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Abstract. In this paper, a deep-learning based power/EM analysis attack on the
state-of-the-art RSA–CRT software implementation is proposed. Our method is
applied to a side-channel-aware implementation with the Gnu Multi-Precision (MP)
Library, which is a typical open-source software library. Gnu MP employs a fixed-
window exponentiation, which is the fastest in a constant time, and loads the
entire precomputation table once to avoid side-channel leaks from multiplicands.
To conduct an accurate estimation of secret exponents, our method focuses on the
process of loading the entire precomputation table, which we call a dummy load
scheme. It is particularly noteworthy that the dummy load scheme is implemented
as a countermeasure against a simple power/EM analysis (SPA/SEMA). This type of
vulnerability from a dummy load scheme also exists in other cryptographic libraries.
We also propose a partial key exposure attack suitable for the distribution of errors in
the secret exponents recovered from the windowed exponentiation. We experimentally
show that the proposed method consisting of the above power/EM analysis attack,
as well as a partial key exposure attack, can be used to fully recover the secret key of
the RSA–CRT from the side-channel information of a single decryption or a signature
process.
Keywords: Side-channel attack · Deep learning · RSA–CRT · Partial key exposure
attack · Gnu MP · OpenSSL · Botan · Libgcrypt

1 Introduction
1.1 Background
Side-channel attack on RSA–CRT. Modular exponentiation plays an essential role in a
public key cryptosystem (PKC) such as RSA, digital signature algorithm (DSA), and elliptic
curve cryptosystems (ECCs). In RSA decryption/signing and the DSA, the exponent
is usually a secret key and a nonce, respectively. Hence, many side-channel attacks on
RSA aim at directly recovering the exponent from power or electromagnetic (EM) traces.
Among them, single-trace attacks (also known as horizontal attacks) have a significant
advantage over multiple-trace attacks in the context of PKC. This is because PKC is
not frequently executed unlike symmetric primitives, as in hybrid cryptosystems using
key and data encapsulation mechanisms. In fact, many previous studies have developed
single-trace attacks on RSA and ECCs (e.g., [CFG+10,BJPW13,KDKL17]). One major
challenge of single-trace attacks is to estimate the secret exponent with a high accuracy. A
secret exponent estimated through a power/EM trace usually contains errors from noise
included in the trace. However, in attacking an RSA–CRT, a partial key exposure attack
(represented by Heninger–Shacham algorithm [HS09]) is frequently used to recover the
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correct secret exponent from its noisy version. Thus, studies on a single-trace side-channel
attack on RSA–CRT include two major topics: (1) estimating the secret exponent(s) from a
side-channel trace as correctly as possible through a side-channel attack, and (2) removing
the errors in estimated exponents as correctly and robustly as possible through a partial
key exposure attack.

Deep-learning based side-channel attack (DL-SCA). A deep-learning based power/EM
analysis attack, the so-called Deep-Learning based Side-Channel Analysis (DL-SCA) has
received significant attention. Since the pioneering study on DL-SCA was conducted
[MPP16], many DL-SCA related studies have mainly focused on block ciphers, and have
extensively revealed the significant advantage of DL techniques in side-channel attacks, even
on implementations with masking and/or random delay countermeasures [BPS+20,AG01,
DBN+01,CK09]. In addition, some DL-SCAs have been developed for RSA, ECC, and
post-quantum cryptography (PQC) [CCC+19,LLQ+20,PCBP20,UXT+22]. In particular,
DL-SCAs on RSA employ DL techniques for correctly estimating the secret exponent.
In [CCC+19, ZBHV21], Carbone et al. and Zaid et al. showed a DL-SCA on a non-
CRT RSA with several side-channel countermeasures, namely, square-multiply always
exponentiation, and message-, exponent-, and remainder-blinding, under the condition of
an authentication co-processor. In [LLQ+20], Lei et al. also showed a DL-SCA on RSA–
CRT implementation with left-to-right exponentiation, which employs jittering and power
consumption balancing as countermeasures. In addition, in [PCBP20], Perin et al. showed
a non-profiling DL-SCA on ECC with a Montgomery ladder, conditional swap (cswap),
and coordinate re-randomization, which is likely applied to the RSA. These existing
studies demonstrated the capability of a DL-SCA on binary modular exponentiation (i.e.,
left-to-right, square-multiply always, and a Montgomery ladder) with several side-channel
countermeasures. Also note that the existing studies on DL-SCAs have mainly focused on
estimating the secret exponent(s) more correctly, but have not evaluated the entire attack
flow of the full key (i.e., exponent) recovery from a noisy estimated version.

Open-source RSA implementations. The applicability of DL-SCAs remains unclear,
particularly on the practical RSA–CRT implementations included in open-source libraries.
In practice, the Chinese remainder theorem (CRT) is usually employed in RSA decryption
and signing for reducing the computation time. In addition, some modern open-source
cryptographic library implementations employ a windowed exponentiation (i.e., fixed- or
sliding-window exponentiation) owing to its better performance than binary exponentiation.
In fact, the sliding-window is known to be the fastest exponentiation algorithm for imple-
menting the RSA, and the fixed-window is the fastest constant-time algorithm [Koç95].
Moreover, open-source cryptographic libraries are commonly equipped with countermea-
sure(s) against side-channel attacks, such as exponent blinding and a dummy load, for
hiding the temporal window values (i.e., multiplicand addresses). This is mainly because
such libraries (particularly those providing TLS) should be robust to cache side-channel
attacks using Flush+Reload and Prime+Probe [YF14,KHF+19,YGH17,BBG+17]. This
indicates that these open-source library implementations would be (somehow) resistant to
a simple power analysis (SPA)-type attacks, as the above countermeasures and windowed
exponentiations are known to be effective for an SPA prevention. However, it is unclear
how effective DL-SCAs are for these implementations. To the best of our knowledge, only
a few DL-SCAs for practical implementations were evaluated in [WPB19,WCPB20], which
targeted a 4-bit fixed-window EdDSA implementation in WolfSSL, and there is no report
on RSA implementations with windowed exponentiation. Thus, the evaluation of DL-SCAs
on such practical implementations included in major open-source libraries are important
from both academic and practical perspectives.
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RSA–CRT partial key exposure attack. A partial key exposure attack for random bit
leaks was first presented by Heninger and Shacham [HS09] and has been widely employed in
many side-channel attacks including cold boot attacks and cache attacks [HSH+08,BBG+17].
The Heninger–Shacham algorithm recovers the RSA–CRT secret primes and exponents
from partial information of the secret exponents (and optionally primes)1 using a branch-
and-prune method, which discards candidates of unknown bits in order of the least to most
significant bits according to RSA–CRT constraint equations. In [HMM10], Henecka et al.
extended the branch-and-prune attack to the bit flip leak model, where the attacker knows
all bits of the secret exponent (and optionally primes) with random bits flipped with an
error probability. Whereas the Heninger–Shacham algorithm is used for cache attacks
on RSA–CRT with sliding-window exponentiation [BBG+17], as an example, Henecka’s
algorithm is useful for an SPA on the RSA–CRT. One major limitation of Henecka’s
attack is that bit flips (i.e., errors of partial information) are assumed to be uniformly
distributed. If flips are continuous over several bits, their algorithm often erroneously
discards the correct path, which reduces the success rate of attack. Intuitively, Henecka’s
leak model fits the SPA leakage of a binary exponentiation but does not always represent
the leakage of a windowed exponentiation, where window width-wise bit flips may occur.
A more appropriate model should be considered in attacking a windowed exponentiation.

1.2 Our contributions
In this paper, the first single-trace power analysis attack on RSA–CRT using windowed
exponentiation, which is applied in several open-source libraries, is presented with the help
of the DL technique. The contribution of this paper is fourfold.

1. We present a new DL-SCA that can be applied to some modern open-source RSA–
CRT implementations employing a windowed exponentiation and dummy load
scheme for counteracting conventional side-channel attacks. Such a dummy load
scheme is employed for example to counter attacks using the load address [MD99,
IIT02, KDKL17] and Prime+Probe. The main idea of the proposed method is
distinguishing the true and dummy loads in selecting the operand using the DL
technique. Many windowed exponentiation implementations load all operands and
then discard incorrect operations. In other words, the proposed attack reduces the
temporal window value estimation to a 2-classification of true/dummy load, which
yields a significant improvement of estimation accuracy compared to a straightforward
2w-classification, and a reduction of costs to develop and train an NN model. Our
methodology would be applicable to many algorithms/implementations with dummy
loads, as our methodology focuses on only dummy/true load and does not exploit
algorithm/implementation-specific features at all.

2. We propose a new partial key exposure attack algorithm for RSA–CRT with a
windowed exponentiation. The proposed algorithm considers the characteristics of
estimation errors in the above DL-SCA on a windowed exponentiation. The proposed
algorithm employs a double-ended queue with a heuristic-based priority, and in
contrast to the existing algorithms, can recover the full secret exponent under the
condition that a noisy version is estimated through the above DL-SCA. As a result,
the proposed attack consisting of the above DL-SCA and partial key exposure attack
algorithm makes it possible to fully recover the secret primes and exponents (i.e.,
secret key) from only one power/EM trace.

