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We report experimental measurements of kinematic and dynamic particle concentration
kernels conditioned by the separation distances of solid inertialess particles in isotropic
turbulence by three-dimensional particle tracking velocimetry with particle diameters
smaller than the Kolmogorov lengthscale. Particle radial relative velocity statistics are
measured from the dissipation to the integral length-scale range. The radial scaling of
particle and fluid relative velocity variance

〈
wr(r)

2
〉
∼ r2/3 in the inertial subrange,

consistent with Kolmogorov’s theory, is reported while a new scaling is found for small
distances due to finite-size effects between particles. The measured concentration kernels
at small separation distances therefore deviate from Saffman & Turner (1956) theory at
small inter-particle distances due to hydrodynamic interactions. A real kernel taking into
account the history of the particle tracks and excluding multiple events is also calculated
while the normalised particle concentration kernels are found essentially insensitive to
the flow Reynolds number.

Key words: Particle/fluid flows, isotropic turbulence.

1. Introduction

Particles suspended in a fluid play an important role in several natural and industrial
processes. In the atmosphere, collisions of microscopic water droplets in clouds are a
necessary step in the production of macroscopic raindrops (Grabowski & Wang 2013)
while collisions of dust grains in turbulent protoplanetary disks are essential in plan-
etesimal formation (Pan & Padoan 2014). Inhomogeneous concentrations of particles
in a sandstorm can also dramatically increase the strength of the storm (Carneiro et al.
2013). In the ocean, collision and coagulation between suspended phytoplankton cells play
an important role in marine aggregate formation (Kiørboe et al. 1990). In the industry,
examples include solid-liquid separation in wastewater treatment, design of fine spray
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combustion nozzles, control of industrial emissions (pollutant transport), and titanium-
dioxide production (Flagan & Seinfeld 1988; Xiong & Pratsinis 1991; Wang et al. 1998).

Processes associated with inhomgeneous concentrations often involve two distinct
physical problems (Sundaram & Collins 1996): the microphysical problem involving
particle collisions which is dependent on the particle/fluid flow conditions, and the macro-
physical problem which involves particle coagulation, preferential concentrations, and
the evolution of particle size and population (Brunk et al. 1998b,a; Kiørboe et al. 1990;
Delichatsios & Probstein 1975). In this study, we will focus on the microphyscial problem
of particle conditional concentration rate in turbulent flows based on the separation
distance between particles.

Over the past century, particle conditional concentration models for a range of particle
inertia and flow conditions have been developed (Meyer & Deglon 2011). Saffman &
Turner (1956) in their pioneering work presented a formulation of the geometric con-
ditional concentration kernel for point-like zero-inertia particles in turbulence. In the
limiting case where particles have very large inertia, Abrahamson (1975) obtained a
simple collision model by arguing that the assumption of independent particle velocities
as in gas kinetic theory is appropriate for high-intensity turbulence. The conditional
concentration of particles with finite inertia in turbulence is more complicated than the
zero-inertia case due to two distinct effects: particle preferential concentration and par-
ticle relative velocity (Maxey 1987; Squires & Eaton 1991; Zaichik & Alipchenkov 2009;
Pan & Padoan 2010; Gustavsson & Mehlig 2011; Bragg & Collins 2014a,b; Hammond &
Meng 2021).

To this date though, collision kernels for finite-size inertialess particles have not been
measured in an experiment, and only Direct Numerical Simulations (DNS) from Wang
et al. (1998); Ten Cate et al. (2004)) showed that hydrodynamic interactions can lead
to important effects. In particular, the lubrication forces are known to be the dominant
repulsion force for this particular regime that prevents particles from approaching one
another when near contact (Ababaei et al. 2021). To the best of our knowledge, inertialess
particles with a finite size (but smaller than the Kolmogorov lengthscale) is a regime
where experiments have not been yet performed. In this paper, we measure conditional
concentration and relative-velocity kernels but we are not able to perform measurements
for relative distances between particles smaller than one diameter. Therefore, we cannot
directly conclude on the collision kernel but provide important information on the
concentration of particle pairs conditioned on their separation distance.

Conditional concentration kernels can be described as the average volume of fluid or
solid entering a sphere per unit time (Saffman & Turner 1956) and the radius of this
sphere sets the separation distance between two particles. Note that when the separation
distance is equal to the diameter of the particles, the latter are in contact and the
concentration kernel reduces to the collision kernel.
However, in order to draw a link between conditional concentration and collision, it
is important to also take into account the time history of particle pairs in order to
differentiate the first event when the inter-particle distance falls bellow a certain threshold
(often denoted as ”geometric”), from multiple events (often denoted as ”ghost”, resulting
from particle-particle interactions). In other words,
• For ghost conditional concentration, two particles are considered when their radial

distance is lower than a given threshold but this method does not take into account the
time history between two particles where multiple collisions can occur.
• Geometric conditional concentration reintroduces the temporal history between two

particles and only considers the first instance as valid.
However, the only way to isolate geometric from ghost conditional concentration is to
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consider long-enough particle tracks in order to analyse the temporal history of particle
pairs. This is one of the novel aspects in the present study compared to the recent
experimental work of Hammond & Meng (2021).

Different kernels have been introduced in the present study:
• The kinematic kernel (ΓK) provides a unique perspective to describe the relationship

between the particle conditional concentration rate and two statistical properties of the
particle phase: the Radial Distribution Function (RDF) and the particle Relative Velocity
(RV). This estimate of the conditional concentration rate in turbulence does not exclude
ghost events.
• The dynamic kernel (Γ dgh) can be defined as the ratio of particle pairs below a

certain threshold to particle pair concentration (Rosa et al. 2013). It can be obtained by
measuring instantaneous particle distances for a given volume and time, and does not
exclude multiple events.
• The geometric collision kernel (Γ dre) is based on the history of particle tracks which

therefore allows for filtering out multiple events.
Note that the kinematic conditional concentration kernel can be also computed such

that only the first (initial) event is retained which should provide similar results that the
geometric concentration kernel.

