
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2022, No. 4, pp. 661–692. DOI:10.46586/tches.v2022.i4.661-692

SoK: Fully Homomorphic Encryption over the
[Discretized] Torus

Marc Joye

Zama, Paris, France
marc@zama.ai

Abstract. First posed as a challenge in 1978 by Rivest et al., fully homomorphic
encryption—the ability to evaluate any function over encrypted data—was only
solved in 2009 in a breakthrough result by Gentry (Commun. ACM, 2010). After a
decade of intense research, practical solutions have emerged and are being pushed for
standardization.
This paper explains the inner-workings of TFHE, a torus-based fully homomorphic
encryption scheme. More exactly, it describes its implementation on a discretized
version of the torus. It also explains in detail the technique of the programmable
bootstrapping. Numerous examples are provided to illustrate the various concepts
and definitions.
Keywords: Fully homomorphic encryption · Discretized torus · TFHE · Pro-
grammable bootstrapping · Implementation

1 Fully Homomorphic Encryption
Fully homomorphic encryption or FHE has long been considered as the holy grail of
cryptography. The concept was imagined in the late seventies [RAD78], but the first
realization only came three decades later [Gen09, Gen10]. Today, both the public and
private sectors are embracing this new security paradigm and are actively working at
making FHE more practical and easier to use. An excellent account on FHE can be found
in [Hal17].

What is FHE? Data encryption enables the protection of sensitive data while it is stored
or when it needs to be transferred. However, standard encryption technologies require
data to be decrypted to be processed. FHE on the contrary enables computing directly
on encrypted data. It bears its name from the mathematical notion of homomorphism:
elements of one set are transformed to elements of a second set while maintaining the
relationships between the elements of the two sets. Applied to encryption, this means
that operating on plaintexts (i.e., unencrypted data) or on ciphertexts (i.e., encrypted
data) yields an equivalent result—in the clear when operating on plaintexts and under an
encrypted form when operating on ciphertexts. For example, given any two ciphertexts c1
and c2 respectively encrypting plaintexts x1 and x2, there exists a public operation � such
that c3 = c1 � c2 is an encryption of x3 = x1 + x2.

While cryptosystems enabling to add or to multiply ciphertexts were quickly identified
(e.g., [RAD78, ElG85, Pai99]), cryptosystems supporting both addition and multiplication
of ciphertexts are harder to come by. An encryption scheme that supports both addition
and multiplication of ciphertexts is said fully homomorphic, as any program can be
represented as a circuit of additions and multiplications. More generally, an FHE scheme
is an encryption scheme that is capable of evaluating any program over encrypted data.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2022-04-15 Accepted: 2022-06-15 Published: 2022-08-31

https://doi.org/10.46586/tches.v2022.i4.661-692
mailto:marc@zama.ai
http://creativecommons.org/licenses/by/4.0/


662 SoK: Fully Homomorphic Encryption over the [Discretized] Torus

The first realization of an FHE scheme is due to Gentry [Gen09, Gen10]. Subse-
quent schemes include BFV [Bra12, FV12], GSW [GSW13], BGV [BGV12, BGV14],
FHEW [DM15], CKKS [CKKS17], and TFHE [CGGI16, CGGI20].

Dealing with noise: The bootstrapping trick Most solutions for fully homomorphic
encryption rely on hard lattice problems. Accordingly, the resulting ciphertexts must

Encrypt(x) Encrypt(x)

valid ciphertext
4

incorrect decryption
6

contain a certain level of noise to guarantee
the security of the encryption. The issue
however is that computing homomorphically
increases the noise level in the ciphertext. As
long as the noise is below a certain threshold,
the ciphertext can be decrypted. But if the
noise grows too much, it can overflow on the
data itself, rendering decryption impossible.

To prevent this from happening, a special
noise-reduction operation called bootstrapping—a concept introduced in [Gen09]—can be
applied to the ciphertext, effectively resetting the noise to a nominal level.

Programmable bootstrapping and functional circuits Although originally designed for
boolean circuits, the TFHE encryption scheme can be extended to support more than
booleans as an input format, such as integers [CJL+20]. Remarkably, it enjoys a relatively
fast bootstrapping. In addition, bootstrapping in TFHE and the likes can be programmed
to evaluate a univariate function for free, at the same time as the noise is reduced. This
is referred to as programmable bootstrapping (PBS). PBS is a powerful technique to
homomorphically evaluate non-linear functions, such as activation functions in a neural
network [CJP21]. (It is worth remarking that the regular bootstrapping corresponds to
the programmable bootstrapping with the identity function.)

The PBS operation enables more than the homomorphic evaluation of univariate
functions and can be used to compute multivariate functions. For example the max function,
max(x, y), can be rewritten as max(x, y) = y+max(0, x−y). More generally, Kolmogorov’s
superposition theorem [Kol57] states that any multivariate function can be expressed as a
linear combination of univariate functions. This gives rise to the computational paradigm
of functional circuits, where an encryption scheme can be fully homomorphic as long as it
implements homomorphic addition and univariate functions. Univariate functions can be
evaluated homomorphically using the programmable bootstrapping while the addition of
ciphertexts is evaluated in a leveled way.

x1

x2

...

xn

f...

f...

f...

∑
∑
∑

f...

f...

f...

f...

∑
∑

∑
∑

f...

f...

f...

∑

∑
∑

y1

y2

...

ym

Figure 1: Example of a functional circuit taking on input an encryption of x1, x2, . . . , xn and
outputting an encryption of y1, y2, . . . , ym through a series of homomorphically evaluated
univariate functions and linear combinations.



Marc Joye 663

Application to neural networks Neural networks it turns out are just a special case of a
functional circuit, where activation functions are non-linear univariate functions, taking as
input the sum of weighted inputs from previous layers. Computing the activation function
has been notoriously hard in FHE, as non-linearities cannot be as precisely represented
using simple additions and multiplications versus using programmable bootstrapping.

Programmable bootstrapping along with the original TFHE features are available
as part of Concrete [CJL+20],1 an open source FHE framework. As an illustration, a
series of numerical experiments were conducted to assess the performance against the
MNIST data-set [LCB98] for depth-20, 50, 100 neural networks, respectively noted NN-20,
NN-50 and NN-100; see [CJP21]. These networks all include dense and convolution
layers with activation functions; every hidden layer possesses at least 92 active neurons.
Experiments were performed on two different types on machine: a personal computer
with 2.6 GHz 6-Core Intel® Core™ i7 processor, and a 3.00 GHz Intel® Xeon® Platinum
8275CL processor with 96 vCPUs hosted on AWS. The two machines are referred to as PC
and AWS. Cryptographic parameters are selected to meet the standard 128-bit security
level. The running times are given in Table 1. For reference, the times for an unencrypted
inference are also included. It is important to note that the given times correspond to
the evaluation of a single inference run independently; in particular, the times are not
amortized over a batch of inferences. The AWS implementation takes advantage of the
96 vCPUs; in particular, the neurons in the hidden layers are processed in parallel.

Table 1: Running times in the clear and over encrypted data (128-bit security level).

In the clear Encrypted
PC PC AWS

NN-20 0.17 ms 115.52 s 17.96 s
NN-50 0.20 ms 233.55 s 37.69 s
NN-100 0.33 ms 481.61 s 69.32 s

Outline of the paper

The rest of this paper is organized as follows. The next section introduces the real torus, its
discretized version, its application to polynomials, and the underlying arithmetic. It also
reviews related complexity assumptions and suggests typical cryptographic parameters.
Section 3 and Section 4 respectively show how to build encryption schemes using torus
elements and torus polynomials or, more specifically, from their discretized version. The
encoding and decoding for various message spaces is also addressed. Implementation
tips and tricks are discussed. Section 5 explains how to operate on ciphertexts. In
particular, the operations of addition, multiplication by a constant, and (external) product
of ciphertexts are presented. For the latter operation, in order to control the noise growth,
the important technique of gadget decomposition is detailed. The so-called CMux operator
is also presented. Section 6 covers the bootstrapping and its extension to programmable
bootstrapping. The different steps and involved operations are detailed. Notably, it
shows that the bootstrapping on the discretized torus is simply an application of Gentry’s
original recryption technique. Decryption mainly involves two steps: a linear combination
and a (non-linear) rounding operation. The difficult operation is the rounding, which is
achieved using a rotation with polynomials. More techniques and related works are also
surveyed. Finally, Section 7 concludes the paper. (Algorithms in pseudo-code are provided
in appendix.)

1https://github.com/zama-ai/concrete

https://github.com/zama-ai/concrete


664 SoK: Fully Homomorphic Encryption over the [Discretized] Torus

2 Definitions
2.1 Torus and Torus Polynomials
The letter ‘T’ in TFHE refers to the real torus T = R/Z. Basically, T is the set [0, 1) of
real numbers modulo 1.

Any two elements of T can be added modulo 1: (T,+) forms an abelian group. But it
is important to observe that T is not a ring as the internal product × of torus elements is
not defined.
Remark 1. Torus T is not a ring. If T were a ring, one would have (a+ b)× c = a× c+ b× c
and a× (b+ c) = a× b+ a× c, where + and × are defined over the torus (i.e., where +
and × respectively stand for the addition and the multiplication over the real numbers
modulo 1).

Example 1. Take for example a = 2
5 , b = 4

5 and c = 1
3 . Over T, we get (a+ b)× c = 1

5 ×
1
3 = 1

15 and
a× c+ b× c = 2

15 + 4
15 = 6

15 , a contradiction.

The problem stems from the fact that 0 and 1 are equivalent as elements of T.

External product The external product • between integers and torus elements is however
well defined. Let k ∈ Z and t ∈ T. If k ≥ 0, we define

k • t = t+ · · ·+ t (k times) .

If k < 0, we define k • t = (−k) • (−t). Hence, for 0, 1 ∈ Z and t ∈ T, we have 0 • t = 0 ∈ T
and 1 • t = t ∈ T. Mathematically, T is endowed with a Z-module structure. For any
k, l ∈ Z and a, b ∈ T, we have (k+ l) • a = k • a+ l • a and k • (a+ b) = k • a+ k • b. Further,
the external product is homogeneous: for any k, l ∈ Z and t ∈ T, we have k • (l • t) = (kl) • t.

Example 2. Take k = 2, l = 3, a = 2
5 and b = 4

5 . We get (k+ l) • a = 5 • 2
5 = 0 and k • a+ l • a = 4

5 + 1
5 = 0,

as expected. We also get k • (a+ b) = 2 • 1
5 = 2

5 and k • a+ k • b = 4
5 + 3

5 = 2
5 . Finally, taking t = a = 2

5 ,
we get k • (l • t) = 2 • 1

5 = 2
5 and (kl) • t = 6 • 2

5 = 2
5 , as expected.

Torus polynomials We can as well define polynomials over the torus. Let Φ(X) denote
the M -th cyclotomic polynomial (i.e., the unique irreducible polynomial with integer
coefficients that divides XM − 1 but not Xk − 1 for any k < M) and let N denote its
degree. For performance reasons, M is chosen as a power of 2, in which case we have
N = M/2 and Φ(X) = XN+1. Considering the polynomial rings RN [X] := R[X]/(XN+1)
and ZN [X] := Z[X]/(XN + 1), this defines the ZN [X]-module

TN [X] := RN [X]/ZN [X] = T[X]/(XN + 1) .

Elements of TN [X] can therefore be seen as polynomials modulo XN + 1 with coefficients
in T. Being a ZN [X]-module, elements in TN [X] can be added together and externally
multiplied by polynomials of ZN [X].
Example 3. If M = 4 (and so N = 2) then Φ(X) = X2 + 1 and, in turn, T2[X] = T[X]/(X2 + 1) ={
p(X) = p1X+p0

∣∣ p0, p1 ∈ T
}
. Take for example p(X) = 2

5X+ 1
3 , q(X) = 4

5X+ 1
2 , and r(X) = 2X+7.

Then (p+ q)(X) = 1
5X + 5

6 and (r • p)(X) = 4
5X

2 + 7
15X + 1

3 = − 4
5 + 7

15X + 1
3 = 7

15X + 8
15 . Recall

that polynomials are defined modulo X2 + 1 (and thus X2 ≡ −1).

2.2 Discretized Torus
Let B be an integer ≥ 2. Any torus element t ∈ T can be written as an infinite sequence
of radix-B digits (t1, t2, . . . )B with tj ∈ {0, . . . , B − 1} corresponding to the expansion
t =

∑∞
j=1 tj • B−j . In practice, torus elements are not represented with an infinite number



Marc Joye 665

of digits. Elements are expanded up to some finite precision. With a fixed-point approach,
a torus element t is written as

t =
w∑
j=1

tj • B−j with tj ∈ {0, . . . , B − 1}

for some w ≥ 1. This representation limits the torus to the subset B−wZ/Z ⊂ T with
representatives in

{
0, 1

Bw ,
2
Bw , . . . ,

Bw−1
Bw

}
.

