBMS got significantly reduced due to the push down of operators to the
underlying data store.

9.3 Representation of DML Queries

The algebras introduced in Chapter 4 only specify operators for querying the data, but
not for manipulating it. We therefore introduce themodify operator. This operator allows
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Figure 9.7 A complex update state-
ment on a data store that
does not supported the re-
quired operations.

modifying the data held by a data entity, according to the specified operation. Themodify
operator is a unary operator, taking the records to be dealt with as input and returning
an integer indicating the number of inserted, updated or deleted data items as output.

For insert operations, the input defines the data to be added to the specified data entity
while for delete operations, it defines the records to be deleted. For update operations,
the input to the modify operator specifies both the current values of the records to be
updated and the new values. Figure 9.5 depicts the structure of different data modification
operations. The query plan beneath the modify operator can be arbitrarily complex. This,
for example, allows copying data from other data entities or model complex conditions.

Since the schema model introduced in Chapter 8 allows data to be replicated across
multiple underlying data stores, data modifications need to be performed on all data
stores in order to keep the data consistent. To express this in one query plan, we
introduce the parallelmodify operator. This operator executes data modification queries
simultaneously on multiple data stores. This is depicted in Figure 9.6.

More formally, the parallelmodify operator is applied to a list of query plans as follows:

(@1, ..., @=) ↦→
(
parallelmodify, () , (@1, ..., @=)

)
with = ∈ N, = ≥ 2 (9.6)

Another aspect that needs to be addressed using a special operator is the consistent
execution of arbitrary complex DML queries on any underlying data store. Since a data
store only needs to provide support for a basic set of operators, there can be issues with
DML queries containing complex conditions.
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For example, consider an update query that increases the “level” of every employee
working for the company since at least 180 days. This query requires the data store to
subtract and compare timestamps and increment an integer. This would require operators
that are not part of the minimal set of operators to be supported on every underlying
data store.

Theoretically, executing such queries on a data store without support for all operators in
the query plan is no issue since the integrated engine of the PolyDBMS provides support
for all operators and therefore compensates for missing functionality of the data stores.
However, in practice, we run into issues with the length of the resulting query string (e.g.,
the resulting SQL string) used to interact with the data store. Executing the operations of
the example query not supported by the underlying data store in the integrated engine
of the PolyDBMS would cause the query string to contain the individual value of the
level attribute for every employee. Furthermore, a query changing multiple records to
different values is rather complex and therefore might also exceed the capabilities of the
data store.

We therefore introduce the streamiterator operator depicted in Figure 9.7. This operator is
implemented by the integrated engine of the PolyDBMS. It iterates on the result received
from the left input branch and invokes the right branch with these values as dynamic
parameters. This allows the PolyDBMS to implement arbitrary complex DML queries on
data stores that only support the previously introduced minimal set of operators. The left
branch of the query tree can be routed independently of the right branch (see Chapter 10).
This allows the left branch containing operators that are not supported on the underlying
data store to be executed on a data store with support for this operators—or it is executed
within the integrated engine of the PolyDBMS. This is possible since the left branch of the
tree is read-only and thus only requires support for a scan operation on the underlying
data store. The streamiterator can also be combined with the parallelmodify operator. If
supported by the underlying data stores, the actual execution can also be done in batches.

Besides unsupported operations, the streamiterator also presents a solution for handling
data manipulation operations referencing data that is not allocated to the same data store
(e.g., due to partitioning of the schema entity). Furthermore, it enables the modification
of data stored according to the schema mapping outlined in Section 8.4. This allows to
meet the Independence of Storage Configuration requirement for arbitrarily complex data
modification queries.
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9.4 Enforcement of Constraints

As outlined in Chapter 8, a data model might also define building blocks for specifying
constraints to be imposed on the data governed according to this data model. It needs to
be distinguished between two types of constraints: those applying to an individual data
item (e.g., nullability constraints or the data type) and those applying to the data entity
or the whole schema object. While the former type can easily be enforced, the latter is
more challenging.

One approach to enforce constraints in a PolyDBMS is to delegate the enforcement to
one of the underlying data stores supporting the enforcement of this type of constraint.
However, this requires all affected data to be placed on this data store. Since not all
data stores support the enforcement of constraints and this approach cannot be applied
for partitioned data entities, other solutions are required. Furthermore, solely relying
on such a delegation approach might violate the Independence of Storage Configuration

requirement.

In database systems, uniqueness constraints are typically enforced using indexes. This
is also a solution in a PolyDBMS. Thanks to the previously introduced streamiterator,
correctly implementing such an index update is possible. However, maintaining indexes
on the PolyDBMS level introduces a significant overhead, especially with complex update
queries. Furthermore, indexes are only a feasible solution for enforcing existence-based
constraints (uniqueness, foreign key) but they are not feasible for other kinds of con-
straints like check-constraints or the enforcement of a graph schema. These constraints
can only be enforced using a query that checks whether the main query violates any
constraints. The efficiency of this approach depends on the underlying data stores. The
uniqueness of a certain value can for instance be checked very efficiently if there is a data
store with a matching index. Since indexes are cheaper to maintain on the underlying
data stores than on the PolyDBMS level, this approach can also be efficient for enforcing
existence-based constraints. However, this heavily depends on the data, the workload
and the involved data stores.

Since all three approaches have their strength and weakness, a PolyDBMS should consider
all of them. For constraints that are enforced on query time, this requires a universal
approach to express the enforcement as part of the query plan that allows the PolyDBMS
to choose the proper enforcement technique at runtime. We therefore introduce the
conditional execute operator. This operator only executes the right branch if the result
of the left branch fulfills a specified condition. The left branch can be used to model all
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Figure 9.8 The conditional execute operator is used to enforce two foreign key con-
straints. Since auctions are stored using a document data model, the en-
forcement combines operators from different data models. The necessary
converts are added in the implementation step.

three approaches. Figure 9.8 depicts a plan enforcing the uniqueness of the foreign keys
auction and user of the bid table in the context of an insert query. Instead of the union
construct, it would also be possible to stack multiple conditional execute operators.

The advantage of this construct is that the left part can be arbitrarily complex. This
allows to represent even complex check constraints. Since everything is represented in
one plan, synergies and redundancies can be eliminated. Furthermore, it is possible to
combine different enforcement techniques.





But wherever there is man, there
must be some sort of route.

— Robert Edison Fulton Jr.10
Query Routing

In a PolyDBMS, data can be replicated and partitioned across multiple data stores. To
execute a query, the PolyDBMS must plan the execution by decomposing the query
and selecting which data store has the best characteristics for executing the query or
parts thereof. This process of planning the execution of a query in terms of the optimal
utilization of the available data stores is referred to as query routing.

What makes query routing complicated is that the execution time of a query on a data
store depends on several factors, such as the amount and type of data stored or the
performance of the system on which the data store is deployed. In addition, these factors
may also change over time. This requires the query routing to be adaptive and to adjust
to the conditions of the environment and the use case.

Simply speaking, query routing is about transforming the scan operators of a query plan.
This includes resolving the partitioning and modeling the access to the individual logical
partitions, as well as deciding from which data store the data should be read. In this
chapter, we introduce our four-phase query routing approach. As the name implies, it
consists of four phases:

The first phase is the resolution phase. In this phase, the data entities are broken down
into their individual logical partitions. The PolyDBMS thereby analyzes the query and
determines which of the partitions must be considered for the execution of the query.

In the parameterization phase, the query is transformed into a form that allows it to be
reused for similar queries. This allows subsequent routing and query processing steps to
be cached. Furthermore, the identification of similar queries is also important for the
selection strategy.



114 Query Routing

Resolution
Phase

Parameterization
Phase

Planning
Phase

Is 
cached?

No

Yes

Selection
Phase

Figure 10.1 The four phases of the introduced query routing model. As depicted, the
time-consuming planning phase is cached for similar queries.

In the planning phase, candidate plans are generated by deciding for each of the scan
operators, on which data store it should be executed. This phase results in a set of
candidate plans.

The final selection phase decides which of the previously generated candidate plans should
be used to execute the query.

Figure 10.1 depicts the four phases. The caching is an elementary part of this concept
since it allows to skip the time-consuming planning phase if a similar query has already
been planned. In the following sections, these phases are elaborated in more detail.

10.1 Resolution Phase

In the resolution phase, data entities are resolved to the required set of corresponding
logical partitions. As outlined in Section 8.5.1 all data entities have a partition function
assigned. Thus, all data entities are inherently partitioned. However, due to the NONE
partition function, a data entity can consist of only one partition. Since the horizontal
partitioning is defined on the logical data entity, the resolution is independent of which
data store(s) the partitions will be read.

Figure 10.2 exemplifies the transformation of a query plan done in the resolution phase.
The query in this example selects two users (the one with the ID 34 and the one with
the ID 2584). In this example, one user record is stored in the partition 0 and one in the
partition 2. Both partitions are therefore unioned together.

The scan operators for the individual partitions contain a list of all available placements
(i.e., allocations to a data store) of this partition. Depending on the freshness requirements
of the query (see Section 8.5.2), this list also contains outdated placements which—at this
point in time—meet the requirements. Furthermore, it also contains a list of all vertical
partition entities (see Equation (8.46)) available at this placement.

The obtained query plan is not optimized. This can for instance be seen in the example
depicted in Figure 10.2. In this plan it would probably be beneficial to move the filter
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Figure 10.2 This example shows a query retrieving two user accounts by their IDs. In
the resolution phase, it is identified that the query accesses data spread
across two partitions. The corresponding partition are therefore unioned
together. Furthermore, the scan operations on the individual partitions
contain a list of all available placements of this partition.

below the union operator in order to reduce the amount of data that needs to be unioned.
However, since it has not yet been decided from which data stores the data will be read,
the potential for optimization is rather limited at this stage.

The required set of partitions is determined based on the conditions in the query plan.
Since these conditions can contain function calls or conditions that cannot be evaluated
without partially executing the query, the fallback is to union all partitions and to rely
on subsequent optimization steps of the PolyDBMS and the underlying data stores.

More formally: with the set of possible logical query plans &L being the set of all query
plans consisting solely of logical operators, the resolution phase can be described as a
function

&L → &L

@ ↦→ @∗.
(10.1)

10.2 Parameterization Phase

The routing of queries and the subsequent steps in the query processing can be quite
complex. This complexity can introduce a significant overhead that is especially problem-
atic for short running transactional queries. To reduce the amount of work that needs to
be done for every query, parts of the query routing and processing should be cached and
only done once for similar queries.
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Figure 10.3 The template of a MongoDB query is used to retrieve the title and descrip-
tion of the auction with the ID 3598. As depicted, this results in a query
plan with this ID in the filter condition. By replacing the literal 3598 with
a parameter, we obtain a query plan that can be reused for all queries
retrieving an auction that is stored on this partition.

We define the similarity of queries based on the structure of the query plan. This is based
on the observation, that especially transactional workloads produced by applications
are generated based on templates. The application typically derives queries from these
templates by replacing defined placeholders with literals. By removing the literals from
the query plan, we get a query plan which can be reused for queries with a different set
of literals.

The process of removing literals from the query plan is called parameterization. In this
process, all literals in the query plan are replaced by placeholders. Figure 10.3 depicts
the parameterization at the example of a simple query plan originating from a MongoDB
query. The parameterization only replaces literals. Operators, functions or identifier
names are not substituted.

Since the parameterization is done on the query plan obtained from the resolution phase,
it results in a generic query plan that can be reused for all queries where the same set of
partitions is accessed; thus, where the literals (e.g., the user_id in the example) belong to
the same set of partitions. Together with the list of placements of the respective partitions
available at this point in time, all information needed for the next routing phase are
encoded in this generalized query plan.

This approach results in a robust and easy to maintain solution for caching the time-
consuming planning phase. Since the list of available placements of a partition added to
each scan operator in the previous phase is part of the query plan, adding or removing
placements will result in a different query plan and thus a new planning. This also covers
data freshness: if a placement no longer meets the freshness requirements of a query, it
will not be added to the list of placements in the resolution phase.

Formally, the parameterization phase can be described as a function

&L → &L

@ ↦→ @∗.
(10.2)
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10.3 Planning Phase

The planning phase is the most complex phase of the four-phase query routing. In this
phase, the query plan expressed using operators of the logical algebra is implemented
using the physical algebra. If there are multiple placements of a logical partition on
different data stores, the planning needs to decide from which data store the data should
be read (i.e., where to execute the scan operator).

The decision on which data store a scan operator is executed determines whether other
operators can also be pushed down. As outlined in Section 9.2, push down refers to the
execution of operators on the underlying data store instead of the integrated engine of the
PolyDBMS. Since pushing down operators avoids streaming the whole data entity to the
integrated engine of the PolyDBMS, it usually results in significantly better performance.

The decision on which data store the scan operator is executed therefore influences the
potential for pushing down additional operators. For an operator to be pushed down,
this operator and all other operators between this operator and the scan operator need to
be supported by the data store. Since not all data stores provide the same set of operators,
the decision on which data store to execute a scan operator can therefore have a crucial
impact on the performance of a query.

As already mentioned for data modification queries in Chapter 9, it would theoretically
be possible to implement individual operators on a data store by streaming the data from
and to the data stores. However, since database systems typically restrict the maximum
length of a query string, this option is not feasible. Hence, for an operator to be pushed
down on a data store, all previous operators starting from the scan operator need to be
pushed down as well.

In order to come up with an optimal plan for executing a query, the capabilities and the
expected performance of the data stores need to be considered. Especially for heavily
replicated and partitioned data entities, finding such an optimal plan can be complex.
However, due to the parameterization of the query plan, this phase can be cached. This
is especially important for short running transactional queries where the total execution
time should be a few milliseconds.

With&L being the set of all logical query plans and&P being the set of all physical query
plans, the planning phase can be described as a function

&L → &P ×&P × ... ×&P

@ ↦→
{
@∗1, @

∗
2, ..., @

∗
#

}
.

(10.3)
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10.3.1 Query Decomposition

There are data stores with different sets of features and capabilities. While a data store
might excel for some types of data and workloads, it performs badly for other types.
Since database queries can be arbitrarily complex, there might be no single data store
suitable for it. The idea of query decomposition in a PolyDBMS is to split the query into
multiple parts that are then executed on different data stores. This allows to utilize and
combine of the strength of multiple underlying data stores.

Using the query representation introduced in this thesis, decomposing queries is fairly
simple. Since every read-only query plan has scan operators on all of its leaves, a query
can be decomposed by implementing the scan operator using operators from different
data stores. In the subsequent query optimization, supported operators are pushed down,
resulting in a decomposed query.

10.3.2 Vertical Partitioning

As outlined in Section 8.5.1, data can be partitioned horizontally and vertically. The hori-
zontal partitioning has already been resolved in the first phase. The vertical partitioning,
however, has not yet been dealt with. As described in Section 6.1, in our schema model,
vertical partitioning refers to a partitioning that affects both the schema and the data.
Hence, the physical partitions allocated to the underlying data stores have a different
schema. Resolving vertical partitioning therefore results in some sort of join operation
that “glues” the distributed parts of a record, document, node or edge together.

