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Abstract. Even today, Side-Channel Analysis attacks pose a serious threat to the
security of cryptographic implementations fabricated with low-power and nano-
scale feature technologies. Fortunately, the masking countermeasures offer reliable
protection against such attacks based on simple security assumptions. However, the
practical application of masking to a cryptographic algorithm is not trivial, and the
designer may overlook possible security flaws, especially when masking a complex
circuit. Moreover, abstract models like probing security allow formal verification tools
to evaluate masked implementations. However, this is computationally too expensive
when dealing with circuits that are not based on composable gadgets. Unfortunately,
using composable gadgets comes at some area overhead. As a result, such tools can
only evaluate subcircuits, not their compositions, which can become the Achilles’ heel
of such masked implementations.
In this work, we apply logic simulations to evaluate the security of masked imple-
mentations which are not necessarily based on composable gadgets. We developed
PROLEAD, an automated tool analyzing the statistical independence of simulated in-
termediates probed by a robust probing adversary. Compared to the state of the art,
our approach (1) does not require any power model as only the state of a gate-level
netlist is simulated, (2) can handle masked full cipher implementations, and (3)
can detect flaws related to the combined occurrence of glitches and transitions as
well as higher-order multivariate leakages. With PROLEAD, we can evaluate masked
implementations that are too complex for existing formal verification tools while
being in line with the robust probing model. Through PROLEAD, we have detected
security flaws in several publicly-available masked implementations, which have been
claimed to be robust probing secure.
Keywords: Side-Channel Analysis · Leakage Detection · Hardware

1 Introduction
Since Kocher et al. reported the first Side-Channel Analysis (SCA) attacks as a threat to the
security of cryptographic hardware [Koc96, KJJ99], protecting concrete implementations
of cryptographic algorithms has been attracting the researchers’ attention. Based on
this groundbreaking work, the past twenty years of research have shown successful SCA
attacks [KJJ99, BCO04, GBTP08] based on traces obtained by measuring one out of
potentially various physical characteristics of a device [Koc96, KJJ99, GMO01, HS13,
GST14]. In particular, if a designer does not consider SCA as a serious attack vector, an
adversary may exploit the dependency between a physical characteristic of the device and
the processed data revealing sensitive information efficiently.

As there has been an urgent need to mitigate information leakage, numerous counter-
measures trying to protect cryptographic devices from any SCA have been proposed during
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the past decades. So far, masking, based on the concept of secret sharing [Sha79], is the
most popular proposal [CJRR99]. Masking reaches its popularity due to its basic security
assumptions simplifying the design and verification of concrete masking schemes such
as the ones given in [ISW03, Tri03, NRS11, RBN+15, GMK16, GMK17, GIB18, GM18].
If the masking scheme satisfies that all input sharings are drawn uniformly and if the
noise level is sufficient, conceptual simple adversary models abstract the SCA security of a
masking scheme [DDF14]. A basic and efficient – and therefore widely used – adversary
model is the d-probing model [ISW03]. Due to its simplicity, the verification under the
d-probing model is efficient but does not cover physical shortcomings. Consequently, the
more advanced robust probing model has been built on top of the d-probing model to
cover different types of physical defaults [FGMDP+18] including glitches, transitions, and
couplings.

However, designing, implementing, and verifying a masked implementation of a crypto-
graphic algorithm is often a manual and error-prone task. Consequently, some masking
schemes are shown to be insecure because of, so far, unnoticed design flaws or inaccurate
formal modeling of the adversary [MMSS19].

A common approach to verify the experimental security of a masked implementation is
to collect power/electro-magnetic traces from a prototype and perform a leakage assessment
based on statistical hypothesis testing, i.e. t-test [GJJR11] or χ2-test [MRSS18]. Leakage
assessment takes place after fabricating a prototype of the device. If the leakage assessment
reports a leakage, the design needs to be analyzed to avoid the flaw leading to the fabrication
of a new device under test. This procedure is repeated until no further leakage is detected.

The fabrication can be a new design configured on an FPGA with a significantly
short time to market. However, in the case of ASIC design procedures, refabrication is
time-consuming and expensive; hence leakage evaluation techniques at early design stages,
i.e., before fabrication of the chip, are getting more and more popular. In particular, formal
verification and leakage simulation have become promising research fields. Nevertheless,
their concrete instantiations, given as automated verification frameworks, come with
restrictions. Formal verification tools can efficiently verify the robust probing security
of a tiny circuit, e.g., a small S-Box, but the complete formal verification of a larger
design, like a masked round-based implementation of a cipher, becomes computationally
infeasible. While leakage simulation tools can handle larger circuits, they mainly check
resistance against a particular Differential Power Analysis (DPA) or Correlation Power
Analysis (CPA) attack, where assumptions about the leakage and power models as well
as targeted intermediate values are required [HSZ13, FGBR20, NPH+20, ZPTF21]. More
formally, they cannot evaluate the given circuits based on the robust probing model. As a
shortcoming, they may report an implementation as secure, while an undetected design
flaw (caused by not being probing secure) is exploitable by another attack not covered by
the evaluations.

To build provably-secure masked implementations of large designs, small and securely
composable masked circuits, so-called gadgets, are applied as building blocks of larger
circuits. Therefore, the security properties of such gadgets can be individually verified
by formal verification tools, e.g., [BBC+19, KSM20]. However, formal verification of a
masked full cipher is still not feasible if the implementation is made by not-necessarily
composable gadgets. These implementations are potentially beneficial and usually more
efficient compared to their gadget-based variants. For example, [KMMS22] provides a
comparison of different masked byte-serial implementations of the Advanced Encryption
Standard (AES). However, their probing security remains unproven. We must rely on
experimental leakage assessments that might be inaccurate, incomplete, setup-dependent,
and therefore not always trustworthy. In short, we can evaluate the leakage of large designs
in an experimental setting, but we cannot see this as a security proof. Even if we detect
no weaknesses by a leakage assessment, we can never be sure that no security flaw exists.
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1.1 PROLEAD

We introduce PROLEAD, a novel leakage detection tool for hardware. PROLEAD performs logic
simulations at gate level to evaluate the d-probing security of a circuit even in presence of
glitches and transitions. To clarify the benefits and limitations of PROLEAD compared to
the existing tools from literature, we give a detailed comparison.

Compare with Formal Verification Tools. All formal verification tools presented in
Section 3 are restricted to the verification of small building blocks, e.g., gadgets or small
S-Boxes. Hence, it is infeasible to verify large circuits, e.g., a masked implementation of a
complete cipher, with formal verification tools. Due to its underlying simulation-based
approach, PROLEAD can evaluate large circuits even at higher security orders. For example,
a masked first-order round-based implementation of AES can be fully examined in an
hour, while a flawed variant is identified in a couple of seconds. In Section 5, we evaluate
some examples with PROLEAD that cannot be verified by the tools from Section 3. As a
result, by means of PROLEAD we have identified a high number of security flaws in the
implementations which are supposed to be not only secure in practice, but also robust
probing secure. However, the evaluation of PROLEAD can be seen as incomplete, since the
simulations cannot cover all possible inputs of large circuits. Therefore, it is possible that
PROLEAD fails to detect existing leakage if a leaking test vector is not considered sufficiently
by the simulator. Hence, increasing the number of simulations decreases the probability
that existing leakage is not detected. To create confidence in the decision of PROLEAD,
we provide a mechanism to determine an adequate number of simulations to consider.
More specifically, we compute the minimum number of simulations needed to guarantee
an acceptable small probability that existing leakage is not detected.

Compare with Leakage Simulators. The leakage simulators and evaluation techniques
covered in Section 3 can give a preliminary overview of the vulnerability of the given design,
often unprotected, i.e., not masked. However, they are not in conformity with the probing
security model. As a result, they probably fail to detect leakage, particularly for masked
implementations. In other words, they cannot guarantee the detection of leakages in flawed
masked implementations. However, PROLEAD has two important differences compared to
state-or-the-art leakage simulators.

1. PROLEAD operates directly on the simulated intermediates instead of modeling power
traces. Consequently, the security evaluation does not depend on a hypothetical
power model.

2. The evaluation procedure of PROLEAD is fully in line with the concept of robust probing
security [FGMDP+18]. We investigate all necessary robust-probing adversaries that
give PROLEAD the ability to detect any leakage according to the security model.

In short, PROLEAD fills the gap, i.e., uses the benefits of simulation-based tools (fast
evaluations) and examines the security of large circuits based on robust probing models,
which neither state-of-the-art simulation-based nor formal verification tools can handle.
The tool is publicly available at GitHub1.

1.2 Outline
Section 2 starts by introducing the basic concept of probing security and continues with
more advanced security notions. Afterwards, Section 2 gives the relevant background on
masking and the statistical hypothesis test. Next, we present the existing tools from the

1https://github.com/ChairImpSec/PROLEAD

https://github.com/ChairImpSec/PROLEAD
https://github.com/ChairImpSec/PROLEAD
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formal verification and leakage simulation domain in Section 3. In Section 4, we explain
the methodology of PROLEAD with a focus on generating the probing sets and evaluation.
Finally, we apply PROLEAD to a wide range of protected hardware implementations and
discuss its findings in Section 5. Section 6 concludes this paper.

2 Background
2.1 Robust Probing Model
The robust d-probing model [FGMDP+18] extends the d-probing model [ISW03] by con-
sidering physical defaults violating security in non-ideal circuits, i.e., physical logic circuits
and hardware implementations [BDF+17]. More precisely, under robust d-probing model
information leakage sourced by combinational recombinations (glitches) [MPG05, MPO05],
memory recombinations (transitions) [CGP+12, BGG+14], and routing recombinations
(couplings) [CBG+17] are taken into account. We apply the notation from [FGMDP+18],
annotating the robust probing model with a triple (g, t, c). Each entry in the triple specifies
whether glitches (g = 1), transitions (t = 1), or couplings (c = 1) are considered. For
example, the (0, 0, 0)-robust probing model, i.e., without considering any physical defaults,
is equivalent to the d-probing model introduced in [ISW03] building the theoretical foun-
dation for verifying the security of an ideal circuit. It defines a d-probing adversary who
can place up to d (standard) probes on freely chosen spots to record noise-free and stable
signals. Hence, the adversary gets access to a set of d intermediates. To cover a desired
physical default in the (g, t, c)-robust d-probing model, a probe extension procedure is
applied on the standard probes which further increases the set of intermediates. We remark
that taking all possible occurrences of a specified type of physical default into account is
very conservative but leads to a model that fits arbitrary circuits.

Glitch-Extension. Glitches are unexpected signal transitions occurring in combinational
circuits. Due to imbalanced delay paths and switching delays, signals may arrive asyn-
chronously at a gate resulting in a different but temporary output before the output signal
reaches its intended state. To cover glitches within the robust probing model, glitch-
extended probes replace all probes allowing an adversary to access all stable intermediates
(either register outputs or primary inputs) that contribute to the probed wire.

