
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2022, No. 4, pp. 751–773. DOI:10.46586/tches.v2022.i4.751-773

SoC Root Canal!
Root Cause Analysis of Power Side-Channel Leakage

in System-on-Chip Designs

Pantea Kiaei1 and Patrick Schaumont1

Worcester Polytechnic Institute, Worcester, MA 01609, USA, {pkiaei,pschaumont}@wpi.edu

Abstract. Finding the root cause of power-based side-channel leakage becomes harder
when multiple layers of design abstraction are involved. While side-channel leakage
originates in processor hardware, the dangerous consequences may only become
apparent in the cryptographic software that runs on the processor. This contribution
presents RootCanal, a methodology to explain the origin of side-channel leakage
in a software program in terms of the underlying micro-architecture and system
architecture. We simulate the hardware power consumption at the gate level and
perform a non-specific test to identify the logic gates that contribute most side-
channel leakage. Then, we back-annotate those findings to the related activities in
the software. The resulting analysis can automatically point out non-trivial causes of
side-channel leakages. To illustrate RootCanal’s capabilities, we discuss a collection
of case studies.
Keywords: side-channel analysis · design-time methodology · micro-architecture ·
root-cause analysis

1 Introduction
A smart card application is a firmware program running on a microcontroller with crypto-
graphic accelerators. In such a system, the analysis of power-based side-channel leakage
spans multiple layers of design abstraction, including the hardware and the software.
Both hardware and software play a role in analyzing, understanding, and mitigating this
power-based side-channel leakage. While the smart card software manipulates the secrets
of the application, it is the smart card hardware that lets those secrets escape through
physical side-channel leakage.

The root-cause analysis of side-channel leakage refers to the set of design activities
that help a designer understand the origin of side-channel leakage in terms of each of
the relevant design abstraction levels in hardware or software. Root-cause analysis is
challenging because of two reasons. First, the interface between hardware and software,
the instruction-set architecture (ISA), hides important implementation details such as
the micro-architecture state, the memory hierarchy, and the system-level interconnect.
As a result, it is notoriously difficult to explain all the side-channel leakage from the
software alone. Second, the complexity of modern embedded systems is enormous. A single
chip may contain hundreds of thousands of standard cells and hard macros, that jointly
implement a processor, memory, peripherals, and cryptographic hardware accelerators.
Any of these standard cells is a potential contributor to side-channel leakage.

In this contribution, we propose RootCanal, a methodology to identify the origin of
side-channel leakage from a white-box implementation of an embedded System-on-Chip
design that contains hardware and software. In a pre-silicon white-box design, every detail
is known – typically with gate-level accuracy – but no physical realization is available.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2022-04-15 Accepted: 2022-06-15 Published: 2022-08-31

https://doi.org/10.46586/tches.v2022.i4.751-773
mailto:pkiaei@wpi.edu, pschaumont@wpi.edu
http://creativecommons.org/licenses/by/4.0/

752 SoC Root Canal!

Software

Hardware

Instruction-set Architecture

MEM CRYPTO
RISC

Power

time

...
sw a4,0(a5)
addi a3, zero,1
lw a4,68(a5)
bne a4, a3, 7d8
...

memory stage leaks

(gate,cycle) leaks

Synthesis

Simulation

ACA

RTL

SW

Compiler/Loader

RootCanal

Leaky
(gate,cycle) tuples

Leaky instructions (SW)
or modules (RTL)

(a) (b)

Figure 1: RootCanal is a pre-silicon side-channel leakage assessment technique to back-
annotate leaky (gate,cycle) tuples in an SoC design to high-level software or hardware
information. (a) RootCanal design flow integration (b) Example application.

The methodology aims to assist the hardware designer during the pre-silicon design phase
to build insight into the implementation factors that will cause side-channel leakage.
RootCanal replaces or extends the traditional side-channel leakage assessment on an
FPGA prototype with simulation-based design automation of the actual design target.
The main advantage of using the white-box implementation is that there is no ambiguity
on the cause of power variations in the hardware, as we simulate a high-resolution power
simulation at gate-level accuracy for the overall design.
The RootCanal method in a nutshell Figure 1 captures the main purpose of RootCanal.
A hardware designer wishes to build insight into the factors of hardware and software that
cause side-channel leakage in an SoC design that may include a processor, memory, and
hardware accelerators. RootCanal starts from the design source code (HDL and software)
and proceeds in two steps. First, using a non-specific leakage detection method on the
synthesized gate-level netlist, RootCanal determines a list of (gate, cycle) tuples during
which the design shows side-channel leakage. Second, RootCanal maps the list of leaky
gate tuples into high-level design information as follows. A leaky tuple within a processor
maps into the corresponding instruction of the embedded software that causes the leakage.
A leaky tuple outside a processor maps to the module and HDL source code location of
the RTL construction that causes the leakage. From this high-level design information, the
designer learns about the root cause of the leakage in terms of the design’s source code.
Benefits from RootCanal RootCanal tests the SoC side-channel leakage before tape-out,
resulting in high prototyping cost savings. The use of gate-level power simulation offers
high accuracy and low ambiguity on the amount and origin of the power consumption
variations (with some limitations as discussed below). RootCanal uses a non-specific testing
method on the simulated power traces and evaluates a broad spectrum of power-based
side-channel leakage covering the SoC hardware, the micro-architecture, and the software.
RootCanal can be used in practical applications such as testing if the integration of
hardware modules in an SoC may cause side-channel leakage and testing if a software-
based countermeasure works on the SoC hardware. The main contribution of RootCanal is
to locate the source of side-channel leakage of a design in terms of the source code of the
design1. Indeed, there is a significant semantic gap between a gate-level netlist and its
high-level specification from RTL of software [ASA+21].

1We refer to the designer as a hardware designer to emphasize that we are dealing with a pre-silicon
scenario. But this designer may very well be writing test software for the SoC processor too.

Pantea Kiaei and Patrick Schaumont 753

Limitations of using a Power Simulation RootCanal supports a pre-silicon scenario
using simulated power traces from a gate-level model of the SoC. This requirement brings
two caveats. First, power simulation tools are orders of magnitude slower when compared to
measurements from a physical prototype. Although a power simulation delivers a noiseless
trace, which significantly reduces the number of traces needed for a reliable statistical test
of side-channel leakage, the time spent by RootCanal on power simulation of an SoC is still
dominant compared to logic synthesis and logic simulation time. However, our results show
that current commercial tooling for power simulation is sufficiently powerful to handle
complete SoC analysis of power-based side-channel leakage. Second, no simulation-based
method can guarantee that the implementation will be completely free from side-channel
leakage since no simulation reflects the actual physical detail of the implementation with
total accuracy. RootCanal uses post-synthesis gate-level power simulation, which captures
technology-specific static, dynamic and internal gate-level power as well as sub-cycle
timing effects such as glitches. However, post-synthesis power simulation does not capture
capacitive coupling effects, and it does not capture off-chip factors such as coupling effects
from a chip package or a PCB. The accuracy limitations of post-synthesis power simulation
imply that false negatives in leakage detection are possible. However, the simulation-based
method suffers no false positives: a side-channel leak identified by RootCanal in simulation
will also occur in the physical implementation.

Related Work The modeling of side-channel leakage has received significant interest in
recent years. Buhan et al. partition the world of side-channel assessment tooling according
to the availability of silicon [BBYS21]. Pre-silicon tooling estimates side-channel leakage
through simulation, while post-silicon tooling builds side-channel leakage models from
measurements. Both types of tools serve different purposes. Pre-silicon techniques are
helpful while validating the side-channel leakage of new hardware designs. Post-silicon
techniques can handle the analysis of commercial-off-the-shelf (COTS) chips for which no
design internals are publicly available, which may help software side-channel verification.

RootCanal belongs to the category of pre-silicon tools, which have traditionally focused
on hardware-level simulations. Le Corre et al. use an HDL simulation of a Cortex-M3
core to build a leakage model [CGD18]. Their MAPS simulator captures the impact
of micro-architecture level pipeline registers on the side-channel leakage from software.
While specific to ARM Cortex-M3, this effort was among the first to show the utility of
processor-aware modeling tools to predict the side-channel leakage properties of software.
In the PARAM design, Arsath et al. use simulation for prediction of side-channel leakage in
a processor design. They rank each processor module according to the level of contributed
side-channel leakage. Several other authors have proposed techniques to locate the source
of side-channel leakage in a hardware design, such as RTL-PSC [HPN+19], Architecture
Correlation Analysis [YKES20], and KARNA [SVRK19]. These tools rank the activities
of hardware elements according to a localized leakage score.

