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Abstract

Polygenic risk scores quantify the individual genetic predisposition regarding a

particular trait. We propose and illustrate the application of existing statistical

learning methods to derive sparser models for genome‐wide data with a polygenic

signal. Our approach is based on three consecutive steps. First, potentially

informative loci are identified by a marginal screening approach. Then, fine‐
mapping is independently applied for blocks of variants in linkage disequilibrium,

where informative variants are retrieved by using variable selection methods

including boosting with probing and stochastic searches with the Adaptive

Subspace method. Finally, joint prediction models with the selected variants are

derived using statistical boosting. In contrast to alternative approaches relying on

univariate summary statistics from genome‐wide association studies, our three‐step
approach enables to select and fit multivariable regression models on large‐scale
genotype data. Based on UK Biobank data, we develop prediction models for LDL‐
cholesterol as a continuous trait. Additionally, we consider a recent scalable

algorithm for the Lasso. Results show that statistical learning approaches based on

fine‐mapping of genetic signals result in a competitive prediction performance

compared to classical polygenic risk approaches, while yielding sparser risk models.
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1 | INTRODUCTION

Polygenic risk scores (PRS) represent quantification of
the individual genetic predisposition for a particular
phenotype (e.g., a clinical trait). PRS have already been
developed for a large variety of human traits and have

been integrated into prediction models for common
diseases together with traditional risk factors and clinical
variables (Kachuri et al., 2020; Khera et al., 2018).

Polygenic modeling has to deal with two major issues:
the high‐dimensionality of the genetic signal (typically
characterized by millions of common variants) and the
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presence of high correlations among variants (i.e., linkage
disequilibrium [LD]) within the genome (Ardlie et al., 2002).
Therefore, a classical approach to PRS is based on the
cumulative marginal effects from simple univariate regres-
sion models for individual variants, incorporating a variant
selection filter according to the level of LD and to the level of
significance with respect to the considered phenotype. This
traditional method—usually referred to as clumping plus
thresholding (C+T)—is still one of the most popular
approaches, given its computational efficiency (Euesden
et al., 2015). More refined methods adapt penalized
regression methods for summary statistics from genome‐
wide association studies (GWAS), including lassosum (Mak
et al., 2017) implementing Lasso regression and penRegSum
(Pattee & Pan, 2020) considering an elastic net penalty.
Alternatively, Bayesian approaches can be employed to
induce shrinkage of effect estimates, such as LDpred
(Vilhjálmsson et al., 2015) and PRS‐CS (Ge et al., 2019).

All these methods are based on summary statistics from
GWAS, typically incorporating a particular way of external
reference LD‐panel matching to account for LD (Vilhjálms-
son et al., 2015). While such approaches facilitate the
exchange of research data and the computational feasibility,
particularly regarding memory issues, a major limitation of
using summary statistics is that the resulting polygenic
scores do not fully utilize the joint information of the
variants regarding the phenotype of interest. Furthermore,
while trans‐ethnic GWAS indicate that causal variants are
mainly shared across populations (Li & Keating, 2014), the
poor generalization of classical PRS models to different
populations is largely driven by different allele frequencies
and LD‐patterns across populations (Wang et al., 2020).
Therefore, it can be hypothesized that PRS based only on the
most informative (“fine‐mapped”) variants may be less
sensitive to LD differences among populations (Weissbrod
et al., 2020).

From a statistical point of view, a more effective
approach would be to apply modern multivariable
regression models directly on the original genotype data,
instead of relying on univariate summary statistics.
Multivariable regression models enable the joint estima-
tion of associations and could lead to improved fine‐
mapping (i.e., the identification of potentially causal
variants; Benner et al., 2016). Although there exists a
huge literature on statistical prediction models for high‐
dimensional data (large number of predictors p related to
small sample size n), their application for PRS is often
hindered by computational aspects and memory restric-
tions due to the size of the data sets (large p and large n).
Recently, Qian et al. (2020) proposed a so‐called batch
screening iterative Lasso (BASIL) algorithm to apply
penalized regression for large GWAS cohorts like UK
Biobank, showing that one can compute the full Lasso

solution path for the original genotype data by succes-
sively solving lower‐dimensional subproblems without
requiring to load the full data set into memory.

In this study, we propose and illustrate an alternative
technique to allow for the application of existing statistical
learning methods for multivariable regression on original
genotype data, by exploiting the characteristic correlation
structure between the variants in the genome. In particular,
variants within the same genomic region are likely to be
correlated due to LD, while variants in distant genomic
regions can be considered as independent, implying that
variable selection methods can focus on the identification of
the most informative variants within each region of high LD.
Thus, in the proposed approach we first split the genome
into independent LD blocks (chunks), then apply modern
variable selection techniques on relevant blocks to finemap
the genetic signal regarding the particular phenotype, and
finally combine the selected variants to fit a joint prediction
model using statistical boosting. Particularly, we illustrate
our approach with several different statistical learning
methods for variant selection (fine‐mapping) in the indepen-
dent blocks. As the first alternative, we make use of a
stochastic search algorithm called the Adaptive Subspace
(AdaSub) method, aiming to select the best model according
to an ℓ0 ‐type information criterion by adaptively solving
lower‐dimensional subproblems (Staerk et al., 2021). As the
second alternative, we consider statistical boosting in
combination with probing (Thomas et al., 2017), yielding
automatic stopping and sparse prediction models. Finally,
we use the recently proposed BASIL algorithm (Qian
et al., 2020) to compute Lasso estimates based on chunk‐
based prefiltered variants and compare it to the direct
application of the Lasso without prefiltering.

