TACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2022, No. 4, pp. 397-437. DOI:10.46586 /tches.v2022.i4.397-437

Breaking Masked Implementations of the

Clyde-Cipher by Means of Side-Channel Analysis
A Report on the CHES Challenge Side-Channel Contest 2020

Aron Gohr!, Friederike Laus®® and Werner Schindler?

! Independent Researcher, Auckland, New Zealand aron.gohr@gmail.com
? Bundesamt fiir Sicherheit in der Informationstechnik (BST), Bonn, Germany
firstname.lastname@bsi.bund.de

Abstract. In this paper we present our solution to the CHES Challenge 2020, the
task of which it was to break masked hardware respective software implementations
of the lightweight cipher Clyde by means of side-channel analysis. We target the
secret cipher state after processing of the first S-box layer. Using the provided trace
data we obtain a strongly biased posterior distribution for the secret-shared cipher
state at the targeted point; this enables us to see exploitable biases even before the
secret sharing based masking. These biases on the unshared state can be evaluated
one S-box at a time and combined across traces, which enables us to recover likely
key hypotheses S-box by S-box.

In order to see the shared cipher state, we employ a deep neural network similar to
the one used by Gohr, Jacob and Schindler to solve the CHES 2018 AES challenge.
We modify their architecture to predict the exact bit sequence of the secret-shared
cipher state. We find that convergence of training on this task is unsatisfying with
the standard encoding of the shared cipher state and therefore introduce a different
encoding of the prediction target, which we call the scattershot encoding. In order to
further investigate how exactly the scattershot encoding helps to solve the task at
hand, we construct a simple synthetic task where convergence problems very similar
to those we observed in our side-channel task appear with the naive target data
encoding but disappear with the scattershot encoding.

We complete our analysis by showing results that we obtained with a “classical”
method (as opposed to an Al-based method), namely the stochastic approach, that
we generalize for this purpose first to the setting of shared keys. We show that
the neural network draws on a much broader set of features, which may partially
explain why the neural-network based approach massively outperforms the stochastic
approach. On the other hand, the stochastic approach provides insights into properties
of the implementation, in particular the observation that the S-boxes behave very
different regarding the easiness respective hardness of their prediction.

Keywords: Lightweight cryptography - Clyde-cipher - Side-channel analysis
Countermeasures - Masking - Secret-sharing - ISW-Multiplication - Deep neural
network - Residual neural network - Stochastic approach - CHES Challenge 2020

1 Introduction

Nowadays, there are several emerging areas such as the Internet of Things, healthcare,
distributed control systems, sensor networks or cyber physical systems, in which highly-
constrained devices are interconnected, typically communicating wirelessly with one another,
and working in concert to accomplish some task. This poses new challenges to the crypto-
graphic community, as these devices process more and more sensitive data while being

Licensed under Creative Commons License CC-BY 4.0. (@) |
Received: 2022-04-15 Accepted: 2022-06-15 Published: 2022-08-31

https://doi.org/10.46586/tches.v2022.i4.397-437
https://orcid.org/0000-0003-3709-0292
https://orcid.org/0000-0002-3073-0106
mailto:aron.gohr@gmail.com
mailto:friederike.laus@bsi.bund.de, werner.schindler@bsi.bund.de
http://creativecommons.org/licenses/by/4.0/

398 Breaking Masked Implementations of the Clyde-Cipher

themselves usually not very well protected and thus easily accessible. Furthermore, because
the majority of current cryptographic algorithms was designed for desktop/server environ-
ments, many of these algorithms do not fit into constrained devices whose computational
power is limited.

This raises the need for new cryptographic algorithms that on the one hand can be
operated under limited resources and on the other hand can be protected against side-
channel and fault attacks without loosing too much of its performance. It further served
the National Institute of Standards and Technology (NIST) in August 2018 as motivation
for a competition searching for so-called lightweight ciphers that fulfill the demands for
efficiency and side-channel resistance mentioned above [19]. NIST received 57 submissions
to be considered for standardization. After the initial review of the submissions, 56 were
selected as Round 1 candidates, out of which 32 were selected to continue to round 2. On
March 29, 2021, NIST announced ten finalists that are currently standardized.

One of the second round candidates is the Spook authenticated encryption scheme with
associated data (AEAD) [4]. Its block cipher is the so called Clyde cipher that follows
a tweakable LS-design consisting of 6 rounds. Clyde can efficiently be protected against
side-channel attacks by Boolean masking and the aim of the CHES challenge 2020 was
to examine the effectiveness of this countermeasure. For that purpose several challenges
varying in the amount of masking were posted prior to the CHES conference 2020 [5]. A
team of eight colleagues' at BSI worked on the software challenges and won all the prizes
that were finally awarded.

Main Contributions In this paper, we provide a detailed description as well as a further
analysis of our solution to the different challenges. Using a deep neural network, we were
able to overcome the masking countermeasure by extracting a lot of information on the
unmasked cipher state already from a single trace. This required seeing all bits of the
masked internal state with very high bias, which proved difficult, since some bits of the
internal state were much more challenging to learn for our neural networks than others.
Indeed, our attempts to directly predict some of these bits seemed to not converge to
results better than random guessing.

In order to achieve convergence for all bits of the targeted internal state variable, we
represent the internal state in a way which is designed to achieve the following objectives:

e The chosen state representation allows for full and efficient reconstruction of the
standard representation of the internal state as a bit-vector, even in the presence of
noise (i.e. taking a target state s € F128¢ with alternative representation v € R", any
v’ € R™ with small ||v — v’||2 should suffice to reconstruct s without much error).

e The chosen state representation should make it difficult to reduce loss by making
progress on the prediction of easy bits in isolation. Instead, progress on predicting any
part of the target vector should be correlated with progress on the whole prediction
problem.

We achieve this by a surprisingly simple method, namely by sending the target values
through a random linear map before training. Given a list of training traces X and a list
of target internal state values Y, we hence essentially replace y; € Y with y, := Ay;, where
multiplication is performed over Z and A is a random binary matrix. We then try to learn
to predict y} from z; € X by minimizing standard mean squared error loss. When using
the trained model on new power traces, we simply multiply the model output with the
Moore-Penrose pseudoinverse AT of A to obtain predictions for each bit of the target state.

IMembers of the BSI-team (in alphabetical order): Tobias Damm, Aron Gohr, Sven Jacob, Dominik
Klein, Friederike Laus, Natalie Peter, Werner Schindler, Vivien Thiel.

A. Gohr, F. Laus, W. Schindler 399

We call this method of sending the target values that our model is intended to ultimately
predict through a random linear function the scattershot encoding.

That a simple random transformation of the target values helps to obtain a better model
is to some extent surprising, since a linear post-processing step of this type is in principle
easy to represent for a neural network. This makes the scattershot encoding worthy to be
studied on its own. We show that convergence problems similar to those observed with the
side-channel task under consideration appear also in a synthetic problem, namely when
trying to teach a neural network to compute a simple Fy-linear function, and that the
scattershot encoding helps achieve uniform convergence at that task as well.

Having obtained models for all of the software challenges of the CHES 2020 side-channel
contest, we afterwards study their performance. We find that the easiest, 3-share challenge
can be solved with around 20-30 traces, whereas a few ten thousand traces are required
for the hardest 8-share challenge. Our analyses also reveal that different nibbles of the
unshared internal state still represent vastly different levels of difficulty to our neural
network, which is unexpected, since the implementation runs all nibbles in parallel using
the same code.

Finally, we complete our findings by applying the stochastic approach as a “classical”
statistical profiled method to the problem at hand. We find that our neural network and
the stochastic approach consider the same parts of the internal state to be difficult to
predict; however, the performance of the neural network is vastly superior. An further
analysis of the leakage the two approaches exploit might serve as an explanation for this
behavior, as it turns out that the Al-based approach is able to extract information from a
much larger range of the trace.?

Related Work Deep learning recently entered the field of side-channel analysis and
turned out to be a powerful tool that enlarges an attackers’ capabilities compared to other
techniques. For a recent overview on the subject we refer to [21] and the references therein.
The neural network architecture used in our deep learning approach was first introduced
in [11] to break a protected AES implementation. In [11], the side-channel attack extracted
the Hamming weights of all AES subkeys. Afterwards, a equation solving stage was used
to perform a limited amount of error correction on the extracted Hamming weights while
simultaneously deriving the full key values from the Hamming weight guesses. This work
uses the same network architecture, but cannot use any of the subsequent post-processing
ideas used in [11]. There are multiple reasons for this: the Clyde-128 key schedule does
not impose significant constraints on the values we might recover the side-channel data
made available in the contest does not cover the full round number of the cipher anyway
and we never get to see any unmasked internal state in the Clyde attack.

Our solution to the CHES challenge presented in this paper combines a signal extraction
stage relying heavily on a neural network with classical elements, such as the choice of
a suitable leakage target variable and leakage model as well as a manually designed key
extraction stage that combines leakage over many traces to derive the target key.

In general, the question whether Al-based methods are superior over classical statistical
methods is of great interest, and we complete our analysis of the strength of the neural
network based leakage extraction stage by developing an alternative solution based on
the stochastic approach. Combining classical and machine learning based techniques
in order to achieve the best possible exploitation of the available signal is common in
state-of-the-art side-channel attacks, since it is expected that some parts of optimal attacks
will be difficult for neural networks to execute. Accordingly, there is a significant amount
of recent research that is aimed at combining the strengths of deep learning and classical
methods in side-channel analysis; for instance, a first approach that combines the stochastic

2The code for reproducing the results and experiments of our paper can be found at https://github.
com/agohr/ches_ctf_2020.

https://github.com/agohr/ches_ctf_2020
https://github.com/agohr/ches_ctf_2020

400 Breaking Masked Implementations of the Clyde-Cipher

approach with deep learning methods has recently been proposed in [25].

Another attack on the same data set as used in the present paper has been proposed in [6].
The authors essentially show that a template attack can reach an overall similar level of
performance as our attack if it uses a deep understanding of the implementation. We show
that results comparable to theirs can be achieved by a neural network based attack that
exploits only the knowledge of the cipher state at one well-chosen point of the cipher’s
execution if a good representation of the training target is chosen.

Other notable recent work considered the possibility of combining classical template attacks
with deep learning based preprocessing of input traces, achieving competitive results on
several datasets at relatively low training cost [23].

Outline The outline of the remaining paper is as follows: First, we describe in Section 2
the side-channel contest of the CHES challenge 2020 before we detail the Clyde-128 cipher
and its masked implementation in Section 3. Then, in Section 4 we present our solution to
the CHES challenge based on a residual neural network and provide in Section 5 further
insights gained with the stochastic approach. Finally, conclusions and an outline of future
work are given in Section 6.

2 CHES Challenge 2020 Side-Channel Contest

2.1 Objectives

The CHES challenge 2020 [5] consisted in a side-channel contest whose objective it was to
use side-channel analysis to break masked implementations of the Clyde-128 cipher [4].
The challenge involved a total of seven sub-challenges. Four of the challenges targeted a
software implementation of Clyde-128 protected by an efficient variant of ISW-masking
proposed by Goudarzi and Rivain [12] with 3, 4, 6 and 8 shares. The remaining three
challenges targeted a hardware implementation of Clyde-128 using the glitch-resistant
ISW-masking developed by Cassiers et al. [7]. This paper focuses completely on the
software challenges. In the context of this contest, breaking an implementation means
deriving from trace and tweak information a simple ranking of all possible keys such that
the expected rank of the correct key is below 232.

2.2 Data Sets and Evaluation Framework

For each challenge, the organizers collected and published large random- and fixed-key
datasets. The random-key datasets for the software challenge consisted of 200,000 power
traces covering the first half of the first round of the execution of Clyde-128 on the all-zero
message block with varying tweak values; tweaks, keys and shared keys were also given.
The fixed-key datasets contained only the trace and tweak information. Additionally, the
organizers provided the source code of the corresponding implementations, proof-of-concept
attacks on the weakest software and hardware targets, documentation explaining the main
ideas behind the implementations and an evaluation environment based on the container
tool singularity [17]. Submissions were tested against unknown test data held by the
organizers.

3 Clyde-128 Cipher

In this section, we briefly describe the Clyde-128 cipher, before we detail its masked
software implementation in the context of the CHES challenge 2020. The description of
the cipher is based on [4], with slightly adapted notation, while the description of the
masked implementation is based on code inspection.

A. Gohr, F. Laus, W. Schindler 401

3.1 TLS Design

The Clyde-128 cipher is a tweakable block cipher that is part of Spook, an algorithm for
authenticated encryption with associated data (AEAD) and a second-round candidate
of the NIST Lightweight Cryptography competition.? It relies on a tweakable LS-design
(TLS-design) [14, 13] and works on n = (s - 1)-bit states, where s = 4 denotes the size
of the S-box and | = 32 the size of the L-box. The full cipher state is referred to as
T e F;Xl, a row state is denoted as z[i,:], i = 0,...,s — 1, and a column state as z[-, j],
j=0,...,1—1. In the following, we will simultaneously use bitmatrices x € F;Xl as well
as row-wise reshaped bitvectors B € F§, which are related via

x[i,j] = Bli - 1+ j].

We will at some places also use the notations z;, z; ; etc. if single bits are concerned,; it
will, however, always be unambiguous from context to which notation we refer.

The basic TLS-design is summarized in Algorithm 1 and next, we describe the different
building blocks in more details.

Algorithm 1 Clyde-128 TLS-design with s-bit S-box and 2I-bit L-box.