Several groups propose formal verification for the verification of masking-based coun-
termeasures [BGI+18, BBC+19, KSM20]. These pre-silicon tools vary in their support
for underlying leakage models, but all use formal techniques to sidestep simulation and
instead use symbolic techniques to demonstrate statistical independence of probability
distributions. Gigerl et al. applied formal verification of masked hardware implemen-
tations to analyze micro-architectures that execute masked software implementations
[GHP+21, GPM21]. This work highlights the need and benefits of including the hardware
details in the verification process of masked software.

In the post-silicon tooling, grey-box models capture the micro-architecture sources of
side-channel leakage in significant detail [MOW17, SSB+19, MPW22, BIBB21]. Gao et al.
proposed a novel test of completeness to measure the quality of side-channel leakage models
of processors in the grey-box case [GO21]. We see the post-silicon work as complementary
to RootCanal that handles pre-silicon analysis.

754 SoC Root Canal!

Outline In the next section, we review preliminary relevant concepts that support Root-
Canal. Section 3 presents the methodology with specific attention to the process of
translating leaky gates in hardware to leaky instructions in software. Section 4 applies
RootCanal to four different case studies. We conclude the paper in Section 5.

2 Preliminaries
We address three preliminary concepts in support of RootCanal. First, the root cause
analysis of side-channel leakage must eventually point out an element in the software or
hardware specification of the SoC. We will define the abstraction levels of concern in the
design hierarchy, paying attention to the tension between an SoC’s specification in source
code and its realization in logic gates and instruction opcodes. Second, we will describe
the properties of the gate-level power simulation used by RootCanal and we highlight its
benefits and limitations. Third, we will review Architecture Correlation Analysis (ACA)
[YKES20], which is used by RootCanal to identify the source of side-channel leakage in
hardware. We will also describe an extension of ACA so that it can test non-specific
leakage.
Design Hierarchy RootCanal’s input is a System-on-Chip design in a synthesizable Hard-
ware Description Language (HDL) and embedded software running on the SoC processor.
We define a software specification as the assembly-level source code. RootCanal flags
side-channel leakage at the granularity of an individual logic gate and then propagates this
up the hierarchy to a level accessible to a designer. RootCanal will resolve ambiguities
such as overlapped instruction execution in software and multiple-instantiated modules in
the hardware design hierarchy. RootCanal also deals with discrepancies between the static
source code manipulated by the designer, and the runtime view on the system simulated
and analyzed by the methodology.
Power Simulation A RootCanal user will study the side-channel leakage over a given
system-level simulation interval, such as the rounds of a cipher. In the RootCanal prototype,
we use Cadence Joules as a power simulator. The system simulation interval is partitioned
into multiple frames so that RootCanal obtains equally-spaced power samples over the
system simulation interval. The Joules power simulator analyzes the gate-level activity
of the design over each frame in the system simulation interval to determine the average
power consumption of each gate within each frame. The technology-dependent gate-level
power model of Joules captures switching power, internal power, and leakage power. In
our experiments, we used a frame interval smaller than or equal to the clock period of the
design under test.

The Joules power simulator takes every event within a frame into account to determine
the per-frame power estimate. For example, even at a low sample rate of one frame per
clock cycle, the power estimate for the frame still includes the power consumption caused
by glitches, a known cause of side-channel leakage [MPG05]. The Joules power simulator
models the capacitive loading of gates with wire-load models during the initial high-level
design. Joules also uses capacitive loading estimated from the actual routing when the
design layout is available. A limitation of the Joules power simulator is that it ignores
cross-coupling capacitance, which may be responsible for masking order reduction on
masked designs [CHS09].
Architecture Correlation Analysis Architecture Correlation Analysis (ACA) is a tech-
nique to rank the gates in a hardware design according to their contribution to the
side-channel leakage. The gates are ranked based on a specific-leakage test using a leakage
model, or a non-specific leakage test [KYL+22]. RootCanal builds on top of non-specific
ACA. For a non-specific test, the stimuli are taken from two groups, leading to two groups
of power traces. The evaluation works in two steps.

Pantea Kiaei and Patrick Schaumont 755

✓
✘ ✘
✓

Step 1

RTL

Tech

Testing
strategy

Leaky tuple
Tl = (tl , gl)

SW code

…

Netlist Graph Analysis

Leaky unit
(ul)

Leaky stage
(sl)

…

Step 2

Time Instr

… …Time Instr

… …Time Instr

… …Time Instr

… …
F
Time Instr

… …

D
E
M

W

Leaky
instruction

(Il)

Leaky time
(tl)

Step 3 (if ul inside processor core)

Figure 2: Overall RootCanal flow

1. Non-specific ACA compares the two groups of power traces with a Welch’s t-test
and flags the collection of frames over which a design leaks (|t| > 4.5) as the Leakage
Time Interval (LTI).

2. Non-specific ACA computes a toggle trace for each gate during the Leakage Time
Interval. A toggle trace encodes a gate’s output transitions over the LTI, where
+1 indicates the presence of at least one transition and -1 indicates the absence.
Non-specific ACA correlates the toggle trace with the stimulus group identifier, which
is -1 for a stimulus from the first group and +1 for a stimulus from the second group.
This group correlation thus expresses how consistently the activity of a gate predicts
the group during the leakage time interval. Unlike [KYL+22], the ranking used by
RootCanal does not apply gate weighing factors; we found their impact on ranking
accuracy to be minor compared to the overhead of computing them.

The leakage ranking of the gates is established by sorting the gates according to their
group correlation.

A designer using RootCanal will adjust the test stimuli according to the side-channel
leakage property under evaluation. The two groups of stimuli create an internal statistical
bias in the gate-level design that is subsequently detected by RootCanal. Table 1 shows
the stimuli used for the experimental work of the paper. A Value Leakage test evaluates if
a sensitive input value will appear as side-channel leakage in SoC hardware or software,
and is evaluated as a fixed-versus-fixed value test. A Node Bias test evaluates the state
of an internal circuit node by partitioning random input stimuli in two groups according
to the internal node. This test helps to evaluate a hiding countermeasure. Finally, in a
Masking test, a designer tests the correct implementation of a masking scheme using a
fixed-vs-random test for input values. The current RootCanal prototype only considers
first-order leakage. Extending RootCanal to higher-order leakage testing will require
extending non-specific ACA with higher-order testing criteria [SM15].

Table 1: The non-specific tests used for RootCanal compare power traces from Group 1
against Group 2. NAMES in capitals denote inputs. The Node Bias test uses Random
INPUT in both groups.

Test Group 1 Group 2 Purpose

Value Leakage Fixed VALUE1 Fixed VALUE2 Testing of VALUE Leakage
Node Bias internal_bit=0 internal_bit=1 Testing of Hiding
Masking Random INPUT Fixed INPUT1, INPUT2, .. Testing of Masking

3 Methodology
RootCanal finds the source (in hardware and software) of power side-channel leakage from
an SoC by a three-step process. Figure 2 shows the overall structure of the RootCanal
methodology. Root cause analysis starts by performing a gate-level side-channel leakage
assessment on the design to obtain a set of leakage tuples Tl = (tl, gl), with tl and gl

indicating the time and gate that cause side-channel leakage (Step 1 in Figure 2).

756 SoC Root Canal!

RISC-V DMA

UART

Bus Interface

GPIO AES

I
mem

D
mem

instruction

fetch

FD

P
C

in
st

r

Control Unit

flush, stall

Reg.

File

instruction

decode

P
C

o
p

er
an

d

DE

m
em

flush, stall, …

ALU

P
C

stall

A
L

U
 r

es
u

lt
m

em

EM

mem

issue

mem

receive

bus

intfc

P
C

flush

A
L

U
 r

es
u

lt
lo

ad
 d

at
a

MW

write_data

write_data

A
LU

 re
su

lt
A

LU
 re

su
lt

bus

intfc

b
ra

n
ch

Figure 3: Block diagram of RISCV-SoC and its five-stage RISC-V processor. Resources
from different pipeline stages are shown in different colors in the processor core. The gray
blocks in the SoC (instruction and data memories) are modeled in the testbench (not
synthesized).

Knowing the leaky gate (gl) without its relation to the RTL design does not provide
the secure hardware designer with useful information about the design. Therefore, we
introduce a Netlist Graph Analysis (NGA) methodology to find the unit in the design to
which the leaky gate gl belongs, i.e., a leaky unit ul. In case the processor core in the SoC
is pipelined, NGA also reports the pipeline stage to which gl belongs, i.e., leaky stage sl

(Step 2 in Figure 2)
Furthermore, when the leakage stems from inside the processor core, it is helpful to

know which instruction (or interaction of a group of instructions) has caused the observed
leakage. To find the instructions causing a specific leakage tuple Tl = (tl, gl), we log the
instructions per clock cycle (per pipeline stage) and find the instruction running in the
processor (in the leaky stage sl) during the leaky time tl (Step 3 in Figure 2).