We apply the proposed approach on UK Biobank data
with n= 487,410 samples and p= 9,812,717 variants,
considering LDL‐cholesterol as a continuous trait char-
acterized by a polygenic architecture. Our results suggest
that the statistical learning methods AdaSub and probing
yield sparser and more interpretable polygenic prediction
models, while showing a competitive prediction perform-
ance on independent test data compared to classical C+T
and Bayesian approaches based on summary statistics.
The direct application of the Lasso on full genotype data
yields the best prediction performance with considerably
larger numbers of selected variants compared to the
sparse fine‐mapped models via AdaSub and boosting
with probing. However, we find that the Lasso still yields
similar prediction accuracy with less selected variants
when applied only on chunk‐based pre‐filtered variants.
In a simulation study we investigate the robustness of the
different methods regarding alterations of LD‐patterns
and genotyping/imputation errors. The evaluation of the
final scores on data from other populations indicates
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potential benefits regarding the generalizability of the
developed fine‐mapped models.

2 | METHODS

2.1 | Data preprocessing

This study has been conducted using the UK Biobank
Resource under Application Number 81202. The UK
Biobank (Bycroft et al., 2018) is a large‐scale cohort study
covering a huge prospective sample (n > 500,000) of the
British general population, including both genotype as well
as phenotype (health‐related outcomes) data. In this study
we focus on LDL‐cholesterol as the phenotype of interest.
Only individuals with both self‐reported white British origin
(Field 21000) and Caucasian origin according to the principal
components provided by UK Biobank (Field 22006) were
used in the training cohort. Variants with a genotyping rate
of less than 99%, or which had a minor allele frequency
(MAF)< 1% were removed. Variants not in Hardy–
Weinberg equilibrium (p < 10−6) were also excluded.

All data preprocessing steps were performed with PLINK
1.9 (Chang et al., 2015). The models were trained considering
imputed dosages provided by UK Biobank after filtering for
MAF > 0.01 and post imputation info >0.8. UK Biobank is
enriched of related individuals; specifically, 147,731 indivi-
duals were inferred to be related up to third degree or closer
(Bycroft et al., 2018). We applied no filter on relatedness as
removing related individuals would have led to a nontrivial
decrease of the sample size. Previous work had shown that
sample filtering according to the coefficients of relationship
(kinship) leads to similar PRS associations (Lello et al., 2018).

Since one of the aims of the present work was the
evaluation of the generalizability of the derived PRS, no
population‐based filter was applied for the test data set. In
total 318,258 samples were included in the training cohort
and 150,521 samples were considered as an independent test
cohort. To reduce the memory demand and allow for
parallelization, we split the genome into independent LD
blocks (i.e., chunks) according to the ldetect method as
described in Berisa and Pickrell (2016). Specifically, we
considered the 1,703 blocks in autosomal chromosomes
identified by ldetect considering the European population of
1K genome. As the proposed approaches are based on fine‐
mapping of the significant regions, first a univariate linear‐
regression association test has been performed between the
variant dosages and LDL‐cholesterol (Field 30,780), respec-
tively. The chunks with at least one genome‐wide significant
association (i.e., p value of association lower than 5 × 10−8)
were then further processed to fine‐map the genetic signal.
Within each chunk we additionally filtered for suggestively

significant variants (p < 10−5), compare also Fan and Lv
(2008) and Hoffman et al. (2013).

2.2 | Fine‐mapping of variants

2.2.1 | Stochastic search with AdaSub

As the first fine‐mapping approach, we considered ℓ0 ‐type
information criteria to identify the most informative variants
in each of the chunks. Such variable selection criteria
provide a natural trade‐off between goodness‐of‐fit and
model complexity, by explicitly penalizing the number of
variants included in the model. As an important example,
the extended Bayesian information criterion (EBIC; J. Chen
& Chen, 2008) has been proposed for high‐dimensional data
situations with many possible covariates (variants) and has
shown to yield variable selection consistency even when the
number of covariates p exceeds the sample size n. In
particular, for a subset of variants indexed by ⊆S p{1, …, } ,
the EBIC γ is given by
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where ∈yi denotes the observed phenotype and
∈x {0, 1, 2}i

p the genotype for subjects i n= 1, …, . Fur-
thermore, μ̂S denotes the estimated intercept and ∈β̂S

p

the least squares estimate under model S (i.e., β̂ = 0j for

∉j S). The EBIC γ penalizes the number  S of selected
variants with the factor n γ plog( ) + 2 log( ) , where n refers
to the sample size of the training data and p to the total
number of variants in the training data. The additional
constant ∈γ [0, 1] controls the induced sparsity, with γ = 1

resulting in the sparsest models and γ = 0 corresponding to
the classical Bayesian information criterion. Based on the
EBIC γ , the “optimal” set Ŝ of variants is defined by the one
which yields the smallest criterion value among all possible
sets ⊆S p{1, …, } of variants, that is

⊆
S SEBIC ( ˆ ) = min EBIC ( ).γ

S p
γ

{1, …, } (2)