3. We experimentally demonstrate and validate that the proposed attack can recover the
secret key of 1,024- and 2,048-bit RSA–CRT implemented using the open-source Gnu

1In the Heninger–Shacham attack, the attacker knows the random bits of secret exponents and primes,
and has no information about remaining bits.
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Multi-Precision (MP) Library, which is a major open-source library of arithmetic
operations and has been widely adopted. Moreover, GnuMP may be used for building
major open-source TLS implementations such as OpenSSL2 and GnuTLS (and its
requirement library Nettle). In addition, its practicality is outstanding because
of its high performance and because it implements some countermeasures against
SCAs (including cache and SPA-like attacks). Thus, the vulnerability analysis of
Gnu MP is essential for both academic and practical studies. In addition, analyzing
other open-source libraries, we also show that OpenSSL3, Botan, and Libgcrypt
implementations (partially) have the same vulnerability. The source codes used in
our experiment will be publicly available for the third-party reproducibility.

4. We present the randomized dummy load as a possible countermeasure against the
proposed attack. The countermeasure can surely make the proposed single-trace
attack difficult, and cooperate with the conventional ones, such as the exponent
blinding, to prevent multiple-trace attacks (e.g., [HMA+10]).

Responsible disclosure. Although open-source cryptographic software libraries do not
necessarily consider embedded device implementation or power/EM attacks, we have
disclosed our findings to the related library developers.

Repository for our source code. The source codes used in the experiment for our attack
are publicly available at https://github.com/ECSIS-lab/one_truth_prevails.

1.3 Paper organization
The rest of this paper is organized as follows. Section 2 describes RSA–CRT implementation
in open-source libraries. In particular, we will focus on the exponentiation implementation
of Gnu MP Library. Besides, we briefly describe the existing DL-SCA and partial key
exposure attack algorithms on RSA (and ECC). Section 3 presents our proposed attack
on RSA–CRT implementation with windowed exponentiation and dummy load based
countermeasure. Section 4 demonstrates the validity of our method through experimental
attacks. Section 5 discusses the impact of our method on other open-source libraries and the
reason why the proposed DL-SCA successfully works. We also provide a countermeasure
against the proposed DL-SCA. Section 6 concludes the paper.

2 Preliminaries
2.1 RSA–CRT
Let (e,N) be the public key for the RSA cryptosystem, where e is public exponent usually
given by 216 + 1, and N is a public modulus given as a product of distinct primes p and
q (i.e., N = pq). Let (d, p, q) be a secret key, where d is a secret exponent and (p, q) are
secret primes. An RSA encryption/decryption is computed using modular exponentiation.
Textbook RSA encryption and decryption are expressed as

c = me mod N,
m = cd mod N,

respectively, where m is a plaintext, and c is the corresponding ciphertext. In addition,
the RSA signing is expressed as

σ = Hd mod N,
2OpenSSL provides an option to adopt Gnu MP for its backend.
3This denotes the stand-alone OpenSSL without Gnu MP codes.

https://github.com/ECSIS-lab/one_truth_prevails
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where H is a fingerprinting of a signing entity, and σ is the corresponding signature. The
verification of σ examines whether it holds, i.e.,

H = σe mod N.

In this paper, we use a notation for RSA decryption.
RSA implementation usually employs the CRT for computational efficiency. The RSA

decryption with CRT is called RSA–CRT. The RSA–CRT implementation preserves
(p− 1, q − 1, q−1

p , dp, dq) as the secret key in addition to (p, q, d), where q−1
p = q−1 mod p

dp = d mod p− 1 and dq = d mod q − 1, and decrypts a ciphertext c as follows:

cp = c mod p− 1,
cq = c mod q − 1,
mp = cp

dp mod p,
mq = cq

dq mod q,
m = ((mp −mq)qp−1 mod p) · q +mq.

In CRT–RSA decryption, the bit length of the key and operand become half of the textbook
RSA, which allows for a reduction of the computational complexity.

2.2 Windowed exponentiation in open-source implementations
Fixed-window. Fixed-window (also known as 2w-ary) exponentiation is the fastest
constant-time modular exponentiation algorithm. Algorithm 1 is a left-to-right fixed-
window modular exponentiation with a base c, an l-bit exponent d, a modulus N , and
a window size w. In lines 1–4, multiplicands c0, c1, . . . , and c2

w−1, are precomputed.
Lines 7–15 constitute the main loop, and in each of these lines, we apply w squaring followed
by a multiplication. More precisely, line 9 determines the multiplicand according to the
temporal window; lines 10–12 apply w squaring; and line 13 conducts a multiplication
with a multiplicand corresponding to the temporal window value. In the fixed-window
algorithm, the squaring–multiplication operational sequence is not exponent-dependent,
and therefore an attacker that observes the sequence (e.g., SPA/SEMA attacker) can-
not obtain any information regarding the secret exponent in principle. Owing to its
constant-time feature and high performance, many open-source implementations employ a
fixed-window exponentiation. For example, Gnu MP [noa22a,Gra] provides a fixed-window
modular exponentiation with numerous computational optimizations for an arbitrary
precision arithmetic and is occasionally adopted to build a cryptographic library such as
OpenSSL [noa21b], GnuTLS [noa22b], and Nettle [noa22c].

Dummy load to hide temporal window value. The fixed-window exponentiation is
resistant to SPA-like attacks, which rely on an observation of the squaring–multiplication
sequence but cannot obtain information regarding multiplicands. In other words, windowed
exponentiation is vulnerable if the attacker can know the multiplicand value at the
multiplication (i.e., temporal window value b). Some side-channel attacks conducted to
estimate the temporal window value have been reported thus far. Alam et al. [AKD+18]
showed an EM analysis attack that exploits the window value acquisition in a previous
version of OpenSSL. Yarom et al. [YGH17] also showed a cache attack that estimates a
partial value of the secret exponents by recovering a portion of the window value. These
attacks showed that the temporal window value can be leaked through cache side-channel
due to the difference of memory addresses storing the multiplicands. To prevent such
leaks, some fixed-window exponentiation implementations, including Gnu MP, utilize
dummy loading. For the multiplication, all multiplicands are loaded once, and then
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Algorithm 1 Left-to-right fixed-window modular exponentiation
Input: Base c, exponent d = (dl−1dl−2 . . . d0)(2), modulus N , and window size w
Output: int m = cd mod N ;
1: c0 ← 1
2: for t from 1 to 2w − 1 do
3: int ct ← ct−1 · c mod N ; . Precomputation of multiply operands
4: end for
5: int m← 1;
6: int λ← l − 1;
7: while λ ≥ 0 do
8: int µ← max(λ− w + 1, 0);
9: int b← (dλ . . . dµ)(2); . Acquire window value
10: for z from 1 to λ− µ+ 1 do
11: m← m ·m mod N ; . Squaring
12: end for
13: m← m · cb mod N ; . Multiplication
14: λ← µ− 1;
15: end while
16: return m;

only the true multiplicand is preserved and other multiplicands are discarded as dummy
loads. Because such a dummy load scheme performs a load operation for all operands,
it will hide the secret temporal window value from power/EM attackers that attempt to
observe the dependency of the instruction flow on the temporal window value from the
implementation (i.e., offer the resistance to cache attacks exploiting the data dependency,
such as Prime+Probe [LYG+15,YGH17]).

Existing DL-SCA to distinguish true/dummy load. A true/dummy load is sometimes
used as a countermeasure against SCAs, some attacks that detect a true/dummy load
have been reported. Regarding DL-SCA, in [LH20a], Lee and Han demonstrated an attack
on AES software implementation with dummy-load and shuffle based countermeasures.
They designed a multi-label classification CNN to detect dummy Sbox operations followed
by a power analysis, e.g., differential power analysis (DPA), and demonstrated that the
CNN-based detection had an advantage in accuracy over the conventional method depicted
in [LH20b] that adopted a bounded collision detection criterion (BCDC) [DLLM15]. On
the other hand, their multi-label CNN was designed for attacking the specific AES imple-
mentation; therefore, the applicability to other ciphers (i.e., RSA) and implementations
was unclear. In addition, the following key recovery phase depending on the cipher and/or
implementation was not known. Note that the contributions made in this study include
estimating the secret exponents from detected dummy loads and a partial key exposure
attack algorithm that achieves a full key recovery, in addition to an efficient DL-based
dummy load detection.