In the rest of this section, we elaborate each step of RootCanal. We first describe how
the leaky tuples are detected. We further explain how these tuples are translated into
the leaky unit of the circuit and instructions that cause the leakage. Throughout this
section we use RISCV-SoC (Figure 3) as the running example. We refer to the pipeline
stages as F, D, E, M, and W which respectively stand for fetch, decode, execute, memory,
and write-back. We refer to the pipeline stage registers in two-letter words showing the
pipeline stages surrounding the register (e.g. EM is the pipeline register between stages E
and M as shown in Figure 3)

3.1 Step 1: Finding Leaky Time-Gate Tuples
In the first step (Figure 4), RootCanal uses ACA to find the leakage tuples. First, the
software source code is compiled and loaded on the synthesized netlist. Next, we prepare
two groups of stimuli depending on the planned type of non-specific test (Table 1). We
then simulate the netlist’s switching activity using the Cadence Xcelium simulator and
save the result in value change dump (VCD) format. Using a power simulator, Cadence
Joules, we then collect the power traces for all chosen stimuli. ACA then analyzes the
power traces and the VCD files to determine the leaky time-gate tuples.

Pantea Kiaei and Patrick Schaumont 757

link &

compile

exec.
binarySW code

RTL design
synthconstraints

tech library
netlist

load bin.

to netlist

GCC

Genus

Xcelium

programmed
SoC netlist

gate-level

sim

chosen stimuli

switching
activity
vcd

Xcelium

power

sim

Joules

power
traces ACA

Python

Leaky tuples
Tl = (tl , gl)

Figure 4: Layout of step 1 in RootCanal

R1

C1

C2 R2

N2

N1
N3

N4

N5

N6 N7

fan-in
register

fan-out
registertiming

path

(a) Example circuit

R1

C1

C2 R2

N2

N1
N3

N4

N5

N6 N7

fan-in
register

fan-out
registertiming

path N1
N3

R1 N4C1

N2
C1 N6

N5

C2

C2

N7R2

(b) Corresponding netlist graph
Figure 5: An example for timing path, fan-in register, fan-out register, and gate-level
netlist graph.

3.2 Step 2: Finding Leaky Units

To do a root-cause analysis of the leakage, we need to trace back the location of each leaky
gate in the design. Commercial synthesis tools and open-source synthesis tools, such as
Yosys, support tracking of each gate in the synthesized netlist to their RTL source file. In
our tool-chain, for example, we use Cadence Genus for gate-level synthesis, which supports
the synthesis attribute hdl_track_filename_row_col to trace the location of each gate
in the synthesized netlist back to the RTL source file.

However, there are two problems with the source code tracking in synthesis tools.
First, the reported RTL location can be incorrect for highly-optimized circuits. For
example, in our experiments with RISCV-SoC (Figure 3), we observed many gates in
the netlist being attributed mistakenly to the ALU in the processor core. Second, the
tools only record the source RTL file name (and line number) of the lowest hierarchy level.
Therefore, gates belonging to different instances of the same module appear to come from
the same RTL source. For example, the RISC-V core in Figure 3 uses a common pipeline
register module (defined in pipeline_register.v) in every pipeline stage; therefore, the
tool traces the synthesized gates from pipeline registers in different stages to the same
pipeline_register.v RTL file.

The first problem can be reduced or possibly overcome by preserving the hierarchy of
some modules in the design. However, for our purpose, this solution is suboptimal. It
interferes with the default synthesis flow and prevents the highest level of optimization
of the circuit (incurring higher delay and area). Instead, we introduce a Netlist Graph
Analysis (NGA) methodology to detect the source of a synthesized gate in a design, which
overcomes both of the mentioned problems.

3.2.1 Definitions

We use the following definitions to describe NGA.

758 SoC Root Canal!

.

...
...

fan-in

registers

src1
src2

srcn

...
Leaky gate

(gl)...
fan-out

registers

snk1
snk2

snkm

...
...

...
fan-in

registers

src1
src2

srcn

...
Leaky gate

(gl)
fan-out

registers

snk1
snk2

snkm

...

...
...

fan-in
registers

src1
src2

srcn

...
Leaky gate

(gl)
fan-out
registers

snk1
snk2

snkm

...

...
...

fan-in
registers

(src)

src1
src2

srcn

...
Leaky gate

(gl)

fan-out
registers

(snk)

snk1
snk2

snkm
..

Figure 6: NGA uses fan-in and fan-out registers for each gate to determine its approximate
location in the design.
Timing path. A path, in the gate-level netlist, starting from the output of a sequential
cell and ending at the input of a sequential cell. The red dashed line in Figure 5a shows a
timing path consisting of the nets {N3, N4, N6}.
Fan-in register. Register R is a fan-in register to logic cell C if there is a path in the
gate-level netlist from the output of R to the input of C. In Figure 5a, R1 is a fan-in
register for cells C1 and C2.
Fan-out register. Register R is a fan-out register to logic cell C if there is a path in the
gate-level netlist from the output of C to the input of R. In Figure 5a, R2 is a fan-out
register for cells C1 and C2.
Gate-level netlist graph. A directed graph representation of the gate-level netlist in
which nodes represent the nets of the netlist and the edges connect all cell inputs (barring
the input clock) to the cell’s output. Figure 5b shows the netlist graph for the circuit in
Figure 5a.

3.2.2 Netlist Graph Analysis

NGA finds the design unit of a gate in the netlist by locating the gate’s fan-in registers
and fan-out registers and then inferring the gate’s design unit from the registers’ design
units. Synthesis tools optimize the combinatorial logic between registers to increase the
maximum frequency of the design. This optimization may omit/combine much of the
combinatorial logic in the design. However, the sequential cells remain in the final netlist,
and they offer a stable connection between the RTL and gate-level netlist. Our graph
analysis technique relies on the register instance names in the synthesized netlist. These
names reveal the register’s location in the design (including module instance, hierarchy,
and original RTL name). Some synthesis tools preserve the register names by default,
while other synthesis tools require a synthesis switch. To locate the fan-in and fan-out
registers for gates in a circuit, we add a step at the end of synthesis to report the starting
and ending point of timing paths containing each gate in the netlist.

For each given leaky gate gl, NGA reports its corresponding leaky unit ul (or leaky
stage sl) by using a set of design-specific rules. NGA views an SoC as a set of IPs connected
to each other through a bus (B): SoC = {IP1, ..., IPn, B}. Each IP in the SoC is outlined
by its registers: IPi = {ri,1, ..., ri,m}. The unit ul for each leaky gate gl is detected by
comparing the set of fan-in and fan-out registers for gl with the registers in the IPs. In
Figure 6, we label fan-in registers as srci and fan-out registers as snki. The set of rules
and the steps involved in NGA varies based on whether the processor core in the SoC is
multi-cycle or pipelined.
Multi-cycle processor core. Amulti-cycle processor core executes only a single instruction
at a time. Therefore, simply knowing the leaky gate gl is from inside the processor core is
enough to locate the instruction causing the leakage at time tl. To find the design unit ul

to which gl belongs, we treat a multi-cycle processor core like any other IP in the SoC.
Algorithm 1 determines the design unit for a given leaky gate gl, given the set of its fan-in
and fan-out registers (src and snk respectively). If all of gl’s srcs and snks are from the
same IP, gl resides in that IP. Otherwise, it belongs to the bus interface.
Pipelined processor core. A pipelined processor supports overlapped execution of in-
structions, with each instruction allocated to a different pipeline stage at a given clock
cycle. Therefore, we need to know to which stage of the pipeline gl belongs in order to

Pantea Kiaei and Patrick Schaumont 759

Algorithm 1 Single-Phase NGA for an SoC with Multi-Cycle Processor
Input: src, snk . src = fanin(gl), snk = fanout(gl)
Output: design unit to which gl belongs

procedure single_phase_nga(src, snk)
if (src ⊆ IPk) and (snk ⊆ IPk) then

return IPk

else
return B . B: bus interface

end if
end procedure

Algorithm 2 Phase A of NGA for pipelined processor
Input: src, snk . src = fanin(gl), snk = fanout(gl)
Output: design unit to which gl belongs

procedure nga_phase_a(src, snk)
if (src ⊆ IPk) and (snk ⊆ IPk) then

return IPk

else if ({src ∪ snk} ⊆ ∪n
k=1IPk) then

return B (IP to IP) . B: bus interface
else if ((∃i srci ∈ CPU) and (∃i srci ∈ ∪n

k=1IPk))
or ((∃i snki ∈ CPU) and (∃i snki ∈ ∪n

k=1IPk)) then
return B (interconnect between IP and processor)

else
return ∅

end if
end procedure

associate a leaky gate with a leaky instruction. In an SoC with a pipelined processor, we
differentiate between the processor core and the other IPs: SoC = {IP1, ..., IPn, B, CPU}.
A three-phase NGA procedure is able to detect the unit ul for a leaky gate gl: (Phase A)
Detect whether gl is inside the processor; (Phase B) Detect the pipeline stage for gl; and
(Phase C) Ensure gl is not from the processor’s control unit.

