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rAAV immunogenicity, toxicity,
and durability in 255 clinical
trials: A meta-analysis

Weiran Shen1, Shengjiang Liu2 and Li Ou3,4*

1Obio Technologies, Shanghai, China, 2Avirmax Inc, Hayward, CA, United States, 3Genemagic
Biosciences, Wallingford, PA, United States, 4Department of Pediatrics, University of Minnesota,
Minneapolis, MN, United States
Recombinant Adeno-associated virus (rAAV) is one of the main delivery vectors

for gene therapy. To assess immunogenicity, toxicity, and features of AAV gene

therapy in clinical settings, a meta-analysis of 255 clinical trials was performed.

A total of 7,289 patients are planned to be dosed. AAV2 was the most

dominantly used serotype (29.8%, n=72), and 8.3% (n=20) of trials used

engineered capsids. 38.7% (n=91) of trials employed neutralizing antibody

assays for patient enrollment, while 15.3% (n=36) used ELISA-based total

antibody assays. However, there was high variability in the eligibility criteria

with cut-off tiers ranging from 1:1 to 1:1,600. To address potential

immunogenicity, 46.3% (n=118) of trials applied immunosuppressants

(prophylactic or reactive), while 32.7% (n=18) of CNS and 37.5% (n=24) of

ocular-directed trials employed immunosuppressants, possibly due to the

immune-privileged status of CNS and retina. There were a total of 11 patient

deaths across 8 trials, and 18 out of 30 clinical holds were due to toxicity

findings in clinical studies. 30.6% (n=78) of trials had treatment-emergent

serious adverse events (TESAEs), with hepatotoxicity and thrombotic

microangiopathy (systemic delivery) and neurotoxicity (CNS delivery) being

the most prominent. Additionally, the durability of gene therapy may be

impacted by two distinct decline mechanisms: 1) rapid decline presumably

due to immune responses; or 2) gradual decline due to vector dilution. The

durability varied significantly depending on disease indication, dose, serotypes,

and patient individuals. Most CNS (90.0%) and muscle trials (73.3%) achieved

durable transgene expression, while only 43.6% of ocular trials had sustained

clinical outcomes. The rAAV production system can affect rAAV quality and thus

immunogenicity and toxicity. Out of 186 trials that have disclosed production

system information, 63.0% (n=126) of trials used the transient transfection of

the HEK293/HEK293T system, while 18.0% (n=36) applied the baculovirus/Sf9

(rBac/Sf9) system. There were no significant differences in TESAEs and

durability between AAV generated by rBac/Sf9 and HEK293/HEK293T

systems. In summary, rAAV immunogenicity and toxicity poses significant

challenges for clinical development of rAAV gene therapies, and it warrants

collaborative efforts to standardize monitoring/measurement methods, design
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novel strategies to overcome immune responses, and openly share

relevant information.
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Introduction

Since the first clinical study using recombinant AAV (rAAV)

in cystic fibrosis in the 1990s (1), great progress has been made

in understanding its virology, production, safety, efficacy, and

translatability (2). In the past 10 years, rAAV has been widely

applied in treating rare diseases affecting liver, brain, muscle,

heart, eye, and other tissues (3). Long-lasting transgene

expression has been achieved in multiple trials, and a total of

six therapies have received marketing approval from US Food

and Drug Administration (Luxturna, Zolgensma) and European

Medicines Agency (Glybera, Luxturna, Zolgenmsa, Upstaza,

Roctavian) (4). However, the loss of efficacy is not uncommon

in clinical trials, which may result from various reasons,

including immune response against AAV (4–7). Moreover,

immune responses against rAAV vectors include pre-existing

antibodies, complement system activation, and T cell immune

responses (8–12). Understanding the complex mechanisms of

immune activation is difficult, and the data interpretation is

further complicated by individual and species differences, and

non-standardized outcome measurements in these studies.

Serum prevalence studies suggested a significant portion of the

human population had high levels of rAAV neutralizing

antibodies (13). Pre-existing antibodies can significantly reduce

the transduction efficiency (14). Antibodies bind to vector capsid

and stimulate lymphocytes to secrete cytokines, activating

adaptive immune responses (9). Thus, during patient

enrollment in clinical studies (especially for systemic

administration), pre-existing antibody levels need to be

considered. After vector dosing, transduced antigen presenting

cells (APCs) present capsid peptides by MHC-I or MHC-II

system, and activate plasmacytoid and conventional dendritic

cells (10, 11, 15). Also, rAAV genome is hypomethylated in CpG

sequences (16), which activates toll-like receptor 9 (TLR9) (17).