Transition-Extension. Transitions potentially recombine the contents of the same memory
element in two consecutive invocations. Hence, by overwriting a memory element, i.e., a
register or a flip-flop, an adversary gains information about the old and the new values.
To model transitions in the robust probing model, all probes are replaced by transition-
extended probes recording the signal during two consecutive invocations.

Coupling-Extension. Couplings lead to unintentional and undesired recombinations of
values on adjacent wires. To model couplings in the robust probing model, we need to
replace all probes with coupling-extended probes that observe multiple neighboring wires.

2.2 Security Notions
According to the probing model, a circuit achieves (g, t, c)-robust d-probing security if a
d-probing adversary cannot learn anything about the processed secret. More formally, the
joint distribution of any observation set is statistically independent of the distribution of any
secret. Unfortunately, for the verification of d-probing security, the statistical independence
of each observation set must be checked. As the number of probe combinations grows
with d and the complexity of the circuit, verification of d-probing security becomes
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infeasible for large circuits and particularly at higher orders. To bypass the verification
of d-probing security, small and secure building blocks, so-called gadgets, are composed
to construct more complex circuits. Hence, the d-probing security of a large circuit
is satisfied if all involved gadgets are composable without violating d-probing security.
To formally verify the composability of a gadget, Barthe et al. introduced d-Strong
Non-Interference (SNI) [BBD+16] as an extension of d-Non-Interference (NI) [BBD+15].
While gadgets satisfying d-SNI are indeed composable, it turned out that d-SNI is an
over-conservative security notion in practice and leads to significant area and randomness
overheads [CS20]. To relax the requirements in terms of area and randomness, Cassiers
et al. introduced d-Probe-Isolating Non-Interference (PINI) as a less conservative and,
therefore, more efficient security notion [CS20].

2.3 Boolean Masking
Boolean masking is a common and well-studied approach to protect hardware implementa-
tions against SCA attacks [CJRR99]. According to the concept of secret sharing [Sha79],
Boolean masking splits a sensitive variable X ∈ Fn2 into s > 1 independently and uniformly

distributed shares {X0, ..., Xs−1} ∈ (Fn2 )s that satisfy X =
s−1⊕
i=0

Xi. To generate a sharing

of X, we sample {X0, ..., Xs−2} uniformly and randomly from Fn2 . For the remaining

Xs−1, it holds that Xs−1 =
( s−2⊕
i=0

Xi
)
⊕X. To avoid SCA leakages about X, all operations

of the cipher need to be performed on {X0, ..., Xs−1}, i.e. the shared representation of X.
To achieve security under the d-probing model (cf. Section 2.1) it must hold that s ≥ d+ 1.

2.4 Statistical Hypothesis Tests
Hypothesis tests apply statistical procedures to data to assess the strength of evidence
against the underlying null hypothesis H0. Usually, H0 denotes a general statement that
there is no relation between two groups of samples. To accept or reject H0, hypothesis
tests provide a quantitative value in the form of a significance level.

For our purposes, we evaluate whether there is a significant dependency between two
categorical variables R with r different categories and C with c different categories, both
from a single population. Hence, the corresponding H0 states that R and C are statistically
independent. The frequency of observed samples of R and C are stored in a two-way
contingency table with r and c categories. For better understanding, we depict a generic
two-way contingency table in Table 1.

Table 1: Contingency table for two variables R and C, with Fi,j denoting the frequency
of observed samples when R = i and C = j.

Fi,j j = 0 ... j = c − 1 Total
i = 0 F0,0 ... F0,c−1 F0,∗

... ... ... ... ...
i = r − 1 Fr−1,0 ... Fr−1,c−1 Fr−1,∗

Total F∗,0 ... F∗,c−1 F∗,∗

Pearson’s χ2-Test of Independence. The χ2-test of independence [Pea92] rejects or
accepts H0 based on a test statistic that follows a χ2-distribution. The test itself measures
the divergence of the observation from the expectation. Such expectations are done by
estimating the degree of freedom v and the corresponding expected frequency Ei,j for
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each observed frequency Fi,j , given that H0 holds. Afterwards, the χ2-test statistic x is
computed as follows.

v = (r − 1)(c− 1), Ei,j = Fi,∗ · F∗,j
F∗,∗

, x =
r−1∑
i=0

c−1∑
j=0

(Fi,j − Ei,j)2

Ei,j
(1)

The associated p-value, i.e., the probability to accept H0, is finally computed based on
the probability density function f and the gamma function Γ.

p =
∫ ∞
x

f(x, v)dx, f(x, v) =

 x
v
2−1e−

x
2

2
v
2 Γ( v2 )

x > 0

0 else
(2)

G-Test of Independence. The G-test of independence [Sok95, MoD09] is an alternative
to the χ2-test of independence based on a likelihood ratio test. The method uses the
multinomial distribution. It tests the goodness of fit of the observed to the expected
frequencies, under the assumption that H0 holds, by estimating the G-statistic x as follows.

x = 2 ·
r−1∑
i=0

c−1∑
j=0

Fi,j · ln
(Fi,j
Ei,j

)
, (3)

where the expected frequencies Ei,j are computed as for the χ2-test, i.e., Equation (1).
Since the distribution of x is approximately χ2-distributed with the same v, the p-value is
computed in the same way as for the χ2-test, i.e., Equation (2).

2.4.1 Hypothesis Testing for Leakage Detection

Due to its simplicity and efficiency, the χ2-test is more common than the G-test. If the
contingency table is small, i.e. 2×2, the χ2-test can be easily calculated by hand. Moreover,
the χ2-test computes a squaring while the G-test conducts the more complex logarithm
function. In the field of leakage detection, the χ2-test is a complement to Welch’s t-test
as it detects some flaws which the t-test cannot detect. For a detailed comparison of the
χ2-test and t-test, we refer to [MRSS18]. However, as the χ2-test is an approximation of
the G-test based on Taylor expansion, it is not as accurate as of the G-test. If Fi,j and
Ei,j are different, the χ2-test approximation overestimates the outlier what may lead to
erroneous results while the G-test computes correctly [Sok95, Hoe12]. We remark that
these inaccuracies occur if we deal with a sparse contingency table, i.e., the amount of
data is low while the contingency table is large. As in the domain of SCA, contingency
tables might often be sparse, we choose the G-test as the underlying hypothesis test of our
tool PROLEAD.

For the sake of completeness, we would like to note that – in contrast to the G-test
– exact hypothesis tests such as Fischer’s exact test [Fis22, Agr92] do not approximate
the p-value. Hence, they provide an accurate significance level. Exact tests are of great
relevance when dealing with small data sets as the approximation error when applying the
χ2-test increases the more expected frequencies are smaller than 5 [Yat34].

On the other hand, evaluating larger contingency tables with an exact hypothesis test
is not feasible. Usually, Fischer’s exact test is applied on up to 2× 4 contingency tables or
combined with a probabilistic heuristic such as Monte Carlo sampling [M+87].

2.4.2 Statistical Power Analysis

Whenever we apply statistical hypothesis tests, we ensure that we can trust their results. In
particular, our experiment must satisfy that the underlying hypothesis test detects even a
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small dependency. The question of whether a hypothesis test reliably detects a dependency
is closely related to the metric of statistical power. To understand the statistical power, we
first define the estimation errors that can occur while performing hypothesis tests in the
context of SCA.

Definition 1 (False Positive). False positives occur if we reject H0 despite it being true.
It means that PROLEAD wrongly classifies a secure design as insecure.

Definition 2 (False Negative). False negatives occur if we accept H0 despite it being
false. It means PROLEAD cannot detect existing leakage and wrongly classifies an insecure
design as secure.

While the p-value gives the probability of a false positive, the statistical power is related
to the false-negative probability β. As the power of a test defines the probability that it
rejects H0 correctly, it is computed as:

1− β = F (xcrit, v, λ) = e
−λ

2

∞∑
i=0

(λ2 )i

i! Q(xcrit, v + 2i) Q(x, v) =
γ( v2 ,

x
2 )

Γ( v2 )

While F denotes the cumulative distribution function for the noncentral χ2-distribution, Q
denotes the cumulative distribution function of the central χ2-distribution, and γ denotes
the lower incomplete gamma function. Moreover, xcrit defines the critical value of the
underlying distribution for a given confidence level a. Hence, xcrit estimates the a-quantile
of the χ2-distribution. Last, λ is the noncentrality parameter depending on ϕ and F∗,∗
(given in Table 1) and is computed as:

λ = ϕ2 · F∗,∗

As we want to detect even small effects, we choose ϕ = 0.1 following the proposal of
Cohen [Coh88] which estimates ϕ = 0.1 as a small effect, ϕ = 0.3 as medium effect, and
ϕ = 0.5 as huge effect. Consequently, we numerically estimate F∗,∗ for fixed ϕ = 0.1 and
β ≤ 10−5.

3 Related Works
The evaluation of masked implementations has a pivotal role in protecting devices against
SCA attacks. Therefore, many researchers contribute to this topic by presenting automated
tools revealing flaws in protected implementations. So far, the research concentrates on
two different approaches, namely formal verification, and leakage simulation.