1: Input: plaintext p € F3*!, tweakey TK € F3*!, s-bit S-box S, 2I-bit modified L-box
L', where s = 4 and | = 32.

2: Qutput: ciphertext matrix x € JFSXl

3: x + p @ TK(0)

4: forc =0,...,N,—1 do

5. for p=0,1 do

6: r=20+p

7 for j=0,...,1—1 do

8: x[)]] :S(l‘[,j})

9: end for

10: fori=0,...,5 -1 do

11: (z[2i,],2[20 + 1,]) = L' (2[24,], 2[2i + 1,])
12: end for

13: x[, 0] < x[-,0] ® W (r)

14: end for
15: s+ TK(o+1)
16: end for

Tweakey The tweakey scheduling algorithm for the n-bit key k € F5 and the n-bit tweak
T € 3 reads as follows: First, the tweak is divided into 5-bit halves ¢y and 1, that is,
T = tp||t;. Then, the tweakey depends on the remainder of the round index ¢ by division
by three as

TK(3i) = k @ (tol|t1)
TK(3i+ 1) = k@ (to © t1||t1)
TK(3i+2) = k@ (tol|to D t1).

S-Box The 4-bit S-box is a variant of the S-box proposed in [3] and can efficiently be
computed using four AND-gates and four XOR-gates as follows: Let x € F3 be a 4-bit

3For further information, see https://csrc.nist.gov/projects/lightweight-cryptography

402 Breaking Masked Implementations of the Clyde-Cipher

word, then y = S(x) is given by

yl1] = (2[0] © 2[1]) & =[2],
y[0] = (z[3] © 2[0]) @ =[1],
y[3] = (y[1] © =[3]) & (0],
y[2] = (y[0] © y[1]) & 2[3].

In fact, the for-loop in lines 7-9 of Algorithm 1 for the computation of the S-box is not
necessary, but for a full Clyde-state x € F§X32, the S-box can be computed as

y[1,] = (=[0, -] @ 2[1,]) ® 2[2,],
y[0,] = (2[3,-] © 2[0,]) @ x[1,],
y[3,] = (y[1,] ©x[3,]) @ 2[0,],
y[2,-] = (y[0,] O yl1,-]) @ 2[3,-]. (1)

L-Box The modified L-box L’ acts on pairs of 32-bit words (z,y) € F3? x F3? as

I
(a,b) =L cire(0x1b0007b0) - 2T & circ(0xec045008) - yT

(2,9) = <circ(0xec045008) -2 @ circ(0x36000£60) -yT>

where circ(c) denotes a circulant matrix with first row ¢ in hexadecimal notation, so that
31 ,

¢ = Y ¢;2" corresponds to the row vector (co,...,c31). The L-box can efficiently be
i=0

implemented as well using six word-level (left) rotations and six 32-bit XORs per word:

a =z @rot(x,12),

b=y drot(y,12),
a = adrot(a,3d),
b="bdrot(b,3),
a=a®rot(z,17),
b="barot(y,17),
¢ = adrot(a,31),

= b®rot(b, 31),
a = a @ rot(d, 26),
b= b®rot(c,25),
a = adrot(c,15),
b=0b@rot(d, 15). (2)

Also the L-box can be computed in parallel for the two row pairs (z[0,],z[1,]) and

(33[2,'],.73[3,])

Round Constants Finally, the round constants, which can be computed using a 4-bit
LSFR, are given by four bits that are XORed with the first column of the Clyde-state.
They read for the different rounds » =0,...,11 as

r=0 (1,0,0,0) | r=1 (0,1,0,0) | r=2 (0,0,1,0) | r = (0,0,0,1)
r=4 (1,1,0,0) | r=5 (0,1,1,0) | r=6 (0,0,1,1) | r=7 (1,1,0,1)
r=8 (1,0,1,0) | r=9 (0,1,0,1) | r=10 (1,1,1,0) | r=11 (0,1,1,1)

A. Gohr, F. Laus, W. Schindler 403

3.2 Masked Implementation

In the context of the CHES challenge 2020, the implementation of the Clyde-128 cipher
is masked according to [12] by decomposing a sensitive variable x €]F‘;Xl into d shares
(o, ...,x4—1) such that

T=20D - DTg—1-
In the sequel, we add the shares as a third dimension to the data and denote masked

versions of a variable/operator with 7, e.g. & € F3*'*? denotes the masked version of
x € F3*! and for (i,5) € {0,...,s — 1} x {0,...,1 — 1} it holds [

d

zli, j) = P ali. j. 4.

£=0

[

The masked Clyde-128 algorithm is summarized in Algorithm 2.

Algorithm 2 Masked Clyde-128 Algorithm.

1: Input: plaintext p € F5*!, tweak T € ~F§Xl, shared key k € F3*'*? masked s-bit
S-box S, masked 2I-bit modified L-box L', where s = 4 and | = 32.
Output: ciphertext matrix z € st

2:

3: T+ k

4: Z[-,-,0] < Z[-,-,0] ® T'(0)
5. &+, -, 0] « Z[-,, 0] ®p

6: for c =0,...,5 do

7T X = (N, refresh = 1)
8:

9: ,U,

100 &=S5 Z,refresh = 0)
1n: &=1L'(%)

12: [

The masked state & € F3*'*? is initialized with the shared key k& € F3*'*? in line 3,
before the tweak T' € F3*' and the plaintext p € F3*! are added to the first share slice
z[-,-,0] € IFSXI in lines 4 and 5 respectively. The masked S-box is implemented based
on (1). For the multiplications (AND-gates), the ISW-multiplication algorithm [15] given
in Algorithm 3 is used, while the additions (XOR-gates) are computed sharewise. During
the first computation of the S-box in each of the six rounds, a mask refreshing of y[1,]
is performed according to Algorithm 4 as an additional countermeasure (line 7). For
d € {1,2,3}, the mask refreshing algorithm is used with m = 1, while for d € {4,...,8},
it is run twice, first with m = 1 and then with m = 3. The refreshing method has been
proposed and further analyzed in [2, 1].

The linear L-box in line 8 is computed based on (2) in parallel for the different shares and
the constant W (r) € F§ is added to the first share slice z[-,0,0] € F§ in line 12. Then, in
line 13 the key is added to the current state and next, in line 14 the tweak to the first slice
of the shares. Finally, the unmasked output is obtained by XORing the different shares.
The recorded traces capture the first half of the first round of Algorithm 2. An exemplary
trace is given for d = 4 shares in Figure 1, where the ISW-multiplication of the S-box, the
mask refreshing as well as the L’-box computation are clearly visible.*

4Image taken from https://git-crypto.elen.ucl.ac.be/spook/masked_spook_sw.

https://git-crypto.elen.ucl.ac.be/spook/masked_spook_sw

404 Breaking Masked Implementations of the Clyde-Cipher

Algorithm 3 ISW-Multiplication Algorithm.
1: Input: d-shares (ag,...,aq_1) of a € F, and (bg,...,bg_1) of b € F)

2: Output: d-share (cg,...,cq—1) with @;1:—01 c; = (@f:_ol ai) ® (@f:_ol bi>
3: fori=0,...,d—1do

4: ci +— a; ®b;

5: end for

6: fori=0,...,d—1do

7. forj=14+1,...,d—1do
8: Tij g IFIQ

9: Tji < (ai ® bj) (o) Tij

10: Tji < Tji D (aj O] bi)

11: Ci < C; DTy

12: Cj 4 ¢Cj DTy

13: end for

14: end for

Algorithm 4 Mask Refreshing.

1: Input: d-share (ag,...,aq_1) of a € F} satisfying a = ap @ --- @© aq_1, parameter m
2: Output: refreshed d-share (aj,...,a, ;) of a € F} satisfying a = afy & - ® alj_,
3: fori=0,...,d—1do
R oo
4: r; € Fz
5: a; < a; Dr;
6: Q(i+m)modd €~ Q(i+m)modd e
7. end for

<—E'Ltsljilvdsisteo—>

40000 60000 80000 Lb 0 X 100000 120000
Refresh

Figure 1: Exemplary trace for d = 4.

A. Gohr, F. Laus, W. Schindler 405

4 Deep Learning Approach

4.1 Overview

Our deep learning based solution to the CHES 2020 side-channel challenge relies on the
following main ideas:

e We basically predict Hamming weights of some sensitive variables derived from the
cipher state shares. To do so, we use a deep residual neural network following the
architecture first introduced in [11].

e In the Hamming weight model, we actually derive many different but related sensitive
variables from each state word via a technique that we call the scattershot encoding.
In a nutshell, the intuition behind the scattershot encoding is to provide the neural
network with a large number of interrelated tasks of varying difficulty that are
close to the assumed leakage model (here: word-wise Hamming weight leakage of
the shared cipher state) and which together solve the targeted prediction problem.
For each trace, a prediction for the bit value of each shared cipher-state word can
be derived from the predicted Hamming weights by applying the pseudoinverse of
the scattershot encoding. Our findings indicate that these bit-level predictions are
difficult or impossible to learn with the required precision for our network without
the scattershot encoding.

e Finally, we combine bit-level predictions over many traces by predicting the un-
shared values of the sensitive variables. Comparing predictions from traces and key
hypotheses, we get a ranking of the unshared keys.

In combination, these ideas allowed us to break all software challenges of the contest with
much less data than was allowed in the contest. For instance, the 3-share challenge can be
broken with ~ 25 traces.

In the sequel, we first describe our leakage target and the high-level strategy of our key
recovery method. Our strategy presupposes that the shared cipher state at a particular
point of execution leaks to the power trace essentially in its entirety, with only a modest
amount of noise. This capability is achieved by combining a deep neural network with a
simple post-processing step. Then we describe the structure of our deep neural network,
the scattershot encoding, and how it is used to extract the shared cipher state at the target
point.

4.2 Overall Strategy

Targeted State We target the cipher state after the first S-box. The unshared cipher
state 2 € F3*%? is given by z = S(p @ T @ K), where p € F3*3? denotes the plaintext,
T denotes the tweak value, and S denotes application of the S-box layer. S(p @ T @ K)
depends in a simple way on plaintext, tweak and key and should therefore be well suited to
constrain K given partial knowledge of S(-) for several p;, T;. The fact that the S-box is
involved means that errors in the key get spread out to 4 bits of the observed state, which
should amplify the ability of the adversary to distinguish between almost-correct and fully
correct key hypotheses. The dependence of the observed value on p,T, K holds for each
S-box separately, so that given successful recovery of the cipher state, a key ranking can
be derived one S-box at a time, implying the ability to recover the whole key efficiently.

Dealing With the Masking Countermeasure Because of the presence of the masking
countermeasure the cipher state is only available during execution in a secret-shared form.
We will therefore try to read out the secret-shared cipher state & € ng32><d instead of

406 Breaking Masked Implementations of the Clyde-Cipher

the unshared state. If we had the full shared state, the unshared state x could be simply
obtained by setting xz[a,b] = @Z;éi[a, b, c].

Let X be a random variable that is realized by a power trace reading and let Y a random
variable whose distribution coincides with that of the target states. Then, the image of X
is a subset of R™, where n is the number of features in each power trace, Y is uniformly
distributed on F3*%32 and X and Y are dependent variables.

Assume that we possess an oracle O which given a trace t outputs values p € R**@*32
where pla,b,c] = P(Y[a,b,c] = 1|X = t), i.e. pla,b, ¢|] approximates the probability that
Z[a,b, c] is set given the information contained in the trace t. Then

P(xfa,b] = 1|X =t) ~ Y | II plevid [-pledi)],
veM \0<i<d—1,v;=1 0<i<d—1,0;=0
where M = {v € Fg : vlv = 1}.
Remark 1. Of course, {X =t} is a zero set. In the above formula we tacitly assume that
the conditional densities converge if we replace ¢ on the right-hand side by e-balls around t.

Combining Leakage Across Traces Let {t,t1,ta,...,t;} be a set of traces with associ-
ated plaintexts p; and tweaks T;. Given our oracle O, we can calculate for each i and each
(a,c¢) € {0,1,2,3} x {0,1,...,30,31} a probability p;[a,b] := O(¢;) for the corresponding
bit value of the unshared target state to be set. We partition the key K into 32 nibbles
aligned with the S-boxes. Now, if K[b] € F3 is a hypothesis for the b-th partial key, we
calculate the true values z[-, b](K[b]) given p;, T; and K[b]. We consider the score s(K[b])

s(K[b]) = [|a[-, bl(K [b]) — pil-, B]|

and rank the key hypotheses in lowest-is-best order. Since ||u; + ua|l2 = ||u1]|2 + |Juz||2 for
orthogonal vectors uy, ug, adding up these partial key rankings for all indices b is the same
as using an analogous ranking method on the full key. We thus get a ranking of the full
key space, where it is efficiently possible to determine the rank of any given key hypothesis
up to a small error.

Short Summary of Attack Workflow In order to facilitate understanding, we give here
a short summary of our attack workflow:

1. Input data: Power traces Ty, 11,75, ... for the implementation under attack.
2. For each T}, do:
(a) Use the neural network Net to predict the scattershot encoding E; of the cipher

state after the first S-box.

(b) Derive predictions b;; for each bit of the state by reversing the scattershot
encoding.

(¢) Derive a prediction b; for the unshared cipher state at the same point from
these predictions.

(d) Store the predictions b;.
3. For each S-box, do:

(a) For each key hypothesis, calculate the cipher state after the application of that
S-box in the nibble of the state that the S-box is responsible for.

