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Abstract

Biometrics are data used for automatic verification and identification of individu-

als, two important routines commonly performed to enhance the level of security

within a system. Therefore, improvements to the analysis of biometrics are cru-

cial. Common examples of biometrics include fingerprints and facial features. In

this thesis, we consider retinal fundus images, which are scans of a person’s retina

blood vessels at the back of the eyeballs. They have become a popular choice for

these tasks due to their uniqueness and stability over time.

Traditional methods mainly utilise specific biological features observed in the

scans. These methods generally rely on highly accurate automated extractions

of these traits, which are challenging to produce especially when abnormalities

appear in diseased individuals. In this paper, we instead propose a novel ap-

proach, which is more tolerant of the errors from the feature extraction process,

to analyse retina biometrics. In particular, we compute the (extended) persistent

homology of the blood vessel structure (viewed as a manifold with boundary em-

bedded in R2) in a retinal image with respect to some filtration and produce a

summary statistic called a persistence diagram. This then allows us to perform

further statistical tests.

We test our method on a publicly available database using different choices

of filtrations to capture the shapes of the vessels. Some of these choices achieve

a high level of accuracy compared with tests done on the same database. Our

method also take significantly less time compared to other proposed methods.

In the future, we can explore more filtrations and/or use combinations of results

obtained from different filtrations to see if we can further increase the level of

accuracy.

Keywords: persistent homology, extended persistent homology, personal iden-

tification and verification, retinal fundus images.
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Notation and terminology

Notation

N The set of non-negative integers.

R∗ The set of extended real numbers, i.e. R∗ = R ∪ {−∞,+∞}.

A tB Disjoint union of A and B. In this thesis, the notation will

imply that A ∩B = ∅.

X/Y The quotient space of X by Y if X and Y are spaces. That

is, collapsing the space Y to a point.

βk(A) The k-th Betti number of a space A for k ∈ N. This is equal

to rank(Hk(A)).

βk(X,A) The k-th Betti number of a pair of spaces (X,A) for k ∈ N.

This is equal to rank(Hk(X,A)).

Terminology

TDA Topological data analysis

PHT Persistent homology transform

XPHT Extended persistent homology transform

XRPHT Radial extended persistent homology transform

SEDT Signed Euclidean distance transform

DMT Distance to measure transform

LES Long exact sequences

xiii





Introduction

Biometrics, i.e. biological measurements that can be used to identify individuals,

are used frequently in security. Perhaps the most familiar example is that of smart

phone users verifying their identities with their fingerprints or facial features on

a daily basis. Improvements to analysis of biometrics are therefore crucial to

enhancing the level of security within a system. Biometrics come in many forms.

On top of the aforementioned image-based ones, there are also time-dependent

ones such as voice or gait. However, when it comes to identity management, we

favour biometrics that are stable with respect to multiple recordings from the

same individual and have strong discriminatory power that can be used to distin-

guish between different individuals. Retinal fundus images are such a biometric.

Since they are absolutely unique to each individual and are stable over time, they

quickly become a popular choice of biometric in high-level security systems.

A retinal image is a 2D-mapping of the unique patterns of a person’s retina

using a low-intensity light source. Figure 1 is an example of such a scan. It

reveals retina blood vessel structures as well as some non-vascular features.

Figure 1: A retinal fundus image. Source: [1]

xv



xvi NOTATION AND TERMINOLOGY

Current methods used to analyse retina can be divided into two main cate-

gories, depending on whether they are vascular based or non-vascular based. In

either category, a combination of biological features that can be extracted from

retinal scans are studied to generate a version of a similarity score between two

samples. Such a score is then used to perform identification and verification tasks.

Some examples of such biological traits include minutiae points (vascular based)

such as bifurcation points where vessels split into two branches and ending points

where vessels terminate, and luminance and structure (non-vascular based) of

the scan. The main issues with these methods is that they generally rely on

highly accurate segmentation, a process to classify and label each pixel of the

image such that pixels with the same label share common characteristics. Au-

tomated segmentation can be extremely challenging to produce, especially when

abnormalities appear in diseased individuals.

In this paper, we propose a novel approach to retina analysis using (extended)

persistent homology, which adopts tools from algebraic topology to study shapes

of proposed objects. We used a publicly available database called Retina Iden-

tification Database (RIDB). We start by translating given retinal images into a

(piecewise-linear) manifold with boundary. While this requires segmentation that

identifies the blood vessels in the samples, we find that no strict requirement on

the level of accuracy of the segmentation is needed. By computing (extended)

persistent homology of the vessel structure with respect to a chosen filtration, we

obtain a summary statistic for each sample called the (extended) persistence dia-

gram. A convenient metric defined on pairs of persistence diagrams, the Wasser-

stein distance, is then used to compare two samples. We summarise the procedure

below:

(a) Preprocess image including performing image segmentation.

(b) Construct a filtration from an image, a delicate job that requires an expert

understanding of how to capture the geometric and topological information

of interest.

(c) Compute (extended) persistent homology with respect to the chosen filtra-

tion and obtain (extended) persistence diagrams.

(d) Compute pairwise 1-Wasserstein distance between (extended) persistence

diagrams for different samples.

(e) Design a classifier to perform identification and verification tasks.
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(f) Test the accuracy of the classifier.

The paper is divided into three chapters. Chapter 1 contains background

material for the methods used in the thesis. In Section 1.1, we recall definitions

and theorems in homology theory while we introduce the persistent homology

and extended persistent homology in Sections 1.2 and 1.3. We finish off Chapter

1 with a close-up examination of (extended) persistent homology computed with

respect to radial filtrations. We also discuss practical considerations required

when analysing digital images in Section 1.4.

In Chapter 2, we perform the analysis of RIDB database following the steps

mentioned above. In particular, in Section 2.3, we compare our methods to the

ones in [30] since they also tested on the same RIDB database. We find that our

methods achieve a comparable level of accuracy and take less time to complete

the tasks.

Finally in Chapter 3, we prove a theorem that justifies an algorithm we used

to compute extended persistent homology of the vessel structures in retinal scans

with respect to radial filtrations in Section 2.2.3. The theorem allows us to

recover the extended persistence pairings, with respect to a radial filtration, of a

manifold with boundary embedded in Rn in dimensions 0 and n−1 from those of

its boundary under mild assumptions. This is an extension of the result in [29],

which proves an equivalent statement for height filtrations.
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2 CHAPTER 1. A BRIEF GUIDE TO XPH

Chapter 1

A brief guide to (extended)

persistent homology

Two roads diverged in a yellow wood,

And sorry I could not travel both

And be one traveler, long I stood

And looked down one as far as I could

To where it bent in the undergrowth;

Then took the other, as just as fair

And having perhaps the better claim

Because it was grassy and wanted wear,

Though as for that the passing there

Had worn them really about the same,

And both that morning equally lay

In leaves no step had trodden black

Oh, I marked the first for another day!

Yet knowing how way leads on to way

I doubted if I should ever come back

I shall be telling this with a sigh

Somewhere ages and ages hence:

Two roads diverged in a wood, and I,

I took the one less traveled by,

And that has made all the difference.

The road not taken, Robert Frost

It is both a blessing and a curse to have data of various forms bursting into our
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lives everyday. We have more resources to gain a better understanding of ourselves

and our surroundings, but the sheer volume of data can also be overwhelming – we

need smarter and more efficient methods for analysis. It has also become apparent

that the nature of data we collect nowadays is far more complicated than it used to

be. Data points may appear in higher dimensions with stronger noise, and chances

of missing data grow [4]. One important example of such data is biometrics ,

which are biological measurements that can be used for automatic verification and

identification of individuals. Traditional data analysis techniques, e.g. regression

models and clustering, might not work well with these geometric data that has

much noise in the background. This is partially because the coordinate vectors to

Figure 1.1: An example of biometrics [7]: two retinal fundus images, the left one

is from a healthy individual while the right one is from someone with eye diseases.

Note that the data is given as a digital image, where we can extract information

such as coordinate vectors and distance between vessels.

compare relevant information from two biometric samples do not arise naturally,

and we do not care much about local parameters – what is of interest here is a

global summary. In the example of retinal fundus images above (Figure 1.1), we

may have a database where some images are from individuals with diseases and

some without. What we are interested in is whether we can decide automatically

from the discolouration in the non-vascular region or other features, as a whole,

from a new individual the likelihood of them having certain diseases; we do not

want parameters, for instance, associated with each pixel of the image. Thus, we

need a way to study the data in a qualitative way while keeping its geometric

nature. Topology becomes a natural choice. It captures the general geometry of

the shape of the data points – for example, the connected components in a space,
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and a notion of closeness between objects that does not rely on metrics.

A growing interest can be found across various disciplines in adapting the idea

from algebraic topology to study the shape of a given set of data points in space.

This relatively recent approach is formally known as topological data analysis (or

TDA for short). So while topology can be sensitive to small pieces of extra noise,

TDA allows us to quantify the topological structure with respect to a geometric

parameter and provides a measure of significance for topological features. A 2017

paper by Kanari, et al. [16], for instance, invented a topological morphology

descriptor based on TDA to encode and study the branching patterns of neuronal

trees. Other applications of TDA can be found in the field of anthropology

to analyse the shape of fossils or biology to quantify the behavior of biological

aggregation and many more.

In this thesis, we propose a novel approach to personal identification and

verification from retinal images using tools from TDA, more specifically, by com-

puting (extended) persistent homology ((X)PH) on given input images. Waheed,

et al. [30] performed the same task using biological features observed in reti-

nal fundus images on a retinal identification database they created and made

available online. This allows us to compare our method to theirs.

In fact, the methods we proposed here can be applied to a general class of

data, namely (smooth or piecewise-linear) manifolds with boundary. Here, we

revise some basic definitions about manifolds so that we can include useful results

about (extended) persistence of some real-valued function over a manifold (with

boundary) later in the chapter.

Definition 1.1 (Topological manifolds). A chart (U, φ) for a topological space

(which is a geometric space where we define what it means for a set to be open)

M is a bijective and continuous function (a homeomorphism) φ : U → φ(U),

where U ⊂M is an open set of M and φ(U) is an open subset of some Euclidean

space.

A topological n-manifold is a Hausdorff, second countable topological space

M such that for every point x ∈ M , there exists a chart φx : Ux → φ(Ux) where

Ux ⊂M is an open neighbourhood of x and φ(Ux) ⊂ Rn is an open subset.

A topological n-manifold with boundary is defined similarly to topological man-

ifold of dimension n except we have φ(Ux) ⊂ {(x1, · · · , xn) ∈ Rn|x1 ≥ 0} is an

open subset of the closed half-space of Rn.

To make sense of smoothness and piecewise linearity on a manifold, we require

some notion of compatibility between charts. To that end, consider two charts
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(Uα, φα) and (Uβ, φβ) with Uα ∩ Uβ 6= ∅. Then restricting φα and φβ to the

domain Uα ∩Uβ, we have two homeomorphisms. Combining them gives two new

homeomorphisms: φα ◦ φ−1
β : φβ(Uα ∩ Uβ)→ φα(Uα ∩ Uβ) and φβ ◦ φ−1

α : φα(Uα ∩
Uβ)→ φβ(Uα ∩ Uβ). We call them the transition maps. An atlas A = {(Uα, φα)}
for M is a collection of charts such that ∪αUα = M .

Definition 1.2 (Smooth/piecewise linear manifolds). A topological n-manifold,

with or without boundary, is smooth (or piecewise linear respectively) if its tran-

sition maps are smooth (or piecewise linear respectively). The corresponding

charts are called compatible.

We can also define what it means for a function on a manifold to be smooth

or piecewise linear.

Definition 1.3. Let M be a topological n-manifold, with or without boundary,

with smooth (or piecewise linear) structure {(Uα, φα)}. Then a function f :

M → R is smooth (or piecewise linear) if for all charts (Uα, φα), the map f ◦φ−1
α :

φα(Uα)→ R is a smooth (or piecewise linear) function.

In Chapter 3, we will consider a smaller subset of such functions called Morse

functions, while in Chapter 2, we will dive into a more hands-on examination

of the retinal images, which can be translated into manifolds with boundary

embedded in R2. But before all of these, we start by introducing concepts relevant

to (X)PH assuming only basic definitions from algebra and topology.

1.1 Simplicial complexes and homology

We are hoping to capture the topology of the shapes of given data. The data we

are interested in are generally subsets of Rn, and hence, we consider the subspace

topology, where a subset is open if and only if it is an intersection of an open set

in Rn with the given subset. The strongest notion of equivalence of topological

spaces is called homeomorphism. Two topological spaces are homeomorphic if

one can be continuously deformed into the other and back. However, deciding

whether two manifolds are homeomorphic proves to be algorithmically unsolvable

in general [20]. Thus, we resort to an easily computed, yet weaker notion, to cap-

ture the topology of a given shape, homology. It connects topological spaces with

algebraic objects and offers us tools from both fields to study the subject more

closely. To find the homology, and later on, the (extended) persistent homology,

of a given space, we need to represent the space in terms of simplicial complexes.
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We review the definitions of simplicial complexes and homology groups below. In

particular, we distinguish between the notion of abstract simplicial complexes and

geometric simplicial complexes, and connect the two notions via a construction

called geometric realisation.

We mainly follow the definitions and constructions as in [13] and [18]. We

refer the reader to [13] for a more detailed study of homology theories.

Definition 1.4. Given a finite number of points x0, x1, · · · , xm in Rn, an affine

combination of these points is a point in Rn of the form

m∑
i=0

αixi = α0x0 + α1x1 + · · ·αmxm

such that
∑m

i=0 αi = 1. A convex combination of these points is an affine combi-

nation
∑m

i=0 αixi such that αi ≥ 0 for all i.

The affine hull of these points is the set of all affine combinations of these

points. Similarly, the convex hull of these points is the set of all convex combina-

tions of these points. Moreover, we call these m+ 1 points affinely independent if

their affine hull is m-dimensional. Equivalently, the points {x0, x1, · · · , xm} are

affinely independent if the set of edges {x1−x0, x2−x0, · · · , xm−x0} is a linearly

independent set.

Definition 1.5 (Geometric simplicial complexes). A geometric n-simplex σ is

the convex hull of n + 1 affinely independent points (which are called vertices)

in Rm with an ordering of its vertices. Illustrated in Figure 1.2 are examples of

standard n-simplices defined by

∆n =

{
(t0, t1, · · · , tn) ∈ Rn+1

∣∣∣∣ n∑
i=0

ti = 1, ti ≥ 0 for all i = 0, · · · , n

}
for n = 0, 1, 2 with the natural ordering of vertices based on the subscripts. If

m < n, the convex hull of m+ 1 of the n+ 1 points is a m-face of the n-simplex.

The union of all the faces of ∆n is the boundary of ∆n, denoted by ∂∆n. The

open simplex ∆n\∂∆n is the interior of ∆n.

A ∆-complex is a space X ⊂ Rd built iteratively as follows:

(0) X0 is a discrete set of 0-simplices (vertices);

(n) Given a collection of maps σnα : ∂∆n
α → Xn−1 such that for each (n−1)-face

A of ∂∆n
α, the restriction σnα|A is the inclusion map into one of the (n− 1)-

simplices in Xn−1 preserving the ordering of vertices in Xn−1. We then
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glue ∆n
α onto Xn−1 using {σnα}to build Xn, i.e. Xn = Xn−1 t (

⊔
α ∆n

α) / ∼,

where ∼ identifies x ∈ ∂∆n
α with σnα(x) for all α;

(∞) X =
⋃
nX

n.

Finally, a geometric simplicial complex is a ∆-complex such that for each

n ∈ N, the map σnα : ∂∆n
α → Xn−1 maps different (n − 1)-faces of ∂∆n

α to

different (n− 1)-simplices in Xn−1 for all α.

v0

v0

v1 v0

v1

v2

(∆0) (∆1) (∆2)

Figure 1.2: Standard n-simplices for n = 0, 1, 2 with orientation of edges given by

ordering of the vertices. We can see that ∆0 is just one vertex and ∆1 is the edge

connecting two 0-simplices. Finally, ∆2 is a regular triangle in R3 with vertices

at (1, 0, 0), (0, 1, 0) and (0, 0, 1) respectively. Denote by [v0, v1] the edge facing

the vertex v2 at the bottom. Similarly, we use [v1, v2], [v0, v2] to denote the edge

facing vertices v0, v1 respectively. Note that the boundaries of an n-simplex looks

like an (n− 1)-simplex. This is true for higher n’s as well.

As a comparison, we now give the definition of abstract simplicial complexes.

Definition 1.6 (Abstract simplicial complexes). Given a collection of sets, any

n+ 1 of them is called an abstract n-simplex. Any subset of a n-simplex is a face

of the n-simplex.

A collection K of finite non-empty subsets of a set S is called an abstract

simplicial complex if, for every set X in K, and every non-empty subset Y ⊆ X,

the set Y also belongs to K. Any finite set that belongs to K is a face of K.

Elements in S form the vertex set of K.

In fact, we can make one definition that describes both of them.

Definition 1.7 (Simplicial complexes). A simplicial complex K is a set of sim-

plices satisfying two conditions:

(i) Every face of a simplex σ from K also belongs to K;
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(ii) Any two simplices σ1, σ2 from K are either disjoint, i.e. σ1 ∩ σ2 = ∅ or

intersect in a common face, i.e. σ1 ∩ σ2 is a face of both σ1 and σ2.

If K is a simplicial complex in Rn, then its underlying space is the union of its

simplices equipped with the subspace topology inherited from Rn.

In this thesis, we are only interested in finite simplicial complexes, i.e. sim-

plicial complexes with a finite number of simplices.

From this point on, we assume all simplicial complexes mentioned

are finite.

We will see that an abstract simplicial complex with n simplices can be made

concrete into some geometric simplicial complex in Rn. With this in mind, it

makes sense to talk about an underlying space of an abstract simplicial complex

since we can consider the underlying space of its associated geometric simplicial

complex. We formalise this by introducing the definition of a geometric realisation

for finite cases.

Definition 1.8 (Geometric realisations in finite cases). Let K be a finite abstract

simplicial complex. Then denote by |K| its geometric realisation constructed as

follows: consider the vertex set S of K and map vertex vk ∈ S to the unit

coordinate of the k-th axis in Rn, where n the number of vertices in K. Then

every face σ of K can be naturally identified with a standard simplex. Finally,

we take |K| to be the union of these geometric simplices.

From this definition, it is easier to see that abstract simplicial complexes are

a combinatorial generalisation of geometric simplicial complexes.

The primary form of data we study here are geometric objects in Euclidean

spaces. Consider a topological space S. Denote by X its triangulation, which is

a simplicial complex together with a homeomorphism X → S. In other words,

X is a simplicial complex whose underlying space is homeomorphic to S. Such a

simplicial complex exists for all differentiable manifolds [15][31].

Define Cn(X) := G{n-simplices in X}, where G is an abelian group. Elements

of Cn(X) are formal sums
∑

i∈I aiσi, where I is a finite index set, ai ∈ G and σi

are n-simplices in X. We call these elements n-chains. That is, Cn(X) is a free

abelian group generated by the n-simplices of X.

For computational simplicity, from this point onward, we will take

G = Z2.
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Remark 1.9. The reason we choose to work with G = Z2 is that an n-chain

is then precisely the sum of n-simplices considered (since Z2 = {0, 1}). We can

then ignore orientations (since −1 = 1 ∈ Z2), and adding two chains containing

a common simplex means we are able to ignore the simplex (since 1 + 1 = 0 in

Z2). Furthermore, since Z2 is a field, Cn(X) (and homology groups) becomes a

vector space over Z2 instead of just an abelian group. This allows us to consider

(extended) persistence modules later.

Define the boundary homomorphism ∂n : Cn(X)→ Cn−1(X) by

σ 7→
n∑
i=0

σ[v0,v1,··· ,v̂i,··· ,vn],

where v̂i indicates omitting the i-th vertex and σ[v0,v1,··· ,v̂i,··· ,vn] is the (n − 1)-

simplex that is opposite of the i-th vertex, or alternatively, the simplex containing

all vertices but vi. That is, an n-simplex σ is mapped to the sum of its boundary,

a set of (n− 1)-simplices.

Definition 1.10 (Chain complex and homology groups). A chain complex C∗(X)

is a sequence of maps of abelian groups

· · · ∂n+2−→ Cn+1
∂n+1−→ Cn

∂n−→ Cn−1
∂n−1−→ · · · ∂1−→ C0 −→ 0

with ∂n ◦ ∂n−1 = 0, for all n.

The n-th homology group is Hn(X) = ker(∂n)
im(∂n+1)

.

With some tedious computation, we can show that ∂n ◦ ∂n−1 = 0, which

means the sequence of Cn(X) for n ∈ N does form a chain complex. This allows

us to compute the homology groups of a simplicial complex. Moreover, as noted

above, im(∂n+1) represents the boundary of an (n + 1)-simplex, which is a set

of its n-dimensional faces since we are working with Z2-coefficients. We call

it the n-boundary, denoted by Bn(X) = im(∂n+1). Similarly, we observe that

ker(∂n) picks out the n-dimensional ‘loops’ built from n-simplices. Hence, we call

Zn(X) = ker(∂n) the n-cycles. Using this notation, we have Hn(X) = Zn(X)
Bn(X)

.

For small n, we can spell out exactly what the homology groups represent.

For instance, when n = 0, by quotienting out the boundary of 1-simplices from

the group generated by the 0-simplices (vertices), vertices that are connected by

edges are regarded as one. That is, the zeroth homology group picks out how

many connected components there are in the simplicial complex. In the same

way, we can see that the first homology group detects how many ‘holes’ there are
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on a 2D plane (think about a disc versus a circle). Moreover, higher dimensional

homology detects holes of higher dimensions defined analogously.

Example 1.11 (Homology group of a torus). We can represent a torus T with the

following triangulation. Note that the first figure shows a ∆-complex structure

on T . We identify vertices with the same label and edges of the same colour

together with their orientations.
v v

v v

c
b b

a

a

U

L

Note that it has one 0-simplex v, three 1-

simplices a, b, c and two 2-simplices U,L.