NGA Phase A. We first identify using Algorithm 2 whether gl belongs to IPs other
than the processor. If all the srcs and snks for gl are from the same IP, gl belongs to that
IP. If all srcs and snks are from different IPs not including the CPU , gl belongs to the
bus interface between IPs. If either of the srcs or snks is from the CPU , while the other
set is from the IPs, gl is from the bus interface between the CPU and IP s. If gl is not
identified as belonging to IPs (Algorithm 2 returns ∅), we use phase B and phase C of
NGA to detect the pipeline stage sl for a leaky gate gl.

NGA Phase B. NGA finds the pipeline stage to which gl belongs as follows. First, find
the fan-out register in the path from gl to the committing stage of the pipeline (write-back
in Figure 3). Next, detect possible combination of different pipeline stages from gl’s fan-in
and fan-out registers. Algorithm 3 shows the procedure for phase B of NGA. For this
phase, we build the graph from the gate-level netlist and find the shortest path from the
output of gl to the output of the MW pipeline register using Dijkstra’s algorithm. Taking
the shortest path, prevents finding the path going through the control unit. We then
find the first pipeline or general-purpose register (r0) along this shortest path. If r0 is a
general purpose register (from the register file), gl belongs to the write-back stage. If r0 is
a pipeline register, the stage right before r0 is the stage where gl resides, unless gl is from
the control unit.

760 SoC Root Canal!

Algorithm 3 Phase B of NGA for pipelined processor
Input: netlist_graph, gl

Output: pipeline stage to which gl belongs
procedure nga_phase_b(netlist_graph, gl)

path_wb← dijkstra_path(netlist_graph, gl, piperegMW)
r0 ← first_reg(path_wb)
if r0 ∈ piperegk+1 then . piperegk+1: pipeline register after stagek

return stagek

else if r0 ∈ GPR then . GPR: set of general purpose registers in reg. file
return W . W : write-back stage

end if
end procedure
procedure first_reg(path)

for edge ∈ path do
if edge is register then

return edge
end if

end for
end procedure

Algorithm 4 Phase C of NGA for pipelined processor
Input: stagek, src . stagek = nga_phase_b(netlist_graph, gl), src = fanin(gl)
Output: pipeline stage or control unit to which gl belongs

procedure nga_phase_c(stagek, src)
if src ⊆ {∪n

k=1IPk ∪ piperegk} then . piperegk: pipeline register before stagek

return stagek

else if (∃i, j srci 6= srcj) and (stagek = D) then
return C (can be related to operand forwarding)

else if (∃i, j srci 6= srcj) then
return C . C: control unit

end if
end procedure

NGA Phase C. Phase C of NGA detects whether gl is from the control unit. The
control unit has inputs/outputs from/to all pipeline stages and breaks the independence
between stages (Figure 3). We follow Algorithm 4 and use the fan-in registers for gl and
the detected stagek from phase B to decide whether gl resides in the control unit.

If all of gl’s fan-in registers align with the detected stagek, we conclude gl belongs to
stagek. Otherwise, if fan-in registers to gl come from different units, gl belongs to the
control unit. For example, assume that a gate belongs to the operand forwarding logic. In
that case, the leakage observed from the gate can originate from any stage (or combination
of stages) that forwards data to the leaky gate (D,E,M,W).

3.3 Step 3: Finding Leaky Instructions
Figure 7 illustrates step 3 of RootCanal. To find the instruction that has caused a particular
leakage, we use a log of instructions from the processor core simulation. In case of a
multi-cycle core, we log the program counter (PC) at every clock cycle. In case of a
pipelined processor, we log the PC for each stage separately. To support PC logging for
the processor core in Figure 3, we instrument the EM and MW stage registers with the
PC signal (highlighted in yellow in Figure 3) for an RTL simulation of the SoC running

Pantea Kiaei and Patrick Schaumont 761

exec.
binary

disassemble

RTL simsample stimulus

disassembly

PC log
per stage

time/unit

matching

From step 2
Leaky unit/stage

(ul / sl)

From step 1
Leaky time

(tl)

PC

matching

leaky
stage &

PC

Leaky
instruction

(Il)

GCC

Xcelium

Python

Python

RTL design*

Figure 7: Layout of step 3 in RootCanal. The RTL design may need to be modified to
pass on the PC signal to all pipeline registers. The executable binary is generated in the
same way as in step 1.

the programmed software.
With a log of instructions executed by clock cycle, it is straightforward to map the

leaky time tl (from step 1) and unit/stage ul/sl (from step 2) and find the leaky PC. By
disassembling the software binary file and looking up the leaky PC, the leaky instruction
(Il) is identified. When the detected ul is outside the processor core, the instruction in the
memory stage is flagged as the leaky instruction.

4 Experimental Results

This section demonstrates RootCanal’s capabilities using practical examples of pre-silicon
side-channel assessment. RootCanal uses simulated power traces at the gate level. There-
fore, RootCanal supports the side-channel leakage assessment of SoCs, including evaluating
(first-order) masking and hiding countermeasures at the level of software, RTL design, or
gate level. We highlight the ability of RootCanal to back-annotate the source of leakage
from the gate level to higher-level source code where a designer can interpret and act upon
it. The following four examples illustrate RootCanal’s capabilities in pre-silicon root-cause
analysis of side-channel leakage. We start with analyzing the interaction between embedded
software and a cryptographic hardware accelerator. Next, we demonstrate the impact of
complementary data encoding on the hiding properties of software. Finally, we present two
cases where RootCanal finds first-order flaws in masked software. Using RootCanal, we
establish that these masking flaws originate not from programming errors but side-effects
in the underlying hardware and compiler infrastructure.

The experiments study the power side-channel leakage in an SoC2. The SoC holds
a RISC-V processor, an AES-128 hardware accelerator, and a collection of peripherals
including DMA, UART and GPIO (Figure 3). The RISC-V processor has five pipeline
stages: instruction fetch, instruction decode and register access, execution, memory access,
and write-back. Using Cadence Genus, we synthesize this design with SkyWater 130nm
standard cell library for 50MHz frequency. RootCanal can be used with any standard
cell library for which the individual cell’s power and timing characteristics are available
(Liberty format). The SkyWater library is open source and therefore represents a low
threshold for access. Table 2 shows the details for synthesis. The data and instruction
memory blocks are modeled in the testbench and are not included in synthesis. The
post-synthesis netlist is used for all of the following experiments.

2Source codes, design files, scripts, and results for all experiments are available at https://github.
com/Secure-Embedded-Systems/rootcanal-ches2022.

https://github.com/Secure-Embedded-Systems/rootcanal-ches2022
https://github.com/Secure-Embedded-Systems/rootcanal-ches2022

762 SoC Root Canal!

Table 2: Synthesis details for RISCV-SoC using Cadence Genus
Standard Cell Library Frequency Sequential Cells Logic Cells Total Cells

SkyWater 130nm 50MHz 8155 20742 29872

2.5 3.0 3.5 4.0 4.5 5.0 5.5 Time (us)
0

10

20

30

40

780 7a4 7c4 7e0 7fc PC (Fetch)

Figure 8: (Example 1) Average simulated power trace for SoC programming and running
the AES hardware accelerator. The bottom X-scale links the power trace to Listing 1
through the value of the program counter (Fetch stage).

4.1 Example 1: Value-based Leakage in a System-on-Chip
The first example demonstrates the straightforward case of value-based leakage. The
example shows how a designer can study the side-channel impact of a secret value moving
around in the SoC architecture.
4.1.1 Setup

In this testbench, the RISC-V core reads a secret key and plaintext from memory, transfers
these as 32-bit words to the AES accelerator, starts the accelerator, waits for its completion,
and finally moves the ciphertext from the AES accelerator to memory. We simulate power
consumption traces of this testbench given two groups of inputs. In the first group, we
fix the key to all zeros while feeding 512 random plaintexts. In the second group, we set
the key to all ones while providing 512 random plaintexts. By calculating Welch’s t-test
between the two groups of traces, we identify the leaky time samples caused by a difference
in key-value.

Listing 1 shows the corresponding assembly snippet generated with the RISC-V GCC
(10.2.0) compiler with -O1 optimization flag. RootCanal obtains power traces for the 1024
test vectors using Cadence Joules (one frame per clock cycle). Figure 8 shows the average
simulated power trace for the activity shown in Listing 1. RootCanal uses the power
traces to determine the leaky instructions and the leaky hardware modules in the design
by following Architecture Correlation Analysis and Netlist Graph Analysis.
4.1.2 Results

As expected for an unprotected implementation, there are numerous leaky time intervals
with extremely high t-values as high as 5.109.
Leakage from Software Listing 1 summarizes the leakage sources identified by Root-
Canal from the perspective of the software, i.e., based on leakage from cells inside the
processor core. The primary source of side-channel leakage stems from instructions that
load the key from memory (instr. 780, 788, 790, 798), namely in the memory stage
by accessing RAM (FDEMW) and in the write-back stage by writing into the processor
register file (FDEMW). Additional leakage stems from writing the key values to the AES
hardware accelerator (instr. 784, 78c, 794, 79c), namely from the decode (FDEMW),
execute (FDEMW), and memory stages of these instructions. Indeed, each instruction reads
a secret-key part from the register file in the decode stage, moves it through the execute
stage to the memory stage, and finally writes it to the AES coprocessor register.

