Check for updates

OPEN ACCESS

EDITED BY Joaquin Bautista-Gallego, University of Extremadura, Spain

REVIEWED BY Gloria Díaz-Ruiz, National Autonomous University of Mexico, Mexico Zhihong Sun, Inner Mongolia Agricultural University, China Alex Galanis, Democritus University of Thrace, Greece

*CORRESPONDENCE Hikmate Abriouel hikmate@ujaen.es

SPECIALTY SECTION This article was submitted to Food Microbiology, a section of the journal Frontiers in Microbiology

RECEIVED 08 July 2022 ACCEPTED 04 October 2022 PUBLISHED 03 November 2022

CITATION

Abriouel H, Manetsberger J, Caballero Gómez N and Benomar N (2022) *In silico* genomic analysis of the potential probiotic *Lactiplantibacillus pentosus* CF2-10N reveals promising beneficial effects with health promoting properties. *Front. Microbiol.* 13:989824. doi: 10.3389/fmicb.2022.989824

COPYRIGHT

© 2022 Abriouel, Manetsberger, Caballero Gómez and Benomar. This is an openaccess article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

In silico genomic analysis of the potential probiotic *Lactiplantibacillus pentosus* CF2-10N reveals promising beneficial effects with health promoting properties

Hikmate Abriouel*, Julia Manetsberger, Natacha Caballero Gómez and Nabil Benomar

Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain

Lactiplantibacillus pentosus CF2-10N, isolated from brines of naturally fermented Aloreña green table olives, exhibited high probiotic potential. High throughput sequencing and annotation of genome sequences underline the potential of L. pentosus CF2-10N as excellent probiotic candidate of vegetable origin. In a previous study we could show the probiotic potential of CF2-10N in vitro, while in this study in silico analysis of its genome revealed new insights into its safety and functionality. Our findings highlight the microorganism's ecological flexibility and adaptability to a broad range of environmental niches, food matrices and the gastrointestinal tract. These features are shared by both phylogenetically very close L. pentosus strains (CF2-10N and MP-10) isolated from the same ecological niche with respect to their genome size (\cong 3.6Mbp), the presence of plasmids (4– 5) and several other properties. Nonetheless, additional and unique features are reported in the present study for L. pentosus CF2-10N. Notably, the safety of L. pentosus CF2-10N was shown by the absence of virulence determinants and the determination of acquired antibiotic resistance genes, i.e., resistome, which is mostly represented by efflux-pump resistance genes responsible for the intrinsic resistance. On the other hand, defense mechanisms of L. pentosus CF2-10N include eight prophage regions and a CRISPR/cas system (CRISPR-I and CRISPR-II) as acquired immune system against mobile elements. Finally, the probiotic potential of this strain was further demonstrated by the presence of genes coding for proteins involved in adhesion, exopolysaccharide biosynthesis, tolerance to low pH and bile salts, immunomodulation, and vitamin and enzyme production. Taken together these results, we propose the use of L. pentosus CF2-10N as a potential and promising probiotic candidate able to colonize several niches and adapt to different lifestyles. The strain can provide attractive functional and probiotic features necessary for its application as starter culture and probiotic.

KEYWORDS

Aloreña table olives, *Lactiplantibacillus pentosus*, probiotics, *in silico* analysis, safety, functional properties

Introduction

Probiotics are defined by the Food and Agriculture Organization of the United Nations/World Health Organization (FAO/WHO) "as live microorganisms that, when administered in adequate amounts, confer a health benefit to the host" (Hill et al., 2014). In this regard, probiotic microorganisms are characterized by their diverse origin, taxonomy, fitness, effective dose, host and health benefits depending specifically on the strain employed. Thus, preliminary screening criteria for potential probiotic microorganisms include their capacity to withstand several barriers and challenges (1) in vitro, such as stressful environmental conditions; and (2) in vivo-notably during their passage through the gastrointestinal tract (acids and bile salts), their capacity to adhere and colonize human epithelial cells and their ability to produce beneficial effects in the host (antimicrobial activity, modulation of the immune system, degradation of toxic components, etc.).

In this sense, the key element for the differentiation of probiotic strains from each other is their specific functionality. Naturally, this has led to a considerable amount of research efforts put into determining the specific probiotic effect(s) of each potential probiotic strain and highlighting their potential targets over recent years (Allain et al., 2018; van de Wijgert and Verwijs, 2019; Yan et al., 2019; Yoha et al., 2022). In other words, a search for unique and attractive functional characteristics is crucial to provide new and helpful information on microorganisms with probiotic potential. This is especially important for those microorganisms that are naturally present in fermented foods, such as for example *Lactiplantibacillus* species.

On the other hand, probiotics as indicated by their name, act as a 'promoter of life' supporting in a natural way the improvement of the overall health status of the host organism (Amara and Shibl, 2015). It has further been shown that it is possible to combine several of these strains into multi-strain probiotics (Nayak, 2010), where the strains of this 'probiotic cocktail' can work synergistically, thus greatly increasing the overall benefit spectrum for the host (Puvanasundram et al., 2021).

The recently reclassified *Lactiplantibacillus pentosus*, formerly known as *Lactobacillus pentosus* (Zheng et al., 2020), colonizes a large set of environmental niches and therefore exhibits a huge ecological and metabolic adaptability (Anukam et al., 2013; Abriouel et al., 2017; Pérez-Díaz et al., 2021). Due to its genomic diversity and functionality, this species is found in several fermented foods (vegetables, meat, and dairy), plants, animals, vaginal, urogenital and gastrointestinal tract, while also having a large set of biotechnological and probiotic applications (Tofalo et al., 2014; Vaccalluzzo et al., 2020).

Lactiplantibacillus pentosus together with *L. plantarum* is an important member of the bacterial community found on the

surface of olive fruits and thus represent the predominating bacteria in olive fermentation. Notably, they promote the fermentation process, conservation and extension of shelf life of the product, in addition to their role in organoleptic properties and the production of health promoting molecules such as amino acids, short chain fatty acids (SCFA), antioxidants, exopolysaccharides and vitamins (Caggianiello et al., 2016; Carrasco et al., 2018; Benítez-Cabello et al., 2019; Perpetuini et al., 2020). Furthermore, besides the production of the abovementioned molecules in foods such as olives, these bacteria are also able to produce these substances in vivo, i.e., in the gastrointestinal tract thus providing an important probiotic effect (Oguntoyinbo and Narbad, 2015; Saxami et al., 2017; Guantario et al., 2018). Consequently, several fermented foods have been classified as functional foods, as they are carriers of probiotic organisms and/or their molecules. In this regard, the health benefit and functionality of table olives goes beyond just "fermented food" due to their ability to deliver beneficial microbes adhering to the drupe epidermis into the human gastrointestinal tract where they may influence the microbial diversity and functionality (Lavermicocca et al., 2005; Rodríguez-Gómez et al., 2014, 2017).

Among olives, naturally fermented Aloreña green table olives are a promising carrier of probiotics since they are characterized by their diverse microbial community. This is mostly due to the richness of the ecosystem (soil, plant, and brine) and the progressive changes inherent to the production process (Abriouel et al., 2011).

The microbial diversity of Aloreña table olives includes lactic acid bacteria (LAB), mainly L. pentosus-yeasts and other contaminant microorganism, with microbial profiles greatly depending on the fermentation conditions (e.g., vat, fermenter or in cold). In this regard, however under vat and fermenter conditions, LAB and yeasts have been determined as the main actors (Abriouel et al., 2011). Among LAB, L. pentosus are considered potential probiotics due to their good growth capacity and survival rate under simulated gastro-intestinal conditions (acidic pH of 1.5, up to 4% of bile salts and 5 mM of nitrate), auto-aggregation, co-aggregation with pathogenic bacteria, adhesion to intestinal and vaginal cell lines, biofilm formation, fermentation of several prebiotics and their capacity to ferment lactose among others (Pérez Montoro et al., 2016). In addition, omics approaches were used by our group; including genomics, proteomics and transcriptomics, to determine and confirm the safety and functionality of the probiotic L. pentosus isolated from Aloreña table olives (Casado Muñoz et al., 2016; Pérez Montoro et al., 2018a, b; Alonso García et al., 2021, 2023).

Hence, in the present study, we extend the characterization of *L. pentosus* using *in silico* genomic analysis to unveil the genetic basis of the safety and probiotic ability of *L. pentosus* CF2-10 N – one of the most promising potential probiotic strains isolated from Aloreña table olives (Abriouel et al., 2012).

Materials and methods

Bacterial strain and growth conditions

Lactiplantibacillus pentosus CF2-10 N, originally isolated from naturally fermented Aloreña green table olives (Abriouel et al., 2012), was selected based on its probiotic profile as reported by Pérez Montoro et al. (2016). *Lactiplantibacillus pentosus* CF2-10 N was routinely cultured at 37°C in de Man, Rogosa and Sharpe (MRS) broth or agar (Fluka, Madrid, Spain) under aerobic (atmospheric) conditions for 24–48 h. The strain was kept in 20% glycerol at -80°C for long-term storage.

DNA extraction, library preparation and genome sequencing

Bacterial cells of *L. pentosus* CF2-10N were harvested by centrifugation after 18h incubation at 37° C under aerobic conditions in liquid medium. Total genomic DNA was obtained using the PureGene core kit B, according to the manufacturer's instructions (Qiagen, Spain). DNA quantification and quality assessment were carried out using a NanoDrop 2000 spectrophotometer (Thermo Scientific), the PicoGreen ds DNA Reagent (Invitrogen) and/or agarose gel electrophoresis (0.8% agarose gel in Tris-borate-EDTA buffer, 90V, 45 min). Bacterial DNA was stored at -20° C until required.

Purified genomic DNA was sheared into 10- to 20-kb fragments using the protocol designed for DNA library preparation using the PacBio RS II System (Pacific Biosciences, Menlo Park, CA, United States). Resulting libraries (22–24 kb) were purified and sequenced using a P6-C4 DNA polymerase (Pacific Biosciences) and single-molecule real-time (SMRT) cells with a 240-min sequence capture protocol and Stage Start to maximize the subread length on the PacBio RS II.

Genome assembly and annotation

Raw sequence data were filtered (Q20) and a total of 150,292 reads were obtained with a median length of 14,991 bp. The resulting reads were assembled *de novo* following the Hierarchical Genome Assembly Process (HGAP3.0) approach (SMRT analysis version: 2.3.0, patch #4) for Pacific Bioscience using the *WGS-Celera Assembler* 7.0 (Myers et al., 2000) and Quiver algorithm (Chen-Shan Chin et al., 2013). Once assembled, the prediction of Coding DNA Sequences (CDS) was done with the help of the GenMark program (Besemer et al., 2001). Furthermore, prediction of tRNA, rRNA, and mRNA genes and signal peptides in the sequences was achieved using *tRNAscan* (version 2.0), *RNAmmer* (Version 1.2), *HMMer* [HMMER 3.1 (July 2017)]¹

Genome sequencing, assembly, and annotation were done at Biopolis (Valencia, Spain). The complete genome sequence of *L. pentosus* CF2-10N was deposited at the EMBL Nucleotide Sequence Database (accession number of ERR11550479).

Comparative genomic analysis of Lactiplantibacillus pentosus CF2-10N and other Lactiplantibacillus pentosus strains

Genome sequences of L. pentosus CF2-10N and other L. pentosus strains (MP-10, IG1 and KCA1) were aligned using MAUVE (Darling et al., 2004) available in DNASTAR Lasergene (version 17.3). Trees were then generated using RAxML with default parameters (Stamatakis, 2014). Further genome alignment and comparison of L. pentosus CF2-10 N and other L. pentosus strains (IG1 and KCA1) isolated from different ecological niches or *L. plantarum* WCFS1 (as reference strain) was done using the MUMmer program (version 3.0), considering alignment > 500 bp. The genome accession numbers of strains used in this study are as follows: L. pentosus IG1 (PRJEA67801), L. pentosus KCA1 (PRJNA81575, GenBank assembly accession GCA_000271445.1) and L. plantarum WCFS1 (PRJNA356, GenBank assembly accession GCA_ 000203855.3). Functional annotation of CDS (COG) for the three strains (L. pentosus IG1, L. pentosus KCA1 and L. plantarum WCFS1) was completed following the same strategy as for L. pentosus CF2-10 N by using reciprocal blast (BLAST2go) program version 4.1.9 (Conesa et al., 2005) and the available genome sequences in NCBI.

Genomic analysis of safety aspects and defense mechanisms of Lactiplantibacillus pentosus CF2-10N

For specific annotation of antibiotic resistance genes (ARGs), the Resistance Gene Identifier (RGI) software (as part of the CARD "The Comprehensive Antibiotic Resistance Database" tools; Alcock et al., 2020) was used for the prediction

programs, respectively (Lowe and Eddy, 1997; Lagesen et al., 2007). The assembled genome sequences were annotated using the *BLAST2go* program version 4.1.9 (Conesa et al., 2005) followed by a complementary annotation specific for protein domains using the *HMMer* program [HMMER 3.1 (July 2017)] see footnote ² and Pfam database. Furthermore, the annotation process also included blasting genes against Clusters of Orthologous Groups (COGs) of proteins using the *WebMGA* server (Wu et al., 2010). The circular maps of chromosome and plasmids were performed by Artemis and DNAPlotter software (Carver et al., 2005, 2009).

¹ http://hmmer.org/

² http://hmmer.org/

of the *L. pentosus* CF2-10 N resistome from protein or nucleotide data based on homology and SNP (Single Nucleotide Polymorphism) models, employing the CARD's curated AMR (antimicrobial resistance) detection models (last accessed in March 2022). In addition, the genome of *L. pentosus* CF2-10 N was investigated for acquired antibiotic resistance genes/ chromosomal mutations mediating antimicrobial resistance through the ResFinder³ software version 4.1 (Zankari et al., 2012; Bortolaia et al., 2020) with selected %ID threshold of 90.00% and selected minimum length of 60% (last accessed in March 2022).

Regarding virulence factors (VFs), the predicted CDSs were annotated using reciprocal BLAST against the Virulence Factors of Bacterial Pathogens (VFDB) database. Hits were considered positive when the results of reciprocal BLAST were similar, employing a 80% sequence similarity cut-off (Liu et al., 2019).

Concerning mobile genetic elements, the annotated genome sequence of *L. pentosus* CF2-10 N was screened for the presence of conjugative plasmid, transposase, transposon, IS elements and prophage coding genes. The genome was searched for Insertion Sequences (IS) using the ISfinder search tool (Zhang et al., 2000). Furthermore, complementary information on prophage DNA within the *L. pentosus* CF2-10 N genome was obtained by using bioinformatic tools such as PHASTER's version (PHAge Search Tool Enhanced Release, last updated March 2016; corresponding to the updated prophage/virus database PHAST "PHAge Search Tool") for the rapid identification and annotation of prophage sequences within bacterial genomes and plasmids (Zhou et al., 2011; Arndt et al., 2016).

Finally, the annotated genome sequence of *L. pentosus* CF2-10 N was screened for the presence of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) coding genes and the localization of CRISPR RNAs targets was identified using the CRISPRDetect program version 2.4 (Biswas et al., 2016).⁴

Genomic analysis of probiotic properties of *Lactiplantibacillus pentosus* CF2-10N

To identify the putative genes associated with probiotic characteristics in *L. pentosus* CF2-10 N, the annotated genome sequence was screened for the presence of genes coding for proteins involved in cell adhesion (mucus binding proteins, cell surface proteins and moonlighting proteins among others), exopolysaccharide (EPS) biosynthesis, tolerance to low pH and bile salts, enzyme production, vitamin biosynthesis and host immunomodulation.

Results

General genomic features of a probiotic Lactiplantibacilluis pentosus CF2-10N

The analysis revealed that the *Lactiplantibacillus pentosus* CF2-10 N genome consisted of a single circular chromosome of 3,645,747 bp, with an estimated mol% G+C content of 46.42% and 4 plasmids ranging 58–120kb (Figure 1). The annotated genome sequence (Figure 1) revealed 3,713 open reading frames (ORFs), of which 75.4% (2,801) were attributed to a COG (Cluster of Orthologous Groups) family and/or were given a functional description (Supplementary Table S1). Furthermore, 16 rRNA genes were predicted in *L. pentosus* CF2-10N genome using *RNAmmer* (version 1.2), while 67 tRNA encoding sequences were identified corresponding to all 20 amino acids and three undermined amino acids (Supplementary Table S2).

Supplementary Figure S1 shows the biological processes, the cellular components and the molecular function frequencies predicted in L. pentosus CF2-10N. Among the Gene Ontology (GO) terms, those related to biological processes such as oxidation-reduction process, regulation of transcription, DNA-templated transcription and DNA-templated transmembrane transport were the most identified. Regarding molecular function, ATP-binding and DNA binding were the most prevalent. However, in both biological process and molecular function about 1,250–1,550 genes have no known biological process/function (Supplementary Figure S1).

The most abundant COG category of *L. pentosus* CF2-10N genome, except for "[S] Function unknown" (273 CDSs, 9.7%), was "[R] General function prediction only" (336 CDSs, 12%), followed by "[G] Carbohydrate transport and metabolism" (307 CDSs, 11%), "[K] Transcription" (235 CDSs, 8.4%), "[L] Replication, recombination and repair" (213 CDSs, 7.6%) and "[E] Amino acid transport and metabolism" (192 CDSs, 6.9%), accounting for 45.9% of the overall CDS (1,283/2,801 CDSs; Supplementary Table S3).

Comparative genome analysis of Lactiplantibacillus pentosus CF2-10N

Comparative genomic analysis of *L. pentosus* CF2-10 N and *L. pentosus* MP-10 isolated from the same ecological niche (Aloreña table olives) showed that both *L. pentosus* strains shared 99.87% identity as revealed by sequence alignment using the MAUVE algorithm. This high similarity was further highlighted by large blocks of colinearization in the MAUVE alignment, being the synteny of genes similar, although inversion, insertion and rearrangement occurred (Figure 2). Besides *L. pentosus* MP-10 (isolated from Aloreña table olives), comparison with other *L. pentosus* strains by genome sequence alignment (using MAUVE), notably IG1 (isolated from olives) and KCA1 (isolated from the vaginal tract), revealed genetic differences among the studied strains (Supplementary Figure S2A). To illustrate this relationship, a maximum-likelihood core genome tree was

³ https://cge.cbs.dtu.dk/services/ResFinder/

⁴ http://crispr.otago.ac.nz/CRISPRDetect

chromosome (A) and four plasmids (B). The circles from outside to inside are the annotated Coding DNA Sequences (CDS) elements in forward orientation (blue); the annotated CDS elements in the reverse orientation (red); the Pseudogenes (black); the tRNA (green); the rRNA (orange); the %GC plot and the GC skew.

constructed using RaxML which showed higher phylogenetic similarity in the case of *L. pentosus* CF2-10 N and MP-10 strains (evolutionary distance "ED," ED=0), followed by *L. pentosus* IG1 (ED=0.02) and then *L. pentosus* KCA1 (ED=0.08; Supplementary Figure S2B).

The synteny linkage of *L. pentosus* CF2-10N against *L. pentosus* IG1 and KCA1 strains or *L. plantarum* WCFS1 was further analyzed using the *MUMmer* program and represented using Circos (Figure 3; Supplementary Tables S4–S6). Here, the genome comparison revealed the presence of highly conserved syntenic blocks between *L. pentosus* strains (IG1 and KCA1; Figures 3A,B), and to a lesser extent with *L. plantarum* WCFS1 (Figure 3C). On the other hand, comparison of the number of unique and shared annotated genes of *L. pentosus* CF2-10N and other strains (*L. pentosus* IG1, *L. pentosus* KCA1 or *L. plantarum*

WCFS1) using reciprocal blast revealed unique genomic features in *L. pentosus* CF2-10N (Figure 4).