TLR9 -dependent and -independent signaling triggers MyD88

phosphorylation, which is a critical step in activation of

cytotoxic T cells (CTLs) reactive to viral capsids (17–19).

MyD88 also plays an important role in B cell activation and

regulates the Th1-dependent antibody production against rAAV

(20). A Hemophilia B trial suggests that CpG introduced by

codon optimization might be a trigger for silenced transgene

expression (21). A statistical study tried to correlate CpG content
02
in genome sequences of clinical used products with efficacy. It

also showed that lower CpG content may reduce the overall

immune responses and be helpful to maintain the efficacy (22).

Further suggestions are made on methods to calculate and

mitigate CpG risk (23, 24). Interestingly, it is still unclear how

much unmethylated CpG is a safe range. It is meaningful to

develop a translatable model and test whether modification of

CpG in gene of interest (GOI) is enough, or reducing CpG

number in ITR and regulatory elements are also essential. Recent

studies also reported that AAV may activate the complement

system, causing platelet reduction, acute thrombotic

microangiopathy (TMA) (25, 26). To reduce the potential

immune responses and toxicity, immunosuppressants are

selectively applied across different clinical trials (27). In this

study, we performed a meta-analysis of 255 clinical trials using

AAV delivery over the past 25 years. The immunosuppressant

usage, antibody screening, adverse events, manufacturing

systems, and durability of efficacy was evaluated. Results from

this study will highlight the trend and new directions in this

field, provide a basis for future clinical study design, and uncover

crucial details for addressing immune responses against AAV.
Methods

This meta-analysis was performed under the guidance of the

2020 PRISMA (28). Clinical trials using AAV delivery were

extracted from the U.S National Library of Medicine database

(ClinicalTrials.gov), and the cut-off date was June 1, 2022.

Observational studies and long-term follow-up studies were

not included because AAV administration was not involved.

Additionally, the search was broadened to (1) company press

releases (2), company official documents (SEC and IPO filings),

(3) presentations in research conferences, (4) publications in

journal articles, and (5) company websites. Since a lot of

information was not available in the database, reports on

previous preclinical studies using the same test article were

also reviewed. Disease category, disease indication, gene

delivered, trial start date, phase, identifier, serotype, dose,

sponsor, route of administration (ROA), immunosuppression

regimen, antibody screening, manufacturing system, adverse

events, efficacy endpoints, and trial status were collected.
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Missing information was marked as “Undisclosed” or “N/A”.

Notably, peer-reviewed resources and information from non-

reviewed resources (e.g., websites, databases) were equally used

in this study. All diseases were categorized as central nervous

system (CNS), liver, lysosomal storage disorders (LSD), ocular,

muscle, and other (including oncology, autoimmune, virology,

cardiac, metabolic, pulmonary). All raw data is available in

Supplementary Table 1.
Results

Description of 255 clinical trials

A previous study reviewed a total of 149 AAV clinical trials

from clinical trial databases using the cut-of date as Jan 1, 2020

(3). In that study, phases, serotypes, ROA, promoters used, and

sponsors were analyzed. In this study, the cut-off date was

expanded to June 1, 2022, and the sources included clinical

trial databases, publications, and company press releases,

resulting in analysis of 255 trials. The process of data

collection was summarized using a PRISMA flowchart

(Supplementary Figure 1). A total of 65 trials are in Phase I,

123 in Phase I/II, 25 in Phase II, 6 in Phase II/III, 22 in Phase III,

and one in Phase IV (Figure 1A). There is a single trial

(GNT0004 sponsored by Genethon) combining Phase I, II,

and III studies together. A total of 245 trials report study

status, with 79 ‘completed’, 81 ‘recruiting’, 50 ‘active but not

recruiting’. There are also 18 trials ‘terminated’, 6 ‘unknown’,
Frontiers in Immunology 03
and 2 ‘withdrawn’. In terms of trial number, ocular indications

constitute the highest portion (25.1%), followed by CNS (21.6%)

and liver (15.3%) (Figure 1B). Across 255 trials, more than 7,289

patients are planned to be dosed. A total of 3,192 patients have

been enrolled or dosed, while the largest study (NCT04704921)

is still actively enrolling patients, targeting a total of 465 people.

A total of 94 trials are designed to enroll at least 20 patients.