Formal Verification. Automated tools for formal verification can prove the security of
masked implementations, assisted by predefined adversary models. As formal verification
is complete, no false negatives occur and the result can be seen as security proof under the
chosen model but, sometimes, the verification is too conservative leading to false positives
[PMK+11, KSM20]. The reduction of masking’s security properties to simple and abstract
adversary models allows the evaluation of complex circuits, i.e., masked implementations
operating on many shares. Nevertheless, the verification under more sophisticated adver-
sary models, i.e., models that cover physical defaults, is too computational complex for
larger circuits. That is why formal verification tools are mostly applied only to gadgets.
Today, a wide range of formal verification tools, evaluating robust probing security, is avail-
able [BBD+15, BBD+16, BBC+19, Cor18, BGI+18, KSM20, MKSM22, BK21, BMRT22]
and we refer to [CGF21] for an exhaustive survey on formal verification tools. Below, we
summarize the most relevant candidates related to this work including their capabilities.
At EUROCRYPT 2015, Barthe et al. [BBD+15] presented maskVerif, a language-based
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formal verification framework based on probabilistic information flow to prove the (0, 0, 0)-
and (0, 1, 0)-robust d-probing security of masked implementations. Moreover, they in-
troduced the d-NI security notion and integrated an automated verification procedure
into maskVerif. Later, the authors of [BBD+16] extended d-NI to the d-SNI security
notion to evaluate circuits with respect to their composability, and integrated the formal
verification of d-SNI into maskVerif. The introduction of the SNI notion improves formal
verification since small parts of the circuit (so-called gadgets) that fulfill d-SNI can be
arbitrarily composed to construct larger and still secure designs. Hence, maskVerif can
efficiently verify small gadgets to avoid the formal verification of larger gadget-based
circuits. As these versions of maskVerif left glitches unconsidered, Bloem et al. developed
Rebecca [BGI+18], an automated tool based on the approximated estimation of Fourier
coefficients. As the Fourier coefficients are not fully computed for all underlying functions
of the circuit but only approximated, the precision of Rebecca might be slightly low, re-
sulting in a small number of false positives. In contrast to maskVerif, Rebecca can verify
(0, 0, 0)-, (1, 0, 0)-, and (0, 1, 0)-robust d-probing security but no composability notions as
d-NI and d-SNI are supported. Nevertheless, the computational cost for estimating Fourier
coefficients is quite high which restricts Rebecca to the verification of small circuits and
low security orders. Moreover, Barthe et al. extended maskVerif to evaluate higher-order
leakages in the presence of glitches [BBC+19]. The extension is based on a simple but
expressive intermediate language that annotates each instruction with a leakage expres-
sion. Since the to-date version of maskVerif can verify large sets of intermediates very
efficiently, the performance is improved compared to former versions [BGI+18]. However,
maskVerif follows a language-based approach resulting in verification purely based on the
syntax instead of statistical evaluation. Therefore, a false positive can occur if a statistical
independent output of a masked function violates non-completeness and its sharing is
not refreshed by fresh randomness. Two examples for such a false classification are the
Threshold Implementation (TI) of PRESENT S-Box given in [PMK+11] which maskVerif
wrongly classifies as first-order insecure, and a small toy example presented in [KSM20].
In short, neither Rebecca nor maskVerif can fully avoid false positives. To counteract
this problem, Knichel et al. presented SILVER [KSM20], which completely avoids false
positives by analyzing the statistical independence of joint distributions. Moreover, SILVER
supports all previously discussed security notions (d-probing security, d-NI, and d-SNI) as
well as the d-PINI notion [CS20], which allows composability as well as a more efficient
implementation compared to d-SNI. All security notions can be verified under the (0, 0, 0)-
and (1, 0, 0)-robust d-probing model, i.e., covering glitches. Concerning efficiency, SILVER
achieves fast verification of gadgets at higher orders as well as small S-Boxes on low orders.
On the negative side, SILVER is not able to analyze even a middle-size masked circuit. By
a recent extension [MKSM22], SILVER is also able to evaluate a certain form of circuits
under the (1, 1, 0)-robust d-probing model. Hence, SILVER was the first formal verification
tool that covers glitches and transitions simultaneously. While the current versions of
maskVerif and SILVER can verify a design under various conditions, the overhead in terms
of verification time, especially for verification with SILVER is impractical for large circuits.

Leakage Simulation. Since the formal verification of larger circuits becomes infeasible,
another research branch focuses on evaluating these circuits by simulating the power
consumption of a particular prototype running the implementation. For efficiency reasons,
only a fixed set of input vectors is simulated resulting in an incomplete evaluation. Hence,
the high performance of leakage simulation comes at the cost of accuracy and false negatives.
We remark that [BBYS22] presents a wide range of leakage simulators. Therefore, we focus
on how simulators abstract the leakage. The accuracy of a simulator mainly depends on
the abstraction level of the simulation. Simulations at the Register-Transfer Level (RTL)
are helpful to verify the security of a hardware implementation during the earliest design
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stage. Since a high-level description is the only available source, the simulation cannot take
any hardware-specific internals into account. Usually, the simulation of a trace on RTL is
done by simulating the internal logic given in the high-level description and applying a
leakage function like Hamming weight (HW) [AMM+06, Rep16, FGBR20] or Hamming
distance (HD) [SBY+18] on the logically simulated intermediates. Then, conventional
leakage assessment techniques as Test Vector Leakage Assessment (TVLA) [BCD+13]
operate on the simulated traces. To increase accuracy, Debande et al. proposed a
profiled logic simulator based on linear regression [DBBL12]. During a profiling phase,
the simulator receives real traces from a profiling device and two successive states of
all registers to fit a function of state bits and transitions [SLP05]. According to the
resulting model, the simulator can generate new traces that are more accurate compared
to non-profiled high-level simulators. Furthermore, some tools are build to identify
possible hypothesis functions for an exploitation with DPA and CPA [HSZ13, HPN+19,
NPH+20, ZPTF21]. If a gate-level netlist is available, simulations become more detailed
and leakage can be detected for each cell separately. Nevertheless, taking every single
gate into account increases the simulation time significantly. Most of the gate level-
simulators consider simulated toggles which are stored in a Value Change Dump (VCD)
file [KP07, SBY+18, SVRK19, YKES20]. Based on the toggles, they simulate the traces
which are again processed by TVLA. Sometimes the user can annotate the netlist. For
example, the simulator of Kirschbaum et al. [KP07] can simulate glitches if the user
adds propagation delays to the netlist. Furthermore, Karna splits the placed netlist into
N × N regions and identifies the most leaking ones with localized TVLA if the user
adds placement information [SVRK19]. To allow a fair comparison of gate-level leakage
leakage detection on a prototype, Kiaei et al. developed the Saidoyoki evaluation board
[KLE+21]. The board includes two self-designed ASICs. The simulator receives a gate-
level netlist, layout parasitics, and a test scenario (DPA, CPA, or TVLA) together with
a fitting set of test vectors. Then, the procedure applies commercial tools for synthesis,
hardware simulation, and gate-level leakage estimation. Simulators operating at a low
abstraction level, e.g. transistor level, such as Simulation Program with Integrated Circuit
Emphasis (SPICE) and its variants, can simulate the power consumption very accurately
as they take many hardware-specific properties into account. Therefore, transistor-level
simulations achieve the highest accuracy and are widely used to model side-channel
leakage [TV04, AMM+06, RBE+07, RCS+09, SBY+18]. Nevertheless, covering all design
internals comes at the cost of performance [TV03]. Hence, transistor-level simulations
become infeasible for large circuits [BDG+14].

4 Technique
The procedure PROLEAD follows to verify d-probing security consists of two steps. Ini-
tially, PROLEAD generates all probing sets that must be considered for the desired leakage
verification. Later, a verification step goes through all relevant probing sets and tests
their information leakage. During verification, a simulator generates the inputs for the
circuit (based on the given settings) and simulates the circuit to obtain intermediate values.
Afterwards, a statistical hypothesis test evaluates the independence of the intermediate’s
underlying distributions. In this section, we present both steps in detail. We start by
reviewing the leakage models PROLEAD supports and give some information about the
specification of the settings.

4.1 Notation
We denote functions by sans-serif lower-case characters, e.g. f(.). We use an upper-case
and bold character, like X, to denote a list of elements. Further, we use subscripts to refer
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to a specific element of a list. For example, xi ∈ X denotes the element with index i in
the list.

4.2 Formal Models
4.2.1 Circuit Model

It holds that every sequential circuit that contains no combinational loop (i.e., not cov-
ering circuits with an asynchronous design architecture) can be uniquely modeled as a
Mealy machine [Mea55] following the schematic of Figure 1. The circuit model combines
combinational logic with a single register stage containing all synchronization elements.
Hence, even if a circuit encompasses multiple register stages, it is modeled as it is depicted
in Figure 1. The combinational logic processes the primary inputs I and the register state
S, and returns all register inputs and primary outputs O.

Combinational Logic

R
eg

ist
er

St
ag

e

O

clk

I
|I|

|S|

|O|

|S|

Figure 1: General model of a sequential circuit.

Definition 3 (Mealy Machine). We represent a Mealy Machine as a directed graph (V,E).
Each vertex v ∈ V models a combinational gate or a register cell while we model each
connection between the gates, i.e., wires, as an edge e ∈ E. Each v ∈ V is defined as a
quadruple v = (Ein

v ,Eout
v , fv, gv) with the following elements:

• The input wires Ein
v ⊆ E (and output wires Eout

v ⊆ E) of v.

• The underlying Boolean function fv computed by v.

• gv ∈ F2 with gv = true if v is combinational, and gv = false if v is a sequential
gate.

We remark that e ∈ E only specifies the signal itself (i.e. the output value of a gate)
but not the connection between multiple gates. Hence, a connection from v0 to v1 with
v0, v1 ∈ V exists if e ∈ Eout

v0
and e ∈ Ein

v1
. Further, e ∈ E can be the input of multiple

gates as the same signal can be the input of multiple gates. Additionally, we create a list
Ve ⊆ V for each e ∈ E. Ve stores all v ∈ V with e ∈ Ein

v .

4.2.2 Leakage Models

To verify d-probing security, PROLEAD can be dictated to consider a specification of the
(g, t, c)-robust d-probing model [FGMDP+18].

Definition 4 (Probe). Let (V,E) be the representation of a sequential circuit and T be
a list of considered time instances, i.e. clock cycles. A probe p = (e, t) with e ∈ E and
t ∈ T records a signal on wire e during clock cycle t.
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Definition 5 (Probing Set). A Probing Set P = {p0, ..., p|P|−1} defines a list of probes.
We denote the extensions applied to a probing set P with superscripts. For example, if P
contains standard probes, we refer to the same list when extended by glitches by Pg.

By default, we perform the verification step under the (1, 0, 0)-robust d-probing model.
This so-called glitch-extended d-probing model is a widely-used adversary model for
hardware implementations. It considers physical defaults in terms of glitches. To formalize
the behavior of glitches, i.e., their propagation through combinational logic, we utilize the
conservative glitch-extension procedure from [FGMDP+18] given in Definition 6.

Definition 6 ((1, 0, 0)-Robust d-Probing Model). Consider a list of d-probing sets P. We
transform all d-probing sets Pi = {p0, ..., pd−1} ∈ P into glitch-extended probing sets
Pg
i ∈ Pg by substituting each probe p ∈ Pi individually. We substitute p = (e, t) by all

probes placed on the input wires of combinational gates that contribute to e and record
during clock cycle t.

Then, the verification step goes through all Pg
i ∈ Pg and analyzes each glitch-extended

probing set. We give the details of the probe extension procedure in Section 4.4. Further,
we can expand the verification by considering the joint occurrence of glitches and transitions
under the (1, 1, 0)-robust d-probing model. Usually, hardware implementations are analyzed
concerning glitches only. However, transitions can lead to security flaws, especially in
iterative circuits, e.g., round-based cipher designs [HSS12, CS21]. Formalizing the influence
of transitions, i.e., value changes, whose leakage depends on the previous as well as the
new value, is done by extending all p ∈ Pg by transitions according to Definition 7.

Definition 7 ((1, 1, 0)-Robust d-Probing Model). Consider a list of glitch-extended d-
probing sets Pg. We transform all Pg

i = {p0, ..., p|Pg
i
|−1} ∈ Pg into Pg,t

i ∈ Pg,t by
substituting all p = (e, t) ∈ Pg

i with a tuple {p, p′} recording the previous clock cycle
p′ = (e, t− 1).