Finally, *L. pentosus* CF2-10 N appears to share both core and accessory annotated genes with *L. pentosus* KCA1 (88.93% hits, Figure 4B) and *L. pentosus* IG1 (87.34% hits; Figure 4A) and to a slightly lesser extent with *L. plantarum* WCFS1 (83.48%, Figure 4C).

In silico analysis of safety determinants and defense mechanisms of *Lactiplantibacillus pentosus* CF2-10N

Safety properties are a crucial feature of potential probiotic strains and their determination is considered a priority when characterizing a new potential probiotic. Hence, in a first step, antibiotic resistance and virulence determinants were screened in the L. pentosus CF2-10N genome sequence. To do so, in silico prediction of antibiotic resistance genes (ARG) was done against the Comprehensive Antibiotic Resistance Database (CARD) using the RGI tool v3.2.1 available in the CARD database⁵ which used archive's curated AMR (antimicrobial resistance) detection models. Results indicated no ARG in the L. pentosus CF2-10N genome sequence. Thus, neither resistance genes nor mutations conferring antibiotic resistance was predicted in the complete resistome of L. pentosus CF2-10 N. However BLAST2go annotation revealed the presence of non-specific antimicrobial resistance mechanisms relying on efflux transporters or transmembrane proteins involved in response to antibiotics such as ABC transporter ATP-binding protein (encoded by LPE_03051, LPE_00789, FD24_GL000501 genes), TIGR00374 family protein (encoded by mprF gene), undecaprenyl-diphosphatase (encoded by uppP gene), QacE family quaternary ammonium compound efflux SMR transporter (encoded by FD24_GL003284 gene), MATE family efflux transporter (encoded by LPE_00986 gene) and cation efflux pump (encoded by FD24_GL002035 gene).

With regard to acquired resistance by horizontal gene transfer, ResFinder did not detect any acquired antibiotic resistance genes for aminoglycoside, beta-lactam, colistin, disinfectant, fluoroquinolone, fosfomycin, fusidic acid, glycopeptide, MLS-series (Macrolide, lincosamide and streptogramin B), nitroimidazole, oxazolidinone, phenicol, pseudomonic acid, rifampicin, sulphonamide, tetracycline and trimethoprim (data not shown).

Regarding virulence, the predicted CDSs annotated using reciprocal BLAST against VFDB (database including only experimentally validated virulence factors) did not identify any known virulence factors including toxins.

Analysis of the *L. pentosus* CF2-10 N mobilome showed that the bacterial genome included 66 transposases: 19 transposases, 1 transposase family protein A and 46 transposases belonging to

⁵ https://card.mcmaster.ca/analyze/rgi

nine IS transposase families (4 IS3, 6 IS5, 5 IS21, 17 IS30, 4 IS66, 3 IS1380, 2 ISL3, 2 DDE, 2 IS6501, 1 IS200/IS605), mainly located on plasmids (pLPE10-1, pLPE10-2 and pLPE10-4) rather than on the chromosome (50 on plasmids/16 on chromosome) and appearing in multiple copies ranging from two to five (Table 1). IS30 family transposases were abundant (17 of 66 transposases) and were represented by seven different genes (Table 1). Furthermore, Blastp alignment of transposase protein sequences detected in *L. pentosus* CF2-10 N genome showed high similarity with *L. pentosus* (29 of 66 transposases, 98.9–100%), *L. plantarum* (11 of 66 transposases, 95.2–100%) and other lactobacilli. It is noteworthy to indicate the presence of 34

paired (adjacent to each other in the genome) transposase genes (2 or 3 genes) being different genes or belonging to different families and located on both chromosome and plasmids (Table 1). Regarding IS elements, 45 CDS were predicted distributed into 16 different families and in various bacteria (Table 2). Here, IS30 and IS3 were the most detected elements followed by IS5 (Table 2).

On the other hand, screening for prophage DNA within the *L. pentosus* CF2-10 N genome, using bioinformatic tools such as PHASTER, determined the presence of eight temperate phage regions (Table 3). Two regions were intact (Regions 2 and 3, score > 90), the other three were questionable (Regions 5, 6 and 7,

score 70 ± 90), and the last three regions were incomplete (Regions 1, 4 and 8, score < 70). The complete prophage regions of the *L. pentosus* CF2-10 N chromosome were identified as *Lactobacillus* phage Sha1 (Regions 2 and 3; GC content, 41.55–41.88%; region length, 39.9–47.7 kb). Regarding the questionable prophage regions, they corresponded to *Staphylococcus* phage SP beta-like (Regions 5 and 6; GC content, 34.83–40.70%; region length, 13.7–19.4 kb) and *Escherichia* phage 500,465–1 (Region 7; GC content, 41.54%; region length, 18.8 kb). With respect to the incomplete prophage region, we identified three regions corresponding to *Lactobacillus* phage PLE3 (Region 1; GC content, 41.26%; region length, 15 kb), Enterobacteria phage fiAA91-ss (Region 4; GC content, 38.27%; region length, 23.4 kb) and *Escherichia* phage 500,465–1 (Region 8; GC content, 31.68%; region length, 6.7 kb; Table 3).

Among the defense mechanisms revealed by *in silico* analysis of the *L. pentosus* CF2-10 N genome sequence, CRISPR I and II systems (both signature genes for the Type I "*cas3*" and Type II "*cas9*" systems) were detected as defense response to mobile genetic elements (i.e., viruses, transposable elements and conjugative plasmids; Table 4). In this sense, 13 genes were identified as CRISPR associated protein responsible genes (*cas* genes) organized in two operons (Supplementary Figure S3), and six of them were new genes found in the *L. pentosus* CF2-10 N genome (Table 4). Regarding CRISPR arrays (CR), five CRISPR unquestionable arrays were identified by using the CRISPRDetect program and they are distributed throughout the genome sequence between 1,791,840 and 3,235,959 bp (Table 5).

Identification of genes associated with probiotic characteristics in *Lactiplantibacilluis pentosus* CF2-10N

In silico genome analysis of probiotic characteristics of L. pentosus CF2-10 N revealed the presence of genes coding for adhesion, exopolysaccharide biosynthesis, tolerance to low pH and bile salts, vitamin and enzyme production and immunomodulation among others (Table 6). With respect to adhesion, several genes were identified such as 3 mucus-binding proteins, 1 fibronectin/fibrinogen-binding protein, 1 Chitinbinding protein (located on pLPE10-1 plasmid), 1 ABC superfamily ATP binding cassette transporter, binding protein, 2 cell surface proteins, 1 manganese ABC transporter substratebinding protein, 1 elongation factor Tu, 1 Molecular chaperone DnaK, 1 molecular chaperone GroEL, 1 co-chaperone GroES, 1 class A sortase and 1 type I glyceraldehyde-3-phosphate dehydrogenase (Table 6). Regarding exopolysaccharides, four genes coding for exopolysaccharide biosynthesis protein were identified (Table 6). For adaptation to different lifestyles, L. pentosus CF2-10N harbored in its genome several genes involved in stress response such as acids and bile. These included three GNAT family acetyltransferases, two Na+/H+ antiporter NhaC, 1 phosphoglycerate mutase, nine elongation factors (factor G, factor GreA, factor 4, factor P, factor Ts and factor Tu) and 1 phosphoglycerate kinase (Table 6).

On the other hand, several genes were identified coding for enzymes involved in probiotic functions such as two genes coding for tannase (exclusive to this strain), 1 alpha-amylase, 1 amylopullulanase, 3 beta-galactosidases, 5 aminopeptidases, 1 lipase esterase, 4 peptidases, 2 alpha/beta hydrolases, 1 phenolic acid decarboxylase, 1 carboxylesterase, 1 alpha-acetolactate decarboxylase, and 1 multicopper oxidase (Table 6).

With respect to vitamin biosynthesis, we detected genes coding for proteins involved in vitamins B1 or thiamine (10 genes), B2 or riboflavin (8 genes), B5 (3 genes) and B6 (6 genes), folate (7 genes) and vitamin K2 or menaquinone (1 gene) production (Table 6). In this regard, vitamin production ability of *L. pentosus* CF2-10N was validated *in vitro*.

Discussion

Aloreña table olives, naturally fermented traditional green olives with a denomination of protection (DOP), are considered as potential source of probiotic *L. pentosus* strains with high genetic TABLE 1 Characterization of transposases predicted in the Lactiplantibacillus pentosus CF2-10N genome.

Gene ID	Gene	Position	Strand	Gene length	Protein description	COG ID (COG description)	COG class (COG class description)	Similarity to transposase in <i>Lactiplantibacillus</i> *
gene_86	gene_86	89,400-90,662	+	1,263	ISL3 family transposase	-	-	99.3% L. pentosus
gene_204	LPENT_00003	219,476–220,444	-	969	MULTISPECIES: IS30 family transposase	COG2826 (Transposase and inactivated derivatives, IS30 family)	L (Replication, recombination and repair)	100% Lactobacillaceae
gene_638	gene_638	700,336-701,475	-	1,140	Transposase	COG0675 (Transposase and inactivated derivatives)	L (Replication, recombination and repair)	100% L. pentosus
gene_639	LPE_01510	701,456-701,908	-	453	Transposase family protein A	COG1943 (Transposase and inactivated derivatives)	L (Replication, recombination and repair)	100% L. pentosus
gene_700	FD14_ GL001685	761,249-762,559	-	1,311	IS1380 family transposase	-	-	100% L. pentosus
gene_1236	gene_1236	1,345,052– 1,345,423	+	372	IS5 family transposase	COG3293 (Transposase and inactivated derivatives)	L (Replication, recombination and repair)	100% P. acidilactici
gene_1237	gene_1237	1,345,396- 1,345,827	+	432	Putative transposase for insertion sequence	COG3293 (Transposase and inactivated	L (Replication, recombination and repair)	97.9% L. plantarum
gene_2023	tnp1	2,236,745- 2,237,668	-	924	element IS6501 MULTISPECIES: IS30 family transposase	derivatives) COG2826 (Transposase and inactivated	L (Replication, recombination and repair)	100% Terrabacteria group
gene_2025	FD24_ GL002607	2,239,842- 2,240,885	+	1,044	MULTISPECIES: IS30 family transposase	COG2826 (Transposase and inactivated	L (Replication, recombination and repair)	99.7% Lactiplantibacillus
gene_2321	HR47_01150	2,551,136- 2,552,023	+	888	IS30 family transposase	COG2826 (Transposase and inactivated derivatives IS30 family)	L (Replication, recombination and repair)	100% Lactobacillaceae
gene_2680	FD14_ GL001685	2,918,782-	-	1,311	IS1380 family	-	-	100% L. pentosus
gene_2,707	HR47_01150	2,948,652– 2,949,539	+	888	IS30 family transposase	COG2826 (Transposase and inactivated derivatives. IS30 family)	L (Replication, recombination and repair)	100% Lactobacillaceae
gene_2843	HR47_01150	3,146,814- 3,147,701	+	888	IS30 family transposase	COG2826 (Transposase and inactivated derivatives, IS30 family)	L (Replication, recombination and repair)	100% Lactobacillaceae
gene_3192	gene_3192	3,516,037- 3,516,375	+	339	MULTISPECIES: IS5 family transposase	COG3293 (Transposase and inactivated derivatives)	L (Replication, recombination and repair)	100% Bacilli
gene_3261	gene_3261	3,595,253- 3,596,521	-	1,269	Transposase	COG0675 (Transposase and inactivated derivatives)	L (Replication, recombination and repair)	100% L. pentosus
gene_3262	LPE_00194	3,596,619- 3,597,059	+	441	IS200/IS605 family transposase	COG1943 (Transposase and inactivated derivatives)	L (Replication, recombination and repair)	100% L. pentosus
gene_3455 [€]	FD47_ GL000486	24,260-25,474	-	1,215	IS21 family transposase	COG4584 (Transposase and inactivated derivatives)	L (Replication, recombination and repair)	100% Lactiplantibacillus
gene_3464 [£]	FD14_ GL001685	36,418-37,728	+	1,311	IS1380 family transposase	-	-	100% L. pentosus
gene_3465 [€]	LPE_03103	38,516-39,514	+	999	IS30 family transposase	COG2826 (Transposase and inactivated derivatives, IS30 family)	L (Replication, recombination and repair)	100% L. pentosus
gene_3484 [£]	LSEI_2008	53,623-54,552	-	930	MULTISPECIES: IS30 family transposase	COG2826 (Transposase and inactivated derivatives, IS30 family)	L (Replication, recombination and repair)	99.7% Lactobacillales
gene_3486 [¢]	gene_3486	55,300-57,009	+	1710	DDE transposase	COG3666 (Transposase and inactivated derivatives)	L (Replication, recombination and repair)	98.9% L. plantarum

(Continued)

TABLE 1 (Continued)

Gene ID	Gene	Position	Strand	Gene length	Protein description	COG ID (COG description)	COG class (COG class description)	Similarity to transposase in <i>Lactiplantibacillus</i> *
gene_3490€	FD47_ GL000486	59,298-60,512	-	1,215	IS21 family transposase	COG4584 (Transposase and inactivated derivatives)	L (Replication, recombination and repair)	100% Lactiplantibacillus
gene_3492 [£]	LPENT_00003	62,337-63,305	-	969	MULTISPECIES: IS30 family transposase	COG2826 (Transposase and inactivated derivatives, IS30 family)	L (Replication, recombination and repair)	100% Lactobacillaceae
gene_3505€	gene_3505	73,427-75,076	-	1,650	DDE transposase	COG3666 (Transposase and inactivated derivatives)	L (Replication, recombination and repair)	99.5% L. plantarum
gene_3506 [€]	gene_3506	75,204-75,746	-	543	Transposase	COG3666 (Transposase and inactivated derivatives)	L (Replication, recombination and repair)	100% L. pentosus
gene_3507 [€]	gene_3507	75,794-76,501	-	708	Transposase, partial	COG2963 (Transposase and inactivated derivatives)	L (Replication, recombination and repair)	100% L. pentosus
gene_3509€	gene_3509	77,298-77,729	-	432	Putative transposase for insertion sequence element IS6501	COG3293 (Transposase and inactivated derivatives)	L (Replication, recombination and repair)	97.9% L. plantarum
gene_3510 [£]	gene_3510	77,702-78,073	-	372	IS5 family transposase	COG3293 (Transposase and inactivated derivatives)	L (Replication, recombination and repair)	100% P. acidilactici
gene_3519 [£]	FD47_ GL002738	83,726-84,565	-	840	ISSth1, transposase (Orf2), IS3 family	COG2801 (Transposase and inactivated derivatives)	L (Replication, recombination and repair)	100% L. pentosus
gene_3520 [£]	LPENT_00063	84,601-85,323	-	723	Transposase (transposase, IS3 family protein)	COG2963 (Transposase and inactivated derivatives)	L (Replication, recombination and repair)	100% L. pentosus
gene_3530 [£]	LPENT_00003	91,009-91,977	-	969	MULTISPECIES: IS30 family transposase	COG2826 (Transposase and inactivated derivatives, IS30 family)	L (Replication, recombination and repair)	100% Lactobacillaceae
gene_3557 [£]	FD47_ GL000486	116,556-117,770	-	1,215	IS21 family transposase	COG4584 (Transposase and inactivated derivatives)	L (Replication, recombination and repair)	100% Lactiplantibacillus
gene_3565 [§]	gene_3565	4,191-4,487	+	297	Transposase (plasmid)	_	-	100% L. plantarum
gene_3566 [§]	gene_3566	4,782-5,018	+	237	Transposase (plasmid)	COG3464 (Transposase and inactivated derivatives)	L (Replication, recombination and repair)	100% L. plantarum
gene_3568 [§]	FC27_ GL001295	6,430-6,975	+	546	Transposase	COG3328 (Transposase and inactivated derivatives)	L (Replication, recombination and repair)	98.9% L. paraplantarum
gene_3569 [§]	LPENT_00125	7,062-7,991	+	930	Transposase TraISLpl1 (IS30 family)	COG2826 (Transposase and inactivated derivatives, IS30 family)	L (Replication, recombination and repair)	99.7% L. pentosus
gene_3574§	gene_3574	10,980-11,261	-	282	Transposase IS66	-	-	98.9% L. pentosus
gene_3576 [§]	gene_3576	11,507-12,520	-	1,014	IS66 family transposase	COG3436 (Transposase and inactivated derivatives)	L (Replication, recombination and repair)	100% L. pentosus
gene_3577 [§]	gene_3577	12,731-12,940	-	210	MULTISPECIES: transposase	COG3436 (Transposase and inactivated derivatives)	L (Replication, recombination and repair)	100% L. pentosus
gene_3579 ^s	gene_3579	13,597-14,094	+	498	Transposase	COG3293 (Transposase and inactivated derivatives)	L (Replication, recombination and repair)	100% L. pentosus
gene_3603 [§]	gene_3603	36,269-36,484	+	216	MULTISPECIES: transposase	COG3464 (Transposase and inactivated derivatives)	L (Replication, recombination and repair)	100% L. pentosus
gene_3607§	FC99_ GL000344	40,024-40,968	+	945	IS30 family transposase	COG2826 (Transposase and inactivated derivatives, IS30 family)	L (Replication, recombination and repair)	100% L. pentosus

(Continued)

TABLE 1 (Continued)

