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We quantify CO2 emissions from Europe’s largest fossil fuel power plant, the

Bełchatόw Power Station in Poland, using CO2 observations from NASA’s

Orbiting Carbon Observatory (OCO) 2 and 3 missions on 10 occasions from

March 2017 to June 2022. The space-based CO2 emission estimates reveal

emission changes with a trend that is consistent with the independent reported

hourly power generation trend that results fromboth permanent and temporary

unit shutdowns. OCO-2 and OCO-3 emission estimates agree with the

bottom-up emission estimates within their respective 1σ uncertainties for

9 of the 10 occasions. Different methods for defining background values

and corresponding uncertainties are explored in order to better understand

this important potential error contribution. These results demonstrate the ability

of existing space-based CO2 observations to quantify emission reductions for a

large facility when adequate coverage and revisits are available. The results are

informative for understanding the expected capability and potential limitations

of the planned Copernicus Anthropogenic CO2 Monitoring (CO2M) and other

future satellites to support monitoring and verification of CO2 emission

reductions resulting from climate change mitigation efforts such as the Paris

Agreement.
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1 Introduction

Reducing CO2 emissions from fossil fuel combustion is essential to controlling the rise

in global temperatures, the central objective of the United Nations Framework

Convention on Climate Change (UNFCCC) Paris Agreement. About half of global

fossil fuel CO2 emissions come from large facilities such as power plants (Singer

et al., 2014; IEA, 2019). An observation-based approach for quantifying CO2

emissions from these facilities could support transparency under the Paris Agreement.
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The use of space-based atmospheric observations in a global CO2

emission monitoring system has been considered for over a

decade (Bovensmann et al., 2010; Pacala et al., 2010). The

Copernicus Anthropogenic CO2 Monitoring (CO2M) mission

is a planned constellation of two to three satellites, which

comprise the space component of the European Commission’s

greenhouse gas Monitoring and Verification Support (MVS)

capacity (Ciais et al., 2015; Meijer et al., 2017; Pinty et al.,

2017). The CO2M Mission Requirements Document (MRD)

identifies these objectives:

1) To detect emitting hot spots, such as megacities and power

plants,

2) To monitor hot spot emissions to assess emission reductions/

increases,

3) To assess emission changes against local reduction targets to

monitor impacts of Nationally Determined Contributions

(NDCs) under the Paris Agreement,

4) To assess the national emissions and changes in 5-year time

steps to estimate the global stocktake.

Previously, in Nassar et al. (2017), we presented the first

detection and quantification of CO2 emissions from individual

power plants derived from observations by NASA’s Orbiting

Carbon Observatory 2 (OCO-2) (Crisp et al., 2017), which helped

to demonstrate CO2M’s first objective in select cases where

adequate coverage was available. Other work has explored

different modeling and analysis methods (Zheng et al., 2019)

and the simultaneous use of satellite CO2 and NO2 data (Reuter

et al., 2019; Hakkarainen et al., 2021) for power plant CO2

emission quantification. Methodological improvements for

OCO-2 emission estimates were implemented in Nassar et al.

(2021). Here we present the quantification of CO2 emission

reductions at the European Union’s largest CO2 point source,

the Bełchatów Power Station in Poland, by adapting the Nassar

et al. (2021) method for the Orbiting Carbon Observatory 3

(OCO-3), thus demonstrating CO2M’s second objective in a case

study on a large power plant. Baseline CO2 observations near

Bełchatów were made in March 2017 with OCO-2 (Nassar et al.,

2021; Crisp et al., 2022). Using the new CO2 mapping capability

of OCO-3 (Taylor et al., 2020) at Bełchatów from April 2020 to

June 2022, we determine emission reductions consistent with

reported hourly power generation changes. To our knowledge,

this work represents the first space-based observational evidence

of anthropogenic CO2 emission reductions at the scale of a single

facility, demonstrating the feasibility of facility-scale emission

monitoring to support efforts to track CO2 emission reductions

under the Paris Agreement. Following launch in 2025–2026,

CO2M will begin to enable MVS capabilities far surpassing those

of existing missions, while in the longer term, an international

constellation of satellites with complementary orbits and

observing approaches (Crisp et al., 2018) could deliver further

enhancements for policy-relevant CO2 emission monitoring.

2 Methods

2.1 Observations and meteorological data

NASA’s OCO-2 satellite (Crisp et al., 2017) was launched in

July 2014 and observes from a sun-synchronous orbit (~705 km

altitude) with an equator crossing time of ~13:30 for the

ascending node. OCO-2 has limited imaging capability,

measuring the column-averaged mole fraction of CO2 (XCO2)

in eight parallelogram-shaped footprints (≤1.29 × 2.25 km2)

across a narrow swath that ranges from ~2 to 10 km. OCO-3

was launched to the International Space Station (ISS) in May

2019 and is similar to OCO-2, but observes from a lower

(~420 km), precessing orbit, rather than a sun-synchronous

orbit. OCO-3 also has slightly larger footprints (≤1.6 ×

2.2 km2) and enhanced scanning capability through the

addition of a Pointing Mirror Assembly (PMA). OCO-3’s

PMA enables multiple sweeps of an area in Snapshot Area

Mapping (SAM) mode to deliver XCO2 imagery over a city-

scale area of interest in under 2 min (Taylor et al., 2020). We

often refer to the complete set of observations from a SAMmode

overpass as a SAM.