We should highlight that PROLEAD always considers the glitches and does not support
non-robust (0, 0, 0) case. As PROLEAD is supposed to evaluate hardware circuits, we cannot
ignore glitches. For a correct evaluation, the user should also consider transitions. However,
we made the cover of transitions an optional feature to allow the designer to identify the
source of leakage. More precisely, if PROLEAD reports the detection of leakage for glitch +
transitions, the designer can turn off the transitional effect and re-evaluate the circuit to
find whether the detected leakage is due to the glitches or not. Further, PROLEAD does not
cover coupling as information about the layout becomes required, i.e., placement of cells
and routing of signals. Since PROLEAD works with the gate-level netlist as the result of a
synthesis process, such information is not available. Moreover, the user can restrict the
verification of higher-order probing security to univariate leakages or cover multivariate
leakages as well.

Univariate Leakage. Univariate attacks exploit leakage during a single point in time.
Hence, we formalize the verification of univariate d-order probing security by an attacker
who places up to d probes at the same clock cycle. Therefore, an attacker can spot up
to d intermediates during a single but arbitrary clock cycle. We model the attacker’s
capabilities by verifying all relevant probing sets whose probes record during the same
clock cycle. More formally, it holds that all probes p ∈ Pi record during the same clock
cycle.

Multivariate Leakage. In contrast to the univariate setting, a v-variate attack combines
information of v different points in time [MM12]. Consequently, a multivariate attacker
can place each probe at an arbitrary clock cycle. To formalize the adversary’s behavior,
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we make no restrictions on the probing sets concerning the clock cycles. Hence, a probing
set can contain probes at any relevant gate and record at any clock cycle. Note that by
‘any relevant gate’ we refer to the list E∗ defined below, and by ‘any clock cycle’ we still
stay with the targeted clock cycles (given as a list T) defined in the configuration file by
the user.

4.3 Configuration
PROLEAD receives three input files.

1. A gate-level netlist written in Verilog as used in digital circuit design to abstract the
circuit. Such a netlist is produced by synthesizing the circuit’s behavioral description
(e.g., VHDL or Verilog) using a hardware synthesizer, e.g., Design Compiler [Inc] or
Yosys [Wol].

2. Any ASIC standard cell library can be used for the synthesis, but the functional
behavior of each cell of the library should be defined in a custom file, which should
be given to PROLEAD as well. Such a file is required for the simulator of PROLEAD to
understand how to simulate the cells used in the given netlist. We integrated the
functional behavior of most of the cells in NanGate 45 nm open-cell library.

3. A custom configuration file, allowing the users to specify their requirements. All
settings regarding simulation and verification take place in this file. Primarily, the
user adjusts the simulator by defining the total number of simulations and the
simulation time frame in terms of clock cycles. To start a simulation, the user should
ensure a correct initialization of the primary inputs to the circuit by defining an
input sequence. The input sequence formalizes the state of all primary inputs during
an arbitrary number of initial cycles. For example, in case of a cryptographic core,
how and when plaintext and key should be given to the circuit and how handshaking
signals (like reset) are controlled.
For verification, PROLEAD supports a customized list of wires, which is also defined
by the user. Formally, a wire is either considered in the verification or ignored. The
user specifies this by including the considered wire into the list E∗. To ease the
definition E∗ by the user, we include all wires to the list by default. Hence, the
default case is to perform a complete evaluation in terms of wires. Furthermore, the
user specifies the leakage verification by setting an appropriate security order d and
choosing a proper leakage model. The configuration file contains more fine-grained
settings which we ignore to express here for the sake of brevity.

4.4 Generation of Probing Sets
After reading the given design and configuration files, and making the graph (V,E), as
the first step PROLEAD generates all d-probing sets that fit the desired leakage evaluation
specified in the configuration file. Depending on the leakage model, the probing set
generation specifies either Pg or Pg,t. Both lists encompass all probing sets (either Pg

i or
Pg,t
i ) that are considered for verification. In the following, we algorithmically describe all

steps required to generate the probing sets.

4.4.1 Extraction of Relevant Wires

We start by determining which e ∈ E are relevant for the verification procedure. For
efficiency reasons, we generate a small list of relevant wires H as long as they fit the
defined configuration. The generation of H is presented in Algorithm 1. As we, at least,
consider glitches, every probe p gets extended by probes on the whole combinational circuit
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that contributes to the intermediate signal probed by p. According to the circuit model
(cf. Figure 1), a probe p on an intermediate signal of the combinational logic leads to
additional probes on a subset of primary inputs and register outputs. We consider the n-bit
output of the combinational circuit, with n = |S|+ |O|,2 as a set of n coordinate functions{

f0(I0,S0), ..., fn−1(In−1,Sn−1)
}
while each fj operates on an individual set of primary

inputs Ij ⊆ I and register outputs Sj ⊆ S. For illustration, we consider the following
example based on a single coordinate function fj(Ij ,Sj). Since the subcircuit computing
fj(Ij ,Sj) is fully combinational, a single probe on the output of fj(Ij ,Sj) expands to
probes on all signals in Ij and Sj . Hence, placing additional probes on intermediate signals
of a coordinate function is not necessary as all inputs of fj are already covered. Therefore,
we don’t have to consider a probe on every intermediate signal of the circuit. It is enough
to place probes on all output wires of the combinational circuit {S ∪O}. Consequently,
we add the output wires of all coordinate functions to H. To this end, we need to be
in conformity with the user-defined configuration regarding allowed and ignored signals.
More precisely, it should hold that H ⊆ E∗. We satisfy these properties for each e ∈ H
by analyzing only elements in E∗ (cf. Line 2 of Algorithm 1). To examine if a signal
is the output of a coordinate function, we determine whether the circuit propagates the
underlying signal to another combinational gate. This is done in Lines 4-8. Considering
the circuit model, given in Section 4.2.1, each e ∈ H can only be either an input of the
registers or a primary output which is additionally not an input of any combinational gate.

Algorithm 1 Extraction of relevant wires
Input: E∗ . Lists of desired (included) wires
Output: H . List of relevant wires
1: H← ∅
2: for ∀e ∈ E∗ do . Analyze all considered signals of the circuit
3: α← true
4: for ∀v ∈ Ve do . Analyze all cells that receive the signal e as input
5: if gv = true then . Check if the signal is given to a combinational gate
6: α← false
7: end if
8: end for
9: if α = true then
10: H = H ∪ {e} . Add the considered wire to the list
11: end if
12: end for

4.4.2 Combination of Probes

After inserting all relevant wires of the circuit into H, based on the user-defined configura-
tion we place and combine the probes resulting in multiple (yet non-extended) d-probing
sets Pi ∈ P. For efficiency reasons, we avoid duplicates in all Pi ∈ P. Hence, it holds that
pj 6= pk for all pj , pk ∈ Pi with j 6= k. Furthermore, the order of probes inside the probing
set does not affect the verification. We abstract the generation of all Pi ∈ P as finding all
possible d-combinations of elements L′ with |L′i| = d and L′i ∈ L′ in a predefined list of
elements L = {l0, . . . , l|L|−1} which is a common problem in combinatorics. We show the
generation of all possible d-combinations in L′ in Algorithm 2. For simplicity, we operate
on a bit-vector of |L| indices M = 〈m0, . . . ,m|L|−1〉 with mi ∈ F2. Initially, it holds that
mi = 1 if i < d and mi = 0 otherwise to start with the first combination, i.e., Line 3 of

2There might be some overlap between the signals of S and O, but this does not harm the given
definitions.
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Algorithm 2. In Lines 15-32, M is modified to represent the next possible d-combination
of element indices. Based on the current combination of indices shown by M, we store
the corresponding d-combination L′i = {lm0 , . . . , lmd−1} before the indices are updated (cf.
Line 13). Our algorithm terminates if the last d-combination is reached. This is the case if
it holds that mi = 0 for all i < |L| − d. We capture the last combination in Line 6.

Algorithm 2 Make d-combinations of elements
Input: L = {l0, . . . , l|L|−1} . List of elements
Input: d . Size of combinations
Output: L′ = {L′0, . . . ,L′(|L|d )−1

} . Lists of d-combinations
1: α← true
2: M← 〈m0, ..,m|L|−1〉, ∀mi = 0 . Initialize a vector that stores the element indices
3: for i ∈ {0, . . . , d− 1} do . Get the first combination
4: mi ← 1
5: end for
6: while α = true do
7: F← ∅ . Get an empty temporary probing set
8: for i ∈ {0, . . . , |L| − 1} do
9: if mi = 1 then
10: F← F ∪ {lmi} . Store the element in the combination
11: end if
12: end for
13: L′ ← L′ ∪ F . Add the d-combination to the list
14: α← false
15: for i ∈ {0, . . . , |L| − 1} do . Get next combination
16: if mi = 1 ∧mi+1 = 0 then
17: α← true
18: mi ← 0
19: mi+1 ← 1
20: s← 0
21: for j ∈ {0, . . . , i− 1} do
22: if mj = 1 then
23: mj ← 0
24: s← s+ 1
25: end if
26: end for
27: for j ∈ {0, . . . , s− 1} do
28: mj ← 1
29: end for
30: break
31: end if
32: end for
33: end while

However, to compute the probing sets, we have to specify L and add the relevant timing
information. As the relevant timing combinations differ for the univariate and multivariate
cases, we present each procedure separately.

Univariate Probe Generation. Covering only univariate leakages leads to a straightfor-
ward probe generation approach shown in Algorithm 3. As all probes must be annotated
with the same clock cycle, we generate d-combinations according to Algorithm 2 applied on
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H. Afterwards, we consider the d-combinations of wires H′ = {H′0, . . . ,H′(|H|d )−1
} and the

relevant clock cycles T = {t0, . . . t|T|−1}. For each H′i ∈ H′ with H′i = {e′0, . . . e′d−1} and
each t ∈ T, we compute a probing set P = {p0, . . . , pd−1} with pj = (e′j , t). This procedure
results in |H′| · |T| probing sets. For example, suppose that d = 2 and H′0 = {e0, e1}
and three targeted clock cycles T = {t0, t1, t2}. To consider {t0, t1, t2}, we generate |T|
probing sets

P0 = {(e0, t0), (e1, t0)}, P1 = {(e0, t1), (e1, t1)}, P2 = {(e0, t2), (e1, t2)}.

In other words, Pi covers all probes from H′0 recording at clock cycle ti.

