

 University of Groningen

Early detection of violating Mobile Apps
Mohsen, Fadi; Karastoyanova, Dimka; Azzopardi, George

Published in:
Systems and Soft Computing

DOI:
10.1016/j.sasc.2022.200045

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2022

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Mohsen, F., Karastoyanova, D., & Azzopardi, G. (2022). Early detection of violating Mobile Apps: A data-
driven predictive model approach. Systems and Soft Computing, 4, [200045].
https://doi.org/10.1016/j.sasc.2022.200045

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 26-12-2022

https://doi.org/10.1016/j.sasc.2022.200045
https://research.rug.nl/en/publications/39582025-a717-4a34-bf15-385332dccdea
https://doi.org/10.1016/j.sasc.2022.200045

4 (2022) 200045

A
2

Contents lists available at ScienceDirect

Systems and Soft Computing

journal homepage: www.elsevier.com/locate/soft-computing-letters

Early detection of violating Mobile Apps: A data-driven predictive model
approach
Fadi Mohsen ∗, Dimka Karastoyanova, George Azzopardi
Information Systems Group, Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, 9712 CP Groningen, The
Netherlands

A R T I C L E I N F O

Keywords:
Third-party apps
Mobile apps
App stores
Actions
Broadcast receivers
Privacy
Permissions
XGBoost
Predictive analysis
Android

A B S T R A C T

Mobile app stores are the key distributors of mobile applications. They regularly apply vetting processes to
the deployed apps. Yet, some of these vetting processes might be inadequate or applied late. The late removal
of applications might have unpleasant consequences for developers and users alike. Thus, in this work, we
propose a data-driven predictive approach that determines whether the respective app will be removed or
accepted. It also indicates the features’ relevance that helps the stakeholders in the interpretation. In turn, our
approach can support developers in improving their apps and users in downloading the ones that are less likely
to be removed. We focus on the Google App store and we compile a new data set of 870,515 applications,
56% of which have been removed from the market. Our proposed approach is a bootstrap aggregating of
multiple XGBoost machine learning classifiers. We propose two models: user-centered using 47 features, and
developer-centered using 37 features, which are available before publishing an app. We achieve the following
Areas Under the ROC Curves (AUCs) on the test set: user-centered = 0.792, developer-centered = 0.762.
1. Introduction

The mobile-app industry has grown tremendously in the last decade
and is expected to keep rising. For example, Fig. 1 shows the number
of applications in two popular app stores, Google Play and Apple.
The number of applications between 2010 and 2020 has enormously
increased, from thousands to millions. This growth has also been ac-
companied by an increased number of malicious and vulnerable appli-
cations [1–4]. In response to these threats, researchers have proposed
numerous defense solutions to protect the privacy of end users [5,6]
and the security of their devices [7]. Additionally, the mobile app stores
have also implemented quality and security check measures to combat
the different threats which resulted in removing a lot of applications
from both markets between 2017 and 2019 [8]. Legitimate mobile app
stores have long been compared against each other based on numerous
factors such as submission process, cost, and the amount of guidance
that is given to developers. The Google Play store, for instance, was
criticized at first for not rigorously vetting apps before approving and
making them available to users [9].

As such, Google has been introducing several solutions to monitor
its app store, which resulted in removing a large number of applica-
tions [11]. For example, they introduced Google Play protect [12],
which is responsible for the rejections, removals, and suspensions of
violating and suspicious third-party applications. The system issues also

∗ Corresponding author.
E-mail addresses: f.f.m.mohsen@rug.nl (F. Mohsen), d.karastoyanova@rug.nl (D. Karastoyanova), g.azzopardi@rug.nl (G. Azzopardi).

warnings and sometimes delivers push notifications to the developers
of removed or suspended apps.

Both Google Play Developer Distribution Agreement [13] and
Google Play Program Policies [14] contain extensive details and in-
structions regarding what should and should not be included in mobile
applications. The precise requirements are, however, still unclear and
prone to misinterpretation, needless to say, some developers ignore
these guidelines. Moreover, the Google Play store gives less guidance
when an app is rejected in comparison to the iOS store [9].

Removing violating apps has various negative consequences on both
benign developers and mobile users. This is especially the case if the
applications were removed from Google Play after they have been
admitted and made available to users. When an app is removed, the
notifications sent by Google Play protect [12] are very generic and do
not give developers any particular directions as to how to fix their apps.
As a result, not just do their apps get flagged and removed from the
store, but their accounts might also get suspended. On the other hand,
it is also inconvenient for users when some of the apps they have been
using get removed from the store.

Researchers have long studied the factors that influence the trust-
worthiness of mobile apps in online stores. Because of that, numerous
frameworks have been proposed to assess their trustworthiness [15],
risk [16], quality and suspicious behavior [17,18]. Determining
vailable online 29 September 2022
772-9419/© 2022 The Authors. Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.sasc.2022.200045
Received 26 July 2022; Received in revised form 6 September 2022; Accepted 20 S
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

eptember 2022

http://www.elsevier.com/locate/soft-computing-letters
http://www.elsevier.com/locate/soft-computing-letters
mailto:f.f.m.mohsen@rug.nl
mailto:d.karastoyanova@rug.nl
mailto:g.azzopardi@rug.nl
https://doi.org/10.1016/j.sasc.2022.200045
https://doi.org/10.1016/j.sasc.2022.200045
http://creativecommons.org/licenses/by/4.0/

Systems and Soft Computing 4 (2022) 200045F. Mohsen et al.

i
l
I
p
a
u
t
a
t
t
c
b
t
I
a
t
l
i
i
g
p
d
n

Fig. 1. The number of apps in the Google Play and Apple stores between 2010 and 2020 [10].
whether a given app is going to be removed from an App store or
not, is a challenging problem. This is due to the numerous potential
reasons that could lead to its removal from the store. In addition, it
is very challenging if not impossible to enumerate all of these causes.
Moreover, some of these reasons are not easy to pinpoint automatically
or identify statistically [11]. Thus, researchers in their efforts to tackle
this problem have considered fewer reasons and relied on manual
analysis of the removed apps. For example, Wang et al. relied heavily
on the manual analysis of the removed Android apps [11]. Their
machine learning classifier was only focused on COPPA-violated apps.
Similarly, Seneviratne et al. [19] also relied on manual analysis of
the collected app samples and focused only on detecting spam apps.
Moreover, they made an assumption that top apps with respect to
the number of downloads, reviews, and ratings, are quite likely to be
non-spam.

The aim of our work is, thus, to develop two data-driven predictive
models that can determine whether a given app will be removed or
maintained by the Google Play store before its deployment and after
t has been deployed. The predictive models are based on a machine
earning algorithm called Extreme Gradient Boosting, or XGBoost [20].
t leverages a mix of contextual and technical app features such as the
rivacy policy link, the genre, the requested permissions or privileges,
nd broadcast listeners. The models are meant to support developers,
sers, and app stores. We expect that they will help developers de-
ermine whether their apps are likely to be removed or not; hence,
llowing them to review and fix their apps before submitting them to
he store. In addition, they can assist users in choosing applications
hat are less likely to be removed. Lastly, the Google Play store may
onsult with these models to identify violating applications early on
efore admitting them into the store or afterward. It is worth noting
hat we do not apply any manual analysis to the collected samples.
n addition, our models are generic meaning that they do not include
ny domain-specific considerations; they are purely data-driven. In
his work, our contribution is threefold: First, we generated a very
arge data set of mobile applications from the Google Play store that
ncludes the metadata, the Android Package (APK) files,1 and most
mportantly the status of these apps in the store for over a year. The
enerated large data set is used to evaluate our approach and is made
ublicly available [21]. Second, we propose two predictive models –
eveloper-centered and user-centered– that can indicate whether or
ot an app will be kept in the Google app store. We believe that our

1 APK is the package file format used by the Android operating system.
2

data set and our encouraging results can be considered as a benchmark
for further investigations. Third, we present different usage scenarios
of the two models, in which they can be integrated into a service
or an app. In this work, we follow the CRISP-DM methodology to
address our research question, which is spanned across three sections:
Methodology, Experiments and Results, and Discussion.