Remark 1. In addition to a fixed-window exponentiation, some sliding-window implemen-
tations also utilize such a dummy load, probably to prevent the aforementioned leak of
a temporal window value (e.g., Libgcrypt [Pro21]). Although this paper presents the
proposed attack with an application to a Gnu MP fixed-window implementation, our
attack can be applied to some sliding-window implementations through a dummy load
scheme, as discussed in Section 5.2.
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Algorithm 2 Multiplicand load in Gnu MP modular exponentiation [Gra]

Input: Precomputed table (c0, c1, . . . c2w−1), window size w, and window value b
Output: Multiplicand s = cb

1: for i from 0 to 2w − 1 do
2: int mask← MakeBitMask(i, b); . MakeBitMask(i, b) returns (11 . . . 1)(2) if i = b, else 0
3: int s← (s&¬mask) | (ci&mask);
4: end for
5: return s;

Table 1: Modular exponentiation in Gnu MP (when m = c401 mod N and window size
w = 3)

Exponent (binary expression) 110010001
Window value 110 010 001

Squaring (S)/Multiplication (M) SSSM SSSM SSSM
Multiplicand c6 c2 c1

True (T)/Dummy (D) loading DDDDDDTD DDTDDDDD DTDDDDDD

Gnu MP implementation of multiplicand load function. For example, Algorithm 2
shows the multiplicand load function in Gnu MP, and Table 1 shows an example com-
putation of m = c401 mod N . The For loop in lines 1–4 applies multiplicand loading in
ascending index order; that is, the i-th loop loads ci. Line 2 generates a bitmask, the value
of which is set to 1w when the loop count i equals the window value b (i.e., when the loaded
multiplicand is true); otherwise, it is set to 0w. Line 3 then computes the bit-wise AND of
the loaded multiplicand and bitmask to discard the false multiplicands as a dummy load.
In addition, line 3 also computes the bit-wise AND of temporal register s and an inversion
of the bitmask. Line 3 then computes the bit-wise OR of the above two AND values and
stores the result in s. Thus, at the end of the i-th loop, the register s stores ci if it is
a true multiplicand; otherwise, s preserves the current value. Because all precomputed
multiplicands stored in the table are loaded once, this implementation will be resistant
to side-channel attacks such as address-featured power/EM attacks, timing-driven cache
attacks, and Prime+Probe.

2.3 Existing DL-SCA on RSA (or scalar multiplication)
Several studies have reported the use of DL to estimate the timing of the squaring or mul-
tiplication from physical side-channels and thus extract the secret exponent. In [LLQ+20],
Lei et al. reported that a VGG13-based neural network (NN) can estimate the timing of
the squaring and multiplication with a high accuracy from the left-to-right binary expo-
nentiation implemented on a Java card. The target implementation employs a modular
squaring/multiplication hardware with power balancing as an SPA countermeasure, which
makes it difficult to visually distinguish the difference in shape between squaring and
multiplication. Nonetheless, it was shown that the VGG13-based NN can easily distinguish
a squaring or multiplication from a power trace, which implies the potential of DL in
physical side-channel attacks. In addition, in [CCC+19], Carbone et al. showed an attack
on an RSA implementation without CRT using square–multiply always exponentiation,
along with exponent-, message-, and remainder-blinding. Their attack applied DL to
estimate the register address where the multiplication result is stored, which allows for
an exponent recovery. In [ZBHV21], Zaid et al. improved DL-SCA on RSA (the same
implementation as Carbone et al.) and ECC by exploiting ensemble learning. Moreover,
in [PCBP20], Perin et al. showed a non-profiling DL-SCA applied to scalar multiplication.
Their method achieved a correct classification through an iterative approach, in which the
traces are initially labeled using a clustering-based method, and then repeatedly trained
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and re-labeled through the NN itself.
The existing DL-SCAs have mainly focused on any type of binary exponentiations (or

scalar multiplication) because as they identified the timing of the squaring or multiplication
from side-channel trace(s). The applicability of DL to (practical) windowed exponentiation
is less evaluated in the literature.

In [WPB19,WCPB20], Weissbart et al. developed a machine learning based SCA on
EdDSA in WolfSSL, which employed a 4-bit fixed-window scalar multiplication (whereas
they also targeted another implementation with Montgomery ladder). They demonstrated
that a CNN was the most advantageous in attacking the implementation among the tested
machine learning techniques, and achieved a full-key recovery of EdDSA. To the best of our
knowledge, they conducted the first report on DL-SCA on windowed scalar multiplication.
However, note that the WolfSSL implementation performs a dummy load for point addition
operand without any countermeasure, which makes the 2w-classification easier than other
open-source implementations considered in this study. In fact, Weissbart et al. reported
that the signal-to-noise ratio (SNR) of acquired trace is sufficiently high for machine-leaning
based SCAs. In addition, there is no report on DL-SCA on RSA–CRT implementation
with windowed exponentiation in the literature. A modular multiplication for RSA is
implemented differently from a point addition for EdDSA; therefore, the applicability of
the existing 2w-classification-based DL-SCA to RSA is non-trivial.

2.4 RSA–CRT partial key exposure attack
2.4.1 Heninger–Shacham branch-and-prune attack

A partial key exposure attack is an algorithm that recovers the entire RSA–CRT secret
key from partial secret key bits, which are typically given by a side-channel attack (e.g.,
SPA, cache attack, and cold boot attack). The pioneering study of Heninger and Shacham,
presented in 2009 [HS09], exploits the fact that a set of RSA–CRT keys satisfies the
following relations:

edp = 1 + kp(p− 1), (1)
edq = 1 + kq(q − 1), (2)

where kp and kq are integers. The pair of integers (kp, kq) take only 216 values in total
when the public exponent e is a typical value of e = 216 + 1. Because an exhaustive search
of 216 candidates is sufficiently feasible, we consider (kp, kq) to be known in this paper,
as in previous studies. The Heninger–Shacham algorithm uses a leakage model in which
the secret key (p, q, dp, dq) are known, the remaining bits are unknown, and all known
bits are completely correct. Let a[λ] be the λ-th bit of an integer a. In the above leakage
model, the attacker initially knows that dp[λ] and dq[λ] take a value of either “0,” “1,” or
“unknown” for each λ (0 ≤ λ ≤ l − 1). It is known that the Heninger–Shacham algorithm
successfully recovers the entire secret key if more-than 50% of the secret key bits are
initially obtained [PPS12].

The Heninger–Shacham algorithm estimates the key candidates and discards incorrect
key candidates by a branch-and-prune method, from the least significant bit to the upper
bits. Let a(λ) be the value up-to the λ− 1th bit of a and let τ(a) be the consecutive zeros
from the least significant bit of a (i.e., the number of trailing zeros). These are formally
defined as

a(λ) =
λ−1∑
j=0

2ja[j], (3)

τ(a) = log2 gcd(2l, a). (4)
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The Heninger–Shacham algorithm exploits the following equations:

p[λ] + q[λ] = (N − p(λ)q(λ))[λ] mod 2, (5)
dp[λ+ τ(kp)] + p[λ] = (kp(p(λ) − 1) + 1− ed(λ+τ(kp))

p )[λ+ τ(kp)] mod 2, (6)
dq[λ+ τ(kq)] + q[λ] = (kq(q(λ) − 1) + 1− ed(λ+τ(kq))

q )[λ+ τ(kq)] mod 2, (7)

which are derived from Eqs. (1) and (2) according to Hensel’s lemma. Define Slice[λ] as
the tuple of the solution of Eqs. (5)–(7) for λ, which is represented by

Slice[λ] = (p̂[λ], q̂[λ], d̂p[λ+ τ(kp)], d̂q[λ+ τ(kq)]), (8)

where d̂p[λ] is a candidate for dp[λ], represented by a 0 or 1 (which is the same for d̂q, p̂,
and q̂). Note that Slice[0] is determined from public information.

Equations (5)–(7) have two solutions for λ given a sequence of Slice[λ− 1], Slice[λ− 2],
. . . , and Slice[0], Therefore, we can construct a binary branch tree whose node at a
depth λ is associated with a candidate for Slice[λ]. We then discard (i.e., prune) the
edges/nodes with incorrect candidates that contradict the obtained bits of the secret key.
The Heninger–Shacham algorithm constructs and prunes the binary branch tree from
Slice[0] to Slice[l − 1] in a depth-first manner.

Let d̄p and d̄q be the leakage (i.e., obtained value) of secret exponents, where d̄p[λ] and
d̄q[λ] are given by either a 0, 1, or unknown value. Algorithm 3, which employs a stack S,
describes the Heninger–Shacham attack which recovers the entire secret key (p, q, dp, dq)
from (d̄p, d̄q). In line 3, the root of the binary branch tree Slice[0] is pushed to the stack
S because it is determined according to public information. Lines 4-17 constitute the
main loop of a depth-first branch-and-prune search. Line 5 pops the parent node from the
stack S. Line 11 generates a candidate child nodes with a slice that satisfies Eqs. (5)–(7).
Line 13 then examines the consistency of the generated slice with (d̄p, d̄q). If the slice
candidate is inconsistent with (d̄p[λ], d̄q[λ]), we discard the candidate (i.e., prune the edge)
and move to search other paths; otherwise, we push the candidate to the stack S and
continue to search the path. This algorithm terminates and returns the stack (i.e., a path
of slices) as the secret key if the most significant bits are determined (i.e., λ = l − 1).

For the feasibility, the unknown bits in the obtained secret key beforehand should
be randomly distributed. The computational and memory complexity increases based
on the maximum number of consecutive unknown bits because we should preserve both
slice candidates for a parent node until we find the inconsistency. In other words, if there
is a long chunk of unknown bits, the brunch-and-prune algorithm will be infeasible. A
Coppersmith-type attack should be used if the unknown bits are given as long chunk(s)
rather than randomly distributed [Cop97].