Algorithm 3 Univariate probing set generation
Input: H = {e0, . . . , e|H|−1} . List of relevant wires
Input: T = {t0, . . . , t|T|−1} . List of relevant clock cycles
Output: P = {P0, . . . ,P(|H|d )·|T|−1} . A list of probing sets
1: H′ ← result of Algorithm 2 on H
2: for i ∈ {0, . . . ,

(|H|
d

)
− 1} do

3: {e′0, . . . , e′d−1} ← H′i
4: for j ∈ {0, . . . , |T| − 1} do
5: R ← ∅ . Generate a temporary empty probing set
6: for l ∈ {0, . . . , d− 1} do
7: p← (e′l, tj) . Generate and place a single probe
8: R ← R ∪ {p} . Add the probe to the probing set
9: end for
10: P← P ∪R
11: end for
12: end for

Multivariate Probe Generation. In this case, each probe p ∈ P can be annotated with
every targeted clock cycle t ∈ T. Hence, each possible d-combination of T is a possible
annotation for P. Before we apply Algorithm 2, we generate a list of considered probes P′
by storing probes on all relevant wires e ∈ H and at every time instance t ∈ T. Hence,
the resulting set P′ encompasses |H| · |T| probes. Afterwards, we apply Algorithm 2 on
P′ in order to generate the d-probing sets. We again explain this by an example. Suppose
d = 2 and two relevant wires H = {e0, e1} and the targeted clock cycles {t0, t1, t2}. This
results in six relevant probes P′ = {p0, p1, p2, p3, p4, p5}. It holds that:

p0 = (e0, t0), p1 = (e0, t1), p2 = (e0, t2),
p3 = (e1, t0), p4 = (e1, t1), p5 = (e1, t2)

Applying Algorithm 2 on P′ returns
(|H|·|T|

d

)
d-probing sets:

P0 = {p0, p1}, P1 = {p0, p2}, P2 = {p1, p2}, P3 = {p0, p3}, P4 = {p1, p3},
P5 = {p2, p3}, P6 = {p0, p4}, P7 = {p1, p4}, P8 = {p2, p4}, P9 = {p3, p4},

P10 = {p0, p5}, P11 = {p1, p5}, P12 = {p2, p5}, P13 = {p3, p5}, P14 = {p4, p5}

We show the corresponding procedure, i.e., multivariate generation of d-probing sets, in
Algorithm 4. Storing all possible probes p ∈ P′ is given in Line 2-7.
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Algorithm 4 Multivariate probing set generation
Input: H = {e0, . . . , e|H|−1} . List of relevant wires
Input: T = {t0, . . . , t|T|−1} . List of relevant clock cycles
Output: P = {P0, . . . ,P(|H|·|C|d )−1} . A list of probing sets
1: P′ ← ∅ . Get an empty list of considered probes
2: for i ∈ {0, . . . , |H| − 1} do
3: for j ∈ {0, . . . , |C| − 1} do
4: p← (ei, cj)
5: P′ ← P′ ∪ {p} . Store all considered probes
6: end for
7: end for
8: P← result of Algorithm 2 on P′

4.4.3 Probe Extension

Up to now, P contains all probing sets relevant for verification under the (0, 0, 0)-robust
d-probing model, i.e., still non-extended. However, as we take glitches and, if specified,
transitions into account, we should extend P. Both supported models cover glitches;
hence, we start by transforming P into Pg containing all glitch-extended probing sets.
For the sake of efficiency, we process every e ∈ H and precompute its set of wires after
glitch-extension eg ∈ Hg

e . To this end, we use a recursive backpropagation procedure given
in Algorithm 5. In short, for the given e ∈ H, the procedure checks if the probe extension
stops, i.e., whether e is a register output or a primary input (see Line 6). If so, e is added
to Hg

e . Otherwise, the same procedure is repeated for all inputs of the gate whose output
is e (Lines 10-13). Having the lists Hg

e for all e ∈ H, it is enough to substitute every probe
p in all d-probing sets Pi ∈ P with the corresponding glitch-extended probing set. This
is done by replacing p = (e, t) with pg = (eg, t) for all eg ∈ Hg

e . This way, Pg which is
equivalent to P under the (1, 0, 0)-robust d-probing model is achieved.

Algorithm 5 Glitch extension
Input: (V,E) . Circuit graph
Input: e ∈ H . A single signal
Output: Hg

e . The list of probed signals after glitch-extension
1: for i ∈ {0, . . . , |V| − 1} do
2: if e ∈ Eout

vi then
3: v ← vi . The cell whose output is e
4: end if
5: end for
6: if (Ein

v = ∅) ∨ (gv = false) then . If e is a primary input or a register output
7: Hg

e ← {e}
8: else
9: Hg

e ← ∅
10: for l ∈ Ein

v do . All inputs of the gate v
11: Gg

e ← result of Algorithm 5 on (V,E), l
12: Hg

e ← Hg
e ∪Gg

e

13: end for
14: end if

Extension based on Transitions. After the generation of Pg and possible optimizations
(explained below), the extension for transitions is done straightforwardly. Namely, every
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probe p = (e, c) ∈ Pg
i ∈ Pg is substituted by a tuple of two probes recording the same

signal but at two consecutive clock cycles, i.e., {p, p′} with p = (e, c) and p′ = (e, c− 1).
Hence, Pg,t is constructed.

4.4.4 Optimizations

The verification step can evaluate the list of probing sets Pg or Pg,t to verify d-probing
security. However, avoiding unnecessary probes and probing sets accelerates the verification
procedure. In particular, we remove probes and probing sets if they fulfill one of the
properties defined below.

Definition 8 (Duplicate). Consider a probing set P and two probes pi, pj ∈ P. We refer
to the tuple (pi, pj) as a duplicate if pi = pj and i 6= j. Hence, P contains the same probe
twice.

Definition 9 (Subsequence). Consider two probing sets P,R. We refer to P as a
subsequence of R if P ⊆ R. Hence, P is fully covered by R.

Due to the construction of P (cf. Algorithm 3 and Algorithm 4) neither duplicates
nor subsequences can occur in the set of standard probes. However, duplicates, as well
as subsequences, are introduced during the glitch extension. In particular, if multiple
but different probes lead to overlapping probing sets after glitch extension. Therefore,
we remove duplicates and subsequences after the glitch extension. As the transition
extension is a bijection (two different probes never share the same transition-extended
probe), extending P g with transitions does not introduce new duplicates or subsequences.

Removing Duplicated Probes. We remark that detecting duplicates in a sorted probing
set Pg

i has a complexity of O(|Pg
i |). Therefore, we sort each duplicate-prone probing set

Pg
i ∈ Pg with IntroSort [Mus97]. As IntroSort has a complexity of O(|Pg

i | log |Pg
i |) the

sorting is very fast.

Removing Subsequences. First, we remove duplicated probing sets Pg
i ∈ Pg with

Pg
i = Pg

j 6=i which are easy to identify. To this end, we apply IntroSort to sort the probing
sets of Pg. Afterwards, we go through all probing sets in Pg and remove every Pg

i ∈ Pg

with Pg
i = Pg

i−1. It means that we remove all duplicates of Pg
i except its first occurrence.

Second, we search for all tuples (Pg
i ,P

g
j 6=i) with Pg

i ⊂ Pg
j . If a tuple is found, we mark

Pg
i as a probing set to be removed and ignore it in further searches. Finally, all marked

probing sets are removed from Pg. As the search for tuples has the complexity of O(n2),
we can increase the efficiency through parallelization. Each thread can compare a dedicated
set of probing sets Pg

i ∈ Pg with all other probing sets in Pg and mark Pg
i in a shared

memory if Pg
i should be removed. After the termination of all threads, the entire marked

probing sets can be removed. Since this process may take a very long time if the circuit
is very large and a high security order d is defined, this can be deactivated through the
user-defined configuration.

4.5 Verification
Given a list of probing sets Pg, the verification step analyzes every Pg

i ∈ Pg by simulating
intermediates recorded by the probes in Pg

i . The same holds for Pg,t. We give a high-level
overview of the verification approach in Algorithm 6. By accomplishing the verification,
the procedure returns a list encompassing the p-values pi ∈ G for each Pg

i ∈ Pg. The
verification approach can be divided into three steps, presented as follows. Note that
p-values refer to the result of statistical hypothesis tests explained in Section 2.4.
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Algorithm 6 Verification of probing sets
Input: (V,E) . Circuit graph
Input: Pg = {Pg

0, . . . ,P
g
|Pg|−1} . List of probing sets (can be Pg,t as well)

Input: ntotal . Total number of simulations
Input: nstep . Number of simulations per step
Input: ng . Number of groups
Output: G = {p0, . . . , p|T|−1} . List of p-values
1: D← ∅ . Initialize distribution tables
2: for i ∈ {0, . . . , ntotalnstep

− 1} do
3: S← ∅ . Initialize simulation results
4: for j ∈ {0, . . . , nstep

64 − 1} do
5: Simulation(ng,V,E,Sj)
6: end for
7: UpdateDistributions(ng,S,Pg,D)
8: G ← Evaluation(ng,D)
9: end for

4.5.1 Simulation

The Simulation procedure in Line 5 of Algorithm 6 emulates the circuit for an arbitrary
input sequence to compute all probed intermediates. Through the configuration (see
Section 4.3), the user specifies the number of groups ng for which the statistical hypothesis
test should be evaluated. Traditional tests in the context of SCA are either fixed versus
random or fixed1 versus fixed2, i.e., two groups. For each group, the user should naturally
define the fixed value(s) or the random value (i.e., how many random bits are required).
This should not be necessarily two groups, and PROLEAD supports any arbitrary number of
groups, e.g., multiple fixed values.

During the definition of the initial primary input sequences (also stated in Section 4.3),
the user defines which primary inputs at which clock cycles take a value assigned to one of
the above-defined groups. This includes their masking as well. For example, two groups
are defined as 64’h0000000000000000 and 64’h$$$$$$$$$$$$$$$$ referring to a fixed
64-bit vector fully filled by 0, and a 64-bit random vector. Exemplary, suppose that
the circuit is an encryption function of a cipher masked with 3 shares, i.e., the 64-bit
plaintext should be given by means of 3 shares P 0, P 1, and P 2 assigned to SelectedGroup0,
SelectedGroup1, and SelectedGroup2 respectively. For every simulation, the simulator
selects one of the aforementioned groups randomly, and generates a 64-bit random vector
if the random group is selected. Then, the masking (with 3 shares) of the selected 64-bit
vector, so-called SelectedGroup, is constructed by 2 other 64-bit random vectors, i.e.,
selecting SelectedGroup0 and SelectedGroup1 at random and making SelectedGroup2
as SelectedGroup⊕ SelectedGroup0 ⊕ SelectedGroup1.

The user further defines the maximum simulation length in number of clock cycles
while the simulator emulates the circuit’s state after each clock cycle iteratively. The user
can also define an end condition to be checked during each simulated cycle. If the circuit
state fulfills the end condition, the simulation terminates. A possible end condition is to
stop if one or multiple primary outputs, e.g., a done signal, reached a specified value.