Example 4. Suppose B = 10. We have
√

2 mod 1 = 0.4142 . . . = 4 •10−1 +1 •10−2 +4 •10−3 +2 •10−4 +· · · .
With w = 3 digits,

√
2 mod 1 ≈ 414

103 is approximated by the torus element 4 • 10−1 + 1 • 10−2 + 4 • 10−3.

Remark 2. In radix 2, letting w = Ω, we have t =
∑Ω
j=1 tj • 2−j . Parameter Ω is called the

bit-precision. Furthermore, the leading bit (i.e., t1) is sometimes called the sign bit. Indeed,
elements of T are real numbers modulo 1. They can be viewed as unsigned real numbers
in the range [0, 1) or as signed real numbers in the range [− 1

2 ,
1
2 ) = [− 1

2 , 0)∪ [0, 1
2 ). Hence,

if the leading bit is set, the corresponding torus element can be interpreted as a negative
number; i.e., as a number in [− 1

2 , 0).
Modern architectures typically have a bit-precision of 32 or 64 bits; i.e., Ω = 32 or 64.

On such architectures, torus elements are restricted to elements of the form
∑Ω
i=1 ti • 2−i

(mod 1) with ti ∈ {0, 1}. Essentially, the effect of working with a finite precision boils
down to replacing T with the submodule

Tq := q−1Z/Z ⊂ T where q = 2Ω .

The representatives of Tq are the set of fractions
{
i
q mod 1

∣∣ i ∈ Z
}

=
{
i
q

∣∣ i ∈ Z/qZ
}

={
0, 1

q , . . . ,
q−1
q

}
. Note that the discretization modulo q of the torus is indicated by the

subscript q in Tq. The submodule Tq ⊂ T forms what is called a discretized torus.
Remark 3. For practical reasons, torus elements are not implemented with fractions, but
rather as elements modulo q by identifying Tq = 1

qZ/Z with Z/qZ. In more detail, given
two torus elements t = a

q , u = b
q ∈ Tq, if v := t + u = c

q ∈ Tq then c ≡ a + b (mod q).
Likewise, for a torus element t = a

q ∈ Tq and a scalar k ∈ Z, if w := k • t = d
q ∈ Tq

then d ≡ k a (mod q). Computations over Tq can therefore be carried out entirely with
arithmetic modulo q, taking only the numerator into account.

Likewise, on the discretized torus Tq, we similarly define

TN,q[X] := Tq[X]/(XN + 1) .

We also define ZN,q[X] := Zq[X]/(XN + 1) with Zq = Z/qZ. Viewing 1
q as an element in

TN,q[X], any polynomial p ∈ TN,q[X] can be written as p = p • 1
q for some polynomial

p ∈ ZN,q[X]. Addition and external multiplication in TN,q[X] are respectively denoted
with ‘+’ and ‘•’.

2.3 Notation
It is useful to introduce some notation. If S is a set, a $← S indicates that a is sampled
uniformly at random in S. If D is a probability distribution, a ← D indicates that a is
sampled according to D. For a real number x, bxc denotes the largest integer ≤ x, dxe
denotes the smallest integer ≥ x, and bxe denotes the nearest integer to x.

Vectors are viewed as row matrices and are denoted with bold letters. Elements in Z
or T (resp. in Zq or Tq) are denoted with roman letters while polynomials are denoted
with calligraphic letters. B is the integer subset {0, 1} and, for N a power of 2, BN [X] is
the subset of polynomials in ZN [X] with coefficients in B.
Example 5. The vector v = (3, 4) ∈ Z2 is regarded as the row matrix ( 3 4 ) ∈ Z1×2, and if A =

(
1 2
0 1
)

then vA = ( 3 10 ) = (3, 10).



666 SoK: Fully Homomorphic Encryption over the [Discretized] Torus

2.4 Complexity Assumptions
In 2005, Regev [Reg05, Reg09] introduced the learning with errors problem (LWE). Gener-
alizations and extensions to ring structures were subsequently proposed [SSTX09, LPR13].
As originally stated in [CGGI20], the security of TFHE relies on the hardness of torus-based
problems [BLP+13, CS15]: the LWE assumption and the GLWE assumption [BGV14,
LS15] over the torus.

We consider below similar definitions, but over the discretized torus.
Definition 1 (LWE problem over the discretized torus). Let q, n ∈ N and let s = (s1, . . . ,

sn) $← Bn. Let also χ̂ be an error distribution over q−1Z. The learning with errors
(LWE) over the discretized torus problem is to distinguish samples chosen according to the
following distributions:

D0 =
{

(a, r) | a $← Tqn, r
$← Tq

}
and

D1 =
{

(a, r) | a = (a1, . . . , an) $← Tqn, r =
∑n
j=1 sj • aj + e, e← χ̂

}
.

Definition 2 (GLWE problem over the discretized torus). Let N, q, k ∈ N with N a power
of 2 and let s = (s1, . . . ,sk) $← BN [X]k. Let also χ̂ be an error distribution over q−1ZN [X];
namely, over polynomials of q−1ZN [X] with coefficients drawn according to χ̂. The general
learning with errors (GLWE) over the discretized torus problem is to distinguish samples
chosen according to the following distributions:

D0 =
{

(a, r) | a $← TN,q[X]k, r $← TN,q[X]
}

and
D1 =

{
(a, r) | a = (a1, . . . ,ak) $← TN,q[X]k, r =

∑k
j=1 sj • aj + e, e← χ̂

}
.

The decisional LWE assumption (resp. the decisional GLWE assumption) asserts that
solving the LWE problem (resp. GLWE problem) is infeasible for some security parameter λ,
where q := q(λ), n := n(λ), and χ̂ := χ̂(λ) (resp. N := N(λ), q := q(λ), k = k(λ), and
χ̂ := χ̂(λ)).
Remark 4. Interestingly, identifying Tq with Zq = Z/qZ (resp. TN,q[X] with ZN,q[X]), it
turns out that the decisional LWE (resp. GLWE) assumption over the discretized torus is
equivalent to the standard decisional LWE (resp. GLWE) assumption. There is therefore
no loss of security in working over the discretized torus.

Cryptographic parameters Table 2 lists typical cryptographic parameters to be used for
secure instances for the LWE and GLWE assumptions. The error distribution χ̂ is induced
by the normal distribution N (0, σ2), centered in 0 and with variance σ2 (σ represents the
standard deviation) [Riv12].

Table 2: Typical parameter sets for LWE and GLWE.

Assumption Dimension Error distribution
LWE n = 630 N (0, σ2) with σ = 2−15

GLWE (N, k) = (1024, 1) N (0, σ2) with σ = 2−25

We recommend the reader to check the lwe-estimator script2 to find concrete parameters
for a given security level [APS15]. For an equivalent security level, a smaller value for
parameter n (resp. for (N, k)) should be compensated with a larger value for σ (i.e., less
concentrated noise).

2https://bitbucket.org/malb/lwe-estimator/

https://bitbucket.org/malb/lwe-estimator/


Marc Joye 667

3 TLWE Encryption
3.1 Description
Intuition The LWE assumption over the discretized torus essentially says that a torus
element r ∈ Tq constructed as r =

∑n
j=1 sj • aj + e cannot be distinguished from a

random torus element r ∈ Tq, even if the torus vector (a1, . . . , an) ∈ Tqn is known. Torus
element r =

∑n
j=1 sj • aj + e can therefore be used as a kind of one-time pad to conceal

a “plaintext message” µ ∈ Tq so as to form a ciphertext c = (a1, . . . , an, r + µ) ∈ Tqn+1,
where s = (s1, . . . , sn) ∈ Bn plays the role of the private encryption key. The reason why
secret key s is chosen as a vector of bits is to have an efficient implementation for the
bootstrapping; see Section 6.

Only part of the torus is used to input plaintext messages. The plaintext space is
chosen as a proper additive subgroup P ⊂ Tq; specifically,

P =
{

0, 1
p , . . . ,

p−1
p

}
for some integer p dividing q, p ≥ 2. This allows for unique decryption, provided that the
noise present in the ciphertext is not too large. In particular, with the above choice for P ,
if c = (a1, . . . , an, b) with b =

∑n
j=1 sj • aj + µ+ e is an encryption of a plaintext µ ∈ P,

plaintext µ can be recovered in two steps as:

• compute µ∗ = b−
∑n
j=1 sj • aj (in Tq);

• return the closest plaintext in P.

TLWE encryption scheme Given the discretized torus Tq, the plaintext space is set as
an additive subgroup of Tq; i.e., P := p−1Z/Z = Tp ⊂ Tq for some p dividing q. The
discretized distribution χ̂ over q−1Z is induced by an error distribution χ over R: a noise
error e ← χ̂ is defined as e = e

q with e = round(qe0) ∈ Z for some e0 ← χ. The mask
(a1, . . . , an) ∈ Tqn of a ciphertext is formed by drawing aj

$← Z/qZ and letting aj = aj

q , for
1 ≤ j ≤ n; the corresponding body b is given by b =

∑n
j=1 sj • aj +µ+ e where e← χ̂. The

TLWE encryption of µ ∈ P is the vector (a1, . . . , an, b).
Remark 5. A private-key encryption scheme is symmetric: the same key is used for both
encryption and decryption. Public-key variants are presented in Appendix A.

Formally, we get the following private-key encryption scheme.

KeyGen(1λ) On input security parameter λ, define a positive integer n, select positive
integers p and q such that p | q, and define a discretized error distribution χ̂ over
q−1Z induced by a normal distribution χ = N (0, σ2) over R. Sample uniformly at
random a vector s = (s1, . . . , sn) $← Bn. The plaintext space is P = Tp ⊂ Tq. The
public parameters are pp = {n, σ, p, q} and the private key is sk = s.

Encryptsk(µ) The encryption of µ ∈ P is given by

c← TLWEs(µ) = (a1, . . . , an, b) ∈ Tqn+1

with {
µ∗ = µ+ e

b =
∑n
j=1 sj • aj + µ∗

for a random vector (a1, . . . , an) $← Tqn and a “small” noise e← χ̂.



668 SoK: Fully Homomorphic Encryption over the [Discretized] Torus

Decryptsk(c) To decrypt c = (a1, . . . , an, b), use private key s = (s1, . . . , sn), compute
(in Tq)

µ∗ = b−
∑n
j=1 sj • aj

and return
µ =

⌊
p µ∗

⌉
mod p
p

,

that is, the closest plaintext µ ∈ P, as the decryption of c.

Remark 6. To ease the notation, for an integer k and a torus element t ∈ Tq ⊂ T, bk te
denotes the nearest integer to the product of k by t viewed as a real number. Rigorously,
one should write bk lift(t)e where function lift lifts elements of T to R (i.e., views elements
of T as elements in R).

It is easily verified that decryption succeeds in recovering plaintext µ if the noise error
e satisfies |e| < 1

2p .

Proof. For plaintext µ ∈ P =
{

0, 1
p , . . . ,

p−1
p

}
, we let c ← TLWEs(µ) = (a1, . . . , an, b)

where (a1, . . . , an) $← Tqn and b =
∑n
j=1 sj • aj + µ + e with e ← χ̂. Since µ ∈ P, there

exists a unique integer m ∈ [0, p) such that µ = m
p . An application of Decryptsk(c)

outputs bp µ
∗e mod p
p with µ∗ := (µ+ e) ∈ Tq ⊂ T. We have bp µ∗e = bp((µ+ e) mod 1)e =

bp(µ+ e+ δ)e = bp(µ+ e)e+ δp for some δ ∈ Z. We also have bp(µ+ e)e =
⌊
p(mp + e)

⌉
=

bm+ pee = m+ bpee = m if we assume that |e| < 1/(2p). In this case, it thus follows that
bp µ∗e mod p = bp(µ+ e)e mod p = m and so bp µ

∗e mod p
p = m

p = µ.

Example 6. Suppose p = 4 and q = 64 (= 26). The plaintext space is P = {0, 1
4 ,

2
4 ,

3
4}.

p = 4 / q = 64

1
2

3
4

5
6

7
8

9
10

11
12

13141516171819
20

21
22

23

24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39

40

41
42

43
44

45 46 47 48 49 50 51
52

53
54

55

56

57
58

59
60

61
62

63
640

16

3
2

48

0

1

2

3

The outer wheel depicts the discretized torus Tq =
{0, 1

64 , . . . ,
63
64}. It can be observed that if the

noise error e satisfies |e| < 1
2p = 1

8 , that is, e ∈
{− 7

64 , . . . ,
7

64}, then any noisy value µ∗ := µ + e
corresponds unequivocally to a plaintext µ ∈ P =
{0, 16

64 ,
32
64 ,

48
64}. The closest plaintext to µ∗ ∈ { 57

64 ,

. . . , 63
64 ,

0
64 , . . . ,

7
64} is µ = 0 (note that 57

64 and
− 7

64 are equivalent as elements of Tq); the closest
plaintext to µ∗ ∈ { 9

64 , . . . ,
23
64} is µ = 16

64 = 1
4 ; the

closest plaintext to µ∗ ∈ { 25
64 , . . . ,

39
64} is µ = 32

64 =
1
2 ; and the closest plaintext to µ∗ ∈ { 41

64 , . . . ,
55
64}

is µ = 48
64 = 3

4 .