2.4.2 Henecka et al.’s secret key recovery from noisy leakage

The secret key information obtained by side-channel attacks is not always correct, mainly
owing to the noise included in side-channel information (particularly in the case of a power
analysis). This means that the obtained secret key bits frequently contain errors, such as
a bit flip. The Heninger–Shacham algorithm is inapplicable of achieving such a leakage
model because it assumes that the obtained secret key bits are always correct. Henecka
et al. extended the partial key exposure attack of Heninger and Shacham to recover the
RSA–CRT secret key from a partial key containing bit flips at random positions [HMM10].
Let t be a non-negative integer determined for the attack according to the estimated
bit flip probability. Henecka et al.’s algorithm guesses the Slice branches in a t-bit-wise
manner, and then prunes the t-bit-wise candidates that will contain more bit flips than
threshold C, which is determined according to the significance level regarding the bit
flip probability and t (where the Heninger–Shacham algorithm corresponds to t = 1).
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Algorithm 3 Heninger–Shacham branch-and-prune algorithm [HS09]
Input: public key (N, e), bit fractions of secret exponents (d̄p, d̄q), length of secret parameter l,

and integer (kp, kq)
Output: secret key (p, q, dp, dq)
1: Initialize stack S;
2: int λ← 0;
3: Push Slice[0] to S;
4: while length(S) > 0 do
5: Pop parent_Slice from S;
6: λ← current_bit(parent_Slice); . λ now indicates parent_Slice’s bit position
7: if λ = l − 1 then
8: return Slice[0], Slice[1], . . . , Slice[l − 1] . Corresponds to (p, q, dp, dq)
9: end if
10: λ← λ+ 1 . λ now indicates child_Slice’s bit position
11: Branch parent_Slice to get candidates of child_Slice; . Using Eqs. (5)–(7)
12: for all child_Slice candidates do
13: if (d̄p[λ], d̄q[λ]) have no value or are consistent with candidate then
14: Push Slice[λ] to S;
15: end if
16: end for
17: end while

More concretely, Henecka et al.’s algorithm considers a node as t-consecutive Slices
(i.e., Slice[λt],Slice[λt+ 1], . . . ,Slice[(λ+ 1)t− 1]). The algorithm then evaluates the bit
inconsistency between the branch node and the obtained secret key (i.e., how many Slice
bits are inconsistent with the corresponding obtained bits) to discard incorrect candidates
if the number of inconsistent bits exceeds a threshold parameter C corresponding to
the significance level. This means that the search is applied while allowing errors below
threshold C and preserving such nodes as candidates. However, as with the Heninger–
Shacham algorithm, Henecka et al.’s algorithm assumes that the bit flips are uniformly
distributed. If the obtained secret key contain more or less consecutive bit flips, the true
solution may be discarded because it is likely to contain more wrong bits than the threshold
C in such a case4. In summary, the algorithm will fail if the bit flips are not uniformly
distributed. In fact, the bit flips estimated from side-channel information of the windowed
exponentiation are not uniformly distributed, as discussed in the following sections.

3 Proposed attack

3.1 Overview
In this section, we present the proposed attack on an RSA–CRT implementation equipped
with a windowed exponentiation using a dummy-load based countermeasure. Namely, we
present (1) a single-trace power-analysis method to obtain secret exponent(s) through a
multiplicand estimation by means of a DL technique and (2) a partial key exposure attack
suitable to a partial key leakage obtained from windowed exponentiation through a power
analysis.

4This indicates that the number of wrong bits in the correct candidates is in the rejection area in
statistically testing whether the random bit flip follows the binomial distribution with the bit flip probability.
To avoid such a false-positive, we should set the significance level as small as possible (i.e., set t as great as
possible); however, it results in an exponential growth of computational cost. Note that, if the assumed bit
flip distribution is far different from the true distribution, the confidence interval is no longer meaningful
and the results frequently become false.
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3.2 Proposed DL-SCA to estimate secret exponents
Difficulty for existing DL-SCAs in attacking windowed exponentiation. Conventional
DL-SCA studies on PKC have thus far targeted binary exponentiation [CCC+19,LLQ+20]
(or scalar multiplication [PCBP20]). They have basically used an NN to distinguish whether
the secret exponent bit is 0 or 1. Their simple extension to windowed exponentiation
may be to use a 2w-classification5 to identify which the temporal window value is from
0 to 2w−1. However, such a 2w-classification is more difficult than a 2-classification in
practice. Moreover, several open-source windowed implementations have already employed
a dummy load scheme to hide the temporal window value in order to prevent such a
direct 2w-classification. To validate our statement, we experimentally confirmed that
2w-classification with w = 4 and 5 only obtained the correct multiplicand with an accuracy
of at most 11.53% and 3.624%, respectively6.

Our basic idea. By contrast, the proposed DL-SCA exploits the dummy load scheme
that hides the temporal window value. The proposed attack focuses on the fact that the
loading of multiplicands is conducted in a deterministic order from c0 to c2w−1. For a
temporal window value b, the true load is applied at the b-th loading, and all remaining
loads are dummies. This means that the attackers can identify the temporal window
value b if they can know the timing of the true load operation from a side-channel trace.
From the above idea, we utilize a 2-classification NN that distinguishes true and dummy
loads, which resolves the temporal window value estimation into a 2w times 2-classification
problem rather than a 2w-classification. Such a 2-classification NN will achieve a higher
accuracy than 2w-classification. Moreover, because there is no known countermeasure that
protects true and dummy loads from a distinguish attack, the side-channel traces of true
and dummy loads will differ from each other in nature. Note that, in the following, we
only describe the method used to estimate the temporal window value(s) and not the
entire secret exponent. However, the secret exponent can be easily and uniquely reversed
from the temporal window values for both sliding- and fixed-window exponentiations. For
example, see [GPPT15] for the detailed reversing procedure.

NN training. The proposed DL-SCA is a profiling attack. As with existing profiling
DL-SCAs, we first train an NN using a profiling device, which is the same type of device
as the target device. We obtain a set of labeled side-channel traces during true and
dummy loads from the profiling device and use it to perform a supervised NN training.
Let β ∈ {0, 1} be the label, which represents the true load and the dummy load with
β = 1 and β = 0, respectively. Let q(β | X; θ̂) be the trained NN, where X is a random
variable of side-channel trace during loading and θ̂ is a trained NN parameter. The trained
NN q(β | X; θ̂) is an approximation of the conditional probability distribution of true
and dummy loads given a side-channel trace of loading p(β | X); therefore, given a trace
x, the trained NN outputs a probability that the loading corresponding to x is a true
load as q(1 | x; θ̂) (and, conversely, the probability for a dummy load as q(0 | x; θ̂)). It is
worth noting that there is a difference between profiling and target devices; however, a DL
technique addressing such a difference has been known [CZLG21].

5For the case of sliding-window exponentiation, 2w−1-classification is needed in attacking.
6The experimental setup and NN architecture/hyperparameters for 2w-classification are kept the

same as those in used Section 4, excluding the number of outputs at the output layer. Note that the
2-classification implemented in the proposed attack successfully estimated the temporal window values
with more-than 99% accuracy using the same NN model; while the NN model suffered from an insufficient
model capacity for the 2w-classification. This result implies that leveraging a 2w-classification to directly
estimate a temporal window value is a more difficult task than the 2-classification. This also indicates
that reducing the window value estimation problem to a 2-classification in the proposed attack greatly
reduces the development and training costs for an NN model, compared with a 2w-classification model.
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Algorithm 4 Proposed DL-SCA on fixed-windowed exponentiation

Input: Side-channel trace x̄ = ((x(j)
i )2w−1

i=0 )n−1
j=0 , and trained NN q(β | X; θ̂)

Output: Sequence of temporal window values b0, b1, . . . bn−1
1: for j = 0 to n− 1 do
2: int bj ← arg max

i

q(1 | x(j)
i ; θ̂);

3: end for
4: return b0, b1, . . . bn−1;

Temporal window value estimation using profiled NN. Let x(j)
i denote the side-channel

trace for the i-th loading at the j-th multiplication. Suppose that the exponentiation
performs n multiplications (excluding squaring) in the main loop (n = bl/wc for a fixed-
window), and the attacker can know the timings of the multiplications from a side-channel
trace. Algorithm 4 describes an attack that estimates temporal window values using a
profiled NN q(β | X; θ̂). Here, the input is given as a side-channel trace of the entire
exponentiation computation (denoted by x̄ = ((x(j)

i )2w−1
i=0 )n−1

j=0 ), which consists of partial
traces for each load x(j)

i . Algorithm 4 iteratively estimates the temporal window values in
ascending order. Figure 1 is a graphical illustration of the j-th temporal window value
estimation in Algorithm 4. For each temporal window value estimation, we apply 2w
inferences for each x(j)

i (i ∈ {0, 1, . . . , 2w − 1}) using the trained NN. This indicates that
we compute the probability (i.e., confidence rate) for all hypothetical temporal window
values being true from the corresponding side-channel trace. We then determine the most
likely temporal window value as that with the maximum confidence rate as follows:

bj = arg max
i

q(1 | x(j)
i ; θ̂), (9)

where the NN inference q(1 | x(j)
i ; θ̂) corresponds to the confidence rate for the i-th loading

at the j-th multiplication7.