This paper is organized as follows: Section 2 provides general
information about the topic, Section 3 introduces relevant works in
the literature; Section 4 presents our data set and proposed method;
Section 5 describes the experiments that we conducted; Section 6
discusses the results; and Section 7 presents our conclusions.

2. Background

We lay out the necessary background information regarding An-
droid mobile applications, namely their distribution format, configu-
ration file, permissions, and broadcast receivers.

2.1. Distribution

Android applications are distributed via official and non-official app
markets in the Android Package file format (.apk). Official markets
such as the Google Play store and Samsung Galaxy store apply a
number of quality and safety checks on the admitted apps. Nonetheless,
malicious and low-quality applications are frequently being published
into these stores and downloaded by a large number of users. Ad-
ditionally, Android applications can be downloaded from anywhere
online. Because of that, the default security settings of Android is set
to disallow installation of such applications, from unknown external
sources. Since the official Google Play store is not available in some
countries, alternative stores came out to fill that gap, such as the Xiaomi
App Store, the 360 Mobile Assistant and the Huawei App store.

2.2. Android manifest file

Any APK file usually contains among other things a configuration
file called AndroidManifest. The manifest file of an app contains its
configurations such as permissions, package name, broadcast receivers,
and main activity. Extracting this file out of the APK file is easier
and more accurate than retrieving the original source code [22]. In
addition, accessing the manifest files of installed applications on mobile
phones is also possible and accurate [23]. This is why researchers have
long relied on it for building security and privacy solutions as we will

detail in Section 3.

Systems and Soft Computing 4 (2022) 200045F. Mohsen et al.

c

2.3. Android permissions

The majority of third-party Android applications require some level
of access to the device resources such as SMS, Contacts and Cam-
era. The Android OS uses a permission system [24] to control the level
of access each installed application has. The developers of these apps
are, therefore, obligated to enlist all the permission requests in their
apps’ AndroidManfiest.xml files.

2.4. Broadcast receivers

In Android OS, a broadcast receiver of system actions allows apps to
listen to events originating from the system. Examples include receiving
SMS, call or voice mail, or when the WIFI is connected. As such,
broadcast receivers might cause some security and privacy concerns to
the end user. In Section 3 we discuss previous studies that employed
broadcast receivers in assigning privacy scores to apps.

3. Related work

Our research aims at helping users, developers, and app store main-
tainers. As such, part of the discussion of the literature will be referring
to these beneficiaries. Furthermore, the bulk of the research that has
been conducted in this area is focused on one or more types of bad
applications.

Wang et al. [11] identified five categories, namely malicious,
privacy-risk, fake, spamming, and privacy-violating. The models that
we propose in this work are meant to be more generic. The models
forecast whether an app will be maintained or removed, overlooking
the reasons behind the removal.

Lin et al. [25] conducted a similar study but used the iOS app store
as a use case. Their work was focused on understanding the reasons
why apps are being removed from the app store. Their data set was
based on collecting a daily snapshot of the whole iOS app market for
a year and a half. They also built an app removal prediction model
based on many features that are extracted from the app metadata. Their
model does not consider the apps that are new to the market because
it simply relies on features that do not get populated immediately,
e.g., app comments. Consequently, the model cannot be used by de-
velopers to predict the future of their apps before they upload them to
the market.

The work of Wang et al. [11] is the closest to our work, in which
they wanted to understand why some apps are being removed from
the store. They implemented an empirical study on a large number of
mobile apps collected from the Google Play store. However, the status
of each app in their data set was only checked once, a year and a half
later. In our work, the status was checked on three different occasions:
the first check was done after five months, the second was done after
seven months, and the last was done after one year.

Their manual analysis of the collected apps identified a set of
791,138 removed apps. They then ran an existing machine learning
classifier [26] on this set to detect COPPA-violated apps, more specif-
ically, apps targeting kids. Out of the 791,138 removed apps, the
classifier has identified a total number of 23,319 apps targeting kids.
It is important to note that this work aimed at encouraging researchers
to build a symptom-based predictor or even a machine learning-based
predictor for flagging the to-be-removed apps before they are removed.
Thus, our work is an improvement of their work since it employs
more sophisticated techniques, relies on more features, and one of our
models, the developer-centered model, is designed to be effective even
before the app gets submitted to the store.

Seneviratne et al. [19] proposed an Adaptive Boost classifier to
detect spam apps based solely on their metadata that are available
at the time of publication. Their work inspired us to use two of
their features, namely IsSpamming and DeveloperCategory. Though, their
lassifier considers only spam apps whereas our two models do not
3

distinguish between the different categories of bad applications. In our
work, an app is either removed or not. Their work relied on manual
analysis of the collected app samples, which is costly and impracticable.

Moreover, they assumed that top apps with respect to the number
of downloads, reviews, and ratings, are quite likely to be non-spam.

Researchers have long studied the factors that influence the trust-
worthiness of mobile applications in online stores. For example, Kuehn-
hausen and Victor [15] proposed a trustworthy model for mobile
applications based on various factors, namely ratings, permissions,
reviews, and the relationships between applications. However, the
number of features that were used in building the model is relatively
small. Additionally, the two features, namely, the ratings and the
reviews, could be empty for some apps. In particular, if these apps
have not been long in the market or are not popular. Finally, the data
set that was used to evaluate their proposed model is small and does
not sufficiently represent the entire market because the focus was on
popular apps. In our work; however, we use a much bigger and more
representative data set, more features, and investigate two approaches.
The first approach relies on the features that are normally available
before an app is pushed into the store. The other approach uses the
features that become available after the app is published.

Natural Language Processing (NLP) techniques were investigated by
Pandita et al. [16] on the description of an app and compared it with
the permissions that the app had requested. They aimed to examine
whether the description of an application provides any indication of
why the application needs permission. In our view, we believe that
to justify the use of permission by an app, more features are needed
besides the description such as the genre and system actions. Pratim
Sarma et al. [27] on the other hand, used the genre to inform users
whether the risks of installing an app are in accordance with its
advertised benefit. In our work, the description, genre, permissions,
system actions, and more features are incorporated into the models. A
framework to help the user decide whether a given application found
in some app stores is trustworthy or not was introduced by Habib
et al. [28]. The framework considers the publicly available information
of an app such as user ratings and reviews. In addition, it takes into
consideration the security indicators of the app as provided by the state-
of-the-art static analysis tools. As we explained earlier, the ratings and
the reviews’ features could be empty, but they did not consider such
cases as we do.

Sarma et al. [29] leveraged the permissions of the app, the category
of the app, and the permissions that are requested by other apps in the
same category to infer a privacy score. The score would then be used
to assist users with their installation decisions.

Similarly, the work of Mohsen et al. [30] devised a new privacy
score for mobile applications to aid users to choose less intrusive apps.
Though the score is calculated based on an app’s permissions, the
system actions it has registered to listen to, and the users’ privacy
preferences. Both scores [29,30] could have been improved if more of
the app’s metadata was used.

A large-scale longitudinal study on 5 million app records collected
from three different snapshots of the Google Play store was conducted
by Wang et al. [31]. Their study revealed several serious issues in the
mobile app ecosystems. For example, the study shows that, despite
Google’s effort to remove bad apps from the store, the number of
developers who do not comply with the guidelines has been nonetheless
increasing. In our view, their results highlight the need to have a
solution like the one we propose in this paper.