Due to the combinatorial nature of the optimization
problem (2), it is computationally challenging to find the
model minimizing the EBIC γ . Here we make use of the
AdaSub method (Staerk et al., 2021) as a stochastic
search algorithm, which is based on reducing the high‐
dimensional search problem (2) to low‐dimensional
subproblems
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in the subsequent stochastic search (where 1S denotes
the indicator function for a set S). The initial expected
size of the sampled subspaces is given by q (with
≪q p), while the adaptation rate of the algorithm is

controlled by the parameter K > 0. Under certain
conditions it can be guaranteed that AdaSub con-
verges against the optimal solution of the original
problem (Staerk et al., 2021). Particularly in sparse
and highly correlated data situations it has been
observed that AdaSub shows favorable variable selec-
tion properties in comparison to ℓ1‐type regulariza-
tion methods such as the Lasso (Tibshirani, 1996). As
high correlations occur frequently among variants
within the same genomic region due to linkage
disequilibrium, the AdaSub method is a well‐suited
candidate to identify sparse sets of informative
variants explaining the genomic signal for a particular
phenotype.

For each chunk, we independently applied AdaSub
using the EBIC γ with constant γ = 1 as the selection
criterion. As the penalty of the EBIC1 incorporates the
total number of considered variants, it accounts for the
fact that AdaSub is only applied on the prefiltered
chunks and the resulting multiple testing issue. In
AdaSub we initialized the expected search size q = 5

and the parameter K = 2000 controlling the adaptation
rate of the algorithm. For each chunk, the best model
identified after 10,000 iterations of AdaSub was returned
as the set of selected variants.

2.2.2 | Statistical gradient boosting with
probing

As an alternative to the explicit regularization imposed by
information criteria, we implemented a statistical boosting
algorithm (Mayr et al., 2014) in combination with probing
(Thomas et al., 2017) for early stopping, providing implicit

regularization and variable selection. The concept of boosting
emerged from machine‐learning (Freund & Schapire, 1996),
where it is often used in combination with trees as base‐
learners to form a powerful and flexible classifier (T. Chen &
Guestrin, 2016). For statistical boosting approaches, uni-
variate regression functions are implemented as base‐
learners and are iteratively fitted to the current gradients of
the loss function, yielding a gradient descent procedure in
function space (Bühlmann & Hothorn, 2007).

More formally, the gradient vector u m[ ] at iteration
m m= 1, …, stop is the first derivative of the loss function
ρ y η( , )i i w.r.t. the model η evaluated at the previous
iteration m − 1, that is

∂

∂
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In the context of linear regression, ηi represents the
linear predictor for observation i at iteration m − 1:

xη x μ β̂ˆ ( ) = ˆ + ′ .m
i

m
i

m[ −1] [ −1] [ −1]
(6)

The gradient vector u m[ ] is then fitted one‐by‐one to
the base‐learners h x j p( ), = 1, …,j

j( ) , which typically
represent univariate regression functions for the different
covariates x x, …, p(1) ( ). In the case of the L2 loss given by
ρ y η y η( , ) = ( − )i i i i

2, this procedure basically leads to a
component‐wise refitting of residuals by the base‐
learners. Although all base‐learners are fitted to u m[ ] ,
only the best‐fitting base‐learner ( )h xj

j
*

( *) is selected and
its fit is added to the current model via a small step‐
length (e.g., sl= 0.1):

⋅ ( )η η h xˆ = ˆ + sl .m m
j

j[ ] [ −1]
*

( *)
(7)

In the framework of classical linear regression with
univariate linear base‐learners h x μ β x( ) = +j

j
j

j( ) ( ) for

j p= 1, …, , this leads to

⋅

≠
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As in every iteration only the best‐fitting base‐learner
( )h xj

j
*

( *) is selected, variables that have not been included
in any of the selected base‐learners are effectively
excluded from the final model when the algorithm is
stopped. As a result, statistical boosting yields multi-
variable regression models while incorporating automated
variable selection for potentially high‐dimensional data
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situations, where classical statistical inference procedures
become infeasible (Mayr et al., 2014).

For each chunk, we applied statistical boosting
separately using linear models with single variants as
base‐learners. Instead of tuning the stopping iteration
with respect to the prediction accuracy via resampling
techniques, we incorporated a probing approach
(Wu et al., 2007): for each variant x j( ) , we additionally
included a base‐learner with a shadow‐variable x̃ j( )

(probe). Each probe is a randomly permuted sibling of
an original variant and, due to the permutation, not
associated with the outcome. Once the first base‐
learner corresponding to one of these probes
x x˜ , …, ˜ p(1) ( ) is (falsely) selected, the boosting proce-
dure is stopped. This combination of statistical
boosting with probing has shown to yield particularly
sparse models with low numbers of false‐positives,
shifting the focus of the tuning procedure from
prediction accuracy to variable selection (Thomas
et al., 2017).