(b) Rank the key hypothesis according to average distance of the predicted cipher
state to the stored predictions derived from the power traces.

4. Output the best key hypotheses.

A. Gohr, F. Laus, W. Schindler 407

4.3 Deep Neural Network

In this subsection, we implement an oracle of the desired kind with the help of a deep
neural network, whose output will be subject to a post-processing step to extract the
shared cipher state. In particular, we give a rationale for our choice of neural network
architecture, explain our training methods, and explain how the network outputs are
transformed into predictions of the bits of the target variables.

Leakage Model In order to overcome the masking countermeasure, we need to obtain
leakage on the exact value of the cipher state at some suitable point within the encryption
operation. Early experiments showed that we could see the Hamming weights of the shared
cipher state words very well. We therefore adopted a leakage model where every bit of the
internal state leaks, although the leakage occurs possibly through Hamming weights of
parts of the state instead of directly.

Basic ldeas Our deep residual neural network follows the architecture introduced in [11].
In particular, this entails the following;:

e We treat Hamming weight prediction as a regression problem and not as one of
categorical prediction. Simply put, our predictions are real-valued approximations of
the integer values that represent the Hamming weights to be extracted. Compared
to the interpretation of deep learning based side-channel analysis as a classification
problem that is more popular in the literature on deep learning based side-channel
analysis (see e.g. [24, 26] and the references cited therein), this has the advantage that
the values we are trying to predict are in fact not categorical labels, but numbers.”
By using a network that is a numerical regressor instead of a classifier, we can use
that information to judge the severity of prediction errors, to alleviate the problem of
rare output classes, and to induce an inductive bias towards mapping similar power
traces to nearby Hamming weight estimates. In addition, we need numerical instead
of categorical predictions for our post-processing of outputs using the pseudoinverse
of the scattershot encoding.

e We treat the prediction problem as approximately subsampling invariant. This means
that reducing the number of points in a trace might harm prediction accuracy, but
should not introduce systematic errors in the predictions.

o A prediction of the sensitive variable produced by a relatively simple, shallow model
may be improved upon by further post-processing.

On top of these ideas, the most important ingredient to the success of our deep learning
model is that we create a very large number of mutually correlated prediction targets for
the network. Together, these prediction targets solve the relatively difficult problem of
predicting the value of the shared cipher state at a certain point of its operation with
bit-level precision. For our model, we create a total of 400d prediction targets, where d is
the number of secret shares in the implementation under attack. These prediction targets
can be broken down into 4d groups of targets, where each group contains one hundred
targets that work together to solve one word of the shared state. Basically, the scattershot
encoding transforms a bit-string into a sequence of Hamming weights of a large number

51t is a natural question why most of the literature on deep learning based side-channel analysis uses
classification models instead of regression models, even when working in a Hamming weight leakage model,
where this choice is theoretically expected to lead to suboptimal inductive biases. We conjecture that
the main reason is the reuse of network architectures from the deep learning based image and audio
classification literature; in addition, framing deep learning based side-channel analysis as a classification
problem is a natural choice in power leakage models that seek to e.g. directly read out the value of some
cipher state byte from power trace data.

408 Breaking Masked Implementations of the Clyde-Cipher

of random sub-strings. Approximate knowledge of the Hamming weights of all of these
substrings then yields approximate knowledge of all of the bits involved.

Since the resolution of the trace data and the number of state shares differs between
the different software challenges, network parameters differ accordingly for the different
challenges. Our neural networks are therefore parameterized by the following variables:

o Input size I: number of data points (equivalently, the size of the input layer) in each
trace to be processed by the network.

e Subsampling factor g1 and subsample size qo: number of subsampled versions of the
input trace that are analyzed in parallel by the network as in [11] and the size of
each subsampled trace. By definition, we have I = ¢; - go.

e Network depth: number of residual blocks used by the network.

o Word size n: number of bits in each sensitive variable that we will try to extract
from the traces. Generally, there will be 4d variables to extract for a challenge with
d secret shares.

o Scattershot size N and a set of scattershot masks my, ma,...,my € F3: number of
auxiliary sensitive variables that we generate in the scattershot encoding for each
secret share and a randomly chosen generating set of F5.

For all four challenges we used a network depth of 10 residual blocks, a word size of 32,
a scattershot size of 100 and a set of scattershot masks chosen at random once for all
experiments. In contrast, ¢;, g2 and some training parameters needed to be chosen
differently for different challenges; Table 1 gives details on all the challenges. Further
details can be found in the supplementary data to this paper.

Rationale for the Choice of Network Our choice of neural network was motivated by
the following considerations:

e Depending on the challenge, each trace consisted between 62,500 and 218,750 data
points. In addition, we need to predict the entire shared cipher state at the attacked
point in time; using a byte-level classifier (with 256 output units in the usual one-hot
encoding), this would mean deriving 48 classifiers with 256 outputs each. Similar
numbers of input and output features are reached in computer vision tasks (such as
on multi-class semantic segmentation tasks like Cityscapes [8] or image classification
tasks with a large number of classes such as ImageNet-1K [9]. However, the two-
dimensional structure of the input data in these tasks makes it considerably easier
for a convolutional neural network than in one-dimensional signal processing tasks to
fuse information across the entire input sample. To the best of our knowledge, the
only proposals for deep learning side-channel network architectures in the literature
that are designed to process input traces with the resolution here under discussion
are [18, 11]. The architectures proposed for instance in [16] process traces that are
more than an order of magnitude smaller.

o The network architecture proposed in [18] uses deep implementation knowledge to
set the field of view of the first convolutional block in the network. The network
proposed in [11], on the contrary, reduces the dimensionality by a relatively imple-
mentation-agnostic splitting of the input trace into subtraces that only uses the
assumption that the side-channel extraction task is subsampling invariant.

e Our initial study of the implementation suggested Hamming weight leakage; given
that categorical predictors are theoretically expected to have some difficulties with

A. Gohr, F. Laus, W. Schindler 409

Hamming weight prediction due to class imbalance (see [20]) and loss of information
about the output domain compared to a regression-based approach, the fact that the
network proposed in [11] is a regressor is another point in its favour in this context.

e Our strategy to obtain bit-level predictions for the target state needs real-valued
predictions of the Hamming weights. While it is possible to coax a classification
model into producing such predictions by weighted-averaging of the prediction label
values with weights given by the output activations, such a construction seems
unnatural compared to simply using a regressor from the start.

In the following, we briefly describe each component of our neural network.

Preprocessing Given an input trace T of size I, we first decompose the trace into
subsampled traces 11,15, ..., T}, , where T; consists of the points of T" with index ¢ mod g¢;.
Each subsampled trace T; therefore contains go points. The T; are subsequently called
slices of the original trace.

Number of Outputs, Output Activation In total, our network generates 4Nd outputs
for a d-share target. The ground truth associated to each output is the Hamming weight
of some bit vector and therefore a priori a non-negative integer, making rectified linear
units a natural choice for final layer activations, since they calculate a linear function of
their input that is truncated to non-negative output values.

The First Layer After the preprocessing, each of the g; subsampled partial traces is
processed first by a batch normalization layer. Each batch-normalized partial trace is then
processed separately by a shared fully connected layer with 4Nd rectified linear outputs.
The entire neural network state at this stage is thus comprised of ¢; vectors v; of 4Nd
real values each, where v; is the vector associated to subsampled slice i. Each slice v; of
the state is further subdivided into 4d columns of N values. Each column of N values
is subsequently processed separately from the others (with communication only to the
corresponding column in neighbouring slices of the overall network state) and intended to
produce a prediction for the Hamming weights of the N prediction targets corresponding
to one 32-bit word of the shared state.

Residual Blocks Subsequently, each column is updated by repeating the following steps
in a number of residual blocks, where each residual block computes the input of the next
residual block:

1.) Batch normalize the current output state of each column.

2.) Apply a one-dimensional convolution of kernel size 3 with N output channels to the
batch normalized state of each column, running the convolution across all the slices
after padding with zeros on both ends (“same” padding in Keras). Call the output
vector of the convolution (wq, w1, ..., Wq 1)

3.) Add v; and w; together to obtain the input for the next residual block.
This structure is repeated for ¢ blocks, where ¢ = 10 in all our experiments.
Predicting the Target by Averaging Finally, we are left with ¢; vectors v; € R*N? that

we hope will approximate our prediction targets. These are subjected to a final averaging
step that simply calculates the mean of the ¢; vectors and outputs it as our prediction.

410 Breaking Masked Implementations of the Clyde-Cipher

input: | [(None, 62500)]
output: | [(None, 62500)]

InputLayer

Y
input: (None, 62500)

output: | (None, 100, 625)

Reshape

put: | (None, 100, 625)
output: | (None, 100, 625)

BatchNormalization

input: | (None, 100, 625)
output: | (None, 100, 100)

v

input: | (None, 100, 100)
output: | (None, 100, 100)

\

input: | (None, 100, 100)
output: | (None, 100, 100)

N

ConvlD

BatchNonmalization

ConvlD

» iput: | [(None, 100, 100), (None, 100, 100)]
Add
output: (None, 100, 100)
Y
mput: one, 100, 100
AveragePoolingl D ! Ll)

output: | (None, 1. 100}

Y
input: | (None, 1, 100)

output: (None, 100)

Flatten

Figure 2: Visualization of one subnetwork of our neural network for the 3-share challenge,
reduced to a single residual block. The entire network is composed of d copies of this
network. All of these d copies share the same input (the input trace tensor), but are
trained to predict the scattershot encoding of one particular cipher state word each.

Schematic Overview of the Network Structure To get an overview of the design of
our network, Figure 2 shows the network design reduced to one residual block and the
prediction of one cipher state word with the parameters relevant for the 3-share challenge.
The 3-share network used to solve the challenge consisted of 12 copies of this network
expanded to 10 residual blocks.

Intuitions Behind this Architecture This neural network architecture was first introduced
for an AES side-channel task in [11], where it achieved highly precise byte-level Hamming
weight prediction for all bytes of the expanded keys of a protected AES implementation.
Here, splitting up the processing of the full trace into a number of subtraces helped to achieve
dimensionality reduction, to reduce overfitting, and to leverage subsampling invariance of
the side-channel prediction problem. The use of convolutional windows of width 3 allows
some communication between the subnetworks processing different subsampled slices of
the trace under consideration, which should improve slice-wise prediction quality. The
choice of a deep residual neural network was motivated mainly by its good scaling with
network depth.

A. Gohr, F. Laus, W. Schindler 411

Possible Improvements to Our Network While the design of the network we use ad-
dresses the issue of class imbalance to some extent by predicting the target Hamming
weights it predicts as numerical values instead of as class labels, countermeasures against
class imbalance such as those discussed in [20] would likely improve the prediction accuracy
for rare classes. Likewise, we expect that additional regularization measures (for instance,
regularization with noise or dropout as in [16]) would probably lead to more accurate
predictions. However, since the main contribution of our solution — the scattershot encoding
— is in Section 4.7 shown to have similar effects as in our problem in a simple synthetic
data setting where perfect training data is freely available, it seems unlikely that these
measures would solve the convergence problems observed in Figure 8. Finally, our solution
might be improved by choosing a better network architecture or from manual points of
interest (POI) selection. Designs that combine the subsampling invariance of [11] with a
VGG-like architecture within each slice of the network could be promising candidates in
this regard. We did not perform a thorough architecture search, since the design we chose
based on our design rationale worked. We view the fact that no other entries were even
submitted to the CHES 2020 CTF as evidence that other designs are not easily found by
adapting proposals in the open literature.

A POI selection prior to any further processing, no matter how it is done, would lose
subsampling invariance of the solution (because a fixed downsampling of the data is then
being chosen). This means that any solution subsequently trained on the projected data
would not be able to exploit subsampling invariance of the side-channel task; however, it is
possible that this would be outweighed by the fact that removal of irrelevant points makes
learning easier. One could consider adaptive POI selection, e.g. using an attention-like
mechanism using a neural network. This would be advantageous over just using a neural
network if the subsequent exploitation stage (i.e. the stage of a subsequent attack that uses
the dimensionality-reduced representation of the input to obtain information on the target
key) were able to perform some operation that neural networks do not learn well. On the
other hand, it is in our point of view one of the main advantages of deep learning-based
approaches that with suitable choices of training policy and network architecture, the
network may learn on its own which parts of a trace are relevant and which are not. Indeed,
one would usually hope that the network implicitly learns how to perform dimensionality
reduction without losing much of the signal to be exploited, and this is a main design point
in neural network architectures (ours included; the subsampling mechanism is directly
a dimensionality reduction device not based on POI selection). Manual point selection,
even if done by experts, will also run some risk of missing relevant points. We were for
instance quite surprised when we found out that our trained networks apparently use parts
of the trace where the L-box computation takes place (c.f. Section 5.3), which are not
exploitable by “classical” statistical methods (such as templates or the stochastic approach;
as opposed to neural network-based approaches) due to the huge number of shared key
and masking bits that the evaluation of the L-box would require.

We leave all of these possible improvements to our architecture for future research.

4.4 The Scattershot Encoding: Achieving Bit-Level Precision

Motivating Problem In side-channel analysis, the adversary obtains usually only partial
information about the target key by using the side-channel, but desires bit-level information,
typically of some cryptographic key. They therefore will likely need to combine information
from a large number of traces and/or use additional cryptanalytic techniques to determine
the secret. For instance, in [11] first a neural network is used to approximately determine
the Hamming weights of all bytes of the expanded AES key of the implementation under
attack, and then a SAT solver subsequently computes the exact key from this partial
information. Effectively, this strategy combines leakage from various parts of a single
power trace with prior knowledge about the cipher under attack to exactly recover the key.