We generated Keyhole Markup Language (KML) files to view

OCO-2 and OCO-3 version 10 (v10) XCO2 data, wind vectors

and clouds in Google Earth, which enables an assessment of the

surrounding area for issues like complex terrain, land-water

crossings or relevant secondary sources. Cloud observations

used with OCO-2 are from the Moderate Resolution Imaging

Spectroradiometer (MODIS) on Aqua, which flies in the A-Train

~6 min after OCO-2. For OCO-3, both MODIS Aqua and Terra

cloud data are considered, although both can have large temporal

offsets relative to OCO-3. We use wind information from

MERRA-2 (0.5 ° × 0.65 °, 3-h average) (Molod et al., 2015)

and ERA-5 (0.25° × 0.25°, instantaneous hourly) (Bell et al.,

2020).

OCO-2 and OCO-3 KML files and emission estimates are

based on the NASA Atmospheric Carbon Observations from

Space (ACOS; O’Dell et al., 2012; Crisp et al., 2012) Build

10 algorithm yielding v10 data. In general, we use bias-

corrected but unfiltered OCO-2 and OCO-3 v10 XCO2 data,

since the methodology benefits from images with few data gaps,

but in two instances for OCO-3 (described later), standard

filtering has been applied. In addition to using the same

XCO2 retrieval algorithm, both OCO-2 and OCO-3 are also

calibrated and validated against the same ground-based reference

data from the Total Carbon Column Observing Network

(TCCON) (Wunch et al., 2011), which is linked to the World

Meteorological Organization (WMO) standard CO2 reference

scale. However, for OCO-2, small errors in pointing knowledge

(~1/3 of a footprint) result in XCO2 biases in the presence of

rough topography. These biases were greatly reduced in version 9

(Kiel et al., 2019) and version 10 is a further improvement. OCO-

3 pointing errors result from different factors than for OCO-2
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FIGURE 1
Bełchatόw Power Plant overpasses from OCO-2 (2017-03-28) and OCO-3 (all others). Colored parallelograms are bias-corrected XCO2

footprints with customized color scales, overlaid on Google Earth Landsat/Copernicus satellite surface imagery. The power plant location is the
yellow tack and the MERRA-2 (blue) and ERA-5 (pink) wind vectors are shown as arrows of length proportional to wind speed. The spatial scale is
indicated in the lower left of each panel.
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and efforts to reduce them are still evolving, hence OCO-3

pointing errors may be slightly larger, but typically smaller

than a footprint (~0–2 km).

The 2017-03-28 overpass analyzed in Nassar et al. (2021) is a

rare OCO-2 overpass near Bełchatów with the wind direction

intersecting the OCO-2 swath, a visually-discernable

enhancement and free of other prohibitive issues for emission

quantification. This OCO-2 overpass and nine OCO-3 SAMs

from April 2020 to June 2022 are shown in Figure 1 and are used

in the present analysis to quantify Bełchatów Power Station CO2

emission changes over time.

2.2 Gaussian plume model

We simulate XCO2 enhancements using a vertically-

integrated Gaussian plume model based on the following

equations, as in Nassar et al. (2017; 2021):

V(x, y) � F���
2π

√
σy(x)ue

−(1/2)(y/σy(x))2 (1)

σy(x) � a · ( x

xo
)0.894

(2)

V is the CO2 vertical column in (g/m2) at the point source and

downwind of it. The x-direction is parallel to the wind direction

and the y-direction perpendicular to the wind direction. V

depends on the emission rate F (in g/s), the across wind

distance y (in m), wind speed u (in m/s) at the height of the

plume midline, and the standard deviation in the y-direction, σy
(in m). Here x is specified in m and xo = 1,000 m is a

characteristic length so that the argument of the exponent is

dimensionless. The atmospheric stability parameter a is

determined by classifying a source environment by the

Pasquill-Gifford stability, which depends on the surface wind

speed, cloud cover and time of day (Pasquill, 1961; Martin, 1976).

All overpasses are treated as clear sky near the sources based on

the fact that OCO-2 or OCO-3 observe successfully and a visual

inspection of MODIS cloud data. The vector average of MERRA-

2 and ERA-5 is used to reduce effects of outliers from a single

meteorological data set. A modified approach to stability

parameter a (Pasquill, 1961; Martin, 1976) is applied as in

Nassar et al. (2021).

2.3 Plume rise, background, wind
optimization and model-observation fit

To determine the height of the plumemidline, we account for

plume rise above the stack height as in Nassar et al. (2021),

assuming a typical rise of 250 m based on Brunner et al. (2019).

Emission uncertainties related to plume rise are discussed below.