Gene ID	Gene	Position	Strand	Gene length	Protein description	COG ID (COG description)	COG class (COG class description)	Similarity to transposase in <i>Lactiplantibacillus</i> *
gene_3609 [§]	gene_3609	42,455-42,751	+	297	Transposase (plasmid)	_	-	100% L. plantarum
gene_3610 [§]	gene_3610	43,046-43,282	+	237	Transposase (plasmid)	COG3464 (Transposase and inactivated derivatives)	L (Replication, recombination and repair)	100% L. plantarum
gene_3612 [§]	FC27_ GL001295	44,694-45,239	+	546	Transposase	COG3328 (Transposase and inactivated derivatives)	L (Replication, recombination and repair)	98.9% L. paraplantarum
gene_3613 [§]	LPENT_00125	45,326-46,255	+	930	Transposase TraISLpl1 (IS30 family)	COG2826 (Transposase and inactivated derivatives, IS30 family)	L (Replication, recombination and repair)	99.7% L. pentosus
gene_3619 [§]	gene_3619	49,243-49,524	-	282	Transposase IS66	-	-	98.9% L. pentosus
gene_3621 ^s	gene_3621	50,051-50,782	_	732	IS66 family transposase	COG3436 (Transposase and inactivated derivatives)	L (Replication, recombination and repair)	100% L. pentosus
gene_3622 ⁵	gene_3622	50,992-51,201	-	210	MULTISPECIES: transposase	COG3436 (Transposase and inactivated derivatives)	L (Replication, recombination and repair)	100% L. pentosus
gene_3624 ^s	gene_3624	51,857-52,252	+	396	Transposase	COG3293 (Transposase and inactivated derivatives)	L (Replication, recombination and repair)	100% L. pentosus
gene_3642*	gene_3642	4,323-4,721	-	399	Transposase	COG3293 (Transposase and inactivated derivatives)	L (Replication, recombination and repair)	100% L. plantarum
gene_3643*	gene_3643	4,784-5,122	-	339	MULTISPECIES: 185 family	COG3293 (Transposase and	L (Replication, recombination	100% Bacilli
gene_3652*	gene_3652	12,866-13,795	+	930	IS30 family transposase	COG2826 (Transposase and inactivated derivatives, IS30	and repair) L (Replication, recombination and repair)	99.3% L. pentosus
gene_3658 ^{&}	HR47_01150	18,998-19,885	-	888	IS30 family transposase	family) COG2826 (Transposase and inactivated derivatives, IS30	L (Replication, recombination and repair)	100% Lactobacillaceae
gene_3659®	FD47_GL000486	20,362-21,576	+	1,215	IS21 family transposase	COG4584 (Transposase and inactivated derivatives)	L (Replication, recombination and repair)	100% Lactiplantibacillus
gene_3663 ^{&}	gene_3663	23,236-23,574	-	339	MULTISPECIES: IS5 family transposase	COG3293 (Transposase and inactivated derivatives)	L (Replication, recombination and repair)	100% Bacilli
gene_3667*	gene_3667	26,120-26,794	-	675	Transposase	COG3415 (Transposase and inactivated derivatives)	L (Replication, recombination and repair)	100% Loigolactobacillus
gene_3669 ^{&}	FD00_GL002377	27,785-29,125	+	1,341	ISL3 family transposase ISLasa4c	COG3464 (Transposase and inactivated derivatives)	L (Replication, recombination and repair)	100% Liquorilactobacillus uvarum
gene_3670 ^{&}	FD47_GL002738	29,250-30,089	-	840	ISSth1, transposase (Orf2), IS3 family	COG2801 (Transposase and inactivated derivatives)	L (Replication, recombination and repair)	100% L. pentosus
gene_3671*	LPENT_00063	30,125-30,847	-	723	Transposase (transposase, IS3 family protein)	COG2963 (Transposase and inactivated derivatives)	L (Replication, recombination and repair)	100% L. pentosus
gene_3689®	gene_3689	46,896-47,294	-	399	Transposase	COG3293 (Transposase and inactivated derivatives)	L (Replication, recombination and repair)	100% L. plantarum
gene_3690*	gene_3690	47,357-47,695	-	339	MULTISPECIES: IS5 family transposase	COG3293 (Transposase and inactivated derivatives)	L (Replication, recombination and repair)	100% Bacilli
gene_3699*	gene_3699	55,438-56,367	+	930	IS30 family transposase	COG2826 (Transposase and inactivated derivatives, IS30 family)	L (Replication, recombination and repair)	99.4% L. pentosus
gene_3705 ^{&}	HR47_01150	61,570-62,457	_	888	IS30 family transposase	COG2826 (Transposase and inactivated derivatives, IS30 family)	L (Replication, recombination and repair)	100% Lactobacillaceae
gene_3706 ^{&}	FD47_GL000486	62,934-64,148	+	1,215	IS21 family transposase	COG4584 (Transposase and inactivated derivatives)	L (Replication, recombination and repair)	100% Lactiplantibacillus
gene_3710 [®]	gene_3710	65,413-65,592	-	180	Transposase	_	-	95.2% L. plantarum

*: the best hit was indicated.

^{*e*}: sequences of pLPE10-1 plasmid. ^{*§*}: sequences of pLPE10-4 plasmid.

*: sequences of pLPE10-2 plasmid.

diversity (Abriouel et al., 2012). Several L. pentosus strains isolated from Aloreña table olives throughout the fermentation process were shown to be potential probiotics, with L. pentosus MP-10, L. pentosus CF1-6 and L. pentosus CF2-10N as the best candidates (Pérez TABLE 2 Characterization of IS elements found within the genome of Lactiplantibacillus pentosus CF2-10N using the ISfinder search tool.