Experimental measurements of particle collision is challenging. Most of the relevant
literature focuses on the kinematic properties of particles in order to predict conditional
concentration kernels. For example, the review by Monchaux et al. (2012) compares var-
ious indicators and methods developed to analyse preferential concentrations of inertial
particles in turbulence, including the clustering index, the box counting method, the
correlation dimension, the RDF, and Voronöı diagrams, to only name a few (Monchaux
et al. 2010, and references therein). Amongst these methods, the RDF is the indicator di-
rectly related to the particle conditional concentration kernel (Sundaram & Collins 1996;
Wang et al. 2000). Both three-dimensional volumetric techniques such as holographic
Particle Image Velocimetry (HPIV) (Meng et al. 2004; Cao et al. 2008) and lower-
dimensional projections such as 2D imaging (Peterson et al. 2019) have been applied
to the measurement of RDF. However, Holtzer & Collins (2002) demonstrated that the
lower-dimensional RDF showed a fundamentally different distribution function than its
3D counterpart, especially for small particle separation distances. Computing 3D RDF
based on dimensional reduction is not well posed unless a functional form for the 3D RDF
is assumed. When it comes to particle relative velocity measurement, techniques include
HPIV (de Jong J. et al. 2010), 3D particle tracking velocimetry (3D-PTV) (Bewley et al.
2013; Saw et al. 2014a) and planar 4-frame PTV (Dou et al. 2018b,a). The first two
methods provide 3D measurement of particle relative velocity while the HPIV method
shows significant discrepancies in the tails of PDF of particle relative velocities compared
with DNS, which is attributed to increased ambiguities in the particle matching for larger
relative velocities (de Jong J. et al. 2010). The 3D-PTV and 4-frame PTV techniques
provide comparable accuracy of particle relative velocity measurement while the 4-frame
PTV is a 2D technique whose out-of-plane component of particle velocity is lost when
projected onto a imaging plane (Dou et al. 2018b). This problem was very recently
addressed by Hammond & Meng (2021) who performed four-pulse PIV and measured
simultaneously the RDF and the RV in a homogeneous and isotropic flow for inertial
particles for separation distances of the order of the particle size. In this paper, we
explore similar properties for inertialess particles and report the effect of the turbulent
Reynolds number and finite particles size.

In this study, we use 3D-PTV and OpenPTV (http://www.openptv.net) software
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Figure 1. (a) The 3D-PTV setup, (b) PTV particles (green) superimposed onto an
instantaneous snapshot of vorticity ωz (red/black) and local streamlines (continuous lines).
Note that PIV and PTV were performed in separate experiments and that the present picture
illustrates the density of particles with respect to the scales of flow features. In addition,
particles are accumulated in the z direction which gives an impression of high density. However,
experiments are performed in the dilute regime and the solid fraction is of the order of 10−5.
In the present study, PIV is used to compute flow quantities such as isotropy and dissipation
while PTV is used to compute particle relative velocity variance, radial distribution functions,
and conditional concentration kernels. In this plot, particles were made larger than their real
counter part to appear visible and highlight the volume of measurement of the PTV. (c) Three
dimensional trajectory samples in the volume shown in (a) particles tracks longer than 250
frames. Both measurements in (b) and (c) were performed for the flow condition III.

(Maas et al. 1993) to measure both kinematic and dynamic concentration kernels of
near-zero-inertia solid particles in isotropic turbulence for small separation distances but
larger than the sphere’s diameter. We compare the measured concentration kernels with
the Saffman & Turner (1956) prediction which does not take into account hydrodynamic
interactions induced for instance by the motion of the fluid around the particle which is
known to alter particle-particle interactions (Ababaei et al. 2021). The aim is to obtain a
dynamic kernel and thereby estimate real particle conditional concentration potentially
leading to collisions in turbulence. Moreover, based on the method used in the present
study, we are able to isolate geometric particle conditional concentration from their ghost
counterparts. The paper is organized as follows: the experimental apparatus of Particle
Image Velocimetry (PIV) and 3D-PTV and the characteristics of the turbulent flows
presented in §2. The methods of dynamic and kinematic kernel measurements are also
described in §2. Results and discussions are given in §3 and conclusions are drawn in §4.

2. Methods

2.1. Experimental setup

The experimental study consists of two complementary techniques using the same
flow apparatus. The characteristics of turbulent flow were first quantified by double
frame/single exposure 2D-2C PIV (two-dimensions two-velocity components). Separate
experiments use 3D PTV to obtain particle trajectories in order to estimate conditional
concentration kernels for separation distances greater or equal to the particle’s diameter.
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Figure 2. (a) Normalised horizontal velocity spectra from PIV measurements where kλ = 2π/λ
is the Taylor micro-scale wavenumber. (b) Auto-correlation function h1,1(x/M) for the three
different flow cases.

The experimental apparatus shown in figure 1(a) includes a rectangular tank of 18cm×
18cm × 22cm height (inner dimensions) and a horizontally-oriented grid attached to
a linear motor. Both the tank and the grid are made of clear acrylic sheet of 6.4mm
thickness. The porosity of the grid is 36% where the mesh size is M = 36 mm and the
bar size is b = 7.2 mm. The distance of the bars’ end from the wall is 0.5 mm, and the
setup is symmetric in both the x and y direction as shown in figure 1(a) (see Chen (2020)
for further details). A coordinate system was defined with the origin at the geometric
center of the tank (top view) and 60mm away from the bottom of the tank. X and Y
represent horizontal and vertical directions respectively. It was defined such that the PIV
coordinate system coincides with that of the PTV.