2.2.3 | Lasso via the BASIL algorithm

Qian et al. (2020) recently proposed a batch screening
iterative Lasso (BASIL) algorithm to apply the Lasso
(Tibshirani, 1996) directly on large‐scale genotype data.
The Lasso is defined as a solution to the penalized
regression problem

∈ ∈
  ( )xμ y λ ββmin + ′ − + ,

μ β i

n

i i
j

p

j
, =1

2

=1
p (9)

with penalty parameter ≥λ 0 controlling the sparsity
and shrinkage of regression coefficients induced by the
ℓ1‐regularization. For large‐scale applications with a
high memory demand, the BASIL algorithm enables
the construction of the full Lasso path (for decreasing
λ) by iteratively working on smaller adaptive batches
of genomic variants. In more detail, the algorithm
consists of three repetitive steps: in a screening step,
variants which are most correlated with the current
residuals are added to an active set of variants.
Then, the Lasso is fitted only on the active set for a
consecutive range of λ values. Finally, the found
solutions are checked for validity using the
Karush–Kuhn–Tucker conditions, before those three
steps are repeated. By checking the validity of each
solution, the exact Lasso path is retrieved (Qian
et al., 2020). The final Lasso estimate is derived by
choosing the penalty parameter λ yielding the best
prediction performance on a validation set.

2.3 | Final estimation and comparison
to classical PRS

After identifying the informative variants separately for
the different chunks using the two fine‐mapping
approaches AdaSub and boosting with probing based
on the training cohort with n = 281,843 samples, we
combined the respective variants in a PRS by fitting a
multivariable regression model on the training cohort via
statistical boosting (component‐wise L2 boosting, Bühl-
mann & Yu, 2003). This procedure was performed once
for the variants selected via stochastic search with
AdaSub and once for variants selected via boosting with
probing. In both cases, we fit the complete PRS,
estimating new coefficients β̂j to allow those estimates

to take the combined multivariable effects of the selected
variants also among different chunks into account. In
this final estimation step, we led the boosting algorithm
converge by fixing a large number of 10,000 iterations.
We employed the Lasso using the BASIL algorithm (Qian
et al., 2020) for two different sets of variants. First,
similarly as in Qian et al. (2020), we applied the Lasso on
all genome‐wide genotyped variants. Second, similarly to
AdaSub and boosting with probing, we applied the Lasso
only on the chunk‐based prefiltered variants (see
Section 2.1). For both sets, we first computed the Lasso
path using 87.5% of our training cohort for the fitting and
12.5% of our training cohort as validation data. We then
refitted the Lasso on the complete training data for the
penalty parameter λ corresponding to the highest
prediction accuracy on the validation data.

The derived models were also compared with the
classical PRS obtained with clumping plus thresholding
(C+T), considering the full genome‐wide signal (without
prefiltering and fine‐mapping of variants). In the PRS
derived via C+T, the regression coefficients β̂j reflect the

univariate (marginal) associations between the allele
dosages and the phenotype (as also derived from GWAS
summary statistics). Different p value thresholds were
considered (i.e., 25 values equally distributed in the log
scale between 5 × 10−8 and 0.05) and also different LD
thresholds for clumping were used (i.e., eight correlation
values equally distributed between 0.1 and 0.8), as
implemented in PRSice (Euesden et al., 2015). Moreover,
to further evaluate the potential influence of model
sparsity, we also computed genome‐wide PRS based on
genotyped variants, assuming a genetic architecture in
which all variants are causal. To this aim, we imple-
mented the infinitesimal model of LDpred2 based on the
shrinkage of effect sizes according to heritability estima-
tion (Privé et al., 2020). In addition, we also derived a

MAJ ET AL. | 5



PRS based on continuous shrinkage of effect sizes
according to the UKB–EUR reference LD panel as
implemented in PRS‐CS (Ge et al., 2019). Similarly to
the C+T methods, both LDpred2 and PRS‐CS are based
on univariate (marginal) associations which are usually
available as summary statistics from GWAS.

As LDL blood levels are strongly influenced by lipid‐
lowering drugs, we adjusted LDL values by a factor of
0.684 in individuals taking statins as estimated in a
recent work (Sinnott‐Armstrong et al., 2021). The final
PRS for individual i is then computed as the weighted
sum of effect alleles:


∈

 β xPRS = ˆ ,i

j S
j i

j( )

(10)

where β̂j is the estimated weight for variant j (obtained

from the univariate association or derived from the final

multivariable models after fine‐mapping), xi
j( ) is the

corresponding genotype for individual i and S denotes
the respective set of selected (fine‐mapped) variants.

As a sensitivity analysis regarding the robustness of the
different PRS models on deviations from the target
population, we also performed two permutation‐based
simulations on parts of the test data with British ancestry.
In both simulation scenarios, we altered randomly selected
windows of 1000 variants each, leading in total to 1%–25%
deviating variants across the genome. To check for the effect
of an alteration of correlations between nearby variants, in
the first scenario we permuted the location of the variants
inside the selected windows on the test observations. To
investigate the robustness regarding genotyping/imputation

errors, in the second simulation scenario we again consider
the variants inside the randomly selected windows, but,
instead of their locations, we jointly permute their values
across observations, effectively “knocking‐out” their effect on
the outcome for these test observations. In contrast to the
first scenario, in the second scenario the LD‐patterns within
the windows are not altered by the permutations since the
values of the variants in each window are permuted together
across observations. For both simulation scenarios we
assessed the relative performance of the PRS compared to
their performance on the original data.

3 | RESULTS

3.1 | Fine‐mapping

The considered polygenic risk approaches for LDL‐
cholesterol yield substantially different numbers of
selected variants in the final models (see Table 1). Here,
we specifically focus on the selected variants by the fine‐
mapping approaches via AdaSub and statistical boosting
with probing as well as by the classical genome‐wide C
+T approach. In particular, the C+T approach selects
1588 variants (best fitting model obtained with p value
threshold of 5.25 × 10−5 and clumping R2 of 0.1),
boosting with probing selects 792 variants and AdaSub
with EBIC1 leads to only 108 selected variants.