Note that we can have the above representation

because if we fold the rectangle vertically first so

that the opposite sides b coincide to get a cylinder

and then fold the cylinder horizontally so that

the opposite sides a coincide, we get precisely the

torus. The color in the representation matches

the two cycles we have in the torus. The orienta-

tion in the representation indicates that we fold

the rectangle without twisting it.
We then have the boundary maps:

∂1 : C1(T )→ C0(T ) by a 7→ v + v = 0, b 7→ v + v = 0, c 7→ v + v = 0;

and

∂2 : C2(T )→ C1(T ) by U 7→ a+ b+ c, V 7→ a+ b+ c.

Then we can compute the homology groups

H0(T ) =
Z2{v}
im(∂1)

= Z2{v}.

This is consistent with our observation above: there is only one connected compo-

nent in T , and thus the zeroth homology group is generated by only one element.

Similarly, the torus has two holes, and we should suspect that the first homology

group is generated by two elements. And this is precisely the case:

H1(T ) =
ker(∂1)

im(∂2)
=

Z2{a, b, c}
Z2{a+ b+ c}

= Z2{a, b}.

Note that ker(∂1) is generated by a, b, c, which are precisely the three cycles (c

corresponds to the cycle that goes around the torus in a spiral way) of the torus.
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But since a, b, c form a boundary of faces of the torus, we would be overcounting

the cycles if we include all of them since c can be obtained from a and b. Hence,

taking the quotient by the boundary, we avoid overcounting. Finally, we have

H2(T ) = ker(∂2) = Z2{U + V }.

A useful variation of the homology groups is called reduced homology groups.

Definition 1.12 (Reduced homology groups). Let X be a simplicial complex.

Define a map ε : C0(X)→ Z2 by
∑

i aixi 7→
∑

i ai. The reduced homology groups

of X are the homology groups of

· · · ∂2−→ C1(X)
∂1−→ C0(X)

ε−→ Z2 −→ 0.

That is,

H̃n(X) :=

Hn(X), n > 0;

ker(ε)
im(∂1)

, n = 0
.

Note that reduced and unreduced homology groups differ only at dimension

0. In particular, it satisfies the relation rank(H0(X)) = rank(H̃0(X)) + 1. In the

case of a connected space X, this means we have H̃0(X) = 0.

Moreover, we can consider the relative relation between a space and its sub-

space. This is particularly useful when we introduce extended persistent homol-

ogy in section 1.3.

Definition 1.13 (Relative homology). Given a space X and a subspace A ⊆ X.

Let Cn(X,A) := Cn(X)/Cn(A). Note that this is doable since Cn(X) is abelian.

Since the boundary map dn : Cn(X) → Cn−1(X) takes Cn(A) to Cn−1(A), this

induces a boundary map ∂n : Cn(X,A) → Cn−1(X,A), and ∂2 = 0 holds as it

holds for C∗(X). Hence, we obtain a chain complex

· · · −→ Cn(X,A)
∂n−→ Cn−1(X,A) −→ · · · .

The relative homology groups Hn(X,A) are then defined in the usual way by

taking ker(∂n)/im(∂n+1).

Below we include some useful theorems without proofs relating to relative

homology and reduced homology groups. Detailed proof can be found in [13].

We will see them again when we introduce extended persistent homology later

on in Section 1.3.
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Lemma 1.14. Let f : X → Y be a map between spaces. Then f induces a chain

map

f# : C∗(X) → C∗(Y )

σ 7→ f ◦ σ.

Moreover, let C∗, D∗ be chain complexes and g : C∗ → D∗ be a chain map. Then

g induces a map

g∗ : Hn(C∗) → Hn(D∗)

[x] 7→ a [gn(x)] .

The proof of Lemma 1.14 boils down to verify well-definedness of the induced

map and its requisite properties. Its implication, however, is of much interest.

What Lemma 1.14 shows, is that if we are given a map on space level, it can

induce a map on homology level. This idea is particularly useful, and Theorem

1.16 below is an occasion where we make use of this lemma. It describes a

desirable algebraic relation between homology groups.

Definition 1.15 (Exactness). A sequence of homomorphisms

· · · −→ An+1
αn+1−→ An

αn−→ An−1 −→ · · ·

is exact if ker(αn) = im(αn+1).

Theorem 1.16. Let X be a space, and A ⊆ X be a subspace such that (X,A) is

a good pair †. Then there is an exact sequence

· · · −→ H̃n(A)
i∗−→ H̃n(X)

j∗−→ Hn(X,A)
∂−→ H̃n−1(A) −→ · · ·

· · · −→ H0(X,A) −→ 0,
(1.1)

where i∗ is induced by the inclusion map i : A → X and j∗ is induced by the

projection map j : X → X/A. The map ∂ is called a connecting homomorphism.

The proof for Theorem 1.16 reduced to the observation that

0→ C∗(A)→ C∗(X)→ C∗(X,A)→ 0

†The terminology of a “good pair” is also defined in [13]. A pair of spaces (X,A) is a good

pair if A is a nonempty closed subspace that is a deformation retract of some neighborhood in

X. The exact definition of a good pair is not of importance in this thesis. However, in this

thesis, we will be working with manifolds with boundary embedded in Rn. When A,X are both

spaces in this class, the pair (X,A) is a good pair.
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forms an exact sequence, which we call a short exact sequence. This, in turn,

induces the long exact sequence (1.1).

Due to the nice properties of exact sequences, we can read off much useful in-

formation about relations of different homology groups. Here, we include another

powerful tool that constructs long exact sequences, namely a Mayer-Vietoris se-

quence. We will use this in Chapter 3.

Theorem 1.17 (Mayer-Vietoris sequence). Suppose A,B ⊆ X is a pair of sub-

spaces such that X = int(A) ∪ int(B). Then there is a long exact sequence:

· · · −→ Hn(A ∩B)
Φ−→ Hn(A)⊕Hn(B)

Ψ−→ Hn(X)
∂−→ Hn−1(A ∩B) −→ · · ·
· · · −→ H0(X) −→ 0.

(1.2)

There is also a relative version of Mayer-Vietoris sequence. Suppose we have

two pairs of subspaces (A,C), (B,D) ⊆ (X, Y ) such that Y = int(C) ∪ int(D).

Then there is a long exact sequence:

· · · −→ Hn(A ∩B,C ∩D)
Φ−→ Hn(A,C)⊕Hn(B,C)

Ψ−→ Hn(X, Y )
∂−→

Hn−1(A ∩B,C ∩D) −→ · · · −→ H0(X, Y ) −→ 0.

(1.3)

Another result in homology theory (that is useful for computing extended

persistent homology) is the following:

Theorem 1.18. Let (X,A) be a good pair. Then we have Hn(X,A) ∼= H̃n(X/A).

1.2 Persistent homology

1.2.1 Persistence modules and interval decomposition

The concept of persistence, or rather persistence modules arises from quiver the-

ory, which is the study of oriented multigraphs commonly used in representation

theory [19].

Definition 1.19. A representation of a quiver Q is an assignment of

1. a vector space Vi for each vertex i in Q;

2. a linear map xij : Vi → Vj when there is an edge from vertex i to vertex j

in Q.
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The dimension of a representation of Q is the sum of the dimensions of the

vector spaces it consists of.

Classifications of quiver representations of persistence modules have been

studied rigorously. The term “persistence module” was first coined by Zomoro-

dian and Carlsson [32], where they formally studied its connection to quiver

representation. But the first account of “persistent homology groups” can be

traced back to work of Robins [22] to study the topology of attractors in dynam-

ical systems with experimental data and Edelbrunner, Letscher and Zomorodian

[10] for automated topological simplification. Edelsbrunner et al. described a

persistence module as a representation of a type Ln quiver (or its generalisation

to an infinite diagram and/or diagrams with infinite-dimensional module), where

a type Ln quiver is a directed graph of the following form:

· · ·
1 2 3 n

That is, a persistence module is a finite sequence of finite dimensional vector

spaces indexed by natural numbers and connected by linear maps. In fact, per-

sistence modules can be defined on a much more general parameter space namely

a totally ordered set. That said, the parameter space is generally taken to be a

subset of R in literature [29]. On the other hand, formulations such as persistence

barcodes and diagrams, which summarise persistence modules for comparison,

and stability results regarding different notions of distance drag persistence mod-

ules away from quiver theory. This allows it to become a field of interest in its

own right. We will make this more concrete following the construction in [29],

which adopts the more general definition for reasons that will become clearer in

Section 1.3.

Definition 1.20. A totally ordered set (Θ,≤) is a set Θ with a relation ≤ such

that for all α, β, γ ∈ Θ, we have

• (Reflexivity) α ≤ α;

• (Antisymmetry) if α ≤ β and β ≤ α, then α = β;

• (Transitivity) if α ≤ β and β ≤ γ, then α ≤ γ;

• (Comparability) either α ≤ β or β ≤ α.

After defining the parameter space, we are now ready to define persistence

modules.
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Definition 1.21 (Persistence modules). Let (Θ,≤) be a totally ordered set. A

persistence module V over Θ consists of a family {Vα}α∈Θ of finite dimensional

vector spaces over some field F and for all α ≤ β, a map fβα : Vα → Vβ such that

fαα = idVα and if α ≤ γ ≤ β the following diagram commute:

Vα Vβ

Vγ

fβα

fγα fβγ

Categorically, that is, a persistence module is a functor V : (Θ,≥)→ VectF.

We can, in fact, drop the finite dimensionality condition in Definition 1.21

and achieve full generality. However, in this thesis, we will restrict our attention

to the finite dimensional case. In fact, we will only be looking at a finite chain of

vector spaces linked by some linear maps. This will become more apparent later

on in the thesis.

From now on, a persistence module will be assumed to consist of

a finite family of finite dimensional vector spaces over some field

F.

Two theorems from representation theories lay a theoretical foundation to

what comes next.

Theorem 1.22 (Krull, Remak, Schmidt). Let Q be a finite quiver, and let F
be a field. Then every finite-dimensional representation V of Q over F can be

decomposed in to a direct sum

V = V1 ⊕ V2 ⊕ · · ·Vr,

where Vi is indecomposable for all i = 1, · · · , r, i.e. if Vi = U ⊕ W , where

U,W are representations of Q, then either U = 0 or W = 0. Moreover, such a

decomposition is unique up to isomorphism and permutation.

Theorem 1.23 (Gabriel’s theorem for Ln-type quivers). Let Q be a type Ln

quiver, and let F be a field. Then every indecomposable representation of Q over

F is isomorphic to some interval representation I[b,d]:

0 −→ · · · −→ 0︸ ︷︷ ︸
[1,b−1]

−→ F 1−→ · · · 1−→ F︸ ︷︷ ︸
[b,d]

−→ 0 −→ · · · −→ 0︸ ︷︷ ︸
[d+1,n]

.
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Remark 1.24. Theorem 1.23 holds for more general types of quivers. For exam-

ple, it holds for type An quivers. These are the quivers with the same underlying

graph as Ln-type quivers, except the arrows can now point at either directions.

Representations of an An-type quiver are generally called zigzag modules.

Combining the two theorems, we know that every persistence module V has

an interval decomposition, unique up to permutation. Recall that we defined

persistence modules on a totally ordered set (Θ,≤). It might not be immediately

clear what we mean by intervals in an arbitrary totally ordered set, but they are

analogous to intervals in R. We make it precise in the following definition.

Definition 1.25 (Intervals). An interval in a totally ordered space (Θ,≤) is a

subset I ⊆ Θ such that for all α ∈ Θ, either α ∈ I or α ≤ θ for all θ ∈ I or θ ≤ α

for all θ ∈ I. An interval module over an interval I is a persistence module II
with vector spaces

Vθ =

F, θ ∈ I

0, θ 6∈ I
,

and maps

πβα =

idF, α, β ∈ I

0, otherwise
.

We can switch our attention to elements in vector spaces in a persistence

module.

Definition 1.26 (Birth and death). Let V be a persistence module over a totally

ordered set (Θ,≤). We say a non-zero element λ ∈ Vα is born in Vα if for

every α′ < α, λ 6∈ im(fαα′). Moreover, we say that λ dies entering Vβ if for all

α′ < α < β′ < β, fβ
′

α (λ) 6∈ im(fβα′), but fβα (λ) ∈ im(fβα′′) for some α′′ < α. If no

such β exists, we say λ dies at V+∞.

Figure 1.3 offers a nice illustration of Definition 1.5. We include it below:

What Theorem 1.22 and 1.23 indicate, in terms of Definition 1.5, is that

(a) every element in a given family of vector spaces in the persistence module

has a (unique) birth and death time and thus, can be represented by an

interval module over some interval I. So to link the two viewpoints, for

each interval module II , we call b(II) = inf(I) and d(II) = sup(I) the birth

and death parameters respectively, and



1.2. PERSISTENT HOMOLOGY 17

Figure 1.3: Element λ is born in Vα since it is not in the shaded area, which is

the image of Vα′ for all α′ < α. It dies entering Vβ since this is the first time it

merges into the image of Vα′ for some α′ < α. [Source: [18]]

(b) if we know about the birth and death of the generators in the vector spaces

in a persistence module, we know everything about the persistence module.

In light of this, we can summarise this information using diagrams, either

persistence barcodes or persistence diagrams. Persistence barcodes are 2D dia-

grams whose horizontal axes represent time (e.g. a subset of R∗) and the ver-

tical axes denote the elements. For each generator in the persistence module,

we connect its birth time and death time resulting in a collection of horizontal

lines that together resemble barcodes. Persistence diagrams, on the other hand,

are scatter plots that record the birth-death times as x-y coordinates (e.g. in

R2+ = {(a, b) ∈ {−∞} ∪R×R ∪ {∞}|a < b}). So each point on the persistence

diagram represents a generator. It is not hard to see that both persistence bar-

codes and diagrams encode the exact same information. More importantly, they

offer more intuitive ways to study and compare different persistence modules, in

terms of information that is not easily extractable otherwise [14].

So it is natural to now raise the question: how do we compare different persis-

tence modules? The short answer is that we want some notion of distance in order

to quantify how different or similar two persistence modules are. A standard way

to do so is to use a construction called the interleaving distance.

Definition 1.27 (Interleaving distance). Let ({Vα}, {fβα}) and ({Wα}, {gβα}) be

two persistence modules over R. We say they are ε-interleaved for some ε > 0

if there exist families of linear maps {φα : Vα → Wα+ε} and {ψα : Wα → Vα+ε}
such that the following triangles commutes:

The interleaving distance between ({Vα}, {fβα}) and ({Wα}, {gβα}) is taken

to be the infimum of all ε > 0 such that ({Vα}, {fβα}) and ({Wα}, {gβα}) are
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Vα Vα+2ε

Wα+ε

Wα Wα+2ε

Vα+ε

fα+2ε
α

φα ψα+ε

gα+2ε
α

ψα φα+ε

ε-interleaved.

Remark 1.28. Definition 1.27 can be a bit technical to work with. This inspires

us to make use of more tools available to persistence modules. For example, we

can consider the comparison between persistence diagrams since they summarise

information about corresponding persistence modules. Two popular notions of

such distance are Wasserstein distance and bottleneck distance. The main idea is

to consider a matching or a transportation plan between points in two persistence

diagrams and calculate the distance with respect to the ‘best’ such matching. We

define the terms here for general persistence modules over a totally ordered set

following the setup in [29]. We will also include the specific definitions when we

look at (extended) persistent homology modules in relevant sections.

Recall that Gabriel’s theorem (Theorem 1.23) tells us that every finite persis-

tence module can be decomposed into direct sums of interval modules. And we

will see in Section 1.2.2 that the persistence modules we consider in this thesis

are finite. So in the following definitions, we will write the persistence modules

in this form.

Definition 1.29 (Transportation plan). Let (Θ,≤) be a totally ordered set and

let P =
⊕

Ii∈SP IIi and Q =
⊕

Ij∈SQ IIj be persistence modules over Θ. Then

a transportation plan between P and Q is a triple T = (ŜP , ŜQ, σ) where ŜP ⊆
SP , ŜQ ⊆ SP , and σ : ŜP → ŜQ is a bijection. The intervals in ŜP and ŜQ

are called matched intervals in T and their complements SP\ŜP and SQ\ŜQ are

called unmatched intervals in T .

To each transportation plan, we need to associate a cost in order to talk about

“optimal” matching. This requires a metric, and we define it in an analogous way

to Lp norms.

Definition 1.30 (Totally ordered metric space). We call (Θ,≤, dist) a totally

ordered metric space if

1. (Θ,≤) is a totally ordered set;
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2. dist is a metric over Θ such that if α ≤ β ≤ γ, then dist(β, γ) ≤ dist(α, γ)

and dist(α, β) ≤ dist(α, γ).

Definition 1.31 (Distance). Let (Θ,≤, dist) be a totally ordered metric space,

and let I and I ′ be two intervals over Θ. Then for p ∈ [1,∞), their p-distance is

distp(I, I ′) = (dist(b(I), b(I ′))p + dist(d(I), d(I ′))p)1/p
.

Their ∞-distance is

dist∞(I, I ′) = max {dist(b(I)), b(I ′), dist(d(I), d(I ′))} .

To define the cost associated to a transportation plan, we need to define a

set of “ephemeral” intervals. This is the diagonal line on the persistence diagram

for persistent homology for example. In a general persistence module, we denote

such a set by Eph.

Definition 1.32 (Cost of a transportation). Let P =
⊕

Ii∈SP IIi and Q =⊕
Ij∈SQ IIj be persistence modules over a totally ordered metric space (Θ,≤, dist).

Let Eph denote the set of ephemeral intervals over Θ and let T = (ŜP , ŜQ, σ) be

a transportation plan between P and Q. Then for p ∈ [1,∞), the p-cost of T is

given by

cp(T ) =
∑
Ii∈ŜP

distp(IIi , Iσ(Ii))
p +

∑
Ii∈SP\ŜP

inf
I∈Eph

{distp(IIi , I)p}

+
∑

Ij∈SQ\ŜQ

inf
I∈Eph

{distp(IIj , I)p},

and the ∞-cost of T is given by

c∞(T ) = max

{
sup
Ii∈ŜP

{
dist∞(IIi , Iσ(Ii))

}
, sup
Ii∈SP\ŜP

{
inf
I∈Eph

{dist∞(IIi , I)}
}
,

sup
Ij∈SQ\ŜQ

{
inf
I∈Eph

{dist∞(IIj , I)}
}}

.

Definition 1.33 (p-Wasserstein distance and bottleneck distance). Let P =⊕
Ii∈SP IIi and Q =

⊕
Ij∈SQ IIj be persistence modules over a totally ordered

metric space (Θ,≤, dist). Then for p ∈ [1,∞), the p-Wasserstein distance be-

tween P and Q is

Wp(P ,Q) = inf{cp(T ) | T is a transportation plan between P and Q}.

The bottleneck distance between P and Q is

W∞(P ,Q) = inf{c∞(T ) | T is a transportation plan between P and Q}.
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1.2.2 Relating to topology

Adopting tools from algebraic objects such as persistence modules to treat topo-

logical data is of major interest to researchers, especially in an interdisciplinary

setting. A natural construction that links persistence modules to topological in-

formation is called filtration, through which we set up a sequence of topological

spaces connected via some continuous maps. These, in turn, induce maps on a

algebraic level, e.g. homology.

Definition 1.34 (Filtration). Given a subset T ⊆ R, a filtration X over T is a

family {Xa}a∈T of topological spaces, parameterised by a ∈ T , such that Xa ⊆ Xb

for all a ≤ b ∈ T .

The filtration considered in this section is called sublevel sets, defined to be

Xa = f−1(−∞, a] for some function f : X → R on a topological spaceX and some

threshold a ∈ R. Then the family {Xa}a∈R of topological spaces forms a filtration.

More importantly, there is a natural inclusion map i : Xa → Xb for a ≤ b. From

here, Lemma 1.14 tells us that i induces a map fa→bk : Hk(Xa) → Hk(Xb) for

dimension k, and this gives us a persistence module. We observe that for a = b,

fa→bk = id is an isomorphism. Using the definition of homology, we have that

Hk(a, b) := im(fa→bk ) = Zk(Xa)/ (Zk(Xa) ∩Bk(Xb)) ,

which we will call the k-th persistent homology group.

Definition 1.35 (Homological critical value). Given the setup above, a value

a ∈ R is a homological critical value of f if for all ε > 0, the map fa−ε→a+ε
k is not

an isomorphism for some k. In other words, some birth or death occurs at the

threshold a.

From this point onward, we will assume that f is tame, i.e. f has

only finitely many homological critical values and the homology

group corresponding to each sublevel set is finite-rank.

Let a1 < a2 < · · · < am be the critical values of f . Then we can consider

sequence si for 0 ≤ i ≤ m, where si−1 < ai < si. Let Xi := Xsi . Since, as

mentioned before, the homology groups are computed with field coefficients Z2,

which equip them with a vector structure, we actually have a persistence module:

H∗(X0)
f0→1
∗−−−→ H∗(X1)

f1→2
∗−−−→ · · · f

m−1→m
∗−−−−−→ H∗(Xm),
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where the (linear) maps between consecutive homology groups (which can be

regarded as vector spaces) are induced by inclusion maps of spaces. This is

a persistent homology module. The upshot of choosing such a set of thresh-

old values is that this is the smallest set that allows us to comprehend all the

topological changes occurring along this filtration without any ambiguity. For

instance, we can tell that a component α ∈ H∗(Xi) is born at ai if it is not in

im(f i−1→i
∗ ). Moreover, we can know that it dies at aj if f i→j−1

∗ (α) 6∈ im(f i−1→j−1
∗ ),

but f i→j∗ (α) ∈ im(f i−1→j
∗ ). With this assumption in mind, we can create a col-

lection of persistence diagrams, one for each dimension and each consisting of a

finite multiset of points.

To differentiate persistence diagrams constructed for the sublevel

set filtration from those involving super-level sets (which we will

see when we talk about extended persistence in Section 1.3), from

this point onwards, the term “persistence diagrams/barcodes”

is reserved for the ones for the sublevel set filtration, whereas

its counterpart in Section 1.3 will be called extended persistence

diagrams/barcodes.

One of the most popular such functions f considered in literature are height

functions. In fact, Turner et al. defined the persistent homology transform with

filtration given by height functions with some fixed direction v ∈ Sn−1 in [28]. We

will consider multiple choices of f in Chapter 2 as well. It might be intuitive to

think that different filtrations corresponding to various functions should capture

different features in topology. That is indeed the case, as we will explore more in

Section 2.2.3. Thus, it is surprising that this is often overlooked in practice [27].