3.3 Proposed RSA–CRT partial key exposure attack
Our new RSA–CRT partial key exposure attack is designed to recover a noisy exponent
of windowed exponentiation. (Note here that the attack can be easily extended to a
sliding-window by inferring the position and size of temporal windows from a squaring–
multiplication sequence like [BBG+17].) Our algorithm assumes that the errors in the
estimated temporal window values are uniformly distributed with an error probability.
In addition, according to Algorithm 4, the exponent of a fixed-window exponentiation is
estimated based on the temporal window value in a w-bit-wise manner. Consequently, the
w-bit-wise error(s) exist in an estimated partial exponent value if it is incorrect. In contrast,
Henecka et al.’s attack model, which assumes that bit flips are uniformly distributed, does
not appropriately represent this leakage. To tolerate consecutive bit errors, Henecka’s
algorithm requires an intentionally large Slice size t or threshold C. This results in an
exponential growth in the number of preserved candidates because 2t child candidates
will be branched for a given parent candidate. In addition, if the threshold C is set to
a high value, extra 2t child candidates will occur for each remaining candidate. Hence,
Henecka’s algorithm will not always be feasible for a (noisy) exponent estimated from
temporal windowed values.

Our algorithm introduces a priority-based strategy to branch nodes such that the
candidate nodes contain more matches to the obtained secret exponents under the condition

7Formally, an argmax function returns a set consisting of augments of maximization. Here, we consider
the argmax to return an index integer because the cardinality of arg maxiq(1 | x(j)

i ; θ̂) is almost surely
one.
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Figure 1: Secret exponent recovery by proposed DL-SCA.

of leakage from a windowed exponentiation. First, we focus on the empirical fact that
incorrect child nodes should have fewer matches to the exponent value obtained in advance
by SCA. In the conventional depth-first search, all candidates (even that are not likely to
be correct) are preserved and examined until they are pruned, regardless of the condition
that we can find more likely-correct candidates by a heuristics. Our algorithm prioritizes
such likely-correct candidates. Let x(α,β) be a chunk from the α-th to β-th bits of variable
x and Slice(0,λ−1) be a search path from the least significant bit to the λ− 1-th bit of Slice.
That is,

x(α,β) = (x[α], x[α+ 1], ..., x[β]), (10)

Slice(0,λ−1) = (p̂(0,λ−1), q̂(0,λ−1), d̂p
(0,λ−1)

, d̂q
(0,λ−1)

). (11)

First, the basic strategy of our algorithm is to perform branch-and-prune with Eqs. (5)-
(7), and then compare candidates and the obtained exponent for each window width w.
The priorities of candidates are determined by the comparison results, i.e., the number
of window-wise parts providing matches between the obtained exponent value and the
candidates. That is, one term in our cost function is simply expressed as the number
of w-bit-wise matches between the obtained exponents (i.e., keys) (d̄p and d̄q) and the
candidates (d̂p and d̂q). Let Iλ−w be the match value of the λ− w + 1-th w bit from the
lower λ− w + 1-th bit to the λ-th bit as follows:

Iλ−w = δ
d̄p

(λ−w+1,λ)
,d̂p

(λ−w+1,λ) + δ
d̄q

(λ−w+1,λ)
,d̂q

(λ−w+1,λ) , (12)

where δ denotes Kronecker delta. Iλ−w = 2 means that both candidates match with the
corresponding obtained exponents. Iλ−w = 1 represents that one of the candidates matches
with the corresponding obtained exponent. When Iλ−w = 0, there is no match.
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In addition, we introduce the following three conditions for prioritization: (1) to
prioritize candidates that match with the obtained key values in the last three w-bit-wise
nodes, (2) to penalize (i.e., postpone) candidates that are inconsistent with the obtained key
values in the last three w-bit-wise nodes, and (3) to further prioritize candidates that match
with the obtained key values in the last four w-bit-wise nodes. More precisely, Condition
(1) is satisfied when the three match values Iλ−w, Iλ−2w and Iλ−3w for Slice(λ−w+1,λ),
Slice(λ−2w+1,λ−w), and Slice(λ−3w+1,λ−2w) are all equal to 2. Conversely, Condition (2) is
satisfied when the above three match values are all equal to 0. Condition (3) is satisfied
when the four match values Iλ−w, Iλ−2w, Iλ−3w and Iλ−4w are all equal to 2. The reason
for using at least three match values (i.e.the values of current and two prior positions)
is that a w-bit-wise error affects two adjacent windows in our algorithm when τ(kp) or
τ(kq) is equal to or more than 1. As a result, in order to evaluate the match/mismatch
accuracy between the 2w-bit-wise candidates and the corresponding obtained keys, we
need to evaluate at least successive three comparison results.

We first give the priority to candidates that satisfy Condition (1), and then give the
greater priority to the candidate that further satisfy Condition (3) as almost definitely to
be correct. On the other hand, if there is no candidate Slice(λ−w+1,λ) having Iλ−w = 2,
Condition (1) is not applicable, and incorrect candidates may continue to be branched
during the next two branches for finding Slice(λ+1,λ+w) and Slice(λ+w+1,λ+2w). Condition
(2) is used to avoid branching incorrect candidates in succession; that is, assuming that the
w-bit-wise errors of the obtained key (d̄p and d̄q) are uniformly and sparsely distributed, we
can consider that paths where candidates do not match the obtained key consecutively is
unlikely to be correct, and penalize (i.e., postpone) it. From the above ideas, our heuristics
defines the cost function of a search path Slice(0,λ−1) by Cλ as follows:

C0 = 0,
Cλ = Cλ−w + (2− Iλ−w) + h1 + h2 + h3,

(13)

where the sub-functions h1, h2 and h3 correspond to Conditions (1),(2) and (3), respectively.
These are given as

h1 =
{
−1 Iλ−w = Iλ−2w = Iλ−3w = 2
0 else

, (14)

h2 =
{
P Iλ−w = Iλ−2w = Iλ−3w = 0
0 else

, (15)

h3 =
{
−P Iλ−w = Iλ−2w = Iλ−3w = Iλ−4w = 2
0 else

, (16)

respectively. Here, P is the cost penalty parameter.
Algorithm 5 shows the proposed partial key exposure attack algorithm with a priority

queue Q. In the proposed algorithm, the branch-prune of Slice is performed by grouping
together w-bit units (i.e., window size). First, line 2 branches the first w bits, and line 4
calculates the cost given by our heuristics. Here, the branched Slice(0,w−1) are pushed to
Q according to their cost Cw. Note that Q always contains the candidate with the lowest
cost at the beginning. The main loop starting from line 7 then branches the candidates in
a w-bit-wise manner. Line 8 pops the Slice_path (i.e., Slice(0,λ−1) if the length is λ) from
Q. If the popped Slice_path reaches the most significant bit (i.e., λ = l), then line 11
returns the resulting path as the recovered key (p, q, dp, dq). Otherwise, line 13 branches
the following w-bit path from the Slice_path, namely, branches Slice(λ,λ+w−1). Line 15
then computes the cost Cλ+w for the candidate Slice(0,λ+w−1) and pushes it to Q for the
subsequent computation.
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Algorithm 5 Proposed heuristic based partial key exposure attack algorithm
Input: Public key (N, e), secret exponents with window-wise error (d̄p,d̄q), length of secret

parameter l, and integer (kp, kq)
Output: Secret key (p, q, dp, dq)
1: Initialize priority queue Q;
2: Branch Slice(0,w−1) candidate from Slice[0] to Slice[w − 1];
3: for all Slice(0,w−1) candidates do
4: int Cw ← calc_cost(C0, d̄p

(0,w−1)
, d̄q

(0,w−1)
, Slice(0,w−1)); . According to (13)

5: Push Slice(0,w−1) to Q with cost Cw . Note that first element of Q has smallest cost
6: end for
7: while true do
8: list Slice_path← DEQUEUE(Q);
9: int λ← length(Slice_path); . Note that Slice_path expresses Slice(0,λ−1)

10: if λ = l then
11: return Slice_path; . Corresponds to (p, q, dp, dq)
12: end if
13: Branch Slice(λ,λ+w−1) from Slice_path;
14: for all Slice(λ,λ+w−1) candidates do
15: Cλ+w ← calc_cost(d̄p

(0,λ+w−1)
, d̄q

(0,λ+w−1)
, Slice(0,λ+w−1));

16: Push Slice(0,λ+w−1) to Q with cost Cλ+w;
17: end for
18: end while

Algorithm completeness. The proposed algorithm is clearly complete. Henecka et al.’s
algorithm employs two conditions for pruning: (i) Eqs. (5)–(7) and (ii) the bit inconsistency
between the branched node and the key leakages. Pruning using condition (i) leaves the
algorithm complete because any candidate that does not satisfy Eqs. (5)–(7) is clearly not
the correct solution. However, pruning using condition (ii) compromises the completeness
of the algorithm; here, if the bit flips are concentrated within a certain range of the obtained
key, the correct solution in that range will erroneously satisfy the pruning condition, i.e.,
exceed the threshold C of bit inconsistency with the obtained key. By contrast, the
proposed algorithm has completeness because it only uses condition (i) for pruning.