Pantea Kiaei and Patrick Schaumont 763

1 00000740 <main >:
2 ...
3 780: lw a3 ,0(a4) # FDEMW # load key word 0 from RAM
4 784: sw a3 ,4(a5) # FDEMW # send key word 0 to AES
5 788: lw a3 ,4(a4) # FDEMW # load key word 1 from RAM
6 78c: sw a3 ,8(a5) # FDEMW # send key word 1 to AES
7 790: lw a3 ,8(a4) # FDEMW # load key word 2 from RAM
8 794: sw a3 ,12(a5) # FDEMW # send key word 2 to AES
9 798: lw a4 ,12(a4) # FDEMW # load key word 3 from RAM

10 79c: sw a4 ,16(a5) # FDEMW # send key word 3 to AES
11 7a0: addi a4 ,zero ,24 # FDEMW
12 7a4: lw a3 ,0(a4) # FDEMW # load pt word 0 from RAM
13 7a8: sw a3 ,20(a5) # FDEMW # send pt word 0 to AES
14 7ac: lw a3 ,4(a4) # FDEMW # load pt word 1 from RAM
15 7b0: sw a3 ,24(a5) # FDEMW # send pt word 1 to AES
16 7b4: lw a3 ,8(a4) # FDEMW # load pt word 2 from RAM
17 7b8: sw a3 ,28(a5) # FDEMW # send pt word 2 to AES
18 7bc: lw a4 ,12(a4) # FDEMW # load pt word 3 from RAM
19 7c0: sw a4 ,32(a5) # FDEMW # send pt word 3 to AES
20 7c4: addi a4 ,zero ,6 # FDEMW
21 7c8: sw a4 ,0(a5) # FDEMW # assert start signal
22 7cc: addi a4 ,zero ,4 # FDEMW
23 7d0: sw a4 ,0(a5) # FDEMW # deassert start signal
24 7d4: addi a3 ,zero ,1 # FDEMW
25 7d8: lw a4 ,68(a5) # FDEMW # read AES status signal
26 7dc: bne a4 ,a3 ,7 d8 # FDEMW # if AES not done loop back
27 7e0: lw a4 ,52(a5) # FDEMW # read ct word 0 from AES
28 7e4: sw a4 ,40(zero) # FDEMW # store ct word 0 to RAM
29 7e8: lw a4 ,56(a5) # FDEMW # read ct word 1 from AES
30 7ec: sw a4 ,44(zero) # FDEMW # store ct word 1 to RAM
31 7f0: lw a4 ,60(a5) # FDEMW # read ct word 2 from AES
32 7f4: sw a4 ,48(zero) # FDEMW # store ct word 2 to RAM
33 7f8: lw a5 ,64(a5) # FDEMW # read ct word 3 from AES
34 7fc: sw a5 ,52(zero) # FDEMW # store ct word 3 to RAM
35 ...

Listing 1: (Example 1) Assembly code of the firmware for AES accelerator.
Blue letters indicate leaky pipeline stages.

RootCanal flags two additional leaky instructions immediately following the key loading
(instr. 7a4, 7a8). These leakages are from different pipeline stages but map to the same
time sample. They are both caused by overwriting a storage buffer in the memory stage,
which causes transitional leakage from the key-value (remaining from instr. 79c) to the
first plain-text word. The output of this buffer is forwarded to the decode stage (operand
forwarding), resulting in the leakage in the decode stage of the next instruction 7a8.

Leakage from Hardware In addition to the instructions listed above, RootCanal also
flags the following hardware modules as leaky:

1. While reading the key from memory, gates from the bus structure show leakage.
2. When the processor writes the secret key to the AES accelerator, the bus intercon-

nections and interfaces of the SoC modules attached to the bus (DMA, UART, and
AES) generate side-channel leakage.

3. When AES is running, gates in the AES core create leakage.
This first example on analysis of known leakage serves as a sanity check for the

methodology. Thanks to the automated back-annotation, RootCanal reduces the manual
overhead in the analysis of side-channel leakage.

4.2 Example 2: Testing Bit-Sliced Data Encoding in Software Hiding
The second example demonstrates how RootCanal helps evaluate redundancy encoding
schemes. Redundancy schemes are popular as fault-detection technique but the redundancy

764 SoC Root Canal!

7f8 828 PC (Fetch)

Sample

7bc 7d4

bit 0 bit 1

Figure 9: (Example 2) Average simulated power traces and TVLA results for redundant
encoding schemes on bit-sliced PRESENT SBox

1 # Unprot . Red. Red.
2 # Direct Complementary
3 # FDEMW FDEMW FDEMW
4 ...
5 7bc: lw a4 ,8(a1) # FDEMW FDEMW FDEMW
6 7c0: xori t5 ,a4 ,-1 # FDEMW FDEMW FDEMW
7 7c4: xori t1 ,t4 ,-1 # FDEMW FDEMW FDEMW
8 7c8: and t1 ,t1 ,a4 # FDEMW FDEMW FDEMW
9 7cc: xor a4 ,a3 ,a5 # FDEMW FDEMW FDEMW

10 7d0: xori t1 ,t1 ,-1 # FDEMW FDEMW FDEMW
11 7d4: xor t1 ,t1 ,a4 # FDEMW FDEMW FDEMW
12 7d8: sw t1 ,0(a0) # FDEMW FDEMW FDEMW
13 ...

Listing 2: (Example 2) Assembly code of the leaky parts of bit-sliced PRESENT SBox
calculating bit 0 of output. Blue letters indicate leaky pipeline stages.

itself may be a source of side-channel leakage. Using RootCanal, a designer can compare
alternate encodings.

4.2.1 Setup

We use RootCanal to compare the side-channel impact of two fault encoding schemes
presented in SKIVA [KMD+21]. SKIVA proposed two bit-sliced redundancy schemes to
detect faults. The redundant copy can be either a direct copy or an inverted version of the
reference slice. The rationale for the latter scheme, complementary redundancy, is that it
creates a hiding effect that may lead to lower side-channel leakage than direct redundancy.
Bit-sliced software computations use bit-wise instructions. To compute complementary
redundant bit-slices and perform fault checking, SKIVA introduces new instructions. We
integrated these instructions into our RISC-V SoC.

We compare three bit-sliced implementations of the PRESENT SBox [BKL+07]. They
use no redundancy (32 parallel runs), direct redundancy (16 parallel runs), and com-
plementary redundancy (16 parallel runs), respectively. The input data is random but
replicated appropriately according to each implementation’s selected redundancy scheme
(no redundancy, direct redundancy, and complementary redundancy). We feed the same
1024 random inputs to each scheme and simulate power traces. Figure 9 shows the average
simulated traces over all inputs.

Pantea Kiaei and Patrick Schaumont 765

1 # Unprot . Red. Red.
2 # Direct Complementary
3 # FDEMW FDEMW FDEMW
4 ...
5 7f4: lw t1 ,12(a1) # FDEMW FDEMW FDEMW
6 7f8: xori t1 ,t1 ,-1 # FDEMW FDEMW FDEMW
7 7fc: xori t2 ,t2 ,-1 # FDEMW FDEMW FDEMW
8 800: and t1 ,t1 ,t2 # FDEMW FDEMW FDEMW
9 ...

10 810: and a4 ,a4 ,t3 # FDEMW FDEMW FDEMW
11 814: and t0 ,a5 ,t0 # FDEMW FDEMW FDEMW
12 818: xori a4 ,a4 ,-1 # FDEMW FDEMW FDEMW
13 81c: and a4 ,a4 ,t0 # FDEMW FDEMW FDEMW
14 820: xori t1 ,t1 ,-1 # FDEMW FDEMW FDEMW
15 824: xori a4 ,a4 ,-1 # FDEMW FDEMW FDEMW
16 828: and a4 ,t1 ,a4 # FDEMW FDEMW FDEMW
17 82c: sw a4 ,4(a0) # FDEMW FDEMW FDEMW
18 ...

Listing 3: (Example 2) Assembly code of the leaky parts of bit-sliced PRESENT SBox
calculating bit 1 of output. Blue letters indicate leaky pipeline stages.