SP1 S1.3 Larbock/lin photocom 2.547 0.0 SLaB0 S50 Larbock/lin photocim 1.05 0.9 SLaB0 S50 Larbock/lin photocim 1.429 0.9 SLa1 S50 S157 Larbock/lin photocim 1.429 0.9 SLa1 S50 S154 Larbock/lin photocim 54.0 4c.04 SLa1 S50 S154 Larbock/lin photocim 54.0 4c.04 SLa1 S50 S154 Larbock/lin photocim 52.0 0.07 SMm1 S2007805 S605 Minosk/lin malacha 52.0 0.07 SMm1 S2007805 S605 Minosk/lin malacha 52.0 0.07 SMm1 S2007805 S605 Minosk/lin malacha 52.0 0.07 SMm2 S2007805 S1307 S10 Minoskaprilin malacha 61.0 0.0 S1169 S20 S1007 Rabonic antopia 41 0.0 S1169 S20 S107 Rabonic antopia 41 0.1 S1160 S50 S107 Rabonic antopia 41 0.1 S1164 S5 S107 Rabonic antopia 41 0.1 S1164<	Sequences producing significant alignments	IS Family	Group	Origin	Score (bits)	<i>E</i> value
NameInterfact and an interfact and a set of the set	ISP1	ISL3		Lactobacillus plantarum	2,547	0.0
IsheqIspontIspon	ISLdl3	IS30		Lactobacillus delbrueckii	1705	0.0
JixpiJobLactorialJobJobStatuIS30LactorialJob6-15StafaIS30StatusLactorialJob0.002StafaIS30LactorialJob0.002StafaIS30LactorialJob0.007StafaIS30ManaclaS.200.007StafaIS30KatorialS.200.007StafaIS30KatorialS.200.007StafaIS30KatorialS.200.007StafaIS30KatorialS.200.007StafaIS30KatorialS.200.007StafaIS30KatorialS.200.007StafaIS30KatorialS.200.007StafaIS30KatorialS.300.007StafaIS30KatorialS.300.007StafaIS30KatorialS.300.007StafaIS30KatorialS.300.007StafaIS30S.30NephotecentarianA.10.01StafaIS30S.30NephotecentarianA.10.01StafaIS30KatoriaA.1A.11.6StafaIS30A.1A.1A.11.6StafaIS30KatoriaA.1A.11.6StafaIS30KatoriaA.1A.11.6StafaIS30KatoriaA.1A.11.6StafaIS40 <t< td=""><td>ISLhe30</td><td>IS30</td><td></td><td>Lactobacillus helveticus</td><td>1,635</td><td>0.0</td></t<>	ISLhe30	IS30		Lactobacillus helveticus	1,635	0.0
ISAIAISAIAJanual	ISLpl3	IS5	IS427	Lactobacillus plantarum	1,429	0.0
Skip2Sh SiLackokellis plantaramSe04-04Sh SaLackokellis plantaram5.000.007ISMmiS20015863IS665Lackokellis plantaram5.000.007ISMpiS20015863IS665Lackokellis plantaram5.000.007ISMpiS20015863IS665Sarphaccas plantania5.000.007ISMpiSistaIS605Sarphaccas plantania5.100.007ISMpiSistaIS101Streptoccas plantania4.100.10ISMpiSistaIS101Rindoccas plantania4.110.10ISMpiSistaIS101Rindoccas plantania4.110.10ISMafAIS30IS101Achoberitar urbania4.110.11ISMafAIS30IS101Achoberitar urbania4.110.11ISMafAIS30IS101Arboberitar surgenzia4.111.61ISMafAIS18IS27Streptoccas facilis4.111.61ISMafAIS182IS2011Barlbactir blactrian4.111.61ISMafAIS12IS101Arboberitar blactrian4.111.61ISMafAIS12IS124Arboberitar blactrian4.111.61ISMafAIS124IS214Arboberitar blactrian4.111.61ISMafAIS124IS111Arboberitar blactrian4.111.61ISMafAIS124Arboberitar blactrian4.111.61ISAIS124IS111Arbob	ISLsa1	IS30		Lactobacillus sakei	494	6e-136
ISLAc5ISA01Ist34Lactoballu plantarum54.00.002ISP15182Katooki Bundaria5.200.007ISLamalIS2001SoS0IS65Mitunki mulanida5.200.007ISLapiIS108Sea5Mitunki Bundaria5.200.007ISPariaIS130Sea5Streptoccus aliveria4.100.10ISI14IS130Streptoccus aliveria4.110.10ISI16IS30Streptoccus aliveria4.110.10ISMarkIS30IS10Maloratering mark4.110.10ISMarkIS30IS10Maloratering mark4.110.10ISMarkIS30IS10Maloratering mark4.110.10ISMarkIS30IS12Intervector facelist4.110.11ISMarkIS30IS12Intervector facelist4.111.6ISMarkIS12StabilityMaloratering mark4.111.6ISA4IS12IstabilityMaloratering mark4.111.6ISMarkIS12IstabilityMaloratering mark4.111.6ISA4IS12IstabilityIstability1.61.6ISA4IS12IstabilityIstability1.61.6ISA4IS12IstabilityIstability1.61.6ISA4IS12IstabilityIstability1.61.6ISA4IS12IstabilityIstability1.61.6ISA4I	ISLpl2	IS3	IS150	Lactobacillus plantarum	56.0	4e-04
ISP2IsIt32Lacibuling balantaria5.00.007ISMatoIS20018058605Lacibuling isofomini5.00.007ISSpaceISI80Lacibuling isofomini5.00.007ISSpaceISI80Staffonccas afurnina5.010.026ISI190ISS0Streptonccas afurnina4.110.10ISI80ISS0Streptonccas afurnina4.120.10ISI80ISS0Streptonccas afurnina4.110.10ISMathISS0IS101Kologirillan rubran4.110.10ISMathISS0IS101Kologirillan rubran4.110.11ISMathISS0IS101Kologirillan rubran4.110.11ISMathISS1IS101Kologirillan rubran4.110.12ISMathISS1IS102Streptonge couloaler4.111.6ISMathISS2IS102Kologirillan rubran4.111.6ISMathIS102IS102Kologirillan rubran4.111.6ISMathIS122IS104Kologirillan rubran4.111.6ISMathIS102IS104Kologirillan rubran4.111.6ISMathIS102IS104Kologirillan rubran4.111.6ISMathIS102IS104Kologirillan rubran4.111.6ISMathIS102IS104Kologirillan rubran4.111.6ISMathIS102IS104Kologirillan rubran4.111.6<	ISLhe65	IS200/IS605	IS1341	Lactobacillus helveticus	54.0	0.002
<table-container>NaminSecond SecondSecond SecondSecond SecondSecond SecondSecond SecondSecond SecondSecond SecondSecond Second Se</table-container>	ISP2	IS1182		Lactobacillus plantarum	52.0	0.007
ISIgofISG01Se05ISG05Lactobacillu joinnoni92.00.007ISINGISINGSirptooccas planumian6.10.126ISINGISINGSirptooccas sulturins4.10.10ISINGISINGSirptooccas sulturins4.10.10ISINGISINGISINGSirptooccas sulturins4.10.10ISINGISINGISINGMacharitani sequencias4.10.10ISINGISINGISINGMorbacter animensis4.10.11ISINGISINGVorbacter animensis4.10.11ISINGISINGSirptonyces officials4.10.11ISINGISINGSirptonyces officials4.11.6ISINGISINGISINGSirptonyces officials4.11.6ISINGISINGISINGSirptonyces officials4.11.6ISINGISINGISINGBarbialderia antificial4.11.6ISINGISINGISINGBarbialderia antificial4.11.6ISINGISINGISINGIsintoficerianis4.11.6ISINGISINGISINGIsintoficerianis4.11.6ISINGISINGISINGIsintoficerianis4.11.6ISINGISINGISINGIsintoficerianis4.11.6ISINGISINGISINGIsintoficerianis4.11.6ISINGISINGISINGIsintoficerianis4.11.6ISINGISING<	ISMmu1	IS200/IS605	IS605	Mitsuokella multacida	52.0	0.007
ISSpa5S1880Interplacecar pneamoniae9.10.026IS119IS30Serplacecar subarinia4.30.101IS119IS30Serplacecar subarinia4.30.101IS108IS30Serplacecar subarinia4.30.101ISMa45IS40IS10Matonia eatropha4.10.101ISMarfaIS30IS10Antiobacter anisitensis4.10.101ISMarfaIS30IS30Matonia eatropha4.10.101ISMarfaIS30IS47Serplace eatropha4.10.101ISMarfaIS12Barlan consegnation4.11.6ISMarfaIS12Serplace eatropha4.11.6ISMarfaIS12IS10Barlan empirica4.11.6ISMarfaIS12IS10Barlan empirica4.11.6ISMarfaIS12IS10Barlan empirica4.11.6ISMarfaIS12IS10Barlan empirica4.11.6ISMarfaIS12IS10Barlan empirica4.11.6ISMarfaIS12IS10IS10IS104.11.6ISMarfaIS12IS10IS10IS104.11.6ISMarfaIS12IS10IS10IS104.11.6ISMarfaIS12IS10IS10IS104.11.6ISMarfaIS12IS10IS10IS104.11.6ISMarfaIS12IS10IS10IS10	ISLjo5	IS200/IS605	IS605	Lactobacillus johnsonii	52.0	0.007
IS1161SI30SingSingprocess subwards8.10.10IS1080IS30Singprocess subwards8.10.10IS0806IS30Singprocess subwards8.10.10ISMardIS30IS101Bohospirilum rubrum4.10.11ISAndIS3IS30Verobacter anitosiss4.10.11ISMardIS30IS30Merobacter anitosiss4.10.11ISMardIS30IS47Singbroats integration4.10.11ISAdalIS12Barlands integration4.11.6ISMardIS12Barlands integration4.11.6ISMardIS12Barlands integration4.11.6ISAdalIS12Barlands integration4.11.6ISAdalIS12Singprocessemilis4.11.6ISAdalIS12Singprocessemilis4.11.6ISAdalIS13Barlands integration4.11.6ISAdalIS11Carboats integration4.11.6ISAdalIS13Aciduation forminal4.11.6ISAdalIS13Aciduation forminal4.11.6ISAdalIS14IS111Aciduation forminal4.11.6ISAdalIS13Aciduation forminal4.11.61.6ISAdalIS14IS14Aciduation forminal4.11.6ISAdalIS14IS14Aciduation forminal4.11.6ISAdalIS14 <tdi< td=""><td>ISSpn5</td><td>IS1380</td><td></td><td>Streptococcus pneumoniae</td><td>50.1</td><td>0.026</td></tdi<>	ISSpn5	IS1380		Streptococcus pneumoniae	50.1	0.026
IS139IS30Sereptoaccas safuvinas4.8.10.10IS08IS30Salatonia catropha4.8.10.10ISMardoIS3IS1031Moloa formilationa andropha4.6.10.41ISAr45IS3IS30Moloacter anilations4.6.10.41ISMardoIS3IS30Myobacterion segmentas4.6.10.41ISMardoIS30IS30Settoroaccas facalis4.6.10.41ISAr45IS30IS427Statoroaccas facalis4.6.10.41ISMardoIS195IS427Statoroaccas facalis4.1.11.6ISMardoIS12Isacillas sharmosas4.1.11.6ISMardoIS12Isacillas sharmosas4.1.16.4ISMardoIS12Isacillas sharmosas4.1.16.4ISMardoIS13Isacillas sharmosas4.1.16.4I	IS1161	IS30		Streptococcus salivarius	48.1	0.10
IS1086IS30Is10Islational entrophan48.10.10ISR1vinoIS5IS10Rhodopirllam rudman46.10.41ISAr450IS3IS3Arthroker artikliensis46.10.41ISAm7IS30IS3Myobakterian singmatic46.10.41IS670IS30IS0Interocecus leadiliens and the singmatic46.10.41ISAdahIS30IS40Steptomyces colicolor41.10.41ISAdahIS195IS68dl1Steptomyces colicolor41.11.6ISMap5IS182IS0Barlhoderia haderian highrian41.11.6ISMap5IS182IS182Barlhoderia haderian highrian41.11.6ISAdahIS12Isropmyces aremittilis41.11.6ISA4IS701Isropmyces aremittilis41.11.6ISA4IS71Isropmyces aremittilis41.16.4ISA4IS71Isropmyces aremittilis41.16.4ISA4IS70IS111Crober fraudili41.16.4ISA4IS31IS124Vellouklai abrigoinsi41.16.4ISA4IS31IS14Crober fraudili41.16.4ISA4IS31IS14Crober fraudili41.16.4ISA4IS31IS14Istephonecturian42.16.4ISA4IS3IS41Istephonecturian42.16.4ISA4IS34IS41Istephonecturian42.16.4	IS1139	IS30		Streptococcus salivarius	48.1	0.10
ISR ISR ISR ISR ISR ISR ISRISR ISR ISR ISR 	IS1086	IS30		Ralstonia eutropha	48.1	0.10
ISAr45IS3IS3Ardroductar arilaliensis4.10.41ISMm7IS3IS3Mycobactrium megnatis4.10.41IS67IS30IS427Enterooccus facedis4.10.41ISAr41IS5IS427Strobrowsce oxidecatis4.10.41ISAba1IS159IS20ISad11Actinobacteria bacterium4.11.6ISMm1IS12Bacillus schumensus4.11.61.6ISMa4IS12Actobacillus shamensus4.11.6ISAr4IS70Istepomyces avernitifis4.11.6ISA41IS10IS10Catebacillus shamensus4.11.6ISAr4IS70IstaActobactillus shamensus4.11.6ISAr4IS10IS110Catebacter forcandit4.11.6ISAr4IS10IS110Catebacter forcandit4.11.6ISAr4IS12IS124Catebacter forcandit4.16.4ISAr4IS16IS124Veldiorebacter forcandit2.16.4ISAr4IS13IS124Partocansatriativitie1.66.4ISAr4IS3IS124Partocansatriativitie1.66.4ISAr4IS3IS47Sevendita stroit2.16.4ISAr4IS47Sevendita stroit2.16.46.4ISAr4IS47IsarePartocansatriativitie6.46.4ISAr4IS47IsareActobactivitie6.46.	ISRhru6	IS5	IS1031	Rhodospirillum rubrum	46.1	0.41
ISAm7IS3IS3Mycobactrium snegmatis4.10.4118570IS30	ISAar45	IS3	IS3	Arthrobacter arilaitensis	46.1	0.41
Instruction Instruction <thinstruction< th=""> <thinstruction< th=""></thinstruction<></thinstruction<>	ISMsm7	IS3	IS3	Mycobacterium smegmatis	46.1	0.41
IS1648IS5IS427Strapmere occilolor4.610.41ISAcba1IS1955IS180IS6011Actinobacteria bacterium44.11.6ISBap5IS182Bacillus sp.44.11.6ISBam1IS3IS100Barkholderia ambiferia44.11.6ISGA4IS701Straplomyces overnitilis44.11.6IS2311IS4IS231Bacillus thuringiensis44.11.6IS242IS10IS1111Citrobacter freundii42.16.4ISAch26IS10IS1111Citrobacter freundii42.16.4ISAch26IS124Veillondia arbifera42.16.4ISAch2IS56IS1249Veillondia trytera42.16.4ISPh1ISIS60Pacedathratiforme42.16.4ISPh2IS63IS930Partee anaratis42.16.4ISPh2IS64Pacedathratiforme42.16.4ISSec13IS15IS47Shevandia spicalis42.16.4ISSec14IS14IS14Actinobacter freudii42.16.4ISMaiIS195IS47Shevandia spicalis42.16.4ISMaiIS195IS47Shevandia spicalis42.16.4ISMaiIS195ISAActohactificatificali42.16.4ISMaiIS195ISNaiActohactificatificali42.16.4ISMaiIS195ISNaiActohactificatificalis42.16.4	IS6770	IS30		Enterococcus faecalis	46.1	0.41
IAchabaIS595ISS011Attroductival bacterium44.11.6ISBop5IS1182Bacillus sp.4.11.6ISBan1IS3IS150Burkholderia ambigria4.11.6ISAIS172Lacobacillus rhannosus4.11.6ISAIS701Streptomyces avernifilis4.11.6IS231JIS4IS231Bacillus thuringiensis4.11.6ISA4IS10IS111Citrobacter freinali4.16.4ISAbel6IS3IS10Kainetobacter breizniace4.16.4ISA4IS26IS1249Veillonelia drupica4.16.4ISVa2IS634IS03Pandoa annatis4.26.4ISPha15IS63IS903Pandoa annatis4.16.4ISPh21IS630Pandoa annatis4.16.4ISSnel2IS630Pandoa annatis4.16.4ISSnel3IS50Sinvi1Shevanella sp.4.16.4ISSnel3IS51Sinvi1Michoaccus sp.4.16.4ISMa3IS63ISNvi1Nitrobacteri winogradskyi4.16.4ISMa4IS630Istoroccus sp.4.16.4ISSnel3IS51Mycobacterium baris4.16.4ISMa4IS630Istoroccus sp.4.16.4ISMa5IS51Mycobacterium baris4.16.4ISMa5IS64Istoroccus sp.4.16.4ISMa6IS51M	IS1648	IS5	IS427	Streptomyces coelicolor	46.1	0.41
ISBp5IS1182Bacillus sp.4.1.11.6ISBm1IS3IS150Burkholderia ambifuria4.1.11.6ISLA4IS2-2Lacibacillus rhannosis4.1.11.6ISSav4IS701Streptomyces avernitilis4.1.11.6ISSav4IS701Streptomyces avernitilis4.1.11.6ISCA726IS10IS1111Citrobacter freindit4.1.16.4ISCA726IS10IS1111Citrobacter freindit4.1.16.4ISAbe16IS3IS150Acinetobacter bereziniae4.1.16.4ISVa2IS256IS1249Veillonella atypica4.2.16.4ISDa15IS630IS149Veillonella atypica4.2.16.4ISPa11IS5IS903Pantoca anantis4.1.16.4ISPph2IS630IS003Pantoca anantis4.1.16.4ISPa12IS630IS003Pantoca anantis4.1.16.4ISPa13IS1634IS003IS1094.1.16.4ISPa14IS1634IS109Pantoccus sp.4.1.16.4ISNvi3IS195ISNvi1Nitrobacter winogradshyi4.1.16.4ISPa74IS30IS11Actobactils plantarum4.1.16.4ISPa74IS30IS14Mechaosarcina mazci4.1.16.4ISNvi3IS195ISNvi1Nitrobacter into portio4.1.16.4ISPa74IS30IS14Mycobacterium4.1.16.4 </td <td>ISAcba1</td> <td>IS1595</td> <td>ISSod11</td> <td>Actinobacteria bacterium</td> <td>44.1</td> <td>1.6</td>	ISAcba1	IS1595	ISSod11	Actinobacteria bacterium	44.1	1.6
Interp Interp< Interp< Interp Interp< Interp< Interp Interp Interp Interp Interp Interp<	ISBsp5	IS1182		Bacillus sp.	44.1	1.6
Istrat Istrat Lactobacillus hannosus 44.1 1.6 ISSav4 IS701 Streptomyces avernitilis 44.1 1.6 ISSav4 IS701 Streptomyces avernitilis 44.1 1.6 ISSav4 IS10 IS111 Citobacter freundii 42.1 6.4 ISAbe16 IS3 IS150 Acinetobacter bereziniae 42.1 6.4 ISNat2 IS256 IS1249 Veillorella dipjica 42.1 6.4 ISNat2 IS163 IS1249 Desulfitobacterium 42.1 6.4 ISNat2 IS163 IS00 Parloca ananatis 42.1 6.4 ISPan1 IS5 IS903 Parloca ananatis 42.1 6.4 ISPan2 IS163 IS030 Parloca ananatis 42.1 6.4 ISSoc13 IS5 IS903 Parloca ananatis 42.1 6.4 ISSnel2 IS1634 IS427 Shewanella sp. 42.1 6.4 ISNm31 IS159 IS100	ISBam1	IS3	IS150	Burkholderia ambifaria	44.1	1.6
Instant Intermation	ISLrh4	ISLre2		Lactobacillus rhamnosus	44.1	1.6
Interface Interface <thinterface< th=""> <thinterface< th=""> <th< td=""><td>ISSav4</td><td>IS701</td><td></td><td>Streptomyces avermitilis</td><td>44.1</td><td>1.6</td></th<></thinterface<></thinterface<>	ISSav4	IS701		Streptomyces avermitilis	44.1	1.6
International problem International problem International problem International problem International problem ISGF250 IS101 Citrobacter fourginit 42.1 6.4 ISAbe16 IS3 IS1249 Veillonella atypica 42.1 6.4 ISVa2 IS256 IS1249 Veillonella atypica 42.1 6.4 ISDha15 IS163 IS1249 Veillonella atypica 42.1 6.4 ISDha15 IS1634 Palotocarininans 42.1 6.4 ISPan1 IS5 IS903 Pantoca annatis 42.1 6.4 ISPan1 IS5 IS903 Pantoca annatis 42.1 6.4 ISPan1 IS5 IS903 Pantoca annatis 42.1 6.4 ISPan1 IS5 IS903 Synchococus sp. 42.1 6.4 ISSac13 IS5 IS427 Synchococus sp. 42.1 6.4 ISNwi3 IS195 ISNwi1 Methanosarcina mazei 42.1 6.4 ISMa11 ISto Mycobacterium bovis 42.1 6.4 ISNP	IS231I	IS4	IS231	Bacillus thurinoiensis	44.1	1.6
India Intra Intr Intra Intra <th< td=""><td>ISCfr26</td><td>IS110</td><td>IS1111</td><td>Citrohacter freundii</td><td>42.1</td><td>6.4</td></th<>	ISCfr26	IS110	IS1111	Citrohacter freundii	42.1	6.4
International International <thinternational< th=""> <thinternational< <="" td=""><td>ISAbe16</td><td>IS3</td><td>IS150</td><td>Acinetobacter hereziniae</td><td>42.1</td><td>6.4</td></thinternational<></thinternational<>	ISAbe16	IS3	IS150	Acinetobacter hereziniae	42.1	6.4
IndiaInternation part of the constraint o	ISVat2	18256	IS1249	Veillonella atypica	42.1	6.4
Initial instance Description instance Description instance Description instance Description instance ISPan1 IS5 IS903 Pantoea ananatis 42.1 6.4 ISPph2 IS630	ISDha15	IS1634	101217	Desulfitohacterium	42.1	6.4
ISPan1IS5IS903Pantoe anantis4.1.6.4ISPh215630- Pelodictyon4.1.6.4ISShes12S1634Shewanella sp.4.1.6.4ISSch13IS5IS47Synechococus sp.4.1.6.4ISSni3IS30ISVNi1Interococus faccilis4.1.6.4ISNwi3IS159ISNwi1Nitrobacter winogradskyi4.1.6.4ISMma18IS1634ISNNi1Michoacarina mazei4.1.6.4ISQ11IS07Campilobacter futus4.1.6.4ISP87IS30IS51Macharina mazei4.1.6.4IS986IS3IS51Macharitanian4.1.6.4IS986IS3IS51Macharitanian4.1.6.4IS110IS3IS51Macharitanian4.1.6.4IS231BIS4IS231Baillus thuringiensis4.1.6.4IS231AIS4IS231Baillus thuringiensis4.1.6.4IS231KIS4IS231Baillus thuringiensis4.1.6.4IS446IS40IS24Baillus thuringiensis4.1.6.4IS447IS43IS43IS4IS46.4IS444IS44IS44IS446.46.4IS444IS44IS44IS46.46.4IS444IS44IS44IS44IS446.4IS444IS44IS44IS44IS46.4IS444IS	10011010	101001		dichloroeliminans	12.1	0.1
ISPb2IS630Felodicyon4.16.4ISSIS1634Shevanella şn.4.16.4ISSc13IS5IS47Synchcoccus şn.4.16.4ISEnfa364IS30IS10Interoccus facalis4.16.4ISNvi3IS195ISNvi1Mthaosarcina mazei4.16.4ISMma18IS1634IS00Campylobacter fetus4.16.4ISQ1IS30IS1Campylobacter fetus4.16.4ISP87IS3IS51Mcobacter ium bovis4.16.4IS986IS3IS51Mcobacter ium bovis4.16.4IS101IS3IS51Mcobacter ium bovis4.16.4IS211BIS4IS51Mcobacter ium bovis4.16.4IS231AIS4IS231Baillus thringiensis4.16.4IS21KIS4IS231Baillus thringiensis4.16.4IS1476IS4IS231Baillus thringiensis4.16.4IS44IS44IS24Baillus thringiensis4.16.4IS241KIS4IS241Baillus thringiensis4.16.4IS44IS45IS44IS446.4IS44IS45IS44IS446.4IS45IS45IS44IS446.4IS44IS45IS44IS446.4IS44IS44IS44IS446.4IS44IS45IS44IS446.4IS44 <td>ISPan1</td> <td>IS5</td> <td>IS903</td> <td>Pantoea ananatis</td> <td>42.1</td> <td>6.4</td>	ISPan1	IS5	IS903	Pantoea ananatis	42.1	6.4
ISSnes12 IS1634 Shewanella sp. 42.1 6.4 ISSnes13 IS5 IS427 Synechococus sp. 42.1 6.4 ISEnfa364 IS30 Enterococus faecalis 42.1 6.4 ISNwi3 IS1595 ISNwi1 Interococus faecalis 42.1 6.4 ISNma18 IS1634 ISNwi1 Mitrobacter winogradskyi 42.1 6.4 ISCfe1 IS607 Campylobacter fetus 42.1 6.4 ISLpl1 IS30 ISS1 Campylobacter fetus 42.1 6.4 ISP87 IS3 ISS1 Mycobacterium bovis 42.1 6.4 IS986 IS3 ISS1 Mycobacterium bovis 42.1 6.4 IS987 IS3 ISS1 Mycobacterium bovis 42.1 6.4 IS986 IS3 ISS1 Mycobacterium bovis 42.1 6.4 IS986 IS3 ISS1 Mycobacterium bovis 42.1 6.4 IS986 IS3 ISS1 Mycobacterium bovis 42.1 6.4 IS10 IS1 Mycobacterium	ISPph2	IS630		Pelodictyon	42.1	6.4
ISShes12IS1634Shewanella sp.42.16.4ISSoc13IS5IS47Synechococcus sp.42.16.4ISEnfa364IS30Enterococus faecalis42.16.4ISNwi3IS1595ISNwi1Nitrobacter winogradskyi42.16.4ISMma18IS1634-Methanosarcina mazei42.16.4ISCfe1IS607Campylobacter fetus42.16.4ISL91IS30IS51Mycobacter fetus42.16.4IS987IS3IS51Mycobacterium bovis42.16.4IS986IS3IS51Mycobacterium bovis42.16.4IS986IS3IS51Mycobacterium bovis42.16.4IS987IS3IS51Mycobacterium bovis42.16.4IS986IS3IS51Mycobacterium bovis42.16.4IS987IS4IS51Mycobacterium bovis42.16.4IS986IS3IS51Mycobacterium bovis42.16.4IS986IS3IS51Mycobacterium42.16.4IS231BIS4IS231Bacillus thuringiensis42.16.4IS231AIS4IS231Bacillus thuringiensis42.16.4IS1476ISL3IS4IS2316.46.4				phaeoclathratiforme		
ISSoc13IS5IS427Synchococus sp.42.16.4ISEnfa364IS30Enterococus faecalis42.16.4ISNwi3IS1595ISNwi1Nitrobacter winogradskyi42.16.4ISMma18IS1634Methanosarcina mazei42.16.4ISCfe1IS607Camplobacter fetus42.16.4ISUpl1IS30IS1Lactobacillus plantarum42.16.4IS987IS3IS51Mycobacterium bovis42.16.4IS986IS3IS51Mycobacterium bovis42.16.4IS101IS3IS51Mycobacterium bovis42.16.4IS211IS4IS51Mycobacterium bovis42.16.4IS2318IS4IS231Bacillus thuringiensis42.16.4IS231KIS4IS231Bacillus thuringiensis42.16.4IS1476IS13IS1Bacillus thuringiensis6.4IS1476IS4IS231Bacillus thuringiensis42.16.4	ISShes12	IS1634		Shewanella sp.	42.1	6.4
ISEnfa364IS30Enteroccus faecalis42.16.4ISNwi3IS1595ISNwi1Nitrobacter winogradskyi42.16.4ISMma18IS1634Methanosarcina mazei42.16.4ISCfe1IS607Campylobacter fetus42.16.4ISLpl1IS30Lactobacillus plantarum42.16.4IS987IS3IS51Mycobacterium bovis42.16.4IS986IS3IS51Mycobacterium bovis42.16.4IS986IS3IS51Mycobacterium42.16.4IS10IS51Mycobacterium bovis42.16.4IS211IS4IS231Bacillus thuringiensis42.16.4IS231KIS4IS231Bacillus thuringiensis42.16.4IS1476ISL3IS231Bacillus creus42.16.4	ISSoc13	IS5	IS427	Synechococcus sp.	42.1	6.4
ISNwi3IS1595ISNwi1Nitrobacter winogradskyi42.16.4ISMma18IS1634-Methanosarcina mazei42.16.4ISCfe1IS607-Campylobacter fetus42.16.4ISLpl1IS30-Lactobacillus plantarum42.16.4IS987IS3IS51Mycobacterium bovis42.16.4IS986IS3IS51Mycobacterium bovis42.16.4IS986IS3IS51Mycobacterium bovis42.16.4IS6110IS3IS51Mycobacterium bovis42.16.4IS231BIS4IS231Bacillus thuringiensis42.16.4IS231AIS4IS231Bacillus thuringiensis42.16.4IS1476ISL3IS231Bacillus creus42.16.4	ISEnfa364	IS30		Enterococcus faecalis	42.1	6.4
ISMma18 IS1634 Methanosarcina mazei 42.1 6.4 ISCfe1 IS607 Campylobacter fetus 42.1 6.4 ISLpl1 IS30 Lactobacillus plantarum 42.1 6.4 IS987 IS3 IS51 Mycobacter ium bovis 42.1 6.4 IS986 IS3 IS51 Mycobacterium bovis 42.1 6.4 IS00 IS51 Mycobacterium bovis 42.1 6.4 IS231B IS4 IS231 Bacillus thuringiensis 42.1 6.4 IS231K IS4 IS231 Bacillus thuringiensis 42.1 6.4 IS1476 ISL3 Isenterococus faecium 42.1 <t< td=""><td>ISNwi3</td><td>IS1595</td><td>ISNwi1</td><td>Nitrobacter winogradskyi</td><td>42.1</td><td>6.4</td></t<>	ISNwi3	IS1595	ISNwi1	Nitrobacter winogradskyi	42.1	6.4
ISCfe1IS607Campylobacter fetus42.16.4IS1IS30Lactobacillus plantarum42.16.4IS987IS3IS51Mycobacterium bovis42.16.4IS986IS3IS51Mycobacterium bovis42.16.4IS986IS3IS51Mycobacterium bovis42.16.4IS10IS3IS51Mycobacterium42.16.4IS2110IS3IS51Mycobacterium42.16.4IS2318IS4IS231Bacillus thuringiensis42.16.4IS231AIS4IS231Bacillus thuringiensis42.16.4IS1476ISL3IS231Bacillus cereus42.16.4	ISMma18	IS1634		Methanosarcina mazei	42.1	6.4
ISLpl1 IS30 Lactobacillus plantarum 42.1 6.4 IS987 IS3 IS51 Mycobacterium bovis 42.1 6.4 IS986 IS3 IS51 Mycobacterium bovis 42.1 6.4 IS986 IS3 IS51 Mycobacterium 42.1 6.4 IS986 IS3 IS51 Mycobacterium 42.1 6.4 IS6110 IS3 IS51 Mycobacterium 42.1 6.4 IS231B IS4 IS231 Bacillus thuringiensis 42.1 6.4 IS231A IS4 IS231 Bacillus thuringiensis 42.1 6.4 IS231K IS4 IS231 Bacillus thuringiensis 42.1 6.4 IS1476 ISL3 Enterococcus faecium 42.1 6.4	ISCfe1	IS607		Campylobacter fetus	42.1	6.4
IS987 IS3 IS51 Mycobacterium bovis 42.1 6.4 IS986 IS3 IS51 Mycobacterium bovis 42.1 6.4 IS986 IS3 IS51 Mycobacterium 42.1 6.4 IS6110 IS3 IS51 Mycobacterium 42.1 6.4 IS6110 IS3 IS51 Mycobacterium 42.1 6.4 IS231B IS4 IS231 Bacillus thuringiensis 42.1 6.4 IS231A IS4 IS231 Bacillus thuringiensis 42.1 6.4 IS231K IS4 IS231 Bacillus cereus 42.1 6.4 IS1476 ISL3 Enterococcus faecium 42.1 6.4	ISLpl1	IS30		Lactobacillus plantarum	42.1	6.4
IS986 IS3 IS51 Mycobacterium 42.1 6.4 tuberculosis IS6110 IS3 IS51 Mycobacterium 42.1 6.4 tuberculosis IS231B IS4 IS231 Bacillus thuringiensis 42.1 6.4 IS231A IS4 IS231 Bacillus thuringiensis 42.1 6.4 IS231K IS4 IS231 Bacillus thuringiensis 42.1 6.4 IS231K IS4 IS231 Bacillus cereus 42.1 6.4	IS987	IS3	IS51	Mycobacterium bovis	42.1	6.4
IS6110 IS3 IS51 <i>tuberculosis</i> IS231B IS4 IS231 Bacillus thuringiensis 42.1 6.4 IS231A IS4 IS231 Bacillus thuringiensis 42.1 6.4 IS231K IS4 IS231 Bacillus thuringiensis 42.1 6.4 IS231K IS4 IS231 Bacillus thuringiensis 42.1 6.4	IS986	IS3	IS51	Mycobacterium	42.1	6.4
IS6110 IS3 IS51 Mycobacterium 42.1 6.4 tuberculosis IS231B IS4 IS231 Bacillus thuringiensis 42.1 6.4 IS231A IS4 IS231 Bacillus thuringiensis 42.1 6.4 IS231K IS4 IS231 Bacillus cereus 42.1 6.4 IS1476 ISL3 Enteroccus faecium 42.1 6.4				tuberculosis		
IS231BIS4IS231Bacillus thuringiensis42.16.4IS231AIS4IS231Bacillus thuringiensis42.16.4IS231KIS4IS231Bacillus cereus42.16.4IS1476ISL3Enterococcus faecium42.16.4	IS6110	IS3	IS51	Mycobacterium	42.1	6.4
IS231B IS4 IS231 Bacillus thuringiensis 42.1 6.4 IS231A IS4 IS231 Bacillus thuringiensis 42.1 6.4 IS231K IS4 IS231 Bacillus cereus 42.1 6.4 IS1476 ISL3 Enterococcus faecium 42.1 6.4				tuberculosis		
IS231AIS4IS231Bacillus thuringiensis42.16.4IS231KIS4IS231Bacillus cereus42.16.4IS1476ISL3Enterococcus faecium42.16.4	IS231B	IS4	IS231	Bacillus thuringiensis	42.1	6.4
IS231K IS4 IS231 Bacillus cereus 42.1 6.4 IS1476 ISL3 Enterococcus faecium 42.1 6.4	IS231A	IS4	IS231	Bacillus thuringiensis	42.1	6.4
IS1476 ISL3 Enterococcus faecium 42.1 6.4	IS231K	IS4	IS231	Bacillus cereus	42.1	6.4
	IS1476	ISL3		Enterococcus faecium	42.1	6.4

12

Total proteins

11

54

68

22

26

38

22

10

GC%

41.26

41.55

41.88

38.27

34.83

40.70

41.54

31.68

Region	Region length	Completeness*	Score	Region position
1	15 kb	Incomplete	30	2,227,200-2,242,287
2	39.9 kb	Intact	150	2,260,786-2,300,777
3	47.7 kb	Intact	150	2,808,177-2,855,881
4	23.4 kb	Incomplete	60	39,960-63,408
5	13.7 kb	Questionable	80	309-14.094

Questionable

Questionable

Incomplete

e PHASTER bioinformatic tool.