Researchers have also used some of the contextual and technical
features that we used in our research, but for detecting malicious
Android applications. For example, Peiravian and Zhu [32] proposed to
combining permissions and API (Application Program Interface) calls
to detect malicious Android apps. Wu et al. [33] considered static
information including permissions, deployment of components, intent
messages passing and API calls for characterizing the Android applica-

tions’ behavior. Sanz et al. [34], Sato et al. [35], Feldman et al. [36],

Systems and Soft Computing 4 (2022) 200045F. Mohsen et al.
Fig. 2. A high-level overview of the data collection workflow.
and Li et al. [37] extracted and used several features from the Android
manifest of the applications to build machine learning classifiers for
the detection of Android malware. In our work, we decided not to
use any source code-related features because obtaining such features in
real life is complicated, especially if the applications are paid and/or
obfuscated.

Gómez et al. [17] analyzed the permissions and user reviews of mo-
bile applications to detect defective applications. The proposed system
is aimed at helping app store maintainers predict apps with bugs before
they harm the reputation of the app store as a whole.

Our work differs from the existing literature in three main aspects.
First, we acquire and curate a very rich data set, which is large in
volume and number of independent variables. Moreover, the value of
the dependent variable (removed or not removed) has been checked
three times over one year. Second, we propose two types of models
that we refer to as developer-centered and user-centered, which can be
applied before and after deployment, respectively. Third, our approach
is completely data-driven. This means that the interaction between the
given independent variables is learned from the training data rather
than being imposed or manipulated by domain-specific knowledge.

4. Methodology

In this section, we describe the data set that we have collected
and curated, followed by a detailed description of the features and the
predictive models.

4.1. Data set

In Fig. 2 we show our methodology for collecting and curating
the data set that we used for training and evaluating our models. We
collected the data over a course of 26 months, between April 2017
and June 2019. In the first one-month-long phase, we crawled the
Google Play store main pages which resulted in 2,021,159 applications
including all the information that we could find on these pages except
for the permissions and users’ reviews. We call this collection the seed
data set, the output of Step 1 in Fig. 2. Then, in the second phase, which
lasted a year, we downloaded the APK files for slightly more than half
of the apps that are in the seed data set. We call this collection the APKs
data set, which contains 1,164,216 apk files, Step 2 in Fig. 2.

The last phase was geared towards collecting the ground truth labels
(i.e. the values of the dependent variable) for all apps in the APKs data
set. It involved checking the status of the apps in the app store to see
whether they are still in there or got removed. This phase was executed
on three different occasions. We call this list the status data set, which
contains 1,090,484 apps, Step 3 in Fig. 2.

4.2. Data preparation

Since the data set was collected in different phases, the first step
was to merge them, hence the Merge step in Fig. 2. The merge is meant
to keep only the apps that have complete profiles. A complete profile
4

Fig. 3. The top represented genres in the data set, 86% of the apps fall into these
genres.

of an app includes the Play store data, the APK file, and the three
different status checks. This resulted in a total of 999, 530 applications
according to Table 3. We then excluded the applications that either had
missing values due to crawling errors, or their manifest files could not
be retrieved from their APK files. This step resulted in reducing the
number of applications to 870,515, which we call the merged data set.

In Fig. 3, we show the top 22 represented genres in the merged data
set (there are 48 distinct genres), nearly 86% of the entire data set fall
into these genres. The mean and standard deviation of the reviews for
all apps are 3.4 and 1.7, respectively.

This suggests that the majority of the collected applications have
high review averages including the ones that were removed from the
market. The mean value of the reviews of the removed applications is
3.3 with a standard deviation of 1.77, in comparison to 3.6 and 1.77
for the applications that were kept in the market.

Systems and Soft Computing 4 (2022) 200045F. Mohsen et al.
Fig. 4. A histogram that shows the distribution of the lowest Android version that was specified in all apps.
Finally, in Fig. 4, we show the distribution of the lowest Android
version of all applications in the data set. Nearly 60% of the apps have
Gingerbread and Ice Cream Sandwich as their lower Android version.
In Section 5 we describe the contribution of this information, lower
Android version, in predicting the faith of an app.

4.3. Feature engineering

In this phase, we determined the most suitable features, also known
as independent variables, and whether they require any further prepro-
cessing.

We applied various techniques to normalize and standardize all
features. We call this collection the final data set.

In Table 1, we list all features in the final data set, their sources,
types, and the pre-processing operations that we applied to them.
Twenty-seven features came directly or indirectly from the seed data
set, and twenty features came from the APKs data set. Seven of these
features are of a categorical type and the remaining are numerical. We
applied the one-hot encoding to all categorical features.

4.3.1. Input features of the seed data set
Table 2 shows the list of 24 features of the Seed data set, which

we were able to crawl from the Google Play store pages for each
application. The table contains real values for the features of the
WhatsApp Android application as an example. In Table 1 we show the
27 features (the rows where the Source column has Seed for its value)
that were generated from these 24 variables.

For instance, in Table 2, feature number 7, Ratings illustrates the
number of users who rated the app by giving it a score from 1 to 5.
The Ratings feature was used to normalize features 8–12, in order to
produce features 2–6 in Table 1. As such the Ratings was then removed
from the list.

As to the Title, Description, and Whats New features, we only consid-
ered their overall length in characters. The variables Developer Website,
Developer Email, Developer Address, and Privacy Policy Link, were treated
as binary; either present (1) or absent (0). The Paid binary feature is
based on the Price feature, where 0 means it is a free app, and 1 means
otherwise. The Downloads are originally given in ranges [𝑥, 𝑦], and
5

decided to take the logarithm of the maximum; i.e. log(𝑦). For instance,
if the number of Downloads for an app is given as [5000,10000], then
we take log(10000).

Some features were derived from existing ones, such as the High-
estAndroidVersion and LowestAndroidVersion, both of them were de-
rived from the AndroidVersion feature. The DevRegisteredDomain feature
was derived from the DeveloperWebsite feature. It states whether the
developer of the app has a domain name or not. Additionally, the
DaysSinceLastUpdate feature was derived from the LastUpdated feature.
It is a continuous integer that represents the number of days since each
app was last updated in comparison to other apps. It is computed as
follows: first, we find the most recent update date from the data set,
which would then be the maximum date. Second, we calculate the
DaysSinceLastUpdate for each app as the number of days between its
LastUpdated date and the maximum date. As a consequence, at least one
app will get a zero value; the app that was updated most recently. We
kept the LastUpdated feature as well; however, we only considered its
year value in four digits. The size of an app is not explicitly mentioned
in the Play store. There are normally two possible values for it, either
varying with the device or unspecified. Notably, the majority of the
apps have an unspecified size and only a tiny proportion has a variable
size. Thus, we encoded these two values to create the FileSize feature,
where 0 means the size is unspecified, and 1 means it varies. For the
CurrentVersion, we only considered the major version number. We also
encoded the Genre and the ContentRating features using the one hot
encoding.

Lastly, we calculated two additional features, namely IsSpamming
and DeveloperCategory, based on the previous work in [38]. The former
is a binary value calculated based on the number of apps a developer
has and their download count, where 1 means that the developer is
a spammer and 0 otherwise. The latter relies on the number of apps a
developer has in the store. Each developer would be assigned any of the
following categories; Aggressive (more than 50 apps released), Active
(10 to 50 apps released), Moderate (2 to 10 apps released), and Con-
servative (released only one app). Spamming developers are aggressive
developers that do not have any app with over 1M downloads and with
an average install number below 10k.

Systems and Soft Computing 4 (2022) 200045F. Mohsen et al.

e

Table 1
The list of the 48 features that are used to build the predictive models.
The abbreviation ‘‘Cat.‘‘ in the Type column stands for categorical. The
‘‘Source’’ indicates the source data set according to Section 4.1. The ‘‘Op-
eration‘‘ column states the pre-processing that we have applied to each
feature. The ‘‘Transformed’’ string implies some kinds of processing to
the respective feature, for example, ‘‘LenTitle" is obtained by measuring
the length of the app’s title. Finally, the highlighted rows indicate the
features that were excluded when building the developer-centered model.