412 Breaking Masked Implementations of the Clyde-Cipher

For the masked implementation of Clyde-128 under study in the CHES Challenge 2020,
we were easily able to show significant leakage of the Hamming weights of the 32-bit words
of secret-shared subkeys and cipher state at various points during the cipher’s execution.
However, each execution of the cipher uses fresh randomness for the computation of
the initial secret sharing and the shares are refreshed with new randomness during the
execution as well. This severely limits the ability of an adversary to combine leakage
either across traces or across different leakage points within a single trace. Essentially, to
find the secret key a significant amount of information about the unshared key must be
exploitable from a single trace. This information can then be combined across traces to
extract enough information on the unshared secret in order to enable an exhaustive attack
on the remaining possibilities.

We tried to directly learn to predict single bits of the secret shares of the keys and cipher
states. Our attempts, however, did not yield useful results even for the 3-share challenge,
which is why we came up with the scattershot encoding that we detail next.

Scattershot Encoding Assume that we are given the task of guessing a bit string b =
b1,b2,...,b; and the only available information are the Hamming weights h; of b - m;,
where mg, my,...,my is a collection of known random bit strings of length k£ and where -
denotes component-wise multiplication. Once the m; form a generating subset of R*, this
task is easy: assume without loss of generality that the m; form a basis, then

Zmi(j)/\j = h;

Jj=1

is a linear equation system with a coefficient matrix M of full rank and \; = b; is its only
solution. We call the weights h; the scattershot encoding of b with respect to the masks m;.

Recovering Target Variables from Noisy Scattershot Encodings In the presence of
noise, recovering a bit string from its scattershot encoding with respect to a known set of
masks becomes a problem of linear approximation in a natural way. Indeed, we can model
the problem in an idealized setting as follows: assume that in the above situation we are
given BZ- = h; + X, instead of the true encoding by the h; values, where the X; ~ N (0, 02)
are i.i.d. normally-distributed random variables centered at zero. For a given combination
of A\; € {0,1} to explain the observed h;, we get X = h — M\, where X = (Xi)i=1,... ks
h = (hi)i=1.. k- The probability density p(\) of X at this value is (up to multiplicative,

constant factor) given by
lh—Mx|2

p(A) e T2

If there is no prior knowledge about the true values of the b;, sorting the candidates by
descending value of p(A) yields an optimal guessing strategy in this situation. Since the
exponential is strictly monotonously increasing irrespective of base (as long as the base is
> 1), this ranking is the same as that obtained by ordering the values by || — M| in
ascending order.

While it is possible to efficiently compute the ranking so induced (see e.g. [10]), it is in our
context more useful to simply relax to the real numbers and find a minimal real solution
for the \; by linear regression. This is due to the fact that solutions to the relaxed problem
contain some information on the amount of uncertainty about the value of specific bits b;
of the sequence to be guessed, which is crucial for the implementation of our secret state
oracle from the previous section. In addition, with a scattershot size of N, solving the
linear regression can simply be done by multiplying the output array of the neural network
for each share word from the right with a fixed N x 32-matrix that only depends on the
choice of scattershot masks.

A. Gohr, F. Laus, W. Schindler 413

Table 1: Challenge-specific parameters for our deep neural network.

Challenge Number of Batch Size Steps per Validation ¢ q2

Epochs N, Epoch Steps
Sw3 800 128 500 50 100 625
Sw4 800 128 500 50 167 499
Swb 1000 32 2000 200 250 625
Sw8 1000 32 2000 200 250 875

Intuitions behind the Scattershot Encoding We assumed that some kind of Hamming
weight model would describe the leakage well, which was quickly confirmed by experiments.
However, the question is which parts of the cipher state to calculate Hamming weights over:
we were able to see word-level Hamming weights very well, but bit-level state recovery
seemed significantly harder. In particular, achieving uniform convergence for all target bits
of the shared state proved difficult in our experiments to recover the state bits directly.
The scattershot encoding gives the neural network a number of different Hamming weight
models to work with. In addition, all of these problems are highly correlated to each other,
so progress on any of the scattershot targets should help the next layer in the deep residual
network achieve better precision on all of the other targets. We hoped that with these
assumptions, the scattershot encoding would help the network achieve faster and more
uniform convergence across all target bits, which turned out to be true.

4.5 Training the Network

Preprocessing the Data To train our deep neural network, we first merged all of the
released 10,000-trace random-key files from the competition website. This gave us a dataset
of 200,000 traces with associated keys and tweaks, the plaintext being uniformly the zero
message. We then computed a random shuffling of the training data and divided the
shuffled data into a training and a validation set, holding out 20,000 traces for validation.
We determined the cipher state based on the tweak, the secret-shared key and the plaintext
data given in the original dataset using the Python implementation of the masked Clyde
implementation provided by the organizers and subsequently brought it into scattershot
encoded form by applying the relevant linear transformation. A set of scattershot masks
was generated at random and can be found in the supplementary data set to this paper.

Training We generated minibatches for training and validation by random selection of
samples from the training respectively validation set at training time using a generator,
where we used different settings for the minibatch size for the different challenges. Likewise,
the length of training (number of epochs and training steps per epoch, i.e. the number of
minibatches used in each epoch) varied between the challenges.

For all training runs we used the Adam optimizer with a cyclic variable learning rate and
mean squared error loss against the ground truth targets as loss function. At the end of
each epoch, we calculated the mean squared error loss for the current network also on the
validation set and stored the best network weights (according to validation loss) to disk.
We set the learning rate Ir; for epoch i so that

log, (Ir;) = logy(low) + (log,(high) — logy(low)) - ((Ne — 1) — i mod Ne)/(N. — 1),

where N, is the number of epochs in each cycle and low and high denote upper and lower
bounds for the learning rates used in each cycle. In other words, each cycle used an
exponential learning rate decay followed by resetting the learning rate to the high value
at the beginning of the next learning rate cycle. We hoped that this setup would allow
sufficient time for fine-tuning of weights at the lower learning rate levels as well as escape
from local minima at the higher learning rates. We used low = 0.001, high = 0.00002 and
N, = 10 throughout our experiments. All relevant parameters are summarized in Table 1.

414 Breaking Masked Implementations of the Clyde-Cipher

Table 2: Bitwise differences between the predicted and correct first word of secret-shared
cipher state on Sw6. The first five traces of Rkey_Sw6_10000_19 served as test dataset.
The model used in this experiment has been trained only on Rkey_Sw6_10000_0-14, so
these examples were not seen by this model during training.

Trace 1 Trace 2 Trace 3 Trace 4 Trace 5
0x81050d0 0x802e1810 0x5490 0x2015010 0x600142

Computational Cost of Training With network and training parameters as well as the
sizes of input and output vectors of our networks being quite different between the different
challenges, it is no surprise that the computational cost of training runs differs accordingly.
For Sw3, a single training epoch using the parameters given in Table 1 takes about 100
seconds on a computer equipped with a single GTX 1080 Ti graphics card and a few
gigabytes of not otherwise occupied RAM. A full training run can therefore be completed
in about a day. For Sw8, on the other hand, a single epoch takes about 1050 seconds on
the same machine, resulting in roughly a million seconds for a complete training run, or a
bit less than two weeks.

4.6 Results

Evaluation Data Along with the random-key training data for each challenge, the orga-
nizers of the competition released fixed-key datasets to allow participants to evaluate the
performance of their solutions. The fixed-key datasets were never used in either training or
model selection, so results on these datasets should be representative of the performance
reached for the key extraction task at hand.

In the sequel, we will have a closer look at the behavior of our solution on the simplest
software challenge (Sw3, d = 3 shares). For the other challenges, we only report some
statistics on whole-key ranking achieved with the appropriate number of traces.

Single-Trace State Extraction Our attack essentially first tries to match the observed
traces to a probability distribution on the internal secret-shared cipher state. Then it
computes the induced probability distribution on the corresponding unshared cipher state
by calculating the convolution product of the d share-distributions, compare equation (4.2),
and finally matches the inferred distribution to all possible key hypotheses. For this to
work well, we need fairly strong biases on the shared cipher state from a single trace, since
the convolution product leads to a decay of any biases that is exponential in the number
of shares.

Fortunately, we do get strong biases on the secret-shared state. Indeed, as Figure 3 shows,
even some nibbles of the unshared key can be read out with high reliability already from a
single trace in the Sw3 case. Interestingly, however, the results strongly depend on the
considered S-box: some of them (e.g. S-box 17, but also S-boxes 23 and 26) seem to be
rather easy to predict, while most S-boxes are harder (e.g. S-box 0), if not impossible to
predict (e.g. S-boxes 16 or 21, whose key rank distribution is close to uniform).

This is even more apparent when we look at extracting the target secret-shared state
after the first S-box layer. Table 2 shows some fairly representative examples of bitwise
differences between predicted state and ground truth for a version of our Sw6 model trained
on a slightly smaller data set than the model used in our attack on Swé.

Global Key Rank We empirically determined the global key rank of our attack using
the histogram-based method introduced by [10]. To do so, we performed 20 attack runs
on randomly selected subsets of one fixed-key dataset provided by the organizers of the

A. Gohr, F. Laus, W. Schindler 415

11 S-box 17 (best)
80 7 S-box 0
11 S-box 21 (worst)

60 -

40

Number of cases

20

oLl datag g1l
0 2 4 6 8 10 12 14 16
Key rank

Figure 3: Key rank distribution in a single-trace attack for three selected S-boxes. For
this test, 100 traces were selected at random from the Fkey_Sw3_K1_1000_0 data set and
the key extraction algorithm was run separately on each trace. The statistic here shown
gives the number of cases where the true partial key for the nibble in question was found
at the rank given on the x-axis.

competition for each target; in general, the results we obtained were similar to those
reported in the evaluation (“Hall of Fame”) of the competition [5], for which according to
the organizers five attack runs were performed. However, similar to [6], and different from
the rules used in [5], we decided to evaluate our attack against the median key rank at a
given number of traces; [5] used the average key rank. Since the key rank distribution has
a very heavy tail, the average of the key rank of n attack runs will generally be higher
than the median of the key rank achieved in the same attack runs. This also makes it
difficult to determine the mean key rank empirically, since a rare instance of very poor
attack performance could still significantly change even an estimate that is based on a
large number of tests.

Our attack requires about 20-30 traces to achieve a mean key rank below 232 for 3 shares;
about 200 for 4 shares; about 4,000 for the 6-share challenge; and about 70,000 for the
8-share challenge [5]. While especially the last figure is subject to much uncertainty, the
numbers given by [5] do have the advantage that they were generated data that we never
had access to. We do not know the corresponding numbers for the solution proposed in [6].

We also determined median key ranks for our solution. A detailed breakdown of our results
for the different challenges can be found in Figure 4. We conjecture that the increase of
the key ranks that can be observed at some points is due to the rather small sample size
of only 20 attack runs.

Table 3: Number of traces that are needed to achieve a median key rank lower than 232,
comparison of our solution and [6].

Sw3 Sw4 Swé Sw8

This work 25 105 3000 35000
[6] 50 120 1100 12000

416

Breaking Masked Implementations of the Clyde-Cipher

Number of samples

(c) Swé challenge

1204 2 - o~ Median rank 60 °-. - o- Median rank
. Mean rank N Mean rank
1004 ° - - Min rank ¢ "\ - e~ Min rank
= e e - - Max rank 2 507 \\‘ - e~ Max rank
o0 4 e 0 R .
< 80 DN 9 ‘o e _
p NN Z 104 . .
g 607 N \\o\\\‘.n*] \\\ Lo Y \‘o\\
& KN T-e. 2 30 . L ~e
<40 e N NN 4 ® - . hab
- LI °o---o . Se.
AN o - -~ O _ N T-e
20 -) 20
TT e o
B Te---0---@
T T T T T T T T T T T T T
0 5 10 15 20 25 30 35 60 80 100 120 140 160
Number of samples Number of samples
(a) Sw3 challenge (b) Sw4 challenge
80 . 70 |
e - - Median rank - - - Median rank
. Mean rank * Mean rank
e . - e~ Min rank 60 N - e- Min rank
Z% 60 . \\\\.\:.\\ - - Max rank :%] ‘,,,,,‘\ - - Max rank
& X N S 50 o e
- AN . g - "o
E N o g " . .
; 40 4 . ‘\\\ '\\‘\ ; 40 + " \o\\ Te.
5 N - __ - e o .- ~. ad
R4 N S e R4 ° - .
. - o . -
o ---o ~ 4 . ~e -
. e 30 . . ®--_»
SEPLN NN
— - - _ e - —
20 T T T T \‘ T ;ﬁ.\ 201 T T T - T
500 1,000 1,500 2,000 2,500 3,000 3,500 10,000 20,000 30,000 40,000

Number of samples

(d) Sw8 challenge

Figure 4: Key rank statistics for our solutions on the different software challenges. For
each of the number of traces considered, 20 attacks were run against random subsets of
the Fkey_Sw3_K2_1000_8 dataset (Sw3 challenge), the Fkey_Sw4_K0_1000_0 dataset
(Sw4 challenge), the Fkey_Sw6_KO0_10000_0 dataset (Sw6 challenge) respective all fixed
key Fkey_Sw8_KO0_x datasets taken together (Sw8 challenge).