4.2.2 Results

We use the node bias test on a single output bit of the PRESENT SBox, which will split the
1024 test traces into two groups of roughly equal size. The bit-sliced computation evaluates
32 or 16 SBoxes in parallel, depending on the redundancy level. Hence, rather than
deciding the group on a single output bit, we use a majority vote over the corresponding
output bit of all parallel SBoxes. We do the same experiment for bit 0 and bit 1 of the
four-bit output of PRESENT SBox.

As shown in Figure 9, the maximum t-value (at sample number 33 and 47 for output bit
0 and 1 respectively) is the highest for direct redundancy and the lowest for complementary
redundancy. Furthermore, the leaky frame count for output bit 0 (resp. output bit 1) is 6,
7, and 5 (resp. 29, 32, and 13) for unprotected, direct redundancy, and complementary
redundancy schemes. Thus, the side-channel leakage level degrades when using direct
redundancy and improves when using complementary redundancy.
Leakage from Software Listing 2 and Listing 3 show the parts of the assembly codes
that cause leakage and the leaky stages detected for each instruction by RootCanal in
each redundancy scheme for calculating bit 0 and bit 1 of the PRESENT SBox output.
The direct redundancy scheme degrades the side-channel leakage over the unprotected
scheme because more pipeline stages and instructions are affected. The complementary
redundancy scheme reduces the side-channel leakage but does not eliminate it. As an
imperfect hiding-based countermeasure, this is an expected result.

4.3 Example 3: Debugging Masking – across HW/SW Boundaries
The third example describes the analysis of a masking flaw across the boundaries of
hardware and software. Using RootCanal we identified the cause and were able to
formulate a potential solution.
4.3.1 Setup

We analyze an open-source byte-masked software implementation3 of AES [YYP+18] that
was previously shown to suffer from transition-based leakage [SSB+19, GMPO20]. We ana-
lyze the power side-channel leakage of the initial AddRoundKey and the first round SubBytes.
Listing 4 shows the assembly code for the body of the loops in addRoundKey_masked and

3https://github.com/Secure-Embedded-Systems/Masked-AES-Implementation/tree/master/
Byte-Masked-AES

https://github.com/Secure-Embedded-Systems/Masked-AES-Implementation/tree/master/Byte-Masked-AES
https://github.com/Secure-Embedded-Systems/Masked-AES-Implementation/tree/master/Byte-Masked-AES

766 SoC Root Canal!

350 352 354 356 358 360 362 364

2

3

4

Po
we

r (
m

W
)

350 352 354 356 358 360 362 364
Time (us)

0

5

10

15

T-
va

lu
e

Figure 10: (Example 3) Average simulated power trace and TVLA result for the byte-
masked AES example

subBytes_masked functions (RISC-V GCC (10.2.0) with -O1 optimization flag). To evalu-
ate this masked implementation, we use the non-specific fixed vs. random TVLA on 1024
random inputs and 1024 fixed inputs. The testbench reseeds PRNG with different and
random initial states for each power simulation to ensure that different masks are used for
different power traces.
4.3.2 Results

We perform the fixed vs. random TVLA test three times, each time with a new randomly
chosen fixed value. Figure 10 shows the average power trace with the result of the TVLA
test, taken as the maximum t-value for each sample among the three tests.
Leakage from Software RootCanal marks instruction 9dc from the addRoundKey_masked
function and instruction ca0 from the subBytes_masked function as the origin of side-
channel leakage. In both cases, leakage happens during the memory stage of the instruction,
pointing at leakage from the bus connection to the RAM. The sb (store byte) instructions
in consecutive iterations of both of the loops overwrite the previous state byte. For instance,
in the first iteration of the loop, the sb instruction at 9dc writes V0 to RAM.

V0 = (state[0]⊕Mask[6])⊕RoundKey_masked[0][0]
= (state[0]⊕Mask[6])⊕ (RoundKey[0][0]⊕Mask[6]⊕Mask[4])
= state[0]⊕RoundKey[0][0]⊕Mask[4]

In the next iteration of the loop, the sb instruction at 9dc writes V1 to RAM.
V1 = (state[1]⊕Mask[7])⊕RoundKey_masked[0][1]

= (state[1]⊕Mask[7])⊕ (RoundKey[0][1]⊕Mask[7]⊕Mask[4])
= state[1]⊕RoundKey[0][1]⊕Mask[4]

The TVLA analysis hints at transitional leakage from this memory write operation.
Indeed, this transitional leakage is proportional to the distance from V0 to V1 which is
dependent on the plain (unmasked) values of two state and RoundKey bytes.

V0 ⊕ V1 = (state[0]⊕RoundKey[0][0]⊕Mask[4])
⊕ (state[1]⊕RoundKey[0][1]⊕Mask[4])
= state[0]⊕RoundKey[0][0]⊕ state[1]⊕RoundKey[0][1]

Pantea Kiaei and Patrick Schaumont 767

1 000009 b4 <addRoundKey_masked >:
2 ...
3 9cc: lbu a2 ,0(a4) # FDEMW # load state byte
4 9d0: lbu a5 ,0(a3) # FDEMW # load RoundKey_masked byte
5 9d4: xor a5 ,a5 ,a2 # FDEMW # state ^ RoundKey_masked
6 9d8: andi a5 ,a5 ,255 # FDEMW # (state ^ RoundKey_masked) & 0xff
7 9dc: sb a5 ,0(a4) # FDEMW # update state
8 9e0: addi a4 ,a4 ,1 # FDEMW
9 ...

10

11 00000 c84 <subBytes_masked >:
12 ...
13 c90: lbu a5 ,0(a0) # FDEMW # load state
14 c94: andi a5 ,a5 ,255 # FDEMW # state & 0xff
15 c98: add a5 ,a4 ,a5 # FDEMW
16 c9c: lbu a5 ,352(a5) # FDEMW # load Sbox_masked
17 ca0: sb a5 ,0(a0) # FDEMW # update state
18 ca4: addi a0 ,a0 ,1 # FDEMW
19 ca8: bne a0 ,a3 ,c90 # FDEMW # if not done loop back
20 ...
21

Listing 4: (Example 3) Assembly code of the byte-masked AES.
Blue letters indicate leaky pipeline stages.

In a similar fashion, instruction ca0 in consecutive loop iterations causes transitional
leakage. For instance, during the last iteration of the loop, two consecutive masked SBox
values S0 and S1 are stored in memory, causing transitional leakage proportional to S0⊕S1.

S0 = sbox[state[14]⊕RoundKey[0][14]]⊕Mask[5]
S1 = sbox[state[15]⊕RoundKey[0][15]]⊕Mask[5]

S0 ⊕ S1 = sbox[state[14]⊕RoundKey[0][14]]⊕ sbox[state[15]⊕RoundKey[0][15]]

Leakage from Hardware RootCanal can also explain why this transitional leakage re-
sulting in unmasking occurs. To store data to the memory, the processor will first store
the data in an interface register as part of the bus access protocol. The contents of
this register will then move to the net connected to the data input port of the memory.
Figure 11 shows a simplified diagram of the bus interface circuit. RootCanal flags the
components shown in red as the root cause of side-channel leakage. These components
include the interface_d_mem_data_in_reg register as well as the multiplexer (imple-
mented as sky130_fd_sc_hd__a22o_1 gate from SkyWater 130nm standard cell library).
Leakage from this part of the circuit is present when instruction 9dc (resp. ca0) is in
the memory stage of the processor pipeline during the execution of addRoundKey_masked
(resp. subBytes_masked) function.

To avoid the aforementioned leakages, the contents of the interface_d_mem_data_in_reg
register should be cleared (zeroized or randomized [GMPP20]) between consecutive itera-
tions of the loops in both functions. A simple software approach, for example, is to insert
dummy store operations at the end of each iteration, sending random data to this register.

4.4 Example 4: Debugging Masking – When The Compiler Trips Up
The final example demonstrates a masking flaw introduced by compiler optimization.
RootCanal identifies the location of the leakage in software, and through inspection we
were able to explain its cause.

768 SoC Root Canal!

d_mem_data_in

Memory stage

DMA

Bus
RAM

data_in

interface_d_mem_data_in_reg

Figure 11: Leaking circuit in byte-masked software AES

8 10 12 14 16 18 20 22

2

3

4

5

Po
we

r (
m

W
)

8 10 12 14 16 18 20 22
Time (us)

0

2

4

6

T-
va

lu
e

Figure 12: (Example 4) Average simulated power trace and TVLA result for bit-sliced
masked PRESENT SBox

4.4.1 Setup

In this experiment, we analyze the power side-channel leakage of RISC-V SoC while
running bit-sliced masked implementation of the SBox used in the PRESENT cipher. We
generate the masked bit-sliced PRESENT SBox using the usuba compiler following the
instructions from Tornado [BDM+20]. The non-linear operations in the generated code
use the masked multiplication introduced by Ishai et al. [ISW03] (isw_mult() shown in
Listing 5 and Listing 6 compiled by RISC-V GCC and -O1 flag). As our leakage test, we
use the non-specific fixed vs. random TVLA on 1024 random and 1024 fixed inputs.