Before that, let us turn our attention back to comparisons between persistence

diagrams. Recall that persistence diagrams can be thought of as multisets sitting

inside R2+. Equivalently, we can consider them as subsets of R2+×N. The extra

information carried by N is called the multiplicity of a point. To define a notion

of distance between two persistence diagrams, we need to think about how points

in one set relate to those in the other. This motivates the following definition of

a transportation plan.

Definition 1.36 (Transportation plans between persistence diagrams). Suppose

D = {(I,m) ∈ R2+ ×N and D′ = {(I ′,m′) ∈ R2+ ×N} are two finite persistence

diagrams. Then a transportation plan between D and D′ is a bijection

σ̃ : D ∪∆((R∗)2)× N→ D′ ∪∆((R∗)2)× N,
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where ∆((R∗)2) × N is the set of points on the diagonal line in R2∗, each with

countably infinite copies. We define σ̃ in the following process:

(1) Fix a bijection σ : D ⊇ B → B′ ⊆ D′, that is we partially match up points

in D with points in D′;

(2) For points in D\B and D′\B′, we match them to the closest points in

∆(R2∗) × N. That is, for (b, d) ∈ D\B ∪ D′\B′, we match them with(
b+d

2
, b+d

2

)
. Note that here we allow b = −∞ or d = ∞. (3) For the rest

of points in ∆(R2∗) × N, we map them to itself. Note that this is possible

since we are allowing countably many points on the diagonal and D, D′

only contain finitely many points.

Remark 1.37. One should think of Definition 1.36 as moving points from one

diagram to another and trying to capture the optimal cost of transporting these

points. Hence the name.

Definition 1.38 (Wasserstein distance and bottleneck distance). Consider σ̃

transportations plans between persistence diagrams D and D′. For p ∈ [1,∞),

we define the Wasserstein distance to be

Wp(D,D′) =

(
inf
σ̃

∑
x∈D

‖x− σ̃(x)‖pp

)1/p

. (1.4)

The bottleneck distance is defined analogously for when p→∞:

dB(D,D′) = inf
σ̃

(
sup
x∈D
‖x− σ̃(x)‖∞

)
. (1.5)

Remark 1.39. One should notice from Definition 1.38 that the notions of dis-

tance here are analogous to Lp or L∞ norms on function spaces defined on discrete

sets. Furthermore, it is possible that for each transportation plan, the correspond-

ing cost, i.e.
∑

x∈D‖x− σ̃(x)‖pp for p ∈ [1,∞) and supx∈D‖x− σ̃(x)‖∞ is infinite

since we allow points to be born or die at −∞ and ∞ respectively.

Remark 1.40. There is a more general form of Wasserstein distance, where we

take different metrics for the plane (q) and the power (p). That is we have

Wp,q(D,D′) =

(
inf
σ̃

∑
x∈D

‖x− σ̃(x)‖pq

)1/p

. (1.6)

The corresponding bottleneck distance will be defined in the same way as in

Equation 1.5 since that is what we will get if we take p, q approaching infinity.
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Turner argued in [2] that the choice of p is directly related to the feature we care

about when comparing diagrams (for instance taking p approach infinity means

we care less about points that are extremely close to each other), while the choice

of q does not matter as much. Moreover, we should take p = q for several reasons

including that it gives a more natural stability result. Furthermore, it has been

shown empirically that taking p = 1 performs better than other choices of p when

modelling and comparing shapes in R2 or objects and surfaces in R3 [28]. This is

precisely the kind of data we are working with.

So in what follows, we will use W1 to compare different persistence

diagrams (or extended persistence diagrams for that matter).

The classic stability theorem is related to the bottleneck distance. It was

proven by Cohen-Steiner, Edelsbrunner, and Harer [5], and we include it here.

Theorem 1.41 (Stability of sublevel set filtration). Suppose f, g : X → R are

continuous tame functions defined on a triangulable space X, and consider the

L∞-norm

‖f − g‖∞ = supx∈X |f(x)− g(x)|.

Then we have

dB(Dgmk(f),Dgmk(g)) ≤ ‖f − g‖∞,

where Dgmk(f),Dgmk(g) are the k-dimensional persistence diagrams of f and g

respectively.

1.3 Extended Persistence

On top of considering only the sublevel sets, we can also include the superlevel

sets and consider relative homology when we build our persistence modules. This

gives us more information about the topology of a given space. More importantly,

we will see that the Wasserstein distance and bottleneck distance between two

extended persistence diagrams will always be finite, which makes comparisons

easier in practice.

Intuitively, we can think of extended persistent homology as first scanning

outwards and gradually seeing more information, and then moving back down

until we get back to the starting point. In practice, this is achieved by involving

relative homology. Denote by Xa = f−1[a,∞) the superlevel set of some tame

function f at some threshold a ∈ R. Again suppose a1 < a2 < · · · < am are the



24 CHAPTER 1. A BRIEF GUIDE TO XPH

homological critical values of f . We can find the same sequence {si}mi=0 as before.

Now consider the following persistence module:

0 = H∗(X0)→ H∗(X1)→ · · · → H∗(Xm) = H∗(X)

↓ (1.7)

0 = H∗(X,X
0)← H∗(X,X

1)← · · · ← H∗(X, ∅) = H∗(X)

Since the beginning and the end of the chain are both 0, all components that

are born along the way will eventually die. In fact, there are three different

possibilities of such components depending on their birth and death times. We

call a component that is born and die scanning outwards (i.e. in the homology

groups of sublevel sets) ordinary. One with birth and death time both occurring

tracing inwards (i.e. in the relative homology groups) is called relative. Finally,

we follow the exposition in [29] and call the ones that are born going outwards

and die coming inwards essential. These components are often referred to as

extended in the literature as well.

Following the setup given in Section 1.2.1, we can rewrite the above in terms

of persistence modules. In particular, we can think of Θ as two copies of R. More

precisely, we follow the exposition in [29] and define O = {(t,Ord) : t ∈ R} and

R = {(t,Rel)t ∈ R}. Then we set Θ = O ∪R and define a total order as follows:

• (s,Ord) ≤ (t,Ord) if s ≤ t;

• (t,Rel) ≤ (s,Rel) if s ≤ t;

• (s,Ord) < (t,Rel) for all s, t ∈ R.

For the k-th extended persistence module Vk over Θ, we assign vector spaces

V(t,Ord) = Hk(Xt) = Hk(Xt, ∅) and V(t,Rel) = Hk(X,X
t). The maps between vec-

tor spaces are induced by inclusion maps between corresponding pairs of spaces.

Then linking back to the terminologies above, we have that the ordinary and rela-

tive classes are the ones whose birth and death are both in O and R respectively.

The essential classes, on the other hand, would have birth (s,Ord) and death

(t,Rel). We can further classify the essential classes into two subcategories, Ess+

and Ess−, where the former has s < t and the latter satisfies t < s. Moreover, we

have that

Vk = Ordk(X, f)⊕ Relk(X, f)⊕ Ess+(X, f)⊕ Ess−(X, f),

where each summand is a submodule cover a copy of R corresponding to the

labelled class [29]. We can again visualise the birth and death of the components
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in each of these classes as a point in R2 (note that here we do not need R2+ since

no component has non-finite birth or death time). The resulting diagram is the

extended persistence diagram.

With the newly introduced setup, we need to redefine the Wasserstein distance

and bottleneck distance. This is because

(a) our totally ordered set has changed, which means we need to redefine a

metric on Θ = O ∪R; and

(b) it no longer makes sense to match points in an extended persistence diagram

to points on the ‘diagonal’ without specifying the class they belong to.

This motivates the definition of ‘ephemeral’ points or ‘ephemeral’ interval

modules.

To address point (a), we impose a natural metric on Θ:

dist((t,Ord), (s,Ord)) = |t− s|, for all s, t ∈ R;

dist((t,Rel), (s,Rel)) = |t− s|, for all s, t ∈ R;

dist((t,Ord), (s,Rel)) =∞, for all s, t ∈ R.

For point (b), we define ephemeral interval modules as a union of ‘diagonal’ points:

Eph ={I[(t,Ord),(t,Ord))|t ∈ R} ∪ {I[(t,Rel),(t,Rel))|t ∈ R}
∪ {I|b(I) = (t,Ord), d(I) = (t,Rel), t ∈ R}

In particular, one can see that the last class of interval modules whose birth is in

Ord and death in Rel corresponds to the essential class (regardless of positive or

negative signs). We can think of them as tiny specks in the space that contribute

to essential classes yet so small that we can disregard them.

With the two problems taken care of, a transportation plan between extended

persistence modules is then similar to that of persistence modules/diagrams. We

still want to match up the points on the extended persistence diagrams. Fur-

thermore, within each class (Ord, Rel, Ess+ and Ess−), a transportation plan

is exactly the same as that for persistence modules except instead of matching

points to the diagonals, we can match them to the ephemeral points of the rele-

vant class. In fact, [29] shows that the Wasserstein/bottleneck distances between

extended persistence modules/diagrams are exactly the sum/maximum of the

Wasserstein/bottleneck distances for each class.
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Theorem 1.42 (Wasserstein/bottleneck distance for extended persistence mod-

ules [29]). Let P and Q be two extended persistence modules of the same dimen-

sion. Then we have P = Ord(P) ⊕ Rel(P) ⊕ Ess+(P) ⊕ Ess−(P), and similarly

Q = Ord(Q)⊕ Rel(Q)⊕ Ess+(Q)⊕ Ess−(Q).

It then follows that the p-Wasserstein distance (1 ≤ p < ∞) between P and

Q is:

Wp(P ,Q)p =Wp(Ord(P),Ord(Q))p +Wp(Rel(P),Rel(Q))p

+Wp(Ess+(P),Ess+(Q))p +Wp(Ess−(P),Ess−(Q))p.

Furthermore, the bottleneck distance between P and Q is:

W∞(P ,Q) = max
{
W∞(Ord(P),Ord(Q)),W∞(Rel(P),Rel(Q)),

W∞(Ess+(P),Ess+(Q)),W∞(Ess−(P),Ess−(Q))
}
.

Many duality results also emerge when we deal with extended persistence.

Below we prove a ‘mini’ duality result for when the data is given by a tree diagram

just to give some flavour. The proof relies on the fact that a tree is a connected

component without cycles. However, thanks to Poincaré duality and Lefschetz

duality theorems for ordinary homology, we have duality results in much more

general settings. The former gives an isomorphism between the k-th homology

and (n−k)-th cohomology groups of a manifold, while the latter connects the k-th

cohomology (and respectively, homology) groups of a manifold M with boundary

∂M to the (n − k)-th relative homology (and respectively, cohomology) groups

of the pair (M,∂M). Excision theorem says that under certain conditions, we

are allowed cut off a subspace U ⊆ A ⊆ X from a pair (X,A) of spaces such

that Hk(X,A) ∼= Hk(X\U,A\U). So combining excision theorem with Lefschetz

duality theorem, we can get back from cohomology groups to relative homology

groups. This offers us insights on how Ordinary and Relative classes from the

extended persistence modules of different dimensions are related. We will also

include some of these duality results that appeared in [25] and [6].

Definition 1.43. A finite tree T ⊆ Rn is an undirected graph embedded in Rn

with finitely many vertices that is connected and acyclic.

Theorem 1.44 (‘Mini’ duality theorem). Let T ⊆ Rn be a finite tree and let

0 < a < b.
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a1

a2

b

α

p

q Denote by T a and T b the superlevel

set φ−1[a,∞) and φ−1[b,∞), where

φ : T → R is the radial function

centred at the root r of the tree de-

fined by φ(x) = ‖x − r‖2 and ‖·‖2

is the Euclidean distance inherited

from Rn. See the illustrated graph

on the left.
Then the following diagram commutes:

H1(T, T b) H̃0(T b)

H1(T, T a) H̃0(T a)

∼=

∼=

i∗ i∗

Proof. Since (T, T t) is a good pair, we have the following LES:

· · · → H̃1(T )
j1−→ H1(T, T t)

∂−→ H̃0(T t)
i0−→ H̃0(T )→ · · · .

Since T is acyclic and connected, we have that H̃1(T ) = H̃0(T ) = 0. This implies

that H1(T, T t)
φt∼= H̃0(T t).

In fact, we can write down an explicit isomorphism: we first label the nodes

from 1 to n. Observe that for each element α inH1(T, T t), we have φ−1(t) intersect

with α at precisely two points. These trace to two connected components in T t,

call them σp and σq, where p, q ∈ {1, 2, · · · , n} correspond to the vertex labels

contained in σp and σq respectively. Note that there could be multiple choices

of such p and q, but they represent the same connected components. Then we

define φt(α) := σp + σq. It is clear that this is a well-defined isomorphism.

Taking t = a, b respectively, we have for α ∈ H1(T, T b), there can only be two

possibilities. Either i∗(α) = 0 ∈ H1(T, T a) (See the dotted line labeled a1 in the

figure above), or i∗(α) = α ∈ H1(T, T a) (See the dotted line labeled a2 in the

figure above).

Let φb(α) = σp + σq for some p, q. In the first case, we then have σp and σq

become the same connected component in T a. Hence, we have

i∗(σp + σq) = 2σp = 0 ∈ H̃0(T a),
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since we take coefficients in Z2. This is equal to

φa(i∗(α)) = φa(0) = 0.

In the second case, we have that σp and σq remain two separate connected com-

ponents in T a, and hence,

i∗(σp + σq) = σp + σq ∈ H̃0(T a).

This is equal to

φa(i∗(α)) = φa(α) = σp + σq.

We have shown that in both cases, we get φa ◦ i∗ = i∗ ◦ φb. Therefore, the

given diagram commutes.

This phenomenon occurs in higher dimensions as well.

Theorem 1.45 (General duality theorem [25]). Let X = {Xt} be a filtration of a

simplicial complex X. Denote by PDk(X) the corresponding k-dimensional persis-

tence diagram. Define PD0
k(X) to be the restriction of PDk(X) to the classes with

finite lifetime, and define PD∞k (X) to be the restriction of PDk(X) to the classes

with infinite lifetime. Furthermore, let PDk(X,X) be the k-dimensional persis-

tence diagram of the relative homology groups Hk(X,Xt) and define PD0
k(X,X)

and PD∞k (X,X) in a similar way. Then we can have

PD0
k(X) = PD0

k+1(X,X),

and

PD∞k (X) = PD∞k (X,X).

Corollary 1.46. Let M be a finite simplicial complex with vertex set S. Then

denote by |M | its geometric realisation. Let |f | : |M | → R be a function such that

the interior of each simplex in |M | is given by linear interpolation of the values

of f on its vertices. Then there is a bijection φ : Ordk(M, f) → Relk+1(M,−f)

given by

φ
(
I[(b,Ord),(d,Ord))

)
= I[(−d,Rel),(−b,Rel)).

Another useful result for reducing the complexity of computing extended per-

sistence modules of a manifold is given by the symmetry theorem below.
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Theorem 1.47 (Symmetry theorem in [29]). Let M be a triangulated n-manifold,

and let f : M → R be a piecewise-linear function defined on the vertices of M

and extended linearly on the edges by interpolation. Then we have

Ordk(M, f)
∼=−→ Ordn−k−1(M,−f) : I[(b,Ord),(d,Ord)) 7→ I[(−d,Ord),(−b,Ord)),

Essk(M, f)
∼=−→ Essn−k(M,−f) : I[(b,Ord),(d,Rel)) 7→ I[(−d,Ord),(−b,Rel)),

Relk(M, f)
∼=−→ Reln−k+1(M,−f) : I[(b,Rel),(d,Rel)) 7→ I[(−d,Rel),(−b,Rel)).

Remark 1.48. In the case where M is an n-manifold and f : M → R is a

real-valued function, Theorem 1.45 and 1.47 combined gives a manifold sym-

metry result in [6], which says that the k-th dimensional extended persistence

diagram XPHk(M, f) and the (n − k)-th dimensional extended persistence di-

agram XPHn−k(M, f) are reflections of each other along the line of ephemeral

points for all dimensions k ≥ 0. Since for an n−manifold M with boundary, its

boundary ∂M is an (n− 1)-manifold. This symmetry theorem then allows us to

compare Ess0(∂M, f) and Essn−1(∂M, f), which we will do in Chapter 3.

1.4 Radial distance filtration

In this section, we develop some theories and discuss some properties regarding

(extended) persistence homology with respect to radial filtrations. This allows

us to explore a concrete example to gain a better understanding of the somewhat

abstract definitions given in Section 1.2 and 1.3. Furthermore, as one can see in

Figure 1.1, optical discs, the bright spots in the retinal images, can be thought

of as the “root” of vessels expanding outwards. This shape naturally leads us to

consider using radial filtration centred at the centre of the optical disc, and this

is what we trialled in Section 2.2.3. Therefore, the second subsection (Section

1.4.2) is devoted to describe how we interpret binary digital images in practice

and address some practical concerns when computing radial extended persistence

homology.

1.4.1 Radial (extended) persistence

Consider radial functions on geometric simplicial complexes X embedded in Rn.

Fix a centre c ∈ Rn, we define the radial function

ρ : X → R

x 7→ ‖x− c‖2 =
√

(x− c) · (x− c),
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where · is the inner product inherited from Rn. Suppose X can be described

as a finite simplicial complex, the filtration X(c) is a one-parameter family of

subspaces of X parameterised by a radius r, i.e.

X(c)r :=
{
x ∈ X

∣∣‖x− c‖2 ≤ r
}
.

We denote by RPDk(X(c)) the k-dimensional radial persistence diagram obtained

by computing how the k-dimensional homology groups change along the filtration

over radius r. Note that the set X(c)r can be deformation retracted to the set

{∆ ∈ X|∀x ∈ ∆, |x − c| ≤ r} of simplices in X, and hence they have the same

homology groups. This means that our persistence diagram is well-defined as

homology groups are computed based on the simplicial structure defined in the

latter set.

Lemma 1.49. Fix a finite simplicial complex X embedded in Rn. The map from

the set of centres to k-dimensional radial persistence diagrams v 7→ RPDk(X(c))

is Lipschitz with respect to Euclidean metric on Rn and bottleneck distance on

persistence diagrams.

Proof. Let ρc(x) = ‖x − c‖2 be the radial function centred at c ∈ Rn, and let

c1, c2 ∈ Rn. Then we have

|ρc1(x)− ρc2(x)| =
∣∣‖x− c1‖2 − ‖x− c2‖2

∣∣ ≤ ‖(x− c1)− (x− c2)‖2 = ‖c1 − c2‖2,

where the inequality comes from reverse triangle inequality. Since this holds for

all x ∈ X, we have that

|ρc1 − ρc2|∞ ≤ ‖c1 − c2‖2. (1.8)

Since X is finite, there exist finitely many homological critical points, and

hence any function defined on X is tame. This means we can apply Theorem

1.41. By the stability theorem, we have that the bottleneck distance between

RPDk(X(c1)) and RPDk(X(c2)) satisfies

dB(RPDk(X(c1)),RPDk(X(c2))) ≤ |ρc1 − ρc2|∞. (1.9)

Combining Equation (1.8) and (1.9), we get

dB(RPDk(X(c1)),RPDk(X(c2))) ≤ ‖c1 − c2‖2, (1.10)

as required.
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Remark 1.50. Since Lipschitz continuity implies continuity, we have shown that

the map c 7→ RPDk(X(c)) is continuous. This means the radial persistent homol-

ogy transform

RPHT : Rn → RPD(X)

v 7→ (RPD0(X(c)),RPD1(X(c)), · · · ,RPDn(X(c)))

is continuous function. Moreover, the equivalent statement, replacing persistence

diagrams with extended persistence diagrams, holds as well with little modifica-

tion. And we can define the extended radial persistent homology transform

XRPHT : Rn → XRPD(X)

v 7→ (XRPD0(X(c)),XRPD1(X(c)), · · · ,XRPDn(X(c))),

where XRPDk(X(c)) is the k-dimensional extended persistence diagram with re-

spect to the radial filtration centred at c ∈ Rn.

Another useful result that justifies the use of radial filtration is the fact that

radial persistent homology transform is injective. The proof is straightforward:

setting the centre in different locations inside or outside the space X will result

in different 0-dimensional essential classes. So in fact, simply checking the 0-

dimensional radial persistence diagram is enough to differentiate radial filtrations

centred at two different locations. Since the radial persistent homology trans-

form includes information about persistence diagrams of all possible dimensions,

including the 0-dimensional one, we can conclude that RPHT is indeed injective.

The same statement jumping to extended radial persistent homology transform

holds as well, since extended persistence diagrams encode all (and more) infor-

mation contained in the ordinary persistence diagram.

Below we include an example as an illustration of how we compute the per-

sistence diagram (and barcode) with respect to radial filtration.

Example 1.51. Consider Diagram 1.4:

Setting v0 as the centre, we can obtain a filtration on the top right using the

radial function. The containment symbol ⊆ shows that as the radius increases,

we see more and more information (vertices and edges). We can also calculate

the homology for each sublevel set. For instance, we can see that vertex v2 was

born at (radius) b and dies at (radius) d when it merges into the same connected

component as v1 and v4 via the edge connecting v3 and v4. The point (b, d) on

the persistence diagram describes that. Similarly, we can describe the birth and
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v0

v1

v2

v3

v5v4

a b d e

v0
⊆

v0

v1 ⊆
v0

v1

v2

v4

⊆

v0

v1

v2

v3

v4

⊆

v0

v1

v2

v3

v4
v5

Figure 1.4: A 2D diagram (left) with 6 vertices and edges connecting some of

them. The shaded area means the triangle formed by v3, v4 and v5 is filled.

Treating v0 as the centre, we used different colors to indicate different distances

each vertex is away from v0. The letters a, b, d, e at the bottom of each curved

line are the radii of the corresponding arcs centred at v0. On the right is the

corresponding filtration based on the radial function.

death of other components in this filtration and obtain the persistence diagram

and summary in Figure 1.5.

Remark 1.52. What we saw in Example 1.51 is that all the homological critical

points (or births and deaths) occur at the vertices. This is a desired property

because then we only need to check if there is any homology change at each vertex

without worrying about the edges or the interiors of formed triangles. In [28],

it has been shown that height filtration mentioned in Section 1.2.2 satisfies this

property. However, this fails to be true in general when we use radial functions.