As part of the resolution phase, every scan operation has been extended with a list of data
placements including the vertical partition entities they provide and a list of required
vertical partition entities. In the planing phase, these lists are used to determine an optimal
combination of multiple partitions. Since vertical partitioning always results in multiple
data stores being involved, these join operators cannot be pushed down. The routing
therefore tries to first deal with the horizontal partitioning and implement as many
operators as possible before addressing the vertical partitioning. The rules for merging
and splitting operators and changing their order is the subject of query optimization.
Since there are no fundamental differences to “traditional” database management systems,
there is no need to elaborate this in more detail. For the relational data model, for example,
these rules can be found in [Cha98].
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10.3.3 Static Planning Rules

One approach for selecting where (i.e., on which data store) to execute a scan operator
and to find a valid execution plan for data spread across different data stores is by means
of a static set of rules. This set of rules can be extended based on the use cases and the
requirements of the scenario. Every rule can return one or multiple candidate plans.

An obvious approach is to select a candidate plan based on the data model of the scan
operator and to prefer native data stores. This increases the chance of pushing down
additional operators. Furthermore, native data stores are expected to perform better than
data stores based on a different data model.

Another approach is to identify the type of workload and select the data store based on
the identified workload. This is especially interesting for simple queries where everything
can be pushed down to one data store.

The third approach is to decide based on the usage of certain features (e.g., nearest
neighbor search or geospatial functions). If a query contains such a special function, it
should be preferred to utilize a data store with native support for this feature.

The fourth rule deals with the latency of the communication between the data store and
the PolyDBMS. It prefers data stores with a low latency (e.g., those deployed on the same
machine as the PolyDBMS). This is especially beneficial for simple, short running queries
where the communication overhead quickly exceeds the execution time.

Every candidate plan proposed by the planning rules is optimized in a subsequent step.
This includes identifying operators that can be pushed down to the underlying data
stores, merging and splitting operators and adjusting their order.

The advantage of the rule-based approach is that it is very fast. The rules can be applied
in parallel and result in a set of query plans. However, it is not very adaptive. While it is
possible to adapt the rules at runtime, especially with complex queries, this approach
reaches its limit.

10.3.4 Cost-based Planning

A major disadvantage of the static planing rules is the split between the decision where
to execute a query and the optimization of the query. Merging these two steps would
allow to select the data store according to the potential optimizations its choice enables.
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By using a cost-based query optimizer, this can be modeled. However, the difficulty is
to design the cost-model. This cost-model must assign costs to every operator of the
physical algebra. The ability to dynamically adjust this cost model results in a highly
adaptive approach for query planning. However, building and adjusting this cost model
is quite difficult.

Optimally, the cost model is designed such that the cost for a query plan implemented
using operators from data store � and a query plan implemented using operators from
data store � reflect the relative difference between the actual execution time of the two
query plans. Since the execution time of a query plan does not only depend on the data
store but also on the environment and the data, a static cost model has its limitations.
We are therefore working on an approach for learning the cost model based on the
previously executed queries. Our approach is to adapt existing techniques developed for
single-model database systems (see Section 5.2) and apply them to a PolyDBMS.

The most important factor is, that the query optimizer takes the amount of data that
needs to be streamed to the integrated engine of the PolyDBMS into account. This results
in query plans that maximize the push down of operators to the underlying data stores.
However, the disadvantage of this approach is the required time to find an optimal query
plan, especially with a large number of placements. Furthermore, it is difficult to design
a static cost model for simple transactional query plans since for such queries, aspects of
the deployment like the latency for communicating between the PolyDBMS and the data
store can result in an overhead exceeding the actual execution time of the query.

10.3.5 Combining Both Approaches

Both approaches have their advantages and disadvantages. The integration of the data
store selection and planning into the query optimization results in good query plans. With
a learned cost model, query routing also gets adaptive. However, a cost-based planning
is more time-consuming than applying static routing rules. Furthermore, simple query
plans are challenging since network latency and other aspects are more significant than
the actual execution time of the query on an underlying data store.

While we are currently working on integrating these aspects by learning and adjusting
the operator costs at runtime, this introduces another issue: In order to learn the op-
erator costs, enough data points need to be available. After significant changes to the
data allocation and the set of data stores, the PolyDBMS suffers from an outdated cost
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model. Furthermore, the cost-based optimization is time-consuming if a large number of
placements needs to be considered (e.g., with partitioned data entities).

Our approach is to combine the cost-based planning with the static routing rules in-
troduced before. The static rules are especially advantageous for simple, short running
queries and can be adjusted to the scenario. They are furthermore very fast.

The idea is to identify the type of query: simple and potentially short running or complex
and potentially long-running. For simple queries, only the static routing rules are used
and the resulting query plans are optimized. For long-running queries, both the routing
rules and the cost-based planning approach are being used. However, since we do not
have a reliable technique to classify queries as short-running and long-running without
executing them, the static planning rules still need to be sophisticated enough to handle
misclassified analytical queries.

In both cases, we obtain a set of potential query execution plans. Duplicate plans are
removed. These plans are then cached for subsequent queries which are similar to this
one.

10.4 Selection Phase

The selection phase is the final phase of the four-phase query routing. Its purpose is to
select an execution plan from the set of candidate plans generated by the planning phase.
While the planing phase is cached for subsequent similar queries, the selection phase is
applied to every query. The reason for this split of planning and selection phase is to
enable a caching of the planning phase: the dedicated selection phase allows making a
final decision on the query plan based on the current state of the system and by taking
previous executions or updates to the cost model into account. This avoids constantly
re-planning query plans.

The selection is done using score functions. These score functions allow to select which of
the previously proposed execution plans is optimal given the current state of the system
and collected knowledge about previous executions of similar queries.

In the following sections, we outline multiple score functions. Every score function sf(·)
returns a value between zero and one. Furthermore, there is an adjustable weightF for
every score function. The score ( of a physical query plan @ is calculated as

( :=
=∑
8=1

F8 · sf8 (@) (10.4)
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with = being the number of score functions. Instead of always executing the plan with
the highest score, it has shown advantageous to normalize the scores and use them as
probabilities. The plan with the highest score is selected most frequently, while plans
with lower scores are selected less frequently. This makes things even more adaptive,
especially with the scoring function we introduce in Section 10.4.1. Executing these less
efficient query plans allows the PolyDBMS to learn about changes and update its cost
model. This can for example be the case due to growing amounts of data or external
effects like changes on the host system or the network.

The selection phase can be described as a function

&P ×&P × ... ×&P → &P{
@1, @2, ..., @#

}
↦→ @∗.

(10.5)

10.4.1 Previous Execution Time

A very powerful technique is to score the candidate plans based on their actual execution
time. This is an approach we have first described in [VSS17]. It makes use of the
introduced parameterization technique for identifying similar queries and the observation
that queries are typically derived from templates.

This score function requires the PolyDBMS to monitor and record the execution time of
every chosen execution plan. This allows to compare the average execution times of the
proposed candidate plans. By normalizing the execution times, it is possible to calculate
a score. If there are no execution times for an execution plan (thus this plan has not yet
been executed), the maximum score of 1 is assigned. Depending on the other scoring
functions and their weights, this fosters the execution of this query plan, resulting in an
execution time to be recorded. This eventually converges to a state where all candidate
plans have been tried, and the fastest query plan is assigned the highest score.

With a function at(·) that returns the average execution time of an execution plan or
zero if there are no previous executions, the scoring function sfpev for a physical plan @
of the set of candidate plans &∗ ⊂ &P is given as

sfpev(@,&∗) := 1 − at(@)
max

(
{at(∗) | ∗ ∈ &∗}

) . (10.6)

This approach is adaptive, especially if only recent execution times are considered for
calculating the average execution times (i.e., using a sliding window approach). An issue
of this scoring function are parallel workloads. The obtained values are influenced by
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parallel executions on the data store. However, we realized that it is also an advantage in
scenarios with relatively constant workloads. In such scenarios, it perfectly depicts the
actual execution times that could be achieved on this data store and thus also results in
some sort of load-balancing between the data stores.

10.4.2 Operator Cost Model

This scoring function uses the operator cost model introduced in the planning phase to
calculate the cost of a query plan. With a function cost(·) that estimates the cost of an
execution plan based on its operators, the scoring function sfcost for a physical plan @
of the set of candidate plans &∗ ⊂ &P is given as

sfcost(@,&∗) := 1 − cost(@)
max

(
{cost(@∗) | ∗ ∈ &∗}

) . (10.7)

Using the cost-model in the selection phase increases the adaptivity of the query routing,
since changes to the cost-model influences the routing even for cached query plans.





Creativity is thinking up new things.
Innovation is doing new things.

— Theodore Levitt11
Polypheny-DB

With Polypheny-DB, we present a fully working implementation of a PolyDBMS and
the concepts introduced in the previous chapters. Polypheny-DB goes beyond a typical
research prototype: It is a full-featured database management system released under the
Apache 2 license. The source code is available on GitHub1.

The maturity of Polypheny-DB is also evidenced by the fact that it was selected twice
in a row by Google for the Google Summer of Code. The success of Polypheny-DB was
also made possible through multiple excellent student projects (see page 213 for a list of
projects).

In this chapter, we give a brief overview on the architecture and capabilities of the
Polypheny-DB system. More details on specific aspects of the implementation can be
found in the documentation published on our website2.

11.1 Overview

Polypheny-DB is the heart of the growing Polypheny ecosystem. Besides the database
system itself, there are various applications, drivers and tools:

– Polypheny-UI. A feature-rich and easy to use browser-based user interface for
Polypheny-DB. It is deployed together with Polypheny-DB and allows a convenient
management of a Polypheny-DB instance. This includes monitoring the current
status of the system, modifying the configuration, defining and altering the schema,
configuring data replication and partitioning, and executing and analyzing queries.

1 https://github.com/polypheny/Polypheny-DB/
2 https://polypheny.org/

https://github.com/polypheny/Polypheny-DB/
https://polypheny.org/
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– JDBC Driver. Polypheny-DB provides a standards-compliant JDBC query in-
terface. This driver allows to conveniently access this interface from JVM-based
query languages (e.g., Java, Scala, Kotlin). This driver also supports meta func-
tions defined by the JDBC standard for retrieving schema information. The whole
JDBC stack is implemented using Avatica for Polypheny, a fork of Apache Avatica3

containing Polypheny specific adjustments and extensions.

– Python Connector. Similar to the JDBC driver, this connector provides an inter-
face for developing Python applications that can connect to Polypheny-DB. The
connector is a pure Python package that has no dependencies on JDBC or ODBC. It
is released to the Python Package Index (PyPi) and can therefore be installed using
pip on Linux, macOS, and Windows platforms. The connector follows the Python

Database API v2 specification (PEP-249).

– Query-to-File. This tool allows to materialize and navigate the result of an
arbitrary query as a file system (set of files in a folder). Depending on the data
type, the data is either kept in memory or (e.g., with blobs) is fetched on demand
from Polypheny-DB. Besides a query, the tool also accepts the name of a data
entity to be represented as a file system. By editing the content of the files, the
corresponding data can be modified. Query-to-File also supports transactions. The
primary use case of this tool are multimedia collections (e.g., videos, images, files)
stored in Polypheny-DB. Query-to-File allows applications that read files from the
file system to operate on data governed by Polypheny-DB.

– Polypheny Hub. A platform for storing and exchanging multimodel datasets
and schemas. The frontend is seamlessly integrated into Polypheny-UI. The corre-
sponding server application maintains and stores the actual datasets and schema
definitions. Importing and exporting datasets and schemas can conveniently be
done directly within Polypheny-UI. The system features a role-based user man-
agement. All maintenance tasks can be done through the Polypheny-UI. While
we maintain a public instance of the Polypheny-Hub server, own instances can be
deployed as well.

In this chapter, we focus on Polypheny-DB itself. The system is developed in Java. As
mentioned before, the source code is available under the Apache 2 license. Furthermore,
we provide binary releases4 for the Windows, macOS and Linux platform. These releases
come with an installer and include a Java runtime environment.
3 https://calcite.apache.org/avatica/
4 https://get.polypheny.org/

https://calcite.apache.org/avatica/
https://get.polypheny.org/
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Figure 11.1 Deployment of Polypheny-DB. The data stores can be deployed on the
same or on other machines. All queries go through Polypheny-DB.

According to the hybrid architecture model of a PolyDBMS discussed in Chapter 7,
Polypheny-DB uses underlying data stores for storing data and executing (parts) of
a query. As depicted in Figure 11.1, the data stores are either deployed on the same
machine as Polypheny-DB or on other machines. This allows an easy horizontal scaling
of a Polypheny-DB deployment.

The underlying data stores are expected to be under the full and exclusive control
of Polypheny-DB. However, the ability to query independent databases or sources of
information known from polystore systems (i.e., data lake) is available in Polypheny-DB
as well. Besides data stores, Polypheny-DB also has the concept of data sources. A data
source can be everything from a plain file (e.g., a CSV file) over a traditional database
system (e.g., a PostgreSQL instance) to a blockchain (e.g., the Ethereum blockchain). In
contrast to data stores, data sources are not expected to be under the full and exclusive
control of Polypheny-DB, but rather shared with other participants. A query can access
and combine data from multiple data sources. It is also possible to access and combine
data from data sources and data stores within the same query.

The schema mapping technique is different for data sources and data stores: For data
sources, Polypheny-DB applies a Local-as-View (LAV) mapping, describing which parts of
a logical entity are physically stored on which of the underlying data stores and how the
data is to be transformed. For data sources, in contrast, a Global-as-View (GAV) mapping
is being applied that describes which parts of the data source are integrated into the
global schema and how the transformation is performed. Since Polypheny-DB supports
views combining entities from data sources and data stores, the schema mapping can be
described as Global-and-Local-as-View (GLAV).
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Figure 11.2 Simplified architecture of Polypheny-DB, depicting the most important
components. The solid arrows indicate the path of a DQL or DML query.
The dashed arrows depict communication between the components.

Polypheny-DB implements the concepts introduced in the previous chapters and also
supports the three data models (relational, document and labeled property graph) used
to exemplify these concepts. Besides native support for these data models (according to
the requirement outlined in Section 3.1.1), Polypheny-DB also provides support for at
least one query language and data store based on each of these data models.

11.2 Architecture

The Polypheny-DB system is written in Java and has been developed with a strong
focus on modularity and the ability to adapt to changes in the workload or the available
infrastructure at runtime. As depicted in Figure 11.2, the software is structured in several
components. Additional query interfaces, query language parsers, or adapters can be
deployed at runtime.

Polypheny-DB has all components of a “traditional” database system (cf. Section 5.1).
With the BLOB Store, there is also a storage engine integrated within Polypheny-DB itself.
However, besides the fact that there are multiple query interfaces and query language
parsers, there are three major differences to a traditional database system.