As given in Section 4.2.1, the given circuit is modeled as a Mealy machine consisting of
a register stage storing the output of a combinational circuit, whose input is provided by a
combination of the primary inputs and the registers’ output. Therefore, once the masked
primary inputs are prepared, the simulator starts iterating through the clock cycles. To
this end, the following operations are performed per clock cycle until the end condition is
met or the maximum number of clock cycles is reached.
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1. The primary inputs are updated. More precisely, it is checked if for the current clock
cycle a new value for the primary inputs is defined through the initial input sequence
(see Section 4.3).

2. Register outputs are updated, i.e., the signals connected to registers’ outputs reflect
the corresponding values stored in the registers.

3. Now, the input of the combinational circuit is fully defined; hence, it can be evaluated.
This is done following the concept of event-driven simulation. Since we consider no
delay for the gates, this can be simplified by processing the combinational circuit
in the order of the logical depth3. At the end of this step, the outputs of the
combinational circuit (which are the circuit’s primary outputs and/or the registers’
input) are provided.

4. As the last step of every clock cycle, the registers store the values appearing at their
inputs based on the status of their corresponding control signals, e.g., clock, enable,
reset, etc.

Note that the above procedure is valid only for circuits, where all registers are synchronized,
e.g., all of them see the positive-edge/negative-edge of the clock signal. PROLEAD optionally
can handle other circuits, e.g., with latches and clock gating, but this requires to evaluate
the combinational circuit two times per clock cycle, once when the clock signal is high and
one more time when it is low (i.e., lower efficiency).

To decrease the runtime, the simulator of PROLEAD works on 64-bit variables, i.e.,
handling 64 independent simulations in parallel, which indeed follows the concept behind
bit-slicing. We should highlight that only the above-given operations per clock cycle
are performed on 64-bit variables. Almost all other operations, e.g., the group selection
and preparation of masked primary inputs, are done ordinarily (not bit-sliced). Further,
since simulations are fully independent of each other, several simulations are performed
in parallel by means of multi-treading, which is also adjusted by the user though the
configuration file. As shown in Algorithm 6, the total number of simulations is denoted by
ntotal which is divided by nstep (also defined by the user based on the available memory)
denoting the size of each simulation set which should be performed before updating the
evaluation results. This allows the user to observe the evaluation results after each nstep
simulations.

4.5.2 Update Distributions

Before the evaluation takes place, we convert the simulation results into one individual
and independent distribution table per probing set. This is essential since the statistical
hypothesis test requires such distributions to estimate p-values. For this, we go through
all simulations and concatenate the recorded bits of all p ∈ Pi into a value with at least
nprobe bits while nprobe =

∣∣Pi

∣∣. In the following, we refer to these concatenated nprobe-bit
values as keys. Each entry of a distribution table stores an individual key and how often
the key occurs per group, i.e., ng individual numbers.

For each set of nstep simulations, we compute the keys of each probing set and update
the corresponding distribution table. To efficiently search for a key in the distribution
table, we keep the distribution tables sorted by their keys. Hence, searching for keys has
logarithmic complexity O(logn) in the number of observed keys. If a key is found in the
table, the occurrence of the corresponding group is increased by one. Otherwise, an empty
table entry with the new key (for all ng groups) is added into the sorted distribution table

3Note that it should not be misunderstood that we do not cover glitches in our security evaluation.
Indeed, we do not simulate the glitches, but the underlying glitch-extended probing model covers any form
of glitches which may happen in the realization of the given circuit and affect its security.
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before incrementing the corresponding occurrence. As we searched for the key before, the
complexity for insertion into the sorted distribution table becomes independent of whether
the key exists in the table or not. This process is also parallelized through multi-treading as
the distribution table of different probing sets can be updated independently of each other.
Hence, multiple distribution tables are updated in parallel and each table is modified only
by a single thread.

4.5.3 Leakage Evaluation

As given in Section 2.4, we make use of the G-test as the statistical hypothesis test. More
precisely, we apply the G-test on the ng distribution tables of each probing set individually
to achieve a measure for the independence of the distributions. Hence, we obtain the
corresponding p-value pi for each probing set, based on which we report the detectability
of a leakage. This is the case if − log10(p) exceeds the predefined threshold, i.e., the null
hypothesis H0 is rejected. Line 8 of Algorithm 6 performs this operations and stores
p-values in G which can be shown, printed, or stored in a file after each nstep simulations.

4.6 Statistical Confidence
We refer to our results as statistically confident as soon as the error probabilities become
acceptable. For the false positive probability, we predefine a threshold probability and
reject H0 if the computed p-value becomes smaller than the threshold. As p < 10−5 is a
common threshold for leakage assessment, e.g. t-test [SM15] and χ2-test [MRSS18], we
decide to set the threshold probability to 10−5. Hence, the chance to falsely reject H0, i.e.
to report a secure design as insecure is smaller than 10−5 for each probing set. However,
false positives can become very likely if the number of probing sets exceeds 10−5. If this
happens, e.g. if the experiment considers millions of probing sets, we recommend decreasing
the threshold to an acceptable level. However, the decisive factor is not that the threshold
is exceeded but that the p-value decreases continuously with an increasing number of
simulations. To bring the false negative probability to an acceptable level, we apply the
power analysis techniques introduced in Section 2.4. During the verification procedure, we
continually monitor the sample size needed to satisfy statistical confidence for a predefined
tuple (β, ϕ). In particular, we numerically estimate the number of simulations required to
satisfy an error probability of β for an effect size ϕ. To estimate the number of required
simulations, we define a range in which we try to approximate the necessary number of
simulations. In practice, we define a very large range from one to one billion to be sure that
the number of required simulations lies in the range. Then, we apply a trial-and-improve
strategy which is one-simulation accurate and achieves logarithmic complexity in the upper
bound of the range. For the case studies in Section 5, β equals the threshold of 10−5 for
experiments with less than 105 probing sets while we set the effect size to ϕ = 0.1. Hence,
by applying these parameters, we detect all small effects with an error rate of 10−5. While
we suggest using these parameters as the default settings, we remark that the user can
choose arbitrary parameters according to the desired security guarantees and the evaluated
design. The estimation of required simulations takes place after each leakage evaluation
step. As the computation of the statistical power depends on the degree of freedom, we
estimate the number of required simulations for the probing set resulting in the highest
degree of freedom. Hence, we can be sure that the estimated number of simulations is
enough for all considered probing sets. Naturally, the degree of freedom grows with every
new spotted intermediate that we store in the contingency table. Hence, the number of
required simulations can only be estimated during the evaluation and grows if the degree of
freedom grows. Nevertheless, the growth slows down or stops if all possible probed values
of a set are considered in the contingency table. Hence, we stop the evaluation as soon
as the number of performed simulations reaches the number of required simulations. In
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Section 5.3, we visualize the progression of the different parameters based on two pracical
case studies in Figure 2.

5 Case Studies
In order to examine the ability as well as performance of PROLEAD, we evaluated several
designs, which are mainly available through public repositories, like GitHub. In other cases,
we either received the design from the corresponding authors or constructed the designs by
ourselves. In short, PROLEAD can rapidly identify leakage in unmasked designs and those
which we were aware of their security flaw. Further, we found out several mistakes and
shortcoming of publicly-available masked designs which are supposed to be probing secure.
In the following we elaborate each case study, but we keep the description of each one
short and mainly refer to the original article.

Setup. We made use of Synopsis Design Compiler and NanGate 45 ASIC standard cell
library to synthesis and generate the netlist of each case study. We made sure to avoid
optimization across different modules (i.e., keeping the design hierarchy4) to not violate
any assumptions of the original designer, e.g., not violating non-completeness [NRS11]. We
further provided the functional description of most of the cells in the NanGate 45 library
thereby PROLEAD can understand and simulate the given netlist (see Section 4.3). We ran
the evaluations on a machine with an AMD EPYC 7352 (48 hyper-threading cores) and
128GB of memory.

For the entire evaluations we considered two groups (ng = 2), one group fully random
and the other one fully zero. In other words, we performed fixed versus random G-test
when fixed inputs is {0}t and random input $← Ft, where t stands for the size of the input
vector. For all case studies, we kept the key of the design (if any) to the zero vector. Note
that this does not have any effect on the result of our evaluations. However, if the design
receives the key in a masked form, we gave the masked representation of the zero vector
updated at the start of each circuit simulation.

For all case studies, we first conducted the evaluations by only covering glitches, i.e.,
no transitions. If we found no leakage, we then extended the evaluation by additionally
covering the transitions. Therefore, if not stated, when we report vulnerability of a circuit,
we mean when only glitches are taken into account. Likewise, when we report security
of a circuit, we refer to the case where both glitches and transitions are covered. For all
case studies, we set the effect size to ϕ = 0.1. Therefore, if we report a design as secure,
we mean that no effect with a effect size of ϕ ≥ 0.1 was detected by PROLEAD. Only when
we discover strong leakage, we increased ϕ to improve the readability of our results. The
summary of all conduced evaluations are shown in Table 2.

5.1 Unmasked Designs
The vulnerability of unmasked designs is expected. Hence, just for sanity check, we
evaluated a round-based implementation of SKINNY-64 [BJK+16], which is available
online5. PROLEAD reports first-order leakage at all clock cycles in less than a second using
less than 100 simulations.

Hiding Countermeasures. When evaluating probing security of unmasked implemen-
tation, adding either amplitude or temporal noise does not have any effect on their
vulnerability. Examples include adding an independent noise module, adding jitter to the

4In Design Compiler this is achieved by setting -no_autoungroup and -no_boundary_optimization
switches for the compile_ultra command.

5https://sites.google.com/site/skinnycipher/downloads

https://sites.google.com/site/skinnycipher/downloads
https://sites.google.com/site/skinnycipher/downloads
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clock, or randomizing the clock source [MOP07]. The same holds if the circuit is realized
by a dual-rail pre-charge logic as a power-equalization technique. Placing a single probe
on one of the rials would lead to leakage about the actual signal. It is even the same in
case of Masked Dual-rail Pre-charge Logic (MDPL) [PM05], as one probe on a gate output
rail propagates to e.g., am = a⊕m, bm = b⊕m, and m, which clearly leaks information
about a and b.

Here, we would like to stress that such dual-rail pre-charge logics are free of glitches,
but the glitch-extended probes should still be propagated to the input of combinational
circuit. The name “glitch-extended” is not bounded by glitches. The propagation delay
of CMOS gates depends on the given input; for example there is a small delay difference
when the input of an AND gate changes from 11 to 01 or to 10.6 This makes the power
consumption of the gate to depend on the given data, although no glitch happens on the
circuit. A similar concept with larger granularity is known as “data-dependent time of
evaluation” [MOP07]

Nevertheless, via several case studies elaborated below, we show that many implemen-
tations are not probing secure, while the authors have not seen leakage in practice using
often 100 million measurements. This obviously depends on the quality of the measurement
setup and many other factors involved in the experimental analyses. The leakage might
be detected using another setup running in another environment, or if the gates of the
underlying circuits are realized differently. This highlights the relevance of (robust) probing
security model. If a circuit is probing secure when both glitches and transitions are taken
into account, its security in practice is independent of how the gates are realized and how
precise the measurement setup is. Of course, this statement does not include the coupling
effects yet.