We illustrate this with a slightly modified version of Example 1.51.

Example 1.53. Consider Diagram 1.6:



1.4. RADIAL DISTANCE FILTRATION 33

∞
D

B
0 a b

d

v0

v1

v2

0 a b d ∞

Figure 1.5: The persistence diagram (left) for the diagram in Figure 1.4 using the

radial function. Since there is no cycle in the digram, we only need to consider

the 0-dimensional persistence diagram. The B-axis indicates the birth time, i.e.

the radius at which a component is born, and the D-axis is for the death time.

Note that two points on the persistence diagram with infinity death time refer to

the two connected components in the original diagram. The persistence barcode,

encoding the same information, is given on the right.

v0

v1

v2

v3

v5v4

b′a b d e

∞
D

B
0 a b′

Figure 1.6: A modified diagram compared to the one in Figure 1.4. Note that

it has the same vertices as in Figure 1.4, but the edges are connected slightly

differently.

While the two diagrams look similar, by connecting vertex v4 to v2 instead of

v1, the filtration will see the midpoint (highlighted in the diagram) of the edge

[v2, v4] first before seeing the endpoints. This is because v2 and v4 are the same

distance b away from v0, and we note that this is the only scenario for X ⊆ R2
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where the filtration sees the midpoint of an edge before its endpoint. Therefore,

if we apply R(X)PHT on X, then to each edge in X, there will be a line of centre

points c for which the end-points of that edge are equidistant to c. Things will

become more complicated when we move to higher dimensions.

Now to upgrade everything to extended persistent homology, we make use of

Theorem 1.18, which says that under mild conditions, a relative homology group

is isomorphic to the reduced homology group of the quotient space, when we move

down the chain (1.7) and consider relative homology. For example, a connected

component, born at the smallest value it can take (i.e. when the connected

component is first spotted by the filtration), will die at the largest value. So in

Example 1.4, the connected component involving v1 is born at a and will die at

d in the extended persistent homology. Its corresponding extended persistence

diagram will then have two points of the essential class, a point (0, 0) on the

diagonal for the connected component v0, and a point (a, e) above the diagonal.

Note that while v0 “lived” for a long time, it is only a point in the space. This,

in a way, justifies the definition of ephemeral interval modules.

1.4.2 Working with binary digital images

Binary images are m × n matrices or 2-dimensional arrays, with entries called

pixels taking two values, 0 (black) or 1 (white). In our case, the structure we are

interested in are the white vessels in the segmentation. Therefore, foreground is

defined to be the set of pixels with value 1.

To implement radial filtration in our retinal images, we modified the algorithm

described in [29]. The original algorithm ‡ is implemented in R and takes binary

images as inputs and outputs the extended persistent homology of the foreground

with respect to height filtrations for an even number of directions. We adjust it

so that it can compute radial extended persistent homology given a single radial

filtration. Figure 1.7 displays the workflow of the algorithm. In what follows, we

will discuss some necessary theoretical justifications and highlight some practical

considerations. Justifications for other parts of the algorithm can be found in

Section 6 of [29].

To extract foreground information, it suffices to extract its boundary. There

are many ways in image analysis to translate pixel information into structures

‡The corresponding R package is available at https://github.com/james-e-morgan/

xpht.

https://github.com/james-e-morgan/xpht
https://github.com/james-e-morgan/xpht
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Binary
image

Extract
foreground
boundary

Compute RPH for
a given radial filtration

and label local mins

Decide
classes

Output
Extended

Persistence
Pairings

Figure 1.7: Workflow diagram to compute RXPH with respect to a given radial

filtration on the foreground of an input binary image.

required, some may define vertices to be centres of foreground pixels while oth-

ers choose the vertices of pixels. In our algorithm, we trace the midpoints of

foreground pixels anticlockwise with respect to the foreground image, with some

rules imposed, to encode the boundary information (see Figure 1.8). This way,

the boundary will be a piecewise-linear curve, and if we follow the orientation on

the boundary, the image will be always on our left hand side.

Figure 1.8: An example in [29] showing allowed edges for foreground boundary.

Pixels labeled 1 are foreground pixels and orange lines are the traced boundary.

Note that we do not allow connecting midpoints of edges vertically or horizontally

through the pixels. For example, we cannot connect p =
(
i+ 1

2
, j
)

and
(
i− 1

2
, j
)
.

Now suppose for a given binary image input A, we have traced its boundary

B by recording the midpoints of pixel boundaries it passes through. Fix a point

c, and consider the radial function ρc centred at the point c. Since a circle can

intersect with a straight line at at most two points, unlike in [29], we do not need

to consider the case where more than three vertices on the same straight line

take the same value (“co-linear” case in [29]). Furthermore, if two vertices on
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the same straight line have the same value, then the filtration will see the middle

of the straight line first (when the circle is tangent to the line) before seeing the

vertices. We then make the following definition:

Definition 1.54. Let γ be a piecewise-linear curve in the boundary B of A with

m vertices ordered cyclically x0, x1, · · · , xm = x0. Then a vertex xi is a 0-critical

point if ρc(xi−1) > ρc(xi) and ρc(xi) < ρc(xi+1), where the subscripts are taken

modulo m. We say xi is a local minimum or alternatively, a (+)-critical point if

there exists some ε > 0 such that for all a ∈ B(xi, ε)∩A, we have ρc(xi) ≤ ρc(a).

The major changes for the algorithm to adopt radial filtration occurs in the

process of labelling local minimums. Recall that in the first step, we translate the

foreground image into a set of boundary components, the algorithm then com-

putes only the values of the radial functions on the vertices of the foreground and

hence is able to decide whether a vertex on the boundary is a homological critical

point. By deciding local minimality, we can then translate the k-dimensional

homological critical points of the boundary into birth and death parameters of

different classes in dimension k. We will justify this in Chapter 3.

The reason we want to pick out local minimums is that for all 0-critical points,

(+)-critical points are related Ordinary classes, while non-local minimums are

related to Relative classes. To differentiate between these two types of critical

points algorithmically, we use the following fact about orientation of triangles:

Lemma 1.55. Let ∆ABC be a triangle with positive area. Denote by det(x, y),

where x, y are two-dimensional column vectors, the determinant of a 2×2 matrix

whose columns are x and y. Then its vertices A,B,C are in an anticlockwise order

if det(C−B,A−B) > 0, and they are in a clockwise order if det(C−B,A−B) <

0.

Now we use Lemma 1.55 to decide local minimality of the 0-critical points.

Theorem 1.56. Let A ⊆ R2 be a bounded set whose boundary is a disjoint union

of piecewise-linear closed curves. Let γ be a piecewise-linear curve of A with

vertices x0, x1, · · · , xm = x0 traversed counterclockwise with respect to A. Denote

by B the enclosed region of A by γ. Fix a point c ∈ R2 and consider the radial

function ρc centred at c. A 0-critical point xi is a (+)-critical point for ρc if and

only if det(xi−1 − c, xi − c) < 0.

Proof. Let xi be a 0-critical point. Consider the triangle ∆xicxi−1. Then every

point p on the interior of the edge xic satisfies ρc(p) < ρc(xi).
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c

xi−1

xi xi+1

B

c

B

xi+1

xi xi−1

Figure 1.9: An illustration of the two cases discussed in the proof: the first case

(top left) where xi is a (+)-critical point and the second case (top right) where

xi is not. The shaded area indicates where B is.

Suppose xi is a (+)-critical point for ρc. Then there exists some ε > 0 such

that for all a ∈ B(xi, ε)∩A, we have ρc(a) ≥ ρc(xi). It follows that p 6∈ B(xi, ε)∩A
for all p on xic. Hence, ∆xicxi−1 does not contain a subset of B, which means

c is on the opposite side of xixi−1 compared to B. Since γ is traversed in a

counterclockwise order, we must have xi, c, xi−1 in a clockwise order. Therefore,

by Lemma 1.55, we have det(xi−1 − c, xi − c) < 0 as required.

Conversely, suppose xi is not a (+)-critical point for ρc. Then the triangle

∆xicxi−1 contains a subset of B, i.e. c is on the same side of xixi−1 as B.

Again, since γ is traversed counterclockwise, we must now have xi, c, xi−1 in a

counterclockwise order, which by Lemma 1.55, we know that det(xi−1−c, xi−c) >
0.

Recall that in Example 1.6, we saw a case where the filtration sees the mid-

point of an edge before it sees its endpoints. Since the point c is chosen to be in

the middle of a pixel, such a case would occur if and only if a boundary segment is

tangent to some circle centred at c (see Figure 1.10). However, in our algorithm,

the persistent homology computation assumes that all homological critical values

are at vertices of the simplicial complex. This means potential errors may occur

in the extended persistence diagram.

To work around this issue, we propose three ways:

(i) for edges whose positions are similar to the ones in Figure 1.10, we add an

extra vertex in the middle of it;

(ii) instead of considering normal radial filtration, we consider filtration induced

by values of the vertices. That is, the filtration can only see an edge at value

r if both vertices take values less than or equal to r.

(iii) instead of choosing the centre as the centre of a pixel, we add a small

offset. That is, instead of using (x, y), which sits in the centre of a pixel, we
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c

Figure 1.10: Edge positions that will lead to the case in Example 1.6.

consider the radial filtration computed with the centre being (x + ε, y + ε)

instead for some small ε.

Both suggestion (i) and (iii) should give us the actual persistence diagram.

However, we can also show that option (ii) will lead to theoretically negligible

error. This is because we only have finitely many vertices in the boundary of

our images. For each of the edge in the case of Figure 1.10, the error in the

birth/death value (taking the midpoint of an orange edge as the birth/death

point versus using one of its endpoints) is bounded by 2−
√

2
4

. Hence, the total

error between the genuine persistence diagram and the estimated persistence

diagram is going to be relatively small.



Chapter 2

XPH in action: identification and

verification based on retinal

images

“Men have forgotten this truth,” said

the fox. “But you must not forget it.

You become responsible, forever, for

what you have tamed. You are

responsible for your rose...”

The petit prince, Antoine de

Saint-Exupéry

Cybersecurity has become one of the most rigorously studied topics in the

current data driven world. Tasks such as data identification and verification

are crucial in keeping systems safe. The two words might sound similar, but

they actually refer to approaches to assessing different levels of security of some

systems. Identification tasks generally assume a lower level of security required.

Imagine you are a resident in an apartment in a modern building with a fingerprint

door lock. To make sure that you are able to enter your own home, the property

manager asked every resident of the building to record a few fingerprint samples

in their database. Upon your arrival, the manager compares your face with the

list of photos he has of the residents and matches you with a name on the list.

This process is what we call identification. It assumes we are confident that the

system is safe enough and no one is going to commit fraud. So a new sample is

definitely going to match up with exactly one identity from the database, and

39
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a simple piece of evidence, like your appearance, from the users is sufficient for

a 1-to-n match-up process, but no in-depth verification of the validity of the

evidence is required. For example, if you put on make up and try to pretend to

be someone else, it is possible that the manager would not have noticed, After

logging in your fingerprints, every time you get home and lay your finger on

the door knob, it immediately recognised your fingerprints, and voila, “welcome

home”. On the other hand, to feel safe at your apartment, you would want no

one other than you to be able to enter the property. That is, if someone else,

accidentally or not, present their fingerprints at the door, the door should not

open for them. To do this, the door system (whatever software it depends on)

needs to run the input fingerprint through the system and recognise whether this

fingerprint matches that of the person they claimed to be. This is verification.

Unlike asking a question of “who are you?” as in the identification task, it begs

the question: “are you actually who you said you are?”.

Biometrics are data used for automatic verification and identification of in-

dividuals. Among them, retinal images are the most trustworthy characteristics

for personal authentication and identification due to their uniqueness and sta-

bility over time [12]. Thus, they will be the focus of this thesis. We define our

identification and verification problems as follows:

Problem 2.1. Consider a given database D of retinal images from m individuals,

each individual providing n samples.

• Identification problem: We create a list L of retinal fundus images such that

each of the m individuals provides exactly ` retinal image samples (` < n).

Then L contains m` samples. We randomly pick a image s from D\L, and

compare it with the images in L to identify which individual matches the

sample s. We are interested in the accuracy of our identification algorithm

as well as the time it takes to make an identification.

• Verification problem: We randomly fix an individual i and pull out all

the samples in D that belong to individual i. Denote by I the set of all

such samples except for k of them (k < n), i.e. I contains n − k samples

all provided by individual i. Then we randomly choose a sample t from

D\I and compare it with the samples in I to verify whether t comes from

individual i. We are interested in the accuracy of our verification algorithm

as well as the time it takes to complete the verification.
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Figure 2.1: A Venn diagram giving an example of the set relations of D,L and I
defined in Problem 2.1.

The mainstream techniques for analysing retinal analysis and solving Problem

2.1 use biological feature extraction. Here, we propose an alternative approach

using purely mathematics-based techniques, namely by computing (X)PH with

respect to various filtrations and comparing resulting (extended) persistence di-

agrams. We note that the paper [30] proposed a method that combined both

vascular and non-vascular features to perform personal verification, and achieved

a high level of accuracy testing with the Retina Identification DataBase (RIDB).

The article also recorded the average lapsed time to perform the task. This allows

us to compare our method with the one proposed in [30]. What we discovered is

that our method, with suitably chosen filtration, obtained a comparable accuracy

while taking significantly shorter time to complete the verification task.

2.1 RIDB database

Using retinal images to perform personal identification and verification tasks has

become a popular research topics over the past few years. Researchers have found

that retinal images can also be used for early detections of cardiovascular diseases

and other potential health problems [21].

Most methods proposed in the literature utilised certain features in retinal

images. For instance, [8] uses intersections of blood vessels (corner detection)
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since they are invariant under eye movements, and [21] considers the optic disc

and optic cup ratio. These methods are examples of two categories of commonly

used techniques summarised in [30], vascular based and non-vascular based, with

the former being more commonly considered by research groups. Extracting

these features generally relies heavily on highly accurate segmentation, which is

extremely difficult to achieve. Moreover, such methods can be computationally

heavy and take a long time to perform.

This motivates us to consider an alternative method, which focuses more on

the topology of retinal shapes so that it should theoretically be less sensitive

to segmentation errors. Furthermore, we can easily choose a filtration that is

rotation and translation invariant. This means we do not need to specifically

look for features that are stable relative to eye movements. We will also see that

our method performs the verification task significantly faster than the method in

[30]. Finally, we note that most papers in the literature, including [30] despite

its title, only considered the verification task defined in this thesis.

Retina Identification DataBase (RIDB) contains retinal fundus images ob-

tained using the TOPCON-TRC camera [1]. Abdul Salam, A, et al. collected

100 healthy retinal images from 20 individuals, with each person contributing

five samples. Each image has name of the form “IM00000i j”, which indicates

the i-th sample from individual j for 1 ≤ i ≤ 5 and 1 ≤ j ≤ 20. The JPEG

images have resolution 1504 × 1000 and can be from either a left eye or a right

eye depending on the orientation. Below are two images from the RIDB Database

as an illustration.

One advantage of the RIDB Database, as mentioned above, is that it contains

multiple samples from each individual. This allows us to perform both identifica-

tion and verification tasks. For identification, we take an arbitrary retinal image

from the RIDB database and test if and how long it takes our method to find the

person it matches to. For verification, we fix a person and see if our method can

determine correctly whether or not a randomly chosen retinal image is consistent

with the stored images for this person. To that end, we will eventually compute

(extended) persistent homology with respect to some filtration to capture the

topology of vessel structures in RIDB images and compare resulting persistence

diagrams. But before this, we need to preprocess the images.
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(a) Retinal fundus image IM000001 4 (b) Retinal fundus image IM000001 1

Figure 2.2: Two sample images from the RIDB Database from person 1 and

person 4. Note that the rectangular tag on the top right of the images provides

an orientation and gives a way to differentiate images captured from left (left

image) and right (right image) eyes. Another noticeable feature is the bright

circular spot around where the blood vessels converge on one side of the retina;

this is the optic disc. The size of the discs are roughly equal for both eyes and

across all individuals. Later, we will use the centre of the optic disc as a guide for

image alignment in order to compare different persistence diagrams. The slightly

darker circular parts, without visible vessels, in the middle of both images are

the maculae – they appear in the middle as the individuals were required to gaze

into the camera. Finally, the red-yellowish colour of the retinal images is typical

among healthy individuals, with potential variations due to complex reasons that

are out of the scope of this project [11]

2.2 Proposed analysis method

The flow diagram of our method is shown in Figure 2.3. The method has two

main parts:

• the middle flow chart represents an registration module, where a database

is created; and

• the top and bottom flow charts represent the tasks we perform using the

database.

The registration module is an offline process where we encode the topological

structure of given retinal images with (extended) persistence diagrams after first

preprocessing the input images. The identification/verification module is an on-

line process where images in question undergo a similar preprocessing and fea-

ture encoding procedure, and then compare with the existing database to decide

whether the individual is genuine or an imposter.
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Figure 2.3: Flow chart of our method

2.2.1 Data preprocessing and image segmentation

The shapes that we are interested in and hoping to classify are the vessel struc-

tures in retinal images. Moreover, the code we use for computing extended per-

sistent homology asks for a binary image as input. Thus, image segmentation, a

process that classifies each image pixel as either vessel or non-vessel and therefore

partitions the input image into two classes (black and white), is required as a first

step.

Since the original database does not come with segmented images, we had to

come up with our own. The method we adopted is called U-Net, a convolutional

neural network (CNN) framework that is specifically designed for biomedical im-

age segmentation. The original version and detailed explanation of the architec-

ture of U-Net can be found in [24], and we modified it slightly for our purpose

(see Figure 2.4 for the modified architecture) †.

Our algorithm takes in an input image of size 192 × 192 and outputs a clas-

†Codes used can be accessed via: https://github.com/JencyJ12/imageSegmentation.

git.

https://github.com/JencyJ12/imageSegmentation.git
https://github.com/JencyJ12/imageSegmentation.git
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sified image of the same size after a sequence of encoder and decoder blocks. It

comprises of two main processes: a contracting network and an upsampling pro-

cess. In each encoder block (of the contracting network), we use repeated 3 × 3

convolution layers, each followed by a batch normalisation process (this is not in-

cluded in the original network) for more stable convergence and a rectified linear

unit (ReLU) as the activation function. A 2 × 2 max pooling operation is then

performed to extract the most significant features, during which stage the image

is downsized by a factor of 4. We also double the number of feature channels after

each encoder block starting from 64. The upsampling process concatenates the

image from a 2× 2 up-convolution (which halves the number of filter channels),

and the corresponding image from the contracting network to gain more informa-

tion about the features. Each decoder block also includes two 3× 3 convolution

layers, each followed a batch normalisation and a ReLU.

Note that the original images have resolution 1504×1000 pixels, but the input

images for our U-Net algorithm are of size 192×192. This is because the original

images are too big for the algorithm to learn the detailed features. Moreover,

the original images have some black pixels surrounding the retinal fundus scan

(the region of interest), which means a large area of the original image does

not contribute much information to the machine learning process. Therefore, we

trimmed the original image to have size 1152 × 960 so that it leaves out some

of the unimportant black pixels and then divided the trimmed images into 212

patches with step size 60 (that is two adjacent patches will have 132 × 192 or

192× 132 overlaps).

To train our U-Net, we are fortunate to have Dr. Katharine Turner to trace

the vessels (ground truths) on 52 retinal images using Procreate (see Figure 2.5).

We also separate the RGB channels of the original images. What we notice is that

the vessel structures are most apparent when we restrict to the green channels of

original images (see Figure 2.6). Hence, we decide to train our model based on

the ground truths and the green channels of original images to better assist our

algorithm to learn which features to extract.
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Figure 2.4: U-Net architecture modified to suit our purpose. The height of each

blue/white rectangle represents the image size and the width represent the num-

ber of feature channels. Each group of 3 rectangles represent either an encoder

block (going down with the red arrows) or a decoder block (going up with the

green arrows).

(a) Red channel (b) Green channel (c) Blue channel

Figure 2.6: The red, green and blue channels of the retinal fundus image

IM000004 8.

We train our model on a total of 11024 patches of original images together

with their corresponding segmentation. After 20 epochs with batch size 16, we

obtain a validation accuracy of 0.9900 and a mean Intersection-Over-Union (IoU)

value of 0.8937125, where

IoU =
true positives

true positives + false positives + false negatives
.

IoU is a standard metric to test the accuracy of semantic segmentation, e.g.

an IoU score above 0.5 is generally considered a good score, with 1 being the

theoretical maximum.
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(a) IM000001 1 (b) IM000001 14

Figure 2.5: Examples of manually segmented ground truths using Procreate.

(a) U-Net training and validation loss. (b) U-Net training and validation accuracy.

Figure 2.7: Training and validation loss and accuracy at each epoch.

After training the models, we run it on patches (size 192 × 192) of original

images restricted to the green channels and then concatenate the predicted seg-

mentation back to images of original size (1152× 960), averaging the overlapping

regions. Figure 2.9 shows two examples of such segmentation. Observe that while

they do capture the main vessel structures of images in Figure 2.2, some specks

and discontinuities are visible. We suspect two reasons for this phenomenon:

(a) the manual segmentation is not consistent as it is not done by experts

and has specks to start with (e.g. some can be spotted in Figure 2.5)

– many biometric segmentation tasks in the literature start with ground

truths traced by experts in the field;

(b) the original images are highly compressed in jpeg format. The compression

artefacts are visible at 20×20 pixel level. This makes it difficult for machines

to differentiate vascular versus non-vascular pixel values.

Since (extended) persistent homology is sensitive to discontinuities that lead

to unwanted births of a new class, we first adopt some morphological operations

to ‘fix’ the discontinuities to some extent. We use a combination of image dilation
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and erosion to remove unwanted holes (discontinuities) in the image while keeping

the modified object as close (topologically) to the original one as possible.

Definition 2.2. Let A ⊆ R2 be an object (set) and let B be a structuring element

in a 2D plane. Then dilation of A byB is given by

A⊕B := {x : Bx ∩ A 6= ∅},

where

Bx := {b+ x|b ∈ B}

is the translation of B by x. Now erosion of A by B is given by

A	B := {x : Bx ⊆ A}.

Dilation Erosion

Original image/object

structuringelement

Transformed image/object

Figure 2.8: An example of image dilation and erosion using square shaped struc-

turing elements.