90

80

40

34,863-54,348

17,673-36,515

60,245-66,978

Localization

Chromosome

Chromosome

Chromosome

pLPE10-1

pLPE10-4

pLPE10-4

pLPE10-2

pLPE10-2

Most common phage

NC_031125(1)

NC_019489(26)

NC_019489(22)

PHAGE_Entero_ fiAA91_ss_ NC_022750(2)

PHAGE_Staphy_

PHAGE_Staphy_

Escher_500,465_1_ NC_049342(3)

Escher_500,465_1_ NC_049342(3)

SPbeta_like_ NC_029119(2)

SPbeta_like_ NC_029119(2)

PHAGE_

PHAGE_

PHAGE_Lactob_PLE3_

PHAGE_Lactob_Sha1_

PHAGE_Lactob_Sha1_

*: Intact (score > 90), Questionable (score 70 \pm 90), Incomplete (score < 70).

19.4 kb

18.8 kb

6.7 kb

pLPE10: plasmid of L. pentosus CF2-10.

6

7

8

Gene ID	Gene	Position	Strand	Gene length (bp)	Protein description	Ontology ID	Ontology term
gene_1618	cas9	1,785,693–1,789,037	+	3,345	Type II CRISPR RNA-guided endonuclease Cas9	GO:0003677, GO:0003723, GO:0004519, GO:0046872, GO:0043571, GO:0051607, GO:0090305	DNA binding, RNA binding, endonuclease activity, metal ion binding, maintenance of CRISPR repeat elements, defense response to virus, nucleic acid phosphodiester bond hvdrobvsis
gene_1619	cas9	1,789,043–1,789,759	÷	717	Type II CRISPR RNA-guided endonuclease Cas9	GO:0003677, GO:0003723, GO:0004519, GO:0046872, GO:0043571, GO:0051607, GO:0090305	DNA binding, RNA binding, endonuclease activity, metal ion binding, maintenance of CRISPR repeat elements, defense response to virus, nucleic acid phosphodiester bond hydrolysis
gene_1620	casl	1,789,953–1,790,858	+	906	Subtype II CRISPR- associated endonuclease Cas1	GO:0003677, GO:0004519, GO:0046872, GO:0043571, GO:0051607, GO:0090305	DNA binding, endonuclease activity, metal ion binding, maintenance of CRISPR repeat elements, defense response to virus, nucleic acid phosphodiester bond hydrolysis
gene_1621	cas2	1,790,836–1,791,141	+	306	MULTISPECIES: CRISPR-associated endonuclease Cas2	GO:0004521, GO:0046872, GO:0043571, GO:0051607, GO:0090502	Endoribonuclease activity, metal ion binding, maintenance of CRISPR repeat elements, defense response to virus, RNA phosphodiester bond hydrolysis, endonucleolytic
gene_1622	gene_1622*	1,791,138-1,791,815	+	678	Type II-A CRISPR- associated protein Csn2	-	_
gene_2923	cas1	3,233,320-3,234,273	+	954	Subtype I-E CRISPR- associated endonuclease Cas1	GO:0003677, GO:0004519, GO:0046872, GO:0043571, GO:0051607, GO:0090305	DNA binding, endonuclease activity, metal ion binding, maintenance of CRISPR repeat elements, defense response to virus, nucleic acid phosphodiester bond hydrolysis
gene_2924	FD24_GL002157	3,234,270-3,235,169	+	900	Type I-E CRISPR- associated endoribonuclease Cas2	GO:0003676	Nucleic acid binding
gene_2925	gene_2925*	3,236,488-3,239,202	+	2,715	CRISPR-associated helicase/endonuclease Cas3	-	-

TABLE 4 Characterization CRISPR associated proteins predicted in the Lactiplantibacillus pentosus CF2-10N genome.

(Continued)

Gene ID	Gene	Position	Strand	Gene length (bp)	Protein description	Ontology ID	Ontology term
gene_2926	gene_2926*	3,239,207-3,240,958	+	1752	CRISPR-associated	-	-
gene_2927	gene_2927*	3,240,948-3,241,559	+	612	Type I-E CRISPR- associated protein	-	-
					Cse2/CasB		
gene_2928	gene_2928*	3,241,559-3,242,638	+	1,080	Type I-E CRISPR- associated protein	_	-
gene_2929	FD24_GL002163	3,242,619-3,243,344	+	726	Cas7/Cse4/CasC Type I-E CRISPR- associated protein	GO:0003723, GO:0043571,	RNA binding, maintenance of
					Cas5/CasD	GO:0051607	CRISPR repeat elements, defense response to virus
gene_2930	gene_2930*	3,243,344-3,244,012	+	669	Type I-E CRISPR- associated protein Cas6/Cse3/CasE	-	

TABLE 4 (continued)

*: New genes found in this study.

TABLE 5 Characterization of CRISPR arrays predicted in the Lactiplantibacillus pentosus CF2-10N genome.

CRISPR array (CR)	Start position	End position	Array orientation	CRISPR lenght (bp)	Number of repeats	DR consensus*	Array family
CR 1	1,791,840	1,792,537	Forward	698	36	GTCTTGAATAGTAGTCATATCAAACA	NA
						GGTTTAGAAC	
CR 2	2,982,059	2,981,480	Reverse	580	28	CTGTTCCCCGTGTATGCGGGGGGGGGATCC	I-E
CR 3	3,232,173	3,231,961	Reverse	213	28	CTATTCCCCGTGCATACGGGGGGTGATCC	NA
CR 4	3,232,764	3,232,310	Reverse	455	28	CTGTTCCCCGCGTATGCGGGGGGGGATCC	I-E
CR 5	3,235,959	3,235,382	Reverse	578	28	CTGTTCCCCGTGTATGCGGGGGGGGGATCC	I-E

*The same DR consensus sequences are indicated.

Montoro et al., 2016). Among these strains, L. pentosus CF2-10N was selected for a more in-depth analysis in the current study on the basis of its excellent probiotic properties. These include notably good growth capacity and survival under simulated gastro-intestinal conditions (acidic pH of 1.5, up to 4% of bile salts and 5mM of nitrate), good ability to auto-aggregate and co-aggregate with pathogenic bacteria, adherence to intestinal and vaginal cell lines, antimicrobial activity by means of plantaricins and fermentation of prebiotics and lactose (Pérez Montoro et al., 2016). It is also noteworthy that L. pentosus CF2-10N was isolated from the same ecological niche as the potential previously described probiotic L. pentosus MP-10 (Abriouel et al., 2012), hence, they are exposed to the same ecological conditions and pressure (soil, plant and brine) as well as the same progressive changes throughout the production process. It is thus not surprising that their genetic relatedness is further highlighted by shared genetic, functional and probiotic properties although both strains showed different genomic profiles belonging to different clusters or genomic groups (G1 and G2) as reported by Abriouel et al. (2012). In this sense, both strains harbor a single circular chromosome of similar size of 3,698,214 bp (L. pentosus MP-10, GC content of 46.32%) and

3,645,747 bp (*L. pentosus* CF2-10 N, GC content of 46.42%) and 4 (*L. pentosus* CF2-10 N, 58–120 kb) to 5 (*L. pentosus* MP-10, 29–46.5 kb) plasmids (Abriouel et al., 2016). This similarity highlights the effect of the ecosystem (soil, plant and brine) on the genetic diversity of microbial communities present in Aloreña table olives.

A comparison with other bacterial strains from table olives showed similarities in genomic size and GC content. These strains included *L. pentosus* IG1 harboring a circular chromosome of 3,687,424 bp (GC content of 44.9%) and 7 plasmids (2.5–125.9 kb; Maldonado-Barragán et al., 2011), *L. pentosus* strains (IG8, IG9, IG10 and IG11) recovered from biofilms on the skin of green table olives with circular chromosome sizes in the range of 3,787,967 to 3,811,295 bp (GC content of 45.9–45.95%) and 6 to 7 plasmids (Calero-Delgado et al., 2019) and *L. pentosus* O17 isolated from brines of treated table olives (*Cerignola* cv.) with a circular chromosome of 3,850,701 bp (GC content of 45.9%; Zotta et al., 2022). This fact indicated their adaptation to a brine-specific lifestyle notably in relation to genes involved in carbohydrate transport and metabolism (307 CDSs and 279 in *L. pentosus* CF2-10N and MP-10, respectively) and amino acid metabolism

TABLE 6 Characterization of genes associated with probiotic properties predicted in the Lactiplantibacillus pentosus CF2-10N genome.

Probiotic property	Gene ID	Gene	Position	Strand	Gene length	Protein description	Ontology term (Ontology ID)	COG class (COG class description)
Adhesion	gene_411	FD24_GL003356	445,136-448,294	-	3,159	Mucus-binding protein	Integral component of membrane (GO:0016021)	COG3846 (Type IV secretory pathway, TrbL components)
	gene_963	LPE_00710	1,054,378-1,060,929	-	6,552	Mucus-binding protein	Integral component of membrane (GO:0016021)	COG0810 (Periplasmic protein TonB, links inner and outer membranes)
	gene_3039	gene_3039	3,352,844-3,359,728	-	6,885	Mucus-binding protein	-	COG5099 (RNA-binding protein of the Puf family, translational repressor)
	gene_3173	gene_3173	3,497,668-3,499,374	-	1707	Fibronectin/fibrinogen- binding protein	-	COG1293 (Predicted RNA-binding protein homologous to eukaryotic snRNP)
	gene_3512 [£]	gene_3512	78,678-78,812	+	135	Chitin-binding protein	-	COG3397 (Uncharacterized protein conserved in bacteria)
	gene_891	LPE_02200	975,971–976,864	-	894	ABC superfamily ATP binding cassette transporter, binding protein	Metal ion binding, cell adhesion, metal ion transport (GO:0046872, GO:0007155, GO:0030001)	COG0803 (ABC-type metal ion transport system, periplasmic component/surface adhesin)
	gene_517	LPE_00567	561,619–563,421	+	1803	Cell surface protein	Extracellular region, cell wall, integral component of membrane, collagen binding, cell adhesion (GO:0005576, GO:0005618, GO:0016021, GO:0005518, GO:0007155)	COG0810 (Periplasmic protein TonB, links inner and outer membranes)
	gene_840	FD24_GL000462	920,457-922,340	-	1884	Cell surface protein	Extracellular region, cell wall, collagen binding, cell adhesion (GO:0005576, GO:0005618, GO:0005518, GO:0007155)	COG4932 (Predicted outer membrane protein)
	gene_2496	FD24_GL000106	2,735,640-2,736,581	+	942	Manganese ABC transporter substrate-binding protein	Metal ion binding, cell adhesion, metal ion transport (GO:0005576, GO:0005618, GO:0005518, GO:0007155)	COG0803 (ABC-type metal ion transport system, periplasmic component/surface adhesin)
	gene_158	tuf	162,869–164,056	-	1,188	Elongation factor Tu	Cytoplasm, translation elongation factor activity, GTPase activity, GTP binding, translational elongation (GO:0005737, GO:0003746, GO:0003924, GO:0005525, GO:0006414)	COG0050 (GTPases, translation elongation factors)
	gene_74	dnaK	74,096-75,964	-	1869	Molecular chaperone DnaK	ATP binding,unfolded protein binding,protein folding (GO:0005524, GO:0051082, GO:0006457)	COG0443 (Molecular chaperone)
	gene_2181	groL	2,382,568-2,384,193	+	1,626	MULTISPECIES: molecular chaperone GroEL	Cytoplasm, ATP binding, unfolded protein binding, protein refolding (GO:0005737, GO:0005524, GO:0051082, GO:0042026)	COG0459 [Chaperonin GroEL (HSP60 family)]
	gene_2180	groS	2,382,228-2,382,512	+	285	MULTISPECIES: co- chaperone GroES	cytoplasm, ATP binding, protein folding (GO:0005737, GO:0005524, GO:0006457)	COG0234 [Co-chaperonin GroES (HSP10)]
	gene_1964	N692_13295	2,164,842-2,165,546	+	705	MULTISPECIES: class A sortase	Integral component of membrane (GO:0016021)	COG3764 [Sortase (surface protein transpeptidase)]
	gene_2239	LPENT_01088	2,455,749–2,456,771	+	1,023	MULTISPECIES: type I glyceraldehyde-3- phosphate dehydrogenase	Glyceraldehyde-3-phosphate dehydrogenase (NAD+) (phosphorylating) activity, NADP binding, NAD binding, glucose metabolic process, oxidation-reduction process (GO:0004365, GO:0050661, GO:0051287, GO:0006006, GO:0055114)	COG0057 (Glyceraldehyde-3-phosphate dehydrogenase/erythrose-4-phosphate dehydrogenase)

(Continued)

10.3389/fmicb.2022.989824

Abriouel et al.

TABLE 6 (Continued)
INDLL V 1	continucu/

Probiotic property	Gene ID	Gene	Position	Strand	Gene length	Protein description	Ontology term (Ontology ID)	COG class (COG class description)
Exopolysaccharides	gene_146	LPE_00040	151,375-152,091	-	717	Exopolysaccharide biosynthesis	Extracellular polysaccharide biosynthetic process (GO:0045226)	COG0489 (ATPases involved in chromosome
						protein		partitioning)
	gene_2641	LPE_02641	2,877,168-2,877,944	+	777	Exopolysaccharide biosynthesis	Transferase activity, transferring glycosyl groups (GO:0016757)	-
						protein		
	gene_2651	LPE_00805	2,887,199-2,887,927	+	729	Exopolysaccharide biosynthesis	Extracellular polysaccharide biosynthetic process (GO:0045226)	COG0489 (ATPases involved in chromosome
						protein		partitioning)
	gene_2,676	LPE_00838	2,913,577-2,914,353	+	777	Exopolysaccharide biosynthesis	Transferase activity, transferring glycosyl groups (GO:0016757)	
						protein		
Tolerance to low pH	gene_74	dnaK	74,096-75,964	-	1869	Molecular chaperone DnaK	ATP binding,unfolded protein binding,protein folding (GO:0005524,	COG0443 (Molecular chaperone)
and bile salts							GO:0051082, GO:0006457)	
	gene_607	pyrD	664,092-665,009	-	918	Dihydroorotate dehydrogenase B	Cytoplasm, dihydroorotate dehydrogenase activity, 'de novo'	COG0167 (Dihydroorotate dehydrogenase)
						catalytic subunit	pyrimidine nucleobase biosynthetic process, 'de novo' UMP	
							biosynthetic process, oxidation-reduction process (GO:0005737,	
							GO:0004152, GO:0006207, GO:0044205, GO:0055114)	
	gene_668	LPE_01537	724,936-726,117	+	1,182	GNAT family acetyltransferase	N-acetyltransferase activity (GO:0008080)	COG4552 (Predicted acetyltransferase involved in
								intracellular survival and related acetyltransferases)
	gene_1189	LPE_01193	1,299,104-1,299,562	+	459	GNAT family acetyltransferase	N-acetyltransferase activity (GO:0008080)	COG2153 (Predicted acyltransferase)
	gene_1799	LPE_00911	1,991,014-1,991,502	-	489	GNAT family acetyltransferase	N-acetyltransferase activity (GO:0008080)	COG2153 (Predicted acyltransferase)
	gene_1172	FD24_GL001267	1,284,763-1,286,187	-	1,425	Na+/H+ antiporter NhaC	Integral component of membrane, antiporter activity,	COG1757 (Na+/H+ antiporter)
							transmembrane transport (GO:0016021, GO:0015297, GO:0055085)	
	gene_1684	LPE_02128	1,859,459-1,860,859	-	1,401	Na+/H+ antiporter NhaC	Integral component of membrane, antiporter activity,	COG1757 (Na+/H+ antiporter)
							transmembrane transport (GO:0016021, GO:0015297, GO:0055085)	
	gene_2117	gpmA	2,321,232-2,321,909	+	678	Phosphoglycerate mutase	2,3-bisphosphoglycerate-dependent phosphoglycerate mutase	COG0588 (Phosphoglycerate mutase 1)
							activity, gluconeogenesis, glycolytic process (GO:0046538,	
							GO:0006094, GO:0006096)	
	gene_2181	groL	2,382,568-2,384,193	+	1,626	MULTISPECIES: molecular	Cytoplasm, ATP binding, unfolded protein binding, protein	COG0459 (Chaperonin GroEL (HSP60 family)
						chaperone GroEL	refolding (GO:0005737, GO:0005524, GO:0051082, GO:0042026)	
	gene_2225	luxS	2,438,807-2,439,283	+	477	MULTISPECIES:	Iron ion binding, S-ribosylhomocysteine lyase activity, quorum	COG1854 (LuxS protein involved in autoinducer AI2
						S-ribosylhomocysteine lyase	sensing (GO:0005506, GO:0043768, GO:0009372)	synthesis)
	gene_2436	fusA	2,685,279-2,687,375	+	2097	MULTISPECIES: elongation	Cytoplasm, translation elongation factor activity, GTPase activity,	COG0480 [(Translation elongation factors (GTPases)]
						factor G	GTP binding, translational elongation (GO:0005737, GO:0003746,	
							GO:0003924, GO:0005525, GO:0006414)	

TABLE 6 (Continued)