4.4.2 Results

Figure 12 shows the average of the simulated power traces and the TVLA result.

Leakage from Software RootCanal flags instructions 160, 164, 168 from the isw_mult
function as causes of leakage. Leakage from instruction 160 has a micro-architectural
cause. The ALU result in the processor is switching from op2[1] & op1[0] (instr. 154)
to op2[0] & op1[1] (instr. 160). Even though different registers are used in these two
instructions (leakage not expected at ISA level), being two consecutive ALU instructions,
their intermediate results collide in the pipeline registers.

Pantea Kiaei and Patrick Schaumont 769

1 static void isw_mult (uint32_t *res , const uint32_t *op1 , const uint32_t *op2)
{

2 int i,j;
3 uint32_t rnd;
4

5 for (i=0; i< MASKING_ORDER ; i++) {
6 res[i] = 0;
7 }
8

9 for (i=0; i< MASKING_ORDER ; i++) {
10 res[i] ^= op1[i] & op2[i];
11

12 for (j=i+1; j< MASKING_ORDER ; j++) {
13 rnd = get_random ();
14 res[i] ^= rnd;
15 res[j] ^= (rnd ^ (op1[i] & op2[j])) ^ (op1[j] & op2[i]);
16 }
17 }
18 }

Listing 5: (Example 4) ISW multiplication used in non-linear operations in the bit-sliced
masked PRESENT SBox

1 ...
2 140: sw a5 ,0(s0) # FDEMW # res [0] = (op1 [0] & op2 [0]) ^ rnd
3 144: lw a5 ,4(s2) # FDEMW # a5 = op2 [1]
4 148: lw a4 ,0(s1) # FDEMW # a4 = op1 [0]
5 14c: and a5 ,a5 ,a4 # FDEMW # a5 = op2 [1] & op1 [0]
6 150: lw a4 ,4(s0) # FDEMW # a4 = res [1] (a4 = 0)
7 154: xor a5 ,a5 ,a4 # FDEMW # a5 = (op2 [1] & op1 [0]) ^ 0
8 158: lw a4 ,0(s2) # FDEMW # a4 = op2 [0]
9 15c: lw a3 ,4(s1) # FDEMW # a3 = op1 [1]

10 160: and a4 ,a4 ,a3 # FDEMW # a4 = op2 [0] & op1 [1]
11 164: xor a5 ,a5 ,a4 # FDEMW # a5 = (op2 [1] & op1 [0]) ^ (op2 [0] & op1 [1])
12 168: xor a5 ,a5 ,a0 # FDEMW # a5 = a5 ^ rnd
13 16c: sw a5 ,4(s0) # FDEMW # res [1] = a5
14 170: lw a4 ,4(s2) # FDEMW # a4 = op2 [1]
15 174: lw a3 ,4(s1) # FDEMW # a3 = op1 [1]
16 178: and a4 ,a4 ,a3 # FDEMW # a4 = op2 [1] & op1 [1]
17 17c: xor a5 ,a4 ,a5 # FDEMW
18 180: sw a5 ,4(s0) # FDEMW # res [1] = a5
19 ...
20

Listing 6: (Example 4) Assembly code of the bit-sliced masked PRESENT SBox.
Blue letters indicate leaky pipeline stages.

The order of operations in the ISW multiplication gadget between the C code and the
compiler-generated assembly reveals the reason for the observed leakage from instructions
164, 168. Line 15 in the source code of isw_mult first refreshes the partial product (op1[i]
& op2[j]) and only after this randomization, combines it with the other partial product
(op1[j] & op2[i]). However, the compiler has changed the order of this combination
as reordering consecutive xor operations is functionally correct due to xor’s associative
property (line 11 in Listing 6). The multiplication operands now depend on different shares
of the same variable, which creates side-channel leakage.

4.5 Analysis of Results
A major advantage of RootCanal is that it provides a systematic mechanism to present
the outcome of side-channel assessment in a format that is easier to understand for a
designer. In the pre-silicon white-box environment, the objective is not only to confirm
the presence of side-channel leakage, but also to explain it. Table 3 illustrates the data
reduction we achieved for each design example. The design complexity of our RISC-V SoC

770 SoC Root Canal!

Table 3: Summary of leakage observed in examples
Example Leaky Gates Leaky Frames Leaky Instructions

Example 1 9665 558 10
Example 2 - unprot (bit 0 / bit 1) 978/814 6/29 5/10
Example 2 - direct (bit 0 / bit 1) 1733/3157 7/32 5/11
Example 2 - compl (bit 0 / bit 1) 1717/2712 5/13 3/5
Example 3 68 28 2
Example 4 2706 3 3

Table 4: Execution time of RootCanal steps for each example
Example Synthesis Simulation Power Sim ACA Back Annotation Total

Example 1 20m 42 s 2h 14m 31s 9h 10m 6s 14m 17s 22m 55s 12h 22m 31s
Example 2 20m 13 s 13h 25m 45s 19h 57m 17s 10m 24s 8m 46s 1d 10h 2m 25s
Example 3 20m 1s 21h 24m 27s 2d 7h 24m 57s 17m 45s 15s 3d 5h 27m 25s
Example 4 22m 4h 42m 09s 22h 35m 35s 6m 5s 3m 3s 1d 3h 48m 52s
∗Xeon Gold 6248 CPU @ 2.50GHz, 384G Workstation

is 29,872 cells overall. In each of the examples, we are able to reduce a large collection of
leaky gates to only a handful of processor RISC-V instructions. The leakage assessment
results for the examples depend on every component of the technology stack, including
compiler, micro-architecture, and standard-cell library. Hence, changing any component of
the stack may affect the results. In all our design examples, we found that 1K test vectors
is sufficient to produce clear conclusions on a non-specific test. The relatively low number
of traces is explained by the noiseless simulation, and the limited design complexity (below
100K gates).

A pre-silicon technique brings up the important question of design tool performance.
We measure the execution time for each step involved in RootCanal by example in Table 4.
The synthesis step is common among the examples. The simulation step and power
simulation step complexity depend on the size of the netlist and on the length of the
testbench. The complexity of ACA depends on the size of the netlist, the number of samples
in power traces, and the number of leaky samples. The complexity of the back-annotation
step depends on the number of leaky gates and on the size of the netlist. There are
multiple knobs available to reduce the power simulation time. First, the power simulation
is embarrassingly parallel over the input vectors. Second, with additional designer input,
the time window and the design size can be decreased to a specific region of input, at the
risk of possibly missing a source of leakage by human error. Third, commercial power
simulation tools are in our experience not yet optimized for side-channel assessment, leading
to large stimuli and result file sizes. Hence, power simulation techniques could be tuned.
Finally, one could reduce the accuracy of the simulation and use for example toggle counts
instead of gate-level power models. This last option has limited advantage because it
reduces the capability of RootCanal to identify leakage sources.

5 Conclusion
Design automation is a crucial ingredient to scaling up successful design techniques for a
large community of designers. The advent of pre-silicon side-channel leakage assessment
tools may mean significant cost savings for new designs. But these savings can only
be realized when the output of the tools is accessible to the broader hardware design
community. RootCanal demonstrates the feasibility of automatically determining the cause
of side-channel leakage at an abstraction level accessible to a designer. Like a source-level
software debugger that enables a programmer to debug software source code instead of
machine instructions, RootCanal aims to be a source-level side-channel leakage debugger.
Future improvements to RootCanal include improving the accuracy of power simulation
with cross-coupling effects, extending the toolbox of the non-specific tests, and extending
the methodology for super scalar architectures.

Acknowledgements This research was supported in part by the National Science Foun-
dation (Award 1931639) and by the DARPA SCATE project.

Pantea Kiaei and Patrick Schaumont 771

References
[ASA+21] Leonid Azriel, Julian Speith, Nils Albartus, Ran Ginosar, Avi Mendelson, and

Christof Paar. A survey of algorithmic methods in IC reverse engineering. J.
Cryptogr. Eng., 11(3):299–315, 2021.

[BBC+19] Gilles Barthe, Sonia Belaïd, Gaëtan Cassiers, Pierre-Alain Fouque, Benjamin
Grégoire, and François-Xavier Standaert. maskverif: Automated verification of
higher-order masking in presence of physical defaults. In Kazue Sako, Steve A.
Schneider, and Peter Y. A. Ryan, editors, Computer Security - ESORICS 2019
- 24th European Symposium on Research in Computer Security, Luxembourg,
September 23-27, 2019, Proceedings, Part I, volume 11735 of Lecture Notes in
Computer Science, pages 300–318. Springer, 2019.