To determine XCO2 enhancements (ΔXCO2) from OCO-2, a

background value is found by averaging footprints within a certain

distance of the swath in one or both directions from the plume

FIGURE 2
CO2 emission quantification from the OCO-2 Bełchatόw overpass on 2017-03-28. (A) A one-dimensional view of XCO2 footprint values by
collapsing the cross-track direction to show the enhancement or plume footprints (red), background footprints (blue) and others (black). The
background value determined by averaging all blue points is shown as a vertical green line. (B)Observed XCO2 relative to the background value with
the positive x-axis aligned with the wind direction. (C)Gaussian plumemodel XCO2 enhancement with dotted lines denoting a region between
the enhancement and background. (D) Model XCO2 enhancements as would be observed by OCO-2 and used in the observation-model fit.
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(excluding a buffer region typically about the length of an OCO-2

footprint) as shown in Figure 2A. For OCO-3, we revise the

background methodology for the different coverage offered by

SAM mode, instead averaging footprints within a radius of

30 km, excluding the plume and a 3-km narrow buffer region

(selected as roughly the length of an OCO-3 footprint), as shown

in Figure 3. For each SAM, themean background value inmolecules/

m2 from the OCO-3 Level 2 Standard files is converted to g/m2 and

used with the mean XCO2 value for the identical set of footprints to

obtain a conversion factor “k” (in ppm·g−1m2), which is used to

convert the model CO2 enhancements to ΔXCO2 in ppm.

Uncertainties related to background selection are discussed below.

The OCO-2/OCO-3 footprints that comprise the observed

plume correspond to the plume extent from the Gaussian plume

model (Eqs 1,2). The parameter σy(x) relates to the plume width,

based on the atmospheric stability parameter a, which is

determined from the mean wind speed (at the plume midline

height) from the meteorological data. As in Nassar et al. (2021),

we sample the model at 25 equal-area parallelogram-shaped sub-

footprints, which we average to give a model value corresponding

to an OCO-2/OCO-3 footprint. We also account for the path of

the incoming and/or reflected light through the plume with a

similar geometrical approach to our past work (Nassar et al.,

2017).

A least squares fit between the model and observed ΔXCO2 is

carried out and the correlation coefficient (R) is calculated with

the x-axis aligned with the vector mean of the MERRA-2 and

ERA-5 winds. Adjustments to the mean wind direction up to 45°

are also applied and the optimal wind direction is considered to

be that which maximises R. If a low R is obtained even after

optimization, results are viewed with caution since this either

means that the observations are of questionable quality or the

true plume is poorly approximated by a Gaussian, recognizing

that a Gaussian is not always a valid approximation for a point

source plume. The emission estimate is based on the factor

required to scale a unit emission to match the observations in

the fit, so it is independent of a prior emission estimate.

2.4 Emission uncertainties

Emission uncertainties are determined for various

contributing factors and these component uncertainties are

then added in quadrature for a total (1σ) uncertainty ε.

ε �
���������
ε2w + ε2b + ε2r

√
(3)

The uncertainty due to wind speed (εw) is calculated as the

relative difference of the MERRA-2 or ERA-5 wind speed from

the mean wind speed, then this relative difference is converted to

emissions (ktCO2/day). Other uncertainty terms are calculated

with an ensemble approach, where different values are used in the

FIGURE 3
Background XCO2 for OCO-3 emission estimates is determined as the average XCO2 within a 30-km radius excluding the plume sector and a
narrow buffer region (left). The background uncertainty is determined as the higher uncertainty that results from one of two ensembles: 1) A varying
radius ensemble of 20, 30, and 40 km radii (upper centre and right) and 2) the full 30-km radius alongwith the eastern andwestern halves of the same
radius (lower centre and right).
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calculation to conduct an emission estimate, then the standard

deviation of the ensemble is considered the uncertainty from that

component.

The background uncertainty (εb) is determined from

conducting emission estimates with different plausible

background regions, then the standard deviation of those

estimates is taken. For OCO-2, manually-selected backgrounds

of varying linear distances from the source were used. For OCO-3

SAMs, a background ensemble is based on backgrounds that are

determined from all footprints within radii of 20, 30 and 40 km

from the source, excluding the plume area and a buffer region of

3 km on either side of the plume. Since east-west gradients in the

background region were sometimes observed for OCO-3, we also

consider the contribution due to variations within the 30 km

radius by estimating emissions using only the eastern or western

half of the same circular area, giving a second ensemble also

consisting of 3 members: full 30-km radius, eastern half, and

western half. The larger uncertainty resulting from these two

ensembles (varied radii, full-eastern-western) is used as the

background uncertainty. This approach could also be adapted

for gradients in the background occurring in other directions, if

required.

The error term (εr) introduced in Nassar et al. (2021)

accounts for the impact of plume rise on anthropogenic CO2

emission quantification (Brunner et al., 2019). We obtain an

ensemble of emission estimates assuming plume rise values of

100, 200, 250, 300 and 400 m, consistent with Brunner et al.

(2019), where typical plume rise for a large German power plant

peaks near 250 m (although slightly lower in winter) with a

skewed distribution exhibiting a tail of higher values.

For OCO-2 an enhancement uncertainty (εe) was determined

from an ensemble of emissions estimates using variations of the

retrieved data rather than attempting to propagate individual

OCO-2 or OCO-3 XCO2 footprint uncertainties, which have an

unknown correlation between them. In Nassar et al. (2017)

different bias correction methods with OCO-2 version 7 data

were used (including non-bias-corrected data) for this term. In

Nassar et al. (2021), the enhancement ensemble for OCO-2

overpasses used v9 and v10 observations. For OCO-3, no

earlier versions of the data based on a different retrieval

algorithm are available and the use of non-bias-corrected data

or ad hoc bias corrections is discouraged. For OCO-3, we

explored calculating εe using different filtering approaches, but

it led to unrealistically large uncertainties in some cases and

negligible uncertainties in others, so it was discontinued. For

OCO-3, we have thus omitted the εe term. For the previously

published OCO-2 Bełchatów 2017-03-28 overpass reported as

98.2 ± 11.9 ktCO2/day, the uncertainty is only reduced slightly

to ±11.6 ktCO2/day.