In Figure 1, the top significant locus (referring to
univariate associations with LDL‐cholesterol) is dis-
played on chromosome 16, highlighting the variants that
were selected for the final PRS with the statistical
learning methods AdaSub and probing as well as the

TABLE 1 Results of the covariate‐only model (Mc ) and the univariate and multivariable polygenic models based on genome‐wide and
chunk‐based prefiltered variants for the prediction of LDL‐cholesterol

Method Input N variants R2 for EUR R2 for AFR R2 for EAS R2 for SAS

Covariate‐only model — 0 0.030 0.022 0.041 0.00042

Univariate polygenic models

C+T Genome‐wide 1588 0.083 (100%) 0.033 (39.1%) 0.045 (54.1%) 0.012 (14.3%)

LDpred2‐inf Genome‐wide 1,048,692 0.079 (100%) 0.028 (35.0%) 0.040 (50.6%) 0.011 (14.2%)

PRS‐CS Genome‐wide 1,110,740 0.122 (100%) 0.048 (39.5%) 0.074 (60.3%) 0.022 (18.0%)

Multivariable polygenic models

Boosting with Probing Prefiltered 792 0.180 (100%) 0.161 (89.4%) 0.098 (54.4%) 0.062 (34.4%)

AdaSub with EBIC1 Prefiltered 108 0.163 (100%) 0.145 (88.9%) 0.095 (58.3%) 0.053 (32.5%)

Lasso Genome‐wide 12,492 0.204 (100%) 0.104 (50.8%) 0.108 (52.3%) 0.072 (35.2%)

Lasso Prefiltered 1821 0.197 (100%) 0.164 (83.2%) 0.117 (59.2%) 0.079 (40.1%)

Note: The number of selected variants (N variants) for the final models (sparsity) and the prediction performance (R2) on the test set of 120,242 Europeans
(EUR) as well as on three populations different from the training set (6706 Africans, AFR; 2073 East Asians, EAS; 7788 South Asians, SAS). For each of the
methods, the relative prediction performance compared to the European population is provided in parentheses.
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FIGURE 1 Regional association signals for top significant locus in chromosome 16 (p values correspond to univariate associations
between variants and LDL‐cholesterol). Variants selected in the final models (the top, middle, and bottom figures correspond to C+T,
boosting with probing, and AdaSub with EBIC1) are highlighted in green.
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classical C+T approach. It can be observed that the
statistical learning approaches for fine‐mapping tend to
select less variants than the classical C+T approach.
Furthermore, this example illustrates that AdaSub with

EBIC1 does not necessarily select the variant with the
highest marginal association (smallest p value).

Figure 2 displays the final estimated absolute regres-
sion coefficients  β̂j on their corresponding chromosome.

FIGURE 2 Absolute value of regression coefficients in the considered PRS models (the top, middle, and bottom figures correspond to
C+T, boosting with probing, and AdaSub with EBIC1) for LDL‐cholesterol.
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The top variants (largest absolute coefficients) in all three
models are mainly located in genomic loci corresponding
to the localization of well‐known cholesterol‐associated
genes (main signal colocalize with LDL receptor and
APOE genes in chromosome 19, a second peak is present
in chromosome 1 at the level of the PCSK9 gene whose
inhibition leads to a decrease of LDL; Sabatine, 2019).

The comparison of the included variants across the
considered models shows that several variants were
selected by all three approaches (mainly leading variants
in significant loci). Concerning the two fine‐mapped
PRS, 9 and 36 variants were selected in the region
surrounding the LDL receptor gene (1MB upstream and
downstream) using AdaSub with EBIC1 and boosting
with probing, respectively. Annotation using variant
effect predictor (McLaren et al., 2016) revealed that four
out of the nine variants selected by AdaSub were located
in the regulatory region and one located in the splicing
region for LDL. Notably, an upstream variant rs12151108
was previously reported in GWAS on LDL level among
African population (Gurdasani et al., 2019) as well as in
combined East Asian/European population (Nielsen
et al., 2020). In addition to selecting eight out of nine
variants included in the AdaSub model, boosting with
probing selected 28 further variants covering 11 genes
(Supporting Information: Table 1).

When comparing the sizes of estimated coefficients
for the selected loci (see Figure 2), one can generally
observe a very similar pattern among the three models,
while there is a tendency toward smaller (shrunk)
regression coefficients for the two PRS that were finally
estimated via statistical boosting (see Section 2.3). This is
particularly true for the PRS based on variants selected
via probing, which may be due to the larger number of
selected variants compared to the one selected by
AdaSub while using the same number of mstop = 10,000
iterations for the final boosting fit. Overall, the two fine‐
mapping methods via statistical learning identify less
variants for PRS than the classical C+T approach, which
could also increase the interpretability of the underlying
models.

Of note, no fine‐mapping takes place when applying
LDpred2‐inf and PRS‐CS since these methods assume a
genetic architecture in which all variants are casual,
leading to omnigenic models based on all overlapping
variants between the analyzed target data and the
reference LD data set. On the other hand, multivariable
Lasso regression via the BASIL algorithm (Qian
et al., 2020) yields a final model with 12,492 selected
variants based on genotyped data, which is sparser
compared to the omnigenic models, but considerably
larger compared to the fine‐mapped AdaSub and probing
models. Compared to the genome‐wide analysis, the

application of the Lasso based on only the chunk‐based
prefiltered variants results in a sparser model with 1821
selected variants, which is, however still larger than both
the AdaSub and probing models.