Probiotic property	Gene ID	Gene	Position	Strand	Gene length	Protein description	Ontology term (Ontology ID)	COG class (COG class description)
	gene_2966	greA2	3,282,534-3,283,016	+	483	MULTISPECIES: transcription	DNA binding, translation elongation factor activity, RNA	COG0782 (Transcription elongation factor)
						elongation factor GreA	polymerase binding, transcription, DNA-templated, translational	
							elongation, regulation of DNA-templated transcription, elongation	
							(GO:0003677, GO:0003746, GO:0070063, GO:0006351,	
							GO:0006414, GO:0032784)	
	gene_1712	greA	1,893,369-1,893,839	-	471	Transcription elongation factor	DNA binding, translation elongation factor activity, RNA	COG0782 (Transcription elongation factor)
						GreA	polymerase binding, transcription, DNA-templated, translational	
							elongation, regulation of DNA-templated transcription, elongation	
							(GO:0003677, GO:0003746, GO:0070063, GO:0006351,	
							GO:0006414, GO:0032784)	
	gene_2240	pgk	2,456,889-2,458,091	+	1,203	MULTISPECIES:	Cytoplasm, phosphoglycerate kinase activity, ATP binding, glycolytic	COG0126 (3-phosphoglycerate kinase)
						phosphoglycerate kinase	process (GO:0005737, GO:0004618, GO:0005524, GO:0006096)	
	gene_66	lepA	64,623-66,458	-	1836	Elongation factor 4	Plasma membrane, translation elongation factor activity, GTPase	COG0481 (Membrane GTPase LepA)
							activity, GTP binding, ribosome binding, translational elongation,	
							positive regulation of translation (GO:0005886, GO:0003746,	
							GO:0003924, GO:0005525, GO:0043022, GO:0006414, GO:0045727)	
	gene_1072	lepA	1,171,570-1,173,357	+	1788	Elongation factor 4	Plasma membrane, translation elongation factor activity, GTPase	COG0481 (Membrane GTPase LepA)
							activity, GTP binding, ribosome binding, translational elongation,	
							positive regulation of translation (GO:0005886, GO:0003746,	
							GO:0003924, GO:0005525, GO:0043022, GO:0006414, GO:0045727)	
	gene_1569	FD24_GL002972	1,732,533-1,734,524	+	1992	Elongation factor G	Translation elongation factor activity, GTPase activity, GTP binding,	COG0480 [Translation elongation factors (GTPases)]
							translational elongation (GO:0003746, GO:0003924, GO:0005525,	
							GO:0006414)	
	gene_2996	efp	3,308,149-3,308,706	+	558	MULTISPECIES: elongation	Cytoplasm, translation elongation factor activity, translational	COG0231 [(Translation elongation factor P (EF-P)/
						factor P	elongation (GO:0005737, GO:0003746, GO:0006414)	translation initiation factor 5A (eIF-5A)]
	gene_101	tsf	107,593-108,471	-	879	MULTISPECIES: elongation	Cytoplasm, translation elongation factor activity, translational	COG0264 (Translation elongation factor Ts)
						factor Ts	elongation (GO:0005737, GO:0003746, GO:0006414)	
	gene_158	tuf	162,869-164,056	-	1,188	Elongation factor Tu	Cytoplasm, translation elongation factor activity, GTPase activity,	COG0050 (GTPases, translation elongation factors)
							GTP binding, translational elongation (GO:0005737, GO:0003746,	
							GO:0003924, GO:0005525, GO:0006414)	
Enzymes	gene_11	gene_11	7,804-9,687	-	1884	Tannase	-	-
	gene_3293	gene_3293	3,633,861-3,635,744	-	1884	Tannase	-	-
	gene_1672	FD24_GL003074	1,841,220-1,842,542	+	1,323	Alpha-amylase	Alpha-amylase activity, carbohydrate metabolic process	COG0366 (Glycosidases)
							(GO:0004556, GO:0005975)	

(Continued)

TABLE 6 (Continued)

Probiotic property	Gene ID	Gene	Position	Strand	Gene length	Protein description	Ontology term (Ontology ID)	COG class (COG class description)
	gene_1516	LPE_01041	1,679,552-1,681,369	+	1818	Amylopullulanase	Alpha-amylase activity,carbohydrate metabolic process	COG0366 (Glycosidases)
							(GO:0004556, GO:0005975)	
	gene_1271	FD24_GL001081	1,379,908-1,381,959	-	2052	Beta-galactosidase	Beta-galactosidase complex, beta-galactosidase activity, metal ion	COG1874 (Beta-galactosidase)
							binding, galactose metabolic process (GO:0009341, GO:0004565,	
							GO:0046872, GO:0006012)	
	gene_1284	FD24_GL001068	1,394,185-1,396,065	+	1881	Beta-galactosidase	Hydrolase activity, hydrolyzing O-glycosyl compounds, carbohydrate	COG3250 (Beta-galactosidase/beta-glucuronidase)
							metabolic process (GO:0004553, GO:0005975)	
	gene_1285	FD24_GL001067	1,396,049-1,397,008	+	960	Beta-galactosidase	Beta-galactosidase complex, beta-galactosidase activity, carbohydrate	COG3250 (Beta-galactosidase/beta-glucuronidase)
							binding, carbohydrate metabolic process (GO:0009341, GO:0004565,	
							GO:0030246, GO:0005975)	
	gene_1422	FD24_GL001161	1,558,889-1,561,432	-	2,544	Hypothetical protein	beta-galactosidase complex, beta-galactosidase activity, carbohydrate	COG1874 (Beta-galactosidase)
							metabolic process (GO:0009341, GO:0004565, GO:0005975)	
	gene_1988	FD24_GL001963	2,194,635-2,195,540	-	906	MULTISPECIES: prolyl	Aminopeptidase activity, proteolysis (GO:0004177, GO:0006508)	COG0596 [Predicted hydrolases or acyltransferases
						aminopeptidase		(alpha/beta hydrolase superfamily)]
	gene_1749	тар	1,926,072-1,926,863	-	792	MULTISPECIES: type I methionyl	Metal ion binding, metalloaminopeptidase activity, proteolysis,	COG0024 (Methionine aminopeptidase)
						aminopeptidase	protein initiator methionine removal (GO:0046872, GO:0070006,	
							GO:0006508, GO:0070084)	
	gene_2295	FD24_GL002755	2,525,861-2,526,769	-	909	Prolyl aminopeptidase	Aminopeptidase activity, proteolysis (GO:0004177, GO:0006508)	COG0596 [(Predicted hydrolases or acyltransferases
								(alpha/beta hydrolase superfamily)]
	gene_1485	LPE_01265	1,634,935-1,636,251	-	1,317	Aminopeptidase	Aminopeptidase activity, cysteine-type endopeptidase activity,	COG3579 (Aminopeptidase C)
							proteolysis (GO:0004177, GO:0004197, GO:0006508)	
	gene_2120	LPENT_01205	2,325,277-2,326,608	-	1,332	Aminopeptidase	Aminopeptidase activity, cysteine-type endopeptidase activity,	COG3579 (Aminopeptidase C)
							proteolysis (GO:0004177, GO:0004197, GO:0006508)	
	gene_2366	FD24_GL000247	2,600,983-2,603,517	+	2,535	Peptidase	aminopeptidase activity, metallopeptidase activity, zinc ion binding,	COG0308 (Aminopeptidase N)
							proteolysis (GO:0004177, GO:0008237, GO:0008270, GO:0006508)	
	gene_281	pepQ	299,603-300,712	+	1,110	Peptidase M24 family protein	Hydrolase activity (GO:0016787)	COG0006 (Xaa-Pro aminopeptidase)
	gene_2995	LPE_00442	3,307,014-3,308,078	+	1,065	Peptidase M24 family protein	Aminopeptidase activity, metal ion binding, proteolysis	COG0006 (Xaa-Pro aminopeptidase)
							(GO:0004177, GO:0046872, GO:0006508)	
	gene_3265	pepT	3,600,534-3,601,772	-	1,239	Peptidase T	Cytoplasm, metallopeptidase activity, zinc ion binding, tripeptide	COG2195 (Di- and tripeptidases)
							aminopeptidase activity, proteolysis, peptide catabolic process	
							(GO:0005737, GO:0008237, GO:0008270, GO:0045148,	
							GO:0006508, GO:0043171)	
	gene_3297	LPE_00163	3,638,228-3,639,118	-	891	Alpha/beta hydrolase	serine-type peptidase activity, proteolysis (GO:0008236,	COG1506 (Dipeptidyl aminopeptidases/acylaminoacyl-
							GO:0006508)	peptidases)
							GO:0006508)	peptidases)

(Continued)

Probiotic p	roperty	Gene ID	Gene	Position	Strand	Gene length	Protein description	Ontology term (Ontology ID)	COG class (COG class description)
		gene_15	LPE_00163	12,171-13,061	-	891	Alpha/beta hydrolase	serine-type peptidase activity,proteolysis	COG1506 (Dipeptidyl aminopeptidases/acylaminoacyl-
									peptidases)
		gene_1479	FD24_GL000907	1,630,300-1,630,836	+	537	Phenolic acid decarboxylase	carboxy-lyase activity (GO:0016831)	COG3479 (Phenolic acid decarboxylase)
		ene_2246	LPE_03197	2,463,498-2,464,244	+	747	Carboxylesterase	Carboxylic ester hydrolase activity (GO:0052689)	COG1647 (Esterase/lipase)
		gene_77	FD24_GL001463	78,101-78,811	-	711	Alpha-acetolactate decarboxylase	Acetolactate decarboxylase activity, acetoin biosynthetic process	COG3527 (Alpha-acetolactate decarboxylase)
								(GO:0047605, GO:0045151)	
		gene_808	FD24_GL001032	883,614-884,444	-	831	Lipase esterase	Hydrolase activity, metabolic process (GO:0016787, GO:0008152)	COG0657 (Esterase/lipase)
		gene_1852	LPE_00868	2,040,108-2,041,613	+	1,506	MULTISPECIES: multicopper	Copper ion binding, oxidoreductase activity, cell division, oxidation-	COG2132 (Putative multicopper oxidases)
							oxidase	reduction process (GO:0005507, GO:0016491, GO:0051301,	
								GO:0055114)	
Vitamins	Follate	gene_335	FD24_GL000368	362,374-363,699	-	1,326	Bifunctional folylpolyglutamate	Tetrahydrofolylpolyglutamate synthase activity, ATP binding,	COG0285 (Folylpolyglutamate synthase)
							synthase/dihydrofolate synthase	tetrahydrofolylpolyglutamate biosynthetic process (GO:0004326,	
								GO:0005524, GO:0046901)	
		gene_1,140	LPE_01427	1,241,881-1,243,029	-	1,149	Dihydropteroate synthase	Dihydropteroate synthase activity, folic acid-containing compound	COG0294 (Dihydropteroate synthase and related
								biosynthetic process (GO:0004156, GO:0009396)	enzymes)
		gene_1145	LPENT_02091	1,246,075-1,246,443	-	369	Dihydroneopterin aldolase	Dihydroneopterin aldolase activity, tetrahydrofolate biosynthetic	COG1539 (Dihydroneopterin aldolase)
								process, folic acid biosynthetic process (GO:0004150, GO:0046654,	
								GO:0046656)	
		gene_3158	fhs	3,480,634-3,482,289	+	1,656	Formatetetrahydrofolate ligase	Formate-tetrahydrofolate ligase activity, ATP binding, folic acid-	COG2759 (Formyltetrahydrofolate synthetase)
								containing compound biosynthetic process, tetrahydrofolate	
								interconversion (GO:0004329, GO:0005524, GO:0009396,	
								GO:0035999)	
		gene_1143	folE	1,245,011-1,245,580	-	570	MULTISPECIES: GTP	Cytoplasm, GTP cyclohydrolase I activity, GTP binding, zinc ion	COG0302 (GTP cyclohydrolase I)
							cyclohydrolase I FolE	binding, one-carbon metabolic process,7,8-dihydroneopterin	
								3'-triphosphate biosynthetic process, tetrahydrofolate biosynthetic	
								process (GO:0005737, GO:0003934, GO:0005525, GO:0008270,	
								GO:0006730, GO:0035998, GO:0046654)	
		gene_1144	LPE_01431	1,245,573-1,246,085	-	513	2-amino-4-hydroxy-6-	2-amino-4-hydroxy-6-hydroxymethyldihydropteridine	COG0801 (7,8-dihydro-6-hydroxymethylpterin-
							hydroxymethyldihydropteridine	diphosphokinase activity, kinase activity, folic acid-containing	pyrophosphokinase)
							diphosphokinase	compound biosynthetic process, phosphorylation (GO:0003848,	
								GO:0016301, GO:0009396, GO:0016310)	

20

Frontiers in Microbiology

TABLE 6 (Continued)

Probiotic property	Gene ID	Gene	Position	Strand	Gene length	Protein description	Ontology term (Ontology ID)	COG class (COG class description)
	gene_2999	folD	3,309,775-3,310,635	+	861	Bifunctional protein folD	Methenyltetrahydrofolate cyclohydrolase activity,	COG0190 (5,10-methylene-tetrahydrofolate
							methylenetetrahydrofolate dehydrogenase (NADP+) activity, histidine	dehydrogenase/Methenyl tetrahydrofolate
							biosynthetic process, purine nucleotide biosynthetic process,	cyclohydrolase)
							methionine biosynthetic process, folic acid-containing compound	
							biosynthetic process, tetrahydrofolate interconversion, oxidation-	
							reduction process (GO:0004477, GO:0004488, GO:0000105,	
							GO:0006164, GO:0009086, GO:0009396, GO:0035999, GO:0055114)	
Riboflavin	gene_2293	LPE_03224	2,522,788-2,523,636	+	849	Bifunctional protein: riboflavin	FMN adenylyltransferase activity, kinase activity, riboflavin	COG0196 (FAD synthase)
						kinas	biosynthetic process, phosphorylation (GO:0003919, GO:0016301,	
							GO:0009231, GO:0016310)	
	gene_78	FD24_GL001464	78,815-79,813	-	999	Bifunctional riboflavin kinase/	FMN adenylyltransferase activity, ATP binding, riboflavin kinase	COG0196 (FAD synthase)
						FMN adenylyltransferase	activity, FAD biosynthetic process, riboflavin biosynthetic process,	
							FMN biosynthetic process, phosphorylation (GO:0003919,	
							GO:0005524, GO:0008531, GO:0006747, GO:0009231, GO:0009398,	
							GO:0016310)	
	gene_2838	FD24_GL002070	3,139,751-3,140,962	+	1,212	bifunctional 3,4-dihydroxy-2-	GTP cyclohydrolase II activity, GTP binding, 3,4-dihydroxy-2-	COG0807 (GTP cyclohydrolase II)
						butanone-4-phosphate synthase/	butanone-4-phosphate synthase activity, metal ion binding,	
						GTP cyclohydrolase II	riboflavin biosynthetic process (GO:0003935, GO:0005525,	
							GO:0008686, GO:0046872, GO:0009231)	
	gene_2839	ribH	3,140,962-3,141,429	+	468	6,7-dimethyl-8-ribityllumazine	riboflavin synthase complex,6,7-dimethyl-8-ribityllumazine synthase	COG0054 (Riboflavin synthase beta-chain)
						synthase	activity, transferase activity, riboflavin biosynthetic process	
							(GO:0009349, GO:0000906, GO:0016740, GO:0009231)	
	gene_2836	LPE_03075	3,138,079-3,139,146	+	1,068	Riboflavin biosynthesis protein	Zinc ion binding,5-amino-6-(5-phosphoribosylamino) uracil	COG1985 (Pyrimidine reductase, riboflavin biosynthesis)
						RibD	$reductase\ activity,\ diamin ohydroxy phosphoribosylamin opyrimidine$	
							deaminase activity, riboflavin biosynthetic process, oxidation-	
							reduction process (GO:0008270, GO:0008703, GO:0008835,	
							GO:0009231, GO:0055114)	
	gene_3254	gene_3254	3,584,670-3,585,050	-	381	Riboflavin biosynthesis protein	-	-
						RibT		
	gene_2837	LPE_03076	3,139,147-3,139,749	+	603	Riboflavin synthase	Oxidoreductase activity, oxidation-reduction process (GO:0016491,	COG0307 (Riboflavin synthase alpha chain)
							GO:0055114)	
	gene_728	LPENT_02492	795,860-796,399	+	540	Dihydrofolate reductase	integral component of membrane,5-amino-6-(5-	COG0262 (Dihydrofolate reductase)
							phosphoribosylamino) uracil reductase activity, riboflavin	
							biosynthetic process, oxidation-reduction process (GO:0016021,	
							GO:0008703, GO:0009231, GO:0055114)	

(Continued)

biotic property	Gene ID	Gene	Position	Strand	Gene length	Protein description	Ontology term (Ontology ID)	COG class (COG class description)
Thiamine	gene_1606	thiE	1,772,372-1,773,028	+	657	Thiamine phosphate synthase	Magnesium ion binding, thiamine-phosphate diphosphorylase	COG0352 (Thiamine monophosphate synthase)
							activity, thiamine biosynthetic process, thiamine diphosphate	
							biosynthetic process (GO:0000287, GO:0004789, GO:0009228,	
							GO:0009229)	
	gene_532	LPE_00578	575,356-577,104	-	1749	1-deoxy-D-xylulose-5-phosphate	1-deoxy-D-xylulose-5-phosphate synthase activity, metal ion	COG1154 (Deoxyxylulose-5-phosphate synthase)
						synthase	binding, thiamine biosynthetic process, terpenoid biosynthetic	
							process, 1-deoxy-D-xylulose 5-phosphate biosynthetic process	
							(GO:0008661, GO:0046872, GO:0009228, GO:0016114,	
							GO:0052865)	
	gene_1604	thiM	1,770,746-1,771,540	+	795	Hydroxyethylthiazole kinase	Magnesium ion binding, hydroxyethylthiazole kinase activity, ATP	COG2145 (Hydroxyethylthiazole kinase, sugar kinase
							binding, thiamine biosynthetic process, thiamine diphosphate	family)
							biosynthetic process, phosphorylation (GO:0000287, GO:0004417,	
							GO:0005524, GO:0009228, GO:0009229, GO:0016310)	
	gene_2902	FD24_GL002133	3,205,215-3,206,249	-	1,035	Molybdopterin biosynthesis	Small protein activating enzyme activity (GO:0008641)	COG0476 (Dinucleotide-utilizing enzymes involved in
						protein MoeB		molybdopterin and thiamine biosynthesis family 2)
	gene_1605	FD24_GL003009	1,771,558-1,772,382	+	825	MULTISPECIES:	ATP binding, phosphomethylpyrimidine kinase activity, thiamine	COG0351 (Hydroxymethylpyrimidine/
						hydroxymethylpyrimidine/	biosynthetic process, phosphorylation (GO:0005524, GO:0008972,	phosphomethylpyrimidine kinase)
						phosphomethylpyrimidine kinase	GO:0009228, GO:0016310)	
	gene_3021	LPE_00414	3,332,290-3,332,946	+	657	Thiamine pyrophosphokinase	thiamine diphosphokinase activity, ATP binding, thiamine binding,	COG1564 (Thiamine pyrophosphokinase)
							thiamine metabolic process, thiamine diphosphate biosynthetic process	
							(GO:0004788, GO:0005524, GO:0030975, GO:0006772, GO:0009229)	
	gene_339	thiI	369,546-370,763	-	1,218	tRNA sulfurtransferase	cytoplasm, tRNA binding, tRNA adenylyltransferase activity,ATP	COG0301 (Thiamine biosynthesis ATP pyrophosphatase)
							binding, sulfurtransferase activity, thiamine biosynthetic process,	
							thiamine diphosphate biosynthetic process, tRNA thio-modification	
							(GO:0005737, GO:0000049, GO:0004810, GO:0005524,	
							GO:0016783, GO:0009228, GO:0009229, GO:0034227)	
	gene_821	FD24_GL000441	897,704-898,705	+	1,002	FAD:protein FMN transferase	Transferase activity, metal ion binding, protein flavinylation	COG1477 (Membrane-associated lipoprotein involved in
							(GO:0016740, GO:0046872, GO:0017013)	thiamine biosynthesis)
	gene_1301	LPE_02537	1,421,909-1,422,865	-	957	FAD:protein FMN transferase	Transferase activity, metal ion binding, protein flavinylation	COG1477 (Membrane-associated lipoprotein involved in
							(GO:0016740, GO:0046872, GO:0017013)	thiamine biosynthesis)
	gene_2469	FD24_GL000140	2,709,017-2,710,129	+	1,113	FAD:protein FMN transferase	Transferase activity, metal ion binding, protein flavinylation	COG1477 (Membrane-associated lipoprotein involved in
							(GO:0016740, GO:0046872, GO:0017013)	thiamine biosynthesis)