Accounting for all relevant uncertainties in a proper

quantitative sense is a challenge. Here we present an attempt

at quantifying the uncertainties that we consider reasonable, but

acknowledge that our quoted uncertainties could be an

underestimate of the total uncertainty due to missing terms or

unaccounted for correlations in the existing terms.

3 Results

3.1 Emission estimates and uncertainties
derived from OCO-2 and OCO-3
observations

The Bełchatów Power Station is the fifth largest coal-fired

power plant in the world based on its current nameplate

capacity of 5102 MW. It is the largest lignite-fired power

plant in the world and lignite (brown coal) typically has a

higher emissions intensity (kgCO2/kWh) than anthracite

(hard coal). Bełchatów’s annual emissions were 37.6 MtCO2

in 2017 in the European Pollutant Release and Transfer

Register (E-PRTR), when it had 13 units operating for a

capacity of 5420 MW, following the addition of a new

858 MW unit and prior to the 2019 shutdown of its oldest

unit. On 28 March 2017 (2017-03-28) at 12:23 Central

European Standard Time (CEST), OCO-2 made a close

flyby ~3 km downwind of the power plant (Figure 1). Bias-

corrected, unfiltered OCO-2 v10 (XCO2) data yield a broad

clean background (based on 851 footprints, Figure 2) and the

observed enhancement (24 footprints) gives a maximum

correlation of 0.726 with our plume model requiring only

a −2.0° rotation to the MERRA-2 and ERA-5 mean wind

direction. Estimated emissions are 98.2 ± 11.9 ktCO2/day

(1σ uncertainty), which is within 5% of the daily average

value of 103 ktCO2/day derived from 2017 E-PRTR annual

emissions.

From April 2020 to June 2022 inclusive, 69 SAMs were

attempted by OCO-3 at Bełchatów. Fifteen of these SAMs had

at least 1,000 footprints with XCO2 successfully retrieved after

loss of data due to clouds and other factors (excluding data

quality filtering), but sometimes lacked observations in close

proximity to and downwind of the source. OCO-3 SAM

observations at Bełchatów that were not obstructed by

clouds and with a wind speed acceptable for Gaussian

plume modeling (≥2 m/s) were obtained on nine different

dates during 2020–2022. The dates, times, emission estimates,

total uncertainties and related information are given in

Table 1. Wind speeds and directions for these overpasses

are given in Table 2 and the component uncertainties are

given in Table 3.

OCO-3 observed a SAM over Bełchatów on 2020-04-10

(~14:36 CEST), which is approximately 80 × 120 km2,

excluding an extended background region. The wind blew

to the southeast with a mean speed of 3.86 m/s resulting in a

CO2 plume downwind from the power plant, which appears as

an enhancement above a slightly noisy background XCO2. The

30 km radius background sector consists of 614 footprints and
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the plume consists of 129 footprints giving a maximum

correlation of 0.657 after applying a +3.0° rotation to the

mean wind direction. Emissions were estimated as 81.1 ±

8.9 ktCO2/day (Figure 4). The dominant uncertainty is wind

speed (8.2 ktCO2/day) with only minor contributions from

other factors (Table 3).

The 2020-04-17 (~10:42 CEST) OCO-3 SAM initially gave a

maximum correlation of less than 0.200 even after wind

adjustment, indicating a poor fit. A misalignment between the

source location and the plume origin may be responsible for the

low correlation. OCO-3 observations currently involve a

geolocation correction (Taylor et al., 2020) with a 1σ
magnitude of about 2 km, but the correction methodology is

still evolving. Exploring ad hoc shifts to the plume origin suggests

that the offset in this case might be larger than 2 km; however, the

same effect could also result from a few biased footprints near the

source. As we are unsure if a geolocation issue or some biased

footprints are the underlying cause, we only fit the plume

beginning at 8 km from the origin, which gives a correlation

of 0.332 with a wind adjustment of -8.62° and an emission

estimate of 76.3 ± 3.4 ktCO2/day (Figure 5). Once again, wind

speed is the dominant contributor to the uncertainty

(3.2 ktCO2/day).

Earlier analyses that led to this work investigated a clear-

sky SAM on 2020-04-08 with a low mean wind speed (1.68 m/

s) and an abrupt change to wind direction 1–2 h before the

TABLE 1 Bełchatόw CO2 emission estimates on multiple dates compared with reported power generation.