Feature Type Source Operation
1 Status Target Status Aggregated
2 OneStarRatings Int Seed Normalized
3 TwoStarRatings Int Seed Normalized
4 ThreeStarRatings Int Seed Normalized
5 FourStarRatings Int Seed Normalized
6 FiveStarRatings Int Seed Normalized
7 ReviewsAverage Float Seed None
8 LenTitle Int Seed Transformed
9 LenDescription Int Seed Transformed
10 LenWhatsNew Int Seed Transformed
11 DeveloperWebsite Int Seed Transformed
12 DeveloperEmail Int Seed Transformed
13 DeveloperAddress Int Seed Transformed
14 PrivacyPolicyLink Int Seed Transformed
15 Paid Int Seed None
16 MaxDownloadsLog Int Seed Logarithmic
17 LowestAndroidVersion Cat. Seed Derived
18 HighestAndroidVersion Cat. Seed Derived
19 AndroidVersion Cat. Seed Encoded
20 DevRegisteredDomain Int Seed Transformed
21 DaysSinceLastUpdate Int Seed Derived
22 LastUpdated Int Seed Transformed
23 FileSize Int Seed Encoded
24 CurrentVersion Cat. Seed Transformed
25 Genre Cat. Seed Encoded
26 ContentRating Cat. Seed Encoded
27 DeveloperCategory Cat. Seed Generated &

Encoded
28 IsSpamming Int Seed Generated
29 Storage Int APKs Transformed
30 Calendar Int APKs Transformed
31 Camera Int APKs Transformed
32 Contacts Int APKs Transformed
33 Location Int APKs Transformed
34 Microphone Int APKs Transformed
35 Phone Int APKs Transformed
36 Sensors Int APKs Transformed
37 SMS Int APKs Transformed
38 Net Int APKs Transformed
39 Intent Int APks Transformed
40 Bluetooth Int APKs Transformed
41 App Int APKs Transformed
42 Provider Int APKs Transformed
43 Speech Int APKs Transformed
44 NFC Int APKs Transformed
45 Media Int APKs Transformed
46 Hardware Int APKs Transformed
47 Google Int APKs Transformed
48 OS Int APKs Transformed

4.3.2. APKs input features
The features that we obtained from the APKs data set came from

extracting and then parsing the applications’ manifest files.2 We mainly
focused on two components; the permissions and the system actions.
The number of unique permissions and system actions slightly varies
from one Android distribution to another. In this work; however, we
considered 176 unique permissions and 134 unique system actions.
The Android system classifies these permissions into dangerous and
normal types. Dangerous permissions allow mobile apps to access users’
sensitive data such as contacts, SMS, and pictures. Therefore, Android
mandates applications to get users’ consent and approval to be able
to use them. On the other hand, normal permissions are presumably
less risky, thus apps can obtain them without involving the users. The
Android system further puts dangerous permissions into nine groups;
Storage, Calendar, Camera, Contacts, Location, Microphone, Phone,
Sensors, and SMS. Each of these groups contains one or more permis-
sions. We created a feature per each permission group with a value
of 1 or 0, in which 1 means that the app has requested at least one
permission of that group and 0 otherwise.

Android allows third-party applications to register for listening to
various system events, such as when a new SMS arrives, a new call is
made, and when the battery is low. The system sends out a broadcast

2 Every app must include an AndroidManifest.xml file that contains
ssential information about the app.
6

whenever any of these events occur. An application needs to be pre-
configured to be able to listen to some of these events by including the
corresponding system actions. As far as the actions are concerned, there
is no preexisting classification to them. Instead, we relied on the top
package name, which resulted in having 11 distinct groups/features;
Net, Intent, Bluetooth, App, Provider, Speech, NFC, Media, Hardware,
Google, and OS.

4.3.3. Dependent variable: Status
This step is executed after the crawling phase, which included

downloading the corresponding APK files. Therefore, in this phase, we
determined the status of all applications, by checking on three different
occasions whether they are still in the market or not. The first check
was done in December 2018, the second in February 2019, and the last
was completed in May and June 2019.

In Table 3, we show the percentages of the applications based on
their market status. Some apps were never found in the market upon
the three checks. Other apps were present in the market the whole time.
Finally, there were apps whose status changed throughout this period.
We call the first group removed, the second stable, and the latter mix.

The apps that fall in the removed and stable groups represent 91.6%
of the entire data set. As such, we decided to focus only on these two
groups and ignore the other ones. This is because the applications in
those groups do not have sufficient samples in comparison to the first
two.

4.4. Prediction model

The machine learning algorithm chosen for this research is the
Extreme Gradient Boosting of Decision Trees or XGBoost for short. This
decision is motivated by its outstanding performance on various Kag-
gle3 benchmark data sets among others, its efficiency in learning and
applying a model together with the ability in determining the relevance
of each independent variable, which facilitates the interpretation of the
pipeline [39–41].

XGBoost is a supervised learning algorithm that predicts the target
class by aggregating the decisions of several regression trees. It uses the
gradient descent algorithm during learning for the minimization of the
loss function when configuring new trees. For further technical details,
we refer to [20].

In order to counter the imbalance in the distribution of the two
classes (removed and stable) we embed the XGBoost in a bootstrap
aggregating (bagging) approach. This ensures that an XGBoost model
is trained with a balanced data set, something that is desirable in
machine learning to avoid any bias. In practice, the bagging approach
requires the bootstrapping with replacement of balanced subsets and
using them to train XGBoost models. For a given app the prediction is
then calculated using the majority voting rule of all the classifications
achieved by the participating XGBoost models.

5. Experiments and results

In Fig. 5, we show the steps that we have taken to build, train, and
test the two models. In Step 1, the final data set of 870,515 records
is split (stratified random sampling) into training data (70%: 609,360)
and test data (30%: 261,155). In Step 2, a balanced data set is drawn
from the training data. We experimented with the following sizes of
the balanced data set; 2𝐾, 5𝐾, 10𝐾, 25𝐾, 50𝐾, and 100𝐾. Each balanced
subset is determined by randomly selecting, with replacement, the same
number of removed and not removed apps from all apps in the training
data. In Step 3, a validation data set is drawn from the training data,
which has the same class distribution and size as the test data. In
step 4, several XGBoost classifiers are initialized and trained using a

3 www.kaggle.com

http://www.kaggle.com

Systems and Soft Computing 4 (2022) 200045F. Mohsen et al.
Table 2
The features obtained from the Google Play store page for the WhatsApp application as at February
2021.

Feature Type Sample values
1 Description Text WhatsApp Messenger is a FREE messaging

app available for Android and other
smartphones....

2 Title Text WhatsApp Messenger
3 Last Updated Date May 13, 2020
4 Whats New Text Group video and voice calls now support up

to 8 participants. All participants need to be
on the latest version of WhatsApp.

5 Reviews Average Number 4.3
6 Price Number 0.0
7 Ratings Number 114,391,572
8 One Star Ratings Number 4,000,000
9 Two Star Ratings Number 2,000,000
10 Three Star Ratings Number 2,391,572
11 Four Star Ratings Number 6,000,000
12 Five Star Ratings Number 100,000,000
13 Privacy Policy Link Text http://www.whatsapp.com/legal/#Privacy
14 Genre Text Communication
15 Url Text https://play.google.com/store/apps/details?

id=com.whatsapp
16 Content Rating Text PEGI 3
17 Current Version Text 2.20.157
18 Android Version Text 4.0.3 and up
19 Developer Email Text android@support.whatsapp.com
20 Developer Website Text https://www.whatsapp.com/
21 Developer Name Text WhatsApp Inc.
22 Developer Address Text 1601 Willow Road Menlo Park, CA 94025
23 File Size Number 28M
24 Downloads Number 5,000,000,000+
Table 3
Availability of apps in the market. A value of 1 means the app was
not in the market on the indicated date, 0 means otherwise.
Dec 18 Feb 19 May–June 19 #Apps Portion (%)
1 1 1 553,395 50.7
0 0 0 446,135 40.9
0 1 1 38,848 3.6
0 1 0 31,804 2.9
1 0 0 9,715 0.9
1 0 1 6,507 0.6
0 0 1 3,005 0.3
1 1 0 1,075 0.1
Total 1090484 100

different balanced data set that is sampled as mentioned in Step 2. We
experimented with the following number of classifiers: 3, 5, 7, 9, 11, 13,
and 15. Note that we do not fine-tune the involved models/classifiers.
We configure them using default values for all parameters except for the
number of trees 𝑛_𝑡𝑟𝑒𝑒𝑠 and the maximum depth of each tree 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ.
For these two parameters we pick a random value from the following
predefined lists: 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ ∈ {2, 3} and 𝑛_𝑡𝑟𝑒𝑒𝑠 ∈ {256, 512}. Such
values ensure that learned XGBoost models are not fine-tuned on the
training data as they consist of an ensemble of very shallow decision
trees. This is important to avoid over-fitting. A similar approach was
adopted in [41]. For a given app the prediction (removed or not
removed) is then determined from the average score of all predictions
by the participating XGBoost models. Steps 5 and 6 are used to estimate
the performance of the validation and test sets in terms of ROC and
AUC, as well as the feature importance scores.