Firstly, the position of the concurrency control component. In the architecture we intro-
duced together with the foundations of database systems (Figure 5.1), the concurrency
control happens while executing the query. With the multiple storage and execution
engines containing replicated data, concurrency control is more similar to a distributed
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database system, requiring locks on the logical data entities instead of the physical storage
structures.

Secondly, the routing component and the adapters. These are elementary components
of a PolyDBMS that enable the efficient usage of underlying databases as storage and
execution engines.

Thirdly, the lack of a dedicated logging & recovery component, which is a result of
the architecture using underlying databases as storage engines. Since recovery is a
functionality that can ultimately only be provided efficiently by the storage engines,
Polypheny-DB relies on these very engines. Hence, the necessary logic is implemented
in the respective adapters. Furthermore, Polypheny-DB also has a recovery logic for its
catalog.

In the following paragraphs, we briefly introduce the components depicted in Figure 11.2.
Since the implementation of Polypheny-DB closely follows the concepts outlined in this
thesis, we refer to the previous chapters for a detailed description of the schema model,
query representation, and query routing.

Query Interfaces. In Polypheny-DB, we strictly distinguish between query interfaces
and query languages. A query interface provides a method to interact with Polypheny-DB
according to a defined protocol. This includes accepting queries expressed in one or
multiple query languages, transaction control, and accessing meta information. The
query interface is also responsible for encoding and returning the result. There can be
multiple query interfaces accepting the same query language. Furthermore, a query
interface may accept multiple query languages. The default-namespace used for resolving
identifiers is defined individually for every query interface.

Query Parsers. Queries received by the query interfaces are parsed and translated
by a corresponding query parser. There is a dedicated parser for every query language.
The output of the query parser is a query plan constructed using the algebra of the
corresponding data model.

Validation. The validation component checks whether a query plan is valid. This
includes checking that there are values for all mandatory fields and that data types match
the data types of the schema. Since identifiers are checked by the query parser, the
validation is especially important for data modification queries.

Concurrency Control. The purpose of concurrency control is to ensure that parallel
queries do not violate the guarantees set forth in Section 5.3. In Polypheny-DB con-
currency control is provided using strong strict two-phase locking (see Section 5.4). The
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locking is done based on the partitions (every data entity consist of at least one partition;
see Section 8.5.1). The implementation includes the necessary detection and handling of
deadlocks.

Router. The routing component plans the execution of a query by selecting on which
of the underlying data stores a query or parts of it should be executed. The component is
implemented according to the concept introduced in Chapter 10. The query optimization
is done using a modified and extended version of a Volcano optimizer [GM93] we have
forked from the Apache Calcite project [BCRH+18].

Execution Engine. The execution plan produced by the query routing component is
implemented as Java code and compiled at runtime. Since these implementations can be
cached, this approach results in a very good performance for subsequent queries.

Adapters. Compared to a traditional database system, the adapters take over the role
of the storage manager. Every adapter provides a set of operators that can be executed
using this adapter. These operators form the physical algebra used to construct execution
plans. Furthermore, the adapter is responsible for maintaining the connection to the
corresponding data store or data source. There can be multiple instances of the same
adapter connecting to different data stores or data sources. The BLOB Store is a special
adapter that implements a whole data store. It is intended for storing large binary objects
such as videos.

Catalog. The catalog maintains the schema and other metadata. Furthermore, it stores
deployment specific information such as the set of adapters and interfaces. It also
maintains the allocation of partitions to data stores. Moreover, the catalog stores the
definition of views and stored procedures.

Transaction Manager. Similar to a traditional database system, the transaction man-
ager maintains the ongoing transactions. It receives transaction commands from the
query interfaces, allowing to begin and end transactions.

DDL Manager. The purpose of this component is to process and execute changes to
the schema. It orchestrates the changes to the physical schemas of the underlying data
stores, triggers the data migrator, and performs the necessary changes to the catalog.
The DDL Manager therefore plays an essential role in implementing the schema model
outlined in Chapter 8.

Data Migrator. The data migrator copies data between data stores and therefore allows
changing the data allocation and data partitioning layout of a running Polypheny-DB
instance.
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Monitoring & Adaption. This component monitors the workload and creates statistics
on data governed by the Polypheny-DB instance and the type of workload. It provides
important information for planning and optimizing queries. Furthermore, it allows basic
adaptions of the systems based on pre-defined policies.

11.3 Capabilities

In this section, we give an overview of the functions and capabilities of Polypheny-DB.
This includes the set of supported query interfaces, languages and adapters. However,
this is not an exhaustive list that includes every aspect. Rather, it is an overview on those
features that are relevant for the evaluations and benchmarks presented in the next part.

As mentioned before, Polypheny-DB and other parts of the Polypheny ecosystem have
greatly benefited from various contributions made in the context of student projects
or the Google Summer of Code. This especially applies to the implementation of the
interfaces, languages, adapters, and features mentioned in this section. Furthermore,
parts of the implementation are based on code from the Apache Calcite project. The
implementation also makes use of existing parsers and libraries. A complete overview of
all contributors as well as an overview of all used libraries can be found on the website and
in every release of Polypheny-DB. We would like to thank everyone who has contributed
to the Polypheny project or the projects on which it is built.

11.3.1 Query Interfaces

Polypheny-DB comes with the following query interfaces:

– Avatica. Apache Avatica5 is a framework for building database drivers. With
Avatica for Polypheny, we have created a fork of the Avatica project containing
Polypheny-specific adjustments and extensions. The Avatica query interface is
used by both the JDBC driver and the Python connector. The queries are serialized
using Protbuf 6.

– HTTP. A query interface that can easily be integrated in all types of applications.
Queries are accepted using HTTP POST requests. There is a route for every query

5 https://calcite.apache.org/avatica/
6 https://developers.google.com/protocol-buffers

https://calcite.apache.org/avatica/
https://developers.google.com/protocol-buffers
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language supported by Polypheny-DB (e.g., ‘/sql’). The query itself needs to be
placed in the body of the POST request. The result is serialized as JSON.

– REST. A query interface that does not require a query language to express queries.
Instead, the query is expressed in a RESTful fashion. It primarily supports querying
relational namespaces. Support for other data models is limited.

– Polypheny-UI. The powerful browser-based user interface of Polypheny-DB. It
allows executing and analyzing queries expressed in all supported query languages.
Furthermore, it contains additional query methods such as explore-by-example.
Additionally, it also allows to graphically build and execute logical query plans.

11.3.2 Query Languages

As it is required for a PolyDBMS, Polypheny-DB supports multiple query languages. The
queries expressed in these query languages are accepted through one our multiple of the
query interfaces mentioned in Section 11.3.1. The supported query languages include:

– SQL. The most widely used query language for (relational) databases [Bat18]. The
language is well suited for structured data organized according to the relational
model. Despite the fact that there is a SQL standard [Sec87], there are differences
in the SQL implementations of different database systems. The implementation
in Polypheny-DB is closely oriented at the SQL standard. When there is no clear
standardization (e.g. for schema definition statements) we have followed the
PostgreSQL dialect or defined our own syntax.

– openCypher. A very popular and widely adopted query language for querying
labeled property graphs. The implementation in Polypheny-DB closely follows the
openCypher specifications7.

– ContextualQuery Language (CQL). A query language primarily used in infor-
mation retrieval systems such as search engines and bibliographic catalogs. The
implementation in Polypheny-DB adds some extensions and additional keywords
to the CQL specification8. However, the implementation does not support prefix
assignments or search-term-only filters. The CQL query language, and thus our
implementation, does not support data manipulation or the definition of schemas.

7 https://opencypher.org/resources/
8 https://www.loc.gov/standards/sru/cql/spec.html

https://opencypher.org/resources/
https://www.loc.gov/standards/sru/cql/spec.html
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– MongoDB Query Language (MQL). The query language of the popular docu-
ment store MongoDB. It is intended for querying document schemas. The imple-
mentation provided in Polypheny-DB strongly follows the language definition of
MongoDB version 5.09.

– Pig. A high-level language designed for working with MapReduce. It allows
writing powerful analytical query scripts. The implementation in Polypheny-DB is
adapted to operate on database entities instead of files. Our implementation does
not support materializing results as files.

11.3.3 Adapters

Polypheny-DB distinguishes between Data Stores and Data Sources. Data stores are
under the full and exclusive control of Polypheny-DB and serve as storage and execution
engines for the data governed by Polypheny-DB. Data sources allow data from other
sources (of a data lake) to be mapped into the schema of Polypheny-DB.

The set of data store adapters includes:

– BLOB Store. A data store integrated into Polypheny-DB that is optimized for
storing large binary objects like videos or images. The adapter has a columnar
storage layout and materializes every data item as a file. The BLOB Store supports
two-phase commit and features a write-ahead log.

– Cassandra. A popular wide-column store (i.e. a two-dimensional key–value store).
It has some similarities with the relational data model. However, the number and
data type of the columns can vary from row to row.

– Cottontail DB. A column store tailored for multimedia retrieval applications. It is
optimized for both Boolean and vector-space retrieval [GRH+20].

– HSQLDB.A row-oriented relational database system developed in Java. It supports
an embedded mode that provides low-latency access from Polypheny-DB.

– MonetDB. A column-oriented relational database management system providing
high performance for OLAP queries.

– MongoDB. A popular document database system that uses JSON-like documents
with optional schemas.

9 https://mongodb.com/docs/v5.0/

https://mongodb.com/docs/v5.0/
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– Neo4j. A graph database based on the labeled property graph data model. Accord-
ing to the db-engines ranking10 from May 2022, Neo4j is the most widely deployed
graph data platform.

– PostgreSQL. A very popular and widely deployed row-oriented and feature-rich
relational database system. It provides good performance for transactional work-
loads.

The set of available adapters for data sources additionally includes:

– CSV. This adapter allows to query CSV files as relational tables.

– Ethereum. An adapter for querying the Ethereumblockchain. It uses the Ethereum
JSON-RPC API11.

– File System. This adapter allows to represent a folder as a relational table. It
allows to query meta information on the files as well as the content of the file itself.
This is especially useful for working with multimedia files.

– MySQL / MariaDB. An adapter for the popular relational database system MySQL
and its fork MariaDB. The adapter supports read and write queries as well as
transactions.

11.3.4 Query Functions

The set and behavior of functions and operations is defined by the query language. Where
applicable, Polypheny-DB follows the definition of the official documentation or standard
of a query language. Furthermore, Polypheny-DB also supports additional functions. An
example for this is the distance function available in our SQL implementation that
calculates the distance between two vectors according to a metric.

All functions are supported by the integrated engine of Polypheny-DB. If a function
is not supported by an underlying data store or if the underlying data store handles
this function differently, Polypheny-DB executes it in its integrated engine. In order
to improve performance, Polypheny-DB also registers user-defined functions on the
underlying data stores to add or adjust certain functionalities.

10 https://db-engines.com/en/ranking
11 https://eth.wiki/json-rpc/API

https://db-engines.com/en/ranking
https://eth.wiki/json-rpc/API
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Preface to Part IV:
On the Art of Evaluations

In this part, we present the evaluation results of Polypheny-DB, our implementation
of the concepts presented in this thesis. According to the holistic nature of the word
evaluation this part also approaches the topic from different directions and using different
methods.

In software development, evaluation refers to the assessment of software by executing it
under defined conditions and with specified inputs. The practice of evaluating software
is as old as the practice of software development itself [OU86]. In the context of database
systems, it can primarily be distinguished between two types of evaluations: verification
(i.e., the qualitative analysis) and benchmarking (i.e., the quantitative analysis).

Verification. This is the process of determining whether the software is working ac-
cording to the specification and without technical errors [Boa11]. In Chapter 13 we
introduce the blueprint of an approach for verifying the correctness of a PolyDBMS using
randomly generated configurations and queries. Furthermore, we discuss how we have
implemented this approach for verifying the correctness of Polypheny-DB.

Benchmarking. The performance of a system is measured by benchmarking it under
specified conditions. This allows to compare the efficiency of the implementation with
similar systems. Furthermore, it is an important part of the development process to
identify performance bottlenecks and to optimize the system. The benchmarking results
of our implementation Polypheny-DB are presented in Chapter 14.

A meaningful evaluation of a system requires both a holistic verification of the system
and a comprehensive benchmarking of its performance. Benchmarking a system without
verifying its correctness cannot prove superiority. A database that, for instance, always
returns an empty result can be extremely fast—but is also useless.

Since the benchmarking of a system is a very tedious and time-consuming labor, we
have developed a system called Chronos that automates the entire benchmarking pro-
cess. In Chapter 12, we introduce the system. How Chronos is used for benchmarking
Polypheny-DB is outlined together with the benchmarking results in Chapter 14.





benchmark v.trans. To subject (a
system) to a series of tests in order
to obtain prearranged results not
available on competitive systems.

— Stan Kelly-Bootle, The Devil’s
DP Dictionary12

Chronos

System evaluations are an important part of empirical research in computer science. They
involve the systematic assessment of the runtime characteristics of a system depending
on its parameters [Jai91; KLK20]. The consideration of all conceivable parameters and
settings is a very time-consuming and tedious matter with numerous manual activities.
Preferably, the exhaustive evaluation of an entire evaluation space can be fully automated.
This includes the definition of the parameters, the scheduling and monitoring of the
execution and the analysis of the results. In this chapter, we introduce Chronos, a system
for the automation of the entire evaluation workflow [VSC+20].

12.1 Motivation

Benchmarking a system requires the systematic execution of defined workloads in a
controlled environment [Jai91]. In the process, parameters of the system, the workload
and the environment are varied to gain insights. Since the benchmark needs to be
executed multiple times for all combinations of the varied parameters to obtain reliable
results, evaluation campaigns can get extremely time-consuming and labor-intensive.

The idea of Evaluations-as-a-Service (EaaS) is to automate the evaluation process. The
demand for an EaaS-system has already been identified in various publications [HMB+15;
LE14; LE13; MET+21]. In comparison to benchmarking scripts often used by developers,
an EaaS-system can speed up the process by orchestrating a parallelized execution while,
at the same time, minimizing the required manual activities.

Another topic of high importance in the research community is reproducibility [Hu20;
CHI15; SYF+20; FBS12]. An automated solution can make results more reproducible
since all steps, configurations and results can be archived. Hence, the “human factor”
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in the benchmark can be reduced. The authors of [Hu20] emphasis that “Replicability
and reproducibility (R&R) are critical for the long-term prosperity of a scientific disci-
pline” [Hu20]. An EaaS-system that automatically executes benchmarks and at the same
time increases the reproducibility of results is therefore a great support for both, research
and software development.

12.2 Existing Work on Automating Evaluations

In [HMB+15], the authors outline the issues of the Data-to-Algorithm approach of bench-
marking were researches download datasets and execute their algorithms against these
datasets themselves. The authors motivate the idea of Evaluations-as-a-Service where the
algorithms come to the data (Algorithm-to-Data). The paper is focused on the demands
and requirements of the machine learning and retrieval domain. The main focus of the
paper is the application of such an EaaS approach for competitions and challenges.