Overpass
date

Local time (Central
European Time)b

Power
generated at
hour of
overpass
(MW)

Expected
emissions
(ktCO2/day)

Space-based
emission
estimate
(ktCO2/day)

Ratio of
absolute
difference to
uncertainty

R Footprints in
plume
(background)

2017-03-28a 12:23 4,755 113.3 98.2 ± 11.9 1.13 0.726 24 (851)

2020-04-10 14:36 3,601 85.8 81.1 ± 8.9 0.35 0.657 129 (614)

2020-04-17 10:42 3,230 77.0 76.4 ± 5.2 0.15 0.332 91 (655)

2021-06-18 10:24 3,666 88.1 101.1 ± 12.7 1.21 0.715 121 (676)

2021-06-19 9:36 2,798 66.7 72.3 ± 3.0 1.89 0.628 43 (596)

2021-06-20 8:48 1971 47.0 28.0 ± 4.0 4.55 0.544 81 (549)d

2021-10-08 13:53 2,785 66.4 58.5 ± 10.3 0.65 0.471 115 (529)

2021-10-09 13:06 1784 42.5 44.8 ± 7.0 0.43 0.280 141 (426)

2022-06-24 8:00 3,395 80.9 96.5 ± 19.2 0.89 0.885 32 (351)d

2022-06-27 7:12 3,495 83.3 94.0 ± 10.5 1.16 0.630 76 (368)

Average 3,151 75.1 75.1 ± 9.4 1.25c 0.587 85 (562)

aThis overpass was observed by OCO-2, while all others were observed by OCO-3.
bThe local time for a footprint close to the source is stated, but a full OCO-3 SAM observation lasts approximately 2 min.
cThe median is 1.02, while the mean is 1.25.
dStandard OCO-2/3 data quality filtering was applied to these overpasses, though not used in other cases.

TABLE 2 Wind speeds and wind direction for each emission estimate.

Overpass Plume midline wind speed (m/s) Plume midline wind direction (°)

MERRA-2 ERA-5 Average MERRA-2 ERA-5 Average Adjusted

2017-03-28 9.14 7.56 8.36 120.60 117.67 119.26 117.22

2020-04-10 4.29 3.51 3.86 110.84 126.98 118.09 121.00

2020-04-17 6.47 5.76 6.11 154.35 151.69 153.10 144.48

2021-06-18 6.00 5.55 5.78 −37.39 −35.99 −36.72 −36.72

2021-06-19 6.63 6.47 6.55 −44.38 −40.80 −42.64 −42.64

2021-06-20 8.02 7.22 7.60 −49.27 −41.02 −45.36 −52.10

2021-10-08 11.00 9.22 10.07 −73.47 −83.52 −78.05 −112.70

2021-10-09 8.60 6.73 7.67 −88.68 −88.65 −88.67 −114.67

2022-06-24 7.04 10.06 8.54 −41.03 −44.88 −43.29 −43.29

2022-06-27 9.52 8.47 9.00 −50.37 −49.40 −49.91 −37.14
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observation. This SAM was not included in the present

analysis since Gaussian plume modeling requires a constant

wind direction and is not considered reliable at wind speeds

less than 2 m/s, where advection is not as dominant over

diffusion (Reuter et al., 2019). The 2020-04-08 SAM is

being investigated with other high resolution modeling

methods and analysis of the SAM will be presented in

future work.

Emission estimates and uncertainties were determined from

the other SAMs from June 2021, October 2021 and June 2022,

with examples from each month in Figures 6–8. For the 2021-06-

20 SAM, a correlation of 0.508 was obtained and an emission

estimate of 24.0 ktCO2/day with our usual approach of not

applying data quality filtering, which often removes more

footprints than desired for our method and sometimes gives

spurious emission estimates and lower correlations. In this case,

applying the standard OCO-2/3 data quality filters improved the

correlation to 0.543 with an emission estimate of 28.0 ktCO2/day,

so we consider this emission estimate with filtered data as a more

realistic result. While higher than the emission estimate with no

data filtering, this is still the lowest emission estimate for

Bełchatów and represents the largest absolute or relative

difference from expected Bełchatów emissions (explained in

Section 3.2 below). For the 2022-06-24 SAM, filtering removes

some low-biased background footprints while giving the same

correlation, so the emission estimate with standard OCO-3

filtering is reported. For all other SAMs, results without data

quality filtering are given. The dates and times, reported power

generation, expected emissions, OCO-3 emission estimate and

uncertainty, correlation, and number of OCO-3 footprints in the

plume and background for all SAMs analyzed are given in

Table 1.

3.2 Comparison with expected emission
values

Although E-PRTR only reports annual emissions, the

European Network of Transmission System Operators for

Electricity (ENTSO-E) Transparency Platform (https://

transparency.entsoe.eu/dashboard/show) provides hourly

power generation for European Union power plant units with

only a 1-day lag. Its objective is to facilitate access to information

FIGURE 4
CO2 emission quantification from the OCO-3 Bełchatόw SAM on 2020-04-10. (A) Dots representing footprints are colored as enhancement
(red), background (blue) and other (black). (B) Observed XCO2 footprints relative to the background value with the positive x-axis aligned with the
wind direction. (C) Gaussian plume model XCO2 enhancement with dotted lines denoting a region between the enhancement and background. (D)
Model XCO2 enhancements as would be seen by OCO-3 and used in the observation-model fit.

TABLE 3 Component Uncertainties in ktCO2/day. For OCO-3 two
different background ensembles were calculated: 1) variable
radius and 2) full circle, east, west with the lower uncertainty in
parentheses as the higher value was used in the total uncertainty. The
largest contributor to the total uncertainty is shown in bold.