Commonly chosen structuring elements are discs centred at the origin. In our

case, we find that a dilation using a square of size 5 × 5 followed by an erosion

with a square of size 2×2 works reasonably well on the segmented retinal images.

Figure 2.10 shows the modified segmentation in Figure 2.9. The vessels are

notably thicker, but the holes in the original images, while smaller, persist to

exist. More importantly, some discontinuities disappeared as we desired. At the

same time, the random noise/specks are more visible. However, this should not

cause too much problem theoretically since the specks would have short lifespans

and be close to the diagonal line on the (extended) persistence diagram. That

means they should not contribute much to the Wasserstein distance when we

compare two images.
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(a) Segmented IM000001 1 (b) Segmented IM000001 4

Figure 2.9: Two examples of segmentation predicted by U-Net model.

(a) Modified segmented IM000001 1 (b) Modified segmented IM000001 4

Figure 2.10: The two examples of segmentation in Figure 2.9 after image dilation

and erosion.

2.2.2 Measure of success

Permutation test

To check that we can use persistence diagrams to differentiate individuals, some

statistical tests are required to test the hypotheses:

H0 : the persistence diagrams for all individuals have the same distribution;

v.s.

Ha : at least one of the individuals has persistence diagrams

coming from a different distribution.
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However, the complexity of the space of persistence diagrams means traditional

hypothesis testing methods that assume underlying parametric models are not

available [23]. Therefore, we opt for an alternative approach, which examines the

exact kind of hypothesis as above.

To perform a permutation test, we use the sum of within group distance, that

is the sum of all 1-Wasserstein distances between persistence diagrams computed

using samples from the same individual. Then we run 1000 simulations that

randomly assign an identity to each persistence diagram. So the persistence

diagram corresponding to the first sample from person 1 might be labeled as a

sample from person 19 instead. In each simulation, we compute the sum of within

group distances based on the new assignment. The p-value is then the fraction of

the 1000 simulations whose total within group distances are less than or equal to

the true sum. We will retain the null hypothesisH0 if the p-value is greater than or

equal to 0.05 and reject it if the p-value is less than 0.05. The latter case indicates

that there is a statistically significant difference between persistence diagrams

from different individuals, and that it makes sense to perform identification and

verification tasks by comparing persistence diagrams.

Indicators of model performance

We also want to measure the performance of our approach to personal identifica-

tion and verification tasks. For the identification task, this is relatively straight-

forward. We run simulations, where a database of 80 images with four samples

(i.e. ` = 4 in Problem 2.1) from each individual is selected randomly in each sim-

ulation, and test using the remaining 20 images whether we can match them to

the correct identity. We choose to have four samples per person in the database

since this matches up with the reality (consider recording multiple sentences when

setting up audio assistance on smartphones).

It is slightly harder to pick a measure for the verification task since there is

much choice involved. For instance, we need to define a threshold distance as a

measure of “similar enough” to the claimed identity. To show that our method can

be used as a classification tool, we look at the receiver operating characteristic

(ROC) curve, which is a 2D-plot of true positive rate (TPR) against the false

positive rate (FPR) at different threshold values, where

TPR =
#True Positive classifications

#True Positive classifications + #False Negative classifications
,
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and

FPR =
#False Positive classifications

#False Positive classifications + #True Negative classifications
.

The most ideal ROC curve should look like a steep stair up from 0 to 1 and

remains at TPR = 1 for FPR going from 0 to 1. This is an indication of a perfect

binary classifier. That said, a classifier is considered good if the area under the

ROC curve (AUC) is greater than 0.5, or equivalently, most of the ROC curve

sits above the diagonal line.

Other measures for the behaviour of a verification model include recognition

rates (RR), false acceptance rate (FAR) and false rejection rate (FRR), where

RR =
# True Positive classifications + # True Negative classifications

# Total classifications
,

FAR =
# False Positive classifications

# Total classifications
,

and

FRR =
# False Negative classifications

# Total classifications
,

From the formula, it is not hard to see that a high RR and low FAR and FRR

values are preferred. Since these are also the performance measures used in [30],

we compute them for our approaches following the same procedure to compare

the models.

2.2.3 Radial distance results

As motivated by [27], we consider different choices of filtration and examine how

robust they are to the noise in the binary segmentation. We also note that the

filtrations we choose are rotation and translation invariant. Hence, we do not need

to align the images or consider potential effects of eye movements on the original

retinal images. In this section, we restrict our attention to radial filtrations.

As mentioned above, we choose c to be the centre of an optical disc. We obtain

the coordinate of the centre using image convolution. The idea is that we create a

mask (also known as a kernel or a convolution matrix) and apply it to each pixel

and their neighbouring pixels across the whole image so that the desired features

can be easily identified. We now formalise the process. Consider an image as

an m × n matrix whose entries are the corresponding pixels values. Denote by

f(x, y) the entry in row x, column y. Now let w(x, y) be a (2k+1)× (2l+1) filter
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matrix. Then the transformed matrix will be an m× n matrix whose (x,y)-entry

is

g(x, y) =
k∑

dx=−k

l∑
dy=−l

w(dx+ k + 1, dy + l + 1)f(x− dx, y − dy).

Due to the circular shape of optical discs, we created a circular mask (of radius 150

pixels based on a rough measurement of the optical disc) so that the transformed

image should highlight the disc with the centre taking the maximum value. As

we can see from Figure 2.7, the optical discs are most visible in the red channel

of original images. Therefore, we ran our mask on the red channels (see Figure

2.11) to obtain a list of coordinates for the centre. Note that the coordinates here

are actually in the centre of a pixel and we include the relevant code in Appendix

A.

(a) Kernel for picking out the bright spot (b) Transformed image

Figure 2.11: An illustration of a transformed image after running the kernel

across the red channel. The blue cross on the transformed image corresponds to

the centre of the optical disc.

After recording the centre coordinates, we can use the modified algorithm

described in Section 1.4.2 to compute the radial extended persistent homology

with respect to the radial filtrations defined using these centres. Note that this

means we choose to use option (ii) in Section 1.4.2 to deal with the potential errors

due to properties of radial functions. Figure 2.12 shows four resulting extended

persistence diagrams. We can see that the two persistence diagrams for individual

4 are reasonably similar, but it seems hard to differentiate the first samples from

individual 1 and 4. We also note that most of the points are extremely close to

the diagonal line, and this is mainly due to the small specks that we can see in

the segmentation.

As we have seen before, we can quantify the differences between two extended
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persistence diagrams by computing their 1-Wasserstein distance with the codes

provided in [29].

To avoid notational confusion, in what follows, we compute within

group distance D by first taking all the sums of pairwise 1-

Wasserstein distances of the extended persistence diagrams of 5

samples from the same individuals and then adding the 20 sums

together. That is,

D =
20∑
i=1

5∑
j=2

j−1∑
k=1

W1((X)RPD(Rij), (X)RPD(Rik)),

where (X)RPD(Ril) is the (extended) persistence diagram com-

puted for the l-th sample from individual i with respect to the

filtration given in the context. Furthermore, the cutoff distance

for the verification task refers to the 1-Wasserstein distance be-

tween (extended) persistence diagrams.

We found that the minimum difference between any two extended persistence

diagrams of the five from the same individual is 5.243 and the average within

group difference is 479.2246. To test whether the within group differences are

actually significantly lower than between group differences, we perform a permu-

tation test. We did 1000 simulations and obtained a p-value of 0.007 ± 0.004,

which is strictly less than 0.05. Hence, there is a statistically significant evidence

that we can differentiate the individuals by comparing their radial extended per-

sistence diagrams.

We then proceed to perform identification tasks by comparing radial extended

persistence diagrams of each individual to the ones in a database. In each sim-

ulation, the database consists of four randomly selected samples from each indi-

vidual, and hence has 80 diagrams in total. We then test the accuracy of our

identification module using the remaining 20 diagrams. We match the test image

using closest two classification, and obtained an accuracy of 0.25± 0.05.

Figure 2.13 summarises the performance of the verification tasks using radial

filtration. The recognition rate reaches a maximum of 95.98% when the cutoff

distance is chosen to be 12. However, the cutoff value is too close to the mini-

mum pairwise 1-Wasserstein distance for extended persistence diagrams from the

same individual. This means that the system would reject the identity in most

cases regardless of whether the person is genuine or an imposter, and the reason
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Figure 2.12: Extended persistence diagrams for two samples from two individuals.

this cutoff distance corresponds to a high accuracy is because most samples we

are testing are imposters. So the high recognition rate does not imply that the

system is secure. Moreover, we can see that the ROC curve is not ideal, and we

suspect that this is due to the random specks in the segmentation and therefore

led to many unwanted points in the extended persistence diagram. While the-

oretically they should only affect the Wasserstein distances by a small amount,

the combination of a relatively large number of the specks may have caused some

statistically significant effects. Therefore, we proceed to find ways that should

dial down the influence of the noise. In particular, we consider other choices of

filtrations.

2.2.4 SEDT and DMT results

SEDT

Let Ω be a subset of a metric space X with distance function d. Then the Signed

Euclidean function f(x) on X is defined to be

f(x) =

d(x, ∂Ω), x ∈ Ω;

−d(x, ∂Ω), x ∈ Ωc,
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Figure 2.13: (a) RR curve, (b) FAR and FRR curves and (c) ROC curve using

radial filtration.

where ∂Ω is the boundary of Ω, and d(x, ∂Ω) = infy∈∂Ω d(x, y). In our case, we

choose Ω to be the set of white pixels, i.e. the vessels, in the segmented images.

We then define our filtration based on the value of f each point x ∈ X takes and

compute persistent homology accordingly. This process is what we call signed

Euclidean distance transform (SEDT).

The reason we consider such a filtration is because they are less sensitive to

noise than radial filtration. Consider a speck with small area. Then the maximum

value a point inside the speck can take will be closer to zero than the lifetime of the

speck when using radial filtration. Therefore, the homology class representing the

speck should be closer to the diagonal line on the persistence diagram compared

to when using radial filtration. Moreover, it takes into account both vessels and

non-vessel areas, which should provide more information about the topology of

given shapes.

Diamorse is an image analysis software that uses discrete Morse theory and can

compute persistent homology of 2D and 3D grayscale images on top of performing

SEDT of segmented images [9]. The top two images in Figure 2.16 is generated
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using Diamorse and offer a visualisation of two examples after transformation.

Pixels of the same value (colour) are in the same level set. Using Diamorse,

we compute the persistent homology with respect to signed Euclidean distance

filtration and Figure 2.14 illustrates four examples of the resulting persistence

diagrams. Compared to Figure 2.12 for radial filtration, we can see that samples

from the same individual seem to have more similar persistence diagrams than

ones from different individuals.
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Figure 2.14: Persistence diagrams for two samples from two individuals using

signed Euclidean distance filtration. The top left points correspond to the infinite-

lifetime classes.

A permutation test verified this observation. To compare persistence pairings

obtained from Diamorse, we modified the distance computation function in [17]

to be able to compute distances between these persistence diagrams ‡ and saw

that the within group distances are between 369.9748 and 695.8304. Like radial

filtration, we run 1000 simulations that randomly assign each persistence pairing

to an individual and obtain a p-value of 0.001, which is smaller than the p-value

we obtained for radial filtration. Furthermore, a similar test for the identification

task gives a 0.60± 0.05 accuracy. Finally, Figure 2.15 shows the performance of

‡Codes in Appendix B.
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performing the verification task. We can see that the ROC curve is much better

than the one using radial filtration. The maximum recognition rate is 96.65% at

cutoff distance 581.0811, a much more reasonable choice compared to the one for

radial filtration.
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Figure 2.15: (a) RR curve, (b) FAR and FRR curves and (c) ROC curve using

signed Euclidean distance filtration.

DMT

While SEDT shows reasonable results for verification and identification tasks, it

is not hard to see in Figure (a),(b) of 2.16 that noises in original segmentation are

still present and lead to many points close to the diagonal line on the persistence

diagrams (Figure 2.14). To further dial down the impact of the noise, we consider

an alternative filtration, distance to measure transformation. Define a measure µ

on a subset of a segmented image A given by the number of white pixels in the

subset. Then for the centre x of each pixel, we define a function gx for an input

radius r:

gx(r) = µ (A ∩B(x, r)) .
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Now setting a threshold value k, we can assign to each pixel whose centre is x

the value

θk(x) = − inf{r|gx(r) ≥ k}.

Translating and rescaling these values to between 0 and 255, we then obtain a

grayscale image.

The upshot of such a transform is that by setting a relatively large threshold

value, we are able to ignore small components while keeping desired structure of

the original image. The code implementation of this method is inspired by [26]

and uses image convolution to compute the measure at each point for various

radii. We include relevant code in Appendix C. After some trial and error, we

decide that k = 200 is a reasonable choice. The bottom two images of Figure 2.16

gives two examples of such a transform. Note that we can no longer see the specks

as we do in SEDT of the same images, and at the same time, the vessel shapes

are topologically similar to the ones in the top two images of Figure 2.16. The

former point is also verified in the persistence pairings computed by Diamorse.

As we can see in Figure 2.17, only a few points are close to the diagonal, and it

is even more apparent that samples from the same individual are more similar

than those from different people.

To further test our hypothesis, we again run a permutation test and obtained

a p-value of 0.001 after 1000 trials. Accuracy for the identification task also

improved to a rate of 0.75 ± 0.05. Finally, Figure 2.18 reveals the performance

of the verification task, and better performance than previous filtration choices

can be seen in both curves. Moreover, the highest recognition rate is 96.38% at

a cutoff distance 161.9119 (the within group distance ranges from 70 to 233 as a

reference).

2.2.5 Threshold selection in practice

As discussed above, we can see that distance to measure filtration produces the

best result. Here, we demonstrate how we can select the cutoff distance in reality.

To that end, we partition our dataset of 100 retinal images into three disjoint sets:

a database containing 60 images with 3 samples from each individual, a training

set containing 20 images with one sample from each individual and the remaining

20 images as a testing set. This way, the testing process is completely blind to

the training process.

In each simulation, we compare the training set to the database by computing

pairwise 1-Wasserstein distances to obtain a cutoff distance that gives the best
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Figure 2.16: Side-by-side comparison of the two transforms: (a) (b) Signed Eu-

clidean distance transform of two samples; (c) (d) Distance to measure transform

of two samples.

50 100 150 200 250

50
10

0
15

0
20

0
25

0 ∞

birth

de
at

h

Sample 1 of individual 1

0 50 100 150 200 250

0
50

10
0

15
0

20
0

25
0 ∞

birth

de
at

h

Sample 2 of individual 1

0 50 100 150 200 250

0
50

10
0

15
0

20
0

25
0 ∞

birth

de
at

h

Sample 1 of individual 4

50 100 150 200 250

50
10

0
15

0
20

0
25

0 ∞

birth

de
at

h

Sample 2 of individual 4

Dim 0 Dim 1

Figure 2.17: Persistence diagrams for two samples from two individuals using

distance to measure filtration. The top left points correspond to the infinite-

lifetime classes.
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Figure 2.18: (a) RR curve, (b) FAR and FRR curves and (c) ROC curve using

distance to measure filtration.
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Figure 2.19: Scatter plot of recognition rate and cutoff distance compared from

10 simulations.

recognition rate. If multiple cutoff distances give the same recognition rate, we

take the median of them. Then we use the obtained cutoff distance to verify the

testing sets, that is we authenticate the individual if its average distance to the

samples from the corresponding individual is less than the cutoff distance, and

reject otherwise.

Figure 2.19 displays the accuracy of authentication with 10 simulations. We

can see that the accuracy is relatively stable around 95.5% and the cutoff distances

chosen are reasonably similar with different simulations (i.e. different partitions

of the RIDB dataset). This justifies the validity of such a selection process. The

code used to generate Figure 2.19 is included in Appendix D.

2.3 Conclusion

Table 2.1§ compares the performance of our proposed methods and the one in

[30] since the same retinal database was utilised. Note that while the title of [30]

referenced personal identification tasks, they actually referred to verification tasks

§The paper [30] does not explicitly explain how they obtain their average elapsed time. The

time we use here is the total time used to produce persistence pairings P for the test image,

compute 1-Wasserstein distances between P and the persistence pairings for the images in the

database, compare the average of the distances with the cutoff distance.
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as defined in this thesis. We can see that while a vascular based method in [30]

produces the highest recognition rate, using a distance to measure (dist2meas)

filtration gives the best overall accuracy when we take into account measures

such as FRR and FAR. Furthermore, methods involving persistent homology

take significantly less time to carry out than methods in [30]. That said, there

is still room for improvement. For instance, we could use a distance to measure

function to filter out the specks in original segmentation and recompute the radial

extended persistent homology on the cleaner segmentation using the same choice

of centres. We could also try combining the results from different filtrations.

Identification Verification

Method Accuracy(%) RR(%) FRR FAR Avg time (sec)

Radial filtration 25 95.98 0.0 0.04 14.06

SEDT 60 96.65 0.0 0.04 26.28

Dist2meas 75 96.38 0.0 0.03 30.66

Vascular based [30] - 100 0.52 0.16 127.9

Non-vascular based [30] - 92.5 0.06 0.80 71.0

Table 2.1: A comparison table for the performance of methods used in this thesis

and in previous work.

2.4 Future directions

Another heated research topic revolving retinal fundus images is disease detection.

Early signs of cardiovascular diseases are visible in non-vascular areas of retinal

fundus images. Current methods for automatic detection of such signs include

extracting features such as the distance of optic disks to some minutiae points.

We could explore the use of persistent homology to analyse the irregular shapes

of non-vascular regions.

The proposed methods can also be adapted to other biometrics such as fin-

gerprints and facial geometry, etc.
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Computing XRPH for manifolds

with boundary

“It’s easy to get the feeling that you

know the language just because when

you order a beer they don’t bring you

oysters,” [Paul said.]

My life in France, Julia Child

In this chapter, we will show that we can recover the extended persistence

homology of a manifold with boundary with respect to radial filtration from

the persistence homology of the boundary curves. This will further justify our

modification of the algorithm used to compute XRPH of the segmented retinal

image embedded in R2 in Section 1.4.

3.1 Preliminary

To prove the aforementioned relation, we will use Morse theory, which is the study

of topology of a manifold by analysing differentiable functions on the manifold, in

both smooth and piecewise linear scenarios. The former is more for the theoretical

development while the latter is directly related to the numerical algorithms such

as the one used in Section 1.4. Note that piecewise linear case is not the same

as discrete Morse theory, but rather functions that are defined on vertices and

interpolated linearly on the edges (consider the radial function defined on the

extracted piecewise linear boundary). Here, we will follow the setup in [29] and

give necessary background information to keep the thesis self-contained.

63
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We will eventually restrict our attention to the radial function ρc for a fixed

centre c ∈ Rn. This is a Morse function in the scenarios we considered in Section

1.4. We will give a formal definition of Morse functions, but we need to first define

what it means for a point in a manifold to be a critical point. As noted in [29],

the standard way to define critical points is in terms of taking derivatives with

respect to some charts. Here we adopt an equivalent definition justified using

Morse Lemma.

Definition 3.1 (Critical points of smooth functions). Let M be a smooth n-

manifold without boundary and f : M → R is a smooth function. Then p ∈ M
is a regular point of f if there is a chart (U, φ) such that φ(p) = 0 and for

x = (x1, · · · , xn) ∈ Rn in a neighbourhood of 0, we have

f ◦ φ−1(x) = f(p) + xn.

We call p ∈M a non-degenerate critical point of f with Morse index k if there is

a chart (U, φ) such that φ(p) = 0 and x = (x1, · · · , xn) ∈ Rn in a neighbourhood

of 0, we have

f ◦ φ−1(x) = f(p)− x2
1 − x2

2 − · · · − x2
k + x2

k+1 + · · ·+ x2
n.

A similar definition for piecewise linear functions can be made replacing taking

squares with taking absolute values.

Definition 3.2 (Critical points of piecewise linear functions). Let M be a piece-

wise linear n-manifold without boundary and f : M → R is a piecewise linear

function. Then p ∈ M is a regular point of f if there is a chart (U, φ) such that

φ(p) = 0 and for x = (x1, · · · , xn) ∈ Rn in a neighbourhood of 0, we have

f ◦ φ−1(x) = f(p) + xn.

We call p ∈M a non-degenerate critical point of f with Morse index k if there is

a chart (U, φ) such that φ(p) = 0 and x = (x1, · · · , xn) ∈ Rn in a neighbourhood

of 0, we have

f ◦ φ−1(x) = f(p)− |x1| − |x2| − · · · − |xk|+ |xk+1|+ · · ·+ |xn|.

Since we will be considering manifolds with boundary, we define critical points

on the boundary as well using a similar formulation as above. Note that if the

critical point is in the interior of the manifold, then we can treat it the same

way as critical points in manifolds without boundary. We will also differentiate

between (+)- and (−)-critical points (compare with Definition 1.54).
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Definition 3.3 (Boundary critical points of smooth functions). Let (M,∂M) be

a smooth n-manifold with boundary and f : M → R a smooth function. Then

p ∈ ∂M is a non-degenerate critical point of f with index (k, η) if there exists a

chart (U, φ) such that φ(p) = 0 and for x = (x1, · · · , xn) in a neigbourhood of 0

in the closed half-space {(x1, · · · , xn) ∈ Rn|x1 ≥ 0} of Rn, we have

f ◦ φ−1(x) = f(p) + ηx1 − x2
2 − · · · − x2

k+1 + x2
k+2 + · · ·x2

n,

where η ∈ {−1, 1}. We call p a (+)-critical point if η = 1 and (−)-critical point

if η = −1.

Similarly, the analogous definition in the piecewise linear case is given as

expected:

Definition 3.4 (Boundary critical points of piecewise linear functions). Let

(M,∂M) be a piecewise linear n-manifold with boundary and f : M → R a

piecewise function. Then p ∈ ∂M is a non-degenerate critical point of f with in-

dex (k, η) if there exists a chart (U, φ) such that φ(p) = 0 and for x = (x1, · · · , xn)

in a neigbourhood of 0 in the closed half-space {(x1, · · · , xn) ∈ Rn|x1 ≥ 0} of Rn,

we have

f ◦ φ−1(x) = f(p) + ηx1 − |x2| − · · · − |xk+1|+ |xk+2|+ · · · |xn|,

where η ∈ {−1, 1}. We call p a (+)-critical point if η = 1 and (−)-critical point

if η = −1.