In [LE14; LE13], the concept of evaluation-as-a-service is introduced to overcome restric-
tions with sharing Twitter data. Instead of distributing the data to all participants of a
text retrieval competition, the authors developed an API for accessing the data. The intro-
duced concept is therefore more an API service for evaluation than an actual evaluation
system. The step towards an evaluation system is mentioned as future work: The authors
propose that, instead of granting the participants access to potentially sensitive data like
medial records, the participants submit their implementation which is then executed on
a central infrastructure and without the participants touching the data.

The authors of [MET+21] introduce Dynaboard, a system for the automation of holistic
evaluations of natural language processing (NLP) models using their benchmarking
system Dynabench. The system allows NLP models to be uploaded to the Dynaboard
platform. The uploaded models are then automatically evaluated in the cloud.

In [Hu20], the author proposes building a benchmarking framework for comparing
methods and software tools in the Geo Information Systems (GIS) domain. The author
motivates an Algorithm-to-Data approach in order to overcome various copyright and
license issues with datasets. Furthermore, the author envisions building a system which
allows to easily reproduce results of other researchers. This would allow to easily compare
the results with the own work in order to prove superiority. The envisioned system
should automatically report data on the experiments and make them publicly available
by a unique identifier assigned to every execution of an experiment.
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While there are several vision and position papers emphasizing the need for an EaaS-
system [HMB+15; LE14; LE13], there are only very few implementations. Furthermore,
only a subset of those implementations can be applied to the benchmarking of systems.

A major portion of the existing EaaS-systems, like for example Dynaboard [MET+21],
PEEL [BAK+18] or mlpack [ESC14], are targeting the evaluation of machine learning
models and algorithms. Most of the remaining systems are focused on a specific domain
and environment. PROVA! [GBM16], for instance, is a tool for the distributed bench-
marking of stencil compilers. We are only aware of two EaaS-systems suitable for the
benchmarking the performance of systems.

The NIST Automated Benchmarking Toolset [CMM+00] allows the distributed execution
of benchmarks using a distributed queueing system. The tool allows the definition of
benchmarks and stores the collected data in a central repository. Unfortunately, there is
no further information on this system. The tool seems no longer to be developed, and
the source code is not available.

The BEEN system [KLM+06] is an EaaS-system that takes care of the deployment of the
system under evaluation and schedules the execution of the benchmark in a distributed
environment. All results are stored in a central repository and can be viewed and analyzed
in a web user interface. BEEN also detects performance regressions between consecutive
software versions. Unfortunately, BEEN seems no longer to be developed. Since the
source code is not available, it is unclear which of these features actually have been
implemented. The paper only states that it is “the ambition of BEEN is to provide a
generic distributed and multi–platform execution framework” [KLM+06] and that “the
implementation of BEEN is in beta stage, currently capable of handling a comparison
analysis of a nontrivial distributed benchmark” [KLM+06].

12.3 Reproducible Evaluations as a Service

In this section, we outline six requirements an EaaS-system needs to fulfill in order to
provide automated and reproducible benchmarks. These requirements are derived from
[Jai91] and [KLK20].

Clarity. Defining meaningful benchmarking campaigns is a very crucial task. Mistakes
in the definition of the benchmark can lead to wrong or misleading results [Jai91]. A
benchmarking framework therefore needs to assist the user in defining benchmarks. This
includes providing an easy-to-use interface presenting a clear overview of the parameters
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and the resulting configuration of the benchmark. The clarity-requirement therefore
encompasses the transparency and comprehensibility of an evaluation framework. One
can distinguish between the semantic clarity and the visual clarity. The semantic clarity
assesses the conceptual and functional transparency of the evaluation framework (i.e.,
that there is no discrepancy between the expected and the actual behavior). The visual
clarity assesses the look and feel of the user interface. This includes efficiently fulfilling
the user’s need for information. As shown in [OST20], visual clarity has a direct impact
on the usability.

Flexibility. The required set and type of parameters varies between different systems
and benchmarks. In order to support a wide range of systems and benchmarks, a broad
set of parameter types is required. Furthermore, the logic for creating benchmarking
configurations should be adjustable by the user. This is necessary to support complex
use cases and scenarios. An improper modeling or representation of the system under
evaluation or the benchmark within the benchmarking system can produce miss leading
results due to an inappropriate experimental design [Jai91].

Reproducibility. The reproducibility of results is a subject of high importance in the
research community [Hu20; CHI15; SYF+20; FBS12]. It describes the ability to repeat the
benchmark in another but identical environment and to obtain the same results [KLK20].
A benchmarking system should assist, and where possible also force, the user (i.e., a
researcher or software developer) in making their results as reproducible as possible.
This includes storing all required information for repeating an evaluation and providing
proper methods for storing all necessary environment parameters (e.g., software version
numbers and hardware information) required to recreate the environment [KLK20]. This
serves multiple purposes: First, it fosters the reproducibility of evaluations. Second, it
allows to identify differences to previous executions of the same benchmark which avoids
wrong conclusions [Fei03]. And third, it allows the verification of the results by other
researchers without completely redoing the evaluation.

Scalability. Even simple benchmarks can quickly result in a large number of config-
urations that need to be benchmarked [Jai91]. Especially when considering multiple
parameters at the same time, testing all combinations can easily result in hundreds of indi-
vidual configurations. When every configuration is then also executed multiple times in
order to get reliable results [Jai91], this can quickly result in a massive amount of required
executions—and that’s only for one specific investigation. A benchmarking system needs
to be able to efficiently and reliably deal with this. Individually executing the benchmark
for all resulting parameter configurations can take a great amount of time. However,
the individual configurations can perfectly be executed on several identical machines
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Figure 12.1 Overview of the evaluation framework Chronos (based on [VSC+20]).

in parallel. Supporting such a parallelized execution is a requirement a benchmarking
system needs to fulfill in order to handle larger benchmarking campaigns in acceptable
time frames. The evaluation system needs to ensure that all parts of one evaluation are
executed on machines with an identical hardware and software configuration [KBT04].

Monitorability. Since evaluation campaigns can take a long time, identifying potential
issues as soon as possible is essential. The evaluation system needs to provide function-
ality for monitoring the execution and observing the progress [KBT04]. Reducing the
need for direct access to the machines running the benchmarks also avoids intended and
unintended interference of the user and therefore further fosters reproducibility.

Transparency. The evaluation system must not impact the results of the benchmark.
Background tasks required by the evaluation system running on the machines executing
the benchmarks need to be as light wight as possible. If there are multiple benchmarks
executed in parallel, the results need to be independent of the number of benchmarks
running in parallel [BLW19].

12.4 The Chronos System

Driven by the need for a reliable solution for benchmarking Polypheny-DB, and due to
the lack of such a system, we created Chronos. It fulfills the requirements outlined in
Section 12.3. While our primary use case is the benchmarking of database systems, the
Chronos evaluation framework is nevertheless extremely generic and can be used for
benchmarking other types of systems as well.
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As depicted in Figure 12.1, the Chronos evaluation framework consists of two building
blocks: Chronos Control and Chronos Agent. The main software component is Chronos
Control, the heart of the evaluation framework. It provides a browser-based user interface
for managing evaluations and a REST API for interacting with the Chronos Agents. It is
also responsible for visualizing and archiving the results.

The Chronos Agents steer and monitor the execution of the benchmarks. They request
the specifications and parameters for a benchmarking task from Chronos Control. The
actual benchmark (i.e., executing the workload, collecting metrics etc.) is done by a
benchmarker. As shown in Figure 12.1, the agent can either be part of the benchmarker
itself or is deployed as a separated piece of software that triggers and interacts with the
benchmarking software (e.g., YCSB [CST+10]).

As depicted in Figure 12.1, there can be multiple instances of a Chronos Agent requesting
tasks from Chronos Control. This allows to parallelize the execution of a benchmark (see
Section 12.6.4). An agent can support multiple benchmarks and systems under evaluation.
This allows using a pool of benchmarking machines for multiple projects.

All communication between the agents and Chronos Control is implemented in a polling-
fashion. This has been a conscious design decision which massively simplifies the
deployment of larger setups. Especially in scenarios where clients are deployed at
multiple locations (e.g., on internal machines and in the cloud), the necessary firewall
configuration for a reversed communication approach would certainly violate network
security guidelines.

The full benchmarking results and the log output of every benchmarking job is stored at
a central location. Chronos Control includes the necessary logic for mounting external
storage systems for this purpose. The data and configuration of Chronos Control itself
(user accounts, projects, etc.) are stored in a dedicated database system.

The browser-based user interface allows an easy interaction with Chronos Control. The
user interface allows creating and managing experiments and evaluations, monitoring
their execution, and analyzing their results. It also allows adding new benchmarks
or systems under evaluation and to define their parameters. Since the user interface
is browser-based, it can be accessed using different devices (e.g., computers, tablets,
smartphones) and by multiple users at the same time. As depicted in Figure 12.2(a) the
start-page gives an overview on the current status of all evaluations. This allows to
quickly check if everything is fine.
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(a) The overviewpage summarizes the sta-
tus of the user’s evaluations.

(b) Details on the status and progress of a
running job.

(c) Status of the individual jobs of an eval-
uation.

(d) Results of an evaluation rendered by
Chronos.

Figure 12.2 Screenshots of the user interface of Chronos Control.

Chronos supports benchmarking multiple systems using different benchmarks at the
same time. In combination with its role-based user management, Chronos is suitable
for larger groups and even entire departments. This allows for a more efficient use of
resources, since Chronos can schedule the execution of jobs across all available machines.

A consequence of such a setup is a heterogeneous pool of machines for executing the
benchmarks. For benchmarks that produce metrics that are influenced by the hardware
and software configuration (e.g., transactions per second) it must be ensured that all
benchmarks are executed on identical machines. In Chronos, this is implemented by
the concept of execution environments. Environments are user-defined identifiers for a
pool of machines with identical hardware and software configuration. Evaluations which
require the availability of certain hardware or software can also be handled by using
corresponding environments.
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Figure 12.3 Simplified data model of Chronos (Crow’s foot notation).

The log-output from the benchmarkers and the systems under evaluation can be for-
warded to Chronos Control by the Chronos Agents. The agents also submit the progress.
As depicted in Figure 12.2(b), this allows to monitor the execution and to abort or resched-
ule specific jobs or whole evaluations directly in Chronos Control. Furthermore, it is also
possible to do a basic analysis of the results directly within Chronos Control.

Benchmarks or systems under evaluation can be added in the user interface of Chronos
Control. Similar to the graphical tool for building result configurations, there is also a
graphical interface for defining the parameters of a benchmark.

12.5 Implementation

As illustrated in Figure 12.1, the Chronos stack consists of two building blocks: Chronos

Control and Chronos Agent. This section introduces the common data model and gives an
overview on the implementation of the two building blocks.

12.5.1 Data Model

Chronos was built with the goal of being as versatile as possible. The idea was not to
build a benchmarking solution for one specific project, but a generic solution for all
kinds of benchmarking projects. This versatility is reflected in the data model depicted
in Figure 12.3.

Project. Projects allow to organize benchmarking campaigns by grouping experiments.
A project consists of an arbitrary number of experiments. Furthermore, projects are also
used to assign and manage privileges. Every project can have an arbitrary number of
members. Every member (i.e. user ) of a project has access to all experiments, evaluations,
jobs, and results associated with this project.
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Figure 12.4 State diagram of a Chronos job depicting the possible transitions between
the states.

Experiment. An experiment is the definition of an evaluation. Once created, exper-
iments are immutable. Every experiment is part of a project. There can be multiple
executions (i.e. evaluations) of an experiment. This allows to easily repeat an experiment
and to investigate the effect of changes to the system under evaluation.

Evaluation. An evaluation is an execution of an experiment in a specific environment.
All evaluations derived from an experiment have the same specification. An evaluation
consists of at least one job. If the objective of the benchmark is to investigate the effect of
a certain parameter (e.g., the number of threads), there are A jobs per configuration of this
parameter with A denoting the number of repetitions per configuration. The total number
of jobs of an experiment is therefore given by

∏?

8=0 =8A with ? denoting the number of
varied parameters and =8 the number of configurations of the 8th varied parameter. The
execution of jobs is parallelized within the selected environment.

Job. A job represents a specific parameter configuration for the benchmark and the
system under evaluation. Jobs can be in five different states. The states and the possible
transitions between these states are depicted in Figure 12.4. Every finished job has a
result assigned.

Result. The result of a job consists of a JSON document and a ZIP file. The JSON
document contains the results which can be analyzed and rendered by Chronos Control.
How results are being rendered is defined by result configurations. Supplemental data
submitted by the agent is stored in the ZIP file (e.g., for further analysis outside Chronos
Control).
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Benchmark. The representation of a benchmark for one or multiple systems under
evaluation. It includes the available parameters and configuration options for creating
experiments. Every benchmark has a unique identifier. The Chronos Agents submit a
list of supported benchmarks. Due to these identifiers, Chronos Agents can be dynami-
cally deployed and removed. For every benchmark, an arbitrary number of execution
environments can be defined.

Parameter Configuration. Chronos supports a large set of parameter types. Primarily,
it can be distinguished between two types of parameters: static parameters and varied

parameters. Static parameters allow for specifying a value. This value is then used for
all configurations (i.e. jobs). In contrast, varied parameters allow specifying multiple
values or ranges. The available set of parameters can be configured individually for every
benchmark using a graphical interface in Chronos Control.

Result Configuration. How the results of an evaluation are rendered is defined by
result configurations. There can be an arbitrary number of result configurations for every
benchmark. New result configurations can be added using a graphical interface directly
within Chronos Control.

Environment. Environments define groups of machines with similar or identical soft-
ware and hardware configurations. This allows to parallelize the execution of benchmarks
while keeping the results comparable. Environments can be defined individually for
every benchmark.

12.5.2 Chronos Control

Chronos Control is an application implemented in PHP offering a browser-based user in-
terface and a REST API for interacting with the Chronos Agents. With the Apache HTTP
server1, PHP2, MariaDB3 and git4, Chronos Control has only few runtime requirements.

The implementation follows the Model-View-Controller (MVC) software design pattern.
MVC has first been introduced for Smalltalk’80 [KP88]. It is a popular design pattern
for developing web applications. The idea is to separate the application into three main
logical components: the model, the view, and the controller.

1 https://httpd.apache.org/
2 https://secure.php.net/
3 https://mariadb.org/
4 https://git-scm.com/

https://httpd.apache.org/
https://secure.php.net/
https://mariadb.org/
https://git-scm.com/
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Figure 12.5 Sequence diagram of the MVC implementation (without object instantia-
tions).

The model is responsible for managing the data. This includes validation rules and the
logic for atomic operations (e.g., creating a user account). The data handled by the model
can be stored in an external data storage (e.g. a database system) that also provides
persistency.

The view takes care of representing the data. In the context of web applications, this
means generating an HTML page for the user interface or a JSON response for the API.
The view does not contain any application logic.

The controller contains the application logic. It accepts input values, processes them
using data obtained from the model, and composes the result data to be rendered by the
view. The controller also initiates updates of the data through the models.