5.2 Small Masked Circuits
SILVER [KSM20] is able to evaluate the (robust)-probing security of small masked circuits,
e.g., S-Boxes with low input size (including the masked inputs and fresh masks). For large
circuits, either the tool cannot build the Binary Decision Diagram (BDD) of the given
circuit or the evaluation is not accomplished in a reasonable time.

As the first masked circuit, we have taken the TI design of the S-Box of the PRESENT ci-
pher [BKL+07] presented in [PMK+11], where the S-Box is decomposed to two quadratic bi-
jections, and each of which is masked by three shares following classical TI scheme [NRS11].
Similar to SILVER, PROLEAD detects no leakage with glitches and transitions. As stated
in Section 3, this is one of the cases in which maskVerif is too conservative and reports
leakage.

As a flawed design, we took the PRESENT TI S-Box of [EGMP17], without correction
terms (i.e., with non-uniform output sharing) which is supposed to be insecure. Both
SILVER and PROLEAD find probes with first-order leakage.

The first AES TI S-Box with 3 shares has been proposed in [MPL+11]. Due to the size
of the circuit and its number of inputs (including 52 fresh masks), it is out of the capacity
of SILVER. However, PROLEAD confirms its first-order security (glitches and transitions).

Other d+ 1 masked AES S-Boxes at arbitrary order have been introduced in [GMK16,
GMK17, CRB+16] The first-order designs have been successfully evaluated by SILVER
in [KSM20], what PROLEAD also does. The higher-order designs, however, are too large for
SILVER, while we are able to confirm their security by PROLEAD.

5.3 Masked Full Ciphers
Serialized PRESENT. The first complete cipher design, which we have evaluated, is the
nibble-serialized PRESENT encryption function of [PMK+11], where the above-discussed

6For example, see here for NanGate 45 and here for TSMC250.

https://www.cs.upc.edu/~jpetit/CellRouting/nangate/Front_End/Doc/Databook/Cells/AND2_X1_NangateOpenCellLibrary_typical_typical.html#FullCycleDelay
https://vlsiarch.ecen.okstate.edu/flows/stdcell_datasheet/tsmc025/data/NAND2X1.html
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(a) Results for the uniform S-Box with 512 000
simulated encryptions, β = 10−5, and ϕ = 0.1.
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(b) Results for the non-uniform S-Box with 25 600
simulated encryptions, β = 10−5, and ϕ = 0.3.

Figure 2: PROLEAD results for the nibble-serialized PRESENT encryption functions.

TI S-Box is instantiated. PROLEAD has confirmed the first-order security of the design in
less than two minutes while SILVER cannot handle such designs. By exchanging the S-Box
with the flawed one, and evaluating the encryption function in whole with PROLEAD, we
also detected first-order leakage rapidly.
To visualize the results and the statistical confidence, we show the progression of p and the
number of required simulations for both serialized PRESENT designs in Figure 2. Each
plot encompasses the p-value as − log10(p) which is drawn in black, while the horizontal
line (red) indicates the 10−5 threshold of the p-values. Moreover, the grey line shows the
relationship between processed simulations and required simulations to achieve β < 10−5.
Hence, our results become statistically confident if as many simulations as needed are
processed. This is visualized by another threshold at 1.0 (drawn in blue) which has to be
passed by the grey line. For the uniform design, shown in Figure 2(a), we plot the results
for 512 000 simulated encryptions. 512 000 turns out to be twice as much as needed since
the result is confident after 225 567 simulations. We can conclude that the design is secure
since p stays under the threshold for more than 225 567 simulations. For the non-uniform
S-Box, shown in Figure 2(b), we detect leakage after thousands of simulations. Hence, we
conclude that the corresponding effect size is higher than 0.1 and set ϕ = 0.3 to detect
only moderate effect sizes. We simulate 25 600 encryptions while β falls under 10−5 after
around 16 000 simulations. Although we can only detect medium effect sizes reliably, the
leakage is visible as the p-value is far above the threshold.

Serialized AES. We further evaluated the masked full cipher designs of [MPL+11,
GMK16, CRB+16], whose underlying masked S-Boxes we have already evaluated. In
summary, we have not detected any first-order leakage when evaluating the first-order
designs. For each design, PROLEAD required between 13 and 50 minutes to accomplish the
full evaluation process, i.e., glitches and transition with an effect size of ϕ = 0.1.

Registers with enable. It is a common practice to use registers with enable in designs,
where some registers should not store their inputs at every clock cycle. We noticed that
NanGate 45 cell library does not contain any of such register cells, which are then realized
by a normal register and a multiplexer to re-store the register’s output when the enable
signal is low. Although this does not pose any problem to either the functionality or the
security of the design, placing a probe on the input of such a register would propagate
to its output as well (through the aforementioned multiplexer). Therefore, even without
considering transitions, the evaluation would observes the input and output of those
registers, hence inherently covering transitions.

Null Fresh. The authors of [SM21a] have introduced a technique to realize first-order
secure implementation of (up to) cubic functions with two shares and without any fresh



334 PROLEAD

masks. They applied the technique on the S-Box of several ciphers and provided the
encryption function of the full ciphers in GitHub7. We evaluated all designs explained
below.
Midori-64 [BBI+15]. It is a round-based implementation supporting both encryption
and decryption. Considering glitches, we did not find any first-order leakage. The S-Box
has an internal register stage; hence, the full cipher implementation forms a pipeline with
two stages, i.e., two clock cycles per cipher round. Hence, two consecutive plaintexts (for
encryption) can be given to the circuit. If the input (plaintext) is the same for both cycles,
i.e., the reset signal is high for two clock cycles, PROLEAD detects first-order transitional
leakage.

It is actually a general problem and not dedicated to this design. Suppose that the
first pipeline stage realizes the function f(.) and the second pipeline stage the function g(.).
Let us denote the input of the cipher by A which is given to the circuit two consecutive
clock cycles. After two clock cycles, the first pipeline stage has computed f(A) and the
second one g

(
f(A)

)
, which is equal to the application of one cipher round on A. In the

next clock cycle, the input of the first pipeline stage changes from A to g
(
f(A)

)
. Therefore,

placing a transition-extended probe on the first pipeline stage would observe some bits
of A and the corresponding bits of g

(
f(A)

)
. It means that by one probe, the input and

output of a cipher round are recorded, which most of the time leads to detectable leakage.
As a general rule, in pipeline designs, consecutive inputs should not be the same, i.e.,
should not have the same masking (initial sharing). By filling one pipeline stage with
another independently-masked input or a zero vector right after giving the desired input,
i.e., inserting a bubble into the pipeline as suggested in [CS21], the observed first-order
transitional leakage has vanished.
PRESENT-80. It is the encryption function based a nibble-serial design architecture.
In short, we found out that the plugged masked S-Box is first-order secure, but not the
encryption function. Considering only glitches, we have not observed any first-order
leakage, but once transitions are taken into account, we rapidly (i.e., using less than 10 000
simulations) detect first-order leakage. The reason for such a leakage lies on its serialized
architecture. In such a design, at every clock cycle some multiplexers decide whether the
register stores the S-Box output or the P-Layer output, or loads in parallel (or serial).
Hence, placing a probe at a register input propagates to many other register outputs
including some of those belonging to the masked S-Box.

There is no problem during the serialized computation of the S-Box, after which the
P-Layer is applied. Since the S-Box has an internal register stage, during the application of
the P-Layer, one state nibble so-called X (on which the S-Box is already applied) appears
at the S-Box input module, and the internal register is filled with lets say f(X). The
P-Layer stores one bit of X at the first nibble of the state register which is again given
to the S-Box module at the next clock cycle. Hence, a probe placed at the output of the
S-Box internal register observes some information about shares of X in two consecutive
clock cycles. Together with other glitch-extended probes explained above, information
about X is revealed. This can be avoided by disabling the S-Box internal register when
performing P-Layer.
PRINCE [BCG+12]. Similar to that of Midori-64, it is a round-based implementation
of both encryption and decryption, and forms a pipeline of two stages. The authors have
themselves stayed that their masked S-Box does not provide a uniform output sharing.
However, they claimed that the diffusion layer makes the masked input of every S-Box
in the next round uniform. By PROLEAD we observed first-order leakages at clock cycles
7, 9, and 13, i.e., in rounds 4, 5 and 7 of the encryption. It is indeed confirmed that the
diffusion layer helps since no leakage during the second encryption round are observed,

7https://github.com/Chair-for-Security-Engineering/NullFresh

https://github.com/Chair-for-Security-Engineering/NullFresh
https://github.com/Chair-for-Security-Engineering/NullFresh
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but after some rounds the sharing of the S-Box inputs becomes non-uniform. However, we
should note that this leakage might be not exploitable since an attack would require to
guess many key bits to be conducted in the cipher’s middle rounds.

AES-128. The authors have provided two masked designs for inversion in GF(24)2, one
with one fresh mask and another one without any. As they stated, these masked S-Boxes
do not have uniform output sharing. Hence, similar to that of PRINCE, they used the
diffusion layer (MixColumns) to make the input sharing of the S-Boxes in the next round
uniform. PROLEAD rapidly detected first-order leakage in these implementations. Through
inspecting the reason, we found a design flaw in their scheme, which we explain as follows.

Let us denote the output of the GF (24)2 inversion of four S-Boxes by I : 〈A′, B′, C ′, D′〉
and the composition of the output isomorphism and the affine transformation of the AES
S-Box by AO(.). The authors wrote MixColumns O = M · AO(I), where M stands for
the MixColumns matrix, as O = M′·β·AO(I), where β is a 4 × 4 matrix with elements
in {0, 1}. Therefore, they could write O = M′ · AO

(
β·I
)
. Then, they stored the result of

I′ =β·I in dedicated registers, and then applied M′ ·AO(I′) together. The first issue, which
we found with PROLEAD, is exactly at this point. The authors claimed that each byte of I′
has now a uniform sharing, which is true, but not I′ in whole. Matrix M′ consists of two
constants {2, 3} in each row, i.e., applied on two bytes of AO(I′). Hence, placing a probe
on multiplication by M′ propagates to several bits of I′, which are jointly not uniform,
hence first-order leakage.