3.2 Encoding/Decoding
The encryption algorithm takes (discretized) torus elements—or, more exactly, elements
in P—on input. Encoding and decoding aim at supporting further input formats.

LetM be an arbitrary finite message space of cardinality #M = p with p = 2ν . The
plaintext space is P = Tp ⊂ Tq with q = 2Ω. The encoding function, Encode: M → P,
maps a message m ∈M to an element µ ∈ P; the encoding is applied before encryption.
The decoding function, Decode: P →M, is applied after decryption.

We discuss below the cases of message spaces consisting of bits, of integers modulo p
(with p dividing q), and of fixed-precision torus elements.



Marc Joye 669

Bits The message space isM = {0, 1}.
For a bit b ∈ {0, 1}, we define Encode(b) = b/2. Hence, bit 0 is encoded as torus
element 0 = 0

q ∈ Tq and bit 1 as torus element 1
2 = q/2

q ∈ Tq. The reverse operation is
defined as Decode(µ) = b2µe mod 2, and thus if µ ∈ {0, 1

2} then Decode(µ) ∈ {0, 1}.

Integers modulo p This generalizes the previous case (bits can be seen as integers modulo
p = 2). We haveM = {i mod p | i ∈ Z} = Z/pZ.
Let ∆ = q/p ∈ Z. The encoding and decoding are then respectively given by

Encode(i) = i mod p
p

(
= (i mod p) ∆

q

)
and

Decode(µ) = bp µe mod p .

Fixed-precision torus elements Let p ≥ 2 with p | q. This case is similar to the case of
integers modulo p and considers torus elements of the form t = i

p with i ∈ Z/pZ.
These elements form a subset of fixed-precision torus elements. For x ∈ Tp = p−1Z/Z
and µ ∈ Tq, we define

Encode(x) = x

and

Decode(µ) = bp µe mod p
p

.

Remark 7. The second encoding obviously applies to unsigned integers smaller than p; i.e.,
to integers in {0, . . . , p− 1}. It may also apply to signed integers. In the latter case, the
“mod p” returns the signed representative in

{
−p2 , . . . ,

p
2 − 1

}
.

Example 7. Suppose p = 4 and q = 64. If µ = 48
64 then Decode(µ) = bp µe mod p ≡ 3 ≡ −1 (mod 4),

which represents the unsigned integer 3 or the signed integer −1.

Likewise, the third encoding applies to unsigned (fixed-precision) numbers in Tp ∩ [0, 1),
or to signed (fixed-precision) numbers in Tp ∩ [− 1

2 ,
1
2 ).

3.3 Implementation Notes
Batching ciphertexts When a set of m plaintexts (torus elements) need to be encrypted,
randomness can be re-used if they are all encrypted under different keys. Specifically, for
µ1, . . . , µm ∈ P , we set C = (a1, . . . , an, b1, . . . , bm) ∈ Tqn+m as their encryption with bi =∑n
j=1 si,j • aj + µi + ei for 1 ≤ i ≤ m, where (a1, . . . , an) $← Tqn, si = (si,1, . . . , si,n) $← Bn

and noise error ei.
The security of this variant follows from [BBS03]. Since the randomness is given explic-

itly in a TLWE ciphertext (namely, the aj ’s), it is readily verified that the “reproducibility”
criterion [BBKS07, Definition 9.3] is satisfied.

Ciphertext compression TLWE ciphertexts are torus vectors with n + 1 components.
With the parameter set of Table 2, if we suppose that torus elements are represented with
64 bits, a TLWE ciphertext typically requires 631× 64 = 40384 bits (or about 5 kilobytes)
for its representation.

Instead of representing a ciphertext c as c = (a1, . . . , an, b), a much more compact
way is to define c as c = (θ, b) where θ $← {0, 1}λ is a random λ-bit string for security



670 SoK: Fully Homomorphic Encryption over the [Discretized] Torus

parameter λ. The value of θ is used as a seed to a cryptographically secure pseudo-random
number generator (PRNG) to derive the random vector (a1, . . . , an):

(a1, . . . , an)← PRNG(θ) .

With the above parameter set (which corresponds to a desired bit-security of 128 bits),
the same ciphertext only needs 128 + 64 = 192 bits for its representation.

Key storage The same trick applies to private key s. Instead of plainly storing s as a
n-bit string, we can store it as a λ-bit random seed that is used to generate s through a
cryptographic pseudo-random number generator.

4 TGLWE Encryption
4.1 Description
TLWE encryption readily extends to torus polynomials in TN,q[X]. Operations on the
torus Tq are simply replaced with operations on polynomials modulo XN + 1 (and modulo
q). Given two polynomials a, b ∈ TN,q[X], a+ b refers to the addition of a and b modulo
(XN + 1, q) and, for a ∈ ZN,q[X] and b ∈ TN,q[X], a • b refers to the external product of
a and b modulo (XN + 1, q)—remember that the internal product is not defined.

The plaintext space is the subset of polynomials

PN [X] := P[X]/(XN + 1) = TN,p[X] ⊂ TN,q[X]

with P = Tp = p−1Z/Z for some p dividing q. Note that this latter condition imposes that
PN [X] forms an additive subgroup of TN,q[X].

This leads to the TGLWE private-key encryption scheme.

KeyGen(1λ) On input security parameter λ, define a pair of integers (N, k) with N a
power of 2 and k ≥ 1. Select positive integers p and q such that p | q. Define also
a discretized error distribution χ̂ over q−1ZN [X] induced by a normal distribution
χ = N (0, σ2) over RN [X]. Sample uniformly at random a vector s = (s1, . . . ,sk) $←
BN [X]k. The plaintext space is PN [X] = TN,p[X] ⊂ TN,q[X]. The public parameters
are pp = {k,N, σ, p, q} and the private key is sk = s.

Encryptsk(µ) The encryption of µ ∈ PN [X] is given by

c← TGLWEs(µ) = (a1, . . . ,ak, b) ∈ TN,q[X]k+1

with {
µ∗ = µ + e

b =
∑k
j=1 sj • aj + µ∗

for a random vector (a1, . . . ,ak) $← TN,q[X]k and a “small” noise e← χ̂.

Decryptsk(c) To decrypt c = (a1, . . . ,ak, b), use private key s = (s1, . . . ,sk), compute
(in TN,q[X])

µ∗ = b−
∑k
j=1 sj • aj

and return the closest plaintext µ ∈ PN [X] as the decryption of c.

Remark 8. Since TN,q[X] = Tq when N = 1, it turns out that the TLWE encryption
(Section 3.1) can be seen as a special instantiation of the TGLWE encryption with
parameters (k,N) = (n, 1).



Marc Joye 671

At this point, the reader may wonder why there are two versions for the encryption:
one over Tq and one over TN,q[X]. For the encryption of a single torus element µ ∈ P,
TLWE should be preferred to TGLWE because the resulting ciphertext is shorter. For the
encryption of multiple torus elements, TGLWE can be a better option; see next section.
But the main reason of having two different schemes is for the implementation of the
(programmable) bootstrapping where both TLWE and TGLWE are needed; see Section 6.

4.2 Encoding/Decoding

The TGLWE encryption scheme supports the encryption of an arbitrary polynomial
µ ∈ PN [X]. In many applications, µ is restricted to a polynomial of degree 0 and can
therefore be seen as an element in P. In this case, the encoding and decoding functions
presented in Section 3.2 equally apply.

When up to N torus elements µ0, . . . , µN−1 ∈ P need to be encrypted, they can each
be represented as a coefficient of polynomial µ(X) = µ0 +µ1X+ · · ·+µN−1X

N−1 ∈ PN [X].
Such an optimization is known as coefficient packing.

4.3 Implementation Notes

The (external) product of two polynomials is a demanding operation. The special form of
cyclotomic polynomial Φ(X) = XN + 1 makes however computations slightly easier.

Example 8. Let N = 4 and thus Φ(X) = X4 + 1. Let also q = 8. Suppose we want to externally multiply
p ∈ ZN,q[X] and q ∈ TN,q[X] with p(X) = 2X3 + 5X + 3 and q(X) = 1

4X
3 + 1

8 . Then the product
r := p • q ∈ TN,q [X] verifies

p(X) • q(X) ≡ (2X3 + 5X + 3) • ( 1
4X

3 + 1
8 )

≡ 1
2X

6 + 1
4X

3 + 5
4X

4 + 5
8X + 3

4X
3 + 3

8

≡ 1
2X

6 + 1
4X

4 +X3 + 5
8X + 3

8

≡ (X4 + 1) • ( 1
2X

2 + 1
4 ) +X3 + 5

8X + 3
8 −

1
2X

2 − 1
4

≡ X3 + 1
2X

2 + 5
8X + 1

8 (mod (X4 + 1, 8)) .

Hence, r(X) = X3 + 1
2X

2 + 5
8X + 1

8 ∈ TN,q [X].

In the general case, for Φ(X) = XN + 1, let p ∈ ZN,q[X] and q ∈ TN,q[X] given by
p(X) = p0 + p1X + · · · + pN−1X

N−1 and q(X) = q0 + q1X + · · · + qN−1X
N−1. Using

the relation XN+i ≡ −Xi (mod XN + 1), their product satisfies

p(X) • q(X) = (p0 + p1X + · · ·+ pN−1X
N−1) •

(q0 + q1X + · · ·+ qN−1X
N−1)

= p0 • q0 − p1 • qN−1 − · · · − pN−1 • q1

+ (p0 • q1 + p1 • q0 − · · · − pN−1 • q2)X
+ . . .

+ (p0 • qN−1 + p1 • qN−2 + · · ·+ pN−1 • q0)XN−1 .

This requires N2 external torus products for evaluating pi • qj with 0 ≤ i, j ≤ N − 1. For
large values of N , an alternative way is to rely on the fast Fourier techniques [vzGG13,
Chapter 8]; see also [Ber01] for an algebraic description.

When p(X) is the monomial Xj for some j ∈ {0, . . . , N − 1}, the previous product



672 SoK: Fully Homomorphic Encryption over the [Discretized] Torus

formula simplifies into

Xj • q(X)

=


q0 + q1X + q2X

2 + · · ·+ qN−2X
N−2 + qN−1X

N−1 if j = 0
−qN−1 + q0X + q1X

2 + · · ·+ qN−3X
N−2 + qN−2X

N−1 if j = 1
...

...
−q1 − q2X − q3X

2 − · · · − qN−1X
N−2 + q0X

N−1 if j = N − 1

or, more concisely,

Xj • q(X) =
j−1∑
i=0
−qi+N−jXi +

N−1∑
i=j

qi−jX
i

and XN+j • q(X) = −Xj • q(X). This relation is known as the negacyclic property.
Example 9. To better exhibit the negacyclic property, we represent polynomials by their vectors of
coefficients. Take N = 4 and consider the polynomial q(X) = q0 + q1X + q2X2 + q3X3. Then

q(X) = [q0, q1, q2, q3] X4q(X) = [−q0,−q1,−q2,−q3]

X • q(X) = [−q3, q0, q1, q2] X5 • q(X) = [q3,−q0,−q1,−q2]

X2 • q(X) = [−q2,−q3, q0, q1] X6 • q(X) = [q2, q3,−q0,−q1]

X3 • q(X) = [−q1,−q2,−q3, q0] X7 • q(X) = [q1, q2, q3,−q0]

X8 • q(X) = [q0, q1, q2, q3] = q(X), and so on. At each multiplication by X, it turns out that the
polynomial coefficients are circularly shifted one position to the right and the entering coefficient is
negated.

5 Working over Encrypted Data
Clearly, TLWE encryption and TGLWE encryption are additively homomorphic. The
approach of Gentry–Sahai–Waters [GSW13] using matrix product is employed to turn
these encryption schemes into schemes supporting a limited number of multiplications.