Algorithm complexity. The proposed algorithm applies the following four operations to
the branched nodes:

1. Keeps the cost of the branched nodes.

2. Reduces the cost of the branched nodes.

3. Adds the cost of the branched nodes.

4. Penalizes the cost of the branched nodes.

For branched nodes, there may be a node that matches (d̄p, d̄q). The algorithm applies
operation 1 or 2 to the node, and thus the node becomes the parent in the next loop. If there
is such a node (i.e.a node that matches (d̄p, d̄q)), then the algorithm applies operation
3 or 4 to all other nodes, that is, postpones the nodes8. Therefore, if the w-bit-wise
errors in (d̄p, d̄q) are uniformly and sparsely distributed, postponing the incorrect nodes by
operations 3 and 4 acts as a pseudo-pruning. Hence, if the number of errors is ε, the number

8According to [HS09,HMM10], every node branched by an incorrect partial solution includes randomly
chosen bits. Under this conjecture, the probability that the incorrect branched node(s) matches with the
error of leakage (d̄p, d̄q) is 1/22w for window width w, which is small enough. Therefore, if one of the
branched node matches the (d̄p, d̄q), the other nodes should be discarded or greatly penalized in practice.
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of nodes to be branched can be linearly suppressed to O(ε)9. Note that, although our
algorithm could suffer from a consecutive error caused during the temporal window value
estimation, such phenomenon is unlikely to occur when the errors are uniformly distributed.
Namely, although a consecutive error in estimating temporal window values increases the
time and memory complexities exponentially by its length, the occurrence probability of
consecutive errors is decreased exponentially by its length due to the assumption that errors
are uniformly distributed. Hence, the proposed algorithm would be sufficiently feasible if
we can achieve a sufficient accuracy in estimating temporal window values. Moreover, our
algorithm works even without knowing the maximum number of consecutive errors.

4 Experiment evaluation

4.1 Validation of proposed DL-SCA

4.1.1 Experiment setup

We validate the proposed DL-SCA through an experiment attack conducted on an RSA–
CRT implementation constructed using the Gnu MP library. We constructed RSA–CRT
software using the modular exponentiation function mpz_powm_sec provided by Gnu MP
(version 6.1.2)10, and implemented it on an ARM Cortex-M4 MCU equipped on an
STM32F407G-DISC1 board. We set the RSA–CRT key length to 1,024- and 2,048-bits.
The window sizes of the fixed-window method are w = 4 and w = 5 for 1,024- and
2,048-bits, respectively, according to the macro in Gnu MP. We built the Gnu MP library
using the arm-none-eabi-gcc compiler (version 10-2020-q4-major). We acquired the EM
traces using an EM probe Langer EMV-Technik RF-R 50-1 and Keysight DSOS404A
oscilloscope with a sampling rate of 400,MSa/s and an amplitude resolution of 8-bits. For
NN training, we acquired 61,440,000 EM traces during the true/dummy loading (i.e., line
3 of Algorithm 2) for each key length. For testing the trained NN, we acquired the EM
traces of 48 and 100 modular exponentiations with different secret key for 1,024- and
2,048-bit RSA–CRT, respectively.

Regarding the NN architecture, we extended a CNN architecture in ASCAD [BPS+20],
which is a common NN architecture in DL-SCA, such that it achieved a sufficiently large
model capacity with respect to the computational costs. Then, we conducted multiple
experimental attacks using the NN architecture with several different hyperparameters;
finally we experimentally determined the hyperparameter values that yield the highest
accuracy. Table 2 lists in detail the used NN architectures, which consists of six convolu-
tional layers followed by two fully connected layers. The loss function was the binary cross
entropy, learning rate was 0.00005, batch size was 2, 000, and numbers of epochs were
25 and 5 for the 1,024- and 2,048-bit RSA–CRT, respectively. Python 3.7, CUDA 11.0,
cuDNN 7.5.1, and Tensorflow 2.4.1 were used to construct the programming environment.
Note that the primary purpose of our experiment is to demonstrate the proof-of-concept
for the proposed attack and not necessarily to investigate efficient NN architecture(s) for
DL-SCA on public-key cryptography. Further investigation for efficient NN architectures
in DL-SCAs should be addressed in future studies, as several existing researches address
this concern (e.g., [ZBHV21]).

9On the other hand, if an error exists in close proximity, the postponement of incorrect nodes does not
work as pseudo-pruning, and extra branching of such nodes may be required. In this case, if the number
of errors in close proximity is ε?, then the number of nodes to be branched is O(2wε? ).

10The algorithm is identical to the latest version 6.2.1.
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Table 2: NN architectures.
(a) For 1,024-bit key length.

Layer Output shape
input (None, 1000, 1)

normalization (None, 1000, 1)
conv1d (None, 1000, 16)

batch_normalization (None, 1000, 16)
re_lu (None, 1000, 16)

max_pooling1d (None, 500, 16)
conv1d (None, 500, 16)

batch_normalization (None, 500, 16)
re_lu (None, 500, 16)

max_pooling1d (None, 250, 16)
conv1d (None, 250, 32)

batch_normalization (None, 250, 32)
re_lu (None, 250, 32)

max_pooling1d (None, 125, 32)
conv1d (None, 125, 32)

batch_normalization (None, 125, 32)
re_lu (None, 125, 32)

max_pooling1d (None, 62, 32)
conv1d (None, 62, 64)

batch_normalization (None, 62, 64)
re_lu (None, 62, 64)

max_pooling1d (None, 31, 64)
conv1d (None, 31, 64)

batch_normalization (None, 31, 64)
re_lu (None, 31, 64)

global_max_pooling1d (None, 64)
dense (None, 128)
re_lu (None,128)
dense (None, 64)
re_lu (None,64)
output (None,1)

(b) For 2,048-bit key length.

Layer Output shape
input (None, 1500, 1)

normalization (None, 1500, 1)
conv1d (None, 1500, 32)

batch_normalization (None, 1500, 32)
re_lu (None, 1500, 32)

max_pooling1d (None, 750, 32)
conv1d (None, 750, 32)

batch_normalization (None, 750, 32)
re_lu (None, 750, 32)

max_pooling1d (None, 375, 32)
conv1d (None, 375, 64)

batch_normalization (None, 375, 64)
re_lu (None, 375, 64)

max_pooling1d (None, 187, 64)
conv1d (None, 187, 64)

batch_normalization (None, 187, 64)
re_lu (None, 187, 64)

max_pooling1d (None, 93, 64)
conv1d (None, 93, 128)

batch_normalization (None, 93, 128)
re_lu (None, 93, 128)

max_pooling1d (None, 46, 128)
conv1d (None, 46, 128)

batch_normalization (None, 46, 128)
re_lu (None, 46, 128)

global_max_pooling1d (None, 128)
dense (None, 160)
re_lu (None,160)
dense (None, 96)
re_lu (None,96)
output (None,1)

4.1.2 Results

First, the NN accuracies to distinguish true and dummy loads from an EM trace were
0.9994 and 0.9966 for 1,024- and 2,048-bit RSA–CRT, respectively. Then, in accord
with Eq. (9), we evaluated the accuracy of our temporal window value estimation. As a
result, we confirmed that the estimation using the trained NN achieved test accuracies
of 99.80% and 99.86% for the 1,024- and 2,048-bit RSA–CRT, respectively. In addition,
we also evaluated how many misestimations are included in a single-trace attack (i.e.,
128 and 205 temporal window value estimations on one modular exponentiation for the
1,024- and 2,048-bit RSA-CRT, respectively). We confirmed that one single-trace attack
contains no more than 2 or 3 errors of temporal window value estimations out of 128 and
205 estimations, respectively. Moreover, 38 single-trace attacks out of 48 contained no
estimation errors for the case of the 1,024-bit RSA-CRT. For the 2,048-bit RSA-CRT, 77
single-trace attacks out of 100 contained no estimation errors. The rates of no estimation
errors indicate that the success rates of a full secret exponent recovery were 79.17% and
77% for 1,024- and 2,048-bit RSA-CRT, respectively. Table 3 summarizes the results. We
confirm from the results that the secret exponents can be estimated with a high accuracy
even in the case of 2,048-bit RSA–CRT only when applying the proposed DL-SCA.
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Table 3: Estimated results of secret exponents (success rate).

Bit length
Class T/D load Window value Exponent

1,024-bit 99.94% 99.80% 79.17%
2,048-bit 99.66% 99.86% 77.00%

4.2 Validation of proposed partial key exposure attack
4.2.1 Experiment setup

To evaluate the computational complexity and success rate of our algorithm, we conducted
an experimental attack on 50 random secret keys for both 1,024- and 2,048-bit RSA–
CRT cases. The generated RSA–CRT secret keys contain error(s) at random position(s),
which corresponds to the error in estimating the temporal window values when applying
Algorithm 4. Namely, because we evaluate the attack on an Gnu MP fixed-window
implementation in this section, an error is given by a w-bit-wise random flip at a random
position of multiplication. The algorithm code was written in Python 3.8 and executed
on a server with Xeon Gold 6144 and 768GiB of memory. We set the penalty parameter
P = 10 for h2 and h3 of Algorithm 5 (i.e., Eq.(15) and Eq.(16)).