Overpass Wind Background Rise Total Total %

2017-03-28a 9.6 0.29 6.64 11.6 11.8

2020-04-10 8.2 (0.96) 3.44 0.89 8.9 11.0

2020-04-17 3.2 (0.80) 4.05 0.66 5.2 6.8

2021-06-18 4.0 (1.48) 12.06 0.31 12.7 12.6

2021-06-19 1.1 2.71 (2.06) 0.70 3.0 3.8

2021-06-20 1.5 (2.03) 3.67 0.37 4.0 14.2

2021-10-08 5.2 8.48 (4.92) 2.66 10.3 17.6

2021-10-09 5.4 (3.10) 4.34 0.92 7.0 15.6

2022-06-24 17.1 (3.42) 7.18 5.13 19.2 19.7

2022-06-27 5.5 (2.82) 8.25 3.50 10.5 11.2

Average 6.2 (2.88) 5.30 2.2 9.4 12.2

aThis overpass was observed by OCO-2 (while all others were observed by OCO-3),

hence the background uncertainty is defined by the method in Nassar et al. (2021).
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by all market participants and stakeholders to promote

transparency. Reported hourly power generation for the

10 dates investigated in this study are provided in Table 4. On

2017-03-28 from 12:00-13:00 CEST, when Bełchatów was

observed by OCO-2, it had all units running with 4,755 MW

of power generation reported. Hourly power generation ranged

from 1,830 to 3,772 kW on the 9 occasions that Bełchatów was

observed by OCO-3. For these 10 occasions, mean hourly power

generation was 3,151 kW while the mean estimated emissions

from OCO-2 and OCO-3 observations were 75.1 ± 9.4 ktCO2/

day. The ratio of the mean emission rate to mean power

generation gives an emission intensity (ktCO2/kW) for

Bełchatów that we can apply to all overpasses to calculate

expected emissions as shown in Table 1. The expected

emission values also have associated uncertainties due to

uncertainty in the reported power generation values and

variations in emission intensity for different units. Gurney

et al. (2016) found that the uncertainty for reported CO2

emissions from U.S. power plants had a median difference of

6% for monthly reported emissions from two different

FIGURE 6
Same as Figure 4 for OCO-3 Bełchatόw SAM on 2021-06-19.

FIGURE 5
Same as Figure 4 for OCO-3 Bełchatόw SAM on 2020-04-17. Panel (D) indicates that the plume is fit beginning at 8 km from the source due to
issues near the plume origin possibly related to geolocation errors.
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government datasets. Here we are deriving emissions from

European hourly reported power generation for a single large

power plant. The finer temporal scale and proxy approach

(power generation as a proxy for CO2 emissions) might

suggest higher relative emission uncertainties, while such a

large power plant might have lower relative uncertainty on

power generation, so we assume a modest 1σ uncertainty of

5% for the expected emissions.

The emission estimates are visually compared with the expected

emissions, each with their 1σ uncertainties in Figure 9, which

suggests that overall, emission reductions and increases are

clearly detected with a qualitatively similar trend derived from

the OCO-2/3 observations and those expected based on reported

power generation. Nine of 10 emission estimates agree within the

expected values within 1σ uncertainty. Correlation values range

from 0.280 to 0.885, including 7 of 10 with R > 0.500 and 8 of

FIGURE 8
Same as Figure 4 for OCO-3 Bełchatόw SAM on 2022-06-24. The higher number of missing footprints (evident in panels (A,B)) compared with
other SAMs is due to application of data quality filtering. Although the observed (panel (B)) and model (panel (D)) enhancements match very well,
estimated emissions are somewhat higher than expected, even following improvements by applying standard OCO-3 data quality filters.

FIGURE 7
Same as Figure 4 for OCO-3 Bełchatόw SAM on 2021-10-08. The observed XCO2 plume appears weak due to the high wind speed (10.07 m/s)
dissipating the enhancement.
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10 with R > 0.400. Surprisingly, the instances with the two lowest

correlations, yielded the best agreement between emission estimates

and reported emissions. We calculate the ratio of the absolute

difference (between the estimated emissions and expected

emissions) to the 1σ uncertainty as another metric to gauge the

agreement between emissions estimates and expected emissions.

Themean ratio is 1.25 and themedian ratio is 1.02, with values close

to 1 suggesting that the uncertainties are of a similar magnitude as

the differences. The main exception is the 2021-06-20 SAMs (to

which we have already applied filtering to improve the result) partly

due to very low uncertainties.

In cases where the emission estimate from OCO-2/3 was not in

good agreement with expected emissions, but the correlation was

good, the background and/or biased wind data are likely the cause of

the discrepancy. For example, the 2021-06-18 SAM exhibits an

asymmetric background where low XCO2 values east of the source

might not be a good representation of the background below the

plume to the northwest. This was verified by estimating emissions

using a background that only included footprints west of the source,

which gave an estimate of 87.1 ktCO2/day (rather than 101.1 ±

12.7 ktCO2/day) in much better agreement with the expected

86.3 ktCO2/day. Our methodology already accounts for this effect

by including the background sensitivity as a component in the

uncertainty, which is high in the 2021-06-18 case. On 2021-06-20,

the excellent agreement betweenMERRA-2 and ERA-5 wind speeds

may be a coincidence that yields a very low wind speed uncertainty,

which is likely an unrealistic representation of the true uncertainty

contribution due to wind speed.

4 Discussion and conclusion

We analyzed nine new OCO-3 SAMs in the vicinity of the

Bełchatów Power Station from April 2020 to June 2022 and

TABLE 4 Reported hourly power generation for the Bełchatόw Power Station in kilowatts (kW) from the European Network or Transmission System
Operators for Electricity (ENTSO-E) Transparency Platform. Values shown are taken as the sum of the reported hourly generation (kW) for the
units specified in the final row. The overpass time is given in the second rowwith the corresponding hourly power generation for that time indicated
by bold italics.