[BBYS21] Ileana Buhan, Lejla Batina, Yuval Yarom, and Patrick Schaumont. Sok: Design
tools for side-channel-aware implementions. CoRR, abs/2104.08593, 2021.

[BDM+20] Sonia Belaïd, Pierre-Évariste Dagand, Darius Mercadier, Matthieu Rivain,
and Raphaël Wintersdorff. Tornado: Automatic generation of probing-secure
masked bitsliced implementations. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 311–341. Springer,
2020.

[BGI+18] Roderick Bloem, Hannes Groß, Rinat Iusupov, Bettina Könighofer, Stefan
Mangard, and Johannes Winter. Formal verification of masked hardware
implementations in the presence of glitches. In Jesper Buus Nielsen and Vincent
Rijmen, editors, Advances in Cryptology - EUROCRYPT 2018 - 37th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II,
volume 10821 of Lecture Notes in Computer Science, pages 321–353. Springer,
2018.

[BIBB21] Omid Bazangani, Alexandre Iooss, Ileana Buhan, and Lejla Batina. ABBY:
automating the creation of fine-grained leakage models. IACR Cryptol. ePrint
Arch., page 1569, 2021.

[BKL+07] Andrey Bogdanov, Lars R Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew JB Robshaw, Yannick Seurin, and Charlotte Vikkelsoe.
Present: An ultra-lightweight block cipher. In International workshop on
cryptographic hardware and embedded systems, pages 450–466. Springer, 2007.

[CGD18] Yann Le Corre, Johann Großschädl, and Daniel Dinu. Micro-architectural power
simulator for leakage assessment of cryptographic software on ARM cortex-m3
processors. In Junfeng Fan and Benedikt Gierlichs, editors, Constructive Side-
Channel Analysis and Secure Design - 9th International Workshop, COSADE
2018, Singapore, April 23-24, 2018, Proceedings, volume 10815 of Lecture Notes
in Computer Science, pages 82–98. Springer, 2018.

[CHS09] Zhimin Chen, Syed Haider, and Patrick Schaumont. Side-channel leakage in
masked circuits caused by higher-order circuit effects. In Jong Hyuk Park,
Hsiao-Hwa Chen, Mohammed Atiquzzaman, Changhoon Lee, Tai-Hoon Kim,
and Sang-Soo Yeo, editors, Advances in Information Security and Assurance,
Third International Conference and Workshops, ISA 2009, Seoul, Korea, June
25-27, 2009. Proceedings, volume 5576 of Lecture Notes in Computer Science,
pages 327–336. Springer, 2009.

772 SoC Root Canal!

[GHP+21] Barbara Gigerl, Vedad Hadzic, Robert Primas, Stefan Mangard, and Roderick
Bloem. Coco:{Co-Design} and {Co-Verification} of masked software implemen-
tations on {CPUs}. In 30th USENIX Security Symposium (USENIX Security
21), pages 1469–1468, 2021.

[GMPO20] Si Gao, Ben Marshall, Dan Page, and Elisabeth Oswald. Share-slicing: Friend
or foe? IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(1):152–174, 2020.

[GMPP20] Si Gao, Ben Marshall, Dan Page, and Thinh Pham. Fenl: an ise to mitigate
analogue micro-architectural leakage. IACR Transactions on Cryptographic
Hardware and Embedded Systems, pages 73–98, 2020.

[GO21] Si Gao and Elisabeth Oswald. A novel completeness test and its application
to side channel attacks and simulators. IACR Cryptol. ePrint Arch., page 756,
2021.

[GPM21] Barbara Gigerl, Robert Primas, and Stefan Mangard. Secure and efficient soft-
ware masking on superscalar pipelined processors. In International Conference
on the Theory and Application of Cryptology and Information Security, pages
3–32. Springer, 2021.

[HPN+19] Miao Tony He, Jungmin Park, Adib Nahiyan, Apostol Vassilev, Yier Jin,
and Mark M. Tehranipoor. RTL-PSC: automated power side-channel leakage
assessment at register-transfer level. In 37th IEEE VLSI Test Symposium,
VTS 2019, Monterey, CA, USA, April 23-25, 2019, pages 1–6. IEEE, 2019.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hard-
ware against probing attacks. In Annual International Cryptology Conference,
pages 463–481. Springer, 2003.

[KMD+21] Pantea Kiaei, Darius Mercadier, Pierre-Evariste Dagand, Karine Heydemann,
and Patrick Schaumont. Custom instruction support for modular defense
against side-channel and fault attacks. In Guido Marco Bertoni and Francesco
Regazzoni, editors, Constructive Side-Channel Analysis and Secure Design,
pages 221–253, Cham, 2021. Springer International Publishing.

[KSM20] David Knichel, Pascal Sasdrich, and Amir Moradi. SILVER - statistical
independence and leakage verification. In Shiho Moriai and Huaxiong Wang,
editors, Advances in Cryptology - ASIACRYPT 2020 - 26th International
Conference on the Theory and Application of Cryptology and Information
Security, Daejeon, South Korea, December 7-11, 2020, Proceedings, Part I,
volume 12491 of Lecture Notes in Computer Science, pages 787–816. Springer,
2020.

[KYL+22] Pantea Kiaei, Yuan Yao, Zhenyuan Liu, Nicole Fern, Cees-Bart Breunesse,
Jasper Van Woudenberg, Kate Gillis, Alex Dich, Peter Grossmann, and Patrick
Schaumont. Gate-level side-channel leakage assessment with architecture
correlation analysis, 2022. https://arxiv.org/abs/2204.11972.

[MOW17] David McCann, Elisabeth Oswald, and Carolyn Whitnall. Towards practical
tools for side channel aware software engineering: ’grey box’ modelling for
instruction leakages. In Engin Kirda and Thomas Ristenpart, editors, 26th
USENIX Security Symposium, USENIX Security 2017, Vancouver, BC, Canada,
August 16-18, 2017, pages 199–216. USENIX Association, 2017.

https://arxiv.org/abs/2204.11972

Pantea Kiaei and Patrick Schaumont 773

[MPG05] Stefan Mangard, Thomas Popp, and Berndt M. Gammel. Side-channel leakage
of masked CMOS gates. In Alfred Menezes, editor, Topics in Cryptology
- CT-RSA 2005, The Cryptographers’ Track at the RSA Conference 2005,
San Francisco, CA, USA, February 14-18, 2005, Proceedings, volume 3376 of
Lecture Notes in Computer Science, pages 351–365. Springer, 2005.

[MPW22] Ben Marshall, Dan Page, and James Webb. MIRACLE: micro-architectural
leakage evaluation A study of micro-architectural power leakage across many
devices. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2022(1):175–220, 2022.

[SM15] Tobias Schneider and Amir Moradi. Leakage assessment methodology. In
Tim Güneysu and Helena Handschuh, editors, Cryptographic Hardware and
Embedded Systems – CHES 2015, pages 495–513, Berlin, Heidelberg, 2015.
Springer Berlin Heidelberg.

[SSB+19] Madura A Shelton, Niels Samwel, Lejla Batina, Francesco Regazzoni, Markus
Wagner, and Yuval Yarom. Rosita: Towards automatic elimination of power-
analysis leakage in ciphers. arXiv preprint arXiv:1912.05183, 2019.

[SVRK19] Patanjali SLPSK, Prasanna Karthik Vairam, Chester Rebeiro, and V. Ka-
makoti. Karna: A gate-sizing based security aware EDA flow for improved
power side-channel attack protection. In David Z. Pan, editor, Proceedings
of the International Conference on Computer-Aided Design, ICCAD 2019,
Westminster, CO, USA, November 4-7, 2019, pages 1–8. ACM, 2019.

[YKES20] Yuan Yao, Tarun Kathuria, Baris Ege, and Patrick Schaumont. Architecture
correlation analysis (ACA): identifying the source of side-channel leakage at
gate-level. In 2020 IEEE International Symposium on Hardware Oriented
Security and Trust, HOST 2020, San Jose, CA, USA, December 7-11, 2020,
pages 188–196. IEEE, 2020.

[YYP+18] Yuan Yao, Mo Yang, Conor Patrick, Bilgiday Yuce, and Patrick Schaumont.
Fault-assisted side-channel analysis of masked implementations. In 2018 IEEE
International Symposium on Hardware Oriented Security and Trust (HOST),
pages 57–64. IEEE, 2018.

	Introduction
	Preliminaries
	Methodology
	Step 1: Finding Leaky Time-Gate Tuples
	Step 2: Finding Leaky Units
	Step 3: Finding Leaky Instructions

	Experimental Results
	Example 1: Value-based Leakage in a System-on-Chip
	Example 2: Testing Bit-Sliced Data Encoding in Software Hiding
	Example 3: Debugging Masking – across HW/SW Boundaries
	Example 4: Debugging Masking – When The Compiler Trips Up
	Analysis of Results

	Conclusion