In the PIV system, the light source is a Nano L 135-15 pulsed Nd:YAG laser from Litron
Lasers, outputting a light beam at 532nm, and generating a vertical laser sheet through
the center of the tank. LaVision Glass Hollow Spheres 110P8 (density 1.10±0.05 g/cm3,
mean size 9-13µm) were used as seeding particles. The instantaneous PIV images were
captured by a IMPERX B3320-8MP CCD camera (3312pixel×2488pixel) equipped with
a Nikon Nikkor-O Auto 35mm F/2 Lens. The camera was synchronised with the laser at a
frame rate of 1Hz with a delay of 0.25ms between two successive frames. Synchronization
with the laser was performed using a DG535 Pulse Generator. The software Stream Pix
7 was used for data stream acquisition. The image pairs were processed with DPIVSoft-
2010 (Meunier & Leweke 2003; Passaggia et al. 2012, 2020) by means of interrogation
windows with dimensions 64 pix × 64 pix for the first pass and 32 pix × 32 pix for the
second pass with 50% overlap. The spatial resolution is approximately 43.4µm/pixel.
The dimensions of the field of view are 14.4cm × 10.8cm. Three different turbulent
intensities were generated by varying the frequency (f) of the imposed oscillations (1Hz,
1.5Hz and 2.5Hz) with a fixed oscillating stroke of 4cm while statistics were obtained
by averaging over 750 realisations. The isotropy ratio u1,rms/u2,rms measured using PIV
provided values between 0.8 and 1.3, indicating a good degree of isotropy for the three
flow conditions. The normalised root-mean-square velocities (Hwang & Eaton 2004) are
u1,rms/u1,rms ≈ 0.9 − 1.2 and u2,rms/u2,rms ≈ 0.8− 1.3. Although the velocity field in
the vertical direction is slowly decaying, it still can be seen as nearly homogeneous in
the region of interest. The turbulent kinetic energy dissipation rate (ε) was estimated by
means of a time-averaged turbulent kinetic energy budget from the PIV data, detailed
in Appendix A (see Table 1 for the computed values).

The turbulent spectrum was then computed from the PIV data and the compensated



6 S. Chen, P.-Y. Passaggia, & B. L. White

horizontal energy spectrum E11k
5/3ε−2/3 is shown in Figure 2(a) for the three flow

conditions. The compensated spectra are essentially flat, confirming the existence of
an inertial range for all flow conditions. The horizontal axis is normalized with the
Taylor microscale (λ) computed as λ =

√
10νk/ε, where k is the mean turbulent kinetic

energy estimated as k = 3/4(u′rms + v′rms) and ν is the kinematic viscosity of water.
The turbulence Reynolds number is Reλ = u′(λ/ν), where u′ =

√
2k/3 is the root mean

square of the velocity fluctuations and provides values Reλ = [120, 150, 202] for the three
oscillating frequencies. Note that the lowest value of Reλ is relatively close to the DNS of
Ten Cate et al. (2004) with similar particles. In addition, the horizontal auto-correlation
function of velocity fluctuations h1,1(x/M) was calculated in order to estimate the
horizontal integral lengthscale L11 and is reported in Figure 2(b). L11 was calculated
from the zero crossing of h1,1(x/M) and slowly increases with the oscillating frequency
as reported in Table 1. The Kolmogorov equilibrium number Cε = εL11/u

′3 ≈ 1 was
found nearly constant and close to the mean values observed in the compensated
spectra reported in Figure 2(a). Note that in our experiments, Cε ≈ 1 is close to the
canonical value of 0.9 (Vassilicos 2015). For the lower value of Reλ, a residual large-scale
circulation exists but its amplitude with respect to turbulence kinetic energy decreases
with increasing stroke frequency f . This mean flow is composed of large-scale circulation
regions whose amplitude is stronger in the bottom and decreases closer toward the grid.
In the region where PTV measurements are performed, the mean velocity

√
K (where

K is the mean-flow kinetic energy) is roughly half the root-mean-square of the turbulent
kinetic energy in this region. The resulting ratio between the mean-field kinetic energy
and the turbulent kinetic energy is 0.27 for the worst case scenario when f = 1Hz and
decreases to 0.19 for f = 2.5Hz.

A schematic of the 3D-PTV and planar two-component PIV setup is shown in figure
1(a). The 3D-PTV imaging system consists of four synchronized Grasshopper3 3.2MP
cameras. A continuous-wave Argon Ion Laser was used to generate a cylindrical laser
volume of 4cm diameter through the tank. During PTV experiments, the tank was
first filled with pre-filtered saline solution. The calibration process was then conducted
to determine the interior and exterior parameters of the cameras, the lens distortions
and electronic effects (Maas et al. 1993). To quantify uncertainty in the calibration
process, the real positions of points on the calibration block were compared with the
measured positions from PTV (Akutina 2016) and the root mean square (RMS) of the
errors obtained were RMSx = 0.0203mm,RMSy = 0.0244mm,RMSz = 0.0240mm. Quasi
monodisperse polyethylene microspheres (Cospheric LLC) with density ρp = 1.084 g/cm3

(same as the density of saline solution ρf ) and diameter range D = 106 − 125µm were
used for PTV and for each flow condition, 0.15 mg of particles were used consisting in a
dilute volume fraction O(10−5). The particle Stokes number, St ≡ τp/τη, the ratio of the
particle response time τp = ρpD

2/18µf where µf is the fluid dynamic viscosity, to the

turbulent Kolmogorov time scale τη =
√
ν/ε, ranges from St = 0.0028 to St = 0.0080 in

the three flow conditions. The particles were allowed to mix for one minute after being
dispersed, before data acquisition began. A series of 72, 000 images (10 minutes at 120
frames/s) per camera was then captured. On average, the number of voxels moved per
frame with an acquisition rate at 120 Hz is of the order unity for flow condition I, two
voxels for flow condition II, and three voxels for flow condition III, which is the size of
an individual particle for the latter (see Table 1).

3D-PTV data processing performed in OpenPTV can be divided into two major parts:
determination of particle positions in spatial coordinates and tracking of individual
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particles through consecutive images. The approach of Willneff (2003) is used in the
present study and combines the two steps together with a spatio-temporal matching
method which improves tracking efficiency of particles by 10–30% (Lüthi et al. 2005).
Willneff’s method predicts particle motion based on particle tracking in image and object
space to resolve ambiguous particle image positions and correspondences. In other words,
‘temporal’ information at time, t, is used to resolve ‘spatial’ uncertainties regarding
the existence and positions of particles in the next time step t + ∆t. The seemingly
modest improvement of 10–30% in tracking efficiency is very significant in the context of
further processing and analysis. Particle trajectories which are longer than the relevant
Kolmogorov scales, η, and τη, are the key prerequisite for a Lagrangian flow analysis
and they also significantly enhance the accuracy of the applied processing to obtain
velocity derivatives (Lüthi et al. 2005). To track particles, i.e. to find corresponding
particles in image and object space of consecutive time steps, three criteria are used for
effective assignment. First, a three-dimensional search volume is defined by minimum
and maximum velocities in all three coordinate directions. Second, the Lagrangian
acceleration of a particle is limited, defining a conic search area. Third, in the case
of ambiguities the particle leading to the smallest Lagrangian acceleration is chosen.
Similarities in brightness, width, height and sum of grey values of the pixel of a particle
image in two consecutive time steps proved to be not as valuable as expected. From
the 565 detected particles per frame for which a position in space can be determined,
typically 470 particles can be followed long enough, which is equivalent to a tracking
efficiency of ∼ 80% and a seeding density for linked particles of ∼ 26 particles cm−3.