5.1 TLWE Ciphertexts
5.1.1 Addition of ciphertexts

Let c1 ← TLWEs(µ1) and c2 ← TLWEs(µ2) (in Tqn+1) be respective TLWE encryptions
of µ1 and µ2 (in P):

c1 = (a1, . . . , an, b) and c2 = (a′1, . . . , a′n, b′)

with (a1, . . . , an) $← Tqn and b =
∑n
j=1 sj • aj + µ1 + e1, (a′1, . . . , a′n) $← Tqn and b′ =∑n

j=1 sj • a′j + µ2 + e2, and e1, e2 “small”. Then c3 := c1 + c2 (in Tqn+1) is a valid
encryption of µ3 := µ1 + µ2 (in P); i.e.,

c3 = (a′′1, . . . , a′′n, b′′) with
{
a′′j = aj + a′j (1 ≤ j ≤ n)
b′′ = b+ b′

provided that the additive noise e3 := e1 + e2 keeps “small”.
Remark 9. Addition of ciphertexts explains why P was chosen as an additive subgroup
of Tq in the definition of TLWE encryption. Doing so implies that if µ1, µ2 ∈ P then so
does µ3 = µ1 + µ2.



Marc Joye 673

5.1.2 Multiplication by a known constant

Multiplying by a constant can be obtained as a series of additions. As a result, given the
TLWE ciphertext c← TLWEs(µ) with µ ∈ P, the TLWE encryption of K • µ for some
known (small) integer K 6= 0 can be obtained as

K • c = c+ · · ·+ c︸ ︷︷ ︸
K times

if K > 0, and K • c = (−K) • (−c) if K < 0. This boils down to multiplying every vector
component of c by K; namely, if c = (a1, . . . , an, b) ∈ Tqn+1 then

K • c = (K • a1, . . . ,K • an,K • b) .

Again, K • c (in Tqn+1) is a valid encryption of K • µ (in P), provided that the resulting
noise (i.e., K e where e is the noise present in c) keeps “small”.

5.1.3 Multiplication of ciphertexts

The main challenge in working over encrypted data resides in multiplying ciphertexts. In
order to make the Gentry–Sahai–Waters’ approach work, ciphertexts in TLWE encryption
need to be expressed as matrices.

Gadget matrix Flattening is a method that modifies vectors without affecting dot prod-
ucts [BGV14, Bra12]. As will become apparent, this technique helps controlling the
noise.

We present the “gadget decomposition” technique over the discretized torus Tq =
q−1Z/Z for a general integer q (i.e., not necessarily a power of 2). For a radix B and some
integer ` ≥ 1 such that B` | q, we consider the so-called gadget matrix G ∈ Tq(n+1)×(n+1)`

given by

G
ᵀ = In+1 ⊗ g

ᵀ = diag(gᵀ
, . . . , g

ᵀ︸ ︷︷ ︸
n+1

) =



1/B
...

1/B`

1/B
...

1/B`

. . .
1/B
...

1/B`


with g = (1/B, . . . , 1/B`) ∈ Tq`, so that for an input vector u ∈ Z(n+1)` the product
u • G

ᵀ yields a vector in Tqn+1. We also consider the associated inverse transformation
G−1 : Tqn+1 → Z(n+1)` such that for any vector v ∈ Tqn+1, we have

G−1(v) • G
ᵀ ≈ v and G−1(v) is “small” .

This inverse transformation replaces each entry of a vector by its signed radix-B expansion.
Explicitly, if v = (v1, . . . , vn+1) ∈ Tqn+1 with vi ∈ [− 1

2 ,
1
2 ), we set vi = bB`vie and write

vi ≡
∑̀
j=1

ui,j B
`−j (mod B`) where ui,j ∈ [−bB/2c, dB/2e) .



674 SoK: Fully Homomorphic Encryption over the [Discretized] Torus

We define g−1(vi) :=
(
ui,1, . . . , ui,`

)
∈ Z`. Then

G−1(v) :=
(
g−1(v1), g−1(v2), . . . , g−1(vn+1)

)
=
(
u1,1, . . . , u1,`, . . . , u2,1, . . . , u2,`, . . . , un+1,1, . . . , un+1,`

)
∈ Z(n+1)` .

Note that when B` = q, all the components vi ∈ [− 1
2 ,

1
2 ) of v satisfy vi = B`vi. It then

follows that, over Tq, G−1(v) • G
ᵀ = v holds exactly.

Example 10. Take n = 1, ` = 2, B = 4, and q = 64 (and so Tq = 1
64Z/Z). Hence,

G
ᵀ =

(
1/4 0

1/16 0
0 1/4
0 1/16

)
∈ Tq4×2 .

Suppose that v = ( 41
64 ,

26
64 ) ≡ (− 23

64 ,
26
64 ) (mod 1). We get v1 = b42 (− 23

64 )e = −6 and v2 = b42 26
64 e = 7. We

have −6 = −1 · 41− 2 and 7 = 1 · 42− 2 · 41− 1 ≡ −2 · 41− 1 (mod 42), and so G−1(v) = (−1,−2,−2,−1).
We can verify that G−1(v) • G

ᵀ = (− 24
64 ,−

36
64 ) ≡ ( 40

64 ,
28
64 ) ≈ v.

Now with the same parameters but with ` = 3 (and thus B` = q), we have

G
ᵀ =


1/4 0

1/16 0
1/64 0

0 1/4
0 1/16
0 1/64

 ∈ Tq6×2 .

We have v1 = −23 and v2 = 26. We obtain G−1(v) = (−1,−2, 1,−2,−1,−2) and G−1(v) • G
ᵀ =

(− 23
64 ,−

38
64 ) ≡ ( 41

64 ,
26
64 ) = v.

Remark 10. The inverse transformation G−1 naturally extends to matrices. For a matrix
M ∈ Tqm×(n+1), G−1(M) ∈ Zm×(n+1)` is defined as the m× (n+ 1)` matrix whose row
#i is G−1(mi) where mi is row #i of M . It satisfies G−1(M) • G ≈M .

TGSW encryption The gadget matrix gives rise to a torus-based variant of the Gentry–
Sahai–Waters (GSW) encryption scheme.

Let an integer p | q where q = 2Ω. The gadget decomposition over Tq supposes integers
B and ` such that B` | q. Actually, since all its elements are 0 or of the form B−j with
1 ≤ j ≤ `, the gadget matrix G is actually defined over B−`Z/Z ⊆ Tq. We assume that
p = B`. In this case, G is defined over Tp = p−1Z/Z.

The private key is s = (s1, . . . , sn) ∈ Bn and the plaintext space is P := Z/pZ. The
TGSW encryption of m ∈ P under key s is defined as

TGSWs(m) = Z +m • G
ᵀ (∈ Tq(n+1)`×(n+1))

where

Z ←


TLWEs(0)
TLWEs(0)

...
TLWEs(0)


 (n+ 1)` rows .

Remark 11. The last row of TGSWs(m) ∈ Tq(n+1)`×(n+1) contains TLWEs(0) + m • (0,
. . . , 0, 1

B` ) ∈ Tqn+1, that is, a TLWE encryption of µ := m
B` ∈ P where P = Tp.

Being defined over the ring P = Z/pZ, TGSW plaintexts can be multiplied. For
m1,m2 ∈ P , given their respective ciphertextsC1 ← TGSWs(m1) andC2 ← TGSWs(m2),
we let C3 = C1 � C2 := G−1(C2) • C1. This is known as the [internal] product of ci-
phertexts [GSW13, AP14, DM15]. It can be verified that C3 = C1 � C2 is a TGSW
encryption of m3 = m1 ×m2 (mod p), up to rounding error and multiplicative noise.



Marc Joye 675

Proof. From the definition, we have C3 = C1 �C2 = G−1(C2) • C1 = G−1(C2) • (Z1 +
m1 • G

ᵀ) = G−1(C2) • Z1 + (G−1(C2)m1) • G
ᵀ, letting C1 = Z1 + m1 • G

ᵀ where
Z1 ← TGSWs(0).

Let ε2 := G−1(C2) • G
ᵀ − C2 denote the rounding error matrix. We so get C3 =

G−1(C2) • Z1 +m1 • (C2 + ε2) = G−1(C2) • Z1 +m1 • Z2 + (m1m2) •G
ᵀ +m1 • ε2, letting

C2 = Z2 + m2 • G
ᵀ where Z2 ← TGSWs(0). Assuming the error resulting from the

rounding (i.e, m1 • ε2) keeps “small” and that the multiplicative noise keeps “small”, we
can write C3 = Z3 + (m1m2) • G

ᵀ for some Z3 ← TGSWs(0).

Remark 12. If Z ∈ Tq(n+1)×(n+1) is a matrix whose rows are TLWE encryptions of 0 then,
for any (small) matrix A ∈ Zm×(n+1), Z′ = A ·Z ∈ Tqm×(n+1) is a matrix whose rows are
TLWE encryptions of 0 (up to the noise).
Example 11. To see it, suppose m = n = 2. Letting

A =
(α1,1 α1,2 α1,3
α2,1 α2,2 α2,3

)
and Z =

(
a1,1 a1,2 b1
a2,1 a2,2 b2
a3,1 a3,2 b3

)
with bi =

∑2
j=1 sj

• ai,j + ei

we get Z′ = A • Z :=
(
a′1,1 a

′
1,2 b

′
1

a′2,1 a
′
2,2 b

′
2

)
=
(∑3

i=1
α1,i •ai,1

∑3
i=1

α1,i •ai,2
∑3

i=1
α1,i •bi∑3

i=1
α2,i •ai,1

∑3
i=1

α2,i •ai,2
∑3

i=1
α2,i •bi

)
.

Remark that b′1 =
∑3

i=1 α1,i • bi =
∑3

i=1 α1,i • (
∑2

j=1 sj
• ai,j + ei) =

∑3
i=1

∑2
j=1 α1,i • (sj • ai,j) +∑3

i=1 α1,i •ei =
∑2

j=1 sj
• (
∑3

i=1 α1,i •ai,j)+
∑3

i=1 α1,i •ei =
∑2

j=1 sj
•a′1,j+e′1 with e′1 :=

∑3
i=1 α1,i •ei;

and similarly b′2 =
∑2

j=1 sj
• a′2,j + e′2 with e′2 :=

∑3
i=1 α2,i • ei.

Inspecting the proof shows that the resulting error term present in Z3 comprises three
components: (i) one coming from the noise present in Z1, which is amplified by G−1(C2);
(ii) one coming from the noise present in Z2, which is amplified by m1; and (iii) one
coming from the rounding error ε2, which is also amplified by m1. The multiplicative noise
can grow quickly. The use of the gadget matrix leads however to a favorable situation
since by construction ‖G−1(C2)‖∞ ≤ B/2. Furthermore, the two other components can
be contained if plaintext m1 keeps small (for example, if m1 is restricted to elements in
{0, 1}).

External product of ciphertexts TLWE ciphertexts are much shorter than TGSW ci-
phertexts and should therefore be preferred. The best we can do for TLWE is to consider
the external product of plaintexts: m1 • µ2 for some integer m1 ∈ P and a plaintext
µ2 ∈ P ⊂ Tq. Corresponding to m1 • µ2 is the external product of ciphertexts. The �
operation enables the external multiplication of ciphertexts. It is given by

� : TGSW×TLWE→ TLWE, (C1, c2) 7→ C1 � c2 = G−1(c2) • C1

where C1 ← TGSWs(m1) with m1 ∈ P and where c2 ← TLWEs(µ2) with µ2 ∈ P. In
more detail, we have:

C1 = Z1 +m1 • G
ᵀ ∈ Tq(n+1)`×(n+1) and c2 ∈ Tqn+1

where

Z1 =


a1,1 . . . a1,n b1
a2,1 . . . a2,n b2
...

...
...

a(n+1)`,1 . . . a(n+1)`,n b(n+1)`


with {

(ai,1, . . . , ai,n) $← Tqn

bi =
∑n
j=1 sj • ai,j + (e1)i



676 SoK: Fully Homomorphic Encryption over the [Discretized] Torus

and

c2 = (a′1, . . . , a′n, b′) with
{

(a′1, . . . , a′n) $← Tqn

b′ =
∑n
j=1 sj • aj + µ2 + e2

,

and where (e1)i for 1 ≤ i ≤ (n+ 1)` and e2 are “small”. Then

c3 := C1 � c2 = G−1(c2) • C1 = G−1(c2) • (Z1 +m1 • G
ᵀ)

= G−1(c2) • Z1︸ ︷︷ ︸
=TLWEs(0)

+m1 • (G−1(c2) • G
ᵀ︸ ︷︷ ︸

≈c2

)

= TLWEs(0) +m1 • c2

= TLWEs(0) +m1 • TLWEs(µ2) = TLWEs(m1 • µ2)

is a valid TLWE encryption of µ3 := m1 • µ2 (in P), provided that

1. the rounding error ‖G−1(c2) • G
ᵀ − c2‖∞ keeps “small”;

2. the multiplicative noise e3 := G−1(c2) • e
ᵀ

1 + m1 • e2 keeps “small”, where e1 =
((e1)1, . . . , (e1)(n+1)`).