There are 56 trials (22.0%) sponsored by universities, hospitals,

or other academic institutes, while the rest (78.0%) are

sponsored by industry. The organizations that sponsored the

most trials are Spark Therapeutics, Novartis, Nationwide

Children’s Hospital, REGENX Bio (n=10, 9, 8, and 8,

respectively). In terms of ROA, 92 trials apply systematic

injection, 160 trials employ local administration, and 3 trials

do not disclose the ROA information (Figure 1C). CNS targeting

is the most complicated: intraputaminal (n=18), intracerebral

(n=12), intrathecal (n=11), intracisternal magna (ICM, n=9),

intrastriatal (n=5), intracerebral (n=4), intraventricular (n=3), 2

intrathalamic (n=2), and intranigral (n=1). Ocular indications

are all dosed through local administration, with 37 trials by

subretinal, 24 by intravitreal, and 2 by suprachoroidal dosing.

For muscle targeting, 22 trials employ systematic dosing while 10

trials apply intramuscular injection. The trial number has

significantly increased over the past two decades (Figure 1D).

The first AAV trial was for treating cystic fibrosis using tgAAV2-

CFTR (1), and the first trial using AAV delivery for in vivo gene

editing was for treating Mucopolysaccharidosis type I by zinc

finger nucleases (NCT02702115) (29). There are four approved

AAV gene therapy drugs: Glybera (30), Zolgensma (31),
B
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FIGURE 1

Basic information of 255 AAV clinical trials by status and phases (A), disease indications (B), ROAs and serotypes (C), and sponsors (D). ROA and
serotypes associated with <10 trials are not included in the figure. IT and ICM were combined due to the high similarity. Unknown status
suggests that study has passed its completion date and status has not been verified in more than two years.
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Luxturna (32), and Upstaza (33) and one conditional approval

Roctavian (34) in the USA and/or EU.

A total of 182 trials disclosed dosing information, and the

doses vary largely depending on ROA. For systematic dosing of

liver indications, the range is between 5E11 and 1E14 vg/kg.

Since vector titers are quantified by each sponsor independently

using different primers, probes and assays, it is challenging to

perform direct comparison across trials. With this in mind, 14

trials include at least one cohort with a dose higher than 1E14 vg/

kg, 6 out of them are targeting muscle indications, and all of

them are associated with serious adverse events. Another 6 trials

are associated with Zolgensma, which uses self-complementary

AAV9 and have been approved as a commercialized product

(35). The doses for ocular indications range from 2E8 to 5E11

vg/eye, while 2E10 to 1.1E14 vg for CNS indications. The highest

doses for LSD trials are 1.1E14 vg/kg by intravenous injection,

1E14 vg in total by local injection (intraputaminal, intrastriatal,

intracerebral), or 1.1E11 vg/g of the brain by ICM injection. A

total of 242 trials disclosed serotype information, with 72 of

them using AAV2. Other common serotypes are AAV9 (n=36),

AAV8 (n=27), AAV5 (n=22), AAV1 (n=17), AAVrh10 (n=13),

and AAVrh74 (n=11). There are 20 trials using novel engineered

capsids instead of wildtype serotypes (Table 1). Based on

disclosed information, 20 trials (8.3%) use self-complementary

AAV (scAAV), while others use the single-stranded AAV (ssAAV).
Frontiers in Immunology 04
Immunosuppressant usage

As shown in Figure 2, 46.6% (n=118) of trials applied

immunosuppressants (prophylactic or reactive). Most trials used

corticosteroids, while Sirolimus and Rituximab® were also

frequently used. The use of immunosuppressants also depends

on the target tissue rAAV delivered to. Only 33.9% of CNS and

37.5% of ocular-directed trials employed immunosuppressants,

possibly due to the immune-privileged status of CNS and retina.

In contrast, most muscle, liver, and LSD trials employed

immunosuppressants (54.5%-78.1%). In terms of ROA, there

was also a high variability. 68.5% of trials using intravenous

delivery employed immunosuppressants, similarly, 68.4% of

t r ia l s us ing CSF de l ivery ( intra theca l / ICM) used

immunosuppressants . Other loca l CNS injec t ions

(intraputaminal, intrastriatal, intracerebral) had at most 30%

immun o s u p p r e s s a n t u s a g e . A s t im e w e n t b y ,

immunosuppressant usage became more frequent from 18.2%

before 2007 to 44.6% between 2018 and 2022. This could be

explained by a better understanding of AAV immunology

through clinical observations over the years. Among all

serotypes, AAVrh74 trials were the most frequent user of

immunosuppressants (72.7%, 8/11), followed by AAV9 (72.2%,

26/36), AAV8 (53.1%, 17/32) and AAV5 (50.0%, 11/22). Only

24.3% (17/70) of AAV2 trials employed immunosuppressant,
TABLE 1 Clinical trials using engineered AAV capsids.