An instantaneous vorticity ωz and some 3D trajectory samples at f = 2.5Hz (i.e. flow
condition III) are shown in figure 1(b) and 1(c) respectively. Figure 1(b) illustrates the
particle density accumulated in the out-of-plane direction as well as the size of the relevant
scales in the experiment. Note that both results were acquired in separate experiments.

2.2. Conditional concentration kernel models

The collision rate between particles in a monodisperse system can be described as
(Wang et al. 1998)

Nc = Γ d
n̄2

2
, (2.1)

where Nc is the collision rate per unit volume and n̄ is the particle number concentration,
defined as Np/Ω where Np is the number of particles and Ω is the observation volume.
The dynamic kernel Γ d, namely the ratio of concentration rate conditioned based on the
distance d to particle pair concentration (Rosa et al. 2013), can be obtained by directly
measuring Np, Ω and the number of events when particles are separated by a certain
distance d over time. The conditional concentration is obtained by counting the number
of particles located at a distance smaller or equal to a given inter-particle distance d > D
which is then averaged in time. In what follows, we report conditional concentrations
down to d/D = 2. The associated error level only dependent on the number of events
measured during the experiment and is below 5% for all cases considered in the present
study.

In the pioneering work of Saffman & Turner (1956), the conditional concentration
kernel was described as the average volume of fluid entering a sphere per unit time.
Saffman & Turner showed that this kernel for zero-inertia particles can be written as

Γ (d) = 2πd2 〈|wr(d)|〉 , (2.2)

where d > D, is the distance between two particles. The particle pair radial relative
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Parameters Units Condition I Condition II Condition III

Oscillating frequency, f Hz 1.0 1.5 2.5
Maximum grid velocity mm s−1 160 240 400
Integral lengthscale, L11 mm 104 110 120
Taylor micro scale, λ mm 11.8 10.8 9.1
Kolmogorov lengthscale, η mm 0.54 0.45 0.32
Kolmogorov time scale, τη s 0.30 0.20 0.10
Turbulent energy dissipation rate, ε m2 s−3 1.1× 10−5 2.49× 10−5 9.15× 10−5

Turbulent kinetic energy, k m2 s−2 1.54× 10−4 2.9× 10−4 7.51× 10−4

RMS turb. vel. fluctuation, u′ =
√

2/3k mm s−1 10.1 13.9 22.3
Kolmogorov velocity scale, uη mm s−1 1.0 2.2 3.1
Particles’ mean terminal velocity, u0 mm s−1 0.05 0.05 0.05
Taylor microscale Reynolds number, Reλ — 120 150 202
Dissipation scaling, Cε = εL11/u

′3 — 1.09 1.01 0.98

Table 1. Driving parameters and turbulent flow characteristics.

velocity wr(d) at a separation distance d is defined as wr(d) = (v2 − v1) · (d)/(|d|) (Dou
et al. 2018b). The subscript r means ”radial” and since the velocity component perpen-
dicular to the separation vector is not relevant to the particle conditional concentration
nor collision, we will refer to radial relative velocity as ”relative velocity” from here on.
Here v2 and v1 are the velocities of particles 1 and 2 and (d)/(|d|) denotes the unit vector
in the direction parallel to the separation vector, and 〈·〉 denotes the ensemble average.
Further assuming that d � η, uniform particle concentrations in space and probability
distributions of the velocity gradient being Gaussian, Saffman & Turner (1956) proposed
the following expression for the conditional concentration kernel in turbulent flows

ΓST (d) = 1.294d3
( ε
ν

)1/2
. (2.3)

Note that this concentration kernel reduces to the collision kernel when d = D, that is
when the separation distance is equal to one diameter.

The theoretical description of Γ (d), eq. (2.2), was then further developed by Sundaram
& Collins (1997) to take into account non-uniform particle spatial distribution:

ΓK(d) = 4πd2g(d)
〈
wr(d)−

〉
, (2.4)

where g(d) is the RDF which serves as a correction to the particle number concentration
due to non-uniform particle distribution. Here, 〈wr(d)−〉 represents the inward particle
radial relative velocity which relates to particle pairs moving towards one another. The
inward radial relative velocity can be further expressed as (Sundaram & Collins 1996)〈

wr(d)−
〉

=

∫ 0

−∞
−wrP (wr|d) dwr, (2.5)

where P (wr|d) is the probability density function (PDF) of wr conditioned on the
inter-particle distance d. The kinematic conditional concentration kernel ΓK , eq. (2.4),
thus combines the effects of the particles’ relative motion and particles’ preferential
concentration.

2.3. Conditional concentration kernel measurements

In order to determine dynamic conditional concentration kernels for small separation
distances, the present study considers the method introduced in Balachandar (1988) and
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Wang et al. (1998) to detect inter-particle distances. The analysis mainly focuses on
geometric particle overlap for a given separation distance.

Inter-particle distance corresponding to collisions (i.e. when d = D) is particularly
challenging in laboratory experiments. The time scale associated with physical collisions
of real particles (i.e. D ≈ 0.116mm in the present study) is much smaller than the
temporal resolution of the experimental setup (Yang & Hunt 2006; Monchaux et al.
2010; Marshall 2011; Ababaei et al. 2021). Instead, we consider analogous particles (Hill
et al. 1992), which are fluid volumes centered on real particles with effective diameters
larger than D. The conditional concentration detection was thus based on the effective
particle diameters d (which are adjustable) to obtain a relationship between conditional
concentration kernels and thereby analogous collision kernels versus effective particle
diameter. A schematic of effective diameters is shown in figure 3(a). Care should be
taken to ensure that the effective diameters are still small enough so that the analogous
particles can still be seen as inertialess and follow the fluid (and their host particles’)
motion faithfully. The conditional concentration kernel derived using the ”ghost events”
approximation will be denoted as Γ dgh. This method counts all possible inter-particle
distances below a given threshold but does not take into account the nature of the
particles’ relative motion. A more realistic scheme is also considered: in the case of
a particle pair candidate, if there are multiple points along the trajectories when two
particles approach one another with distances smaller than their effective diameter (i.e.
a multiple conditional concentration event), only the first instance meeting the threshold
is considered. This conditional concentration kernel is denoted as Γ dre.