3.2 | Prediction performance

A sparser PRS model might be advantageous for
interpretation; however, an important aim of PRS
modeling remains prediction. To assess the prediction
performance of the differently derived polygenic scores
for LDL, we computed the R2 value given by the squared
correlation between the observed and the predicted
phenotypes on the European test cohort. The test cohort
was composed of the remaining n = 120,495 self‐
reported British individuals with Caucasian genetic
origin that were not used in the training cohort.

We considered full models (Mf ) including the

estimatedPRS :

 ⋯M α γ γ γ

γ γ

: Y = + PRS + PC + + PC

+ sex + age + ϵ

f PRS 1 1 10 10

sex age

(11)

and the corresponding covariate‐only model (Mc ):

⋯M α γ γ γ

γ

: Y = + PC + + PC + sex

+ age + ϵ.

c 1 1 10 10 sex

age

(12)

Here, the variable Y denotes the outcome (LDL level
as a continuous phenotype) and PC k represents the kth
principal component for k = 1, …, 10. The R2 attributable
to the PRS (partial R2) is defined as the difference
between the R2 of the full model Mf and the R2 of the
covariate‐only model Mc .

There is large heterogeneity both in the sparsity of the
final polygenic models Mf and in the reached prediction
performance in terms of R2 on the European population
(see Table 1). Overall comparisons with the covariate‐
only model Mc suggest that the prediction accuracy for
LDL‐cholesterol is largely driven by genetic pre-
disposition as summarized by PRS. In particular, the
sparse multivariable AdaSub and probing approaches
based on chunk‐based fine‐mapping yield a better
prediction performance compared to the univariate C
+T, LDpred2, and PRS‐CS approaches based on sum-
mary statistics, which include more variants in their final
models. Previous work on classical penalized‐regression
approaches (Qian et al., 2020) has already indicated that,
in the presence of large population‐based omics data
enabling the training of multivariable models, it is
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possible to outperform univariate approaches based on
summary statistics.

Also, in our analysis, multivariable Lasso regression
applied on all genotyped variants reached the best
prediction performance on the European population,
further indicating that multivariable regression models
are favorable compared to methods based on univariate
summary statistics. As the Lasso selects substantially
larger numbers of variants than the fine‐mapping
approaches via AdaSub and probing, this illustrates that
the identification of sparser models based on the most
informative variants can yield lower prediction perform-
ance compared to larger models including many variants
with lower effect sizes. However, compared to the direct
application of the Lasso on all genotyped variants, the
Lasso still yields very similar prediction accuracy with
less selected variants when applied only on the chunk‐
based prefiltered variants. Overall, the competitive
performances that are obtained using smaller numbers
of variants suggests that fine‐mapping approaches via
multivariable statistical learning are able to detect the
most predictive variants which can then be further
analyzed for biological interpretation.

3.3 | Generalizability

One could hypothesize that sparser PRS might be more
robust toward deviations from the target population. To
test the generalizability of the derived PRS models, as test
cohort we considered the complete UK Biobank data
after removing samples used in the training data set. As
in similar works, to adjust for population stratification,
we first fit a linear regression model considering the first
10 principal components (PC) in the training data set

 ⋯α δ δPRS = + PC + + PC + ϵ1 1 10 10 (13)

to predict PRS in the test cohort only based on the
genetic ancestry (Fahed et al., 2020; Khera et al., 2019).
The residualized PRS are then used to fit the full model
with covariates. The prediction performance was eval-
uated by splitting the complete test cohort in different
ethnic groups according to the individual genetic back-
ground. The estimation of the genetic ethnicity via PC
projection with respect to 1000 Genomes Project samples
was performed using the bigsnpr package (Privé
et al., 2018). Samples were assigned to one of the five
1000 Genomes Project superpopulations (European:
EUR, African: AFR, East Asian: EAS, South Asian:
SAS, American: AMR) according to the Euclidean
distance in the 10 PC space with respect to the
population centers as described in Privé (2020). Only

cohorts with more than 1000 individuals were included
in the analysis (i.e., the AMR superpopulation which
included only 230 samples was excluded).

The R2 values for the different PRS as well as for the
covariate‐only model on all considered populations are
reported in in Table 1 (13,585 samples were excluded
from this analysis because they did not cluster to any
superpopulation due to a likely partial mixed ancestry
origin). Overall, one can observe that the highest total R2

values are reached on the European population (after
adjusting for population stratification). On the other
hand, all PRS models performed substantially worse in
non‐European populations, though to a different extent.
In particular, the sparse fine‐mapped AdaSub and
probing models tend to yield a lower reduction of
prediction performance in out‐of‐target populations
compared to the univariate PRS approaches: for example,
for the African population, the three univariate PRS
approaches C+T, LDpred2 and PRS‐CS achieve only
between 35% and 39.5% of their prediction performance
on the European population, while the fine‐mapping
approaches AdaSub and probing yield 88.9% and 89.4% of
their respective performance on the European popula-
tion. Furthermore, the Lasso model without prefiltering
appears to be less robust regarding the generalizability on
different populations compared to the sparser Lasso
model based on chunk‐based prefiltered variants: for
example, for the African population, the genome‐wide
Lasso model achieves a relative prediction performance
of 50.8% compared to its performance on the European
population, while the sparser Lasso model based on
prefiltering yields a relative performance of 83.2%.