Usually, there are multiple models, views and controllers in an application. However,
there are various adaptions of the MVC model. Figure 12.5 shows a sequence diagram of
the MVC implementation in Chronos Control. A request is accepted by the dispatcher
and handled by the router. The router is the central component that decides which
controller and view needs to deal with this request. While processing the request, the
controller might request and update data through multiple models. Finally, the output is
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Figure 12.6 Software architecture of Chronos Control.

rendered by the selected view. Which view is being selected depends on the action and
the interface through which the request has been received.

Chronos Control features two interfaces: a browser-based user interface and a REST API.
The user interface is rendered using Bootstrap5 and the AdminLTE6 template.

Figure 12.6 depicts the architecture of Chronos Control. In addition to the model, view
and controller components, there is also a library component containing logic used by
several controllers like authentication handling and logging.

The system is implemented using object-oriented PHP.The object instantiation is done by
the router based on the requested URL using a custom class loader. This approach offers
a high degree of modularity and expandability. This flexibility also facilitates providing
custom implementations for additional parameter types and result graphs for individual
systems by the user. It even allows overwriting the whole logic for defining experiments,
deriving evaluations and generating jobs. The necessary PHP scripts can be provided
using a git repository by specifying URL and credentials in the UI. There can be one
repository per benchmark. However, executing user-provided code is a severe security
risk. This function is therefore disabled by default and needs to be activated in the
configurations file first. Hence, activating this function requires the same level of access
that a malicious usage of this functionality can provide. Furthermore, modifying the
repository related settings of an adapter is limited to users belonging to the administrators
group—even when this feature has been enabled.

5 https://getbootstrap.com/
6 https://adminlte.io/

https://getbootstrap.com/
https://adminlte.io/
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Figure 12.7 Flow Chart visualizing the control loop of Chronos Agent.

Chronos Control includes an installation script which automates the setup. There is also
an integrated mechanism for upgrading Chronos Control to the latest version. Chronos
Control is released under the MIT open-source license. The source code and releases are
available on GitHub7.

12.5.3 Chronos Agent

A Chronos Agent is the component of the Chronos stack that runs on every machine
used for executing evaluations. It is either integrated into the benchmarker—the software
executing the workload and collecting the metrics—or deployed standalone to call existing
benchmarking applications. It handles the communication with Chronos Control and
steers and monitors the execution of benchmarking jobs.

The flow chart in Figure 12.7 depicts the generic control loop of a Chronos Agent. Im-
plementing a Chronos Agent requires implementing this control loop. Since Chronos
Control exposes a documented REST API for communicating with the clients and uses
JSON for encoding the messages, implementation should easily be possible in nearly
every programming language and on nearly every platform.
7 https://github.com/Chronos-EaaS/Chronos-Control

https://github.com/Chronos-EaaS/Chronos-Control
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Figure 12.8 Results of a survey among users of Chronos (n=5). Every question has
been answered on a scale from 0 (don’t agree) to 10 (fully agree).

We created a reference implementation of a Chronos Agent for JVM-based languages,
available through Maven Central8. This implementation also contains functionality for
measuring execution times. The source code is released under the MIT open-source
license and is available on GitHub9.

12.6 Evaluation

In this section, we perform an evaluation of Chronos. As criteria for this evaluation, we
take the requirements outlined in Section 12.3. This section is structured accordingly.
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12.6.1 Clarity

As outlined in Section 12.3, it can be distinguished between two types of clarity: the
semantic clarity and the visual clarity. In Chronos, both types have been addressed in
multiple ways. With eleven distinct parameter types, the semantics of parameters can
precisely be depicted. The ability to provide human-readable names for all parameters
and options improves the semantic clarity. The event timeline depicted in Figure 12.2(a)
and Figure 12.2(b) provide a context-dependent overview of all ongoing activities. This
enhances semantic clarity (by providing insights and improving transparency) and visual
clarity (by serving the information need in an easy-to-understand form).

Chronos allows to add user-defined descriptions to projects, experiments, evaluations
and jobs. This allows to add arbitrary information for further reference. The job name
is automatically generated and contains the values of all varied parameters (see Fig-
ure 12.2(c)). The design of the UI is based on Bootstrap, providing enhanced visual
clarity and accessibility. Pictograms are used in accordance to ISO 9241-210 for improved
comprehensibility. The separation between experiments and projects eliminates human
errors when repeating an experiment.

To assess the clarity of Chronos, we performed a user-study among a group of developers
that used Chronos in the past. We made sure to select a diverse set of participants with
different levels of experience in using Chronos. As argued by [NL93] five participants
are sufficient for this type of user study. For assessing the clarity-requirement, we have
asked four questions. Each question has been answered on a scale from 0 (don’t agree)
to 10 (fully agree). The results of the survey, including the exact questions, are depicted
in Figure 12.8.

The results of the survey show that the behavior of Chronos is transparent to the users.
This is very important since intransparency and unexpected behavior can lead to mistakes
in the definition of the experiments. Most users also agree that Chronos helps them
in defining better and more meaningful benchmarks. However, the survey also shows
that the user interface needs further refinements. Nevertheless, with rating of 7.2 it is
assessed acceptable for the sake of this evaluation.

8 https://search.maven.org/artifact/org.chronos-eaas/chronos-agent
9 https://github.com/Chronos-EaaS/Chronos-Agent

https://search.maven.org/artifact/org.chronos-eaas/chronos-agent
https://github.com/Chronos-EaaS/Chronos-Agent
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12.6.2 Flexibility

Chronos is a very versatile tool. We intentionally developed it as a generic benchmarking
framework and not as a benchmarking tool purely tailored to Polypheny-DB.The support
for eleven distinct parameter types and five result graph types, allows modeling a broad
set of benchmarking tools and systems under evaluation.

If the available set of parameter types or result graphs is not sufficient, it is possible
to provide additional types. The implementation for these additional parameter types
can be provided individually by specifying a git repo containing PHP scripts. This can
be done completely within the user interface of Chronos Control. It is also possible to
extend or completely override the logic for creating experiments. This allows to model
highly sophisticated workflows and complex benchmarking scenarios.

Another aspect of flexibility is that of integration. The decoupling of Chronos Control and
Chronos Agent minimizes the language and platform dependent parts of the software
stack. Integrating support for benchmarking with Chronos into existing benchmarking
clients has been simplified by locating the complex logic in Chronos Control. Furthermore,
the XML-based job definition and the RESTAPI used for communication between Chronos
Control and the Chronos Agents allows for straightforward implementation of Chronos
Agents on nearly all platforms and using nearly all programming languages.

Chronos has demonstrated its flexibility as a benchmarking tool for a broad spectrum
of projects. Beside Polypheny, Chronos has been used for benchmarking the multi-
media retrieval database system ADAMpro [Gia18], the distributed multi-store system
Icarus [VSS17], the data replication and partitioning cost model BEOWULF [SFS16], and
TDG, a temporal data generation tool for PolarDBMS [BS14]. Furthermore, Chronos has
been used in the context of numerous student projects.

12.6.3 Reproducibility

Chronos assists developers in making their results more reproducible in two ways: First,
by automating the entire evaluation workflow, Chronos removes the human from the loop
and forces all steps to be scripted and second, it archives all parameters, configurations
and logs of the evaluation. Our reference implementation of the Chronos Agent also
archives various environment parameters.

Another factor that improves the reproducibility is an indirect one: By significantly
simplifying the benchmarking process and therefore eliminating or at least drastically



Chronos 155

0 2 4 6 8 10

avg=9.5

Figure 12.9 Q: Does Chronos make your evaluations more reproducible?

reducing the potential for human error’s in the benchmarking configuration, the overall
reproducibility gets improved.

Chronos does not allow the deletion of evaluations or their results, but it is possible to
archive them. This avoids the system getting cluttered, while at the same time, preserving
all data that might be important for future investigations. However, Chronos is only a
framework for benchmarks. The achievable degree of reproducibility therefore heavily
depends on how it is applied.

As part of the user study introduced in Section 12.6.1, we also asked the participants
whether Chronos makes their evaluations more reproducible. The results for this question
are depicted in Figure 12.9. With an average of 9.5 out of 10, the participants of the
survey clearly agree that Chronos is making their evaluations more reproducible.

12.6.4 Scalability

Chronos supports executing evaluations with an arbitrary number of jobs and for an
arbitrary number of systems at the same time. There are no artificial limitations regarding
the number of users, benchmarks and systems under evaluation. However, there are
of course technical limitation depending on the capabilities of the hardware on which
Chronos Control is deployed.

Chronos features a role-based rights management using projects. This allows to use one
central instance of Chronos for whole groups or departments. Such a setup has proven
reliable over several years at the DBIS research group at the University of Basel.

The approach of dividing an evaluation into individual jobs allows parallel execution
and therefore a high efficiency. With its distributed architecture, Chronos is tailored
towards a distributed and parallelized execution of benchmarks. This approach is also
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Figure 12.10 Details on the status and progress of a running evaluation job.

very reliable since the parameters and configuration for a job remain persistent and can
be verified later.

There are no artificial limitations regarding the number of jobs that can be executed at
the same time. Due to the architecture of the Chronos stack, the resources required on
Chronos Control for each simultaneous job are very low.

Execution environments allow defining groups of machines with an identical hardware
and software configuration. An arbitrary number of environments can be defined for
every benchmark and system under evaluation. Jobs belonging to the same evaluation
are only executed on machines belonging to the same execution environment.

12.6.5 Monitorability

Chronos allows monitoring the execution of benchmarks within the user interface of
Chronos Control. Figure 12.10 shows a screenshot of the detail’s page of a job. The
progress of the job is calculated by the Chronos Agent and periodically sent to Chronos
Control together with other status information.

It is also possible to monitor the log output of the benchmarker live in the user interface
of Chronos Control. The log is captured by the Chronos Agent and archived together
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with the results of the benchmark. The log view supports ANSI colored log output. This
is very useful to quickly identify error messages.

Another powerful feature for monitoring evaluation campaigns are the events displayed
as timeline. The timeline displays events associated with the displayed entity (project,
experiment, etc.). It also displays the time elapsed since the event. This has proven useful
for identifying issues such as jobs stuck in one state.

The user interface of Chronos Control can be accessed using mobile devices (like smart-
phones or tablets). This allows to conveniently check the progress of ongoing evaluations.
This especially comes in handy if there are approaching deadlines and a failing benchmark
would require immediate actions.

12.6.6 Transparency

The architecture of Chronos with its separation of Chronos Control and Chronos Agent
minimizes impact on the measured performance. Nearly all logic is located in Chronos
Control. The Chronos Agent is very lightweight. All compute heavy actions, such as
compressing and uploading the result to Chronos Control, happen after the completion
of the benchmark. All measurements are done on the machine where the benchmarks
are executed. Parallel benchmarks or a high load on Chronos Control therefore has
no impact on the measurements. However, it is assumed that Chronos Control is not
deployed on a machine used for executing benchmarks.

Nevertheless, impact on the performance is still possible. A critical point is the transmis-
sion of log-results to Chronos Control. If there is a large amount of log-output, this can
impact the performance. However, a large amount of log-output has a severe impact on
the performance in general and should thus be avoided anyway.

12.7 Discussion

Evaluations are an important part of software development and research in computer
science. For the former, continuous benchmarks are important throughout the whole de-
velopment process to identify performance regressions and bottlenecks, and to optimize
the system’s configuration. In research, reproducible results are necessary to compare
the performance and efficiency of different approaches. As researchers developing (proto-
type) systems for verifying and benchmarking our models, meaningful and reproducible
benchmarks are crucial.
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Benchmarks provide more than numbers, they provide insights that foster our under-
standing of systems and concepts. However, good benchmarks are a time-consuming
endeavor. With Chronos, we created a framework that automates the entire evalua-
tion workflow. Chronos makes results more transparent, more reproducible and less
labor-intensive.

Chronos has been implemented due to the lack of available solutions for automated and
distributed benchmarking of systems. It fulfills the requirements outlined in Section 12.3,
and has proven itself a stable and reliable tool for benchmarking Polypheny. By releasing
Chronos under the MIT license, we made this tool available for other project as well.

As part of future work, we want to further improve the visualization of the resulting
parameter configurations. Based on the result of the user study, we also plan to improve
and simplify the user interface. Furthermore, we want to transform the concept of
Chronos Agents towards a universal piece of software that takes care of setup, execution
and clean-up of arbitrary evaluation tasks (e.g. using Docker). This step would fully
remove the human from the (benchmarking) loop and further improve reproducibility.



No amount of experimentation can
ever prove me right; a single
experiment can prove me wrong.

— Albert Einstein13
Verification

Software is written to fulfill a specific purpose [KA08]. Software verification is the task of
checking if the software correctly fulfills this purpose. It is an essential part of software
development and a prerequisite for all kinds of performance benchmarks. There are
two fundamental approaches for verifying the correctness of software: empirically and
through a formal proof.

The empirical approach can be compared with scientific experiments: the software to be
tested is called with various input values. For every input value, it is then checked if it
results in the expected output value or behavior. However, an empirical approach can
only prove that a software is incorrect.

Formally proving the correctness of software is extremely difficult and not possible in all
cases [Pre16]. It is an active field of research and there are also some interesting projects
like DeepSpec1. However, there is not yet a practical approach for proving the end-to-end
correctness of whole systems. Hence, in this chapter, we focus on empirical methods.

The most important factor affecting empirical testing methods is the choice of the input
values with which the software is tested. They should cover as many cases as possible. In
a PolyDBMS with its support for multiple query languages, data models and execution
engines, selecting “good” input values is very difficult. For verifying Polypheny-DB, we
therefore developed the Polyfier approach. It verifies the correctness of a PolyDBMS by
comparing the result of randomly generated queries for different storage configurations.
In this chapter, we introduce the blueprint for this approach and discuss its limitations.
Furthermore, we briefly describe how we have implemented it for testing Polypheny-DB.

1 https://deepspec.org/

https://deepspec.org/
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13.1 Assumptions

Before we introduce the blueprint of our Polyfier approach, we first discuss two assump-
tions we need to make in order for this approach to work as intended.

Assumption 1. Although database systems are usually well-tested software, they—as
probably every system—have bugs. This is also the case for the database systems used
as underlying data stores. However, we assume that the execution engines (i.e., the
underlying data stores and the engine of the PolyDBMS) do not have the same bug. Thus,
if we execute the same query on the underlying data stores, we can identify problems
with the integrated engine of the PolyDBMS or with the underlying database systems by
comparing the results.

Assumption 2. Every operation supported by the PolyDBMS is supported by at least
one of the underlying data stores. Thus, the result produced of the integrated engine of
the PolyDBMS can be compared with at least one result produced by pushing down the
operation to an underlying data store.

The first assumption is required since we cannot rule out the possibility that there are
bugs in the underlying data stores. However, it is unlikely that this will affect all databases
supported by the PolyDBMS and that it will result in exactly the same output for all
execution engines. However, this may be the case if multiple execution engines rely on
the same library. Furthermore, there might also be certain issues with the hardware or
the operating system that equally effect all database systems. With the Polyfier approach,
we will not be able to identify these issues.