TABLE 6 (Continue	ed)
-------------------	-----

Probiotic property	Gene ID	Gene	Position	Strand	Gene length	Protein description	Ontology term (Ontology ID)	COG class (COG class description)
Vitamin K2	gene_1240	menG	1,346,872-1,347,585	+	714	Bifunctional	Methyltransferase activity, menaquinone biosynthetic process,	COG2226 (Methylase involved in ubiquinone/
						demethylmenaquinone	methylation (GO:0008168, GO:0009234, GO:0032259)	menaquinone biosynthesis)
						methyltransferase/2-methoxy-6-		
						polyprenyl-1,4-benzoquinol		
						methylase		
Vitamin B5	gene_452	hdhD1	486,520-487,494	-	975	2-dehydropantoate 2-reductase	Cytoplasm, 2-dehydropantoate 2-reductase activity, NADP binding,	COG1893 (Ketopantoate reductase)
							pantothenate biosynthetic process, oxidation-reduction process	
							(GO:0005737, GO:0008677, GO:0050661, GO:0015940, GO:0055114)	
	gene_693	gene_693	750,504-751,523	+	1,020	2-dehydropantoate 2-reductase	-	COG1893 (Ketopantoate reductase)
	gene_1840	LPE_00879	2,026,749-2,027,732	+	984	2-dehydropantoate 2-reductase	Cytoplasm, 2-dehydropantoate 2-reductase activity, NADP binding,	COG1893 (Ketopantoate reductase)
							pantothenate biosynthetic process, oxidation-reduction process	
							(GO:0005737, GO:0008677, GO:0050661, GO:0015940,	
							GO:0055114)	
Vitamin B6	gene_1521	FD24_GL000863	1,687,267-1,687,710	-	444	MULTISPECIES: pyridoxamine	Pyridoxamine-phosphate oxidase activity, FMN binding, pyridoxal	-
						5'-phosphate oxidase	phosphate biosynthetic process, oxidation-reduction process	
							(GO:0004733, GO:0010181, GO:0042823, GO:0055114)	
	gene_653	FD24_GL002535	711,251-712,435	-	1,185	Pyridoxal phosphate-dependent	Transaminase activity, pyridoxal phosphate binding, biosynthetic	COG1168 (Bifunctional PLP-dependent enzyme with
						aminotransferase	process (GO:0008483, GO:0030170, GO:0009058)	beta-cystathionase and maltose regulon repressor
								activities)
	gene_780	LPE_03241	846,681-847,853	-	1,173	Pyridoxal phosphate-dependent	transaminase activity, pyridoxal phosphate binding, biosynthetic	COG1168 (Bifunctional PLP-dependent enzyme with
						aminotransferase	process (GO:0008483, GO:0030170, GO:0009058)	beta-cystathionase and maltose regulon repressor
								activities)
	gene_1841	LPE_00878	2,027,735-2,028,907	+	1,173	Pyridoxal phosphate-dependent	transaminase activity,pyridoxal phosphate binding,biosynthetic	COG0436 (Aspartate/tyrosine/aromatic
						aminotransferase	process (GO:0008483, GO:0030170, GO:0009058)	aminotransferase)
	gene_3128	LPE_00325	3,447,981-3,449,180	+		Pyridoxal phosphate-dependent	L-aspartate:2-oxoglutarate aminotransferase activity,pyridoxal	COG0436 (Aspartate/tyrosine/aromatic
						aminotransferase	phosphate binding,L-phenylalanine:2-oxoglutarate aminotransferase	aminotransferase)
							activity, biosynthetic process (GO:0004069,	
							GO:0030170,GO:0080130, GO:0009058)	
	gene_2303	LPE_03213	2,538,192-2,539,010	+		Pyridoxine kinase	ATP binding,pyridoxal kinase activity,pyridoxal 5'-phosphate	COG2240 (Pyridoxal/pyridoxine/pyridoxamine kinase)
							salvage, phosphorylation (GO:0005524, GO:0008478, GO:0009443,	
							GO:0016310)	
*: the best hit was indicated. ⁶ : sequences of pLPE10-1 plasmi ⁶ : sequences of pLPE10-4 plasmi ^a : sequences of pLPE10-2 plasmi	d. d. id.						GO:0016310)	

(192 CDSs and 173 in *L. pentosus* CF2-10N and MP-10, respectively), among others. On the other hand, the presence of plasmids in *L. pentosus* isolated from table olives highlight their key role in the fermentation process. In this sense, Abriouel et al. (2019) reported that *L. pentosus* MP-10 plasmids play an important role as metal bioquencher reducing the amount of these potentially toxic elements in humans and animals, food matrices, and in environmental bioremediation.

Duar et al. (2017) reported a high level of niche conservatism within the well-supported phylogenetic groups of the genus Lactobacillus (including the recently reclassified genus Lactoplantibacillus), with lifestyles ranging from free-living with large genome size to strictly symbiotic or host adapted with small genome size. Considering that the metabolic and physiological properties of L. pentosus strains are reflective of their lifestyle, strains isolated from fermented table olives are characterized by their large genome size of 3.6-3.8 Mbp encoding a versatile repertoire of enzymes to utilize a wide spectrum of substrates available in brines. Comparative genomic analysis of both strains isolated from Aloreña table olives - L. pentosus MP-10 and L. pentosus CF2-10Ndemonstrated their close phylogenetic relation (ED=0) and a high similarity although some event traits (inversion, insertion or gene rearrangement) occurred, conferring exclusive features to L. pentosus CF2-10N. However, when genomic comparison was done with L. pentosus IG1 isolated from the Spanish-Style Green Olive fermentation (different ecological niche than Aloreña table olives), genetic differences (ED=0.02) were detected which were further increased when compared with L. pentosus KCA1 isolated from vagina (ED=0.08). The ecological adaptability of L. pentosus is thus highly dependent on the ecological niche, with the specific environmental and fermentation conditions and olive material being the key elements to determine the genetic diversity.

Concerning the safety properties of L. pentosus CF2-10N, no ARGs were detected in the genome sequence, however non-specific antimicrobial mechanisms such as mutation in *ddl* gene coding for D-Ala-D-lactate in the peptidoglycan instead of the normal dipeptide D-Ala-D-Ala (position 260) and /or efflux transporters or transmembrane proteins were found responsible of the strain's phenotypic resistance to streptomycin and vancomycin as detected by antibiotic susceptibility testing (Casado Muñoz et al., 2014). Furthermore, in silico analysis of antibiotic resistance in L. pentosus CF2-10 N showed the absence of acquired antibiotic resistance genes. Thus, we can conclude that the resistome is mostly represented by efflux-pump resistance genes or other alternative resistance mechanisms responsible for the intrinsic resistance exhibited by this strain as mentioned above. On the other hand, no virulence determinants were detected in the L. pentosus CF2-10N genome. Taken together these results, we suggest for L. pentosus CF2-10N to be considered as safe for food processing as well as probiotic.

Regarding the mobilome (corresponding to genetic elements able to move within a genome or between different genomes), this consists of 66 transposases, 45 IS elements and 8 temperate phage regions in the *L. pentosus* CF2-10 N genome. The high number and the great diversity of transposases and IS elements identified by in silico analysis of the L. pentosus CF2-10 N genome indicated a frequent genetic diversification within the L. pentosus CF2-10 N genome, which is notably higher than in other lactobacilli such as L. plantarum WCFS1 (36 genes), L. pentosus KCA1 (25 genes), L. pentosus DSM 20314 (14 genes) or L. pentosus IG1 (5 genes; Abriouel et al., 2017). Interestingly, L. pentosus CF2-10N showed an even higher genetic diversification in comparison to L. pentosus MP-10 (29 genes), even though both strains are isolated from the same ecological niche (Abriouel et al., 2017). Furthermore, most of transposases belonged to IS30 families frequently located on plasmids, while the IS were mainly represented by IS30 and IS3 found in various bacteria and being responsible for information transfer and extreme adaptation. This fact suggests the high adaptability potential of L. pentosus CF2-10N enabling the bacterium to withstand different environmental and gut stress conditions. Furthermore, the presence of eight prophage regions in the L. pentosus CF2-10 N genome highlights once more the genetic diversity and fitness of its genome, conferring a selective advantage for the survivability and resistance of this strain in view of the potential risk of losses associated with phage infection in different ecosystems. The presence of prophages in lactobacilli genomes is widely distributed (more than 92%, Sun et al., 2015) and is speciesspecific (Pei et al., 2021), while being highly dependent on the habitat. In this regard L. pentosus CF2-10N contained intact lactobacilli prophage and incomplete or questionable prophage fragments similar to other bacteria (Staphylococcus, Escherichia and Enterobacteria phages) indicating its adaptability to harsh conditions (fermentation) which may confer flexibility against various stress triggers (phages from different sources such as air, water or soil). Other defense mechanisms were predicted in the L. pentosus CF2-10 N including a CRISPR system (CRISPR-I and CRISPR-II) represented by five CRISPR unquestionable arrays and 13 CRISPR associated proteins (six of them were exclusive of this strain) organized in two operons. This acquired immunity system, which provides protection against mobile genetic elements (conjugative plasmids, transposable elements, and phages) in L. pentosus CF2-10N, was slightly different from L. pentosus MP-10 isolated from the same ecological niche. Notably, 11 CRISPR associated proteins and 9 CRISPR arrays (3 of them were questionable CRISPRs) were detected in L. pentosus MP-10, which indicated that the increased fitness greatly depends on the strain itself, under changing ecological lifestyles. Among the six newly detected genes, the CRISPR-I system was found to be coding for a Type II-A CRISPR-associated protein Csn2, involved in CRISPR adaptation for new spacer acquisition (Nam et al., 2011) and was associated with the cas9-cas1-cas2 cassette. Furthermore, the other genes (gene_2925 [cas 3] and a cascade of five genes coding for Type I-E CRISPR associated proteins) were found to be involved in interference and infection neutralization as reported by Xue and Sashital (2019).

Concerning functional properties, *L. pentosus* CF2-10N genome analysis revealed the presence of genes coding for

adhesion, exopolysaccharide biosynthesis, tolerance to low pH and bile salts, immunomodulation, as well as vitamin and enzyme production. In this context, the adhesion capacity exhibited by this strain in vitro to Enterocyte-like Caco-2 ECACC86010202 (from colon adenocarcinoma) and HeLa 229 ECACC86090201(from vaginal cervix carcinoma) cells (Pérez Montoro et al., 2016) was confirmed by the presence of genes coding for several adhesion/multifunctional proteins such as mucus-binding proteins, fibronectin/fibrinogen-binding protein, Chitin-binding protein, ABC superfamily ATP binding cassette transporter, binding protein, cell surface proteins, manganese ABC transporter substrate-binding protein, elongation factor Tu, Molecular chaperone DnaK, molecular chaperone GroEL, co-chaperone GroES, class A sortase and type I glyceraldehyde-3-phosphate dehydrogenase. These proteins were reported to be involved in the adhesion to intestinal epithelial cells (Granato et al., 2004; Vélez et al., 2007; Lebeer et al., 2008; Sánchez et al., 2011; Jensen et al., 2014; Hymes et al., 2016), however, some of these proteins can also be involved in other functions such as stress response, drug efflux, carbohydrate transport and metabolism and other probiotic actions (Lebeer et al., 2008; Lewis et al., 2012; Monteagudo-Mera et al., 2019). The specific functionality notably depends on the surrounding conditions which induce gene expression, with differences detected in both in vitro and in vivo scenarios. On the other hand, other genes coding for proteins involved in cell recognition and adhesion to intestinal mucosae such as the four genes coding for exopolysaccharide biosynthesis proteins were identified in the L. pentosus CF2-10 N genome. These were found to be identical to those detected in L. pentosus MP-10 isolated from Aloreña table olives (Abriouel et al., 2016). Besides their role in niche adaptation, promoting auto-aggregation and biofilm formation, these proteins were also attributed anti-inflammatory, antioxidant, antiviral and antiproliferative activity functions through their interaction with the immune system (Castro-Bravo et al., 2018; Nguyen et al., 2020; Riaz Rajoka et al., 2020).

To allow the adaptation to different lifestyles, L. pentosus CF2-10N harbored in its genome several genes involved in stress response such as acids and bile. In this sense, Pérez Montoro et al. (2016) reported the strain's excellent tolerance properties in vitro (acidic pH of 1.5, up to 4% of bile salts and 5 mM of nitrate), while in the present study we detected for the first time several genes coding for proteins involved in bile/acids resistance particularly including cell protection (dnaK and groL), modifications in cell membranes (genes coding for Na+/H+ antiporter NhaC, lepA, pyrD), general function (genes coding for GNAT family acetyltransferase), and key components of central metabolism (pgk, gpm, CysK, luxS, tuf, efp, tsf, FD24_GL002972, greA, greA2, fusA) as it was reported elsewhere for other bacteria (Wu et al., 2010; Liu et al., 2018; Bagon et al., 2021). Most of these proteins are considered moonlighting proteins involved in adhesion to the intestinal epithelium among other functions (Pagnini et al., 2018).

Concerning attractive and promising biotechnological features revealed by *in silico* analysis of the *L. pentosus* CF2-10N genome,

detected enzymes were involved in the degradation of toxic/ complex substrates such as tannase, alpha-amylase, amylopullulanase, beta-galactosidase, aminopeptidase, lipase esterase, peptidases, alpha/beta hydrolase, phenolic acid decarboxylase, carboxylesterase, alpha-acetolactate decarboxylase and multicopper oxidase. These findings indicate the high adaptability of this strain to a broad range of environmental niches, food matrices and also the gastrointestinal tract, while being able to ferment lactose and starch. Findings further demonstrate the strain's potential ability to synthesize and degrade a broad array of simple and complex carbohydrates, such as starch, pullulan, amylopectin, tannin, beta-galactosides, phenolic acids and other substrates. It is further noteworthy that L. pentosus CF2-10N harbored genes coding for vitamin biosynthesis such as the vitamin B group (B1 or thiamine, B2 or riboflavin and B5), folate and vitamin K2 or menaquinone. In this regard, preliminary in vitro studies hinted towards a potential vitamin production ability of L. pentosus CF2-10N. However, future studies are necessary and will be performed to investigate this potential in further detail.

Conclusion

The results obtained in the present study support the hypothesis that L. pentosus CF2-10N is an excellent probiotic candidate of vegetable origin. Notably, besides fulfilling the main criteria for probiotic selection in vitro as shown by our previous studies, in silico genome analysis in this study revealed novel insights into its safety and functionality, greatly highlighting the microorganism's ecological flexibility and adaptability to a broad range of environmental niches, food matrices and the gastrointestinal tract. The safety of L. pentosus CF2-10N was further confirmed by the absence of virulence determinants and acquired antibiotic resistance genes, with the resistome mostly represented by effluxpump resistance genes responsible for the intrinsic resistance exhibited by this strain. On the other hand, defense mechanisms of L. pentosus CF2-10N consist of eight prophage regions as well as a CRISPR (clustered regularly interspaced short palindromic repeats)/cas (CRISPR-associated protein genes) system (CRISPR-I and CRISPR-II) as acquired immune system against mobile elements. The latter is notably represented by five CRISPR unquestionable arrays and 13 CRISPR associated proteins (six of them were exclusive of this strain). Furthermore, the functionality of this strain was supported by the presence of genes coding for proteins involved in adhesion, exopolysaccharide biosynthesis, tolerance to low pH and bile salts, immunomodulation as well as vitamin and enzyme production.

Taken together these results we suggest that *L. pentosus* CF2-10 N could be considered as potential and promising probiotic candidate able to colonize several niches and adapt to different lifestyles, while providing attractive probiotic features, which will be explored *in vivo* in future studies with the aim to be applied in vegetable fermentations (including olives) and/or other substrates.

Data availability statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/Supplementary material.

Author contributions

HA and NB conceived, designed the experiments, and drafted the paper. HA, JM, NC, and NB performed the experiments and analyzed the data. HA contributed reagents, materials, and analysis tools. All authors contributed to the article and approved the submitted version.

Acknowledgments

We acknowledge the Research Team (University of Jaen, EI_BIO1_2021).

References

Abriouel, H., Benomar, N., Cobo, A., Caballero, N., Fernández Fuentes, M. A., Pérez-Pulido, R., et al. (2012). Characterization of lactic acid bacteria from naturally-fermented Manzanilla Aloreña green table olives. *Food Microbiol.* 32, 308–316. doi: 10.1016/j.fm.2012.07.006

Abriouel, H., Benomar, N., Lucas, R., and Gálvez, A. (2011). Culture-independent study of the diversity of microbial populations in brines during fermentation of naturally fermented Aloreña green table olives. *Int. J. Food Microbiol.* 144, 487–496. doi: 10.1016/j.ijfoodmicro.2010.11.006

Abriouel, H., Pérez Montoro, B., Casado Muñoz, M. D. C., Lavilla Lerma, L., Hidalgo Pestaña, M., Caballero Gómez, N., et al. (2016). Complete genome sequence of a potential probiotic, *lactobacillus pentosus* MP-10, isolated from fermented Aloreña table olives. *Genome Announc.* 4, e00854–e00816. doi: 10.1128/ genomeA.00854-16

Abriouel, H., Pérez Montoro, B., Casimiro-Soriguer, C. S., Pérez Pulido, A. J., Knapp, C. W., Caballero Gómez, N., et al. (2017). Insight into potential probiotic markers predicted in *lactobacillus pentosus* MP-10 genome sequence. *Front. Microbiol.* 8:891. doi: 10.3389/fmicb.2017.00891

Abriouel, H., Pérez Montoro, B., de la Fuente Ordoñez, J. J., Lavilla Lerma, L., Knapp, C. W., and Benomar, N. (2019). New insights into the role of plasmids from probiotic *lactobacillus pentosus* MP-10 in Aloreña table olive brine fermentation. *Sci. Reports* 9:10938. doi: 10.1038/s41598-019-47384-1

Alcock, B. P., Raphenya, A. R., Lau, T. T. Y., Tsang, K. K., Bouchard, M., Edalatmand, A., et al. (2020). CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. *Nucleic Acids Res.* 48, D517–D525. doi: 10.1093/nar/gkz935

Allain, T., Chaouch, S., Thomas, M., Vallée, I., Buret, A. G., Langella, P., et al. (2018). Bile-salt-hydrolases from the probiotic strain *lactobacillus johnsonii* La1 mediate anti-giardial activity *in vitro* and *in vivo*. *Front. Microbiol.* 8:2707. doi: 10.3389/fmicb.2017.02707

Alonso García, A., Benomar, B., Lavilla Lerma, F., de la Fuente Ordoñez, J. J., Knapp, C. W., and Abriouel, H. (2023). Changes in resistome profile of potential probiotic *Lactiplantibacillus pentosus* in response to edible oil adaptation. *Food Microbiol.* 104148. doi: 10.1016/j.fm.2022.104148

Alonso García, E., de la Fuente Ordoñez, J. J., Lavilla Lerma, L., Estudillo-Martínez, M. D., Castillo-Gutiérrez, S., Benomar, N., et al. (2021). Transcriptomic profile and probiotic properties of *Lactiplantibacillus pentosus* preadapted to edible oils. *Front. Microbiol.* 12:747043. doi: 10.3389/fmicb.2021.747043

Amara, A. A., and Shibl, A. (2015). Role of probiotics in health improvement, infection control and disease treatment and management. *Saudi Pharm. J.* 23, 107–114. doi: 10.1016/j.jsps.2013.07.001

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb. 2022.989824/full#supplementary-material

Anukam, K. C., Macklaim, J. M., Gloor, G. B., Reid, G., Boekhorst, J., Renckens, B., et al. (2013). Genome sequence of *lactobacillus pentosus* KCA1: vaginal isolate from a healthy premenopausal woman. *PLoS One* 8:e59239. doi: 10.1371/journal. pone.0059239