A. Gohr, F. Laus, W. Schindler 417

100
. 80+
50
kel
= 60+
=
&

o
> 40
[}
R
20
0,

T
0 20 40 60 80 100
Number of samples

Figure 5: Key rank as a function of the number of samples used in an attack on the
Fkey_Sw3_KO0_100_0 data set. The figure shows the logarithmic key rank (base 2) obtained
when using the first n traces of the test set for key extraction, where the order of the
samples is as in the original data set.

Comparison to [6] To the best of our knowledge, [6] is the only other published attack
on the dataset of the CHES challenge. Their attack is not based on a neural network,
but on a profiled Soft Analytical Side Channel Attack (SASCA). Their adversary uses a
much deeper knowledge of the circuit to be attacked; this allows them to achieve superior
performance on the 6-share and 8-share challenges, while falling short of our solution
for the 3-share challenge. It is unclear how much of this advantage would remain after
further optimization of both solutions; our network for the 8-share challenge had likely
not plateaued yet after two weeks of training on a single GPU. On the whole, the two
attacks reach a comparable level of performance in different ways, with the solution in [6]
being inferior at low share numbers, but showing probably better asymptotic behavior.
The number of traces required to reach a key rank less than 232 is given in Table 3 for
both solutions.

4.7 Dissecting the Scattershot Encoding

Problem Statement Our networks failed to learn the extraction of all output bits when
we tried to learn to predict these bits directly. Instead, we predict a scattershot encoding
of our target data. In the attack phase, we have to reverse the encoding in order to retrieve
predictions for the bit-values of the shared target variables from the output of the network.
This is surprising, since the scattershot encoding is nothing but a linear transformation of
the output values. We therefore did some further investigations understand the success of
this trick a bit better.

Difficulties in Studying the Scattershot Encoding The task under discussion in this
paper makes it difficult to study problems in network convergence in a systematic way:
even for the 3-share problem, the time to train an instance of our network is about a
day on our hardware. Furthermore, it is difficult to say, in absolute terms, how well the
obtained network exploits the available signal and to find out exactly which properties of
the task cause the convergence problems.

418 Breaking Masked Implementations of the Clyde-Cipher

A Synthetic Problem We therefore aimed at figuring out a simpler learning problem
that would exhibit similar convergence problems as our side-channel task. To this end, we
tried to learn the Fy-linear function

fiF? = F, f(z) = Az,

where A is the lower triangular matrix with all entries below or on the main diagonal
equal to one. We tried to learn f by observing random input-output pairs using a fully
connected deep neural network.

Remark 2. The i-th coordinate function of f is f;(z) = @3':1 xj. The problem of learning
the last of these coordinate functions in isolation (i.e. given only random inputs and
{0, 1}-valued outputs of the coordinate function) using feed-forward neural networks is
expected to be difficult, which is confirmed by experiments: training feed-forward networks
to predict the parity of 32-bit bitstrings fails unless the networks are trained with structured
input. However, learning f is expected to be easier, since the network is now forced to
learn a number of XOR~sums. Some of these are of low Hamming weight and therefore easy
to learn, and knowing how to compute these might be helpful for learning the components
that are harder to predict.

Neural Network Designs In order to test the difficulty of learning to compute f with and
without the scattershot encoding, we considered two simple network architectures. Both
of them are deep residual networks with ten residual blocks, where each block consists of a
batch normalization layer followed by a fully connected layer with rectifier nonlinearities.
They take a vector of 32 bits as input, have 100 nodes in each of the internal layers and
use a single dense layer with ReLu activations after the input to expand the input to a
vector of dimension 100. However, they differ in the output layers:

o The final layer of Model 1 uses a sigmoid activation function to obtain output values
between 0 and 1 and outputs 32 such values, thereby directly predicting the target
bits.

e Model 2 predicts a scattershot encoding of the target values and therefore outputs
100 values using a final linear activation.

Training and Validation Both models were trained for 100 epochs on the same training
data set. Training was performed with the Adam optimizer using default parameters in
Keras and a constant batch size of 5,000. Ten percent of the training set was withheld for
validation in order to track the evolution of the loss value for both models.

Testing Finally, both models were tested using a freshly generated test set consisting of
another 10% example vectors. For each bit of the target output, we measured how often
either prediction output matched ground truth.

Results Within the training budget of the experiment, Model 1 failed to converge on the
last five bits of the target function; it predicted the other bits very well. Model 2, on the
other hand, showed some degree of convergence for all bits, although the last two bits had
accuracies of only 59 and 61 percent respectively when training was stopped. Figure 6
gives additional details.

Additionally, a qualitative comparison of the loss evolution for both models shows that
Model 1 converges through punctuated equilibria, effectively learning to predict one bit of
the target at a time and then getting stuck. The loss of Model 2, on the other hand, is
smoothly decreasing throughout the training run. It is also worth noting that many of the
equilibria require a temporary significant increase of validation loss to leave, suggesting

A. Gohr, F. Laus, W. Schindler 419

e I <
~ o0 ©
\ \ \

Accuracy

o
(@)
|

0.5

0 5 10 15 20 25 30
Bit position

Figure 6: Accuracy of target prediction for Model 1 and Model 2 on learning a simple
Fsy-linear function. The z-axis gives the targeted bit position inside the target and the
y-axis shows the obtained accuracy. Model 2 uses a scattershot encoding of the targets,
while Model 1 does not.

some stability of the corresponding local minima of the loss function. This is illustrated
in Figure 7 which shows the validation loss progress of the mean squared error loss for
Model 1 (left) and Model 2 (right) over 100 epochs of training. Note that the scale of the
loss is not comparable between both approaches, since the range of the scattershot targets
(which are Hamming weights of parts of the target vector) is much larger than the binary
values of the target values themselves.

Remark 3. Tt is worth mentioning that our experiment described here using synthetic data
contains no noise. In principle, there is no uncertainty about the signal and there is a
simple algorithm that recovers all the target bits. Still, at least the results of the simple
ML-based analysis we conducted suggest that some bits of the target are much less readily
exploitable than others; the direct attack has difficulties to see any bias at all for some of
them. It is tempting to speculate that the very strong differences we see in the apparent
exploitability of different S-boxes in the CHES 2020 challenge task are likewise due partly
or wholly to logical difficulties of extracting the signal instead of being due to the absence
of an exploitable signal for the problematic S-boxes. This suspicion is (weakly) supported
by the observation that the implementation provides no clear reason for the existence of
these differences in leakage and the fact that the use of the scattershot encoding helps to
solve some S-boxes that otherwise show no significant bias. The learning history of our
direct attack attempt also showed some support for a pattern of temporary stalling over
the first 400 epochs of training that is similar to that observed in the synthetic task, in
spite of our use of a cyclic learning rate schedule to prevent the model from getting stuck
in local minima (see Figure 8).

5 The Stochastic Approach

In this section we present further analyses and insights that we gained with the help of
the stochastic approach [22]. We chose the stochastic approach for two reasons: Firstly,
it is a very effective classical attack method against block ciphers, providing a serious

420 Breaking Masked Implementations of the Clyde-Cipher

—— MSE loss Model 1 —— MSE loss Model 2

0 20 40 60 80 100
Epoch Epoch

Figure 7: Validation loss evolution for Model 1 (left) and Model 2 (right) over 100 epochs
of training.

@ 0.19

S

E

g 0.184

=

<

o

3

g 0.17

g

&=

0.16
T T T T T
0 200 400 600 800
Epoch

Figure 8: Development of the loss of our model in an attempt to directly learn predicting
the target bits of the 3-share challenge. The loss given for each epoch is the lowest
validation loss attained in the next ten epochs of training; this removes the effect of the
cyclic learning rate schedule on loss development, which would otherwise clearly dominate.
Some signs of capture by local minima are evident for epochs 60-87, 90-139 and 150-269.

A. Gohr, F. Laus, W. Schindler 421

benchmark for the neural network. Secondly, the stochastic approach allows insights into
the properties of the leakage and thus of the targeted implementation.

To this aim, we extend in Subsection 5.1 the stochastic approach to a tweakable block
cipher with shared keys whose implementation is protected by Boolean masking. After
thorough analysis we show the results of some experiments (Subsection 5.2). Furthermore,
we provide an explanation why some S-boxes are harder to attack than others. Finally,
Subsection 5.3 contains a brief comparison between the attack efficiencies of the stochastic
approach and of the neural network.

So far, the “standard” stochastic approach considers block ciphers with unshared keys,
e.g., the AES cipher. It uses the stochastic representation

Ii(x, 2, k) == he(x, 2, k) + Ry, (“standard” stochastic approach) (3)

which quantifies the random electrical current (or the power consumption) at time ¢, where
its (unknown) distribution depends on the triple (x, z, k). Here, z € {0,1}" denotes a part
of the plaintext or ciphertext, z € M the masking bits, and finally k& denotes the subkey
that is targeted by the attack. (Example: When attacking the AES, the subkey & usually is
a byte, and p comprises one or two bytes, depending on whether the first or the last round
is being attacked.) The leakage function h(x, z, k) quantifies the deterministic part of the
leakage (that depends on (z, z, k)) while the random variable R; models the noise. The
noise summarizes the electrical current of operations that are computed in parallel to the
targeted one (but are independent of (z, z,k)), and to some degree it may be affected by
the power measurement. We assume that the noise vector R, is independent of h,(z, z, k)
and normally distributed with expectation 0. The aim of the profiling phase is to estimate
the joint distribution of the random current vector I}(x, z, k) at several instants t1,...,&n,.
To handle the situation with shared keys we adjust the stochastic representation (3) in to

Ii(z, 2, k) == he(x, 2, k) + Ry . (4)

As can be seen, (4) is rather similar to (3), the main difference is that the subkey k has
been replaced by k, which denotes the part of the shared key targeted by the attack.
Likewise, (4) quantifies the distribution of the random electrical current (or the power
consumption) at time ¢, depending on the triple (z, z, I;:) Since we attack the execution of
the Clyde cipher at its beginning, x denotes a part of the plaintext (possibly including a
tweak). Also here, z denotes the masking bits, the leakage function h(x, z, k) quantifies
the deterministic part of the leakage, and the random variable R; models the noise. As for
block ciphers with unshared keys (3), the noise is caused by other operations (independent
of (z, z, l~c)) that are computed in parallel to the targeted one, and possibly affected by
the power measurement. Again, we assume that the noise vector R; is independent of
h.(z, z, k) and normally distributed with expectation 0.

We will see in Subsection 5.1.3 profiling essentially works as in the “standard” case (with
shared subkeys in place of subkeys), while for key extraction (attack phase) additional
difficulties arise that require new strategies.

5.1 Different Steps of the Stochastic Approach

In this subsection we adjust the stochastic approach to shared keys. In particular, we
develop two new decision rules for the key extraction phase.

5.1.1 Vector Space Bases for Different Substeps

The first task in the profiling phase is the estimation of the leakage function hy(z, z, l::) for
each (potential) time point ¢ of interest, which can independently be done for each time ¢.
The attacker/evaluator does not estimate the different function values hy(x, z, k) (which

422 Breaking Masked Implementations of the Clyde-Cipher

would principally be possible but very inefficient), but the leakage function as a whole. In
general, this works as follows: For each admissible shared subkey & we define the restricted
leakage function A,z : {0, 1} x M x {k} = R, given by hi(z, 2, k) = hy(x, 2, k), which is
essentially a function in (x, z). We interpret h, as an element of the real vector space
Foi = {0+ {0,1}P x M x {k} — R}. The aim is to define a suitable vector subspace F ik
of F.j, which is “close” to the unknown leakage function h, ;, and to determine the best
approximator h:;fc € ‘Fu,t;fc of hy j, that has minimal L2-distance.

The success of the stochastic approach depends on the choice of an appropriate vector
space basis 9o.tdes - Gu—1.t:k of Futider together with suitable points of interest. To this
aim it is necessary to identify and model the operations which are relevant for the current
at a given time point. This requires a good understanding of the implementation and
usually some trial and error, that means trying different points of interest and different
vector space bases and observing which one fits best at the given time instance.

In this subsection we describe different operations of Algorithm 2 that can be used in the
stochastic approach and provide the corresponding bases. To this aim, we fix an S-box s
and consider the different S-boxes separately.

(1) Key Loading (Line 3 of Algorithm 2), 4 - d POIs
Assuming a Hamming weight leakage (see also Subsection 4.3), we can take the single
bits of Z[-, s,] as basis vectors, which are in total 4 - d ones. This can be achieved if
we set

3 d
h: (5"7 Z) k) = 60¢;]}, + Z Zﬁi,j7t;]~c§i7j,t;l~c(j’ Za k)a
1=0 j=1

9 ji(@s 2 k) = k[i, s, j —1].
(2) Tweak Addition (Line 4 of Algorithm 2), 4 POIs

3
hi (%2, k) = By i+ D _Biy ki (E: 2,),
1=0

9i 1o (E, 2, k) = k[i,s,0] © Tli, s].

(3) Computation of the S-Box (Line 7 of Algorithm 2), d POIs
During the computation of the S-box there are according to (1) ISW-multiplications
and XOR-~operations that can be exploited. The evaluation of the S-box involves
several masking bits in the thereby used ISW-multiplication, we first provide some
further details on its evaluation, before we propose basis functions.