We are now ready to formally define Morse functions. It is easy to see from

the definition that the radial function defined on a finite simplicial complex for

some fixed centre does satisfy the assumptions of Morse functions.

Definition 3.5 (Morse functions). Let (M,∂M) be a smooth (or piecewise linear)

manifold. Then a function f : M → R is a Morse function if

(i) f is smooth (or piecewise linear);

(ii) All of the critical points of f |int(M) and f |∂M combined are non-degenerate;

(iii) The combined number of critical points is finite and they all take distinct

values.
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3.2 Relating XRPH of a manifold to that of its

boundary

From this point on, the only Morse functions we will be considering are radial

functions on a compact n-manifold (M,∂M) with boundary embedded in Rn.

That is, fix c ∈ Rn, and consider ρc : Rn → R by ρc(x) = ‖x− c‖2.

For ease of notation, for S ⊂ Rn, we write ρSc := ρc|S, the restriction of ρc

to S. Then we use Crit(ρMc , k) to denote the set of critical points of ρ
int(M)
c with

index k. Furthermore, denote by Crit(ρMc , (k, η)) the set of critical points of ρ∂Mc
with index (k, η). For a non-degenerate critical point x ∈ ∂M , we will call η its

sign, and denote by sgn(ρMc , x). Finally, if

XRPH(M,ρc) = Ord∗(M,ρc)⊕ Rel∗(M,ρc)⊕ Ess∗(M,ρc)

is the radial extended persistence diagram of M , we let

bord
k (M,ρc) := b (Ordk(M,ρc)⊕ Essk(M,ρc)) ,

and

brel
k (M,ρc) := b (Relk(M,ρc)) .

Similarly, we define the set of death parameters based on the class of the endpoint

of an interval is in. That is,

dord
k (M,ρc) := d (Ordk(M,ρc)) ,

and

drel
k (M,ρc) := d (Relk(M,ρc)⊕ Essk(M,ρc)) .

The notations are also consistent with ones in [29].

Theorem 3.6 is key to proving our main results. Its proof can be found in [29]

(Corollary 4.14).

Theorem 3.6. Let (M,∂M) be an n-manifold with boundary. Consider the radial

function ρc : Rn → R with some fixed centre c such that ρMc is a Morse function.

Then for all k ≥ 0, we have

bordk (M,ρc) ∪ dordk−1(M,ρc) = {(ρc(p),Ord)|p ∈ Crit(ρMc , k) ∪ Crit(ρMc , (k,+1))},

and

brelk (M,ρc)∪drelk−1(M,ρc) = {(ρc(p),Rel)|p ∈ Crit(ρMc , n−k)∪Crit(ρMc , (n−k−1,−1))},
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Remark 3.7. Note that Theorem 3.6 also works for general Morse functions,

as shown in [29]. That is, we can replace ρc in the statement with any Morse

function f .

We now use Theorem 3.6 to further compare the birth and death parameters

of M in different classes with those of the boundary ∂M of M . Before that, we

will include a useful theorem from linear algebra that will be applied multiple

times to obtain relations of Betti numbers of different dimensions for various

spaces. The k-th Betti number represents the rank of the k-th homology group.

For notational simplicity, in what follows, we will let βk(X) := rank(Hk(X)) for

a topological space X and βk(X,A) := rank(Hk(X,A)) for a pair of topological

spaces (X,A) with A ⊆ X.

Theorem 3.8. Consider a finite exact sequence of vector spaces:

0→ A1 → A2 → · · · → An → 0.

Then we have
n∑
i=1

(−1)irank(Ai) = 0.

Proposition 3.9. Let (M,∂M) be a n-manifold with boundary embedded in Rn.

Consider the radial function ρc : Rn → R for the centre c ∈ Rn such that ρMc is a

Morse function. Then for each critical value, there exists a unique critical point,

either in the interior or on the boundary of M , that achieves that value. Then if

c 6∈M , for all k ≥ 0, we have

bordk (M,ρc) = {(ρ∂Mc (p),Ord) ∈ bordk (∂M, ρ∂Mc ) : sgn(ρMc , p) = +1};
brelk (M,ρc) = {(ρ∂Mc (p),Rel) ∈ brelk (∂M, ρ∂Mc ) : sgn(ρMc , p) = −1};
dordk (M,ρc) = {(ρ∂Mc (p),Ord) ∈ dordk (∂M, ρ∂Mc ) : sgn(ρMc , p) = +1};
drelk (M,ρc) = {(ρ∂Mc (p),Rel) ∈ drelk (∂M, ρ∂Mc ) : sgn(ρMc , p) = −1}.

If c ∈ M , let r = minp∈∂M ρc(p). Then all the birth and death parameters of M

and ∂M satisfy the same relations as above for k ≥ 0 except the following:

bord0 (M,ρc) = {(ρ∂Mc (p),Ord) ∈ bord0 (∂M, ρ∂Mc ) : sgn(ρMc , p) = +1} ∪ {(0,Ord)};
dreln−1(M,ρc) = {(ρ∂Mc (p),Rel) ∈ dreln−1(∂M, ρ∂Mc ) : sgn(ρMc , p) = −1}\{(r,Rel)};
breln (M,ρc) = {(r,Rel)};
dreln (M,ρc) = {(0,Rel)}.
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Proof. The proof will use Mayer-Vietoris sequence (Theorem 1.17) to relate the

homology of sublevel sets of ∂M with that of sublevel sets of M . To that end,

choose R > 0 such that M ⊂ B(c, R) where B(c, R) is the open ball of radius

R centred at c ∈ Rn. We can extend the domain of ρc to B(c, R). Let A =

B(c, R)\int(M). Since ρc is a Morse function on M , there exists some ε > 0 such

that all critical values of ρMc are at least ε apart and that the largest critical value

is strictly less than R− ε. Then we have [inf(ρc(M)), sup(ρc(M))] ⊆ [0, R) since

ρc takes non-negative values.

For s > 0, we consider the sublevel sets ρc restricted to three subsets M,∂M

and L of Rn, call them Ms, (∂M)s and Ls respectively. Then we have (∂M)s =

Ms ∩ Ls and Ms ∪ Ls = ρ−1
c (−∞, s] ∩ B(c, R) = B(c, s). By Theorem 1.17, we

have the LES:

· · · −→ Hk+1(Ms ∪ Ls) −→ Hk((∂M)s) −→ Hk(Ms)⊕Hk(Ls) −→
Hk(Ms ∪ Ls) −→ · · · −→ H0(Ms ∪ Ls) −→ 0.

(3.1)

Now note that for k > 0, we have Hk+1(Ms ∪Ls) = Hk(Ms ∪Ls) = 0. Hence, we

have for k > 0,

Hk((∂M)s) ∼= Hk(Ms)⊕Hk(Ls),

which implies

βk((∂M)s) = βk(Ms) + βk(Ls), (3.2)

by taking the ranks. Now for k = 0, we have H0(Ms ∪ Ls) = Z2 since s > 0.

Hence, using the first isomorphism theorem and the final parts of LES (3.1), we

have that

(H0(Ms)⊕H0(Ls)) /H0((∂M)s) ∼= H0(Ms ∪ Ls),

which implies

β0(Ms) + β0(Ls) = βn(Ms ∪ Ls) + β0((∂M)s) = β0((∂M)s) + 1. (3.3)

A critical observation here is that ρc defined over all of Rn has only one critical

point at c. So if c 6∈ M , there will be no critical points in the interior of M . In

particular, c cannot be a critical point of ρMc , and thus, 0 cannot be a critical

value. However, if c ∈M , then c will be the only critical point with critical value

0 and gives birth to a 0-dimensional homology class. We consider the two cases

separately.

First consider the case where the centre c 6∈M . Suppose (t,Ord) ∈ bord
k (M,ρc).

That is βk(Mt+ε)−βk(Mt−ε) = 1 since we chose our ε so that there exists exactly
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one critical point with critical value between t− ε and t+ ε. In fact, that critical

value would be t. By Theorem 3.6, we have that p = ρ−1
c (t) is the unique critical

point with index k (since we choose ε > 0 so that t is the only critical value be-

tween [t− ε, t+ ε]) and that sgn(ρMc , p) = +1. Then if we consider the restriction

of ρc to L, we would have sgn(ρLc , p) = −1 by construction. Then again by The-

orem 3.6, we know that (t,Ord) 6∈ bord
k (L, ρc) and (t,Ord) 6∈ bord

k (L, ρc). Hence,

βk(Lt+ε) = βk(Lt−ε). For k > 0, we can then use Relation (3.2) and obtain

βk((∂M)t+ε)− βk((∂M)t−ε)

= (βk(Mt+ε) + βk(Lt+ε))− (βk(Mt−ε) + βk(Lt−ε))

= 1. (3.4)

For k = 0, we would use Relation (3.3) and obtain

β0((∂M)t+ε)− β0((∂M)t−ε)

= (β0(Mt+ε) + β0(Lt+ε)− 1)− (β0(Mt−ε) + β0(Lt−ε)− 1)

= 1. (3.5)

Hence, in either case, (t,Ord) ∈ bord
k (∂M, ρ∂Mc ).

Conversely, if (t,Ord) ∈ bord
k (∂M, ρ∂Mc ) with sgn(ρMc , ρ

−1
c (t)) = +1. Then

this implies that βk((∂M)t+ε)− βk((∂M)t−ε) = 1 and that sgn(ρLc , ρ
−1
c (t)) = −1.

Again, by Theorem 3.6, we have that βk(Lt+ε) = βk(Lt−ε). So using Relation (3.2)

for k > 0, we have that

βk(Mt+ε)− βk(Mt−ε)

= (βk((∂M)t+ε)− βk(Lt+ε))− (βk((∂M)t−ε)− βk(Lt−ε))
= 1. (3.6)

Similarly, for k = 0, we use Relation (3.3) and get

βk(Mt+ε)− βk(Mt−ε)

= (βk((∂M)t+ε)− βk(Lt+ε) + 1)− (βk((∂M)t−ε)− βk(Lt−ε) + 1)

= 1. (3.7)

Again, in either case, we have shown that (t,Ord) ∈ bord
k (M,ρc).

The statement about death parameters in the ordinary class can be shown

following an analogous argument except now (t,Ord) ∈ dord
k (S, ρc) if and only if

βk(St+ε)−βk(St−ε) = −1 for S = ∂M or M . We can then use Theorem 3.6 along

with Relations (3.2) and (3.3) to reach the desired conclusion.
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Now assume c ∈ M . Then we have M−ε, (∂M)m, and Lm are all empty sets

and have homology groups zero for all dimensions for m = ±ε. But Mε = Mε∪Lε
are both a single connected component since 0 is the only critical value in [−ε, ε]
and has homology group Z2 in dimension 0 and homology group 0 in all other

dimensions. Hence, Relation (3.2) still holds for s ≥ −ε and thus, the above

arguments hold for all k > 0. However, in the case where k = 0, we have

β0(Mε)− β0(M−ε) = β0(Mε ∪ Lε) = 1,

but

β0((∂M)ε)− β0((∂M)−ε) = 0.

Hence, we have (0,Ord) ∈ bord
k (M,ρc), but (0,Ord) 6∈ bord

k (∂M, ρ∂Mc ). It follows

that

bord
k (M,ρc) = {(ρ∂Mc (p),Ord) ∈ bord

k (∂M, ρ∂Mc ) : sgn(ρMc , p) = +1} ∪ {(0,Ord)}

instead.

The proof for dord
k (M,ρc) for the case c ∈ M is the same as the case when

c 6∈ M . So the death parameters in the Ordinary class for dimension 0 remain

the same.

We now consider the relative class. We use the relative version of Mayer-

Vietoris sequence:

· · · −→ Hk+1(M ∪ L,M s ∪ Ls) −→ Hk((∂M), (∂M)s) −→ Hk(M,M s)⊕Hk(L,L
s)

−→ Hk(M ∪ L,M s ∪ Ls) −→ · · · −→ H0(M ∪ L,M s ∪ Ls) −→ 0.

(3.8)

Now for k ≥ 0, k 6= n and 0 ≤ s ≤ R, we have Hk(M∪L,M s∪Ls) = 0. For k = n,

we have Hn(M ∪ L,M s ∪ Ls) = Z2 if 0 < s ≤ R and Hn(M ∪ L,M0 ∪ L0) = 0 .

From LES (3.8), we have that for k 6= n− 1 or n,

Hk((∂M), (∂M)s) ∼= Hk(M,M s)⊕Hk(L,L
s),

which implies that

βk((∂M), (∂M)s) = βk(M,M s) + βk(L,L
s). (3.9)

Suppose (t,Rel) ∈ brel
k (M,ρMc ). Then we have βk(M,M t−ε)− βk(M,M t+ε) =

1. By Theorem 3.6, we know sgn(ρMc , ρ
−1
c (t)) = −1 and therefore, sgn(ρLc , ρ

−1
c (t)) =

+1. Hence, we have βk(L,L
t−ε) = βk(L,L

t+ε). This implies that

βk((∂M), (∂M)t−ε)− βk((∂M), (∂M)t+ε) = 1
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from Relation (3.9), which means

(t,Rel) ∈ brel
k (∂M, ρ∂Mc ).

Conversely, if (t,Rel) ∈ brel
k (∂M, ρ∂Mc ) such that sgn(ρMc , ρ

−1
c (t)) = −1. Then it

follows that βk(∂M, ∂M t−ε)−βk(∂M, ∂M t+ε) = 1 and sgn(ρLc , ρ
−1
c (t)) = +1. Then

Theorem 3.6 tells us that βk(L,L
t−ε) = βk(L,L

t+ε). Combining with Relation

(3.9), we have

βk(M,M t−ε)− βk(M,M t+ε) = 1,

and hence we have shown that

(t,Rel) ∈ brel
k (M,ρc)

as required.

Note that since LES (3.8) holds for s = 0, we do not need to consider the two

cases separately. Again, the death parameters for the relative class follow from

an analogous argument.

However, we do need to consider the position of c for the case k = n− 1 and

k = n. Since ∂M is an (n− 1)-manifold, we have

Hn(∂M, (∂M)s) = 0,

for all 0 ≤ s ≤ R. So the relevant part of LES (3.8) is

0 −→ Hn(M,M s)⊕Hn(L,Ls) ↪→ Hn(M ∪ L,M s ∪ Ls) −→ Hn−1((∂M), (∂M)s)

� Hn−1(M,M s)⊕Hn−1(L,Ls) −→ 0.

(3.10)

Let r = minp∈∂M ρc(p). We have the following observation: if c ∈M , then we

have that

Hn(M,M s) =


0, r < s ≤ R

Z2, 0 < s ≤ r

0, s = 0

, (3.11)

and

Hn(L,Ls) = 0, (3.12)
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for all 0 ≤ s ≤ R. Hence, there are only two critical points in dimension n: a

birth of relative class at r and a death of relative class at 0. Now when 0 ≤ s ≤ r,

note that (∂M)s = ∂M by the definition of r. Then the (3.10) tells us that

Hn−1(M,M s) = Hn−1(L,Ls) = 0.

In particular, this satisfies

βn−1(∂M, (∂M)s) = βn−1(M,M s) + βn−1(L,Ls). (3.13)

When r < s ≤ R, on the other hand, we have Hn(M,M s)⊕Hn(L,Ls) = 0, and

hence

βn−1(∂M, (∂M)s) = βn−1(M,M s) + βn−1(L,Ls) + 1. (3.14)

This means that for critical values t ∈ (0, r) or t ∈ (r, R), we can use the same

argument as above to show that

brel
n−1(M,ρc)\{(r,Rel)}

= {(ρ∂Mc (p),Rel) ∈ brel
n−1(∂M, ρ∂Mc ) : sgn(ρMc , p) = −1}\{(r,Rel)};

drel
n−1(M,ρc)\{(r,Rel)}

= {(ρ∂Mc (p),Rel) ∈ drel
n−1(∂M, ρ∂Mc ) : sgn(ρMc , p) = −1}\{(r,Rel)}.

Observe that (r,Rel) correspond to a death of relative class in ∂M of dimension

n − 1, but it is not a critical point for M or L since ρMc is Morse and thus

Hn−1(M,M s) = Hn−1(L,Ls) = 0 for s < r+ ε. This agrees with the computation

below:

βn−1(∂M, (∂M)r−ε)− βn−1(∂M, (∂M)r+ε)

=(βn−1(M,M r−ε) + βn−1(L,Lr−ε))− (βn−1(M,M r+ε) + βn−1(L,Lr+ε) + 1)

=− 1.

Now since c ∈ M , the point ρMc (r) is a (−)-critical point, but it should not be

included in drel
n−1(M,ρc). Hence, we have the relation in the statement.

If c 6∈M , then c ∈ L. So we interchange the role of M and L in the homology

groups (3.11) and (3.12). In particular, we have that Hn(M,M s) = 0 for all

0 ≤ s ≤ R. Hence, no birth or death of relative class occur in dimension n

in M , i.e. brel
n (M,ρ∂Mc ) = drel

n (M,ρ∂Mc ) = ∅. Since Hn(∂M, (∂M)s) = 0, for all

0 ≤ s ≤ R, there is no birth or death on ∂M of relative class of dimension n. So

we have brel
n (∂M, ρ∂Mc ) = drel

n (∂M, ρ∂Mc ) = ∅. For dimension n−1, relations (3.13)
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and (3.14) still hold and hence we have the same relation for brel
n−1(M,ρc) and

drel
n−1(M,ρc) as the case c ∈ M when the critical value is not (r,Rel). However,

since not c 6∈ M , the critical point ρMc (r) is (+)-critical, so we have the relation

in the statement.

In fact, the proof of Theorem 3.9 provides much information about the birth

and death parameters of the space L constructed within the proof. We will

eventually use information about both M and L to recover XRPH of M from

∂M . So it makes sense to take a closer look at L and summarise its birth and

death parameters.

Corollary 3.10. Suppose we have the same set up as Proposition 3.9. Choose

R > 0 large enough such that M ⊆ B(c, R) and that there exists ε > 0 such that

all critical values of M are ε apart and the largest critical value is less than R− ε.
Consider L = B(c, R)\int(M).

Then if c 6∈ L, we have

drel0 (L, ρc) = {(ρ∂Mc (p),Ord) ∈ bord0 (∂M, ρ∂Mc ) : sgn(ρMc , p) = +1} ∪ {(R,Rel)};
dreln−1(L, ρc) = {(ρ∂Mc (p),Rel) ∈ dreln−1(∂M, ρ∂Mc ) : sgn(ρMc , p) = +1} t {(R,Rel)};

and for k ≥ 0 in all other cases,

bordk (L, ρc) = {(ρ∂Mc (p),Ord) ∈ bordk (∂M, ρ∂Mc ) : sgn(ρMc , p) = −1};
brelk (L, ρc) = {(ρ∂Mc (p),Rel) ∈ brelk (∂M, ρ∂Mc ) : sgn(ρMc , p) = +1};
dordk (L, ρc) = {(ρ∂Mc (p),Ord) ∈ dordk (∂M, ρ∂Mc ) : sgn(ρMc , p) = −1};
drelk (L, ρc) = {(ρ∂Mc (p),Rel) ∈ drelk (∂M, ρ∂Mc ) : sgn(ρMc , p) = +1}}.

If c ∈ L, on the other hand, let r = minp∈∂M ρc(p). Then all the birth and

death parameters remain the same for k ≥ 0 except the following:

bord0 (L, ρc) = {(ρ∂Mc (p),Ord) ∈ bord0 (∂M, ρ∂Mc ) : sgn(ρMc , p) = −1} ∪ {(0,Ord)};
dreln−1(L, ρc) =

(
{(ρ∂Mc (p),Rel) ∈ dreln−1(∂M, ρ∂Mc ) : sgn(ρMc , p) = +1}

t {(R,Rel)}
)
\{(r,Rel)};

breln (L, ρc) = {(r,Rel)};
dreln (L, ρc) = {(0,Rel)}.

Proof. The proof for the birth and death parameters of L within B(c, R), for both

c ∈ L case and c 6∈ L case, uses the same techniques as the proof of Proposition

3.9. Note that LES (3.1) and (3.8) still hold, and so do the relations. Hence, we
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get the same relations when the critical value is less than R after swapping M

for L in the statement of Proposition 3.9. Moreover, note that for critical points

p ∈ B(c, R), sgn(ρMc , p) = −sgn(ρLc , p) by construction. This is why we switch

the signs in the relations given in Corollary 3.10.

So it remains to consider what happens at ∂B(c, R). Note that we have for

all k > 0 and R− ε < s < R + ε,

Hk((∂M)R−ε) ∼= Hk((∂M)s) ∼= Hk(Ms)⊕Hk(Ls).

Since Hk(MR−ε) ∼= Hk(MR+ε) ∼= Hk(M) by construction, we know that (R,Ord)

cannot be a critical value for L. For similar reason, by considering LES (3.8),

we know that (R,Rel) cannot be a critical value for L in dimension k for 0 <

k < n − 1. The computation of n-th relative homology groups in the proof

of Proposition 3.9 also shows that (R,Rel) cannot be a critical value for L in

dimension n. However, the cases when k = 0 or k = n− 1 are worth considering.

For k = 0, consider the following part of LES (3.8):

0→ H0((∂M), (∂M)s)→ H0(M,M s)⊕H0(L,Ls)→ H0(M ∪ L,M s ∪ Ls)→ 0.

Now since H0(M ∪ L,MR+ε ∪ LR+ε) = H0(M ∪ L) = Z2 and H0(M ∪ L,MR−ε ∪
LR−ε) = 0, and (∂M)s = M s = ∅ for R− ε ≤ s ≤ R + ε, it follows that

β0(∂M) = β0(M) + β0(L,LR+ε)− 1,

and

β0(∂M) = β0(M) + β0(L,LR−ε).

Taking the difference of the two equations, we get

β0(L,LR−ε)− β0(L,LR+ε) = −1.