5.1. User- and developer-centered models

The above experiments were first conducted using the 47 features
that are shown in Table 1. The resulting predictive model that relies on
the full set of 47 features is distinctively suitable to the end users, who
may use it to choose applications that will most likely remain in the
market. We refer to this model as user-centered. The Google Play store
may also use the resulting model to identify violating applications after
they have been admitted into the store.

However, to aid developers before submitting their applications to
the market or to aid the Play store before admitting the applications,
another model is needed. The new model, which we call developer-
centered, shall rely on fewer features, the ones that are only available
before the publication of an app. In Table 1 we indicate these features
with the non-highlighted rows. Thus, the developer-centered model
7

uses 37 features, as it excludes the following 10 features that are only
available after deployment: OneStarRatings, TwoStarRatings, ThreeStar-
Ratings, FourStarRatings, FiveStarRatings, ReviewsAverage, LenWhatsNew,
MaxDownloadsLog, DaysSinceLastUpdate, LastUpdated.

For the best user- and developer-centered models we generate the
receiver operating characteristic (ROC) curves for different settings and
choose the models that achieve the highest area under the ROC curve
(AUC). The ROC curve demonstrates how the true and false positive
rates change as a function of the operating point. The operating point
is the threshold (between 0 and 1) that determines the predicted label
of the given sample. For instance, for an operating point of 0.5, if the
average predicted score of all involved XGBoost classifiers is below 0.5
then the given sample is labeled as ‘‘to be removed", otherwise ‘‘to be
kept". For each considered operating point we compute the confusion
matrix that consists of the number of true positives (TP), false positives
(FP), true negatives (TN), and false negatives (FN). The true positive
rate (TPR) is then the ratio of TP and all positive predictions (TP +
FP), while the false positive rate (FPR) is the ratio of FP and the total
number of negatives (FP and TN). The AUC is the area under the ROC
curve, which can have a value between 0 and 1. The higher (maximum
1) the AUC the better the performance of the respective model. An AUC
of 0.5 for a two-class problem indicates that the model is not better
than a random decision, and an AUC of 0 represents predictions that
are opposite to those desired.

In Fig. 6 we show the AUC values for several experiments with a
varying number of XGBoost classifiers and sizes of the balanced training
sets that are used to evaluate the user-centered and the developer-
centered models on the validation set, respectively. The results show
that the best performance of the user-centered model is achieved with
11 XGBoost classifiers, while for the developer-centered model the
best performance is achieved with only 1 XGBoost classifier. For both
models, the best performance is achieved with balanced training sets
of 100𝐾 in size.

In Fig. 7 we illustrate the ROC curves together with their AUC values
of the selected models when applied to the test set. We also compute
the AUC scores for the models when applied to the validation set. The
high similarity between the AUCs of both models achieved for the
validation (user-centered: 0.798, developer-centered: 0.764) and test
sets (user-centered: 0.792, developer-centered: 0.762) demonstrate the
generalization ability of our approach.

As a byproduct, the XGBoost models provide us with an importance
score for each independent variable. Importance scores are calculated
for all attributes in each decision tree. For each tree, an attribute that

http://www.whatsapp.com/legal/#Privacy
https://play.google.com/store/apps/details?id=com.whatsapp
https://play.google.com/store/apps/details?id=com.whatsapp
https://www.whatsapp.com/

Systems and Soft Computing 4 (2022) 200045F. Mohsen et al.
Fig. 5. A high-level overview of the model building workflow in Business Process Modeling Notation (BPMN).
Fig. 6. Evaluation in terms of Area under the ROC curves (AUC) of the (left) user-centered and the (right) developer-centered models on the validation data with respect to the
number of XGBoost classifiers used and the sizes of the balanced data sets used to train such models.
Fig. 7. ROC curves obtained from the test data for Model 1 (user-centered) and Model 2 (developer-centered).
is used more often to make key decisions is given a high importance
score. Then, the final feature importance of a particular attribute is
summed up and divided by the number of decision trees. We deter-
mine the ranking of the features after averaging the importance scores
across the participating XGBoost classification models. For the user-
centered predictive model, the ContentRating, PrivacyPolicyLink, and
DeveloperWebsite are the top most important features in predicting the
removability of an app. In Fig. 8, we show the averaged and normal-
ized importance scores of the top 20 features across the 11 XGBoost
classifiers. Similarly, in Fig. 9 we show the normalized scores of the 20
most relevant features as achieved by the single XGBoost classifier that
defines the developer-centered model. For this model, the ContentRat-
ing_Teen, PrivacyPolicyLink, and IsSpamming are the top most important
8

features. Both models share the top 5 most important features, which
demonstrate their predictive power in both scenarios. Moreover, both
models highlight the importance of including a PrivacyPolicyLink upon
submitting an app to the store. In addition, the difference in the number
of features between the user- and developer-centered models (the user-
centered model has 47 features, and the developer-centered model has
37 features) did not have a significant impact on the performance.

6. Discussion

In this work, we proposed two predictive models that can indicate
whether an app will stay in the Play store or eventually get removed by
Google. Our results suggest that such a model can be built with a decent

Systems and Soft Computing 4 (2022) 200045F. Mohsen et al.

c

a
c
o
e

m
h
s
s
T
i
t
i
b
c
F
s
d

c
o
i
D
a
w
a

Fig. 8. Averaged and normalized importance scores of the top 20 features across the 11 participating XGBoost classifiers in the user-centered predictive model. The features names
ontaining the character ‘‘_" are dummy variables created from the encoding of the categorical features listed in Table 1.
ccuracy by largely relying on the metadata of the apps and a few
onfiguration elements. The metadata of an app is publicly available
n the Play store pages and the configuration elements can be easily
xtracted from its manifest file.

The AUCs of 0.792 and 0.762 for the user- and developer-centered
odels, respectively, represent the probabilities that they achieve
igher scores for apps that will eventually be removed by the app
tore compared to those that will be retained. Therefore, the closer
uch an AUC (or probability) is to 1, the more accurate the model is.
ypically, AUCs higher than 0.7 indicate strong effects between the

ndependent and dependent variables [42]. In practice, we would need
o determine a threshold between 0 and 1, such that an app that results
n a value above the threshold by our respective predictive model will
e considered ‘‘to be removed", otherwise ‘‘to be kept". This threshold
an be set to be the one that yields the maximum harmonic mean (or
-score) of precision and recall on a validation set. Such a validation
et can be drawn from the training set with the same size and class
istribution as the test set (see Section 5).

We identified the need for both the user-centered and the developer-
entered models, as they would be practically useful for users, devel-
pers, and app stores alike. The user-centered model will guide users
nto installing applications that are more likely to stay in the store.
evelopers can utilize the corresponding model to predict whether their
pplications are prone to be removed or not. Finally, online app stores
ill be able to use both models to filter out violating applications upon
9

dmission or thereafter.
As a result, we identify two deployment scenarios.
First, the user-centered model can be incorporated into a mobile app

or a browser’s extension/plugin. The former can work in two modes:
before installing an App from the designated market or after. The user
can use the latter on a desktop computer while browsing app stores
to choose a new mobile app. Second, the developer-centered can be
incorporated into a website that developers can use before submitting
their applications to online stores.