Disease Trial ID Drug Sponsor Serotype

Achromatopsia NCT02599922 AGTC-401 AGTC AAV2tYF

Choroideremia NCT04483440 4D-110 4DMT 4D-R100

Diabetic macular edema NCT04418427 ADVM-022 Adverum AAV2.7m8

LHON NCT02161380 scAAV2-P1ND4v2 University of Miami AAV2tYF

Neovascular AMD NCT05197270 4D-150 4DMT 4D-R100

Neovascular AMD NCT03748784 ADVM-022 Adverum AAV2.7m8

RP NCT03326336 GS030 GenSight Biologics AAV2.7m8

X-linked retinoschisis NCT02416622 BIIB-087 AGTC AAV2tYF

XLRP NCT04517149 4D-125 4DMT 4D-R100

XLRP NCT03316560 AGTC-501 AGTC AAV2tYF

CF NCT05248230 4D-710 4DMT 4D-A101

Wilson's disease NCT04537377 VTX-801 Vivet Therapeutics Anc80

DMD NCT00428935 d3990 Nationwide Children's Hospital AAV2.5

Fabry NCT04519749 4D-310 4DMT 4D-A101

Gaucher NCT05324943 FLT201 Freeline Therapeutics AAVS3

MMA NCT04581785 LB-001 LogicBio LK03

Hemophilia A NCT03003533 SPK-8011 Spark Therapeutics AAV-LK03

Hemophilia B NCT03369444 FLT180a University College London AAVS3

Hemophilia B NCT02484092 SPK-9001 Spark Therapeutics AAV-Spark100

Hemophilia B NCT03307980 SPK-9001 Spark Therapeutics AAV-Spark100
f

LHON, Leber hereditary optic neuropathy; XLRP, X-linked retinitis pigmentosa; DMD, Duchenne muscular dystrophy; MMA, methylmalonic acidemia.
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which could be partially explained by the fact that AAV2 was most

frequently chosen for ocular diseases.
Antibody screening

There was not much fluctuation in usage of antibody

screening for patient enrollment over time, from 56.5% before

2007 to 58.5% between 2018 and 2022 (Figure 3B). There was an

increase in the usage of total antibody assay (TAB) from 4.3%

before 2007 to 15.0% between 2018 and 2022. This could be

partially explained by the ease of use and higher reliability of

TAB than neutralizing antibody assay (NAB). The antibody

screening varied greatly by disease indications (Figure 3A). CNS

and ocular trials were relatively low: 53.6% and 15.6%,

respectively. In contrast, liver, LSD, and muscle trials were

generally high: 87.5%, 78.8%, and 78.1%, respectively. Another

interesting finding is that while NAB was more frequently used

in other disease categories (60-100% of those used NAB or

TAB), TAB was more frequently used in the CNS trials (59.3%).

Among all serotypes, 86.1% of AAV9 trials used antibody

screening, followed by AAV8 (67.7%) (Figure 3C). In contrast,

only 33.8% of AAV2 trials had antibody screening, which could

be explained by the frequent usage of AAV2 in ocular diseases.

Only 55.0% of trials using engineered capsids had antibody

screening. While NAB was more frequently chosen for other

serotypes, TAB was the predominant choice for AAV9 (67.9%).
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In terms of ROA, 86.2% of intravenous delivery employed

antibody screening, followed by intraarticular (80%),

intracoronary (66.7%), IT/ICM (66.7%), and intramuscular

(62.5%) (Figure 3D). In contrast, intravitreal (20.8%),

subretinal (10.8%), and intracerebral (20.0%) were low. In

these disease categories, NAB was the dominant choice except

for intramuscular (NAB 22.2% vs TAB 77.8%). The titer

threshold for excluding patients varied significantly among

trials: NAB (1:1 to 1:1,200), TAB (1:5 to 1:1,600). What makes

it more difficult to perform cross-trial comparisons is that the

methods used for these assays varied significantly (36). In

addition, the in vitro biological activity of the vectors may also

contribute to the wide range of NAB thresholds.
Toxicity and adverse events

There were a total of 11 reported patient deaths across 8

trials, with the Audentes trial for X-linked myotubular

myopathy having the highest number of patient deaths (n=4),

potentially due to hepatotoxicity. The disease indication, ROA,

serotype, and production system of these 8 trials are summarized

in Table 2. It is worthwhile to mention that whether these patient

deaths are vector-related is unclear in most cases. Due to the

small sample size and lack of detailed reports, it is difficult to

make conclusions on patient deaths in AAV clinical trials. In

addition, it was recently reported that two patient deaths due to
B
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A