The second assumption is more problematic: to find errors, we compare the results
of different execution engines. If all engines return the same result, we assume that
the result is correct. However, this assumes that there are multiple engines capable of
processing a query. If a function or operation is only supported by the integrated engine,
but not by any of the underlying data stores, there is nothing to compare against since
the function or operation is always processed by the integrated engine of the PolyDBMS.

This is also the case if a query contains a set of operations and functions that is not
supported by a single data store. However, since the queries are generated randomly,
there will eventually be a query that only contains functions and operations that are
supported by a single data store and is thus able to verify the results produced by the
integrated engine of the PolyDBMS. In order to increase the odds for this to happen,
the randomly generated queries should differ in their complexity (i.e., in the number of
operations and functions).
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13.2 Polyfier

The idea of the Polyfier approach is to verify the correctness of a PolyDBMS using
randomly generated schemas, data, storage configurations and queries. We therefore
need generators that randomly produce these inputs:

Schema Generator. This generator randomly generates a schema consisting of = name-
spaces. The integer = is randomly derived from a normal distribution with a mean of 9
and a standard deviation of 5. It is ensured that = ≥ 1. The data model of each namespace
is picked randomly. For each namespace, a random number of schema elements (i.e.,
tables, columns, collections, defined fields, graph schema nodes and edges) is being
created. The mean and standard deviation of the normal distributions used for randomly
generating these schema elements depend on the data model. Where applicable, data
types are picked randomly. For relational schemas, primary keys, unique constraints and
foreign key constraints are randomly defined as well. It is ensured, that the resulting
schema is structurally correct (e.g., that foreign key constraints reference a key and that
matching data types are being used). Using the Query Generator, the schema generator
also generates a random number of views and materialized views within each of the
namespaces.

Storage Configuration Generator. The storage configuration defines on which of
the underlying data stores the data entities are being stored. This encompasses the
configuration of the data partitioning and replication. The generator has a static phase
and a random phase. In the static phase, it deploys exactly one data store and allocates
all data entities to this data store without any data partitioning. In the random phase, it
deploys a random number of data stores and also randomly configures the data allocation
and partitioning.

Data Generator. This generator produces data that matches the previously defined
schema. It also respects the primary, unique, and foreign key constraints defined for
relational schemas.

Query Generator. The heart of the Polyfier system that randomly generates queries
that match the schema. In our implementation, the queries are generated as logical
query plans by randomly picking possible operations and adding them to the query plan.
Using this approach, arbitrary single-model, cross-model, and multi-model queries can
be generated. The generator does not only generate query plans that retrieve data, but
also query plans that modify data. As discussed in Section 13.1, the generator makes
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Endless loop 

Polyfier ( storageConfigurations: Integer, queries: Integer )

Reset the PolyDBMS

Generate seeds
Seed schemaSeed; Seed dataSeed; Seed querySeed

For storageConfigurations times

Generate schema using schema generator with schemaSeed
and apply schema to the PolyDBMS

Configure data allocation as specified 
by the storage configuration generator

Generate data using the data generator with dataSeed
and insert data into the PolyDBMS

For queries times, generate query using query generator
and execute on the PolyDBMS

Initialize query generator with querySeed

Result matches previous execution
of same queryyes no

abort

Figure 13.1 Nassi–Shneiderman diagram of the Polyfier approach for verifying the
correctness of a PolyDBMS by comparing the result of randomly generated
queries for different storage configurations.

sure to produce both small query plans and large query plans (in terms of the number of
operations and functions).

Each generator needs to be implemented such that its outcome can be reproduced. In our
implementation, we achieve this by using a pseudorandom number generator initialized
with a random seed. By using the same seed, the outcome can be reproduced.

As depicted in Figure 13.1, the Polyfier system has two parameters: the number of
storage configurations that should be verified and the number of queries with which the
verification should be performed. Since the generators for the same seed produce the
same schema, data, and queries, it is possible to check different storage configurations. At
the first execution for a set of seeds, the result of every query is recorded. This allows to
compare it with the result of subsequent iterations with a different storage configuration.

Since the first configurations generated by the storage configuration generator allocate
all data entities to one data store, and under the assumptions and exceptions outlined in
Section 13.1, there should be at least one execution where the result is produced by an
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underlying data store. Hence, the result of the integrated execution engine is verified
against the result of at least one other execution engine.

As depicted, the Polyfier runs until it finds a problem, i.e., until the result of a query
differs from the result of a previous execution of that query under a different storage
configuration. By using the same seeds, the situation can conveniently be reproduced in
order to identify and solve the issue.

The number of queries with which the verification should be performed primarily depends
on the available storage space, since the result of every query needs to be stored. However,
a higher number of queries also results in more changes to the data and thus in a better
verification of the consistency of data modification operations. Furthermore, the overall
stability of the system is tested more extensively.

The number of storage configurations should always be larger than the number of
available data stores. If a smaller number is used, only some of the storage configurations
allocating all data to a single data store are being checked. At least with Polypheny-DB,
this would avoid most of the complex aspects like the query routing and operations in
the integrated engine. However, with a high number, it takes more time to thoroughly
verify the schema representation and mapping capabilities. Hence, the choice of this
parameter is a trade-off between testing schema representation and mapping on one side
and query routing and the integrated engine on the other side.

13.3 Discussion

With Polyfier we present an approach for verifying a PolyDBMS. As with any empirical
method, it cannot prove the correctness of a PolyDBMS, but it can show with some
confidence that errors are rare. Furthermore, it is a valuable tool for resolving issues
since the exact conditions can be reproduced.

With the Polyfier approach, we are able to verify multiple aspects of a PolyDBMS. Besides
the correctness of the results obtained by executing a query and the consistency of data
manipulation operations for various storage configurations, it also verifies the PolyDBMS
Requirement 3.3 (Independence of Storage Configuration) and the overall stability of the
system.

However, Polyfier can only be a piece of a holistic testing a verification concept of a
PolyDBMS system. Since our implementation of the Polyfier approach generates query
plans based on the internal query representation, the parsing of query languages and
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their translation to the internal representation is not tested. In the Polypheny-DB stack,
we therefore also use a large set of strategically created integration tests to check the
query parsing and translation layer.

Another aspect that cannot fully be verified using the Polyfier approach are cross-model
and multi-model queries. These queries contain mapping operations that are always
executed in the integrated engine of the PolyDBMS. While the Polyfier can verify the
consistency of the results across different storage locations, the actual correctness of
the result cannot be verified using this approach. These features therefore need to be
thoroughly tested using manually created integration tests.

The extensive verification we have performed has not only allowed us to identify and re-
solve issues within Polypheny-DB, but also to find and report bugs within the underlying
data stores.



Measurements are not to provide
numbers but insight.

— Ingrid Bucher14
Benchmarking

In this chapter, we present the results of the quantitative evaluation of Polypheny-DB,
our implementation of a PolyDBMS based on the concepts introduced in this thesis. The
goal of these benchmarks is to demonstrate both the effectiveness and the limitations of
the introduced concepts based on their implementation in Polypheny-DB.

We are committed to the traceability and reproducibility of scientific results. This has
not only driven the development of the Chronos system presented in Chapter 12, but
also motivated us to make the Polypheny-DB system and all benchmarking tools pre-
sented in this chapter publicly available under an open-source license1. Furthermore,
we also published the raw results, configuration files, parameters and log-outputs of all
experiments presented in this thesis in a dedicated GitHub repository2.

14.1 The Setup

The benchmarking results we present in this thesis were obtained using a distributed
and parallelized benchmarking setup with a high degree of automation. At the heart
of this setup is Chronos, our Evaluation-as-a-Service system that automates the entire
systems evaluation workflow. For executing the benchmarks, we used nine identical
nodes (machines). Each node is equipped with an Intel Xeon X5650 24-core CPU with
24 GiB of RAM (out of which 10 GiB are allocated to Polypheny-DB). All machines run
Ubuntu 22.04 LTS (with kernel version 5.15.0-37) and the same patch level. As Java
runtime environment, we use OpenJDK version 17.0.3.

1 https://github.com/polypheny
2 https://github.com/vogti/PhD-Benchmarks

https://github.com/polypheny
https://github.com/vogti/PhD-Benchmarks
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Figure 14.1 The machines on which the benchmarks are being executed are arranged
in two configurations referred to as local and remote.

Section 14.1 depicts the benchmarking setup. For the benchmarks, we have arranged
the nodes in two different configurations: In the local configuration, the benchmarking
client is deployed on the same machine as the system to be benchmarked. In the remote

configuration, the client is deployed on a separate machine. The network connection
between the two nodes in the remote configuration has a bandwidth of 1 GBit/s. For
our benchmarks, we primarily use the local configuration. This avoids measuring the
network stack that might introduce fluctuations and could be a bottleneck.

All data stores are deployed as Docker containers. We use Docker version 20.10.17,
PostgreSQL version 13.2, MongoDB version 4.4.14, and Neo4j community edition version
4.4. The benchmarks are executed by the Polypheny Client3, our versatile benchmark-
ing client for Polypheny-DB. It includes support for multiple industry-standard and
custom benchmarks. This is achieved by utilizing OLTPbench [DPC+13], a database
benchmarking framework including support for a large variety of database benchmarks.
Polypheny Client acts as a Chronos Agent and requests jobs from Chronos Control.
Besides benchmarking Polypheny-DB, the Polypheny Client also supports benchmarking
other databases. This allows to perform overhead and comparison benchmarks.

To automate the setup and configuration process, we have developed Polypheny Control4,
a tool for deploying and monitoring Polypheny-DB. It takes care of pulling the required
repositories, executing the build process, and starting Polypheny-DB. This allows us to
compare different versions of Polypheny-DB and enables us to perform even complex
evaluation scenarios without any manual interaction. Furthermore, it ensures a complete
reset between each benchmark.
3 https://github.com/polypheny/Polypheny-Simple-Client
4 https://github.com/polypheny/Polypheny-Control

https://github.com/polypheny/Polypheny-Simple-Client
https://github.com/polypheny/Polypheny-Control
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14.2 The Benchmarks

The results presented in this chapter are obtained using two industry-standard bench-
marks and one custom benchmark. In what follows, we briefly introduce the individual
benchmarks:

Gavel. The Gavel MultiBench benchmark is a custom benchmark that simulates the
workload of the fictive auction house introduced in Chapter 2. It is an extended version
of the benchmark we have introduced in [VSS17]. The benchmark creates a relational,
a document, and a graph schema and loads randomly generated data. The queries are
expressed using SQL, MongoQL, and openCypher and are submitted through different
query interfaces.

TPC-C. This is a well-known online transaction processing benchmark that models a
supplier, that manages and sells items. The TPC-C benchmark executes a mix of rather
complex read and write queries. The specifications for the TPC-C benchmark can be
found in [Cou10]. The queries are expressed using SQL.

YCSB. The Yahoo! Cloud Serving Benchmark is a benchmark created for evaluating the
performance of key-value and cloud serving systems [CST+10]. It consists of five rather
simple queries. The benchmark comes with multiple pre-defined workloads that define
ratios for these queries. The queries are expressed using SQL.

14.3 The Metrics

In the experiments presented in this chapter, we use two different metrics. The choice of
metric depends on the setup of the experiment.

Throughput. Expressed in transactions per second, this metric measures the number
of transactions (i.e., queries), the database system on average processes per second. A
higher throughput can be achieved by a higher degree of parallelization or by reducing
the processing time for a transaction.

Latency. The average time an individual transaction takes. It is measured by the
benchmarking client, recording the time from the moment a query is submitted and until
the result is fully received; thus all result tuples have been read by the client. This metric
therefore describes the experience an individual client has.

The results presented in this chapter have been obtained by executing every benchmark
30 times. The presented numbers are the average over these 30 executions.
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14.4 Experiment 1: Overhead of Polypheny-DB

A PolyDBMS enables applications that are not possible with single, domain-specific
database systems. However, there are also applications where not only these additional
features and capabilities are important, but also the performance of the database system;
especially the query latency.

Due to its architecture, a PolyDBMS adds an overhead on every query and thus increases
the query latency compared to a domain-specific database system optimized for this
particular type of workload.

The query latency is influenced by various factors such as

– the complexity of the queries in the workload,

– the optimization of the database for this workload,

– the amount of data,

– the presence of indexes,

– the number of concurrent threads, and

– the concurrency control technique.

Discussing relative execution times or throughputs does therefore not provide any
insights. Selecting a data store with an optimistic concurrency control technique, loading
a small amount of data, and executing simple queries with a high degree of concurrency
might result in execution times being significantly increased by the PolyDBMS. However,
if we compare Polypheny-DB with a database system that, like Polypheny-DB, features a
strong strict two-phase locking protocol, and choose a benchmark with a large amount of
data and complex analytical queries, the absolute execution time will only differ within
fractions of a percent.

A meaningful assessment of the overhead introduced by the PolyDBMS therefore requires
determining the absolute overhead. The overhead can be seen as the quantification of
the impact of using Polypheny-DB if there is no additional benefit for this scenario, thus
no capability or feature added by Polypheny-DB.

For this experiment, we therefore select a database that natively supports all queries
of a benchmark. By comparing the query latency obtained by directly executing the
queries on this database with the query latency obtained by benchmarking Polypheny-DB
using this database as its single data store, we are able to isolate the overhead. A serial
execution of the workload avoids measuring concurrency control specific differences.
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Figure 14.2 Overhead for different types of workloads, measured using the YCSB
benchmark. The depicted overhead is the difference between the arith-
metic means of the query latencies on Polypheny-DB with a PostgreSQL
data store and directly on PostgreSQL.

Due to its popularity, we selected PostgreSQL as database system for this experiment.
Furthermore, we selected the YCSB benchmark since it is a well-known and industry-
standard benchmark and allows differentiating between different types of workloads. The
results of this experiment are depicted in Figure 14.2. PostgreSQL has in both cases been
deployed using Docker. The measurements have been performed both with the client on
the same node (local) and with the client on a different node (remote). Furthermore, we
have compared the query latency for different amounts of data. The difference between
the mean query latencies for all queries with a scale factor of 1 and 100 is only 0.05ms. It
can be safely assumed that these are natural variations in the range of the measurement
tolerance. The overhead added by Polypheny-DB is thus independent of the amount of
data. As mentioned above, the raw results and configuration details can be found in the
results repository5 on GitHub.

The benchmark shows a high overhead for inserts and updates. This is probably due to
validation of type constraints. The difference between the overhead of read queries and
the overhead of scan queries is expected since there is a larger ResultSet that needs to be
serialized and deserialized twice.

Furthermore, the benchmark shows that the JDBC stack of Polypheny-DB, especially the
efficiency of the result serialization, is seemingly less efficient than the one of PostgreSQL.
If there is data to be serialized (i.e., read or scan) the overhead is higher in a remote
deployment than in a local deployment.