5.2 TGLWE Ciphertexts
Again, the operations and underlying techniques developed for TLWE and TGSW extend
to polynomials. Torus elements are replaced with torus polynomials. Addition and external
multiplication are performed modulo XN + 1. The same trick using a gadget matrix (over
TN,q[X]) is used to control the noise growth.

5.2.1 Addition of ciphertexts

Let µ1,µ2 ∈ PN [X]. Let also the ciphertexts c1 ← TGLWEs(µ1) = (a1, . . . ,ak, b) ∈
TN,q[X]k+1 and c2 ← TGLWEs(µ2) = (a′1, . . . ,a′k, b′) ∈ TN,q[X]k+1. If e1 and e2 are the
respective noise present in c1 and c2 then c3 := c1+c2 = (a1+a′1, . . . ,ak+a′k, b+b′) ∈
TN,q[X]k+1 is a valid TGLWE encryption of µ3 := µ1 + µ2 (in PN [X]), provided that the
additive noise e3 := e1 + e2 keeps “small”.

5.2.2 Multiplication by a known polynomial

Let µ ∈ PN [X] and let K ∈ Z ⊂ ZN [X] (i.e., viewed as a degree 0 polynomial in ZN [X]).
Given the ciphertext c← TGLWEs(µ),

c′ := K • c

is a valid ciphertext of µ′ = K •µ (in PN [X]), provided that the resulting noise keeps “small”.
More generally, for a (small) polynomial k ∈ ZN [X], c′ = k • c is a valid ciphertext of
µ′ = k • µ (in PN [X]), provided that the resulting noise keeps “small”.

5.2.3 Multiplication of ciphertexts

Gadget matrix The “gadget vector” g = (1/B, . . . , 1/B`) ∈ Tq` that we used for
TLWE/TGSW encryption can be seen as an element in TN,q[X]`. It therefore applies to
the polynomial setting too. Adapting the dimension, we define the gadget matrix G over



Marc Joye 677

TN,q[X], G ∈ TN,q[X](k+1)×(k+1)`, as

G
ᵀ = Ik+1 ⊗ g

ᵀ =



1/B
...

1/B`

1/B
...

1/B`

. . .
1/B
...

1/B`


.

The associated inverse transformation G−1(·) flattens a vector of (k + 1) polynomials
of TN,q[X] into a vector of (k + 1)` polynomials of ZN [X] with small coefficients (i.e., in
the range [−bB/2c, dB/2e)). The definition of G−1(·) is similar to the one of Section 5.1.3
where vectors in Tn+1

q are replaced by vectors in TN,q[X]k+1. Also, for any polynomial
vector p ∈ TN,q[X]k+1, it holds that G−1(p) • G

ᵀ ≈ p and G−1(p) is “small”.
Example 12. Take k = 1, N = 2, ` = 3, B = 4, and q = 256. Hence,

G
ᵀ =


1/4 0

1/16 0
1/64 0

0 1/4
0 1/16
0 1/64

 .

If p = ( 41
256 + 26

256X,
231
256 + 35

256X) ≡ ( 41
256 + 26

256X,−
25

256 + 35
256X) (mod (X2 + 1, 1)) then

p1 = b43 41
256 e+ b43 26

256 eX = 10 + 7X

= (1 · 42 − 1 · 41 − 2) + (1 · 42 − 2 · 41 − 1)X

= (1 +X) · 42 + (−1− 2X) · 41 + (−2−X)
and

p2 = b43 (− 25
64 )e+ b43 35

64 eX = −6 + 9X

= (0 · 42 − 1 · 41 − 2) + (1 · 42 − 2 · 41 + 1)X

= X · 42 + (−1− 2X) · 41 + (−2 +X)

and so G−1(p) = (1 +X,−1− 2X,−2−X,X,−1− 2X,−2 +X).

TGGSW ciphertexts Again, it is worth noting that a TGLWE ciphertext can be seen as
TGLWEs(µ) ≡ TGLWEs(0) + (0, . . . , 0, 1) • µ.

Let p = B` and such that p | q. Let also s = (s1, . . . ,sk) ∈ BN [X]k. The TGGSW
encryption of m ∈ PN [X] under private key s is defined as

TGGSWs(m) = Z+ m • G
ᵀ (∈ TN,q[X](k+1)`×(k+1))

where

Z←


TGLWEs(0)
TGLWEs(0)

...
TGLWEs(0)


 (k + 1)` rows .

External product of ciphertexts Let m1 ∈ PN [X] and µ2 ∈ PN [X] and their ciphertexts
C1 ← TGGSWs(m1) (∈ TN,q[X](k+1)`×(k+1)) and c2 ← TGLWEs(µ2) (∈ TN,q[X]k+1).
The external product � of a TGGSW ciphertext by a TGLWE ciphertext is defined as

� : TGGSW×TGLWE→ TGLWE, (C1,c2) 7→ C1 � c2 = G−1(c2) • C1 .



678 SoK: Fully Homomorphic Encryption over the [Discretized] Torus

The resulting ciphertext c3 := C1 � c2 (∈ TN,q[X]k+1) is a valid encryption of
µ3 := m1 • µ2 (∈ PN [X]), provided that the rounding errors resulting from G−1(·) and the
multiplicative noise keep “small”.

CMUX The main application of the external product in TFHE is the “controlled” mul-
tiplexer, or CMUX in short. Given two TGLWE ciphertexts c0 ← TGLWEs(µ0) and
c1 ← TGLWEs(µ1), the CMux operator acts as a selector to choose between c0 and c1
according to a TGGSW encryption Cb ← TGGSWs(b) of a control bit b ∈ {0, 1}. This
can be computed through an external product as

CMux(Cb,c0,c1)← Cb � (c1 − c0) + c0

← TGGSWs(b) � TGLWEs(µ1 − µ0) + TGLWEs(µ0)
← TGLWEs

(
b(µ1 − µ0) + µ0

)
← TGLWEs(µb) .

The output is a TGLWE encryption of µb.

5.3 Implementation Notes
The encoding for integers modulo p (including bits when p = 2) presented in Section 3.2
respects the addition. In more detail, for any i1, i2 ∈ Z/pZ, letting i3 = i1 + i2 mod p,
we have Encode(i3) = Encode(i1) + Encode(i2) (in Tp). The encoding also respects the
external product: for any i ∈ Z/pZ and any integer k, letting ik = k · i mod p, we have
Encode(ik) = k • Encode(i) (in Tp). In other words, the encoding is homomorphic and so
complies with the homomorphic structure of the encryption.

The same holds true for the encoding for fixed-precision torus elements presented in
Section 3.2.

6 Programmable Bootstrapping
As aforementioned, both TLWE and TGLWE encryptions are needed for implementing
certain operations. We will see in this section that their combination is central to refreshing
noisy TLWE ciphertexts. Such an operation is known as bootstrapping. Furthermore, this
operation can be programmed to evaluate at the same time a selected function.

6.1 Gentry’s Recryption
For a (symmetric) fully homomorphic encryption algorithm Encrypt, given the encryption
of x under private key sk, the homomorphic evaluation of a univariate function f yields
the encryption of f(x). This is illustrated in the next figure.

f(·)Encryptsk(x) Encryptsk(f(x))

Figure 2: Homomorphic evaluation.

Gentry’s key idea to reduce the noise present in a ciphertext is to homomorphically
evaluate the decryption of the ciphertext using a homomorphic encryption of its own
decryption key [Gen09, Gen10]. The encryption of the decryption key (matching the
encryption key used to produce the ciphertext) forms what is called the bootstrapping key.

Specifically, let c ← Encryptsk1(m) denote a noisy ciphertext encrypting a plaintext
m and let bsk← Encryptsk2(sk1) denote the bootstrapping key. Assume that function f



Marc Joye 679

in the above figure is the decryption function dedicated to ciphertext c, viewed as the
univariate function Decrypt(·, c). Then, letting x = sk1, the homomorphic evaluation of f
yields

Encryptsk2(f(x)) = Encryptsk2(Decrypt(sk1, c))
= Encryptsk2(m) .

The procedure is detailed in Fig. 3.

Decrypt(·, c)Encryptsk2 (sk1)

[bootstrapping key]

with c← Encryptsk1 (m)

Encryptsk2 (m)

Figure 3: Recryption.

Starting with the noisy ciphertext c← Encryptsk1(m), the recryption process ends up
with a new ciphertext Encryptsk2(m), encrypting the same plaintext m. Note that the
encryption keys are different. The encryption algorithms Encrypt and Encrypt may be
distinct or not. In the latter case, the resulting ciphertext can be reverted back into a
ciphertext under the initial key sk1 thanks to a standard key-switching technique.

6.2 Bootstrapping
General description Let s = (s1, . . . , sn) ∈ Bn. Consider a TLWE encryption of µ ∈ P:
we have c← TLWEs(µ) = (a1, . . . , an, b) ∈ Tqn+1 where aj

$← Tq and b =
∑n
j=1 sj •aj+µ∗ ∈

Tq with µ∗ = µ+ e for some “small” noise error e. The goal of the bootstrapping procedure
is to produce a TLWE ciphertext of the same plaintext but with a reduced amount of
noise e′, |e′| < |e|. So far, the only known way to bootstrap a ciphertext is Gentry’s
recryption technique. In the case of TFHE, using the previous notations, its application
involves two steps:

1. obtaining the noisy plaintext µ∗ as µ∗ = b−
∑n
j=1 sj • aj ∈ Tq;

2. recovering the plaintext µ by rounding µ∗ to the closest plaintext as µ = bp µ∗e mod p
p ∈

P.

These two steps have to be performed over encrypted data. The first step being linear
is easy given an encryption of the sj ’s. The second step (i.e., the rounding) is more
problematic. This is where polynomials come to the rescue.

Rounding with polynomials Consider polynomial v(X) = v0 +v1X+ · · ·+vN−1X
N−1 ∈

TN,p[X] = Tp[X]/(XN + 1). The formula of the external multiplication in TN,p[X] by a
monomial (cf. Section 4.3) teaches that

X−j • v(X) = X2N−j • v(X) =
{
vj + . . . for 0 ≤ j < N

−vj + . . . for N ≤ j < 2N
.

In other words, when 0 ≤ j < N , the constant term of polynomial X−j • v(X) is vj . As
we will see, this simple observation provides a way to round a torus element µ∗ ∈ Tq as an
element of µ ∈ Tp, where p | q.

Since µ∗ ∈ Tq, we can write µ∗ = µ∗/q where µ∗ := bq µ∗e mod q with 0 ≤ µ∗ < q. If we
suppose for a moment that N ≥ q, we have 0 ≤ µ∗ < N . It also means that polynomial v



680 SoK: Fully Homomorphic Encryption over the [Discretized] Torus

has more coefficients than the number of possible values for µ∗. We can therefore assign
a chosen value for vj , for any 0 ≤ j < q, and an application of X−j • v(X) will yield
vj + . . . In particular, if we select vj := b(p j)/qe mod p

p ∈ Tp, plugging j = µ∗ in the relation
X−j • v(X) = vj + . . . yields

X−µ
∗
• v(X) = b(p µ∗)/qe mod p

p + . . .

= bp µ∗e mod p
p + . . .

= µ+ . . .

namely, a polynomial whose constant term is the rounded value µ ∈ Tp.

Example 13. As an illustration, suppose we wish to round 5-bit precision torus elements µ∗ to 2-bit
precision torus elements µ, for 0 ≤ µ∗ ≤ 25/32; rounding by convention downwards in the case of a tie.
This setting corresponds to q = 32 and p = 4 (that is, Tq = 1

32Z/Z and Tp = 1
4Z/Z).

µ∗ µ

0
32 → 0

4...
...

4
32 → 0

4
5

32 → 1
4...
...

12
32 → 1

4
13
32 → 2

4...
...

20
32 → 2

4
21
32 → 3

4...
...

25
32 → 3

4

Since there are 26 possible values for µ∗, we set N = 32 (i.e., as the smallest
power of 2 that is ≥ 26). We set polynomial v as

v(X) = 0
4 + 0

4 X + 0
4 X

2 + 0
4 X

3 + 0
4 X

4

+ 1
4 X

5 + 1
4 X

6 + 1
4 X

7 + 1
4 X

8 + 1
4 X

9

+ 1
4 X

10 + 1
4 X

11 + 1
4 X

12 + 2
4 X

13 + 2
4 X

14

+ 2
4 X

15 + + 2
4 X

16 + 2
4 X

17 + 2
4 X

18 + 2
4 X

19

+ 2
4 X

20 + 3
4 X

21 + 3
4 X

22 + 3
4 X

23 + 3
4 X

24 + 3
4 X

25 .

It can be checked that any 5-bit precision element µ∗ ∈
[
0, 25

32

]
⊂ Tq verifies

X−b32µ∗e · v(X) = µ+ . . .

where µ ∈ Tp denotes the matching rounded value.