FIGURE 2

Immunosuppressants usage of 255 AAV clinical trials by disease indications (A), timeframe (B), serotypes (C), and ROAs (D). ROA and serotypes
associated with <10 trials are not included in the figure. IT and ICM were combined due to the high similarity.
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hepatotoxicity after receiving a commercialized gene therapy

drug, Zolgensma (45). There were 30 clinical holds, 18 of which

were due to adverse events observed in the respective clinical

trials. Others were due to CMC issues, toxicity findings in

preclinical studies or other relevant clinical studies, and

delivery devices. The most prominent TESAEs were

hepatotoxicity (43), TMA (44), and neurotoxicity (40), while

DRG toxicity attracted much attention recently (38, 47). Among

all disease categories, LSD seemed to be the safest, with the least

risk of TESAEs (20.0%), while CNS had the highest risk (42.6%)

(Figure 4A). Among all ROAs, IT/ICM seemed to be the safest

(5.3%), while local CNS injections had relatively high risk (37.5-

50.0%). Interestingly, intravitreal had a lower risk of TESAEs

than subretinal (17.4% vs 38.9%), which could be explained by
Frontiers in Immunology 06
the invasiveness of subretinal injections (Figure 4B). In terms of

serotypes, AAV1 and AAV5 seemed to be safer, with a risk of

TESAEs at 17.6% and 19.0%, respectively (Figure 4C).
Durability

Long-term clinical data from AAV trials showed incidences

of declining transgene expression over time, which may be due

to immune response and vector dilution. Declines in transgene

expression occur either rapidly or gradually, indicating two

distinct mechanisms (presumably acute immune response vs

vector dilution). In this study, ‘durable’ was defined as sustained

transgene expression or clinical efficacy in all patients during the
TABLE 2 Patient deaths that occurred in AAV-related clinical trials.

Disease Trial ID Drug name Serotype ROA Production Patient deaths References

DMD NCT03362502 PF-06939926 AAV9 Intravenous Undisclosed 1 37

ALS N/A AAV-miR-SOD1 AAVrh10 Intrathecal HEK293 1 38

MPS IIIA NCT03612869 SAF-302 AAVrh10 Intracerebral HEK293 1 39

GAN NCT02362438 TSHA-120 AAV9 Intrathecal HEK293 1 40

GM2 gangliosidosis NCT04798235 TSHA-101 AAV9 Intrathecal HEK293 1 41

SMA NCT03461289 Zolgensma AAV9 Intravenous HEK293 1* 42

XLMTM NCT03199469 AT132 AAV8 Intravenous HEK293 4 43, 44
fr
Two patient deaths were recently reported when Zolgensma is commercially used, and no detailed information was released yet (45). One patient death in a clinical trial for arthritis was
excluded because it was deemed not be related with AAV (46). ALS, amyotrophic lateral sclerosis; GAN, giant axonal neuropathy; SMA, spinal muscular atrophy.
B
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FIGURE 3

Antibody assays of 255 AAV clinical trials by disease indications (A), timeframe (B), serotypes (C), and ROAs (D). ROA and serotypes associated
with <10 trials are not included in the figure. IT and ICM were combined due to the high similarity. Trials that indicated usage of antibody assays
but did not specify types of assays are not included.
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latest follow-up visit, otherwise it was defined as ‘decline’.

Notably, sometimes it is difficult to distinguish lack of initial

efficacy and declining transgene expression because some trials

observed no efficacy in the first follow-up. Up to 90.0% of CNS

and 73.3% of muscle diseases (only those that had publicly

available durability data counted) achieved durable transgene

expression, in spite of the limited follow-up time and relatively

small sample size (Figure 5A). In contrast, only 47.4% of liver

trials achieved durability, which can be explained by higher risk

of immunogenicity due to systemic administration and active

cell divisions of hepatocytes. Only 43.6% of ocular trials achieved

durable efficacy, which is counterintuitive because the retina is

usually seen as an immune-privileged compartment (48). In

general, there was significant inter-patient variability, possibly

due to differences in age, genetic background, disease

progression, or immune system. This highlights the need of

careful patient selection in designing clinical trials. Further, there

was no clear correlation between dose and durability even within

individual trials. For example, in one trial (RGX-314 for wet

AMD), lower doses achieved better durability. This may be

because although high dose leads to higher initial transgene

expression for decline to begin with, it also causes higher risk of

immune response. It is expected to be necessary to identify an

optimal balance between high dose and low immunogenicity.