5 https://github.com/vogti/PhD-Benchmarks/Experiment_1

https://github.com/vogti/PhD-Benchmarks/Experiment_1
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Figure 14.3 Comparison of the throughput in transaction (queries) per second between
Polypheny instances with one data store and a Polypheny instance with
multiple data stores. For the latter, the data is fully replicated across all
data stores. The workload consists of only read queries. Higher numbers
are better.

While especially the overhead for inserts and updates could be better, the overall overhead
of Polypheny-DB can be considered negligible for many applications. Nevertheless, we
consider further reducing the overhead an important part of our future work.

14.5 Experiment 2: Routing

Query routing is an essential part of any PolyDBMS. It plans the decomposition and
execution of a query and selects on which of the underlying data stores a query or parts
of it should be executed. In Chapter 10, we have introduced a conceptual model for
efficiently routing queries in a PolyDBMS. In this experiment, we benchmark this model
based on its implementation in Polypheny-DB.

To evaluate the routing model, we compare the throughput of multiple Polypheny-DB
instances, each with a single data store, against a Polypheny-DB instance with multiple
data stores. Since we explicitly want to benchmark the ability of the system to handle
heterogeneous data and workloads, we use the Gavel MultiBench benchmark for this
experiment.

This experiment not only benchmarks the effectiveness of the query routing, but also the
capabilities of the integrated engine and the mapping between data models for both data
retrieval and data modification queries.
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Figure 14.4 Results for different read/write ratios. In the “All three” configuration
(red bars), the data is fully replicated across all three data stores. Higher
numbers are better.

Figure 14.3 depicts the results of the Gavel benchmark for a workload consisting only
of read queries. The benchmark has been executed in a local deployment with four
concurrent workers. The first three bars depict the results for a Polypheny-DB instance
with a single data store. The fourth bar depicts the result for a Polypheny-DB instance
where the data is fully replicated across all three data stores. The system can thus pick
the data store with the best characteristics for executing a query. The results show
that Polypheny-DB’s routing system provides between 2.5 and 5 times the performance
obtained with the individual data stores.

However, a full replication of data comes with a price tag: not only does it increases the
required amount of storage space, it also adds an additional overhead on data modification
queries since all changes need to be performed on all data stores. While the ability to
distinguish between eagerly and lazily replicated placements in the form of the freshness
aware query processing introduced in Section 8.5.2 might be a suitable solution in certain
scenarios, in the context of transactional workloads, however, this is not applicable.

Figure 14.4 depicts the result of the Gavel MultiBench benchmark for different read
and write ratios. While in scenarios with high read ratios, Polypheny-DB combines the
advantages in terms of query performance provided by the underlying data stores, for
update heavy scenarios, a full replication of data limits Polypheny-DB to the performance
of the slowest involved data store.

The data allocation should therefore be adjusted such that an entity is only stored on those
data stores which are most suitable for processing the queries accessing or modifying
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Figure 14.5 Results obtained with a manually optimized placement of data. The stor-
age configuration is optimized for read-workload and is identical for all
read/write ratios. Higher numbers are better.

that entity. Data allocation is therefore always a tradeoff between data replication and
data partitioning. Replicating entities across multiple data stores can increase query
performance for heterogeneous workloads while reducing the number of data placements
typically increases the write performance.

Figure 14.5 depicts the results of the same benchmark as depicted in Figure 14.4, however,
this time we have manually optimized the data allocation using functionality provided
by Polypheny-DB. Compared to a full replication of data across all three data stores,
the optimized placements provide superior results for all read/write ratios. The drop in
performance for mixed read/write ratios can be explained as an effect of strong strict
two-phase locking (SS2PL) used by Polypheny-DB for concurrency control. Since the
write queries are on average less complex than the read-only queries generated by the
MultiBench benchmark, the exclusive locks prevent parallel execution of read queries.
This performance drop can also be observed for the individual data stores.

While Polypheny-DB allows the data allocation to be changed at runtime, the latest release
of Polypheny-DB (version 0.7.0) is not yet doing this automatically. Such an automated
and self-adaptive optimization of the data placements would especially be beneficial
when dealing with changing workloads. We are currently working on implementing this
within Polypheny-DB. A first prototype already shows very promising results.

The results of this experiment show that our approach to query routing in a PolyDBMS
is efficient and reliably selects the most suitable data store(s).
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Figure 14.6 Comparing the performance of a Polypheny-DB instance with a single
PostgreSQL data store against a Polypheny-DB instance with three Post-
greSQL data stores using the TPC-C benchmark. In the three data store
deployment, the item table is partitioned across the three data stores us-
ing the HASH partition function. The other tables are all stored on the
same of the three data stores (no replication). The graph depicts the av-
erage latency in milliseconds across all transactions. Lower numbers are
better.

14.6 Experiment 3: Data Partitioning

The ability to replicate and partition data across underlying data stores is an important
part of the data allocation model we introduced in Chapter 8. While data replication has
already been examined in Experiment 2, in this experiment we consider data partitioning.

In the conceptual model presented in this thesis, we distinguish between two types of
partitioning, which we refer to as horizontal partitioning and vertical partitioning. The
particular mechanics of these partitioning types depend on the data model; however,
horizontal partitioning affects only the data, while vertical partitioning also involves
splitting the schema. In this experiment, we focus on horizontal data partitioning.

When the data is partitioned among multiple underlying data stores, the system can no
longer push down all operations to the underlying data stores, but might need to process
some portions of the query in the integrated engine. This usually has a significant impact
on query performance since the data must be streamed to Polypheny-DB. The goal of
the experiment is to measure the overhead incurred by horizontal data partitioning.
We therefore use the relatively complex TPC-C benchmark and compare the average
latency for a configuration where the item table is stored entirely on one data store to an
implementation where it is partitioned across three data stores. To compare the results,
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Figure 14.7 Comparing the performance of a Polypheny-DB instance with a single
Neo4j data store against a Polypheny-DB instance with three Neo4j data
stores using the TPC-C benchmark. In the three data store deployment,
the item table is partitioned across the three data stores using the HASH
partition function. The other tables are all stored on the same of the three
data stores (no replication). The graph depicts the average latency in
seconds across all transactions. Lower numbers are better.

we use multiple instances of the same database system. The item table is the largest table
created by the TPC-C benchmark and is accessed in 96 % of the transactions.

In this experiment, we compare the performance of Polypheny-DB for partitioned and
unpartitioned schemas. In the unpartitioned case, Polypheny-DB is used with one data
store, and in the partitioned case with three data stores. All data stores are deployed on
the same physical node together with Polypheny-DB and the client, thus the partitioned
case does not benefit from horizontal scaling.

The results are depicted in Figure 14.6. With PostgreSQL, the mean latency is almost
quintupled if the item table gets partitioned across three data stores. The reason for this
is, that Polypheny-DB can no longer push down the full query to the data store but needs
to process parts of the query in its integrated engine. This integrated engine is not only
less optimized than PostgreSQL, it also requires data to be streamed from the data store
to Polypheny-DB. This heavily impacts performance.

However, if we execute the same benchmark with Neo4j instead of PostgreSQL, the results
are different. As depicted in Figure 14.7, there is only a small difference in performance
between the partitioned and unpartitioned configuration. Since Neo4j does not natively
support the relational TPC-C benchmark, most of the queries needs to be processed in the
integrated engine anyway. The performance is therefore similar for both the partitioned
and the unpartitioned case.
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14.7 Summary and Discussion

The experiments have shown the potential of a PolyDBMS to enhance query performance
in scenarios with heterogeneous data and workloads. While the overhead of using
Polypheny-DB might be problematic for applications that require extremely low latencies,
for most applications, they should be negligible. By using a learned cost model to simplify
routing plan selection, we could further reduce the overhead in the future.

In addition, the experiments demonstrated the cross-model capabilities and performance
of the integrated engine for both read and write workloads. Even for complex TPC-C
workloads, the integrated engine provides acceptable query performance when the query
cannot be pushed down.

However, a PolyDBMS is not (only) about performance: it enables use cases and ap-
plications that are not possible with existing solutions. The fact that it also improves
performance at the same time is a welcome addition.
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Discussion





Preface to Part V:
Let’s Wrap It Up Then

In this final part of the thesis, we discuss and compare our contributions and our im-
plementation Polypheny-DB with existing systems. We also situate these systems in
the context of the PolyDBMS concept we have introduced in this thesis. This overview
includes both commercial database systems and research prototypes—in particular, poly-
store systems.

The final chapter of this dissertation then wraps up the presented concepts and discusses
whether our work is an answer to the research question that initiated this journey. By
discussing the practical relevance of our work, we can come full circle and conclude this
thesis. However, we by no means conclude this new branch of research that we have
just begun to shed light on. The chapter—and thus this thesis—therefore close with an
outlook on how this journey will be continued.





Die gefährlichste Weltanschauung
ist die Weltanschauung derer, die
die Welt nie angeschaut haben.

— Alexander von Humboldt15
Related Work

This chapter provides an overview of related research and existing database systems in
the light of the PolyDBMS concept. Furthermore, we compare these approaches with our
implementation Polypheny-DB.

A PolyDBMS combines aspects from different types of database systems: Polystore and
multistore systems, multimodel database systems, and some special services and tools.
In this chapter, we present systems from each of these categories.

15.1 Polystore and Multistore Systems

In this thesis, we follow the taxonomy introduced in [TCG+17]. According to this, a mul-
tistore is a system that accepts queries through one query interface and utilizes multiple
underlying data sores to process a query. Polystore systems, in contrast, accept queries
through multiple query interfaces and also uses multiple, heterogeneous underlying data
stores to process queries.

There are only a few surveys covering this emerging topic of database systems research.
In [BV16], query processing and implementation techniques are discussed. Furthermore,
the survey also compares some of the polystore systems that existed in 2016. A survey
published by Tan et. al. [TCG+17], compares the BigDAWG, CloudMdsQL, Myria, and
Apache Drill. The latest survey of systems can be found in [GKS+22]. In this survey,
ten systems, including Polypheny-DB, are covered. The paper also discusses different
architecture types. This survey has also been a great help for compiling this overview.

ApacheDrill. Adistributed query engine for the analysis of large-scale datasets [HN13].
Queries are accepted in ANSI SQL or the MongoDB query language. It supports various
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NoSQL systems like HBase, Hive, and MongoDB. Relational databases are supported as
well. Similar to Polypheny-DB, data sources can be added at runtime. Designed as a
system for data analytics, it does not support data modification queries and its support
for schema definition is limited to linking new data sources. It is thus more a platform
for data analytics than a database system or PolyDBMS.

AWESOME. A multistore system designed for data analytics applications [DCG16].
Similar to Polypheny-DB, it supports the relational, document, and property graph
data models. However, there is no integrated engine. Instead, there is a corresponding
underlying data store for every data model. The capabilities therefore depend on the
selected data stores. Furthermore, queries have to consider the native data models
of the data stores and the individual query capabilities. This violates the PolyDBMS
Requirement 3.3 (Independence of Storage Configuration).

BigDAWG. In BigDAWG [GCD+16] heterogeneous data stores are organized into
“islands” (e.g., relational or array islands). An island can consist of multiple data stores.
Each island has a specific data model and query language. A query can include multiple
data stores from the same island; however, queries across multiple islands—and thus cross-
model queries—are not possible. The BigDAWG system delivers great results [MGS+17]
for heterogeneous read-only workloads. However, it does not support data modification
or schema definition queries. Hence, the data needs to be loaded into the underlying
data stores prior to the start of the BigDAWG system. It is thus more a data analytics
platform than a database system or PolyDBMS.

BigIntegrator. Supporting an SQL-like query language, the BigIntegrator [ZR11]
system is designed to access BigTable databases. Furthermore, it supports SQL-based
relational databases. Similar to Polypheny-DB, the BigIntegrator system has an integrated
engine that compensates for missing functionality on the underlying data stores. In
contrast to Polypheny-DB and other Polystore systems, BigIntegrator is limited to SQL-
based databases and the BigTable system and does not support other data stores. It
internally uses a relational data model and does not support data modification or schema
definition queries. Both violates the requirements that are specified for a PolyDBMS.

CloudMdsQL. A multistore system that acts as middleware and supports an SQL-like
query language for querying heterogeneous data stores. The queries can contain embed-
ded calls to the native query interface of each data store as sub-queries. In [KBV+16], the
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authors present an implementation based on a distributed query engine called LeanXScale.
The CloudMdsQL system does not support data manipulation operations. However, since
it is possible to package native queries for the underlying data stores as subqueries, it
may be possible to execute data modification queries. This, however, does not meet the
requirements for a PolyDBMS. In addition, there is also no support for schema definition
operations. For a PolyDBMS, the support for additional query languages and a logical
schema is missing as well.

DBMS+. In [LHB13], the authors propose an approach for query processing on polyglot
system landscapes. By specifying requirements regarding the availability, consistency
and execution costs, a DBMS+ system would be able to generate multi-system execution
plans. Since the proposed concept is only a vision, a concrete comparison is not possible.
While the proposed idea of a DBMS+ goes into the direction of what we introduced as
PolyDBMS, their approach is focused on data streams. There is also no discussion of
essential aspects like schema management or constraint enforcement.

ESTOCADA. A multistore system using an innovative constraint-based query rewrit-
ing technique to enable queries over heterogeneous data stores [ABD+19]. Unfortunately,
only little information is available on the system itself. ESTOCADA itself is only de-
scribed as a vision in [BBD+15]. The more recent research paper [ABD+19] focuses on
their constraint-based query rewriting technique. According to [GKS+22], the system
does not support data manipulation or data definition queries, which is a fundamental
requirement for every PolyDBMS (see Requirement 3.7).

FORWARD. The FORWARD system introduced in [OPV15] is a Cloud service that
acts as a middleware over heterogeneous data stores. The focus of their work is on
the query language SQL++ that extends ANSI SQL and adds native JSON support. The
system decomposes the SQL++ queries and translates them to the query languages of the
underlying data stores. The underlying data stores are abstracted using (materialized)
views. There is only little information on the FORWARD system itself. Furthermore, it
seems no longer to be developed. It is unclear, to which extent the proposed concepts are
implemented since no evaluation results are available. Since the system only supports
one query language, the FORWARD system is to be classified as multistore and thus not
fulfill the requirements of a PolyDBMS.
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Icarus. The predecessor system of Polypheny-DB, introduced in [VSS17], is a mul-
tistore system that replicates data across multiple SQL data stores and supports data
modification queries. For each query, the Icarus system selects the data store with the
best characteristics for executing it. While its novel query routing strategy which, in
a more enhanced version is also available in Polypheny-DB, provided excellent results
for heterogeneous workloads, the full replication of data comes with a price tag. The
Icarus system is limited to the relational data model (which violates the PolyDBMS
Requirement 3.1) and does only support one query language (violates Requirement 3.2).

Myria. This multistore system features a query language called MyriaL that allows the
expression of complex data analytics tasks and supports the assignment of variables and
the construction of loops [WBB+17]. The system uses the Hadoop File System to move
data between execution engines. It is designed for data analytics applications and does
not support data manipulation or schema definition operations. Myria is limited to the
relational data model. It does therefore not qualify as PolyDBMS.