6.1. Threats to validity

In this work, the collection of the data set from the Google Play
store is done under two main assumptions. The first assumption states
that all applications in the store are benign [12]. The second one states
that the only reason applications were removed/disappeared from the
store while crawling was due to their violations of the store’s policy
and recommendations [11]. However, there could be other reasons,
for example, removing applications by their owners temporally or
permanently, which we do not take into account. While here we used
the Google Play store as a case study, the proposed approach is also
applicable to the Apple store and to other ones that share similar
properties of mobile applications.

7. Conclusion and future work

The rapid increase of low-quality and/or violating apps in online
stores has provoked stores’ maintainers into employing strict measures.

Systems and Soft Computing 4 (2022) 200045F. Mohsen et al.
Fig. 9. Averaged and normalized importance scores of the top 20 features of the single XGBoost classifier in the developer-centered predictive model. The features names containing
the character ‘‘_" are dummy variables created from the encoding of the categorical features listed in Table 1.
As a result, a large number of apps are continuously removed from the
stores. Removing mobile applications after they have been admitted
into online stores negatively affects the experience of end users and
the reputation of app developers. Thus, in this work, we propose two
predictive models, which we call user- and developer-centered. The
former aids mobile users and app stores to determine the future of
the app after deployment, while the latter supports developers and
app stores before deployment. Our models consider the metadata of
an app that is publicly available on the play store. Additionally, they
incorporate the permissions that the app requests in its manifest file
and the system actions that it is registered to listen to.

Both models were trained and validated using a very large data set
of apps that we collected from the Google Play store. The data set is
made publicly available [21].

In the future, we firstly plan to investigate more sophisticated meth-
ods to extract information from unstructured text-based variables such
as the Description, WhatsNew, and PrivacyPolicyLink features. Secondly,
we will look into adapting the proposed data-driven approach to work
with other app stores, such as Apple and beyond [43].

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
10

influence the work reported in this paper.
Data availability

https://dataverse.nl/dataset.xhtml?persistentId=doi:10.34894/H0Y
JFT

References

[1] K.O. Elish, H. Cai, D. Barton, D. Yao, B.G. Ryder, Identifying mobile inter-
app communication risks, IEEE Trans. Mob. Comput. 19 (1) (2020) 90–102,
http://dx.doi.org/10.1109/TMC.2018.2889495.

[2] C. Bi, G. Xing, T. Hao, J. Huh-Yoo, W. Peng, M. Ma, X. Chang, FamilyLog: Mon-
itoring family mealtime activities by mobile devices, IEEE Trans. Mob. Comput.
19 (8) (2020) 1818–1830, http://dx.doi.org/10.1109/TMC.2019.2916357.

[3] W. Gu, L. Shangguan, Z. Yang, Y. Liu, Sleep hunter: Towards fine grained
sleep stage tracking with smartphones, IEEE Trans. Mob. Comput. 15 (6) (2016)
1514–1527, http://dx.doi.org/10.1109/TMC.2015.2462812.

[4] Y. Liu, Z. Li, aLeak: Context-free side-channel from your smart watch leaks
your typing privacy, IEEE Trans. Mob. Comput. 19 (8) (2020) 1775–1788,
http://dx.doi.org/10.1109/TMC.2019.2917659.

[5] J. Lin, J. Niu, X. Liu, M. Guizani, Protecting your shopping preference with
differential privacy, IEEE Trans. Mob. Comput. 20 (5) (2021) 1965–1978, http:
//dx.doi.org/10.1109/TMC.2020.2972001.

[6] F. Shen, J.D. Vecchio, A. Mohaisen, S.Y. Ko, L. Ziarek, Android malware detection
using complex-flows, IEEE Trans. Mob. Comput. 18 (6) (2019) 1231–1245,
http://dx.doi.org/10.1109/TMC.2018.2861405.

[7] S. Chang, H. Chen, H. Zhu, X. Hu, D. Cao, CoSafe: Securing mobile devices
through mutual mobility consistency verification, IEEE Trans. Mob. Comput. 20
(5) (2021) 1761–1772, http://dx.doi.org/10.1109/TMC.2020.2974222.

[8] V.M. Wottrich, E.A. van Reijmersdal, E.G. Smit, The privacy trade-off for mobile
app downloads: The roles of app value, intrusiveness, and privacy concerns,
Decis. Support Syst. 106 (2018) 44–52.

http://dx.doi.org/10.1109/TMC.2018.2889495
http://dx.doi.org/10.1109/TMC.2019.2916357
http://dx.doi.org/10.1109/TMC.2015.2462812
http://dx.doi.org/10.1109/TMC.2019.2917659
http://dx.doi.org/10.1109/TMC.2020.2972001
http://dx.doi.org/10.1109/TMC.2020.2972001
http://dx.doi.org/10.1109/TMC.2020.2972001
http://dx.doi.org/10.1109/TMC.2018.2861405
http://dx.doi.org/10.1109/TMC.2020.2974222
http://refhub.elsevier.com/S2772-9419(22)00011-4/sb8
http://refhub.elsevier.com/S2772-9419(22)00011-4/sb8
http://refhub.elsevier.com/S2772-9419(22)00011-4/sb8
http://refhub.elsevier.com/S2772-9419(22)00011-4/sb8
http://refhub.elsevier.com/S2772-9419(22)00011-4/sb8

Systems and Soft Computing 4 (2022) 200045F. Mohsen et al.
[9] P. Viswanathan, iOS app store vs. Google play store, 2020, URL https://www.
lifewire.com/ios-app-store-vs-google-play-store-for-app-developers-2373130.

[10] D. Curry, URL https://www.businessofapps.com/data/app-stores/.
[11] H. Wang, H. Li, L. Li, Y. Guo, G. Xu, Why are android apps removed from

google play? A large-scale empirical study, in: 2018 IEEE/ACM 15th International
Conference on Mining Software Repositories, MSR, 2018, pp. 231–242.

[12] Google, Google play protect, 2022, URL https://www.android.com/play-protect/.
[13] G. inc., Google play developer distribution agreement, 2022, URL https://play.

google.com/about/developer-distribution-agreement.html.
[14] Google, Developer policy center, 2022, URL https://play.google.com/about/

developer-content-policy/.
[15] M. Kuehnhausen, V.S. Frost, Trusting smartphone apps? To install or not to

install, that is the question, in: 2013 IEEE International Multi-Disciplinary
Conference on Cognitive Methods in Situation Awareness and Decision Support,
CogSIMA, 2013, pp. 30–37, http://dx.doi.org/10.1109/CogSIMA.2013.6523820.

[16] R. Pandita, X. Xiao, W. Yang, W. Enck, T. Xie, WHYPER: Towards automating
risk assessment of mobile applications, in: Proceedings of the 22nd USENIX
Conference on Security, SEC ’13, USENIX Association, USA, 2013, pp. 527–542.

[17] M. Gómez, R. Rouvoy, M. Monperrus, L. Seinturier, A recommender system of
buggy app checkers for app store moderators, in: 2015 2nd ACM International
Conference on Mobile Software Engineering and Systems, 2015, pp. 1–11.

[18] R. Slavin, X. Wang, M.B. Hosseini, J. Hester, R. Krishnan, J. Bhatia, T.D.
Breaux, J. Niu, Toward a framework for detecting privacy policy violations in
android application code, in: Proceedings of the 38th International Conference
on Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, ACM, 2016,
pp. 25–36, http://dx.doi.org/10.1145/2884781.2884855.