For the kinematic conditional concentration kernel, the RDF is calculated by the
following expression (McQuarrie 1976; de Jong J. et al. 2010):

g(ri) =
Ni/∆Vi
N/V

. (2.6)

At each time step of the experiment, an arbitrary particle’s location is taken to be at
the origin O. Ni is the number of particles which lie within a range of [0.98ri, 1.02ri]
relative to this origin (a spherical shell), ri is the average radius of the spherical shell,
∆Vi is the volume of the spherical shell, i is the discrete index, and N/V is the average
particle number concentration. The RDF g(ri) is averaged over all the cases in which each
particle takes a turn to serve as the origin and then averaged again over time. A sketch of
the way the RDF is calculated is shown in figure 3(c). Periodic boundary conditions are
used to cope with the reduction of the number of particles at larger particle separation
distances (de Jong J. et al. 2010).

Figure 3(b) shows the time-averaged RDF measured for the three flow conditions with
separations from smaller than the Kolmogorov lengthscale to the integral lengthscale.
In the case of inertialess particles in turbulence, there is no preferential concentration
and the RDF should equal unity. However, when the particle separation d/D < 5, the
RDF is smaller than 0.8 (see figure 3(b)). This result can seem surprising at first since
most studies analysed inertial particles which tend to collide. For inertialess particles, the
picture is somewhat different since hydrodynamic effects can prevent particles coming
near contact and can span large inter-particle distances because of the viscous nature of
the flow. The recent DNS of inertial particles in homogeneous turbulence by Ababaei et al.
(2021) shows that the RDF can drop well bellow unity when r/D < 3.5, Stk < 0.1, and
when long-range many body interactions and lubrication forces are taken into account.
Thus, it is essential to take g(r) into account when measuring conditional concentration
kernels when the separation distance is small, even for inertialess particles. The particle
radial relative velocities were collected and binned according to the particle separation
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Figure 3. (a) Sketch of the particle coordinate system, distances, and angles used in the
analysis. Analogous particle conditional concentration events are shown with dashed lines. (b)
Time-averaged RDF measured under three flow conditions. The distance is normalised by the
particle diameter. (c) Sketch of the measurement method of the radial distribution function.
Particles in grey are in the range d = [0.98r, 1.02r] from the red particle while the blue
particle is out of that range. (d) Probability density functions of particle pair radial relative
velocity conditioned on different separation distances at 2.5Hz. The particle relative velocities
are normalised by the Kolmogorov velocity scale uη. The PDF of standard normal distribution
is also given for comparison.

distance r with a bin size in the range [0.98r, 1.02r]. Ranges [0.95r, 1.05r] and [0.9r, 1.1r]
were also tested but without noticeable differences on the RDF. Then 〈wr(d)−〉 was
calculated according to eq. (2.5).

2.4. Fluid and particle radial relative velocity

Hereafter, we evaluate (i) the dynamic conditional concentration kernel Γ d by directly
measuring the number of particles for separation distances lower than d, the volume these
particles occupy and the number of events; (ii) the kinematic conditional concentration
kernel ΓK through eq. (2.4) by measuring 〈wr(d)−〉 and the RDF at different effective
diameters; (iii) the Saffman & Turner (1956) concentration kernel ΓST through eq. (2.3)
by measuring the turbulent energy dissipation rate ε, and provide a comparison. (iv)
We also use the second-order relative velocity structure functions of particles SP2‖ ≡〈
wr(r)

2
〉
, following the nomenclature in Bragg & Collins (2014b) and assuming that

particles strictly follow fluid particles. We use the second-order relative velocity structure
functions for the fluid Sf2‖ as a reference to deduce the scaling laws of particle motions

and determine the behaviour of SP2‖. According to Kolmogorov theory, the second-order
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relative velocity structure function is given by

Sf2‖ =


ε

15ν r
2, for η < r < λ

C2(εr)2/3, for λ� r� L11,

2(u′2), for r > L11

(2.7)

where C2 is a constant, u′2 is the mean turbulent velocity fluctuation squared and L11 is
the integral lengthscale, measured using the auto-correlation method from the PIV and
found nearly constant among each flow conditions at each location considered. In what
follows, we show that for small distances, finite-size effects can play an important role
in determining the Probability Density Function (PDF) of particle relative velocity and
their second-order structure function.

3. Results and discussion

In this section we analyse the statistical properties of relative particle motions across
multiple scales, from the integral lengthscale characterizing the mean size of the large
eddies of turbulence down to below the Kolmogorov scale. We begin with the PDFs of
particle pair radial relative velocity conditioned on different separations for flow condition
III in figure 3(d) and observe a remarkable deviation from the Gaussian distribution,
particularly at small separation distances.

At large separation distances, the PDFs of relative velocity are slightly negatively
skewed which is a natural consequence of vortex stretching in turbulence (Tavoularis
et al. 1978). For smaller separations (figure 3(c)) the PDFs become symmetric which is
in line with the relative velocity PDFs of Saw et al. (2014b) who did not observe significant
skewness in their relative velocity PDFs at r/η ≈ 1 for inertialess particles, the tails of our
relative velocity PDFs are somewhat higher but much lower than reported in Hammond
& Meng (2021) for inertial particles. The essentially straight tails for r/D = 3.5 hint
to a decrease of particles’ relative motion, contrary to finite-Stokes number particles
where the tails of the PDFs are wide. This further hints to the importance of particle-
particle interactions for scales of the order of the particle size and we analyse the motion
of two finite-size inertialess particles using the structure-function method together with
asymptotic theory for the lubrication motion of two colliding particles.