Trials using engineered capsids (LK03 for hemophilia A, AAV-

Spark100 and AAVS3 for hemophilia B) seemed to achieve
Frontiers in Immunology 07
better durability even with relatively low doses. However, in

general, there is no clear pattern in terms of durability between

different serotypes (Figure 5C). One may expect subretinal

injections would achieve better durability because AAV is

injected into an immune-privileged compartment (49).

However, there was no evidence supporting it (intravitreal

64.3% vs subretinal 36.4%) (Figure 5D).
Production system

Plasmid transfection in HEK293 or HEK293T cells became

the predominant AAV production system since 2007, while the

producer cell line was more frequently used before 2007. There is

an increase in the rBac-Sf9 system from 5.6% before 2007 to

20.2% between 2018 and 2022 (Figure 6A). The pros and cons of

each system and system used by different companies or institutes

are summarized in Table 3. The rBac/Sf9 system has advantages

in yield, empty/full ratio, and scalability over other systems (50,

51). Yet, one study showed that AAV produced by the rBac/Sf9

system had a higher degree of truncated and unresolved species

than those generated by the HEK293 system (52). Another study

showed that the rBac/Sf9 system may lead to difference in post-

translational modifications, host cell protein impurity profile,

and methylation status of capsid proteins, as well as reduced

potency compared to the HEK293 system (53). However, the
B
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FIGURE 4

Reported TESAEs of 255 AAV clinical trials by disease indications (A), ROAs (B), serotypes (C), and manufacturing systems (D). ROA and serotypes
associated with <10 trials are not included in the figure. IT and ICM were combined due to the high similarity. Trials that initiated recently are
not included for analysis.
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differences observed in this study was not substantial, and the

vectors generated from the two systems were not of similar

quality. Moreover, it was reported that by modulating ratio of

VP1/2/3 capsid composition in the rBac/Sf9 system, the potency

of AAV vectors could be significantly improved to be

comparable to the HEK293 system (54). All of these may have

implications for AAV immunogenicity and toxicity in clinical

studies. Nonetheless, no difference in risk of TESAEs were found

between trials using rBac/Sf9 (38.2%) or HEK293 (35.8%)

(Figure 4D). Also, a total of 9 patient deaths occurred in 134

AAV trials using the HEK293 system, while there is one

individual death for the producer cell line system (n=24)

(Figure 6B). The impact of the production system on

durability of transgene expression was also assessed. HEK293
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and rBac-Sf9 systems had comparable results: 58.2% and 66.7%

of trials achieved durable efficacy, respectively (Figure 5B).

Interestingly, producer cell line and rHSV systems had only

16.7% and 33.3% of trials achieving durability. Admittedly, the

sample size is small.
Discussions

Immune responses against AAV pose significant challenges

for gene therapy development, impacting patient enrollment,

toxicity profile, and durability of efficacy. Systematic analysis of

currently available clinical data is an important initial step to

overcome immune responses against AAV, which could be
B

C D

A

FIGURE 5

Reported durability of 255 AAV clinical trials by disease indications (A), manufacturing systems (B), serotypes (C), and ROAs (D). ROA and
serotypes associated with <10 trials are not included in the figure. IT and ICM were combined due to the high similarity. Trials that initiated
recently or did not report efficacy and transgene expression data are not included for analysis.
A B

FIGURE 6

Manufacturing systems of 255 AAV clinical trials. (A) System usage in different time periods. (B) Patient deaths in trials using different
manufacturing systems. Trials that did not report manufacturing systems are not included for analysis.
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empowered by accumulating data and more open data-sharing.