The S-box is applied to all shares of the j** column Z[-, j,] of the working state,
j€{0,1,...,31}. In the notation of (4) we have

 known plaintext z = T(0)[-, j] @ p[, j] € {0,1}*, inclusive the tweak value; in
the challenges p[i, j] = 0 for all (4,5) € {0,1,2,3} x {0,...,31}. Formally, we
may extend x to the shares 1,...,d — 1 by setting = 0 there, denoting this
consistently by Z.

o shared key K[, j,-] € {0,1}*¢ that is relevant for the j** S-box.

o masking bits: The evaluation of an S-box (1) requires four times Algorithm 3
(ISW-multiplication), four times an XOR~operation and once Algorithm 4 (mask
refreshing). All together, these subalgorithms require 4(‘21) +0+d=2d(d—1)+d =
2d(d — §) masking bits.

A. Gohr, F. Laus, W. Schindler 423

- 1
In particular, (z,z,k) € {0,1}* x {0,1}??=2) x {0,1}*¢, and all the intermediate
values that occur within the evaluation of the S-box can be expressed in terms of z, 2
and k.

The amount of masking bits might become critical as it grows quadratically in the
number of shares. Altogether, there are 2d(d — 3) 4+ 4d = 2d(d + 2) unknown bits
(masking bits and shared key bits). This does not cause a problem in the profiling
phase, but the key extraction (see Section 4) becomes numerically infeasible as the
number of shares d increases. For d = 3 the number of unknown bits equals 27, which
should be feasible, but already for d = 4 it is 44.

Hence, at least for d > 3 strategies are needed that reduce the amount of unknown
bits. All the shared key bits occur (implicitly) in the first two ISW-multiplications
and in the subsequent XOR-additions (computing y[1] and y[0] for all shares). Mask
refreshing is not relevant for these operations because it only updates y[1] after it has
been calculated. Restricting our attack on the S-box to these four substeps “wastes”
the side-channel information which stems from the computation of y[3] and y[2]. On
the positive side this limits the number of unknown bits to 2(62[) =d(d-1).

After these considerations, we exemplary show the proposed basis functions for the
masked stated g[1,:] = (£[0,:] © Z[1,:]) ® £[2,:]. We always include g, =1 in our
—_—— »L3
=q
bases to model the (sub-)key-independent signal.

(a) (Single) ISW-Multiplication (Line 4 of Algorithm 3), d POIs, masking bits
Cc;i=a; ® bl

d
hi(#,2,k) = By + OB 1050k (2, k),

j=1
gj,t;l}(fé’zvlg) = f[o,&j - ”‘%[1787]' - 1]

(b) (Single) ISW-Multiplication (Lines 9 and 10 of Algorithm 3), d(d —1) POIs a; ® b;
and a; © b;, similarly as above

(c) (Single) XOR (according to (1)), d POIs

R, 2, k) = ﬂmﬁz}?ﬂkgﬂk z,2,k),

gj,t;fc(xﬂz7k) = Ej[j - 1] @j[2787¢7 - 1]

In order to guarantee that the coeflicients of the different basis vectors are of the same
magnitude, we subtracted a global mean trace from all traces before computing the coeffi-
cients. (This significantly reduces the absolute values of the key-independent coefficients
ﬁo i which would dominate otherwise, possibly spoiling the parameter estimation.) The
remaining estimation of the basis coefficients 3 ; ;. can be performed as usual by solving a
least-squares problem (with shared key bits in place of key bits).

The bases in (a), (b), and (c) are expressed in the sensitive variables that are operated at
time ¢, and (in case of (b), in the masking bits) that are manipulated and by the targeted
operation. The stochastic approach can be applied to these sensitive variables and masking
bits, yielding the coefficients 3; .. In a second step, after the estimation of the coefficients,
the sensitive variables are expressed by (z, z, l;:) Note that the “direct” estimation of the
function values hy(z, z, k) would require 27| M|2%¢ estimations per POI t. Instead, favoured
by the Hamming weight based leakage model, the stochastic approach requires only a
single least-square estimation.

424 Breaking Masked Implementations of the Clyde-Cipher

Remark 4. (i) The real amount of masking bits depends on how far one evaluates
computation of the S-box, e.g. whether one only considers y[1], or y[1] and y[0], or
the complete S-box. As mentioned earlier, using only y[1] and y[0] the masking bits
needed for the mask refreshing of y[1] can be neglected. On the negative side, some
information gets lost.

(ii) Furthermore, the multiplications in the ISW-Algorithm 3 (line 4: ¢; = a; ® b;, line 9:
a; © bj, line 10: a; ® b;) can be observed without masking bits. As a consequence,
the operations in (1), (2), (3)(a) and (3)(b) for y[1] and y[0] can be exploited
completely without masking bits. Only the subsequent XOR in step (3)(c) that
requires the execution of the full ISW-multiplication needs the masking bits r;; of
the ISW-algorithm.

5.1.2 Estimation of the Covariance Matrix

The stochastic approach requires the estimation of a single covariance matrix to combine
the information on the chosen points of interest t; < ... < t,,, which is quantified by the
leakage functions hy,, ..., hy, . As mentioned earlier, we assume R; = L;(z, z, l%) —hi(z, 2, INc)
to be centered normally distributed, and further that the m-dimensional random vector
(It, (z, 2, k) — hey (2,2, k), ..., I, (@, 2,k) — hy, (z, 2, k)) is centered normally distributed
as well for some covariance matrix C. Then

I}(m, 2, k) = (I, (%, 2, k), ..., Iy, (%, 2,k))

has m-dimensional density

- 1 > 7 INT o—1(7. 7 z
S R™ R, ()= —— = o705 —hy(w,2,k)T CT (g —hi(=,z.k) (5
Foci Jeed00 = i yaeio ©
Here, t = (t1,...,tm)7 denotes the collection of points of interest and Zg refers to the
measured current vector at the time instances t1,...,t,,.

Since the exact leakage function l_ig (m-dimensional vector) is unknown in the key extraction
phase, we substitute in (5) the estimated approximate leakage function ﬁ; and the estimated
covariance matrix C, yielding the estimated density f%zﬁ: R™ — R.

5.1.3 Key Extraction

The decision rule from the “standard” stochastic approach cannot be applied to shared
keys. In Subsection 5.1.3 we develop, analyze and illustrate two decision rules for the key
extraction in the presence of shared keys.

To better highlight the differences we briefly recall how the key extraction is done in the
“standard” case: To this aim, let f(st)x’z/’k denote the estimated density that corresponds
to the triple (x,z’, k), where k denotes an unshared subkey. The attacker decides for the
subkey candidate k' that maximizes likelihood function

N3
styng (K') = H Z fistye 2 v (1.5) (6)

j=1 z’eM
(maximum likelihood estimator), where E};g denotes the current vector of the j** power
trace. As usual, all masking values are assumed to occur with the same probability.
Shared keys cause an additional difficulty: Although the unshared (sub)key is the same in all
attack traces, the shared keys (which affect the leakage) are not. Let k = (ko,...,kq_1) €
{0,1}%? be the targeted part of the shared key, while its d components denote the 4-bit
subvectors of the particular shares. Since for each power trace the key shares are selected

A. Gohr, F. Laus, W. Schindler 425

randomly they are in general different for all power traces. However, it is not necessary
to determine all these subkey shares. Instead, it suffices to guess the (unshared) subkey
k € {0,1}* on the basis of N3 power traces.

We introduce the subkey classes

Ck Y ={k = (kb,....k)_) | kb ® - Dk, =K} for k' €{0,1}*,

that means C(k’) denotes the set of all shared key candidates for the slice K[-,4,-] whose
XOR-sum equals &’. Each class C(k’) contains 24d=1) clements because the shares
ko, . kd 5 may attain any values while kd 1 is determined via kd 1= k’@ko @ - @kd 9

We deﬁne the likelihood function a(-) by

an, (k H Z Z f.L iy for ke {0,1}4, (7)

Jj=1 k’EC (k") z'eM

where z 7 denotes the current vector of the jt" power trace. We decide for that key
candldate k* € {0,1}*, for which an,(k*) is maximal (maximum likelihood estimator). If
the power consumption at the considered time instants t1,...,t, does not depend on all
masking bits (e.g. because only one or two ISW-multiplications are considered), the inner

1
sum in (7) has less than 22%@~2) terms, speeding up the evaluation of (7).

Remark 5. Depending on the number m of points of interest it may be profitable to apply
e.g. a PCA or LDA. This does not affect formula (7) in general, but only the densities

fw,z,fq(')'

Background and Justification of Decision Rule (7) and an Alternative Decision Rule
For masked implementations with “usual” (i.e., unshared) keys the decision rule (6)
is optimal (maximum likelihood estimate). For implementations with shared keys the
situation is less clear. Although decision rule (7) appears to be a natural generalization, it
deserves further explanations and a deeper analysis.

We assume that the relevant (targeted) parts of the plaintexts z1,...,zy, and masking
values z1,...,zy, of the power traces j = 1,2,..., N3 are realizations of independent and
identically distributed random vectors (X1, Z1),...,(Xn,, Zn,). Since the tweak values

are uniformly distributed, the X; can be assumed to be uniformly distributed on their

domain as well. The random vector I {X Z; k ;) describes the j" random m-dimensional
current vector at the time instants £ = (¢1,...,t,,), while k: € {0,1}* denotes the correct
shared subkey of trace j.

Assume that the random variables X and Z are independent and uniformly distributed on
their respective domains. Then the random variable

fx,z’;fc’(l}(aj’ 2 ié))

quantifies the random m-dimensional density of a power trace for the shared key candidate %
when k is the correct shared subkey. At this point, z denotes the correct masking value,
while 2’ € M is an admissible masking value. We define

AR K=Y Y % ZZE(zk(I:(‘TZk))):

k'eC(k’) keC(k) v€{0,1}r zeM z'eM

=M Y Y Y By (P (X, 2.0)) for ko € {0,118)

krec(k') kec(k) 2’ €M

Here, E5 (-) and E , 5 (-) denote the expectation with respect to E; or X, Z, E;, respec-
£ s 41y
tively. Since the shared subkeys are selected uniformly within the particular subkey classes,

426 Breaking Masked Implementations of the Clyde-Cipher

the term (8) equals (up to a constant) the expected value of foori (f;(ac, z, l%)), averaged

over randomly selected shared subkeys k' € C (K), kecC (k), random plaintexts X, random
masking value Z and admissible masking values Z'.

Recall that the random vectors (Xi, Z1), ..., (Xn,, Zn,) and the selection of the shared
subkeys are assumed to be independent for all traces. Thus, to decide whether decision
rule (7) can be successful it suffices to focus on the expectation of a single trace. Thus, if

A(k | k) > A(K' | k) for all k, k' € {0,1}*, (9)

the decision rule (7) finds the correct key (with large probability), provided that the sample
size N3 is sufficiently large. In other words, (9) provides a sufficient condition for the
success of decision rule (7). At this point, note that if YV’ denotes a R"™- valued random
variable with Lebesgue density f(-) and g: R® — R, then E(g = Jgn 9(dy
(provided that the integral exists).

Usually, decision rule (7) should be successful because the correct shared subkey k should
always provide a large contribution to the outer sum of (7) for the correct subkey class C(k).
It is yet conceivable, depending on the leakage model of the targeted implementation, that
within some wrong subkey class C(k”) several wrong shared key candidates give significant
contributions to the corresponding outer sum, in total exceeding the sum for the correct
subkey class C(k). If this happens it is necessary to develop an alternative decision rule to
(7). A reasonable option would be to define the likelihood function o*(-) by

| krec(k)

o, (k) H max {Z fxz,;,(;j{)} for k' € {0,1}%, (10)
zeEM

and to decide for that subkey candidate k* € {0,1}* for which oy, (k*) is maximal
(maximum likelihood estimator). For decision rule (10), the equivalent to (8) reads as

(K| k)= Z Z Zk,rélgé, {Z B (fou }(m,z,fc)))}for kK e {0,1}*.

kecy, ©€{0,1}P zéM 'eM
The equivalent of the sufficient condition (9) is given by
A*(k | k) > A*(K' | k) for all k, k' € {0,1}*. (11)

Example 1. In this example we compute the terms A(K’ | k) and A*(k' | k). To keep
the computations simple we consider 1-bit subkeys instead of 4-bit subkeys as above. We
assume a non-masked implementation with leakage model h;(Z, k) = a + b - ham(z @ k).
Here, &,k € {0,1}4, @ > 0 and b > 0 are constants, while ham(-) denotes the Hamming
weight. In this scenario, only two subkey classes C(0) and C(1) exist, where

C(Z) =Sk = (];'(/]7"'71%5171) |

We focus on a single time point ¢ (i.e., m = 1) and assume that the leakage R, is N (0, 02)-
distributed. Since the 1mplementat10n is not masked, the two inner sums (over z and z’)

A. Gohr, F. Laus, W. Schindler 427

in the first line of (8) vanish. We compute the expectation

ERt (fi;k’ f’ / fz k/ zk() Y

(y—(a+ham(E@k)b))?