Polybase. The add-on for the Microsoft SQL server allows to efficiently read and import
data from Hadoop, Azure blob storage, and some other data sources [DHN+13]. It also
allows to map these sources as so called “external tables” and query them as part of the
relational schema. This is similar to the data sources approach provided in Polypheny-DB.
However, our approach also supports the similar concept for the document and graph
model. A Microsoft SQL server equipped with Polybase fulfills several of the PolyDBMS
requirements. However, since Polybase is limited to the relational data model, it violates
the multimodel requirement (see Requirement 3.1).

RHEEM. The RHEEM data processing system [ABBE+16] bridges the gap between
data stores and the underlying platforms using a flexible operator mapping. Platform-
agnostic operators are mapped to platform-specific execution operators that are executed
directly on the data processing systems. An interesting concept in REEM are the so-
called conversion graphs which specify the transformation between data models. Similar
to Polypheny-DB, the system estimates the execution costs of an operation on the
heterogeneous platforms to route queries. However, data is not moved between data
stores except for within the scope of a query. According to [GKS+22], the REEM system
does not support data manipulation or schema definition queries.
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15.2 Multimodel Database Systems

Every PolyDBMS is by definition a multimodel database system. In recent years, many
single model database systems have been extended to support multiple data models. This
has often been done by some sort of translation layer which maps the additional data
model(s) to the native model of the database system. However, there are also native
multimodel systems, for instance, ArangoDB.

Furthermore, these systems often lack support for additional query languages. In a recent
survey on multimodel databases [LH19], 23 systems have been analyzed and compared:
20 of these systems support only one query language, and the remaining three systems
support two query languages. For this section, we selected four interesting multimodel
database systems.

ArangoDB. A database system that has specifically been designed to natively support
three data models. The key/value, document, and graph data models supported by
ArangoDB1 can be queried using a common query language called AQL (ArangoDB
Query Language). It supports CRUD operations, but not schema definitions. These
need to be done in the user interface of ArangoDB. The schema consists of two types of
collections: document collections and edge collections. Graphs are modeled using both
collection types. A node is thus a document connected to other documents as specified
by the edge collection. This is an interesting combination of the document and graph
data models that might also be interesting for a PolyDBMS. To qualify as a PolyDBMS,
support for additional languages supporting cross-model queries would be required.

IBM Db2. IBM Db22, exemplary for many traditional, primarily relational database
systems, added several interestingmultimodel features to their originally purely relational
database system. Since version 11.5.4, IBM Db2 also allows representing relational data
as a graph using their optional Graph feature. The data is still stored relational; however,
it creates a virtual graph that defines each row in a table as either a node or an edge.
IBM Db2 thus approaches the functionality we have proposed by the term PolyDBMS
using a monolithic architecture. However, with these database systems in their core
still being relational databases and relying on relational structures to store the data, the
semantics of the data model can be lost in cross-model queries. Furthermore, integrating
domain-specific features and achieving the same performance as a native system based on

1 https://arangodb.com/
2 https://ibm.com/de-de/products/db2-database

https://arangodb.com/
https://ibm.com/de-de/products/db2-database
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this data model is challenging. On the other hand, the tight integration in one monolithic
systemmight allow amore efficient query processing compared to our hybrid architecture
approach. This is especially relevant for short running queries where actual execution
time is minimal.

OrientDB. The aim of OrientDB3 is to unify the document, key/value, graph and
object data models. In this unified model, everything is a document. In OrientDB,
documents cannot only embed, but also reference other documents. It also supports
constraints similar to foreign key constraints in a relational database system. OrientDB
only supports one query language, a SQL-like query language without traditional join
statements. Instead, joins are expressed using a notation that requires explicit links (i.e.,
foreign keys).

SAP HANA. A hybrid OLTP and OLAP in-memory database system optimized for
real-time data analysis. Originally built as a relational database system, HANA [FCP+12]
has been extended to also support the graph data model. However, graphs are internally
mapped to relational column storage [RPB+13]. It thus suffers from the same issues as
IBM Db2 and other similar multimodel database implementations. With its optimization
for different types of workload and the support for multiple data models, SAP HANA
is close to a monolithic implementation of a PolyDBMS. However, while with SQL and
openCypher, SAP HANA supports two query languages, their application is limited.
openCypher can only be used within a “GraphWorkspace”. Cross-model queries are not
possible using openCypher. This is a violation of the PolyDBMS Requirement 3.4.

15.3 Services and Tools

The systems discussed in this section are not database systems; thus they cannot provide
the full functionality of a PolyDBMS. However, these services, frameworks, and tools
provide some of the functionality also provided by a PolyDBMS.

Apache Calcite. A framework for adding SQL query support to NoSQL database sys-
tems [BCRH+18]. It has a modular architecture and is used by several NoSQL database sys-
tems; for example the previously mentioned Apache Drill. It also comes with a very pow-
erful query optimizer based on the Volcano optimizer model [GM93]. In Polypheny-DB,

3 https://orientdb.org/

https://orientdb.org/
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we also use a highly adapted version of this optimizer and SQL parser we have forked
from Calcite several years ago.

Hackolade. This tool allows to visually model document and other NoSQL databases.
It visualizes complex data structures using Entity-Relationship diagrams. It also allows
to reverse engineer data structures. The strength of Hackolade4 are polyglot applications
requiring schema management across multiple NoSQL databases.

Hevo. A Software-as-a-Service platform to build ETL pipelines loading data from
different sources. Hevo5 avoids building the required transformation and ingestion
pipelines for a data warehouse from scratch. While a PolyDBMS makes traditional data
warehouses obsolete, there might still be data sources that require a more sophisticated
data transformation process. Integrating such functionality into the PolyDBMS itself
would offer even more flexibility.

OctoSQL. A CLI tool that allows to query several file formats and database systems
using SQL. OctoSQL6 also allows to join data from different sources. However, due to its
architecture, OctoSQL is only feasible for small amounts of data; especially when joining
data. It would be interesting to add an adapter to Polypheny-DB that utilizes OctoSQL to
query even more data sources.

4 https://hackolade.com/
5 https://hevodata.com/
6 https://github.com/cube2222/octosql

https://hackolade.com/
https://hevodata.com/
https://github.com/cube2222/octosql




Now this is not the end. It is not
even the beginning of the end. But
it is, perhaps, the end of the
beginning.

— Winston Churchill16
Conclusion and Outlook

This final chapter concludes the dissertation by providing three perspectives on our work:
a retrospective on our contributions, a section that validates our contributions against the
motivating scenario and discusses the practical relevance of our work, and a prospective
on future work.

16.1 Retrospective

Our research deals with the question of how the growing demand for a tighter integration
of data between different applications can be met without sacrificing the performance
for heterogeneous data and mixed workloads. With the growth of data significantly
exceeding the growth of computational power, this is a topic of increasing importance.
As existing data management solutions are either not suitable for the outlined use case,
or are suitable only with significant limitations and performance degradation, we have
argued for the need for a new generation of database management solutions, which we
named PolyDBMS.

With the specifications presented in Chapter 3, we have defined a concise set of re-
quirements for this new class of database management systems. These requirements are
deliberately specified in an implementation-agnostic form that leaves the design and
architecture of such a system open. However, while our study of related work presented
in Chapter 15 acknowledges the huge achievements and optimizations that empower
existing multimodel databases with their monolithic architecture, we also realized the
huge potential of the polystore idea.

With our approach of combining the architectural idea of polystores with the capabilities
of a “traditional” databasemanagement system, we aim to combine the best of both worlds.
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This combination of concepts that bridges the gap between polystores and database
systems creates a new branch of database system research that requires rethinking
established database system concepts. In this work, we have addressed three fundamental
research objectives:

– The schema model presented in this thesis enables the combination of different data
models beneath a single logical schema that preserves the semantics of the individ-
ual models while enabling cross-model queries. Additionally, our model provides
tremendous flexibility in defining tailored data replication and data partitioning
configurations.

– Our query representation model allows queries formulated in different query
languages and based on different data models, to be represented in a single internal
representation, while preserving the characteristics and properties of the query
languages and their underlying data models, and still allowing cross-model queries.

– The query routing approach presented in this thesis defines an approach for adap-
tively scheduling the decomposition of queries and their assignment to execution
engines. This allows taking full advantage of the heterogeneous execution and
storage engines.

Based on these conceptual models, we have developed Polypheny-DB. Starting as a
research prototype, this system quickly evolved into a fully functional implementation of
a PolyDBMS. The fact that it was selected for the Google Summer of Code for the second
time in 2022 is a testament to the maturity of this system and the concepts on which it is
built.

From the beginning, our research has been guided by empiricism and a continuous
evaluation of our results. As part of this effort, we developed the Chronos system, a
platform for automating the entire evaluation workflow. Chronos is also an important
building block in our effort to increase the reproducibility of our results.

In addition to quantitative results obtained with custom and industry-standard bench-
marks, we also presented an approach for verifying the correctness of a PolyDBMS.
While the Polyfier approach presented in Chapter 13 cannot prove the correctness of a
PolyDBMS, it eventually finds any inconsistency.

With our research, we have contributed the specifications of a new class of database
systems and discussed possible architectural models. The concepts presented in this
dissertation lay the foundations and formalize fundamental concepts for this new class



Conclusion and Outlook 191

of systems. With Polypheny-DB and the surrounding ecosystem, we have created a
fully functional implementation of this new breed of database systems. In addition, we
have introduced the tools to thoroughly evaluate it both quantitatively and qualitatively.
The obtained results show the potential of this new class of database systems—even in
comparison to industry-leading systems.

16.2 Cui Bono?

A PolyDBMS enables a tighter integration of data between different applications and thus
allows to draw more value from existing data. Reducing redundantly stored data and
eliminating the need for custom synchronization processes significantly reduces the risk
of inconsistencies. The ability to always rely on the latest data can be a game-changer
for many scenarios. At the same time, a PolyDBMS also enables a more efficient usage
of compute and storage resources, since the load can be distributed across multiple
machines that previously were only allocated to manage the data of specific applications.
By utilizing the optimizations and advantages of heterogeneous storage and execution
engines, a PolyDBMS can at the same time improve the overall performance.

The practical relevance of a PolyDBMS is enormous for both scientific and business
applications. A PolyDBMS bears the potential to enhance every sort of data processing
use case dealing with heterogeneous data or mixed workloads—or both. It combines and
provides the optimizations of multiple domain-specific database systems independent of
query language and query interface needs.

In Chapter 2 of this thesis, we have introduced a motivational scenario based on a fictive
online auction house. A PolyDBMS like Polypheny-DB enables Gavel to consolidate its
data while still accessing and manipulating it using the query languages supported by
the applications and without losing any semantics. The ability to execute cross-model
queries in real-time enables new applications.

However, there are also some limitations. As the evaluations presented in Chapter 14
have shown, Polypheny-DB and probably also similar implementations of a PolyDBMS
add an overhead on each query. While this overhead of a few milliseconds should be
negligible for a majority of applications, there are indeed applications (e.g., stock trading)
where such overheads are significant. Also, for use cases with homogenous data and
workloads, the mileage of using a PolyDBMS may vary. It primarily depends on whether
the PolyDBMS can add any additional value. If there is a single database system that
is well suited for the workload and data, adding a PolyDBMS brings no immediate
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advantages for this application. However, on the other hand, it adds the flexibility to
support additional applications in the future or to partition the data across multiple
machines.

A PolyDBMS, as every database management system, comes with a specific set of sup-
ported features and query functions. While a PolyDBMS might support more features
than each of its data stores, it is practically impossible to support all features supported
by any existing database system. Allowing functionality of an underlying data store to
be accessed directly within a query would be a violation of the Independence of Storage

Configuration requirement. In terms of query functions, this can be solved by the means
of user-defined functions. Most other functionality should be emulatable using stored
procedures. However, this might be less efficient.

16.3 Prospective

Our work has drawn the research on polystores and database systems more closely
together and created new challenges and opportunities—of which we have yet just
scratched the surface. Many established concepts in the context of database systems and
distributed systems need to be reconsidered when they get applied to a PolyDBMS. In
this section, we present an outlook on future work in the PolyDBMS context.

The conceptual models introduced in this thesis focus on data stores under the exclusive
control of the PolyDBMS and being mapped in a Local-as-View manner. Our implemen-
tation Polypheny-DB goes beyond that by also introducing the notion of a data source

mapped in a Global-as-View manner. Formalizing the implications of this distinction
and creating a proper model for the notion of data sources in a PolyDBMS would be an
interesting extension. Furthermore, it would be interesting to consider additional types
of adapters, such as a data stream adapter or an API adapter. The latter would also allow
the integration of non-database systems like search engines or web services.

The three data models discussed in this thesis are certainly among the most important
database data models and already enable a large number of applications and use cases.
The extension of the schema model and the query representation model by further data
models such as the RDF or the Wide-Column model would increase the number of
possible application scenarios even further.

A very interesting aspect of a PolyDBMS we did not discuss in this thesis is the handling
of failing data stores. Furthermore, it would also be very interesting to consider the
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implications of a distributed PolyDBMS and to formalize the interactions between the
two layers of distribution. This also requires extending the routing model to consider
data stores available on other instances—while taking the latency and data transfer costs
into account. This gets especially interesting if queries are decomposed and the global
routing plan includes the sequential processing of multiple PolyDBMS instances. It might
even be interesting to consider the implications of distributed data stores. For data stores
that allow a distributed deployment, the deployments of a data store at the individual
locations of the distributed PolyDBMS can be part of the same distributed setup and are
thus then accessed by multiple PolyDBMS instances, resulting in even a third level of
distribution.

An important pillar of the PolyDBMS idea is the Independence of Storage Configuration.
Without this requirement, the ability of the PolyDBMS to partition data and adapt to
changes in the workload would be greatly diminished. However, as mentioned before,
this requirement also introduces certain difficulties and prevents the PolyDBMS from
allowing functionalities of the underlying data stores to be directly accessed in a query.
In our future work, we want to reduce this burden by defining a new type of user-defined
function in Polypheny-DB which allows specifying how the user-defined function can
be pushed-down to an underlying data store, efficiently making use of functionalities of
the underlying data stores.

Another very interesting topic in the context of PolyDBMS is that of self-adaptiveness.
With the ability to combine data replication and data partitioning across heterogeneous
data stores, our schema model already offers plenty of options to adapt to the workload.
By automatically creating materialized views or creating indexes, there are even more
possibilities to adapt. Our first implementation of self-adaptiveness in Polypheny-DB
shows very promising results that motivate further research in this direction.

Another extension for Polypheny-DB we are currently working on is a learned cost model
for the query routing. This has the potential to further improve the query performance
and reduce the latency of both short-running and long-running queries. In the context
of query routing, it would also be interesting to consider the migration of data prior to
the execution of a query or the temporary materialization of intermediate results on an
underlying data store in order to improve the performance of join operations.
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