4.2.2 Results

Figures 2 and 3 are the box plots of the execution time and the queue length for the different
numbers of w-bit-wise errors in a logarithmic scale for 1,024- and 2,048-bit CRT–RSA,
respectively. We confirmed that a full key recovery is feasible even if 10 and 7 errors
are included in the leakage (i.e., exponents estimated using DL-SCA) in the cases of
1,024- and 2,048-bit RSA–CRT, respectively. In addition, the median of computational
complexity will grow at a less than exponential rate with the number of errors (note that
the vertical axis is in a logarithmic scale). This indicates that the proposed algorithm will
efficiently postpone incorrect candidates by exploiting the characteristics of errors included
in the obtained key. By contrast, the worst-case complexity grows exponentially with
the number of errors. This will occur because the proposed algorithm cannot efficiently
postpone incorrect candidates if errors are crowded within a short range. More precisely,
for consecutive or close errors, the proposed algorithm requires an almost brute force
search for slice candidates over the existent range, which results in an exponential growth
in the computational time. In fact, the proposed algorithm assumes that the window
width-wise errors are uniformly distributed. If the error distribution has far from a uniform
distribution, the proposed algorithm requires a higher complexity, similar to Henecka’s
algorithm.

Recall that the maximum number of errors included in the estimated exponent described
in Section 4.1.2 was no more than two and three for 1,024- and 2,048-bit RSA–CRT,
respectively. These results confirm that the combination of the proposed DL-SCA and a
partial key recovery algorithm are sufficiently feasible even under the worst case scenario.
In summary, we can confirm that the proposed single-trace attack can practically recover
a full secret key from state-of-the-art implementations with a windowed exponentiation
and side-channel countermeasure (i.e., a dummy load scheme herein).

5 Discussion
5.1 Comparison to conventional major attacks without DL
Big Mac attack is one of the major and pioneering horizontal attacks on RSA, which
detects collisions of multiplicands from power traces of multiplications in order to estimate
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Figure 2: Recovery result for 1,024-bit key.
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Figure 3: Recovery result for 2,048-bit key.

the secret exponent of sliding window [Wal01]. For the collision detection, Big Mac attack
usually averages a set of power consumption traces depending on one of the operands in
multi-precision multiplication. Although its validity was confirmed by a simulation in the
literature [Wal01], its applicability should always be evaluated with a real device. This is
because Big Mac attack is not successful if the noise in power traces cannot be sufficiently
removed by averaging. In fact, we experimentally found that the collision detection by Big
Mac attack was not successful in our environment.

Template attack is another major profiling attack [CRR02]. It first obtains a conditional
probability distribution of side-channel leakage from a given secret value in the profiling
phase; then, estimates a target secret value from the obtained likelihood in the attack phase.
Here, the conditional probability distribution is estimated assuming that the side-channel
leakage follows a multi-dimensional Gaussian distribution. For comparison, we performed
a template attack to detect true/dummy load and estimate the temporal window value on
the same 1,024-bit RSA implementation as the target described in Section 4. Under the
same conditions as the proposed attack, we used 61,440,000 traces for profiling and 98,304
(= 48×128×16) traces for the attack (i.e., validation). We determined the point-of-interest
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(PoI) as 16 sample points, in which the highest values of absolute difference lied between
the average true and dummy load traces11. As a result, we confirmed that the template
attack distinguished between true and dummy loads with an accuracy of 86.69%. However,
the accuracy of temporal window value estimation was only 4.51% and the template
attack could never estimate the correct secret exponents. Although the distinguishing
between true and dummy loads was sufficiently accurate and successful, the score (i.e.,
the probability for the true load label being one) for the true load was rarely the highest.
Moreover, the estimation accuracy for a temporal window value was as low as a random
oracle (1/16 ≈ 6.25%), which made the full key recovery unfeasible. This suggests that
the leakage model in the template attack does not correctly imitate the true distribution
owing to assuming that the noise follows Gaussian distribution. In contrast, our DL-based
method does not require such an assumption, and achieves a higher accuracy such that the
full key recovery is feasible. Thus, we confirm that our DL-SCA has an advantage against
conventional attacks, including template attacks, because of the less strict assumptions
about leakage and noise.

5.2 Vulnerability impact on open-source libraries
One of the open-source cryptographic libraries GnuTLS [noa22b] and its background
Nettle [noa22c] require Gnu MP for the arbitrary precision arithmetic and thus are directly
affected by the Gnu MP vulnerability. In addition, the following libraries adopting a dummy
load scheme such as Gnu MP are also considered to have the same type of vulnerability.

OpenSSL. In OpenSSL [noa21b] builds, there is an option to use Gnu MP as a backend,
which may be directly affected by the proposed method. The stand-alone version also
employs a dummy load scheme using AND with a bitmask and is thus susceptible to similar
attacks. Algorithm 6 demonstrates the multiplicand load in OpenSSL implementation,
where the operation is equivalent to that of Gnu MP when the window width w is equal to
or smaller than 3. This implies that such an OpenSSL implementation can be vulnerable
to our attack. However, if w > 3, the OpenSSL implementation examines four operands
per one load operation at line 16. The proposed method can estimate the timing of a
true load but cannot know which operand is stored in the register s among the four
candidates. This indicates that the attacker can reduce the number of temporal window
value candidates to four (i.e., two-bit) but cannot completely find the true one. The
partial key exposure attacks should recover the full key from this partial key information.
Recall that Heninger–Shacham-type attacks can feasibly recover the full key if more-than
50% of the bits are exposed [HS09,PPS12]. If w = 4 (for 1,024-bit RSA), the attacker
can obtain 50% of the secret exponent bits because the proposed method can reduce the
temporal window value from four bits to two bits. Therefore, if the attacker can obtain
the partial key information with few errors, he/she would succeed in the full key recovery.
The high accuracy of our DL-based estimation would make it feasible. However, if w > 4
(for 2,048-bit RSA or more), the ratio of exposed bits is insufficient for the partial key
exposure attack; thus, the full key recovery would be unfeasible even with the proposed
attack.

Botan. Botan [noa21a] will also be vulnerable to the proposed attack because it also
employs the dummy load scheme. Algorithm 7 describes the multiplicand load process in
Botan, where two true/dummy loads are performed in a single loop. Botan implementation
computes the operation corresponding to two loops in the Gnu MP implementation in a
single loop. Hence, the number of loops in Botan is half the Gnu MP implementation;

11We also performed a t-test that examines the difference of average between true and dummy load
traces, and confirmed that the result was consistent with that using the above absolute difference.
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Algorithm 6 Operand load in OpenSSL modular exponentiation [noa21b]

Input: Precomputed table (c0, c1, . . . c2w−1), window size w, and window value b
Output: Multiplication operand s = cb

1: int s← 0;
2: if w ≤ 3 then
3: for i = 0 to 2w − 1 do
4: int s← s | (ci & (0− IsEqual(i, b))); . IsEqual(i, b) is 1 if i = b, else 0
5: end for
6: return s;
7: else
8: int num_loop← 1� (w − 2);
9: int j ← b� (w − 2);
10: int when_fetch← b% num_loop;
11: int mask0← 0− IsEqual(j, 0);
12: int mask1← 0− IsEqual(j, 1);
13: int mask2← 0− IsEqual(j, 2);
14: int mask3← 0− IsEqual(j, 3);
15: for i = 0 to num_loop− 1 do
16: s← s | (((ci+0·num_loop & mask0) |

(ci+1·num_loop & mask1) |
(ci+2·num_loop & mask2) |
(ci+3·num_loop & mask3)) & (0− IsEqual(i,when_fetch)));

17: end for
18: return s;
19: end if

however, the number of true/dummy loads conducted in Botan is still identical to that
of Gnu MP in total. Therefore, there is a definite possibility to estimate the temporal
window values by monitoring all processes executed in lines 5 and 6, and identifying
the true load among them using the proposed method. To validate our approach, we
implemented Algorithm 7 with Gnu MP code, and conducted an experimental true/dummy
load detection test on the implementation. The experimental setup is the same as that of
1,024-bit RSA implementation described in Section 4. We used 2,048,000 traces for NN
training and 102,400 traces for the validation. The NN was trained up-to 50 epochs. We
confirmed that the trained NN achieved the highest accuracy of 99.69% in distinguishing
between true and dummy loads at 32 epochs. This result validates that the proposed
attack can also be applied to Botan implementations.

Algorithm 7 Operand load in Botan modular exponentiation [noa21a]

Input: Precomputed table (c0, c1, . . . c2w−1), window size w, and window value b
Output: Multiplication operand s = cb

1: int s← 0;
2: for i from 0, 2, 4, . . . , to 2w − 2 do
3: int mask0← MakeBitMask(i, b);
4: int mask1← MakeBitMask(i+ 1, b);

. MakeBitMask(i, b) returns (11 . . . 1)(2) if i = b, else 0
5: s← s | (ci&mask0);
6: s← s | (ci+1&mask1);
7: end for
8: return s;
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Algorithm 8 Operand load in Libgcrypt modular exponentiation [Pro21]

Input: Precomputed table (c1, c3, . . . c2w−1), window size w, and window value b
Output: Multiplication operand s = cb

1: int s← 0;
2: for i from 1, 3, 5 to 2w − 1 do
3: mask← MakeBitMask(i, b); . MakeBitMask(i, b) returns (11 . . . 1)(2) if i = b, else 0
4: s← (s&¬mask) | (ci&mask);
5: end for
6: return s;

Libgcrypt. Libgcrypt [Pro21] employs sliding-window exponentiation. The multiplicand
is also loaded from a precomputation table such as the aforementioned fixed-window table,
and the side-channel attacker who obtained the temporal window value and the squaring–
multiplication sequence can recover the secret exponent. Algorithm 8 describes the operand
load process in Libgcrypt. We can see that Libgcrypt also employs a dummy load scheme
using a bitmask. More precisely, the value of the load destination resister/memory value s
shown in line 4 is rewritten only when i = b, that is, the true load. This can be exploited
by the proposed attack, similar to the case of Gnu MP. In addition, Libgcrypt currently
employs an exponent blinding to counter Bernstein et al.’s cache attack [BBG+17]. However,
the proposed attack can still recover the secret exponent because the exponent blinding can
be broken using the Euclidean algorithm if an attacker obtains three completely correct
blinded exponents. The proposed DL-SCA is sufficiently accurate to obtain such blinded
exponents, as evaluated in Section 4.