Despite these indicative results, the general pattern
between sparsity and generalizability remains less clear
across the different approaches implemented to model
the polygenic architecture of LDL. The differences of PRS
prediction across populations might be due to
population‐specific allele‐frequencies, LD patterns, and
effect sizes (possibly capturing also gene–environment
interactions). While the presence of differences in allele
frequencies could be overcome by matching the individ-
ual genetic scores with population‐specific PRS distribu-
tions, different LD patterns and the heterogeneity of
variant effects across populations are more difficult to
assess. Concerning population‐specific effect sizes, access
to genome‐wide association studies performed in differ-
ent ancestries would be required. However, the presence
of variable LD patterns can be simulated by altering the
correlations between variants.

The simulation results obtained via permuting the
position of variants inside randomly selected windows of
size 1000 (leading in total to 1%, 5%, 10%, 25% permuted
variants, respectively) revealed that the prediction
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performance is indeed strongly affected by the alteration
of the correlation structure across nearby variants
(Supporting Information: Table 2). This tendency is
present for all models; as expected, larger amounts of
changes in local variant correlations tend to imply lower
generalizability. This is in line with the typical low
performance of PRS models that are obtained in the
African population which is characterized by a high level
of allelic heterogeneity (Duncan et al., 2019). However,
this is not a general rule: for instance, concerning the
prediction of LDL‐cholesterol, we obtained the lowest
performance in UK Biobank for individuals with East
Asian ethnic background (EAS), replicating what has
also been recently observed in another work (Tanigawa
et al., 2022). These findings further highlight the
complexity of the issue of PRS generalizability, which is
likely to depend on a combination of factors, among
which population‐specific LD patterns play a major role.

Noteworthy, the simulation results based on the
perturbation of the local correlation structure showed
that for larger variations nonsparse models like LDpred2‐
inf and PRS‐CS can be more robust than sparse models.
On the other hand, the second simulation scenario with
joint permutations of variant values inside windows
across observations (effectively “knocking‐out” these
variant effects on the outcome, e.g., representing
genotyping errors or genotyping missingness) revealed
that the sparse models obtained by AdaSub and probing
tended to be more robust compared to the nonsparse
models of LDpred2‐inf and PRS‐CS (Supporting Infor-
mation: Table 3). Overall, these results suggest that
further analyses are required to investigate the hypothe-
sis that sparser and more carefully fine‐mapped models
tend to be more robust regarding the generalizability to
different populations (Weissbrod et al., 2020).

4 | DISCUSSION

In this study, we have proposed and illustrated the
application of existing statistical learning approaches for
sparser fine‐mapped polygenic risk models. These
methods take advantage of the full genotype data and
incorporate modern statistical modeling approaches as
well as data‐driven variable selection strategies in the
fitting of PRS.

PRS are usually constructed via estimated effects
from simple linear models representing the cumulative
univariate/marginal effects of many common variants
from GWAS (Choi et al., 2020; Wand et al., 2021). One of
the major methodological limitations of relying only on
univariate summary statistics is that the joint informa-
tion and interdependence of effects of multiple variants

cannot be fully assessed. Our proposed approaches, in
contrast, directly apply multivariable regression models
on the actual genotype data. For genetic fine‐mapping,
we consider the recently developed stochastic search
method AdaSub (Staerk et al., 2021), as well as statistical
gradient, boosting (Bühlmann & Hothorn, 2007). We
employ these methods to yield particularly sparse models
by incorporating the ℓ0 ‐penalized EBIC1 (J. Chen &
Chen, 2008) for AdaSub and by enforcing early stopping
via probing for the statistical boosting algorithm (Thomas
et al., 2017). To overcome the high computational burden
and memory demand of applying these existing methods
on large‐scale data (large p and large n), we first split the
genome into independent LD blocks incorporating a
chunk‐based screening approach and then identify the
most informative variants for the phenotype inside these
chunks. Afterward, the selected variants are combined
into a final multivariable regression model—again fitted
by a statistical boosting algorithm. Additionally, we
consider the recent BASIL algorithm (Qian et al., 2020)
to fit the ℓ1‐penalized Lasso (Tibshirani, 1996) directly on
the full genotype data as well as on chunk‐based
prefiltered variants to further encourage the sparsity of
the resulting model.

The proposed statistical learning methods based on
AdaSub and probing are able to yield sparser and hence
more interpretable multivariable risk models than
classical methods based on univariate summary statistics.
Even though the final models fitted via statistical
boosting after fine‐mapping with AdaSub and probing
were not optimized for prediction performance, they
showed a competitive performance on UK Biobank data
regarding the prediction of LDL‐cholesterol compared to
classical PRS methods based on summary statistics such
as C+T and different Bayesian approaches. With the
sparse, fine‐mapped AdaSub and probing models, around
13%–15% of the variability of LDL‐cholesterol in our test
cohort could be explained via genetic predisposition in
the matched EUR population, after adjusting for age, sex
and population stratification. Instead, the univariate C+T
approach explains only around 5% of the LDL variability,
a result in line with the R = 0.0542 obtained in the
FinnGen cohort with a much larger PRS model including
around 6M variants (Ripatti et al., 2020).