3.1. Radial relative velocity variance and finite-size effects

The second-order particle relative velocity structure functions (i.e. particle relative
velocity variance) SP

2‖ normalised by the square of Kolmogorov velocity scales u2η are

shown in figure 4(a). A feature of r2/3 scaling in inertial subrange is observed for r > λ,
consistent with Kolmogorov theory in (2.7). The transitions between the viscous and
the inertial subrange should scale as a r2 scaling but exhibits a plateau in the range
η > r & λ for flow condition I and II. This is attributed to low-Taylor Reynolds
number effects and a loss of isotropy at these scales (see Kim & Antonia 1993) and the
relatively small distance from the oscillating grid. For flow condition III, this region
become slightly steeper and the plateau progressively disappears. Note that the same
behaviour was observed in the particle resolving DNS of Ten Cate et al. (2004) for similar
Taylor Reynolds numbers and inertialess particles. As the radial distance approaches
the integral lengthscale, the normalised particle relative velocity approaches a plateau
defined by the energy containing scale L11 given by the velocity structure function
(2.7). However, due the relatively short distance from the grid and the presence of the
large-scale circulation, we obtain a prefactor close to 0.9 instead of 2 in this expression
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Figure 4. (a) Normalised relative velocity variance from measurements for the particles SP
2‖

(lines-symbols) acquired from PTV and the fluid Sf
2‖ (dashed lines) acquired from PIV in a

separate experiment, uη = (νε)1/4 being the Kolmogorov velocity scale. (b) Normalised relative
velocity variance SP

2‖ from the DNS of Ten Cate et al. (2004) from their figure 10 but plotted in
logarithmic scales exhibiting the same scaling laws than the present experimental study.

for the flow condition I. The prefactor increases to 1.4 for the flow condition III.

For r < η, the relative velocity should abruptly drop to zero. However, the decay
for SP

2‖ is different than what was anticipated for Sf
2‖ and hints to particle-particle

interaction. This can also be observed in figure 10 in Ten Cate et al. (2004) when plotted
with logarithmic scales, which we report in our study for comparison and analysis (see
figure 4(b)). A similar trend was also very recently reported in the DNS of Ababaei
et al. (2021) at high Taylor Reynolds numbers for inertial particles when long-range
many body interactions and lubrication effects were taken into account. Therefore, we
analyse a new weaker scaling (see figure 4(a)) which accounts for the onset of combined
effects of lubrication forces and finite-size effects since the motion of the fluid should not
influence relative inward velocity for r < η.

In the low Reynolds number regime for a spherical particle moving in a fluid, where
the particle Reynolds number Rep = uηD/ν � 1, Mongruel et al. (2010) proposed a
model based on a second-order ordinary differential equation describing the temporal
evolution of the particle-particle distance for two particles moving towards one another,
assuming that lubrication is the dominant effect.

Starting from the equation of motion for a sphere approaching a fixed wall, or equiv-
alently for two particles approaching a head-to-back vertically (Marshall 2011), the
equation of motion becomes

mp
dVp
dt

= −6πRµVp(δ)frr(δ,Rep) +
4

3
πR3 (ρp − ρf ) g, (3.1)

where δ = (r − D)/D is the gap between two particles, Vp is the particle velocity, and
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where frr(δ,Rep) is the friction factor given in Cox & Brenner (1967) as

frr(δ,Rep) =
1

δ
+

1

5

[
1 +

Rep
4

]
ln

[
1

δ

]
+O

(
Re2

p

)
,

which diverges when r −D becomes asymptotically small or equivalently δ → 0. In the
region very close to the wall, the velocity growth is modelled at first order by a linear
growth with the normalised distance δ (in agreement with experiments (Mongruel et al.
2010; Marshall 2011)), of the form

Vp = δV mSt

where V mSt is some characteristic velocity. Keeping only the terms on the right-hand side
of (3.1) (i.e. neglecting particle inertia), it follows that we take in this region

frr(δ,Rep) =
1

δ

VSt
V mSt

(3.2)

where VSt is the Stokes velocity and chosen equal to uη = (νε)1/4, the Kolmogorov
velocity scale. In the particular case Rep � 1, then frr(δ,Rep) = 1/δ and from the
classical lubrication theory and VSt = V mSt , it appears appropriate to use V mSt as a velocity
scale. We then define a dimensionless time τ = tV mSt /R then Vp/V

m
St = −dδ/dτ . We

further assume that the friction factor frr can be used in the near-contact case (δ � 1).
Equation (3.1) is then rewritten in dimensionless form as

−Stm
d2δ

dτ2
=

1

δ

dδ

dτ
+ 1 (3.3)

where Stm = ρp(V
m
St )

2/ (ρp − ρf ) gR is a modified Stokes number for the particle.

Izard et al. (2014) then proposed a modified version of (3.3) where the effective
roughness height ζe for non smooth spheres is included. In this case, the lubrication
force F lub between two finite-size particles (i.e. a particle i and a particle j) of velocity
upi and upj and radius Ri and Rj respectively writes (Brenner 1961),

F lub = −6πµ (upi · n− upj · n)

r + ζe

(
RiRj
Ri +Rj

)2

n, (3.4)

where ζe accounts for the mean height of surface asperities of real particles. This allows
for mimicking real particles and avoid the divergence of the force in equation (3.3) when
contact occurs (i.e. r = D). The present lubrication force becomes active only when the
distance between particles r is such as (0 6 r 6 2D). This upper bound is in the range of
the critical distance for which the velocity of the particle decreases due to the presence
of the wall (see Izard et al. 2014, and reference therein). Using Flub in eq. (3.4) instead
of frr in (3.2), eq. (3.3) becomes

Stm
d2δ

dτ2
+

D

(r −D + ζe)

dδ

dτ
+ 1 = 0. (3.5)

Note that this equation remains valid for separation distances smaller than η = 1 ≈ 3D
(Izard et al. 2014), even for small gap distances r & D. In the present model, we obtained
Stm = [0.67, 0.98, 1.18], ζe/R = 0.05, and R = 5.5× 10−5 m.