1 0o 7(y—(a+ham(2i:@1;/)b)) o~ 5.2
= — e 20 dy
V2o V2o
1 g _2y2—2y(a+ham(i®ly)b)72y(a+ham(i€9k)b)+(a+ham(a’:€9§,)b)2+(a+ham(i€91;)b)2
— 202 dy
V2wo\/2no
(a+ham(:i@fc/)b)+(a+ham(i€9l})b) 2 5 B
1 1 B (y* 2) ((a+ham(3@E)0)— (a+ham(2@F)b))°
= 2\f \/7 = e 2(c/V2)? e 402 dy
Yixea —
27r\/E
1 (ham(z@F) —ham(z0k))?
— - o /b)2
BN o ' (12)

Equation (12) confirms the intuition that the expectation is maximal if ¥’ = k, and that
it is the smaller the more the assumed Hamming weight ham(z @ k') differs from the
correct Hamming weight ham(Z @ k'). We note that G = {0,1}%, equipped with & (bitwise
XOR-operation), is an Abelian group. In particular, C(0) is a subgroup of G with index 2.
If z € C(0), then C(i) @ & = C(¢) for i = 0,1, whereas C(i) @ % = C(1 —1) if £ € C(1). If we
assume that the shared plaintexts are uniformly distributed on {0, 1}¢, then (12), Fubini’s
Theorem and the above considerations simplify (8) (with Z in place of z) to

(ham(i’@ly)—ham(i@fc))2

Ak | k) = Z Z Z 2fa (/02

z€{0,1}d k’eC(k’') keC(k)

(ham(z;’)—ham(l“c))2

— gd-1 Z Z N 7m (o /)2

krec(k’) kec(k)

(ham(§/)—haln(15))2

Y 2fa e | (13)

Eec(1—k’) kec(1—k)

Likewise, (13) also applies when z is not uniformly distributed on {0, 1} but uniformly
distributed on {0, 1} with Z = (2,0...,0), the case which corresponds to the Clyde cipher.
In this case, the factor 2?71 is replaced by 1, and # € {0,1}¢ in the outer sum reads
x € {0,1} (also in (8)). Note that (13) does not depend on Z. Furthermore, also (14)
remains valid with smaller constant c.

By (13) it suffices to verify the sufficient condition (9) for (k, k") € {(0,0), (0,1)}. Obviously,
in C(0) there exist () elements with Hamming weight 2u (for 0 < 2u < d), while C(1)
contains (20(11) elements with Hamming weight 2v+1 (for 0 < 2v+1 < d). This observation

allows to further simplify (13) to
J L9452 L1452 4
(2u 20)2 (2u—2v)2
2u 21} 0 + Z Z 2u+ 1 2v+1)ZO
0

d 1) 1145 4
(2u+1—2v)2 (2u 20—1)2

14
2u+1) Z Z 2u 2v+1 %0 » (14)

d—1 -1
22\/% >0and zg =e 4=/»7 € (0,1).

For the special case d = 3, careful computations yield

A0]0)=c¢

ﬁ
[SIEN

A(1]0) =c

EINE;
2
u=0 v=
Z

HM

with ¢ =

A(0]0) =2¢(10+ 62)) and A(1]0) =2c (1520 + 2]) .

428 Breaking Masked Implementations of the Clyde-Cipher

It remains to show that A(0 | 0) — A(1|0) > 0 (sufficient condition (9)). Let
p(2) =10 — 152 4+ 621 — 27,

so that A(0 | 0) — A(1 | 0) > 0 is equivalent to p(zp) > 0. It is p(z) > 0 for z € (0,1):
We have p'(2) = —15 + 2423 — 92% and p”(2) = 7222 — 7227, so in particular p(0) = 10,
p(1) =0, p’(0) = =15, p’(1) = 0 and p”(2) > 0 for z € (0,1). Thus p'(z) < 0 for z € (0, 1),
which proves the claim. Hence for d = 3, condition (9) is fulfilled. Similarly,

A*(0]0)=c"-1 and A*(1]0) = c"2,

where ¢* = ﬁ >0 and z = ¢ T ¢ (0,1), and thus A*(0 | 0) > A*(1|0).
In summary: For d = 3, the sufficient conditions (9) and (11) are fulfilled so that both

decision rules (7) and (10) lead to successful attacks.

5.2 Numerical Results

Next, we show some numerical results of the stochastic approach and discuss its advantages
and shortcomings. In particular, we have a closer look at the estimated basis coefficients
and the information they contain, which helps understanding why attacking different
S-boxes is so differently difficult. We focus on d = 3 shares here, substract a global mean
trace before the estimation and use only those operations that can be exploited without
any masking bits, namely the key loading, the plaintext and tweak addition and the
ISW-multiplication in the first two steps of the S-box computation, see also Remark 4.
This yields in total 50 POIs that are chosen manually by inspecting the evolution of
the estimated coefficients for S-box 17 in the interval in which the respective operation
takes place. Indeed, for the selected S-box there is always a sharp peak in the signal
that allows to take the corresponding time point as POI. As we know that all s = 32
S-boxes are processed in parallel, the same POIs can be taken for all other S-boxes as
well. Figure 9 exemplarily shows the evolution of the 4 - d = 12 estimated coefficients
for the key loading (left column) and the ISW-multiplications a; ® b; (middle column)
respective a; ® b; (right column) in case of the “easy” S-box 17 (top row), an “medium”
S-box 23 (middle row) and a “difficult” S-box 0 (bottom row). Each subfigure depicts the
evolution of the estimated values of the coefficients in front of the different basis functions,
plotted over the time range in which the respective operations take place. Already here
the coefficients indicate that the different S-boxes are differently difficult to attack, as the
coefficients of the “easy” S-box 17 are very clear, while the ones of the harder S-boxes
are much noisier. In particular for S-box 17 one sees a sharp peak for each basis function,
which allows to select appropriate POIs simply by visual inspection. Also, depending on
the exploited operation, the order of magnitude of the coefficients for the different S-boxes
varies considerably, the coefficients for S-box 17 are up to five times as large as those for
e.g. S-box 0.

To further illustrate the different difficulty levels, we display in Figure 11 the evolution of the
coefficient corresponding to a single key bit if all 32 S-boxes are estimated simultaneously,
again plotted over the time range in which the respective operations take place. In
accordance with the observations in the neural network approach, see also Figure 3, the
easiest S-box 17 shows the highest peak, while the medium S-boxes 20, 23 or 26 already
yield significantly lower peaks (approximately one half of the maximal peak), which are
however still clearly distinguishable from the other, rather noisy signals of the remaining
S-boxes whose height is only one sixth compared to the maximal height. These observations
are qualitatively similar in case of the ISW-multiplications.

Next, we examined how many traces are needed to identify the correct (unshared) key.
In case of S-box 17, these are approximately 50 traces when avoiding operations that

A. Gohr, F. Laus, W. Schindler

429

04 Ly
0 " P
2 2 q l ‘
E’ é —500 m (
g 500 &
R |
S g
Z 2 \/ ‘ V
£ —1.000 1 & —1.000 1 /
~1,500 ~1,500 \/ d
T T T T T T T T T T
20,500 21,000 21,500 22,000 25,900 26,000 26,100 26,200 26,300 26,400
Time samples Time samples
(a) Key loading S-box 17 (b) a; ® b; for S-box 17
A
0 0 i
= =
& —200 £ 200
5] 5]
g g
& B
] Z 4004
& —400 K]
—600 o —600-
T T T T T T T T T T
20,500 21,000 21,500 22,000 25,900 26,000 26,100 26,200 26,300 26,400
Time samples Time samples
(d) Key loading S-box 23 (e) a; © b; for S-box 23
1004 100
04
< <
g £ 100
£ —100 S
g & “200
—200 4
—300
—300 T T T T T T T T T T
20,500 21,000 21,500 22,000 25,900 26,000 26,100 26,200 26,300 26,400

Time samples

(g) Key loading S-box 0

Time samples

(h) a; ® b; for S-box 0

Basis coefficients

Basis coefficients

Basis coefficients

500
04

=500 ‘ ‘

—1,000 4 ‘

T T T T T
27,000 27,500 28,000 28,500 29,000 29,500

Time samples

(c) a; ® b; for S-box 17

400 4

200 +

T T T T T
27,000 27,500 28,000 28,500 29,000 29,500

Time samples

(f) a; ® b; for S-box 23

100 +

—100 ~

—200

T T T T T
27,000 27,500 28,000 28,500 20,000 29,500
Time samples

(i) a; ©® b; for S-box 0

Figure 9: Estimation of the basis coefficients for different operations and S-boxes. Each
subfigure depicts the evolution of the estimated values of the coefficients in front of the
different basis functions, plotted over the time range in which the respective operations
take place. Please note the different scale of the y-axis.

430 Breaking Masked Implementations of the Clyde-Cipher

200

—200

——10
11
—12
—13
14
—600 - — 15
16
17
— 18
—800 19
20
—21
—1,000 - 22
23

Y1
—25
~1,200 - — 26
—27
28
29
——30
——31

—400 ~

Basis coefficients

—1,400 -

T T T T T T T
21,060 21,080 21,100 21,120 21,140 21,160 21,180

Time samples

Figure 11: Estimation of the basis coefficients for different operations and all S-boxes
simultaneously. The figure depicts the evolution of the coefficient corresponding to a single
key bit of the keyloading if all 32 S-boxes are estimated simultaneously, plotted over the
time range in which the operations takes place.

A. Gohr, F. Laus, W. Schindler 431

involve masking bits. It turned out that including masking bits does not yield significantly
better results, but leads to a much higher numerical effort in the attack phase. This might
be explained by the observation that already the key loading and the plaintext addition
involve all unknown key bits and that their estimated coefficients are higher and clearer as
in case of the operations in the context of the ISW-multiplication.

Remark 6 (Alternate attack methods). (i) High-dimensional bases for the particular
time instants ¢; did not yield better results than the bases we used (c.f. Subsec-
tion 5.1.1), neither did a PCA for dimension reduction.

(ii) “Full” template attacks (i.e., template attacks that do not apply assumptions on
the leakage) can be viewed as a special case of the stochastic approach using the
full basis. When attacking a single S-box 2%? (= 212 for d = 3) different shared
subkeys and 2* different tweak bits can occur so that 21274 = 216 densities need to
be estimated, neglecting possible masking bits. In average, only 200,000/2'¢ ~ 3
power traces would be available for the estimation of 50-dimensional densities (we
exploited 50 time instants). The dimension cannot substantially be reduced (without
loss of information) because for d = 3, we exploit 12 (key loading) +12 (state
initialization®) +2 -4 (tweak and plaintext addition, each on the first slice) +2 -3
(first two ISW multiplications a; © b;) +2 - 6 (first two ISW multiplications a; © b;
= 50 operations which take place at different times. Thus full template attacks
(exploiting all operations considered by the stochastic approach) are not practical
in this scenario. Experiments with templates we conducted on fewer POIs (either
selected manually as for the stochastic approach or by estimating the signal-to-noise
ratio) were not succesful.

(iii) In practice, often “model-based” template attacks are used which apply simple leakage
model assumptions (e.g., Hamming weight model or Hamming distance model) to
drastically reduce the number of densities to be estimated. In the given scenario for
different time instants, distinct leakage models apply (c.f. Subsection 5.1.1) so that a
“simple” joint leakage model should hardly exist. In particular, there is no reason
to assume that model-based template attacks are more effective than the applied
stochastic approach.

(iv) The stochastic approach allows to split the calculation of high-dimensional densities
into the independent estimation of several one-dimensional leakage functions (with
individual leakage models) and of one covariance matrix. This leads to an efficient
exploitation of the leakage. Below, a further advantage of the stochastic approach
will be exploited, namely the possibility of gaining insights into the nature of the
leakage.

Contrary to the deep learning based approach, the attack phase does not succeed for the
difficult S-boxes, even when taking a high number of traces. This is most likely due to the
fact that already the estimation of the coefficients yield rather poor results.

The leakage of the “easy” S-box 17 is very large, allowing a successful attack on subkey k17.
Unfortunately, its large leakage spoils the sigma-to-noise ratio of the other S-boxes.
The signal-to-noise ratio quantifies the impact of small and large (-coefficients on _‘ghe

overall leakage. For the moment, we define Z = (zo,...,731), Z= (20,...,231), and k=
(ko,-..,ks1), and we assume that the power consumptions of all S-boxes are independent.
This justifies to extend equation (4) from a single to all S-boxes by

Ii(Z, 2, k)

k‘zl

th(a) x]’zj’~)+ Ry

6The shared state is initialized with the shared key so that the leakage of the sensitive key can actually
be exploited twice.

432 Breaking Masked Implementations of the Clyde-Cipher

0.8

0.6

SNR

0.4 1

0.2 1

0 5 10 15 20 25 30
S-box

Figure 12: Estimation of the signal-to-noise ratio of the different S-boxes for the key

loading operation.

The random variable R} summarizes the (centered) noise at time ¢ that does not originate
from any of the 32 S-box operations but from further operations that take place at the same

time. We interpret the values zq,...,z3; and 2g,..., 231 as realizations of independent
random variables Xy, ..., X31, Zo,...,Z31, so that
. 31
Var (I(X,Z,k)) = 3 Varx, 2, (hu) (X5, 25, k) + Var (B;).
j=0

The term Vary; 7, (-,-,-) quantifies the “algorithmic noise” that depends on Xj, Z; and k;.

Given a fixed shared key k, it depends on the signal-to-noise ratio

VarX,,.,Z,,. (ht(r) (Xra Zr,]%7‘))

0 231 ” Vary, z, (ht(j)(Xj7Zjal~€j)) + Var (Ry)
J=U,..., JJFET

SNR(r) =

whether an S-Box r is “easy” or “difficult”.
If 9G),0,t0; = 1,g(j)’1yt7,~€j2 90 a1,k denotes an -orth.onormal basis for S-box j, the
computation of the algorithmic variance of S-box j simplifies to

u—1 u—1
Varx,,z; (e (X5, 25 ki) = D88 2ok, = D By i,
T=1 T=1

Figure 12 shows the estimated signal-to-noise ratio of the different S-boxes for the key
loading operation. The corresponding figures of the other operations look qualitatively
similar.