Arndt, D., Grant, J., Marcu, A., Sajed, T., Pon, A., Liang, Y., et al. (2016). PHASTER: a better, faster version of the PHAST phage search tool. *Nucleic Acids Res.* 44, W16–W21. doi: 10.1093/nar/gkw387

Bagon, B. B., Valeriano, V. D. V., Oh, J. K., Pajarillo, E. A. B., Lee, J. Y., and Kang, D. K. (2021). Exoproteome perspective on the bile stress response of *lactobacillus johnsonii*. *Proteomes* 9:10. doi: 10.3390/proteomes9010010

Benítez-Cabello, A., Calero-Delgado, B., Rodríguez-Gómez, F., Garrido-Fernández, A., Jiménez-Díaz, R., and Arroyo-López, F. N. (2019). Biodiversity and multifunctional features of lactic acid bacteria isolated from table olive biofilms. *Front. Microbiol.* 10:836. doi: 10.3389/fmicb.2019.00836

Besemer, J., Lomsadze, A., and Borodovsky, M. (2001). GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. *Nucleic Acids Res.* 29, 2607–2618. doi: 10.1093/nar/29.12.2607

Biswas, A., Staals, R. H. J., Morales, S. E., Fineran, P. C., and Brown, C. M. (2016). CRISPRDetect: a flexible algorithm to define CRISPR arrays. *BMC Genom.* 17:356. doi: 10.1186/s12864-016-2627-0

Bortolaia, V., Kaas, R. S., Ruppe, E., Roberts, M. C., Schwarz, S., Cattoir, V., et al. (2020). ResFinder 4.0 for predictions of phenotypes from genotypes. *J. Antimicrob. Chemother.* 75, 3491–3500. doi: 10.1093/jac/dkaa345

Caggianiello, G., Kleerebezem, M., and Spano, G. (2016). Exopolysaccharides produced by lactic acid bacteria: from health-promoting benefits to stress tolerance mechanisms. *Appl. Microbiol. Biotechnol.* 100, 3877–3886. doi: 10.1007/s00253-016-7471-2

Calero-Delgado, B., Pérez-Pulido, A. J., Benítez-Cabello, A., Martín-Platero, A. M., Casimiro- Soriguer, C. S., Martínez-Bueno, M., et al. (2019). Multiple genome sequences of *lactobacillus pentosus* strains isolated from biofilms on the skin of fermented green table olives. *Microbiol. Resour. Announc.* 8, e01546–e01518. doi: 10.1128/MRA.01546-18

Carrasco, J. A., Lucena-Padrós, H., Brenes, M., and Ruiz-Barba, J. L. (2018). Expression of genes involved in metabolism of phenolic compounds by *lactobacillus pentosus* and its relevance for table-olive fermentations. *Food Microbiol.* 76, 382–389. doi: 10.1016/j.fm.2018.06.020

Carver, T. J., Rutherford, K. M., Berriman, M., Rajandream, M. A., Barrell, B. G., and Parkhill, J. (2005). ACT: the Artemis comparison tool. *Bioinform.* 21, 3422–3423. doi: 10.1093/bioinformatics/bti553

Carver, T. J., Thomson, N., Bleasby, A., Berriman, M., and Parkhill, J. (2009). DNAPlotter: circular and linear interactive genome visualization. *Bioinform.* 25, 119–120. doi: 10.1093/bioinformatics/btn578

Casado Muñoz, M. C., Benomar, N., Ennahar, S., Horvatovich, P., Lavilla Lerma, L., Knapp, C. W., et al. (2016). Comparative proteomic analysis of a potentially probiotic *lactobacillus pentosus* MP-10 for the identification of key proteins involved in antibiotic resistance and biocide tolerance. *Int. J. Food Microbiol.* 222, 8–15. doi: 10.1016/j. ijfoodmicro.2016.01.012

Casado Muñoz, M. C., Benomar, N., Lerma, L. L., Gálvez, A., and Abriouel, H. (2014). Antibiotic resistance of *lactobacillus pentosus* and *Leuconostoc pseudomesenteroides* isolated from naturally-fermented Aloreña table olives throughout fermentation process. *Int. J. Food Microbiol.* 172, 110–118. doi: 10.1016/j.ijfoodmicro.2013.11.025

Castro-Bravo, N., Wells, J. M., Margolles, A., and Ruas-Madiedo, P. (2018). Interactions of surface exopolysaccharides from *Bifidobacterium* and *lactobacillus* within the intestinal environment. *Front. Microbiol.* 9:2426. doi: 10.3389/fmicb.2018.02426

Chin, C. S., Alexander, D. H., Marks, P., Klammer, A. A., Drake, J., Heiner, C., et al. (2013). Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. *Nat. Methods* 10, 563–569. doi: 10.1038/ nmeth.2474

Conesa, A., Götz, S., García-Gómez, J. M., Terol, J., Talón, M., and Robles, M. (2005). *Blast2GO*: a universal tool for annotation, visualization and analysis in functional genomics research. *Bioinform.* 21, 3674–3676. doi: 10.1093/bioinformatics/bti610

Darling, A. C. E., Mau, B., Blattner, F. R., and Perna, N. T. (2004). Mauve: multiple alignment of conserved genomic sequence with rearrangements. *Genome Res.* 14, 1394–1403. doi: 10.1101/gr.2289704

Duar, R. M., Lin, X. B., Zheng, J. Z., Martino, M. E., Grenier, T., Pérez-Muñoz, M. E., et al. (2017). Lifestyles in transition: evolution and natural history of the genus *lactobacillus*. *FEMS Microbiol. Rev.* 41, S27–S48. doi: 10.1093/ femsre/fux030

Granato, D., Bergonzelli, G. E., Pridmore, R. D., Marvin, L., Rouvet, M., and Corthésy-Theulaz, I. E. (2004). Cell surface-associated elongation factor Tu mediates the attachment of *lactobacillus johnsonii* NCC533 (La1) to human intestinal cells and mucins. *Inf. Immun.* 72, 2160–2169. doi: 10.1128/IAI.72.4.2160-2169.2004

Guantario, B., Zinno, P., Schifano, E., Roselli, M., Perozzi, G., Palleschi, C., et al. (2018). *In vitro* and *in vivo* selection of potentially probiotic lactobacilli from Nocellara del Belice table olives. *Front. Microbiol.* 9:595. doi: 10.3389/ fmicb.2018.00595

Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., et al. (2014). The international scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. *Nat. Rev. Gastroenterol. Hepatol.* 11, 506–514. doi: 10.1038/nrgastro.2014.66

Hymes, J. P., Johnson, B. R., Barrangou, R., and Klaenhammer, T. R. (2016). Functional analysis of an S-layer-associated fibronectin-binding protein in *Lactobacillus acidophilus* NCFM. *Appl. Environ. Microbiol.* 82, 2676–2685. doi: 10.1128/AEM.00024-16

Jensen, H., Roos, S., Jonsson, H., Rud, I., Grimmer, S., van Pijkeren, J. P., et al. (2014). Role of *lactobacillus reuteri* cell and mucus-binding protein a (CmbA) in adhesion to intestinal epithelial cells and mucus *in vitro. Microbiol.* 160, 671–681. doi: 10.1099/mic.0.073551-0

Lagesen, K., Hallin, P., Rødland, E. A., Stærfeldt, H. H., and Rognes, T. (2007). RNAmmer: consistent and rapid annotation of ribosomal RNA genes. *Nucleic Acids Res.* 35, 3100–3108. doi: 10.1093/nar/gkm160

Lavermicocca, P., Valerio, F., Lonigro, S. L., de Angelis, M., Morelli, L., and Callegari, M. L. (2005). Study of adhesion and survival of lactobacilli and bifidobacteria on table olives with the aim of formulating a new probiotic food. *Appl. Environ. Microbiol.* 71, 4233–4240. doi: 10.1128/AEM.71.8.4233-4240.2005

Lebeer, S., Vanderleyden, J., and De Keersmaecker, S. C. J. (2008). Genes and molecules of lactobacilli supporting probiotic action. *Microbiol. Mol. Biol. Rev.* 72:728. doi: 10.1128/MMBR.00017-08

Lewis, V. G., Ween, M. P., and McDevitt, C. A. (2012). The role of ATP-binding cassette transporters in bacterial pathogenicity. *Protoplasma* 249, 919–942. doi: 10.1007/s00709-011-0360-8

Liu, L., Wu, R., Zhang, J., and Li, P. (2018). Overexpression of *luxS* promotes stress resistance and biofilm formation of *lactobacillus paraplantarum* L-ZS9 by regulating the expression of multiple genes. *Front. Microbiol.* 9:2628. doi: 10.3389/fmicb.2018.02628

Liu, B., Zheng, D., Jin, Q., Chen, L., and Yang, J. (2019). VFDB 2019: a comparative pathogenomic platform with an interactive web interface. *Nucleic Acids Res.* 47, D687–D692. doi: 10.1093/nar/gky1080

Lowe, T. M., and Eddy, S. R. (1997). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. *Nucl. Acids Res.* 25, 955–964.

Maldonado-Barragán, A., Caballero-Guerrero, B., Lucena-Padrós, H., and Ruiz-Barba, J. L. (2011). Genome sequence of *lactobacillus pentosus* IG1, a strain isolated from Spanish-style green olive fermentations. *J. Bacteriol.* 193:5605. doi: 10.1128/JB.05736-11

Monteagudo-Mera, A., Rastall, R. A., Gibson, G. R., Charalampopoulos, D., and Chatzifragkou, A. (2019). Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. *Appl. Microbiol. Biotechnol.* 103, 6463–6472. doi: 10.1007/s00253-019-09978-7

Myers, E. W., Sutton, G. G., Delcher, A. L., Dew, I. M., Fasulo, D. P., Flanigan, M. J., et al. (2000). A whole-genome assembly of drosophila. *Sci* 287, 2196–2204.

Nam, K. H., Kurinov, I., and Ke, A. (2011). Crystal structure of clustered regularly interspaced short palindromic repeats (CRISPR)-associated Csn2 protein revealed Ca2⁺-dependent double-stranded DNA binding activity. *J. Biol. Chem.* 286, 30759–30768. doi: 10.1074/jbc.M111.256263

Nayak, S. K. (2010). Probiotics and immunity: a fish perspective. Fish Shellfish Immunol. 29, 2–14. doi: 10.1016/j.fsi.2010.02.017

Nguyen, P. T., Nguyen, T. T., Bui, D. C., Hong, P. T., Hoang, Q. K., and Nguyen, H. T. (2020). Exopolysaccharide production by lactic acid bacteria: the manipulation of environmental stresses for industrial applications. *AIMS Microbiol.* 6, 451–469. doi: 10.3934/microbiol.2020027

Oguntoyinbo, F. A., and Narbad, A. (2015). Multifunctional properties of *lactobacillus plantarum* strains isolated from fermented cereal foods. *J. Funct. Foods* 17, 621–631. doi: 10.1016/j.jff.2015.06.022

Pagnini, C., Corleto, V. D., Martorelli, M., Lanini, C., D'Ambra, G., Di Giulio, E., et al. (2018). Mucosal adhesion and anti-inflammatory effects of *lactobacillus rhamnosus* GG in the human colonic mucosa: a proof-of-concept study. *World J. Gastroenterol.* 24, 4652–4662. doi: 10.3748/wjg.v24.i41.4652

Pei, Z., Sadiq, F. A., Han, X., Zhao, J., Zhang, H., Ross, R. P., et al. (2021). Comprehensive scanning of prophages in *lactobacillus*: distribution, diversity, antibiotic resistance genes, and linkages with CRISPR-Cas systems. *mSystems* 6:e0121120. doi: 10.1128/mSystems.01211-20

Pérez Montoro, B., Benomar, N., Caballero Gómez, N., Ennahar, S., Horvatovich, P., Knapp, C. W., et al. (2018b). Proteomic analysis of *lactobacillus pentosus* for the identification of potential markers of adhesion and other probiotic features. *Food Res. Int.* 111, 58–66. doi: 10.1016/j. foodres.2018.04.072

Pérez Montoro, B., Benomar, N., Caballero Gómez, N., Ennahar, S., Horvatovich, P., Knapp, C. W., et al. (2018a). Proteomic analysis of *lactobacillus pentosus* for the identification of potential markers involved in acid resistance and their influence on other probiotic features. *Food Microbiol.* 72, 31–38. doi: 10.1016/i.fm.2017.11.006

Pérez Montoro, B., Benomar, N., Lavilla Lerma, L., Castillo Gutiérrez, S., Gálvez, A., and Abriouel, H. (2016). Fermented Aloreña table olives as a source of potential probiotic *lactobacillus pentosus* strains. *Front. Microbiol.* 7:1583. doi: 10.3389/fmicb.2016.01583

Pérez-Díaz, I. M., Johanningsmeier, S. D., Anekella, K., Pagán-Medina, C. G., Méndez-Sandoval, L., Arellano, C., et al. (2021). Genotypic and phenotypic diversity among *lactobacillus plantarum* and *lactobacillus pentosus* isolated from industrial scale cucumber fermentations. *Food Microbiol.* 94:103652. doi: 10.1016/j. fm.2020.103652

Perpetuini, G., Prete, R., Garcia-Gonzalez, N., Khairul Alam, M., and Corsetti, A. (2020). Table olives more than a fermented food. *Foods* 9:178. doi: 10.3390/foods9020178

Puvanasundram, P., Chong, C. M., Sabri, S., Yusoff, M. S., and Karim, M. (2021). Multi-strain probiotics: functions, effectiveness and formulations for aquaculture applications. *Aquac. Rep.* 21:100905. doi: 10.1016/j.aqrep.2021.100905

Riaz Rajoka, M. S., Wu, Y., Mehwish, H. M., Bansal, M., and Zhao, L. (2020). *Lactobacillus* exopolysaccharides: new perspectives on engineering strategies, physiochemical functions, and immunomodulatory effects on host health, trends food Sci. *Technol.* 103, 36–48. doi: 10.1016/j.tifs.2020.06.003

Rodríguez-Gómez, F., Romero-Gil, V., Arroyo-López, F. N., Roldán-Reyes, J. C., Torres-Gallardo, R., Bautista-Gallego, J., et al. (2017). Assessing the challenges in the application of potential probiotic lactic acid bacteria in the large-scale fermentation of Spanish-style table olives. *Front. Microbiol.* 8:915. doi: 10.3389/fmicb.2017.00915

Rodríguez-Gómez, F., Romero-Gil, V., Bautista-Gallego, J., García-García, P., Garrido-Fernández, A., and Arroyo-López, F. N. (2014). Production of potential probiotic Spanish-style green table olives at pilot plant scale using multifunctional starters. *Food Microbiol.* 44, 278–287. doi: 10.1016/j.fm.2014.03.023

Sánchez, B., González-Tejedo, C., Ruas-Madiedo, P., Urdaci, M. C., and Margolles, A. (2011). *Lactobacillus plantarum* extracellular chitin-binding protein and its role in the interaction between chitin, Caco-2 cells, and mucin. *Appl. Environ. Microbiol.* 77, 1123–1126. doi: 10.1128/AEM.02080-10

Saxami, G., Karapetsas, A., Chondrou, P., Vasiliadis, S., Lamprianidou, E., Kotsianidis, I., et al. (2017). Potentially probiotic *lactobacillus* strains

with anti-proliferative activity induce cytokine/chemokine production and neutrophil recruitment in mice. *Benef. Microbes* 8, 615–623. doi: 10.3920/ BM2016.0202

Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinform.* 30, 1312–1313. doi: 10.1093/ bioinformatics/btu033

Sun, Z., Harris, H. M., McCann, A., Guo, C., Argimon, S., Zhang, W., et al. (2015). Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. *Nat. Commun.* 6:8322. doi: 10.1038/ncomms9322

Tofalo, R., Perpetuini, G., Schirone, M., Ciarrocchi, A., Fasoli, G., Suzzi, G., et al. (2014). *Lactobacillus pentosus* dominates spontaneous fermentation of Italian table olives. *LWT-Food Sci. Technol.* 57, 710–717. doi: 10.1016/J.LWT.2014.01.035

Vaccalluzzo, A., Pino, A., Russo, N., De Angelis, M., Caggia, C., and Randazzo, C. L. (2020). FoodOmics as a new frontier to reveal microbial community and metabolic processes occurring on table olives fermentation. *Food Microbiol.* 92:103606. doi: 10.1016/j.fm.2020.103606

van de Wijgert, J. H. H. M., and Verwijs, M. C. (2019). Lactobacilli-containing vaginal probiotics to cure or prevent bacterial or fungal vaginal dysbiosis: a systematic review and recommendations for future trial designs. *BJOG* 127, 287–299. doi: 10.1111/1471-0528.15870

Vélez, M. P., De Keersmaecker, S. C., and Vanderleyden, J. (2007). Adherence factors of *lactobacillus* in the human gastrointestinal tract. *FEMS Microbiol. Lett.* 276, 140–148. doi: 10.1111/j.1574-6968.2007.00908.x

Wu, R., Sun, Z., Wu, J., Meng, H., and Zhang, H. (2010). Effect of bile salts stress on protein synthesis of *lactobacillus casei* Zhang revealed by 2-dimensional gel electrophoresis. *J. Dairy Sci.* 93, 3858–3868. doi: 10.3168/jds.2009-2967 Xue, C., and Sashital, D. G. (2019). Mechanisms of type I-E and I-F CRISPR-Cas Systems in *Enterobacteriaceae. EcoSal Plus* 8:10.1128/ecosalplus.ESP-0008-2018. doi: 10.1128/ecosalplus.ESP-0008-2018

Yan, S., Tian, Z., Li, M., Li, B., and Cui, W. (2019). Effects of probiotic supplementation on the regulation of blood lipid levels in overweight or obese subjects: a meta-analysis. *Food Funct.* 10, 1747–1759. doi: 10.1039/c8fo02163e

Yoha, K. S., Nida, S., Dutta, S., Moses, J. A., and Anandharamakrishnan, C. (2022). Targeted delivery of probiotics: perspectives on research and commercialization. *Probiotics Antimicro. Prot.* 14, 15–48. doi: 10.1007/s12602-021-09791-7

Zankari, E., Hasman, H., Cosentino, S., Vestergaard, M., Rasmussen, S., Lund, O., et al. (2012). Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 67, 2640–2644. doi: 10.1093/jac/dks261

Zhang, Z., Schwartz, S., Wagner, L., and Miller, W. (2000). A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7, 203–214.

Zheng, J., Wittouck, S., Salvetti, E., Franz, C. M. A. P., Harris, H. M. B., Mattarelli, P., et al. (2020). A taxonomic note on the genus *lactobacillus*: description of 23 novel genera, emended description of the genus *lactobacillus* Beijerinck 1901, and union of *Lactobacillaceae* and *Leuconostocaceae*. *Int. J. Syst. Evol. Microbiol.* 70, 2782–2858. doi: 10.1099/ijsem.0.004107

Zhou, Y., Liang, Y., Lynch, K., Dennis, J. J., and Wishart, D. S. (2011). PHAST: a fast phage search tool. *Nucl. Acids Res.* 39, W347–W352. doi: 10.1093/nar/gkr485

Zotta, T., Giavalisco, M., Parente, E., Picariello, G., Siano, F., and Ricciardi, A. (2022). Selection of *Lactiplantibacillus* strains for the production of fermented table olives. *Microorganisms* 10:625. doi: 10.3390/microorganisms10030625