Equation (3.5) is integrated numerically and shown in figure 5(a) where the boundary
conditions δ(r/η = 1) and dδ(r/η = 1)/dτ are set to the value obtained in figure 4(a).
Figure 5(a) shows a similar behaviour than reported in the experiment where the scaling
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Figure 5. (a) Normalised particle relative velocity variance from measurements for SP
2‖ from the

dynamic model (3.5) under three flow conditions. (b) Sample trajectories showing two particles
near contact measured for f = 2.5Hz and r/D = 2.

for
〈
wr(r)

2
〉
/u2η is less steep than originally predicted by the second-order structure

function for distances smaller the Kolmogorov lengthscale. In particular,
〈
wr(r)

2
〉
/u2η ∼

r/η for increasing forcing frequency f , which simultaneously corresponds to increasing
the finite-size ratio D/η. In other words, the mean inward velocity variance wr(r) no
longer evolves linearly with the radial distance r but seems to follow a power law. From
figure 4(a,b), the particle structure function SP2‖ appears to approach a scaling of the
form

SP2‖ ≈ rε/(15ν), for D . η and r 6 η, (3.6)

and could be due to lubrication effects, whose consequences perhaps persist at those
large distances. A similar behaviour was also recently reported in Ababaei et al. (2021)
where lubrication effects and long-range many body interactions were found to decrease
the RDF and modify the relative velocity scaling for r/D < 3.5 at low but finite Stokes
numbers.

This scaling is compared to the numerical integration of eq. (3.5) in figure 5(a) and
provides a good agreement for all flow conditions. The comparison between measurements
and the theoretical model for the inward velocity variance suggests that lubrication effects
could be the physical mechanisms leading to the scaling

〈
wr(r)

2
〉
/u2η ∼ r/η. Next, we

analyse the relative particle angles for separation distances r . η.

3.2. Relative angles at small separation distances

A characteristic sample of particle track is shown in figure 5(b) where the separation
distance between the two particles is r/D = 2 for the flow condition III. It is interesting to
see that both tracks follow one another before and after the smallest separation distance.
This therefore leads to small relative velocity, in agreement with the interpretation of
the PDF shown in figure 3(d). The probability density function of different angles for
small separation distances as a function of both the turbulent Reynolds number and
the separation distance r/D are analysed. Here we considered two different angles: the
particle tangential velocity angle θ‖ and the particle relative position angle θ⊥ defined as

cos(θ‖) =
|v1 · v2|
|v1||v2|

and cos(θ⊥) =
|v1 · r|
|v1||r|

. (3.7)

We begin the analysis by representing the particles’ tangential velocity angle θ‖ for
different flow conditions in figure 6(a) and different separation distances r/D in figure
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Figure 6. (a) Probability density function of particle tangential velocity angle θ‖, measured at
r/D = 2.5 and (b) relative position angle θ⊥ as a function of the grid frequency. (c) Same as
as (a) but as a function of the separation distance r/D before and after the smaller separation
distance, (d) same as (b) but as a function of r/D measured for f = 2.5Hz.

6(c), before and after the smallest separation distance. For r/D = 2.5, the peak of the
pdfs narrows as the forcing frequency is increased and the peak shifts from θ‖ ≈ 22◦ for
the flow condition I to a nearly parallel angle θ‖ ≈ 7◦ for the flow condition III. It is
interesting to note that for r/D = 2.5, the pdf narrows for every flow condition before
and after the smallest separation distance which shows that hydrodynamic interactions
modify the trajectories of the particles. In other words, after the smallest separation
distance, the trajectories of the particles tend to align with one another and particles
tend to fly along as depicted in figure 5.
The effect of the separation distance is shown in figure 6(c) before and after the
smallest separation distance, for the flow condition III. While PDFs are self-similar for
3 6 r/D 6 5, the smaller separation distance (r/D = 2.5) show that particles tend to
further align their trajectory.

The particle relative position angle θ⊥ is reported for different flow conditions in figure
6(b) and different separation distances r/D in figure 6(d), similar to figures 6(a,c). From
both plots, it is clear that near the smallest separation distance, at r/D = 2.5, the PDF
peaks near θ⊥ ≈ 85◦ but the distributions flatten as the forcing frequency decreases. The
peak also shifts from θ⊥ ≈ 60◦ for the flow condition I, θ⊥ ≈ 68◦ for the flow condition
II and θ⊥ ≈ 85◦ for the largest forcing frequency. Similarly, figure 6(d) shows the effect
of the separation distance r/D where for r/D > 3, the PDFs are essentially self similar
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Condition I Condition II Condition III

Average number of particles, N̄p 608 765 764
Average observation volume, Ω̄ (cm3) 29.8 29.5 29.3
Average particle numb. concentrations, N̄p/Ω̄ (cm−3) 20.4 25.9 26.0
Stokes number, Stk = (ρpD

2/18µ)/τη 0.0028 0.0042 0.0080
Kolmogorov lengthscale to particle diameter, η/D 4.7 3.9 2.8

Table 2. Measured particle number concentrations under three flow conditions

and peak at θ⊥ ≈ 50◦. These results are consistent with the DNS results of Wang et al.
(2006) who analysed relative angles in homogeneous turbulent at low Taylor Reynolds
numbers (i.e. up to 55). For r/D 6 3.5 the angle tend to increase which denotes that
finite-size effects tend to modify the particle’s relative position angle.

The analysis of the tangential velocity and relative position angles seems to confirm
that particles pairs tend to follow one another for 2.5 6 r/D 6 5 with a relative angle
in the range 60◦ − 85◦. Head-on or head-to-ail scenarii seem unlikely to occur. The
fact that PDFs are modified when r/D 6 3.5 supports the idea that finite-size effects
start to appear for small separation distances and prevent particles from colliding with
one another. This is also in line with the fact that the RDF drops bellow one at small
separation distances. Lubrication forces are likely to prevent particles from approaching
one another, modifying their relative angle, and decreases the probability to observe
particle pairs with small separation distances.

3.3. Conditional concentration kernels

Now that the dynamic conditional concentration kernel has been defined and that
finite-size effects have been described, we continue with the analysis of the conditional
concentration kernels comparing direct measurements of the number of events where
particles are observed at a given separation distance to the different available theories.
In addition, finite-size effects will be found to play a key role in the normalised conditional
concentration kernels for small separation distances, as already reported in the DNS of
Ababaei et al. (2021).