Date 2017
03-28

2020
04-10

2020
04-17

2021
06-18

2021
06-19

2021
06-20

2021
10-08

2021
10-09

2022
06-24

2022
06-27

Time 12:23 14:36 10:42 10:24 9:36 8:48 13:53 13:06 8:00 7:12

00:00–01:00 3,215 2,308 2,844 3,692 2,433 2,897 2,832 2,685 3,371 3,317

01:00–02:00 3,181 2,419 2,819 3,676 2,103 2,678 2,823 2,632 3,309 3,344

02:00–03:00 3,432 2,572 2,726 3,634 2,192 2,260 2,791 2,653 3,225 3,345

03:00–04:00 3,790 2,527 2,911 3,650 2,310 1821 2,850 2,676 2,805 3,338

04:00–05:00 4,183 2,310 2,739 3,667 2,480 1764 2,866 2,720 3,120 3,330

05:00–06:00 4,418 2,375 2,535 3,644 2,623 1755 2,828 2,714 3,229 3,317

06:00–07:00 4,783 3,076 2,911 3,748 2,791 1852 2,800 2,755 3,332 3,336

07:00–08:00 4,682 3,732 3,448 3,797 2,802 1884 2,810 2,742 3,395 3,496

08:00–09:00 4,783 3,682 3,564 3,794 2,819 1971 2,856 2,796 3,284 3,352

09:00–10:00 4,779 3,650 3,381 3,724 2,798 1901 2,839 2,821 3,133 3,279

10:00–11:00 4,788 3,610 3,230 3,699 2,785 1715 2,792 2,720 2,693 3,226

11:00–12:00 4,782 3,624 3,041 3,706 2,733 1,632 2,789 2,610 2,177 3,132

12:00–13:00 4,755 3,597 2,932 3,649 2,723 1,686 2,799 2,202 2,259 2,925

13:00–14:00 4,751 3,580 2,977 3,692 2,567 1753 2,785 1784 2,490 2,904

14:00–15:00 4,767 3,601 2,793 3,632 2,631 1792 2,802 1995 2,691 2,893

15:00–16:00 4,806 3,509 2,912 3,674 2,785 1794 2,839 2,577 2,908 2,984

16:00–17:00 4,833 3,520 2,913 3,654 2,915 1971 2,808 2,815 3,116 2,997

17:00–18:00 4,793 3,504 2,987 3,661 3,156 2,404 2,827 2,759 3,278 3,051

18:00–19:00 4,739 3,551 3,279 3,686 3,170 3,169 2,790 2,713 3,346 3,113

19:00–20:00 4,769 3,467 3,345 3,686 3,157 3,430 2,792 2,707 3,365 3,073

20:00–21:00 4,878 3,745 3,326 3,654 2,950 3,540 2,808 2,717 3,282 3,039

21:00–22:00 4,821 3,692 3,293 3,649 2,735 3,825 2,644 2,719 3,281 2,957

22:00–23:00 4,632 3,448 2,940 3,693 2,686 3,760 2,722 2,702 3,293 2,936

23:00–00:00 4,390 2,553 2,589 3,677 2,639 3,703 2,780 2,683 3,394 2,959

Units operating on
stated date

1–12,
14

2–12 2,
5–11, 14

2–10,
14

2, 5–7,
9–12, 14

5–7,
9–10, 14

2, 5–6, 9–10,
12, 14

2, 5–6, 9–10,
12, 14

2–4, 6–8,
10–11, 14

2–4, 6–8,
10–11, 14
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compared them with the previously published OCO-2 Bełchatów

emission estimate fromMarch 2017 (Nassar et al., 2021; Crisp et al.,

2022). Collective analysis of these ten overpasses provides strong

evidence of CO2 emission reductions consistent with reduced

electricity generation at Bełchatόw, Europe’s largest fossil fuel

burning power plant. Monitoring strong localized sources or

hotspots to verify emission reductions is one of the main

objectives of the European Commission’s planned Monitoring

and Verification Support (MVS) capacity for which the

Copernicus Anthropogenic CO2 Monitoring (CO2M) satellite

constellation is the primary space component. We have

demonstrated such capability with existing space-based CO2

observations on a single large power plant in this case study by

comparing our derived emission trend with the expected trend

based on reported power generation values.

Space-based CO2 observations hold much promise in

future efforts to monitor and ultimately provide

information to help reduce anthropogenic CO2 emissions

to mitigate climate change. Our results demonstrate the

ability of space-based CO2 data to detect and quantify

emission reductions at the local scale, in order to effectively

monitor anthropogenic CO2 emissions and their planned

reductions. Multiple satellite missions are planned to

launch in the next 3–4 years, namely MicroCarb (Bertaux

et al., 2020), GeoCarb (Moore et al., 2018), GOSAT-GW

(Kasahara et al., 2020) and CO2M (Meijer et al., 2019).

With 250 km swaths, each CO2M satellite will deliver about

50 times as much land coverage as OCO-2 or OCO-3.

Combining their coverage with other upcoming imaging

satellites will increase capabilities to well over two orders of

magnitude more observations than presently available. Here

we have quantified emissions of a large facility, but if future

observations deliver similar precision, with increased

coverage and revisit rates, quantifying much weaker sources

will be possible.