This study analyzed multiple aspects of 255 AAV clinical trials,

providing a knowledge basis for future preclinical and clinical

study design. Previous studies have shown that pre-existing

antibodies could significantly inhibit AAV transduction (55)

and activate memory cells (56). Therefore, pre-existing

antibodies exclude a large portion of patients from receiving

potentially life-saving treatments due to the relatively high

prevalence among human population. It becomes a bigger

issue when targeting diseases like Parkinson’s disease because

as people age, they would have a higher likelihood to be exposed

to AAV. One approach is to use wildtype or engineered capsids

that have less seropositive prevalence in human population (53,

54). Another option is using local administration, which is

expected to have a reduced risk of interactions between AAV

and antibodies (55). Other methods include plasmapheresis (57,

58), saline flushing (59), IgG proteases (60), capsid engineering

(61–63), and lipid nanoparticle encapsulated rapamycin (64),

most of which are under preclinical development. In clinical

settings, a more frequently applied method is antibody screening

during patient enrollment. NAB directly measures antibodies

that neutralize AAV vectors and inhibit transduction. However,

as a cell-based assay, NAB has a higher variability due to

differences in cell line maintenance, report gene choices, and

multiplicity of infections used (36). Other drawbacks of NAB

include the omission of the contribution of non-neutralizing
Frontiers in Immunology 09
antibodies to immune responses and logistic difficulty when

compared with TAB. Possibly due to the aforementioned

reasons, this study observed an increased percentage of TAB

usage over time. Another key aspect of immune response against

AAV in clinical setting is toxicity, evidenced by multiple

incidences of hepatotoxicity (43–45, 65), TMA (25, 26), MRI

abnormality (66), and DRG toxicity (38, 47). Considering the

complexity in chemistry manufacturing and controls (CMC) of

recombinant virus products, it is not feasible to directly compare

across products from different sponsors. However, a significant

number of trials showed a positive correlation between dose and

efficacy, meanwhile high doses may lead to a higher risk of

complement activation (25, 26), liver enzyme elevations (67),

and other adverse effects (66). In many cases, liver enzyme

elevations and complement activation can be alleviated by

immunosuppressants (67), but not always (44). DRG toxicity

has also been reported to be dose-dependent in multiple large

animal studies (68). Fortunately, this was less frequently

observed in clinical studies, expect two trials for amyotrophic

lateral sclerosis (38) and giant axonal neuropathy (40). One

potential reason could be species differences. Notably,

researchers have developed a potential strategy to reduce the

DRG toxicity by silencing the transgene expression in DRG via

microRNA (69).

One of the advantages for AAV gene therapy is seen as

relatively long-lasting transgene expression, which is achieved
TABLE 3 Comparison of AAV manufacturing systems.

Manufacturing
system

Pros & Cons Companies or institutes

Plasmid transfection
in HEK293/
HEK293T

Yield (++), Full/
Empty ratio (+),
Scalability (+),
Timeline (+++)

HEK293: Abbvie, Abeona Therapeutics, Amicus Therapeutics, ASC Therapeutics, AskBio, Audentes, Avigen, Capsida,
Ceregene, Children's Hospital of Philadelphia, Editas, Forge Biologics, GenSight Biologics, Harvard Gene Therapy Initiative,
Homology Medicines, Lonza*, Lysogene, MeiraGTx*, Nationwide Children's Hospital, Neurogene*, NeuroLogix, Novartis Gene
Therapies, Passage Bio, REGENX Bio, Rocket Pharma, Spark Therapeutics, Sarepta, Sio Gene Therapies, Taysha Gene
Therapies, University of Florida, University of Pennsylvania, 4DMT

HEK293T: Freeline Therapeutics, MeiraGTx*, Genethon, Nantes University Hospital, Nightstar Therapeutics, St. Jude
Children's Research Hospital, University College London, Weill Medical College of Cornell University

Baculovirus in Sf9 Yield (+++), Full/
Empty
ratio (+++),
Scalability (+++),
Timeline
(++)

Adverum, Amsterdam Molecular Therapeutics, Avirmax, BioMarin, Frontera Therapeutics, Neurogene*, Pfizer, Prevail
Therapeutics, Lonza*, Sangamo Therapeutics, UniQure, Voyager Therapeutics

HSV in HEK293 or
sBHK

Yield (++), Full/
Empty ratio (++),
Scalability (++),
Timeline (++)

AGTC*, Neurophth, Solid Biosciences

Producer cell line Yield (++), Full/
Empty ratio (+),
Scalability (+++),
Timeline (+)

Atsena Therapeutics, Celladon Corporation, Targeted Genetics Corporation, Ultragenyx
HSV, Herpes simplex virus; sBHK, suspension baby hamster kidney cells. * indicates companies or institutes reporting multiple systems.
+ indicates the level of strength.
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mainly through episomal AAV (70, 71). Previous studies showed

sustained efficacy for 3 years or longer periods (72, 73).