Conditional concentration kernels at small separation distances ΓK , Γ dgh, Γ dre, and ΓST

are compared in figure 7(a) with the averaged number of particles, observation volumes
and particle number concentrations measured and reported in Table 2. The observation
volumes were measured with a QuickHull algorithm (Barber et al. 1996). In figure 7(a),
only kernels for flow condition III are shown for clarity. Γ dgh, Γ dre, and ΓK normalised by

ΓST are shown in figure 7(b).
(i) The ratio ΓK/ΓST decreases monotonically and falls below unity with decreasing
separation distance. We attribute this deviation to finite-size effects. As mentioned above,
Saffman & Turner (1956) theory is based on the assumptions of negligible particle-
particle interactions. In the present experiments, the particle separation distance becomes
sufficiently small such that particle-particle interactions cannot be ignored. This effect
starts to play a role for r/D 6 3.5 as shown in figure 7. As the separation decreases and
particles approach one another, finite-size effect act against particles collision, leading to
a decrease in ΓK compared with ΓST .

As r/D increases, finite-size effects become negligible and the ratio ΓK/ΓST becomes
nearly constant. Saffman & Turner assumed that the probability distribution of the
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Figure 7. (a) Measured conditional concentration
kernels: ΓK , Γ dgh, Γ dre, and ΓST for flow condition III and (b) normalised conditional

concentration kernels ΓK , Γ dgh and Γ dre by ΓST at three flow conditions.

velocity gradient is Gaussian, however, the PDF of particle pair radial relative velocity,
shown in figure 3(d), is indeed not Gaussian at small distances. The finite ratio of particle
size to Kolmogorov lengthscale leads to a larger particle relative velocity than that of
fluid particles, which contributes to a larger ΓK .

(ii) The normalised conditional concentration kernels are found to be largely insensitive
to the flow Reynolds number we considered, which is consistent with Ireland et al. (2016).

(iii) We found ΓDgh ≈ (1.25−1.30)ΓDre consistent with Voßkuhle et al. (2011) (i.e. ghost
events overestimates the real conditional concentration rate by ∼ 30% at small Stokes
numbers).

(iv) For r/D < 3.5, we observe that all concentration kernels increase with r/D which
is a consequence of the inward velocity modification for r/η < 1 induced by finite-size
effects, preventing particles from colliding.

4. Conclusion

Kinematic and dynamic conditional concentration kernels of solid inertialess particles
in isotropic turbulence at low- to intermediate-Taylor Reynolds number with real particle
diameters smaller than the Kolmogorov lengthscale are measured experimentally. Dy-
namic conditional concentration kernels are measured using 3D-PTV and fully resolved
particles providing similar results with kinematic conditional concentration kernels. The
high spatial resolution, large observation volume and long acquisition time allow for
calculating particle relative velocity statistics over a wide range of distance r from
the dissipation range to the integral scale range with 5 × 105 particle relative velocity
samples in each bin. This leads to over 109 realisations which allows for well-converged
statistics. The particle relative velocity variance agrees well with Kolmogorov theory in
the inertial subrange. For separation distances r smaller than the Kolmogorov lengthscale
η, finite-size effects lead to a new scaling of particle relative velocity variance than that
of fluid particles where SP2‖ = rε/(15ν) for particle diameters D . η provides a good
approximation. We speculate that the departure from point-tracer behavior is due to
long-range interactions together with lubrication forces, whose consequences perhaps
persist at those large distances.

Both kinematic and dynamic conditional concentration kernels at small separation
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distances are compared with Saffman & Turner (1956) theory. The deviation at small
distance is attributed to finite-size effects (Ababaei et al. 2021), while at larger distance,
we recover Saffman & Turner approximation. The present method allows for direct
conditional concentration measurements, excluding multiple instances when the inter-
particle distance falls below the distance d from the first (initial) instance for the
calculation of the dynamic conditional concentration kernels. This is confirmed by ΓDgh ≈
(1.25−1.35)ΓDre , close to the finding of Voßkuhle et al. (2011) which demonstrated that the
”ghost conditional concentration” approach overestimates the conditional concentration
kernel by up to 30%. Furthermore, normalised dynamic conditional concentration kernels
appear to be independent of the present Reynolds number, in agreement with Ireland
et al. (2016). Dynamic conditional concentration kernels are based on the measurement of
inter-particle distances using analogous but larger particles centered on the real particles.
Further experimental work, such as the recent study by Hammond & Meng (2021), needs
to focus on finite-size inertial particles since analogous inertial particles would behave
differently than real host particles near contact. Recent direct numerical simulations by
Ababaei et al. (2021) show that finite-size effects should remain an important factor when
inertial particles get in contact and largely contribute to accurately estimating collision
kernels.
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Appendix A. Estimation of the turbulent kinetic energy dissipation
rate from PIV

Turbulence kinematic energy dissipation ε could not be directly measured from the
spectra reported in figure 2(a) because the PIV spectra hardly resolved the Taylor
microscale λ, leaving most of the turbulence kinetic energy dissipation spectrum out of
reach. Instead, ε was estimated based on the turbulence kinetic energy budget from two-
dimensional PIV measurements. Here, we chose a rectangular control volume, located
at the position of the laser volume used for PTV and shown in figures 1. Using the
divergence theorem, the quantities are projected onto the surfaces of the CV and the
turbulence kinetic energy budget simplifies to∫

V

ε dV = −
∫
Sx

(
Uk′ + u′k′

)
nx dy −

∫
Sy

(
V k′ + v′k′

)
ny dx−

∫
V

u
′
iu

′
jUij dV, (A 1)

where ε is the local time-averaged turbulence kinetic energy dissipation, Sx are the
faces of the control volume in the horizontal direction x while Sy is oriented in the
vertical direction y. Here, the overbar denotes the temporal mean, (U, V ) is the mean
flow computed from all PIV snapshots and k′ is the time-averaged turbulence kinetic
energy. Note that the pressure-velocity diffusion term was neglected since it was not
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directly accessible from PIV measurements and that it plays no significant role in nearly
homogeneous and isotropic turbulence Sagaut & Cambon (2008). The spatially averaged
turbulence kinetic energy dissipation rate ε was finally obtained dividing the left-hand-
side of eq. (A 1) by the control volume V .
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