5.3 Leakage Assessment

The implementation at hand is especially protected against side-channel attacks. Neverthe-
less, with our neural network-based approach it is possible to extract enough information
to reveal the secret key, and in the aftermath of the contest we had a closer look at the
parts of the implementation that are actually leaking sensitive information.

A. Gohr, F. Laus, W. Schindler 433

By its design it is evident which operations of the algorithm the stochastic approach
exploits, as these are directly reflected in the choice of the basis functions. For the neural
network approach, however, it is less clear which information the network uses, since it
is fed with the whole (subsampled) traces and performs the selection of relevant points
on its own. At the same time, this illustrates one of the major advantages of neural
network-based approaches, as they do not require the preselection of points of interest,
but find them of their own.

We did different experiments to find out which points in the trace are important for our
neural network based leakage extractor. All of them were run on the 3-share data set,
as we did not expect substantially different phenomena to appear for the higher targets.
We did, however, not test this assumption, but leave it for future research. We tried the
following techniques:

« First, we subdivided our 62,500 point into 625 windows, each of which consisting of
100 points, and compared the predicted bit probabilities for the shared state before
and after zeroizing each window, averaging results over a small set of traces.

e We calculated the gradient of the predictor as a function of the input trace for a
subset of input traces in our data set.

In both experiments, we assumed that points that are of interest to the neural network
would show up as points in which the influence of small changes to the trace on the
prediction output is high. Both experiments yielded qualitatively similar results, so we
only describe the results of the window-wise zeroization experiment in more details.

Methods We selected 200 traces from the data set Fkey_Sw3_K1_1000_0, sent them
through our predictor, and converted the scattershot predictions into predictions of single
key bits. We then zeroized each of our 625 windows in turn, ran the same prediction using
the altered trace, and finally calculated the mean squared error of the new prediction with
respect to the prediction obtained from the unaltered trace.

Results The main active region for all traces was found to be between data points 35,000
and 60,000, with smaller and less significant active regions also at the very beginning of the
trace for some S-boxes. Within that very broad active region, large differences in signal
attribution were observed between different S-boxes. Figure 13 shows the relevant profile
for the S-boxes 17, 0 and 22. It is worth noting here that the prediction of the particularly
difficult S-box 22 draws on some regions of the trace that are not used at all for the
other two S-boxes. Matching the operations of the algorithm with the shape of the trace
and the time points the first two active regions around time point 38,000 and 43,000 are
during the S-box computation, more precisely they correspond to the ISW-multiplications
(y[1,-] ©«[3,-]) ® x[0,-] and y[2,-] = (y[0,:] ®y[1,"]) (see equation (1)) after the mask
refreshing. The very active region after point 48,000 is during the computation of the
L-box, which is rather surprising and seems a bit odd since the network actually aims
at predicting the S-box output. Furthermore, it might serve as an explanation why
the Al-based approach considerably outperforms the stochastic approach (and any other
classical approach we tried such as templates), since these approaches cannot exploit the
L-box computation acting on rows of the Clyde-state instead of columns. This is mainly
due to numerical reasons, in particular the huge amount of masking bits and the fresh
randomness caused by the mask refreshing. The stochastic approach yet helped us to
understand why attacks on different S-boxes are so differently efficient and allowed to
quantify this knowledge.

434 Breaking Masked Implementations of the Clyde-Cipher

o —— S-box 22
2 0.2 S-box 0
=
O
—
B
g 0.15 -
&
>
O
"qg 0.1+
=
.S
g
. 0.05 +
N
=
0 |

I I I I I I
35,000 40,000 45,000 50,000 55,000 60,000

Time samples

Figure 13: Results of our main leakage attribution experiment for our deep neural network.
We divided the input traces for the 3-share challenge into 625 windows 100 data points
in length and recorded the mean squared error induced in the state bit predictions by
zeroizing each window input (i.e. predictions were generated before and after zeroizing the
window and the mean squared difference between these two vectors was plotted), where
we show the results for three selected S-boxes.

6 Conclusion and Future Work

In this paper we presented our deep learning-based solution to the CHES 2020 challenge
and gave further insights into certain aspects of our approach, in particular the scattershot
encoding.

Furthermore, we provided and analyzed an alternative, “classical” method, namely the
stochastic approach. Compared to previous works, both the Al-method (in form of the
scattershot encoding) as well as the stochastic approach (in form of the key extraction
phase) had to be adapted to cope with the masked cipher encountered in the contest,
where the randomly chosen shared states make the combination of leakage information
across different traces much more difficult compared to an unshared setting.

Our results show that a deep learning based attack using only a limited amount of
information about the implementation can defeat a software implementation logically
protected by a higher-order masking of the cipher state without much manual intervention.
To train our attack, we only need to be able to calculate the shared internal state after
the first S-box calculation; while we do need to know the masking randomness of the
training traces, we do not need to analyze the details of the implementation beyond the
logic that allows us to compute that shared internal state. Our results show that the
choice of the encoding of the target values can have a large impact on network convergence.
Furthermore, our work shows that adversaries can break cryptographic implementations
like the one used in this challenge in a largely automated way; however, it is also clear
that simply increasing the order of the masking countermeasure would eventually protect
against such attacks, as usual at the cost of computational resources and performance.
However, our results also show that explaining the leakage found by such methods is not
always easy: we do, for instance, not have a good explanation from first principles yet
for the massive difference in the magnitude of leakage observed for different S-boxes. In
addition, it can be difficult to distinguish logical problems of leakage extraction from
the lack of leakage: this point is driven home especially by our experiments to better

A. Gohr, F. Laus, W. Schindler 435

understand the effect of the scattershot encoding using a completely synthetic problem.

Finally, our research also shows that much remains to be discovered in a wide variety of
areas around ML-based side-channel attacks: pre-processing, data representation, network
architectures and post-processing model outputs are all less well understood for side-channel
analysis than in more standard application domains of ML methods such as signal and in
particular image processing tasks.

References

[1]

G. Barthe, S. Belaid, F. Dupressoir, P.-A. Fouque, B. Grégoire, F.-X. Standaert, and
P.-Y. Strub. Improved parallel mask refreshing algorithms: generic solutions with
parametrized non-interference and automated optimizations. Journal of Cryptographic
Engineering, 10:1-10, 2019.

G. Barthe, F. Dupressoir, S. Faust, B. Grégoire, F.-X. Standaert, and P.-Y. Strub.
Parallel implementations of masking schemes and the bounded moment leakage model.
Cryptology ePrint Archive, Report 2016/912, 2016. https://eprint.iacr.org/
2016/912. pdf.

C. Beierle, J. Jean, S. Kolbl, G. Leander, A. Moradi, T. Peyrin, Y. Sasaki, P. Sasdrich,
and S. M. Sim. The SKINNY family of block ciphers and its low-latency variant
MANTIS. In Annual International Cryptology Conference, pages 123-153. Springer,
2016.

D. Bellizia, F. Berti, O. Bronchain, G. Cassiers, S. Duval, C. Guo, G. Leander,
G. Leurent, I. Levi, C. Momin, et al. Spook: Sponge-based leakage-resistant authen-
ticated encryption with a masked tweakable block cipher. TACR Transactions on
Symmetric Cryptology, 2020.

D. Bellizia, O. Bronchain, G. Cassiers, C. Momin, F. Standaert, and B. Udvarhelyi.
CHES 2020 Spook Side-Channel Analysis Capture the Flag Challenge (Spook SCA
CTF), 2020. https://ctf.spook.dev/.

O. Bronchain and F. Standaert. Breaking masked implementations with many shares
on 32-bit software platforms or When the security order does not matter. TACR
Transactions on Cryptographic Hardware and Embedded Systems, 2021(3):202—-234,
2021.

G. Cassiers, B. Grégoire, 1. Levi, and F.-X. Standaert. Hardware private circuits:
From trivial composition to full verification. Cryptology ePrint Archive, Report
2020/185, 2020. https://eprint.iacr.org/2020/185.

M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke,
S. Roth, and B. Schiele. The cityscapes dataset for semantic urban scene understanding.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 3213-3223, 2016.

L. Fei-Fei, J. Deng, and K. Li. ImageNet: Constructing a large-scale image database.
Journal of wvision, 9(8):1037-1037, 2009.

C. Glowacz, V. Grosso, R. Poussier, J. Schiith, and F.-X. Standaert. Simpler and
more efficient rank estimation for side-channel security assessment. In International
Workshop on Fast Software Encryption, pages 117-129. Springer, 2015.

https://eprint.iacr.org/2016/912.pdf
https://eprint.iacr.org/2016/912.pdf
https://ctf.spook.dev/
https://eprint.iacr.org/2020/185

436

Breaking Masked Implementations of the Clyde-Cipher

[11]

A. Gohr, S. Jacob, and W. Schindler. Subsampling and knowledge distillation on
adversarial examples: New techniques for deep learning based side channel evaluations.
In Selected Areas in Cryptography, volume 12804 of Lecture Notes in Computer Science,
pages 567-592. Springer, 2020.

D. Goudarzi and M. Rivain. How fast can higher-order masking be in software? In
J.-S. Coron and J. B. Nielsen, editors, Advances in Cryptology, pages 567-597, Cham,
2017. Springer International Publishing.

V. Grosso, G. Leurent, F.-X. Standaert, and K. Varici. LS-designs: Bitslice encryption
for efficient masked software implementations. In International Workshop on Fast
Software Encryption, pages 18-37. Springer, 2014.

V. Grosso, G. Leurent, F.-X. Standaert, K. Varici, F. Durvaux, L. Gaspar, and
S. Kerckhof. SCREAM & iSCREAM side-channel resistant authenticated encryption
with masking. Submission to CAESAR, 2014. https://competitions.cr.yp.to/
round2/screamv3.pdf.

Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware against probing
attacks. In Annual International Cryptology Conference, pages 463—481. Springer,
2003.

J. Kim, S. Picek, A. Heuser, S. Bhasin, and A. Hanjalic. Make some noise. Unleashing
the power of convolutional neural networks for profiled side-channel analysis. TACR
Transactions on Cryptographic Hardware and Embedded Systems, 2019(3):148-179,
2019.

G. M. Kurtzer, V. Sochat, and M. W. Bauer. Singularity: Scientific containers for
mobility of compute. PLOS ONE, 12(5):1-20, 2017.

L. Masure, N. Belleville, E. Cagli, M.-A. Cornélie, D. Couroussé, C. Dumas, and
L. Maingault. Deep learning side-channel analysis on large-scale traces. In European
Symposium on Research in Computer Security, pages 440-460. Springer, 2020.

National Institute of Standards and Technology (NIST). Lightweight cryptogra-
phy standardization process, August 2018. https://csrc.nist.gov/Projects/
lightweight-cryptography.

S. Picek, A. Heuser, A. Jovic, S. Bhasin, and F. Regazzoni. The curse of class imbalance
and conflicting metrics with machine learning for side-channel evaluations. TACR
Transactions on Cryptographic Hardware and Embedded Systems, 2018(1):209-237,
2018.

S. Picek, G. Perin, L. Mariot, L. Wu, and L. Batina. SoK: Deep learning-based
physical side-channel analysis. Cryptology ePrint Archive, Report 2021/1092, 2021.
https://ia.cr/2021/1092.

W. Schindler, K. Lemke, and C. Paar. A stochastic model for differential side channel
cryptanalysis. In J. R. Rao and B. Sunar, editors, Cryptographic Hardware and
Embedded Systems, pages 30—46, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

L. Wu, G. Perin, and S. Picek. The best of two worlds: Deep learning-assisted
template attack. Cryptology ePrint Archive, Report 2021/959, 2021. https://ia.
cr/2021/959.

L. Wu, G. Perin, and S. Picek. On the evaluation of deep learning-based side-channel
analysis. In International Workshop on Constructive Side-Channel Analysis and
Secure Design, pages 49-71. Springer, 2022.

https://competitions.cr.yp.to/round2/screamv3.pdf
https://competitions.cr.yp.to/round2/screamv3.pdf
https://csrc.nist.gov/Projects/lightweight-cryptography
https://csrc.nist.gov/Projects/lightweight-cryptography
https://ia.cr/2021/1092
https://ia.cr/2021/959
https://ia.cr/2021/959

A. Gohr, F. Laus, W. Schindler 437

[25] G. Zaid, L. Bossuet, M. Carbone, A. Habrard, and A. Venelli. Conditional variational
autoencoder based on stochastic attack. Cryptology ePrint Archive, Report 2022/232,
2022. https://ia.cr/2022/232.

[26] G. Zaid, L. Bossuet, F. Dassance, A. Habrard, and A. Venelli. Ranking loss: Maxi-
mizing the success rate in deep learning side-channel analysis. TACR Transactions on
Cryptographic Hardware and Embedded Systems, pages 25-55, 2021.

https://ia.cr/2022/232

	Introduction
	CHES Challenge 2020 Side-Channel Contest
	Objectives
	Data Sets and Evaluation Framework

	Clyde-128 Cipher
	TLS Design
	Masked Implementation

	Deep Learning Approach
	Overview
	Overall Strategy
	Deep Neural Network
	The Scattershot Encoding: Achieving Bit-Level Precision
	Training the Network
	Results
	Dissecting the Scattershot Encoding

	The Stochastic Approach
	Different Steps of the Stochastic Approach
	Numerical Results
	Leakage Assessment

	Conclusion and Future Work