6.2.1 Blind rotation

As above, let µ∗ = bq µ∗e mod q. Let also aj = bqaje mod q and b = bqbe mod q. In order
to bootstrap, one way to look at the decryption (without the rounding) is to see that

−µ∗ = −b+
∑n
j=1 sj aj (mod q) .

This value can then be put at the exponent of X to get the monomial X−µ∗ , which leads
to plaintext µ from the evaluation of X−µ∗ • v(X). There are a couple of complications in
implementing this idea as it supposes q < N , which is not verified in practical settings.
Typical cryptographic parameters make use of N ∈ {210, 211, 212} and q ∈ {232, 264}.

First, the relation X−µ∗ • v(X) being defined modulo XN + 1, this means that, as a
multiplicative element of ZN [X], X is of order 2N (i.e., X2N = 1) and thus exponent −µ∗
in X−µ

∗
• v(X) is defined modulo 2N . The value of µ∗ needs therefore to be rescaled

modulo 2N . As a consequence, instead of starting with the relation −µ∗ = −b+
∑n
j=1 sj aj

(mod q), we rely on the approximation

−µ̃∗ = −b̃+
∑n
j=1 sj ãj (mod 2N) ,

where b̃ = b2N be mod 2N and ãj = b2Naje mod 2N . This approximation may generate
a small additional error that adds to the noise.
Remark 13. The additional error introduced by the discretization modulo 2N is called
drift. Its impact on the result can be dealt with by a careful choice of the parameters.



Marc Joye 681

Second, because polynomial v lies in TN,p[X] and thus has N coefficients, at most
N values for µ̃∗ can be encoded. This can be addressed by ensuring that the most significant
bit of µ̃∗ is set to 0. In this case, µ̃∗ can take at most N possible values. (Enhanced
techniques—applicable to arbitrary µ̃∗ ∈ [0, 2N)—are discussed in Section 6.4.)

From the above considerations, the so-called test polynomial v is formed as

v := v(X) =
N−1∑
j=0

vj X
j with vj = b p j

2N e mod p
p ∈ P

and the relation

X
−b̃+

∑n

j=1
sj ãj

• v(X) = X−µ̃
∗
• v(X) = µ+ . . .

holds, provided that the drift is contained and that 0 ≤ (µ̃∗ mod 2N) < N . For conciseness,
we let qj := X−b̃+

∑j

i=1
si ãi • v. The external product being homogeneous, it follows that

qj =
(
X−b̃+

∑j−1
i=1

si ãi Xsj ãj
)
• v = Xsj ãj •

(
X−b̃+

∑j−1
i=1

si ãi • v
)

= Xsj ãj • qj−1

=
{
qj−1 if sj = 0
X ãj • qj−1 if sj = 1

.

This provides an iterative method to get qn = X−b̃+
∑n

i=1
si ãi • v, starting at q0 = X−b̃ • v

and then iterating on j from 1 to n. See Table 3 (left column).
Gentry’s recryption does the same but over encrypted data. As the rounding method

involves polynomials, we rely on TGLWE encryption. Let s′ ∈ BN [X]k+1. We assume
that we are given the bootstrapping keys bsk[j] ← TGGSWs′(sj) ∈ TN,q[X](k+1)`×(k+1),
for 1 ≤ j ≤ n. This is illustrated in the next table (right column).

Table 3: Blind rotation.

(in the clear) (over encrypted data)

q0 ← X−b̃ • v

for j = 1 to n do

qj ←

{
qj−1 if sj = 0
X ãj • qj−1 if sj = 1

end for
return qn

c′0 ← X−b̃ • TGLWEs′ (v)
for j = 1 to n do

c′j ← CMux(bsk[j], c′j−1, X ãj • c′j−1)

end for
return c′n

Clearly, the output ciphertext c′ := c′n is a TGLWE encryption of qn = X
−b̃+

∑n

j=1
sj ãj

•

v; i.e., c′n ← TGLWEs′
(
X
−b̃+

∑n

j=1
sj ãj

• v
)

= TGLWEs′
(
X−µ̃

∗
• v
)
. Finally, we remark

that (0, . . . , 0, v) ∈ TN,q[X]k+1 is a valid TGLWE encryption for v; we can thus take
c′0 ← X−b̃ • (0, . . . , 0, v).

Summing up, given a TLWE ciphertext c ← TLWEs(µ) ∈ Tqn+1 under the key s =
(s1, . . . , sn) ∈ Bn and the matching bootstrapping-key vector bsk = (bsk[1], . . . ,bsk[n])
with bsk[j]← TGGSWs′(sj) and s′ = (s′1, . . . ,s′k) ∈ BN [X]k, we get a TGLWE ciphertext
c′ ← TGLWEs′(X−µ̃∗ • v) = TGLWEs′(µ+ . . . ) ∈ TN,q[X]k+1 under the key s′ for the
predefined polynomial v(X) =

∑N−1
j=0

bp j/(2N)e mod p
p Xj ∈ PN [X], in two steps as:

1. define c := (0, . . . , 0, v) and c̃ := (ã1, . . . , ãn, b̃)← bc 2Ne mod 2N ;



682 SoK: Fully Homomorphic Encryption over the [Discretized] Torus

2. do
{
c′0 ← X−b̃ • c

c′j ← CMux(bsk[j],c′j−1, X
ãj • c′j−1) for 1 ≤ j ≤ n

and set c′ := c′n.

We write c′ ← BlindRotatebsk(c, c̃) where bsk = (bsk[1], . . . ,bsk[n]).
Remark 14. Algorithms in pseudo-code are provided in Appendix C.

6.2.2 Sample extraction

The previous conversion step turns the TLWE encryption of a plaintext µ ∈ P into a
TGLWE encryption of a polynomial plaintext µ(X) := X−µ̃

∗
• v ∈ PN [X] whose constant

term is µ. The constant-term component is then extracted to give rise to a refreshed
TLWE encryption of µ, but under a different key. This is referred to as sample extraction.
We note that, although it is applied to the constant term, the technique readily adapts to
extract other components of µ.

In more detail, on input a TLWE ciphertext c← TLWEs(µ) ∈ Tqn+1, the previous step
yields at the end of the blind rotation a TGLWE ciphertext c′ ← TGLWEs′(X−µ̃∗ • v) =
TGLWEs′(µ+ . . . ) ∈ TN,q[X]k+1.

We let s′ = (s′1, . . . ,s′k) ∈ BN [X]k and c′ = (a′1, . . . ,a′k, b′) ∈ TN,q[X]k+1 where, for
1 ≤ j ≤ k, s′j := s′j(X) = (s′j)0 + (s′j)1X + · · · + (s′j)N−1X

N−1 and a′j := a′j(X) =
(a′j)0 + (a′j)1X + · · ·+ (a′j)N−1X

N−1. We also let µ = X−µ̃
∗
• v = µ+ · · · . By definition

of a TLWE ciphertext, there exists e := e(X) = e0 + e1X + · · ·+ eN−1X
N−1 such that

b′ =
∑k
j=1 s

′
j • a′j + µ + e.

Expanding polynomial b′, we get

b′ := b′(X) = b′0 + b′1X + · · ·+ b′N−1X
N−1

=
k∑
j=1

(
(s′j)0 + · · ·+ (s′j)N−1X

N−1) •
(
(a′j)0 + · · ·+ (a′j)N−1X

N−1)+ µ + e .

Now, if we take a close look at the constant term b′0 ∈ Tq of polynomial b′, we see that it
satisfies

b′0 =
k∑
j=1

[
(s′j)0 • (a′j)0 − (s′j)1 • (a′j)N−1 − · · · − (s′j)N−1 • (a′j)1

]
+ µ+ e0

=
(
(s′1)0, (s′1)1, . . . , (s′1)N−1, . . . , . . . , (s′k)0, (s′k)1, . . . , (s′k)N−1

)
•(

(a′1)0,−(a′1)N−1, . . . ,−(a′1)1, . . . , . . . , (a′k)0,−(a′k)N−1, . . . ,−(a′k)1
)

+ µ+ e0 .

As a result, defining s′ :=
(
(s′1)0, (s′1)1, . . . , (s′k)N−1

)
∈ BkN and ȧ′ :=

(
(a′1)0,

−(a′1)N−1, . . . ,−(a′k)1
)
∈ TqkN , the vector c′ := (ȧ′, b′0) ∈ TqkN+1 can be viewed as a

TLWE encryption of µ under key s′.
We write s′ ← Recode(s′) and c′ ← SampleExtract(c′).

6.2.3 Key switching

The loop is almost closed. With the above procedure, ciphertexts c and

c′ ← SampleExtract(BlindRotatebsk(c, c̃))

both encrypt plaintext µ but they feature a different set of parameters: c← TLWEs(µ) ∈
Tqn+1 and c′ ← TLWEs′(µ) ∈ TqkN+1. The key switching algorithm converts a ciphertext



Marc Joye 683

under a key into a ciphertext under another key. Its implementation requires key-switching
keys, i.e., TLWE encryptions of the key bits of s′ with respect to the original key s.

The procedure may seem conceptually very similar to the bootstrapping, but there is a
fundamental difference between the two techniques: bootstrapping reduces the noise (and
is computationally demanding) whereas the key switching makes the noise increase (but is
cheaper to evaluate).

Assume we are given the key-switching keys

ksk[i, j]← TLWEs(s′i • B−j) (1 ≤ i ≤ kN and 1 ≤ j ≤ `)

for some parameters B and ` defining a gadget decomposition (see Section 5.1.3). On
input ciphertext c′ ← TLWEs′(µ) = (a′1, . . . , a′kN , b′) ∈ TqkN+1 under the key s′ =
(s′1, . . . , s′kN ) ∈ BkN , the ciphertext

c′′ := (0, . . . , 0, b′)−
kN∑
i=1

∑̀
j=1

(a′i)j • ksk[i, j]

where (
(a′i)1, . . . , (a′i)`

)
= g−1(a′i) with (a′i)j ∈ [−bB/2c, dB/2e)

is a TLWE encryption of µ under the key s ∈ Bn, provided that the resulting noise error
remains contained.

We write c′′ ← KeySwitchksk(c′) with ksk = (ksk[i, j])1≤i≤kN
1≤j≤`

.

Proof. The gadget decomposition leads to g−1(a′i) •g
ᵀ =

∑`
j=1(a′i)j •B−j = a′i+εi where εi

denotes the rounding error. Hence,
∑`
j=1(a′i)j • ksk[i, j] =

∑`
j=1(a′i)j • TLWEs(s′i •B−j) =

TLWEs(s′i • (a′i + εi)). Moreover, (0, . . . , 0, b′) is a valid TLWE encryption for b′. Letting
e′ the noise present in c′, we therefore see that c′′ ← TLWEs

(
b′ −

∑kN
i=1 s

′
i • (a′i + εi)

)
=

TLWEs
(
µ+ e′ +

∑kN
i=1 s

′
i εi
)
, which decrypts to µ if the error e′′ := e′ +

∑kN
i=1 s

′
i εi keeps

small.

6.2.4 Putting it all together

To sum up, the bootstrapping of a TLWE ciphertext c ← TLWEs(µ) ∈ Tqn+1 with
s = (s1, . . . , sn) ∈ Bn proceeds as a series of 3 steps.

1. c′ ← BlindRotatebsk(c, c̃) (∈ TN,q[X]k+1), where

• c= (0, . . . , 0, v) ∈ TN,q[X]k+1

with v := v(X) =
∑N−1
j=0

bp j/(2N)e mod p
p Xj ∈ PN [X] ⊂ TN,q[X] ;

• c̃ = dc2Nc ∈ (Z/2NZ)n+1 ;
• bsk = (bsk[j])1≤j≤n

with
{

bsk[j]← TGGSWs′(sj) ∈ TN,q[X](k+1)`×(k+1)

s′ = (s′1, . . . ,s′k) ∈ BN [X]k ;

2. c′ ← SampleExtract(c′) (∈ TqkN+1) ;

3. c′′ ← KeySwitchksk(c′) (∈ Tqn+1), where

• ksk = (ksk[i, j])1≤i≤kN
1≤j≤`

with
{

ksk[i, j]← TLWEs(s′i • B−j) ∈ Tqn+1

s′ = (s′1, . . . , s′kN )← Recode(s′) ∈ BkN .



684 SoK: Fully Homomorphic Encryption over the [Discretized] Torus

6.3 Programmable Bootstrapping
The (regular) bootstrapping essentially relies on the observation that X−j • v(X) = vj+ . . . ,
for any 0 ≤ j < N . In the above section, test polynomial v ∈ TN,p[X] was defined as
v(X) =

∑N−1
j=0

bp j/(2N)e mod p
p Xj .