Hence, we have shown that (R,Rel) ∈ d(L, ρc). For k = n − 1, consider the

following commuting diagram:

0 0 Hn−1((∂M)) Hn−1(M)⊕Hn−1(L,LR+ε) 0

0 Z2 Hn−1((∂M)) Hn−1(M)⊕Hn−1(L,LR−ε) 0

i∗ i∗ i∗
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The first row is obtained by substituting s = R + ε in (3.10) and the second

row is obtained by substituting s = R− ε in (3.10). The arrows in between rows

are induced by inclusion maps. This tells us that

βn−1(∂M) = βn−1(L,LR+ε) + βn−1(M),

and

βn−1(∂M) = βn−1(L,LR−ε) + βn−1(M) + 1.

Hence, taking the difference of the two equations, we get

βn−1(L,LR−ε)− βn−1(L,LR+ε) = −1,

and hence, we have (R,Rel) ∈ drel
n−1(L, ρc), as required.

The assumptions in the proof of Proposition 3.9 will carry on for the rest of

this section. So we listed here.

In what follows, we will assume that (M,∂M) is a compact n-

manifold with boundary such that the radial function ρMc is Morse

for some fixed centre c ∈ Rn\∂M . Choose R > 0 large enough such

that M ⊆ B(c, R) and that there exists ε > 0 such that all critical

values of M are ε apart and the largest critical value of ρMc is less

than R − ε. Define L := B(c, R)\intM . Then M ∪ L = B(c, R) and

M ∩ L = ∂M . Finally, let r := minp∈∂M ρc(p), and r̂ := maxp∈∂M ρc(p).

Corollary 3.11. We have equality of the following disjoint unions:

b0(M,ρc) t b0(L, ρc) = b0(∂M, ρc) t {(0,Ord)};
d0(M,ρc) t d0(L, ρc) = d0(∂M, ρc) t {(R,Rel)};

dn−1(M,ρc) t dn−1(L, ρc) =
(
dn−1(∂M, ρc) t {(R,Rel)}

)
\{(r,Rel)};

bn(M,ρc) t bn(L, ρc) = {(r,Rel)};
dn(M,ρc) t dn(L, ρc) = {(0,Rel)};

and for k > 0 in all other cases:

bk(M,ρc) t bk(L, ρc) = bk(∂M, ρc);

dk(M,ρc) t dk(L, ρc) = dk(∂M, ρc).
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Remark 3.12. Corollary 3.11 is written in a relatively compact form, but there is

still a bit more information we can unpack here by combining the information from

Proposition 3.9. For instance, the point (0,Ord) is contained in precisely one of

the sets b0(M,ρc) and b0(L, ρc). That is, if c ∈ int(M), then (0,Ord) ∈ b0(M,ρc),

and vice versa. This observation is particularly useful when we state Theorem

3.13. Furthermore, from the proof of Proposition 3.9, we know that if c 6∈ S, then

bn(S, ρc) = dn(S, ρc) = ∅, for S = M or L.

Proof. Observe that if c ∈ M , then c 6∈ L and vice versa. Since every critical

point of ρ∂Mc is either (+)-critical or (−)-critical, taking the union of the relevant

relations in Proposition 3.9 and Corollary 3.10 gives the claim.

Corollary 3.11 compares the birth and death parameters over the subsets

∂M,M and L. In fact, a stronger result (Theorem 3.13), which says that the

decomposition of persistence parings is (mostly) consistent, holds. The proof for

the result is almost identical to the proof of Theorem 4.17 in [29] for 0 < k < n−1.

The only modification required is to change the height function to radial functions,

but we do not need to use any assumption about radial functions. However, extra

consideration needs to be included for k = 0, n and n − 1 since we have seen

in Proposition 3.9 and in the proof of Corollary 3.11 that the birth and death

parameters for the three sets do not match up as nicely in these dimensions as

those for the other dimensions. We further note that since when c ∈ M , then

(0,Ord) is a birth parameter in b0(XRPH0(M,ρc)), but R,Rel) will be a death

parameter in b0(XRPH0(L, ρc)). This means when c ∈ M , the extra birth and

death parameters in dimension 0 do not correspond to a single component in

M or L. Hence, the matching of interval decomposition becomes more difficult.

However, the centre points we choose in Section 2.2.3 are all in the non-vascular

regions, which correspond to the case c 6∈M in our setup.

Hence, from now on, we assume that c 6∈M .

Theorem 3.13. We have the following equalities of direct sums:

XRPH0(∂M, ρc)⊕ I[(0,Ord),(R,Rel)) = XRPH0(M,ρc)⊕ XRPH0(L, ρc),

XRPHk(∂M, ρc) = XRPHk(M,ρc)⊕ XRPHk(L, ρc),

for all 0 < k < n− 1, and

XRPHn(L, ρc) = I[(r,Rel),(0,Rel)),

XRPHn(M,ρc) = 0.
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Remark 3.14. Note that in the statement of Theorem 3.13, the extended per-

sistence pairings for dimension n−1 is not included. This is because regardless of

position of c, the effect of mismatch in the death parameters is not caused solely

by what happens at ∂B(c, R). However, it is still possible to recover the interval

decomposition of M from that of ∂M in dimension n − 1 in certain cases. We

will discuss this more after the proof of Theorem 3.13.

Proof. For 0 < k < n − 1, since ∂M ⊆ M and ∂M ⊆ L, there is an induced

morphism on persistence modules:

φk : XRPHk(∂M, ρc)→ XRPHk(M,ρc)⊕ XRPHk(L, ρc).

Moreover, LES (3.1) and (3.8) above shows that φ(t,Ord) and φ(t,Rel) are both

isomorphisms. Hence, φk is injective.

Induced matching theorem in [3] implies that there exists an induced injective

map φ̄k from φk on the set of intervals in the interval decomposition of

XRPHk(∂M, ρc)

to the set of intervals in the interval decomposition of

XRPHk(M,ρc)⊕ XRPHk(L, ρc).

Furthermore, if [b.d) is an interval in XRPHk(∂M, ρc), then we have

φ̄k([b, d)) = [b′, d)

with b′ ≤ d.

Now we know from Corollary 3.11 that

bk(∂M, ρc) = bk(M,ρc) t bk(L, ρc).

So the two persistence modules have the same number of intervals, and thus the

induced map φ̄ is a bijection. Since φ̄k([b, d)) = [b′, d) with b′ ≤ d, we have

that φ̄k is actually the identity map, i.e. φ̄k([b, d)) = [b, d). This means the

interval decomposition of XRPHk(∂M, ρc) agrees with that of XRPHk(M,ρc) ⊕
XRPHk(L, ρc), and hence we have shown that

XRPHk(∂M, ρc) = XRPHk(M,ρc)⊕ XRPHk(L, ρc),

as required.
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Now for k = 0, we need to also consider the homology class of ∂B(c, R).

Again, from Corollary 3.11, we have

b0(∂M, ρc) t {(0,Ord)} = b0(M,ρc) t b0(L, ρc),

denoted by b and

d0(∂M, ρc) t {(R,Rel)} = d0(M,ρc) t d0(L, ρc),

which we denote by d. So we can define a bijection φ̂0 : b → b by φ̂0(b) = b′ if

there exists a d ∈ d such that

I[b,d) ∈ XRPH0(∂M, ρc)⊕ I[(0,Ord),(R,Rel)),

and

I[b′,d) ∈ XRPH0(M,ρc)⊕ XRPH0(L, ρc).

Since c 6∈ M , we have c ∈ L and hence, [(0,Ord), (R,Rel)) is an interval in

the interval decomposition of XRPH0(L, ρc). This corresponds to the connected

component of L containing ∂B(c, R). Hence, we have φ̂((0,Ord)) = (0,Ord).

Again by checking the ordinary and relative Mayer Vietories sequences (3.1)

and (3.8), we know that both maps

H0((∂M)s)→ H0(Ms)⊕H0(Ls),

and

H0(∂M, (∂M)s)→ H0(M,M s)⊕H0(L,Ls)

are induced by inclusion and are injective for all 0 ≤ s ≤ R. Hence, the morphism

φ0 : XRPH0(∂M, ρc)→ XRPH0(M,ρc)⊕ XRPH0(L, ρc)

is injective. Again, the map φ0 induces an injective map φ̄0 that matches the

interval [b, d) in the interval decomposition of

XRPH0(∂M, ρc)

to the interval [b′, d) in the interval decomposition of

XRPH0(M,ρc)⊕ XRPH0(L, ρc)

such that b′ ≤ b. Combined with the above, we have that φ̂0 : b→ b with φ̂0(b) ≤
b for all b ∈ b0(XRPH0(∂M, ρc)). Since b\b0(XRPH0(∂M, ρc)) = {(0,Ord)},
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combined with the previous argument, we have shown that φ̂0(b) ≤ b for all

b ∈ b. It follows that φ̂0 is the identity map since b is a finite set. Hence, the

interval decomposition of XRPH0(∂M, ρc) agrees with that of XRPH0(M,ρc) ⊕
XRPHk(L, ρc), which implies that

XRPH0(∂M, ρc)⊕ I[(0,Ord),(R,Rel)) = XRPH0(M,ρc)⊕ XRPH0(L, ρc),

as required.

Finally, for k = n, from Proposition 3.11, we have

{(r,Rel)} = bn(M,ρc) t bn(L, ρc),

and

{(0,Rel)} = dn(M,ρc) t dn(L, ρc).

Since c 6∈ M , we observe that [(r,Rel), (0,Rel)) is an interval in the interval

decomposition of XRPHn(L, ρc). Furthermore, we have (r,Rel) 6∈ bn(M,ρc) and

(0,Rel) 6∈ dn(M,ρc). Hence, combining them, we get

I[(r,Rel),(0,Rel)) = XRPHn(L, ρc),

as required.

As mentioned above, even when c 6∈ M , the extended persistence pairings in

dimension n − 1 for ∂M do not match up as nicely to those for M and L as in

other dimensions. In particular, there are different cases that we need to consider.

We illustrate this with two scenarios.

Example 3.15. Consider the two scenarios in Figure 3.1. In both cases, we have

M being a 2-manifold with boundary embedded in R2 with a 1-dimensional hole

and two connected components. Moreover, these are both examples of c 6∈ M

and ρMc being a Morse function. However, in example (a), the centre c is inside

the finite component of R2\X, which we will call the cavity of M . This is the

main difference between the two examples. Now we consider the 1-dimensional

extended persistence pairings of M , L and ∂M = X tY for example (a) and (b).

Define

rX := min
p∈X

ρc(p), r̂X := max
p∈X

ρc(p),

rY := min
p∈Y

ρc(p), r̂Y := max
p∈Y

ρc(p),

rZ := max
p∈Z

ρc(p), r̂Z := max
p∈Z

ρc(p).



80 CHAPTER 3. XRPH FOR MANIFOLDS WITH BOUNDARY

1 I
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igil inzIcan
(b)

Figure 3.1: Two scenarios of c 6∈M , where M is a manifold with boundary (X, Y

and Z are the boundary components) embedded in R2. In Figure (a), the centre

c is the cavity of M ; while in Figure (b), the centre c is not.

Note that in different examples, these values are different. We use the same

notation for easier comparison of the extended persistence pairings.

In example (a), we have the following extended persistence modules:

XRPH1(∂M, ρc) = I[(r̂X ,Ord),(rX ,Rel)) ⊕ I[(r̂Y ,Ord),(rY ,Rel)) ⊕ I[(r̂Z ,Ord),(rZ ,Rel)),

XRPH1(M,ρc) = I[(r̂X ,Ord),(rY ,Rel)),

XRPH1(L, ρc) = I[(r̂Z ,Ord),(R,Rel)) ⊕ I[(r̂Y ,Ord),(rZ ,Rel)).

Now in example (b), we have the following extended persistence modules:

XRPH1(∂M, ρc) = I[(r̂X ,Ord),(rX ,Rel)) ⊕ I[(r̂Y ,Ord),(rY ,Rel)) ⊕ I[(r̂Z ,Ord),(rZ ,Rel)),

XRPH1(M,ρc) = I[(r̂X ,Ord),(rX ,Rel)),

XRPH1(L, ρc) = I[(r̂Z ,Ord),(R,Rel)) ⊕ I[(r̂Y ,Ord),(rZ ,Rel)).

Note that in example (a), we have rX = minp∈∂M ρc(p), and in example (b),

we have rY = minp∈∂M ρc(p) instead. In both cases, those values do not appear

in the birth or death parameters of M and L for dimension 1, which agrees with

our result in Corollary 3.11.

In example (a), we can see that neither XRPH1(M,ρc) nor XRPH1(L, ρc)

match with any submodule of XRPH1(∂M, ρc). But we can see that XRPH1(M,ρc)

match up with a submodule of XRPH1(∂M, ρc), and we will show that this is the

case in general. At the same time, we note that XRPH1(L, ρc) does not match

with the remaining submodule of XRPH1(∂M, ρc) completely. While there is still

some patterns when it comes to describe XRPH1(L, ρc) using interval modules

in XRPH1(∂M, ρc), it becomes more complicated as the number of connected
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components in M gets larger. More importantly, we do not actually care about

XRPH1(L, ρc), it is the recovery of XRPH1(M,ρc) from XRPH1(∂M, ρc) that we

are interested in.

Since in our retinal images, the centre of optical disc is always going to be

outside of any “loop” in the 2D projection of the retinal vessels. So we only need

to consider the scenarios similar to the one in case (b) in Example 3.15.

From this point onwards, assume further that the centre c is not

contained in any cavity of M .

Before we describe and prove the statement about recovering XRPHn−1(M,ρc)

from XRPHn−1(∂M, ρc), we differentiate between interior and exterior boundary

components that we briefly discussed in Section 1.4.

Definition 3.16 (Interior and exterior boundary compoent). Let A ⊆ Rn be a

compact n-manifold with boundary ∂A = X. Let X̃ be a connected component

of X and Ã be the connected component of A that contains X̃. Then X̃ is an

interior boundary component if Ã\X̃ is contained in the unbounded connected

component of Rn\X̃. We call X̃ an exterior boundary component if M̃\X̃ is

contained in the bounded component of Rn\X̃.

Theorem 3.17. Let b̂ = {(ρ∂Mc (p),Ord) ∈ bordn−1(∂M, ρ∂cM) : sgn(ρMc , p) = +1} t
{(ρ∂Mc (p),Rel) ∈ breln−1(∂M, ρ∂cM) : sgn(ρMc , p) = −1}. Consider the submodule

X̃RPHn−1(∂M, ρc) :=
∑m

i=1 IIi of XRPHn−1(∂M, ρc), where b(Ii) ∈ b̂ for all i.

Then we have

X̃RPHn−1(∂M, ρc) = XRPHn−1(M,ρc).

Proof. Suppose M is a disjoint union of connected components Mi. Then we

have

XRPHn−1(M,ρc) = XRPHn−1(
⊔

Mi, ρc) = ⊕iXRPHn−1(Mi, ρc).

So it is sufficient to prove the theorem in the case where M is connected.

Recall that we have defined r := minp∈∂M ρc(p) and r̂ := maxp∈∂M ρc(p). From

Corollary 3.11, we know that

bn−1(∂M, ρc) = bn−1(M,ρc) t bn−1(L, ρc),

which we will denote by b and(
dn−1(∂M, ρc) t {(R,Rel)}

)
\{(r,Rel)} = dn−1(M,ρc) t dn−1(L, ρc),
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which we will denote by d.

So we can define a bijection φ̂n−1 : d → d by φ̂n−1(d) = d′ if there exists a

b ∈ d such that

I[b,d) ∈ XRPHn−1(M,ρc)⊕ XRPHn−1(L, ρc),

and

I[b,d′) ∈ XRPHn−1(∂M, ρc).

Since M is connected, we observe that [(r̂,Ord), (R,Rel)) is an interval in

the interval decomposition of XRPHn−1(L, ρc) that corresponds to the exterior

boundary component of M . Moreover, note that [(r̂,Ord), (r,Rel) is an interval

in the interval decomposition of XRPHn−1(∂M, ρc) that also corresponds to the

exterior boundary component of M . Hence, we have φ̂n−1(R,Rel) = (r,Rel).

Note that (r,Rel) ≥ (R,Rel) since r < R by construction.

From LES (3.1) and (3.8), we have that the maps

Hn−1((∂M)s)→ Hn−1(Ms)⊕Hn−1(Ls),

and

Hn−1(∂M, (∂M)s)→ Hn−1(M,M s)⊕Hn−1(L,Ls)

are surjective. So the induced morphism by inclusion

φn−1 : XRPHn−1(∂M, ρc)→ XRPHn−1(M,ρc)⊕ XRPHn−1(L, ρc)

is surjective. The induced matching theorem in [3] then tells us that there exists

an induced injective map φn−1 from φn−1 on the set of intervals in the interval

decomposition of

XRPHn−1(M,ρc)⊕ XRPHn−1(L, ρc)

to the set of intervals in the interval decomposition of

XRPHn−1(∂M, ρc).

Moreover, if [b, d) is an interval in XRPHn−1(M,ρc)⊕ XRPHn−1(L, ρc), then we

have

φn−1([b, d)) = [b, d′)

with d′ ≥ d.

Combined with the above, we have that φ̂n−1 : d→ d with φ̂n−1(d) ≥ d for all

d ∈ d(XRPHn−1(M,ρc)⊕XRPHn−1(L, ρc)) = d. So It follows that φ̂n−1|d\{(R,Rel)}

is the identity map since d has finite elements.
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But since I[(r̂,Ord),(R,Rel)) ∈ XRPHn−1(L, ρc), we have shown that the inter-

val decomposition of XRPHn−1(M,ρc) agrees with that of X̃RPHn−1(∂M, ρc) as

defined in the statement. This implies that

X̃RPHn−1(∂M, ρc) = XRPHn−1(M,ρc),

as required.

Combining Theorem 3.13, Theorem 3.17 and Corollary 3.11 allows us to ex-

press the radial extended persistence pairings of ρMc in terms of a submodule of

that of ρ∂Mc . We summarise the result as Theorem 3.18.

Theorem 3.18. Suppose the k-dimensional radial extended persistence homology

of ρ∂Mc : X → R be

XRPHk(∂M, ρc) =
⊕

[bi,di)∈S∂M

I[bi,di).

Let JM ⊆ S∂M be the subset of intervals [bi, di) such that either bi = (ρc(p),Ord)

with p ∈ Crit(ρMc , (k,+1)), or bi = (ρc(p),Rel) with p ∈ Crit(ρMc , (n−k−1,−1))}.
Then we have

XRPHk(M,ρc) =
⊕

[bi,di)∈JkM

I[bi,di),

for all k ≥ 0.

Finally, in the radial extended persistence diagram, we would like to classify

each point into one of the ordinary, relative and essential classes. At the same

time, if we can describe the essential classes, then the remaining classes can be

decided accordingly by comparing the values for the birth and death parameters.

Here, we can further describe the essential classes for dimension 0 and n−1 using

the symmetry theorem if M is an n-manifold with boundary as its boundary is

an n − 1-manifold. Hence, if n = 2, we are able to fully decompose a radial

extended persistence module of a manifold with boundary in all dimensions since

there will be no persistence module for dimension 2 or higher. This is the basis

of our algorithm used to obtain the results in Section 2.2.3.

Proposition 3.19. Let M ⊆ Rn be an n-manifold with boundary ∂M . Consider

the radial function ρc : Rn → R with suitably chosen c satisfying the assumptions

discussed above. Let {X1, · · · , Xk} be the interior boundary components of ∂M

and {Y1, · · · , Yl} be the exterior boundary components of ∂M . Then we have

Ess0(M,ρc) =
l∑

j=1

I[(minp∈Yj ρc(p),Ord),(maxp∈Yj ρc(p),Rel))
,
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and

Essn−1(M,ρc) =
k∑
j=1

I[(maxp∈Xj ρc(p),Ord),(minp∈Xj ρc(p),Rel))
.

Proof. IfM = tki=1Mi is a disjoint union of connected components, then XRPH(M) =

⊕ki=1XRPH(Mi). So we can assume without loss of generality that M is con-

nected.

Note that ∂M is a disjoint union of (n − 1)-manifolds. Moreover, for a con-

nected (n − 1)-manifold A, we have β0(A) = βn−1(A) = 1. Hence, exactly one

of the intervals in the interval decomposition of XRPH(A, ρc) comes from the

essential class. Furthermore, the interval in Ess0(A, ρc) is born when it first

sees A at (minp∈A ρc(p),Ord) and dies at the largest value A takes, i.e. at

(maxp∈A ρc(p),Rel). Hence,

Ess0(A, ρc) = I[(minp∈A ρc(p),Ord),(maxp∈A ρc(p),Rel)).

Now by Theorem 1.47, we have that

Essn−1(A, ρc) = I[(maxp∈A ρc(p),Ord),(minp∈A ρc(p),Rel)).

Now since M is connected, we have that ∂M = Y t
(
tki=1Xi

)
. So it follows

that

Ess0(∂M, ρc) = I[(minp∈Y ρc(p),Ord),(maxp∈Y ρc(p),Rel))⊕(
⊕ki=1I[(minp∈Xi ρc(p),Ord),(maxp∈Xi ρc(p),Rel))

)
,

and

Essn−1(∂M, ρc) = I[(maxp∈Y ρc(p),Ord),(minp∈Y ρc(p),Rel))⊕(
⊕ki=1I[(maxp∈Xi ρc(p),Ord),(minp∈Xi ρc(p),Rel))

)
.

Now using Theorem 3.18, we are able to translate these to the essential per-

sistence modules of M .

Consider an interior boundary component Xi, then M is contained in the infi-

nite component of Rn\Xi. Let p, q be the points on Xi that attains the minimum

and maximum values of ρXic respectively. Then sgn(p) = −1 and sgn(q) = +1. At

the same time, let p′, q′ be the points on Y that attains the minimum and maxi-

mum values of ρYc respectively. Then we have sgn(p′) = +1 and sgn(q′) = −1.

Hence, by checking the signs of the critical points above,we have that

Ess0(X, ρc) = I[(minp∈Y ρc(p),Ord),(maxp∈Y ρc(p),Rel)),



3.2. XRPH OF MANIFOLDS WITH BOUNDARY 85

and

Essn−1(M,ρc) =
k∑
i=1

I[(maxp∈Xi ρc(p),Ord),(minp∈Xi ρc(p),Rel)),

as required.