However, many clinical studies observed reduced transgene

expression over time, for instance, in some trials for

Hemophilia A. In addition to vector dilution, the durability of

efficacy can also be impacted by CTL-mediated elimination of

transgene-expressing cells (74) and promoter silencing (75).

This situation is further exacerbated by the fact that repeated

dosing is challenging due to immune responses against AAV (8).

In this study, there is high variability in durability across trials,

depending on multiple factors, including disease indications,

serotypes, ROAs, doses, AAV genome sequences, and genetic

background of individual patients. It has been shown that

muscle gene transfer could achieve sustained efficacy through

inducing immune tolerance by regulatory T cells (76–78). In this

study, 73.3% muscular trials achieved durable transgene

expression (Figure 5A). However, although there is also

clinical evidence of induction of immune tolerance through

liver gene transfer (79), only 47.4% of liver trials achieved

durable efficacy. This may be partially explained by the more

rapid hepatocyte turnover and vector dilution, as well as more

antigen presentation due to systemic administration. CNS and

retina are usually seen as ‘immune-privileged’ compartments,

and gene transfer to CNS and retina are expected to achieve

more durable efficacy. Although 90% of CNS achieved durable

transgene expression, only 43.6% of ocular trials observed

sustained efficacy. This highlighted the complexity in

designing ocular trials and the need to carefully select dose,

ROA, and patients (genetic background, disease progression,

age). Overall, the durability of AAV gene therapies is reasonably

good, although careful patient selection and optimized design

are warranted.

In addition to immune responses, AAV toxicity can result

from potential insertional mutagenesis. rAAV exists mainly as

an episome, but still be able to integrate into host chromosome

DNA (80). It was estimated that intravenous administration may

deliver >100 vector copies per hepatocyte on average (81). With

the robust metabolism and strong regeneration activity of

hepatocytes, there are concerns about vector genome insertion

and oncogenesis. Tumorigenesis events are documented in

rodent studies but shown to be less frequent in large animals

(71, 82–86), indicating a species dependence. The integration

risk also seems to be serotype-dependent. One mouse study

using AAV9 observed hepatocellular carcinoma (87), while a

similar study using AAV5 did not (88). In addition, the risk also

depends on promoter choice as shown in a murine study (86).

Currently, only one patient developed a liver tumor

(NCT03569891) and finally showed not to be related with

AAV dosing (89). Improving the vector potency and

specificity by engineering may significantly decrease the

required dose, which reduces the risk of genome insertion.
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Also, exploring the genome design to accelerate the

circularization kinetics may help reduce the exposure of the

linear genome to double strand breaks, which may reduce the

insertion events. In light of this, the FDA recently organized a

Cellular, Tissue, and Gene Therapies Advisory Committee

(CTGAC) meeting to address AAV toxicity issues, including

AAV integration risk. In summary, the insertional mutagenesis

risk of AAV is relatively low in the context of currently available

clinical data, but it should be monitored in the long-term follow

up studies as recommended by the FDA.

Compared with small or large molecule drugs, another

crucial challenge for gene therapy is translatability.

Remarkable efficacy has been observed in many small animal

studies, while the translatability to large animal and clinical trials

are limited. For instance, an engineered capsid selected from a

C57BL/6J mice strain penetrates the blood brain barrier

efficiently (90). However, the receptor for this selected capsid,

PHP.B, only exists in some mouse strains but not others or

NHPs (91). There is a high demand for designing and screening

better capsids to enter target cells or tissue more efficiently and

specifically. However, due to the complexity and differences of

blood circulation, cell and tissue types, cell surface protein

patterns related with attachment and binding, many novel

capsids work well only in certain animal models (91, 92).

Understanding the species differences and developing new

models for mimicking the specific questions to solve will

enhance the translatability in the future. Another example is

the vector penetration for ocular indications by intravitreal

injection. Human eye structure has the inner limiting

membrane, which brings extra physical barriers than mouse

species. In addition, the cross-species translatability issue also

pose significant challenges for predicting immune responses in

clinical studies from preclinical data. This holds especially true

for T cell responses as expansion of capsid-specific CD8+ T cells

was observed in humans (93), but not mice (94), dogs (95), and

NHPs (96). Thus, it is critical to develop suitable animal models

to recapitulate immune responses against AAV in humans.
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20. Sudres M, Ciré S, Vasseur V, Brault L, Da Rocha S, Boisgérault F, et al.
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