Now, given a function f : Tp → Tp, if we instead define test polynomial v as

v(X) =
N−1∑
j=0

f
( bp j/(2N)e mod p

p

)
Xj ,

we remark that the resulting polynomial X−µ̃∗ • v(X) has f
( bp µ̃∗/(2N)e mod p

p

)
= f(µ)

for constant term, assuming the absence of drift impact and 0 ≤ (µ̃∗ mod 2N) < N .
Under these conditions, on input a (noisy) TLWE ciphertext c← TLWEs(µ), the above
procedure (cf. Section 6.2.4) outputs a TLWE ciphertext c′ ← TLWEs(f(µ)) featuring a
small amount of noise. Observe that the regular bootstrapping corresponds to the identity
function for f .

We note that the range restriction on µ̃∗ can be suppressed when function f is negacyclic
(i.e., if f(µ+ 1

2 ) = −f(µ), ∀µ ∈ Tp). The “sign” function over the torus is an example of
negacyclic function.

6.4 More Techniques
The bootstrapping and the programmable bootstrapping as presented in the previous
sections can be extended in multiple directions. This allows for more versatility or better
performance. We list below a number of such modifications.

Arbitrary functions As described in the previous section, the programmable bootstrap-
ping requires either 0 ≤ (µ̃∗ mod 2N) < N or function f to be negacyclic. The first
condition can be met through the use of padding bits [CJL+20]. Another approach is to
generalize the programmable bootstrapping to an arbitrary (i.e., non-necessarily negacyclic)
function f : Tp → Tp [CLOT21]; see also [KS21, LMP21]. In particular, [LMP21, Sect. 4]
presents an efficient strategy for homomorphically evaluating an arbitrary function f from
a succession of two programmable bootstrappings on negacyclic functions.

Larger precision Parameter N limits the number of values that can be programmed in
a programmable bootstrapping. For typical parameters, the precision is limited to 6 or
7 bits. Two methods for homomorphically evaluating large look-up tables are presented
in [GBA21]. Higher precision is achieved by decomposing large plaintexts into smaller
plaintexts that are individually encrypted. The first method makes use of tree evaluation
while the second one relies on chaining.

Multi-value programmable bootstrapping Suppose one needs to get a TLWE encryption
of fi(µ) for multiple functions fi : Tp → Tp. In certain cases, this can be achieved using a
single blind rotation [CIM19]. Each test polynomial vi (corresponding to the homomorphic
evaluation of function fi) is split into two factors: a first factor k that is independent fi
and a second factor ui that depends on fi but with expected low-norm coefficients (in order
to control the noise growth). A blind rotation is performed with k as the test polynomial.
Multiplying the obtained result with polynomial ui leads to an output equivalent to a
blind rotation with vi. A subsequent sample extraction and key switching yield a TLWE
encryption of fi(µ).



Marc Joye 685

Ternary keys and more The blind rotation makes essential the use of binary keys.
Following the astute observation of [MP21] that a ternary vector s = (s1, . . . , sn) ∈
{−1, 0, 1}n can be expressed as the difference of two binary vectors, the authors of [JP22]
provide a general method extending the programmable bootstrapping with secret keys in
higher radices. The cost is essentially only one external product per key digit but the total
number of bootstrapping keys increases with the radix size. See [JP22] for an analysis of
the different possible trade-offs.

7 Conclusion
This paper gave a systematized presentation for fully homomorphic encryption over a
discretized torus, including ready-to-use algorithms and implementation notes. The various
concepts and definitions were illustrated with small examples. Advanced topics like
programmable bootstrapping and how it relates to Gentry’s recryption were also covered.
It is the author’s hope that this paper will provide new insights into the topic of fully
homomorphic encryption and, in turn, lead to ideas for better implementations and further
developments.

Acknowledgments
The author would like to thank his colleagues at Zama and the anonymous referees for
useful feedback and comments.

References
[AP14] Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with polynomial

error. In J. A. Garay and R. Gennaro, editors, Advances in Cryptology –
CRYPTO 2014, Part I, volume 8616 of Lecture Notes in Computer Science,
pages 297–314. Springer, 2014. doi:10.1007/978-3-662-44371-2_17.

[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of
learning with errors. Journal of Mathematical Cryptology, 9(3):169–203, 2015.
doi:10.1515/jmc-2015-0016.

[BBKS07] Mihir Bellare, Alexandra Boldyreva, Kaoru Kurosawa, and Jessica Staddon.
Multi-recipient encryption schemes: How to save on bandwidth and computa-
tion without sacrificing security. IEEE Transactions on Information Theory,
53(11):3927–3943, 2007. doi:10.1109/TIT.2007.907471.

[BBS03] Mihir Bellare, Alexandra Boldyreva, and Jessica Staddon. Randomness re-use
in multi-recipient encryption schemes. In Y. Desmedt, editor, Public Key
Cryptography (PKC 2003), volume 2567 of Lecture Notes in Computer Science,
pages 85–99. Springer, 2003. doi:10.1007/3-540-36288-6_7.

[Ber01] Daniel J. Bernstein. Multidigit multiplication for mathematicians. Unpublished
manuscript, available at https://cr.yp.to/papers.html#m3, August 2001.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully
homomorphic encryption without bootstrapping. In S. Goldwasser, editor,
3rd Innovations in Theoretical Computer Science (ITCS 2012), pages 309–325.
ACM Press, 2012. doi:10.1145/2090236.2090262.

https://doi.org/10.1007/978-3-662-44371-2_17
https://doi.org/10.1515/jmc-2015-0016
https://doi.org/10.1109/TIT.2007.907471
https://doi.org/10.1007/3-540-36288-6_7
https://cr.yp.to/papers.html#m3
https://doi.org/10.1145/2090236.2090262


686 SoK: Fully Homomorphic Encryption over the [Discretized] Torus

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully
homomorphic encryption without bootstrapping. ACM Transactions on Com-
putation Theory, 6(3):13:1–13:36, 2014. doi:10.1145/2633600.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien
Stehlé. Classical hardness of learning with errors. In D. Boneh, T. Roughgarden,
and J. Feigenbaum, editors, 45th Annual ACM Symposium on Theory of
Computing, pages 575–584. ACM Press, 2013. doi:10.1145/2488608.2488680.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching
from classical GapSVP. In R. Safavi-Naini and R. Canetti, editors, Advances in
Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science,
pages 868–886. Springer, 2012. doi:10.1007/978-3-642-32009-5_50.

[CGGI16] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Faster
fully homomorphic encryption: Bootstrapping in less than 0.1 seconds. In
J. H. Cheon and T. Takagi, editors, Advances in Cryptology – ASIACRYPT
2016, Part I, volume 10031 of Lecture Notes in Computer Science, pages 3–33.
Springer, 2016. doi:10.1007/978-3-662-53887-6_1.

[CGGI20] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
TFHE: Fast fully homomorphic encryption over the torus. Journal of Cryptology,
33(1):34–91, 2020. doi:10.1007/s00145-019-09319-x.

[CIM19] Sergiu Carpov, Malika Izabachène, and Victor Mollimard. New techniques
for multi-value input homomorphic evaluation and applications. In M. Mat-
sui, editor, Topics in Cryptology – CT-RSA 2019, volume 11405 of Lecture
Notes in Computer Science, pages 106–126. Springer, 2019. doi:10.1007/
978-3-030-12612-4_6.

[CJL+20] Ilaria Chillotti, Marc Joye, Damien Ligier, Jean-Baptiste Orfila, and Samuel
Tap. CONCRETE: Concrete Operates oN Ciphertexts Rapidly by Extending
TfhE. In M. Brenner and T. Lepoint, editors, 8th Workshop on Encrypted
Computing and Applied Homomorphic Cryptography (WAHC 2020), pages
57–63. Leibniz Universität IT Services, 2020. doi:10.25835/0072999.

[CJP21] Ilaria Chillotti, Marc Joye, and Pascal Paillier. Programmable bootstrapping
enables efficient homomorphic inference of deep neural networks. In S. Dolev
et al., editors, Cyber Security Cryptography and Machine Learning (CSCML
2021), volume 12716 of Lecture Notes in Computer Science, pages 1–19. Springer,
2021. doi:10.1007/978-3-030-78086-9_1.

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Homomorphic
encryption for arithmetic of approximate numbers. In T. Takagi and T. Peyrin,
editors, Advances in Cryptology - ASIACRYPT 2017, Part I, volume 10624
of Lecture Notes in Computer Science, pages 409–437. Springer, 2017. doi:
10.1007/978-3-319-70694-8_15.

[CLOT21] Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap. Improved
programmable bootstrapping with larger precision and efficient arithmetic
circuits for TFHE. In M. Tibouchi and H. Wang, editors, Advances in Cryptology
– ASIACRYPT 2021, Part III, volume 13092 of Lecture Notes in Computer
Science, pages 670–699. Springer, 2021. doi:10.1007/978-3-030-92078-4_
23.

https://doi.org/10.1145/2633600
https://doi.org/10.1145/2488608.2488680
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/978-3-030-12612-4_6
https://doi.org/10.1007/978-3-030-12612-4_6
https://doi.org/10.25835/0072999
https://doi.org/10.1007/978-3-030-78086-9_1
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-030-92078-4_23
https://doi.org/10.1007/978-3-030-92078-4_23


Marc Joye 687

[CS15] Jung Hee Cheon and Damien Stehlé. Fully homomophic encryption over the
integers revisited. In E. Oswald and M. Fischlin, editors, Advances in Cryptology
– EUROCRYPT 2015, Part I, volume 9056 of Lecture Notes in Computer Science,
pages 513–536. Springer, 2015. doi:10.1007/978-3-662-46800-5_20.

[DM15] Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping homomorphic
encryption in less than a second. In E. Oswald and M. Fischlin, editors,
Advances in Cryptology – EUROCRYPT 2015, Part I, volume 9056 of Lecture
Notes in Computer Science, pages 617–640. Springer, 2015. doi:10.1007/
978-3-662-46800-5_24.

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Transactions on Information Theory, 31(4):469–472,
1985. doi:10.1109/TIT.1985.1057074.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic
encryption. Cryptology ePrint Archive, Report 2012/144, 2012. https://ia.
cr/2012/144.

[GBA21] Antonio Guimarães, Edson Borin, and Diego F. Aranha. Revisiting the func-
tional bootstrap in TFHE. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2021(2):229–253, 2021. doi:10.46586/tches.v2021.
i2.229-253.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In M. Mitzen-
macher, editor, 41st Annual ACM Symposium on Theory of Computing, pages
169–178. ACM Press, 2009. doi:10.1145/1536414.1536440.

[Gen10] Craig Gentry. Computing arbitrary functions of encrypted data. Communica-
tions of the ACM, 53(3):97–105, 2010. doi:10.1145/1666420.1666444.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster, attribute-
based. In R. Canetti and J. A. Garay, editors, Advances in Cryptology –
CRYPTO 2013, Part I, volume 8042 of Lecture Notes in Computer Science,
pages 75–92. Springer, 2013. doi:10.1007/978-3-642-40041-4_5.

[Hal17] Shai Halevi. Homomorphic encryption. In Y. Lindell, editor, Tutorials on
the Foundations of Cryptography, chapter 5, pages 219–276. Springer, 2017.
doi:10.1007/978-3-319-57048-8_5.

[JP22] Marc Joye and Pascal Paillier. Blind rotation in fully homomorphic encryption
with extended keys. In S. Dolev, J. Katz, and A. Meisels, editors, Cyber
Security Cryptography and Machine Learning (CSCML 2022), volume 13301 of
Lecture Notes in Computer Science, pages 1–18. Springer, 2022. doi:10.1007/
978-3-031-07689-3_1.

[Kol57] Andrey Kolmogorov. The representation of continuous functions of many
variables by superposition of continuous functions of one variable and addition.
Doklady Akademii Nauk SSSR, 114(5):953–956, 1957. URL: https://zbmath.
org/?q=an:0090.27103.

[KS21] Kamil Kluczniak and Leonard Schild. FDFB: Full domain functional boot-
strapping towards practical fully homomorphic encryption. Cryptology ePrint
Archive, Report 2021/1135, 2021. https://ia.cr/2021/1135.

https://doi.org/10.1007/978-3-662-46800-5_20
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1109/TIT.1985.1057074
https://ia.cr/2012/144
https://ia.cr/2012/144
https://doi.org/10.46586/tches.v2021.i2.229-253
https://doi.org/10.46586/tches.v2021.i2.229-253
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1666420.1666444
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-319-57048-8_5
https://doi.org/10.1007/978-3-031-07689-3_1
https://doi.org/10.1007/978-3-031-07689-3_1
https://zbmath.org/?q=an:0090.27103
https://zbmath.org/?q=an:0090.27103
https://ia.cr/2021/1135


688 SoK: Fully Homomorphic Encryption over the [Discretized] Torus

[LCB98] Yann LeCun, Corinna Cortez, and Christopher C. J. Burges. The MNIST
database of handwritten digits, 1998. Available at http://yann.lecun.com/
exdb/mnist/.