Remark 3.20. Note that in Section 1.4, the main modification we made to the

algorithm in [29] for height filtrations is by changing the tests for local mini-

mum. This is because under the assumptions we have here, the conclusions are

exactly the same as the ones for height filtrations. Due to time constraints, we

are not able to produce nice relations between extended persistence pairings of

XRPHk(∂M, ρc) and XRPHk(M,ρc) for k ≥ 0 when we consider other possible

choices of the location for the centre c, e.g. if c ∈ M or if c 6∈ M but c is in the

cavity of M . We leave it for as a potential future direction.
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Appendix A

Centre location

The following Matlab function is used to compute the coordinates of the centres

of optic disks in the original retinal images. The coordinates are then used as the

centre for radial filtration.

1 f unc t i on [ x , y , p ] = centreLocate ( p1 )

2 % t h i s func t i on l o c a t e s the br i gh t spot i n s i d e r e t i n a f o r

RIDB r e t i n a l

3 % images so that the coo rd ina t e s can be used as the cent r e

po int f o r EPHT

4 % with r a d i a l f u n c t i o n s .

5 % input , p1 , i n i t i a l r e t i n a l images

6 % output , x , y , x , y−coo rd ina t e s o f the br i gh t spot

7 % p , o r i g i n a l image with the br i gh t spot l o ca t ed

with an ’x ’

8

9 % red channel

10 p1 red = p1 ( : , : , 1 ) ;

11

12 % disk matrix

13 imageSizeX = 150 ;

14 imageSizeY = 150 ;

15 [ columnsInImage , rowsInImage ] = meshgrid ( 1 : imageSizeX ,

1 : imageSizeY ) ;

16 % Next c r e a t e the c i r c l e in the image .

17 centerX = 75 ;

18 centerY = 75 ;

87
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19 rad iu s = 50 ;

20 c i r c l e P i x e l s = ( rowsInImage − centerY ) .ˆ2 . . .

21 + ( columnsInImage − centerX ) .ˆ2 <= rad iu s . ˆ 2 ;

22 % imshow ( c i r c l e P i x e l s )

23

24 % convo lut ion

25 temp = conv2 ( c i r c l e P i x e l s , p1 red ) ;

26 [M1, I1 ]=max(max( temp ) ) ;

27 [M2, I2 ]=max( temp ( : , I1 ) ) ;

28

29 % x , y coo rd ina t e s

30 x = I1−75;

31 y = I2−75;

32 % di sp l ay f i g u r e to check c o r r e c t n e s s

33 f i g = f i g u r e ;

34 imshow ( p1 )

35 hold on

36 p lo t (x , y , ’ xb ’ )

37 t i t l e ( ’ Or i g i na l image ’ )

38 drawnow

39 frame = getframe ( f i g ) ;

40 p = frame2im ( frame ) ;

41 end

We note that the above function works for all but one images (Figure A.1 is

the problem image). However, the function works after we filter out the bright rim

by setting a threshold pixel value, i.e. after we run the problem image through

the following codes.

1 p1 = imread ( ’RIDB/ data /IM000002 1 .JPG ’ ) ; % read in problem

image

2 p1 red = p1 ( : , : , 1 ) ; % f i l t e r out red channel

3 p1 red ( p1 ( : , : , 1 ) >250)= 0 ; % remove the br i gh t rim by

s e t t i n g those p i x e l va lue s to 0 ( black )
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(a) Original problem image
(b) Fixed problem image after filtering

Figure A.1: The function centreLocate fails to find the correct centre coordinate

for the second image sample from individual 1. This is due to the extreme ex-

posure on the top right of the image, which leads to a higher pixel value when

restricting to the red channel.
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Appendix B

Computing distances between

persistence diagrams.

The following R function is used to compute distances between persistence pair-

ings obtained using Diamorse.

1 #’ Compute the d i s t anc e matrix between Extended P e r s i s t e n t

Homology Transforms

2 #’

3 #’ The func t i on [ computePers i s tentDistanceMatr ix ( ) ]

computes the q−Wasserste in d i s t anc e

4 #’ between the p e r s i s t e n t homology trans forms o f mu l t ip l e

images .

5 #’

6 #’ Given a c o l l e c t i o n o f o b j e c t s \eqn{O 1 ,\ dots ,O n} ,

compute the d i s t anc e matrix \eqn{D}$ between a l l p a i r s

7 #’ o f o b j e c t s \eqn{O i ,O j } f o r \eqn{ i \neq j } .

8 #’

9 #’ @param diagrams ‘ l i s t ‘ o f extended p e r s i s t e n c e diagrams

o f mu l t ip l e o b j e c t s .

10 #’ @param q ‘ numeric ‘ determining the \eqn{Lˆq} d i s t ance

to use . Must have

11 #’ \eqn{1\ l e q q < \ i n f t y } . The d e f a u l t va lue i s 1 .

12 #’ @export

13 computePers i s tentDistanceMatr ix <− f unc t i on ( diagrams ,

14 q = 1) {
15 nObjects <− l ength ( diagrams )

91
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16

17 d i s t ance matrix <− matrix (0 , nrow = nObjects , nco l =

nObjects )

18

19 # Distance matrix i s symmetric , so only compute upper

t r i a n g u l a r part .

20 # Diagonal e n t r i e s are ze ro .

21 f o r ( i in 1 : ( nObjects − 1) ) {
22 f o r ( j in ( i + 1) : ( nObjects ) ) {
23 ob j e c t 1 <− diagrams [ [ i ] ]

24 ob j e c t 2 <− diagrams [ [ j ] ]

25

26 d i j <− a l i gnedDis tancePer (

27 ob j e c t 1 = ob j e c t 1 ,

28 ob j e c t 2 = ob j e c t 2 ,

29 q = q

30 )

31

32 d i j <− d i j ˆ(1 / q )

33

34 d i s t ance matrix [ i , j ] <− d i j

35 d i s t ance matrix [ j , i ] <− d i j

36

37 pr in t ( paste ( ”Computed d i s t anc e ( ” , i , ” , ” , j , ” ) and

( ” ,

38 j , ” , ” , i , ” ) ” ,

39 sep = ””

40 ) )

41 }
42 }
43

44 r e turn ( d i s t anc e matrix )

45 }
46

47

48

49 a l i gnedDis tancePer <− f unc t i on ( ob j e c t 1 , ob j e c t 2 , q ) {
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50 ds <− c ( ”dim0” , ”dim1” )

51

52 t o t a l <− 0

53

54 f o r ( x in ds ){
55 i f ( l ength ( ob j e c t 1 [ [ x ] ] ) !=0 | | l ength ( ob j e c t 2 [ [ x ] ] ) !=

0){
56 i n f 1 <− l ength ( ob j e c t 1 [ [ x ] ] [ i s . i n f i n i t e ( rowSums(

ob j e c t 1 [ [ x ] ] ) ) , ] ) /2

57 i n f 2 <− l ength ( ob j e c t 2 [ [ x ] ] [ i s . i n f i n i t e ( rowSums(

ob j e c t 2 [ [ x ] ] ) ) , ] ) /2

58 i f ( i n f 1 != i n f 2){
59 t o t a l <− I n f

60 } e l s e {
61 ob j e c t 1 noIn f <− ob j e c t 1 [ [ x ] ] [ ! i s . i n f i n i t e (

rowSums( ob j e c t 1 [ [ x ] ] ) ) , ]

62 ob j e c t 2 noIn f <− ob j e c t 2 [ [ x ] ] [ ! i s . i n f i n i t e (

rowSums( ob j e c t 2 [ [ x ] ] ) ) , ]

63 t o t a l temp <− pointDistancePer (

64 po in t s 1 = ob j e c t 1 noInf ,

65 po in t s 2 = ob j e c t 2 noInf ,

66 q = q

67 )

68 t o t a l <− t o t a l + t o t a l temp + sum( abs ( ob j e c t 1 [ [ x

] ] [ i s . i n f i n i t e ( rowSums( ob j e c t 1 [ [ x ] ] ) ) ,1]−
ob j e c t 2 [ [ x ] ] [ i s . i n f i n i t e ( rowSums( ob j e c t 2 [ [ x

] ] ) ) , 1 ] ) ˆq )

69 }
70 }
71 }
72

73 r e turn ( t o t a l ˆ(1 /q ) )

74 }
75

76 pointDistancePer <− f unc t i on ( po in t s 1 , po in t s 2 , q ) {
77 n 1 <− l ength ( po in t s 1) /2

78 n 2 <− l ength ( po in t s 2) /2
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79

80 i f (n 1 + n 2 == 0) {
81 # No po in t s

82 r e turn (0 )

83 } e l s e i f (n 1 > 0 && n 2 == 0) {
84 # Only po in t s 1 has po in t s

85 i f (n 1 == 1){
86 d <− distanceToDiagonal ( po in t s 1 , q )

87 } e l s e {
88 d <− sum( sapply (

89 1 : n 1 ,

90 f unc t i on ( i ) d istanceToDiagonal ( po in t s 1 [ i , ] , q )

91 ) )

92 }
93

94 r e turn (d)

95 } e l s e i f (n 1 == 0 && n 2 > 0) {
96 # Only po in t s 2 has po in t s

97 i f (n 2 == 1){
98 d <− distanceToDiagonal ( po in t s 2 , q )

99 } e l s e {
100 d <− sum( sapply (

101 1 : n 2 ,

102 f unc t i on ( i ) d istanceToDiagonal ( po in t s 2 [ i , ] , q )

103 ) )

104 }
105

106 r e turn (d)

107 } e l s e {
108 # Hungarian Algorithm

109 co s t matrix <− vec to r ( )

110

111 f o r ( i in 1 : n 1) {
112 i f (n 2==1){
113 i f (n 1==1){
114 r 1 <− distanceLq ( po in t s 1 , po in t s 2 , q )

115 } e l s e {
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116 r 1 <− distanceLq ( po in t s 1 [ i , ] , po in t s 2 , q )

117 }
118 } e l s e {
119 i f (n 1==1){
120 r 1 <− apply ( po in t s 2 , 1 , f unc t i on ( x ) d i stanceLq

( po in t s 1 , x , q ) )

121 } e l s e {
122 r 1 <− apply ( po in t s 2 , 1 , f unc t i on ( x ) d i stanceLq

( po in t s 1 [ i , ] , x , q ) )

123 }
124 }
125

126 i f (n 1 == 1){
127 d i s t xy <− distanceToDiagonal ( po in t s 1 , q )

128 } e l s e {
129 d i s t xy <− distanceToDiagonal ( po in t s 1 [ i , ] , q )

130 }
131

132 r 2 <− rep ( d i s t xy , n 1)

133

134 co s t matrix <− rbind ( co s t matrix , c ( r 1 , r 2) )

135 }
136 i f (n 2==1){
137 r 1 <− distanceToDiagonal ( po in t s 2 , q )

138 } e l s e {
139 r 1 <− apply ( po in t s 2 , 1 , f unc t i on ( x )

distanceToDiagonal (x , q ) )

140 }
141 r 2 <− rep (0 , n 1)

142

143 f o r ( j in 1 : n 2) {
144 co s t matrix <− rbind ( co s t matrix , c ( r 1 , r 2) )

145 }
146

147 p a i r i n g <− RcppHungarian : : HungarianSolver ( co s t matrix )

148 i dxs <− p a i r i n g [ [ ” p a i r s ” ] ]

149
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150 pa i r v a l s <− apply (

151 idxs , 1 ,

152 f unc t i on ( x ) co s t matrix [ x [ 1 ] , x [ 2 ] ]

153 )

154

155 r e turn (sum( pa i r v a l s ) )

156 }
157 }
158

159 distanceToDiagonal <− f unc t i on (p , q ) {
160 r e turn (2 ∗ ( ( abs (p [ 2 ] − p [ 1 ] ) / 2) ˆq ) )

161 }
162

163 distanceLq <− f unc t i on ( p1 , p2 , q ) {
164 r e turn ( abs ( p1 [ 1 ] − p2 [ 1 ] ) ˆq + abs ( p1 [ 2 ] − p2 [ 2 ] ) ˆq )

165 }
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Distance to measure transform

The following Matlab script is used to perform distance to measure transform of

the segmented images using a discrete set of distances with threshold measure

being 200 white pixels. The translation and rescaling are set so that the filtration

will see the vessels last.

1 % disk matrix

2 imageSizeX = 600 ;

3 imageSizeY = 600 ;

4 [ columnsInImage , rowsInImage ] = meshgrid ( 1 : imageSizeX , 1 :

imageSizeY ) ;

5 % cent r e o f the c i r c l e in the image .

6 centerX = 300 ;

7 centerY = 300 ;

8 rad iu s = l i n s p a c e (10 ,300 ,256) ;

9

10 [ nrow , nco l ] = s i z e ( f i l e {1}) ;

11 output d i r = ’ r e s u l t s / dist2meas200 ’ ;

12 f o r i = 1:100

13 im i = f i l e { i } ;

14 output name = [ output d i r ’ / ’ o r i g i n a l f i l e s ( i ) . name ] ;

15 d i s t 2 me a s i = nan ( nrow , nco l ) ;

16 f o r j = 0:255

17 % c r e a t e c i r c l e

18 c i r c l e P i x e l s = ( rowsInImage − centerY ) .ˆ2 . . .

19 + ( columnsInImage − centerX ) .ˆ2 <= rad iu s ( j +1) . ˆ 2 ;

20

97
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21 % convo lut ion to f i n d measure with in c i r c l e

22 im conv i = conv2 ( c i r c l e P i x e l s , im i ) ;

23 im conv i = im conv i ( 3 0 0 : ( end−300) , 3 0 0 : ( end−300) )

;

24 t e s t i = f i n d ( im conv i ( : ) >=200∗255) ;

25 f o r k = 1 : l ength ( t e s t i )

26 i f i snan ( d i s t 2 me a s i ( t e s t i ( k ) ) )

27 d i s t 2 me a s i ( t e s t i ( k ) ) = 255− j ;

28 end

29 end

30 end

31

32 d i s t 2 me a s i ( i snan ( d i s t 2 me a s i ) ) = 0 ;

33

34 imwrite ( d i s t 2m ea s i /255 , output name ) ;

35

36 end
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Threshold selection

The following R script is used to simulate threshold distance selection processes.

1 # thre sho ld s e l e c t i o n

2 nSim <− 10

3 RR rec <− rep (0 , nSim )

4 c u t o f f r e c <− rep (0 , nSim )

5 testAcc <− rep (0 , nSim )

6 f o r ( i in 1 : nSim ){
7 # t r a i n i n g database

8 t ra inBase <− rep (0 ,60 )

9 n I n t e r v a l <− 1000

10 c u t o f f d i s t <− seq (0 ,500 , l ength . out = n I n t e r v a l )

11 # record r e c o g n i t i o n ra t e

12 RR temp <− rep (0 , n I n t e r v a l )

13 f o r ( j in 1 : 20 ) {
14 x <− sample ( 1 : 5 , 3 , r e p l a c e = FALSE)

15 x <− s o r t ( x )

16 t ra inBase [ ( ( j−1)∗3+1) : ( j ∗ 3) ] <− x + ( j−1)∗5

17 }
18

19 # remaining s e t

20 r <− c ( 1 : 1 0 0 )

21 r <− r [ ! r %in% tra inBase ]

22 # t r a i n i n g s e t

23 t r a i n S e t <− rep (0 ,20 )

24 f o r ( j in 1 : 20 ) {
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25 x <− sample ( 1 : 2 , 1 )

26 t r a i n S e t [ j ] <− r [ ( j−1)∗2+x ]

27 }
28

29 # use t r a i n i n g s e t to f i n d r e c o g n i t i o n ra t e

30 d i s tTra in <− matrix (0 , nrow = 20 , nco l = 60)

31 f o r ( j in 1 : 60 ) {
32 d i s tTra in [ , j ] <− f u l l d i s t ance [ t ra inSe t , t ra inBase [ j ] ]

33 }
34

35 f o r ( k in 1 : n I n t e r v a l ) {
36 match i <− d i s tTra in <= c u t o f f d i s t [ k ]

37 nTP <− 0

38 nTN <− 0

39 f o r ( j in 1 : 20 ) {
40 trueID <− j

41 pos <− c ( ( trueID−1)∗3+1 ,( trueID−1)∗3+2 ,( trueID−1)∗
3+3)# actua l p o s i t i v e

42 neg <− 1 :60 # actua l negat ive

43 neg <− neg [ ! neg %in% pos ]

44

45 match i j neg <− match i [ j , neg ]

46 match i j pos <− match i [ j , pos ]

47 nTP <− nTP + length ( match i j pos [ match i [ j , pos]==

TRUE] ) # true p o s i t i v e : trueID and accept

48 nTN <− nTN + length ( match i j neg [ match i [ j , neg]==

FALSE] ) # true negat ive : not trueID and r e j e c t

49 }
50 RR temp [ k ] <− (nTP+nTN) / (60 ∗ 20)

51 }
52

53 # pick c u t o f f with max RR

54 maxPos <− which (RR temp == max(RR temp ) )

55 c u t o f f r e c [ i ] <− mean( c u t o f f d i s t [ maxPos ] )

56

57 # t e s t i n g s e t

58 t e s t S e t <− c ( 1 : 1 0 0 )
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59 t e s t S e t <− t e s t S e t [ ! t e s t S e t %in% tra inBase ]

60 t e s t S e t <− t e s t S e t [ ! t e s t S e t %in% t r a i n S e t ]

61

62 # di s t ance : dataBase vs t e s t i n g s e t

63 t e s t d i s t <− matrix (0 , nrow = 20 , nco l = 20)

64 f o r ( k in 1 : 20 ) {
65 f o r ( j in 1 : 20 ) {
66 t e s t d i s t [ k , j ] <− mean( f u l l d i s t ance [ t e s t S e t [ k ] ,

t ra inBase [ ( ( j−1)∗3+1) : ( j ∗ 3) ] ] )

67 }
68 }
69

70 match t e s t <− t e s t d i s t<=c u t o f f r e c [ i ]

71 nTP <− 0

72 nTN <− 0

73 f o r ( j in 1 : 20 ) {
74 trueID <− j

75 pos <− trueID # actua l p o s i t i v e

76 neg <− 1 :20 # actua l negat ive

77 neg <− neg [ ! neg %in% pos ]

78

79 match i j neg <− match t e s t [ j , neg ]

80 match i j pos <− match t e s t [ j , pos ]

81 nTP <− nTP + length ( match i j pos [ match i j pos==TRUE] )

# true p o s i t i v e : trueID and accept

82 nTN <− nTN + length ( match i j neg [ match i j neg==FALSE] )

# true negat ive : not trueID and r e j e c t

83 }
84 RR rec [ i ] <− (nTP+nTN) / (20 ∗ 20)

85 }
86

87 par ( mfrow=c (1 , 1 ) )

88 p lo t ( c u t o f f rec ,RR rec , main = ” S c a t t e r p l o t o f r e c o g n i t i o n

ra t e vs c u t o f f d i s t anc e ” ,

89 xlab = ” Cutof f d i s t anc e ” , ylab = ” Recognit ion ra t e ” ,

90 xlim = c (min ( c u t o f f r e c )−5,max( c u t o f f r e c )+5) , yl im=c

( 0 . 9 4 5 , 0 . 9 6 5 ) ,
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91 pch = 19 , frame = TRUE)
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Gödel: Critical essays, Cambridge University Press, pp. 211–241, DOI:

https://doi.org/10.48550/arXiv.1204.0299.

[21] Rajan, S.P. 2020, “Recognition of cardiovascular diseases through retinal

images using optic cup to optic disc ratio”, Pattern Recognit. Image Anal.

No. 30, pp. 256–263, https://doi.org/10.1134/S105466182002011X.

[22] Robins, V. 2000, Computational topology at multiple resolutions: foundations

and applications to fractals and dynamics, University of Colorado at Boulder,

Colorado.

[23] Robinson, A. & Turner, K. 2013, Hypothesis testing for topological data anal-

ysis, arXiv:1310.7467 [stat.AP].

[24] Ronneberger, O., Fischer, P. & Brox, T. 2015, “U-Net: convolutional net-

works for biomedical image segmentation”, arXiv:1505.04597 [cs.CV].

[25] Silva, V. D., Morozov, D. & Vejdemo-Johansson, M. 2011, “Dualities in

persistent (co)homology”, arXiv:1107.5665 [math.AT].

[26] Solomon, E. & Bendich P. 2022, A convolutional persistence transform,

arXiv:2208.02107 [math.AT].

[27] Turkeš, R., Nys, J., Verdonck, T. & Latré, S. 2021, “Noise robustness of

persistent homology on greyscale images, across filtrations and signatures”,

PLoS ONE, pp. 1-26, https://doi.org/10.1371/journal.pone.0257215.

[28] Turner, K., Mukherjee, S. & Boyer, D. M. 2014, “Persistent homology trans-

form for modelling shapes and surfaces”, Information and Inference: A Jour-

nal of the IMA, pp. 1-38, DOI:10.1093/imaiai/drn000.

[29] Turner, K., Robins, V & Morgan, J. 2022, The extended persistent homology

transform of two-dimensional binary images, arXiv:2208.14583 [math.AT].

[30] Waheed, Z., Akram M., Waheed, A., Khan, M., Shaukat, A. & Ishaq, M.

2016, “Personal identification using vascular and non-vascular retinal fea-

tures”, Computers and Electrical Engineering, No. 54, pp. 359-371.

[31] Whitney, H. 1957, Geometric integration theory, Princeton University Press,

pp. 124–135.



106 BIBLIOGRAPHY

[32] Zomorodian, A., Carlsson G. 2005, “Computing persistent homology”, Dis-

crete and Computational Geometry, Vol. 33, No. 2, pp. 249-274.



BIBLIOGRAPHY 107

xt


	Acknowledgements
	Abstract
	Notation and terminology
	Introduction
	A brief guide to XPH
	Simplicial complexes and homology
	Persistent homology
	Persistence modules and interval decomposition
	Relating to topology

	Extended Persistence
	Radial distance filtration
	Radial (extended) persistence
	Working with binary digital images


	XPH in action
	RIDB database
	Proposed analysis method
	Data preprocessing and image segmentation
	Measure of success
	Radial distance results
	SEDT and DMT results
	Threshold selection in practice

	Conclusion
	Future directions

	XRPH for manifolds with boundary
	Preliminary
	XRPH of manifolds with boundary

	Centre location
	Computing distances between persistence diagrams.
	Distance to measure transform
	Threshold selection
	Bibliography