[19] S. Seneviratne, A. Seneviratne, M.A. Kaafar, A. Mahanti, P. Mohapatra, Early
detection of spam mobile apps, in: Proceedings of the 24th International
Conference on World Wide Web, WWW ’15, 2015, pp. 949–959, http://dx.doi.
org/10.1145/2736277.2741084.

[20] T. Chen, C. Guestrin, Xgboost, in: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, ACM, 2016,
http://dx.doi.org/10.1145/2939672.2939785.

[21] F. Mohsen, The manifest and store data of 870,515 Android mobile applications,
DataverseNL, 2022, http://dx.doi.org/10.34894/H0YJFT.

[22] S. Dong, M. Li, W. Diao, X. Liu, J. Liu, Z. Li, F. Xu, K. Chen, X. Wang, K. Zhang,
Understanding android obfuscation techniques: A large-scale investigation in the
wild, 2018, CoRR abs/1801.01633, arXiv:1801.01633.

[23] Google, Android PackageManager, 2022, URL https://developer.android.com/
reference/android/content/pm/PackageManager.

[24] G. inc., Permissions on android, 2022, URL https://developer.android.com/
guide/topics/permissions/index.html.

[25] F. Lin, H. Wang, L. Wang, X. Liu, A longitudinal study of removed apps in
IOS app store, in: Proceedings of the Web Conference 2021, Association for
Computing Machinery, New York, NY, USA, 2021, pp. 1435–1446, http://dx.
doi.org/10.1145/3442381.3449990.

[26] M. Liu, H. Wang, Y. Guo, J. Hong, Identifying and analyzing the privacy of
apps for kids, in: Proceedings of the 17th International Workshop on Mobile
Computing Systems and Applications, HotMobile ’16, Association for Computing
Machinery, New York, NY, USA, 2016, pp. 105–110, http://dx.doi.org/10.1145/
2873587.2873597.

[27] B.P. Sarma, N. Li, C. Gates, R. Potharaju, C. Nita-Rotaru, I. Molloy, Android
permissions: A perspective combining risks and benefits, in: Proceedings of the
17th ACM Symposium on Access Control Models and Technologies, ACM, New
York, NY, USA, 2012, pp. 13–22, http://dx.doi.org/10.1145/2295136.2295141.

[28] S.M. Habib, N. Alexopoulos, M.M. Islam, J. Heider, S. Marsh, M. Müehlhäuser,
Trust4App: Automating trustworthiness assessment of mobile applications, in:
2018 17th IEEE International Conference on Trust, Security and Privacy in
Computing and Communications/ 12th IEEE International Conference on Big
Data Science and Engineering, TrustCom/BigDataSE, 2018, pp. 124–135, http:
//dx.doi.org/10.1109/TrustCom/BigDataSE.2018.00029.
11
[29] B.P. Sarma, N. Li, C. Gates, R. Potharaju, C. Nita-Rotaru, I. Molloy, Android
permissions: A perspective combining risks and benefits, in: Proceedings of the
17th ACM Symposium on Access Control Models and Technologies, SACMAT
’12, ACM, New York, NY, USA, 2012, pp. 13–22, http://dx.doi.org/10.1145/
2295136.2295141, URL http://doi.acm.org/10.1145/2295136.2295141.

[30] F. Mohsen, H. Abdelhaq, H. Bisgin, A. Jolly, M. Szczepanski, Countering
intrusiveness using new security-centric ranking algorithm built on top of
elasticsearch, in: 2018 17th IEEE International Conference on Trust, Security
and Privacy in Computing and Communications/ 12th IEEE International Con-
ference on Big Data Science and Engineering, TrustCom/BigDataSE, 2018, pp.
1048–1057, http://dx.doi.org/10.1109/TrustCom/BigDataSE.2018.00147.

[31] H. Wang, H. Li, Y. Guo, Understanding the evolution of mobile app ecosystems:
A longitudinal measurement study of Google play, in: WWW, WWW ’19, ACM,
New York, NY, USA, 2019, pp. 1988–1999, http://dx.doi.org/10.1145/3308558.
3313611, URL https://doi-org.proxy-ub.rug.nl/10.1145/3308558.3313611.

[32] N. Peiravian, X. Zhu, Machine learning for android malware detection using
permission and api calls, in: 2013 IEEE 25th International Conference on Tools
with Artificial Intelligence, 2013, pp. 300–305.

[33] D. Wu, C. Mao, T. Wei, H. Lee, K. Wu, Droidmat: Android malware detection
through manifest and API calls tracing, in: 2012 Seventh Asia Joint Conference
on Information Security, 2012, pp. 62–69.

[34] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, J. Nieves, P.G. Bringas,
G.Á. Marañón, Mama: Manifest analysis For Malware Detection In Android,
Cybern. Syst. 44 (6–7) (2013) 469–488, http://dx.doi.org/10.1080/01969722.
2013.803889, arXiv:10.1080/01969722.2013.803889.

[35] R. Sato, D. Chiba, S. Goto, Detecting android malware by analyzing manifest
files, in: Proceedings of the Asia-Pacific Advanced Network, Vol. 36, 2013, p.
23, http://dx.doi.org/10.7125/APAN.36.4.

[36] S. Feldman, D. Stadther, B. Wang, Manilyzer: Automated android malware
detection through manifest analysis, in: 2014 IEEE 11th International Conference
on Mobile Ad Hoc and Sensor Systems, 2014, pp. 767–772.

[37] X. Li, J. Liu, Y. Huo, R. Zhang, Y. Yao, An android malware detection method
based on AndroidManifest file, in: 2016 4th International Conference on Cloud
Computing and Intelligence Systems, CCIS, 2016, pp. 239–243.

[38] H. Wang, Z. Liu, Y. Guo, X. Chen, M. Zhang, G. Xu, J. Hong, An explorative study
of the mobile app ecosystem from app developers’ perspective, in: Proceedings of
the 26th International Conference on World Wide Web, WWW ’17, International
World Wide Web Conferences Steering Committee, Republic and Canton of
Geneva, CHE, 2017, pp. 163–172, http://dx.doi.org/10.1145/3038912.3052712.

[39] A. Alsahaf, G. Azzopardi, B. Ducro, E. Hanenberg, R.F. Veerkamp, N. Petkov,
Estimation of muscle scores of live pigs using a kinect camera, IEEE Access 7
(2019) 52238–52245, http://dx.doi.org/10.1109/ACCESS.2019.2910986.

[40] S. Farrugia, J. Ellul, G. Azzopardi, Detection of illicit accounts over the
ethereum blockchain, Expert Syst. Appl. 150 (2020) 113318, http://dx.doi.
org/10.1016/j.eswa.2020.113318, URL https://www.sciencedirect.com/science/
article/pii/S0957417420301433.

[41] S.S. Lövdal, R.J.D. Hartigh, G. Azzopardi, Injury prediction in competitive
runners with machine learning, Int. J. Sports Physiol. Perform. (2020) 1–10,
http://dx.doi.org/10.1123/ijspp.2020-0518, http://journals.humankinetics.
com/view/journals/ijspp/aop/article-10.1123-ijspp.2020-0518/article-10.1123-
ijspp.2020-0518.xml.

[42] M. Rice, G. Harris, Comparing effect sizes in follow-up studies: ROC area, cohen’s
d, and r, Law Hum. Behav. 29 (5) (2005) 615–620, http://dx.doi.org/10.1007/
s10979-005-6832-7.