[LMP21] Zeyu Liu, Daniele Micciancio, and Yuriy Polyakov. Large-precision homomor-
phic sign evaluation using FHEW/TFHE bootstrapping. Cryptology ePrint
Archive, Report 2021/1337, 2021. https://ia.cr/2021/1337.

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. Journal of the ACM, 60(6):43:1–43:35, 2013.
doi:10.1145/2535925.

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions
for module lattices. Designs, Codes and Cryptography, 75(3):565–599, 2015.
doi:10.1007/s10623-014-9938-4.

[MP21] Daniele Micciancio and Yuriy Polyakov. Bootstrapping in FHEW-like cryp-
tosystems. In M. Brenner et al., editors, 9th Workshop on Encrypted Computing
& Applied Homomorphic Cryptography (WAHC 2021), pages 17–28. ACM Press,
2021. doi:10.1145/3474366.3486924.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In J. Stern, editor, Advances in Cryptology – EUROCRYPT 1999,
volume 1592 of Lecture Notes in Computer Science, pages 223–238. Springer,
1999. doi:10.1007/3-540-48910-X_16.

[RAD78] Ronald L. Rivest, Len Adleman, and Michael L. Dertouzos. On data banks
and privacy homomorphisms. In R. A. DeMillo et al., editors, Foundations
of Secure Computation, pages 165–179. Academic Press, 1978. Available at
https://people.csail.mit.edu/rivest/pubs.html#RAD78.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In H. N. Gabow and R. Fagin, editors, 37th Annual ACM
Symposium on Theory of Computing, pages 84–93. ACM Press, 2005. doi:
10.1145/1060590.1060603.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. Journal of the ACM, 56(6):34:1–34:40, 2009. doi:10.1145/
1568318.1568324.

[Riv12] Omar Rivasplata. Subgaussian random variables: An expository note. Un-
published note, November 2012. URL: https://sites.ualberta.ca/~omarr/
publications/subgaussians.pdf.

[Rot11] Ron Rothblum. Homomorphic encryption: From private-key to public-key.
In Y. Ishai, editor, Theory of Cryptography (TCC 2011), volume 6597 of
Lecture Notes in Computer Science, pages 219–234. Springer, 2011. doi:
10.1007/978-3-642-19571-6_14.

[SSTX09] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Efficient
public key encryption based on ideal lattices. In M. Matsui, editor, Advances
in Cryptology – ASIACRYPT 2009, volume 5912 of Lecture Notes in Computer
Science, pages 617–635. Springer, 2009. doi:10.1007/978-3-642-10366-7_
36.

[vzGG13] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cam-
bridge University Press, 3rd edition, 2013. doi:10.1017/CBO9781139856065.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://ia.cr/2021/1337
https://doi.org/10.1145/2535925
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1145/3474366.3486924
https://doi.org/10.1007/3-540-48910-X_16
https://people.csail.mit.edu/rivest/pubs.html#RAD78
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/1568318.1568324
https://sites.ualberta.ca/~omarr/publications/subgaussians.pdf
https://sites.ualberta.ca/~omarr/publications/subgaussians.pdf
https://doi.org/10.1007/978-3-642-19571-6_14
https://doi.org/10.1007/978-3-642-19571-6_14
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1017/CBO9781139856065


Marc Joye 689

A From Private Key to Public Key
As described in Sections 3 and 4, TLWE and TGLWE are private-key encryption schemes.
This is not a restriction because, as demonstrated in [Rot11], any additively homomorphic
private-key encryption scheme can be converted into a public-key encryption scheme. In
this appendix, we expand on how to extend TLWE and TGLWE to the public-key setting.

Let µ ∈ P. We noticed in Section 5.1.3 that the encryption of µ using the private-key
TLWE encryption scheme (Section 3.1) can be put under the form

TLWEs(µ)← TLWEs(0) + (0, . . . , 0, µ) .

Only the first part—i.e., TLWEs(0)—involves the private key s.
Now consider m private-key TLWE encryptions of ‘0’. The TLWE encryption being

additively homomorphic, any linear combination of these encryptions of ‘0’ is also a private-
key TLWE encryption of ‘0’ (provided that the resulting noise keeps “small”). This leads
to a [public-key] version of TLWE encryption. The public key is pk = Z, a m× (n+ 1)
matrix whose rows are private-key TLWE encryptions of 0. The [public-key] encryption of
µ ∈ P is then obtained by adding together a random subset of the encryptions of 0 present
in the public key Z and adding to it (0, . . . , 0, µ). Specifically, the public-key encryption of
µ is given by TLWEpk(µ) = r • Z + (0, . . . , 0, µ) where r $← Bm.

More formally:

KeyGen(1λ) On input security parameter λ, define two positive integers m,n, select
positive integers p and q such p | q, and define a discretized error distribution χ̂ over
q−1Z induced by a normal distribution χ = N (0, σ2) over R. Sample uniformly at
random a vector s = (s1, . . . , sn) $← Bn. The plaintext space is P = Tp ⊂ Tq where
Tq = q−1Z/Z. Using s, randomly generate m [private-key] TLWE encryptions of 0
(see Section 3.1), and form the corresponding matrix

Z ←

TLWEs(0)
...

TLWEs(0)

 (∈ Tqm×(n+1)) .

The public parameters are pp = {m,n, σ, p, q}, the public key is pk = Z, and the
private key is sk = s.

Encryptpk(µ) The [public-key] encryption of µ ∈ P is given by

c = r • Z + (0, . . . , 0, µ) ∈ Tqn+1

for a random vector r $← Bm.

Decryptsk(c) To decrypt c = (a1, . . . , an, b), using secret decryption key s = (s1, . . . , sn),
compute (in Tq)

µ∗ = b−
∑n
j=1 sj • aj

and return closest plaintext µ ∈ P as the decryption of c.

The public-key variant of private-key TGLWE encryption (see Section 4.1) is obtained
analogously. We present it below for completeness. The key observations are that (i) for
µ ∈ PN [X] we have TGLWEs(µ) ≡ TGLWEs(0) + (0, . . . , 0,µ)—see Section 5.2.3, and
(ii) the private-key TGLWE encryption is additively homomorphic.



690 SoK: Fully Homomorphic Encryption over the [Discretized] Torus

KeyGen(1λ) On input security parameter λ, define integers N, k,m with N a power of 2
andm, k ≥ 1. Select positive integers p and q such p | q. Define also a discretized error
distribution χ̂ over q−1ZN [X] induced by a normal distribution χ = N (0, σ2) over
RN [X]. Sample uniformly at random a vector s = (s1, . . . ,sk) $← BN [X]k. Using s,
randomly generate m [private-key] TGLWE encryptions of 0 (see Section 4.1), and
form the corresponding matrix

Z←

TGLWEs(0)
...

TGLWEs(0)

 (∈ TN,q[X]m×(k+1)) .

The plaintext space is PN [X] ⊂ TN,q[X] where Tq = q−1Z/Z. The public parameters
are pp = {m, k,N, σ, p, q}, the public key is pk = Z, and the private key is sk = s.

Encryptpk(µ) The [public-key] encryption of µ ∈ PN [X] is given by

c= r • Z+ (0, . . . , 0,µ) ∈ TN,q[X]k+1

for a random vector r
$← BN [X]m.

Decryptsk(c) To decrypt c= (a1, . . . ,an, b), using secret decryption key s = (s1, . . . ,sn),
compute (in TN,q[X])

µ∗ = b−
∑k
j=1 sj • aj

and return the closest plaintext µ ∈ PN [X] as the decryption of c.

B Index to Notations
In the following notations, letters have the following significance:

Formal Meaning Section
symbolism reference

• external product Section 2.1
bxc largest integer ≤ x Section 2.3
dxe smallest integer ≥ x Section 2.3
bxe nearest integer to x Section 2.3

Φ(X) cyclotomic polynomial Section 2.1
B B = {0, 1} Section 2.3

BN [X] BN [X] = B[X]/(XN + 1) Section 2.3
G gadget matrix Section 5.1.3
P P = Tp (plaintext space) Section 3.1
P P = Z/pZ Section 5.1.3

PN [X] PN [X] = P[X]/(XN + 1) Section 4.1
PN [X] PN [X] = P[X]/(XN + 1) Section 5.2.3
RN [X] RN [X] = R[X]/(XN + 1) Section 2.1

T T = R/Z (real torus) Section 2.1
Tq Tq = 1

qZ/Z (discretized torus) Section 3.1
TN [X] TN [X] = T[X]/(XN + 1) Section 2.1

TN,q[X] TN,q[X] = Tq[X]/(XN + 1) Section 4.1
ZN [X] ZN [X] = Z[X]/(XN + 1) Section 2.1



Marc Joye 691

C Pseudo-Code

Algorithm 1: CMux
Input: 1) c0,c1 ∈ TN,q[X]k+1

2) K∈ TN,q[X](k+1)`×(k+1) where K← TGGSWs(b)
with b ∈ {0, 1} and s ∈ BN [X]k

Output: c′ ← CMux(K,c0,c1) ∈ TN,q[X]k+1

c′ ←K� (c1 − c0) + c0

return c′

Algorithm 2: BlindRotate
Input: 1) c← TGLWEs(µ) ∈ TN,q[X]k+1

2) c̃ = (ã1, . . . , ãn, b̃) ∈ (Z/2NZ)n+1

3) bsk = (bsk[1], . . . ,bsk[n]) ∈ (TN,q[X](k+1)`×(k+1))n

where bsk[j]← TGGSWs(sj) with s ∈ BN [X]k and s = (s1, . . . , sn) ∈ Bn
Output: c′ ← BlindRotatebsk(c, c̃) ∈ TN,q[X]k+1

c′ ← X−b̃ • c

for j = 1 to n do
c′ ← CMux(bsk[j],c′, X ãj • c′)

end for
return c′

Algorithm 3: SampleExtract
Input: c← TGLWEs(µ) = (a1, . . . ,ak, b) ∈ TN,q[X]k+1 with

aj(X) = (aj)0 + (aj)1X + · · ·+ (aj)N−1X
N−1 for 1 ≤ j ≤ k and

b(X) = b0 + b1X + · · ·+ bN−1X
N−1, and where

µ(X) = µ0 + · · ·+ µN−1X
N−1 ∈ PN [X]

Output: c′ ← SampleExtract(c) ∈ TqkN+1

a′ ←
(
(a1)0,−(a1)N−1, . . . ,−(a1)1, . . . , . . . , (ak)0,−(ak)N−1, . . . ,−(ak)1

)
c′ ← (a′, b0)
return c′



692 SoK: Fully Homomorphic Encryption over the [Discretized] Torus

Algorithm 4: Recode
Input: s = (s1, . . . ,sk) ∈ BN,q[X]k with

sj(X) = (sj)0 + (sj)1X + · · ·+ (sj)N−1X
N−1 for 1 ≤ j ≤ k

Output: s′ ← Recode(s) ∈ BkN

s′ ←
(
(s1)0, (s1)1, . . . , (s1)N−1, . . . , . . . , (sk)0, (sk)1, . . . , (sk)N−1

)
return s′

Algorithm 5: KeySwitch
Input: 1) c← TLWEs(µ) = (a1, . . . , an, b) ∈ Tqn+1

with s = (s1, . . . , sn) ∈ Bn

2) ksk = (ksk[i, j])1≤i≤n
1≤j≤`

with ksk[i, j] ∈ Tqn
′+1

where ksk[i, j]← TLWEs′(si • B−j) with s′ ∈ Bn′

Output: c′ ← KeySwitchksk(c) ∈ Tqn
′+1

c′ ← (0, . . . , 0, b)
for i = 1 to n do

((a)1, . . . , (a)`)← g−1(ai)
d′ ← (a)1 • ksk[i, 1]
for j = 2 to ` do d′ ← d′ + (a)j • ksk[i, j]
c′ ← c′ − d′

end for
return c′


	Fully Homomorphic Encryption
	Definitions
	Torus and Torus Polynomials
	Discretized Torus
	Notation
	Complexity Assumptions

	TLWE Encryption
	Description
	Encoding/Decoding
	Implementation Notes

	TGLWE Encryption
	Description
	Encoding/Decoding
	Implementation Notes

	Working over Encrypted Data
	TLWE Ciphertexts
	TGLWE Ciphertexts
	Implementation Notes

	Programmable Bootstrapping
	Gentry's Recryption
	Bootstrapping
	Programmable Bootstrapping
	More Techniques

	Conclusion
	From Private Key to Public Key
	Index to Notations
	Pseudo-Code