5.3 Why and how proposed DL-SCA works
Possible/potential leakage source. The 2-classification NN of the proposed attack can
distinguish true and dummy loads with an extremely high accuracy. An important question
here is how the NN distinguishes them, or what difference the NN exploits. More concretely,
what is the difference in side-channel traces during true and dummy loads? One major
possibility would be whether the register/memory preserves the previous value or stores a
different value from the previous state. When loading a multiplicand, the register/memory
value is rewritten only when a true load is executed; the register/memory preserves the
previous value in cases of dummy loads. This suggests that the true load may result in
a meaningfully different power trace from those of the dummy loads, and the NN may
distinguish true and dummy loads owing to this difference.

Treating imbalanced data problem. It has been reported that DL-SCA may suffer from
the imbalanced data problem that inherently exists in machine learning applications.
In [PHJ+19], Picek et al. demonstrated that the imbalanced data problem would negatively
affect DL-SCA on AES and presented how the so-called synthetic minority oversampling
technique (SMOTE) can be used to address the imbalanced data problem. In [ISUH21], Ito
et al. further analyzed the impact and causes of the imbalanced data problem in DL-SCA
on AES. They demonstrated an analytical solution to solve the problem. However, when
attacking the windowed-exponentiation of RSA–CRT by distinguishing a true/dummy load,
the imbalanced data problem would inevitably occur because the frequency of a true load
is far fewer than that of a dummy load. (Namely, the frequency of a true load is 1/(2w− 1)
of that of a dummy load.) A major negative effect on such imbalanced data problems is
that the NN output probability would be biased by the distribution of labels [ISUH21]. In
this case, a dummy load is likely to have a higher probability than a true load because the
dataset contains more samples of the dummy load label than those of the true load. Thus,
our 2-classification NN may outputs a probability distribution where the dummy load
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probability is higher and true load probability is lower than the true probability, owing to
the bias incurred by the imbalanced data. However, the temporal window value estimation
in the proposed attack is not influenced by this bias because we estimate the temporal
window value as the argmax of probabilities for being true load. Even if the NN output
probability is biased, the argmax of the probabilities is invariant to such bias. Accordingly,
we can confirm that the effectiveness of the proposed temporal window value estimation
using a 2-classification NN. Note here that our solution outperforms the SMOTE-based
solution because the training dataset in our method is not compromised by low-quality
samples synthesized like SMOTE. In addition, Ito et al.’s solution cannot be applied
directly because it is specific for DL-SCA on symmetric ciphers.

Impact on the value of w. We discuss the impact of the maximum window size w on the
attack. In the temporal window value estimation using a 2-classification NN, the accuracy
of 2-classification using an NN is assumed to be invariant to the value of w, because it
only focuses on the load operation, which is independent of w. In fact, Table 3 depicts
that the proposed attack achieves almost the same accuracy in estimating the temporal
window value for 1,024-bit and 2,048-bit RSAs, which use w = 4 and 5, respectively. (The
accuracy for the 2,048-bit RSA is slightly higher than that for the 1,024-bit RSA in the
experiment.) Thus, we can use an NN model independently of w, which indicates the
proposed attack is scalable to the value of w. In contrast, the value of w has an impact on
the computational cost of the partial key exposure attack algorithm. An error in estimating
the temporal window value causes a w-bit consecutive error. If w is large, a w-bit-wise
branch-and-prune should be performed, which yields larger computational and memory
costs. However, the value of w usually is not large in practice because a larger value of w
leads to a larger pre-computation cost. Considering both pre-computation and main loop
costs standpoints, the practical and optimal value of w is said to be less than eight [Koç95].
The proposed algorithm can achieve key recovery from 1,024-bit and 2,048-bit RSA–CRT
with w = 4 and 5, respectively, even if the number of temporal value errors is greater than
the experimentally confirmed value.

Leveraging our attack in cross-device scenario. We used an identical device for both
training (i.e., profiling) and testing (i.e., attack) phases. In a real attack, the attacker
usually targets a device that cannot be used for training because the training commonly
requires a total control over devices12. This indicates that the accuracies of distinguishing
between dummy and true loads and estimating temporal window value degrade owing to
the difference between leakage characteristics of profiled and target devices. In [CZLG21],
Cao et al. reported that a cross-device DL-SCA, which indicates that the attacker targeted
a device different from a profiling device, sometimes achieved non-negligibly lower perfor-
mance or failed the key recovery. Cao et al. presented a solution based on domain adaption
to this problem, which mitigated the performance degradation and achieved a successful
key recovery in a cross-device setting. Thus, although this study used an identical device
for both profiling and target phases for the proof-of-concept, our attack would be practical
even in a real cross-device scenario thanks to Cao et al.’s method. Further evaluation in a
cross-device setting should be conducted in future studies.

5.4 Countermeasure
The proposed method exploits the two following facts to recover the secret exponent (i.e.,
temporal window value): (i) the timing of the true load is determined in a deterministic
manner, whereas it directly corresponds to the temporal window value, and (ii) the

12In contrast, in this scenario, the attacker does not require the control of the target device, and it is
sufficient for attacker only to trigger the decryption to acquire side-channel trace.
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Algorithm 9 Proposed operand loading process
Input: Precomputed table (c0, c1, . . . c2w−1), Window size w, Window value b
Output: Multiplication operand s = cb

1: int rvalue ← GenerateRandoml(); . Generate an l-bit random mask.
2: int s← c0 ⊕ c1 ⊕ · · · ⊕ c2w−1 ⊕ rvalue;
3: int rorder ← GenerateRandomw(); . Generate a w-bit random mask.
4: int bmasked ← b⊕ rorder;
5: for i from 0 to 2w − 1 do
6: int mask← MakeBitMask(i, bmasked);

. MakeBitMask(i, bmasked) returns 11 . . . 1 if i = bmasked, else 0
7: s← s⊕ (ci⊕rorder &¬mask | rvalue&mask);
8: end for
9: return s;

register/memory value is rewritten only when the true load is executed, as discussed in
Section 5.3. To mitigate the proposed attack, we introduce two randomization techniques:
load order randomization13 and dummy load value randomization.

Algorithm 9 describes the proposed randomized multiplicand loading. To randomize
the order of the multiplicand load, line 4 masks the temporal window value using a w-bit
random number rorder as bmasked. In the For loop, index i is compared to bmasked instead of
b, and is unmasked as i⊕bmasked under the (dummy) loading of the multiplicand. Although
this implementation correctly applies the true load only if i = bmasked (and a dummy load
otherwise), the order is randomized owing to the random mask rorder.

In addition, to randomize the dummy load value, line 1 also generates a l-bit random
mask rvalue, and initializes the temporal register s using rvalue as c0⊕c1⊕· · ·⊕c2

w−1⊕rvalue.
Line 7 then subtracts ci⊕rorder from s as s← s⊕ ci⊕rorder in the dummy load, whereas it
subtracts rvalue as s← s⊕rvalue in the true load. Thus, because all other multiplicands and
the mask are subtracted from s, only the true multiplicand cb remains in the register s at
the end of the For loop. In this implementation, s is written whenever any (true or dummy)
load operation is performed. Thus, Algorithm 9 will mitigate the two vulnerabilities, which
the proposed attack exploited.

6 Conclusion
In this paper, we proposed a new DL-SCA method and a partial key exposure attack
applicable to an RSA–CRT software implementation with an application to the modular
exponentiation of Gnu MP. The proposed DL-SCA aims at distinguishing between
true and dummy loads of the multiplicand under the windowed method for recovering
the value of the exponent with high accuracy. Because the multiplicand loading from
precomputed tables (with a dummy load) is commonly used for some open-source windowed
exponentiation, we mentioned that the proposed attack can also be applicable to some
open-source implementations. We also proposed a new partial key exposure attack suitable
for the leakage model of the windowed exponentiation. The proposed partial key exposure
attack overcomes the limitations of the conventional algorithm in [HMM10] by using
the heuristics and the number of matches with the secret exponents obtained. We also
presented a countermeasure against the proposed attack, which can mitigate the two major
vulnerabilities that the proposed attack exploited. Further detailed investigations regarding
the applicability/extension of the proposed attack to other major implementations of public
key cryptography remain as areas of future study.

13It is similar to a conditional swap (cswap) randamization in [ABW+21] and is its generalization.
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