[43] H. Wang, Z. Liu, J. Liang, N. Vallina-Rodriguez, Y. Guo, L. Li, J. Tapiador, J. Cao,
G. Xu, Beyond Google play: A large-scale comparative study of Chinese android
app markets, in: Proceedings of the Internet Measurement Conference 2018, IMC
’18, Association for Computing Machinery, New York, NY, USA, 2018, pp. 293–
307, http://dx.doi.org/10.1145/3278532.3278558, URL https://doi-org.proxy-
ub.rug.nl/10.1145/3278532.3278558.

https://www.lifewire.com/ios-app-store-vs-google-play-store-for-app-developers-2373130
https://www.lifewire.com/ios-app-store-vs-google-play-store-for-app-developers-2373130
https://www.lifewire.com/ios-app-store-vs-google-play-store-for-app-developers-2373130
https://www.businessofapps.com/data/app-stores/
http://refhub.elsevier.com/S2772-9419(22)00011-4/sb11
http://refhub.elsevier.com/S2772-9419(22)00011-4/sb11
http://refhub.elsevier.com/S2772-9419(22)00011-4/sb11
http://refhub.elsevier.com/S2772-9419(22)00011-4/sb11
http://refhub.elsevier.com/S2772-9419(22)00011-4/sb11
https://www.android.com/play-protect/
https://play.google.com/about/developer-distribution-agreement.html
https://play.google.com/about/developer-distribution-agreement.html
https://play.google.com/about/developer-distribution-agreement.html
https://play.google.com/about/developer-content-policy/
https://play.google.com/about/developer-content-policy/
https://play.google.com/about/developer-content-policy/
http://dx.doi.org/10.1109/CogSIMA.2013.6523820
http://refhub.elsevier.com/S2772-9419(22)00011-4/sb16
http://refhub.elsevier.com/S2772-9419(22)00011-4/sb16
http://refhub.elsevier.com/S2772-9419(22)00011-4/sb16
http://refhub.elsevier.com/S2772-9419(22)00011-4/sb16
http://refhub.elsevier.com/S2772-9419(22)00011-4/sb16
http://refhub.elsevier.com/S2772-9419(22)00011-4/sb17
http://refhub.elsevier.com/S2772-9419(22)00011-4/sb17
http://refhub.elsevier.com/S2772-9419(22)00011-4/sb17
http://refhub.elsevier.com/S2772-9419(22)00011-4/sb17
http://refhub.elsevier.com/S2772-9419(22)00011-4/sb17
http://dx.doi.org/10.1145/2884781.2884855
http://dx.doi.org/10.1145/2736277.2741084
http://dx.doi.org/10.1145/2736277.2741084
http://dx.doi.org/10.1145/2736277.2741084
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.34894/H0YJFT
http://arxiv.org/abs/1801.01633
https://developer.android.com/reference/android/content/pm/PackageManager
https://developer.android.com/reference/android/content/pm/PackageManager
https://developer.android.com/reference/android/content/pm/PackageManager
https://developer.android.com/guide/topics/permissions/index.html
https://developer.android.com/guide/topics/permissions/index.html
https://developer.android.com/guide/topics/permissions/index.html
http://dx.doi.org/10.1145/3442381.3449990
http://dx.doi.org/10.1145/3442381.3449990
http://dx.doi.org/10.1145/3442381.3449990
http://dx.doi.org/10.1145/2873587.2873597
http://dx.doi.org/10.1145/2873587.2873597
http://dx.doi.org/10.1145/2873587.2873597
http://dx.doi.org/10.1145/2295136.2295141
http://dx.doi.org/10.1109/TrustCom/BigDataSE.2018.00029
http://dx.doi.org/10.1109/TrustCom/BigDataSE.2018.00029
http://dx.doi.org/10.1109/TrustCom/BigDataSE.2018.00029
http://dx.doi.org/10.1145/2295136.2295141
http://dx.doi.org/10.1145/2295136.2295141
http://dx.doi.org/10.1145/2295136.2295141
http://doi.acm.org/10.1145/2295136.2295141
http://dx.doi.org/10.1109/TrustCom/BigDataSE.2018.00147
http://dx.doi.org/10.1145/3308558.3313611
http://dx.doi.org/10.1145/3308558.3313611
http://dx.doi.org/10.1145/3308558.3313611
https://doi-org.proxy-ub.rug.nl/10.1145/3308558.3313611
http://refhub.elsevier.com/S2772-9419(22)00011-4/sb32
http://refhub.elsevier.com/S2772-9419(22)00011-4/sb32
http://refhub.elsevier.com/S2772-9419(22)00011-4/sb32
http://refhub.elsevier.com/S2772-9419(22)00011-4/sb32
http://refhub.elsevier.com/S2772-9419(22)00011-4/sb32
http://refhub.elsevier.com/S2772-9419(22)00011-4/sb33
http://refhub.elsevier.com/S2772-9419(22)00011-4/sb33
http://refhub.elsevier.com/S2772-9419(22)00011-4/sb33
http://refhub.elsevier.com/S2772-9419(22)00011-4/sb33
http://refhub.elsevier.com/S2772-9419(22)00011-4/sb33
http://dx.doi.org/10.1080/01969722.2013.803889
http://dx.doi.org/10.1080/01969722.2013.803889
http://dx.doi.org/10.1080/01969722.2013.803889
http://arxiv.org/abs/10.1080/01969722.2013.803889
http://dx.doi.org/10.7125/APAN.36.4
http://refhub.elsevier.com/S2772-9419(22)00011-4/sb36
http://refhub.elsevier.com/S2772-9419(22)00011-4/sb36
http://refhub.elsevier.com/S2772-9419(22)00011-4/sb36
http://refhub.elsevier.com/S2772-9419(22)00011-4/sb36
http://refhub.elsevier.com/S2772-9419(22)00011-4/sb36
http://refhub.elsevier.com/S2772-9419(22)00011-4/sb37
http://refhub.elsevier.com/S2772-9419(22)00011-4/sb37
http://refhub.elsevier.com/S2772-9419(22)00011-4/sb37
http://refhub.elsevier.com/S2772-9419(22)00011-4/sb37
http://refhub.elsevier.com/S2772-9419(22)00011-4/sb37
http://dx.doi.org/10.1145/3038912.3052712
http://dx.doi.org/10.1109/ACCESS.2019.2910986
http://dx.doi.org/10.1016/j.eswa.2020.113318
http://dx.doi.org/10.1016/j.eswa.2020.113318
http://dx.doi.org/10.1016/j.eswa.2020.113318
https://www.sciencedirect.com/science/article/pii/S0957417420301433
https://www.sciencedirect.com/science/article/pii/S0957417420301433
https://www.sciencedirect.com/science/article/pii/S0957417420301433
http://dx.doi.org/10.1123/ijspp.2020-0518
http://journals.humankinetics.com/view/journals/ijspp/aop/article-10.1123-ijspp.2020-0518/article-10.1123-ijspp.2020-0518.xml
http://journals.humankinetics.com/view/journals/ijspp/aop/article-10.1123-ijspp.2020-0518/article-10.1123-ijspp.2020-0518.xml
http://journals.humankinetics.com/view/journals/ijspp/aop/article-10.1123-ijspp.2020-0518/article-10.1123-ijspp.2020-0518.xml
http://journals.humankinetics.com/view/journals/ijspp/aop/article-10.1123-ijspp.2020-0518/article-10.1123-ijspp.2020-0518.xml
http://journals.humankinetics.com/view/journals/ijspp/aop/article-10.1123-ijspp.2020-0518/article-10.1123-ijspp.2020-0518.xml
http://dx.doi.org/10.1007/s10979-005-6832-7
http://dx.doi.org/10.1007/s10979-005-6832-7
http://dx.doi.org/10.1007/s10979-005-6832-7
http://dx.doi.org/10.1145/3278532.3278558
https://doi-org.proxy-ub.rug.nl/10.1145/3278532.3278558
https://doi-org.proxy-ub.rug.nl/10.1145/3278532.3278558
https://doi-org.proxy-ub.rug.nl/10.1145/3278532.3278558

	Early detection of violating Mobile Apps: A data-driven predictive model approach
	Introduction
	Background
	Distribution
	Android manifest file
	Android permissions
	Broadcast receivers

	Related work
	Methodology
	Data set
	Data preparation
	Feature engineering
	Input features of the seed data set
	APKs input features
	Dependent variable: Status

	Prediction model

	Experiments and results
	User- and developer-centered models

	Discussion
	Threats to validity

	Conclusion and future work
	Declaration of competing interest
	Data availability
	References