Previous studies have shown that OCO-2’s narrow swath

resulted in few overpasses in the vicinity of power plants, and also

gave many different geometrical alignments between the wind

direction and swath. The small number of good cases and their

different geometries complicated the development of a

standardized or automated method for background definition

(and background uncertainty). This was one of multiple reasons

why past OCO-2 emission estimates involved some degree of

human intervention and decision making. With OCO-3 SAMs

essentially eliminating the geometrical alignment issue and also

providing more overpasses, here we have attempted a more

standardized and less subjective treatment of issues like the

background definition and background uncertainty. This

represents a step toward enabling a more automated approach

overall, which will be essential for facility-scale operational CO2

emission monitoring with future wide swath missions like

CO2M, but could still be challenging for situations with

complex backgrounds.

It is also important to note some limitations of the present

work and its conclusions regarding CO2 emissions monitoring.

Reporting under the UNFCCC currently deals with annual

timescales, yet deriving annual emissions from space is not

trivial and remains to be demonstrated at the facility scale.

Hill and Nassar (2019) examined the issue of intermittency or

intra-annual variability of U.S. power plants in reported data

from the Environmental Protection Agency (EPA). Intra-annual

variations in coal-fired power plant CO2 emissions were shown

to be non-periodic, exhibiting intermittency that could not be

predicted in the absence of external data. However, with enough

revisits to sample the intermittency, annual emissions could be

estimated with an accuracy comparable to the daily emission

estimates based on a statistical treatment of the intermittency.

For example, it was determined that if daily facility-scale CO2

emissions could be estimated with 10% uncertainty, then

41 overpasses would be needed to achieve annual emissions

with 10% uncertainty. Hence, a large number of overpasses

would be required to demonstrate inter-annual facility-scale

CO2 emission reductions of a magnitude less than 10%, which

will require a constellation of multiple satellites, perhaps taking

advantage of complementary orbits. As inferred by Nassar et al.

(2021), multiple revisits of a given facility reduces the random

error component of emission estimates, such that for eight U.S.

facility overpasses, the mean difference between individual

estimated and reported emissions was 15.1%, but the total

difference was only 0.8%. In the present work, the mean

uncertainty on emissions was about 12.2% but since the total

expected emissions were set to the total observed emissions, they

were equal by design.

This work showed that there remains room for improvement

in reducing uncertainties in CO2 emission quantification from

space. Two areas requiring continual improvement are XCO2

FIGURE 9
Time series of emissions expected based on ENTSO-E
reported power generation and OCO-2/OCO-3 observations
each with 1σ error bars.
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retrievals and external meteorological data. On 6 of 10 occasions,

the largest contributor to uncertainty was the background, while

on 4 of 10 occasions as well as on average, the largest contributor

to the uncertainty was wind speed, which comes from external

meteorological data sets. The background uncertainty is

primarily related to the XCO2 retrieval relative accuracy and

the presence of spatially-dependent biases in the observations

(potentially linked to factors such as viewing geometry, aerosols,

thin clouds, topography or surface albedo contributions). CO2M

intends to yield reductions in such biases through the addition of

a multi-angle polarimeter (MAP), which will address biases

caused by some of these factors. Furthermore, it should be

noted that minor secondary sources (or even sinks) in the

background field are also a contributing factor to the

background uncertainty. In the case of Bełchatów these should

be negligible, but for many other point sources these secondary

sources may be significant. CO2M will also have collocated NO2

imaging capability that will help to identify secondary sources

and assist in determining the plume shape, wind direction and

generally distinguish the plume from the background

(Kuhlmann et al., 2021). Emission uncertainties will also

improve with the availability of more accurate wind speed

data from meteorological data sets. Achieving such

improvements will likely require a combination of enhanced

satellite and in situ observations and meteorological data

assimilation systems, but recommendations for achieving the

needed improvements are beyond the scope of this work.

Emerging studies suggest that very fine spatial resolution

(~50 m) space-based CO2 imaging observations can enable

emission quantification for smaller power plants (Strandgren

et al., 2020), although such missions would primarily work in

target mode for a list of sources of interest, making them

complementary to missions like CO2M, designed to deliver

global coverage, as well as other planned or proposed

missions designed for rapid revisits over a regional domain

(e.g. Moore et al., 2018; Butz et al., 2019; Nassar et al., 2019).

Regardless, clouds and night-time conditions will continue to be

limitations for CO2 observations based on passive shortwave

infrared (SWIR) solar reflectance like OCO-2/3 and CO2M.

Exploration of observing methods that employ cloud

avoidance (e.g. Suto et al., 2021) or active sensing could

provide complementary observations from space, while

ground- or aircraft-based observations can also play an

important role in overcoming these limitations.

This work reaffirms the capability to quantify facility-scale

CO2 emissions from space and for the first time demonstrates

the capability to monitor CO2 emission changes over time,

addressing the first and second objectives of CO2M in a case

study on a large European coal-fired power plant. The

expanding constellation of CO2 satellites, related

observations from the ground or other platforms and

modeling tools together should be able to deliver more

robust monitoring of facilities over a range of sizes. Despite

some limitations, this emerging Monitoring Verification and

Support (MVS) system can play an important role in the

general management and support of anthropogenic CO2

emission reductions in order to achieve targets set out in

the Paris Agreement.
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