The Lasso fitted on full genotype data via the recently
proposed BASIL algorithm (Qian et al., 2020) is able to yield
even improved prediction performance on test data, which
further demonstrates that the estimation and selection of
variants in multivariable regression models is favorable
compared to methods based on univariate summary
statistics. However, the Lasso selected considerably more
variants in the polygenic score for LDL‐cholesterol compared
to the fine‐mapping approaches via AdaSub and probing. We
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further demonstrated that the number of selected variants in
the Lasso PRS model can be substantially reduced when the
Lasso is applied on the chunk‐based prefiltered variants,
resulting in a sparser model with still very competitive
prediction performance.

Additionally, results of the sparser scores tended to be
more robust when applied to different populations. The
dependency of PRS performance on ancestry
(Curtis, 2018) and the inherent disadvantage for indivi-
duals from populations with less genetic data (Duncan
et al., 2019) or with multiethnic origin are urgent
practical and ethical problems for the application of
PRS in clinical practice (Lewis & Green, 2021). As our
proposed techniques might not be the ultimate solution
to these problems, further research is warranted on
robust methods for developing PRS models in the
presence of multiethnic populations and for incorporat-
ing scores in distant populations (Grinde et al., 2019; Ji
et al., 2021).

Our simulation results showed that the model
predictions are strongly affected by the LD structure.
However, this is likely to be only one of the potential
parameters influencing the PRS generalizability which is
also depending on the underlying genetic architecture.
For highly polygenic traits it might also be an advantage
in terms of robustness to build large PRS models as they
might be less sensitive to large variability of LD‐patterns
which may specifically occur in targeted significantly
associated loci (Mars et al., 2022). Since population‐
specific LD is probably one of the major drivers of PRS
differences across populations, the lack of PRS general-
izability can be at least partially addressed by using
ancestry‐matched LD‐reference panels (Ruan et al., 2022).
Hopefully, with the increasing availability of data sets
including individuals from different ancestries there will
be further potentials to refine the PRS models; indeed,
fine‐mapping on multipopulations training cohorts can
improve the generalizability of cross‐population PRS
models as recently shown by Weissbrod et al. (2022).

Limitations of our approach include that the computa-
tional burden is still relatively high and high‐performance
computing clusters are necessary to apply the proposed
techniques on large cohorts. Furthermore, the considered
fine‐mapping methods are only feasible with access to full
genotype data, which are associated with a higher memory
demand and lower availability compared to summary
statistics that are used for classical techniques. However, it
can be expected that with the development of large
population‐based cohorts, such as UK Biobank (Bycroft
et al., 2018), FinnGen (Locke et al., 2019), or Biobank Japan
(Matoba et al., 2020), research will increasingly have access
to full genotype data. Furthermore, this study focused on
fine‐mapping of variants in linkage disequilibrium, aiming to

select only the most informative variants for LDL‐
cholesterol. Yet, in general, polygenic risk models with the
best prediction performance may not be sparse depending on
the considered phenotype (cf. Qian et al., 2020; Tanigawa
et al., 2022). Future research should be targeted at adapting
the considered methods when the main focus is not on the
selection of variants but on the prediction performance.

Our three‐step PRS approach, consisting of (1)
screening, (2) fine‐mapping (variant selection) and (3)
final estimation via statistical boosting, has similarities
with the recent batch screening approach for the Lasso
by Qian et al. (2020), which we also incorporated into our
framework as an alternative selection and multivariable
estimation method after the initial screening. An
important feature of this study is that we specifically
aimed at fine‐mapping in chunks of highly correlated
variants to obtain particularly sparse PRS models. In
contrast, the Lasso approach of Qian et al. (2020)
employs variant selection and estimation in a single step
derived from the ℓ1‐regularized optimization problem
based on all genotyped variants. As a consequence, while
our fine‐mapping approaches via AdaSub and boosting
with probing yield sparser PRS models, the joint
estimation and selection of the Lasso yields improved
predictions in the considered situation. Nevertheless, it
has been shown that, in many practical situations,
statistical boosting with implicit penalization can yield
very similar coefficient paths as the direct penalization in
the Lasso (Hepp et al., 2016), indicating that there may
be room for improved predictions when considering a
direct application of boosting without chunk‐based fine‐
mapping via AdaSub and probing.

In future research, we want to extend the considered
boosting and stochastic search methods for their efficient
application on large‐scale genotype data without considering
prefiltered chunks for fine‐mapping, aiming for an improved
prediction performance at the potential cost of less sparse
models. In this context, the main advantage of statistical
boosting compared to the Lasso is the modular nature of the
algorithm (Hofner et al., 2014; Mayr et al., 2014): any base‐
learner can be easily combined with any type of objective
function. This leads to vast possibilities to extend the
algorithm to further advanced statistical modeling tech-
niques. In the current work, we have focused on the most
classical combination of linear base‐learners with the L2 loss
(Bühlmann & Yu, 2003), leading to linear regression models.
Future research will be focused on considering other
combinations of base‐learners and loss functions. The most
obvious choices are loss functions leading to logistic
regression (for binary traits) and time‐to‐event models (for
time‐to‐event traits). However, also the application of more
robust loss functions (e.g., L1 ) or objective functions that
might be better suited to identify patients with a particularly
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high‐risk (e.g., the check‐function leading to quantile
regression) might be promising.
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