Placing an extra register at the output of AO(I′) would solve this issue, but the output
of the MixColumns is directly given to the input affine of the S-Box module (for the next
round) without any register (see Figure 6 of [SM21a]). Therefore, a probe placed on the
input affine combined with the input isomorphism of the S-Box would again propagate to
the output of several registers storing AO(I′) which are again not jointly uniform. The
only solution which we found to mitigate this leakage is to add one more register at the
output of MixColumns, i.e., one register to store I′, one to store AO(I′), and one more to
store the MixColumns output O. However, the problem that we have reported above on
the non-uniformity of the S-Box inputs in the middle rounds of PRINCE, holds true here
as well, since this technique would avoid the leakage at the second cipher round, but not
necessarily at all rounds.

Null Fresh 2. In a follow-up work [SM21b], the authors have extended their technique
to the second-order with three shares, and presented second-order glitch-extended probing
secure implementation of quadratic functions without any fresh masks. Composing such
functions still necessitates the insertion of fresh masks, which can be at minimum. The
authors applied their proposed scheme on the S-Box of several ciphers and provided the
HDL code of the masked full cipher implementations in GitHub8, which we have taken
and evaluated as given below.

Keccak [BDPA]. Both first- and second-order designs realizing a round-based imple-
mentation of Keccak-f [200] with three pipeline stages and without any fresh masks are
provided by the authors. Following the principle given for Null Fresh Midori-64 design
with respect to bubbles in the pipeline (in page 334), we detected no leakage.

Midori-64, PRINCE, SKINNY-64. These round-based implementations have often
four pipeline stages (seven stages for PRINCE), and require 128-bit fresh mask bits per
clock cycle. Our analyses did not find any first- or second-order leakage.

PRESENT-80. Similar to the first-order design [SM21a], it is a nibble-serial implemen-
tation of the encryption function. We have detected first- and second-order univariate
leakage at the second cipher using around 5 000 simulations. The reason is that the output

8https://github.com/Chair-for-Security-Engineering/NullFresh2

https://github.com/Chair-for-Security-Engineering/NullFresh2
https://github.com/Chair-for-Security-Engineering/NullFresh2
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sharing of the second stage of the decomposed S-Box is not uniform, although the authors
claimed its uniformity. Hence, after the application of the masked S-Box on all state
nibbles and the P-Layer, the probes which are placed on the S-Box in the second cipher
round exhibit leakage. If the key is also masked, the leakage is restricted to only second
order. Otherwise, first-order leakage is detected. This can be solved by either exchanging
the S-Box design with another one with uniform output sharing or introducing 8-bit fresh
mask at the end of each S-Box to refresh its output sharing.

Low-Latency Keccak. In [ZSS+21], the authors have introduced a technique to combine
masked χ and θ functions of Keccak without placing any register in between. This allowed
them to construct a generic round-based design with one clock cycle per round, supporting
all variants of Keccak and at any arbitrary order. This comes at the cost of a relatively
high demand for fresh masks.

Since the design is generic, we have evaluated the smallest variant, i.e., Keccak-f [25]
which is available in GitHub9. Focusing on the first-order design, by means of only glitches
we have not found any first-order leakage confirming their security arguments. However,
we have observed strong first-order leakage when transitions are also considered in the
evaluation, i.e., using 2-3 million simulations. The reason for such a leakage is that the
design is made to perform one masked Keccak round in every clock cycle, i.e., one register
stage in the round-based implementation. A probe at the input of a single state register
would propagate to output of several state registers, due to the composed combinational
circuit χ and θ. Taking transitions into account, these probes record those state registers
at two consecutive Keccak rounds. This is not a general statement, but when the output
of a masked circuit is written on its input, transitions usually lead to leakage. For example,
this holds true for most of the cases studied in [MKSM22]. This also holds true for this
Keccak implementation. To be more precise, the leakage is detected only during the first
and the last clock cycles, i.e., the first and last Keccak rounds, which potentially can lead
to exploitable leakage. This is due to some multiplexers placed to load the input at the
first clock cycle and another multiplexers to avoid the θ function at the last Keccak round.

The same hols for higher-order designs. However, many more simulations are required to
detect such higher-order transitional leakages. This is due to the size of the combinational
circuit and the dependency of each register input to several other register outputs. For
example, two probes placed on register inputs of a second-order design propagates to 328
other probes. This hardens the detection of leakages since the distribution tables need
many samples to be filled, i.e., better estimated. For the second-order design we required
around 500 million simulations to detect the aforementioned transitional second-order
leakage. This becomes harder on higher-order designs, hence very unlikely exploitable.

Low-Random Masking. In order to reduce the fresh masks in designs that achieve second-
order security, a technique has been introduced in [BDMS22] which allows to reuse the
fresh masks at every cipher round. More precisely, the fresh masks should be updated only
together with the given input (plaintext and key). The authors have applied the underlying
technique on several ciphers and provided full cipher designs in GitHub10, which we fully
evaluated. All designs have a round-based architecture, while for each cipher two designs
are provided. One has a higher number of pipeline stages requiring the lowest number
of fresh masks, and the another one has a lower latency necessitating a higher number
of fresh masks. In none of the provided designs, we have found any first-order leakage.
Hence, the evaluations given below focus only on the second-order leakages.
LED-128 [GPPR11]. We have not found any leakage in the design with 5 pipeline stages.
However, we detected multi-variate second-order leakage in the 3-stage design using few

9https://github.com/Chair-for-Security-Engineering/Low-Latency_Keccak
10https://github.com/Chair-for-Security-Engineering/Low_Random_Masking

https://github.com/Chair-for-Security-Engineering/Low-Latency_Keccak
https://github.com/Chair-for-Security-Engineering/Low_Random_Masking
https://github.com/Chair-for-Security-Engineering/Low-Latency_Keccak
https://github.com/Chair-for-Security-Engineering/Low_Random_Masking
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hundred thousand simulations. In such designs, the authors coupled two masked S-Boxes
and used their shares to blind each other computations to fulfill the non-completeness.
Each S-Box is decomposed to two quadratic functions F and G. The second-order leakage
is detected when a probe is placed on an output of F of one of the coupled S-Boxes and
the second probe on an output of G of the other S-Box.

Midori-64. Evaluating the 4-stage encryption/decryption design, we detected multi-
variate second-order leakage by around 1 million simulations. Since the same fresh masks
are used in all clock cycles of an encryption, by placing a probe on a part of the S-Box
e.g., at the 4-th clock cycle, information about some fresh masks are obtained. When the
second probe is placed on another part of the S-Box in the next clock cycle where the
same fresh masks are used, we observe detectable leakage. This leakage has been detected
at the 4th and 5th clock cycles, i.e., at the border of the first and second cipher rounds;
hence, it is expected to be exploitable.

Note that it is a pipelined design, and 4 consecutive plaintexts can be given to the
encryption function. After giving the target plaintext, the 3 other pipeline stages can
be filled by zero or random inputs, i.e., bubble strategy. We examined both scenarios,
and have seen the same leakage. Potential solutions might be (1) to set fresh masks
to zero in clock cycles when pipeline does not contain meaningful data, or (2) to swap
between 4 different fresh masks corresponding to 4 given consecutive plaintexts. None of
such hints are given in the original paper [BDMS22], nor the implementations in GitHub
consider/suggest such scenarios.

The 3-stage design has a univariate second-order leakage which is not originating from
the aforementioned source. We detected such a leakage using around 1 million simulations
when two probes are placed at different outputs of the G function starting at the third
clock cycle. The S-Box is decomposed to quadratic functions F and G.

PRINCE. Wen evaluating the 6-stage design, we observed univariate second-order leakage
using around 37 million simulations when two probes are placed at the input affine function
of the decomposed S-Box in the second cipher round, i.e., at the 7-th clock cycle. The
origin of this leakage is not the reuse of fresh masks. We observed the same leakage when
the fresh masks change at every clock cycle. The leakage is indeed due to the way the
fresh mask bits are reused by different S-Boxes in a round. Suppose that an S-Box module
receives fresh masks 〈r0, r1, . . . , r37〉. The same fresh masks in the same order are given to
all other S-Boxes in a cipher round. Changing this order may avoid the observed leakage.
The 4-stage design also exhibits second-order (but multi-variate) leakage using 30 million
simulations. The reason is similar to what we have explained for the 4-stage Midori-64
design, i.e., two probes in consecutive clock cycles.

SKINNY-64. The 4-stage design shows univariate second-order leakage similar to the
6-stage PRINCE design. We detected the leakage by 1 million simulations when two probes
are placed on input affine function of the decomposed S-Box in the second cipher round,
i.e., 5-th clock cycle. We further detected multi-variate second-order leakage (similar to
several other cases) when two probes are placed on consecutive clock cycles by obtaining
information about the fresh mask in one clock cycle and revealing some leakage about the
secrets by the second probe in the next clock cycle.

The 3-stage design has also univariate second-order leakage (detected using 1 million
simulations), similar to the 4-stage design, but at the 4-th clock cycle, as the design has
one less stage.

5.4 GHPC
There are a few recent developments in the areas of composable security, i.e., constructing
hardware gadget (for e.g., a 2-input AND gate) whose security is guaranteed when composed.
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This is highly beneficial to construct a masked circuit at arbitrary order. To the best of our
knowledge, the most efficient composable 2-input AND gadget extendable to any arbitrary
order is known as Hardware Private Circuits (HPC2) [CGLS21] following the security
notion PINI [CS20]. Generic Hardware Private Circuits (GHPC) [KSM22] extends the
HPC2 to construct arbitrary large gadgets (of any input and output size), but is limited
to first-order.

Let us consider an exemplary circuit made by two GHPC gadgets realizing two functions
cascaded, i.e., d = f

(
g(a, b), c

)
. More precisely,

〈t0, t1〉 = GHPC−g
(
〈a0, a1〉, 〈b0, b1〉, r0

)
, 〈d0, d1〉 = GHPC−f

(
〈t0, t1〉, 〈c0, c1〉, r1

)
,

where a = a0 ⊕ a1 (resp. for b, c, d, and t) and r0, r1 denote the fresh masks.
Each GHPC gadget has two register stages, i.e., the latency of two clock cycles. When

the input 〈a, b, c〉 is given, it takes a couple of clock cycles till the output is ready, i.e.,
〈d0, d1〉. When the input 〈c0, c1〉 is not synchronized with the intermediate value 〈t0, t1〉 by
means of extra registers, the circuit does not form a pipeline, and the inputs a, b, c should
stay stable till the output is ready. In this non-pipeline scenario, the authors suggested to
remove some optional internal registers of the GHPC gadgets for the sake of area efficiency.
This is based on an assumption that not only the given input but also the fresh masks
stay stable until the entire circuit is evaluated. In other words, all inputs including and
fresh masks are given to the circuit and stay stable and unchanged for a couple of clock
cycles till the output is ready. The same concept has been considered in the design of
non-pipeline DOM multipliers [GMK16]. This theoretically, does not pose any issue. The
authors have confirmed the security of their designs by SILVER. Since SILVER evaluates
the circuit in the steady state, removing such optional internal registers would not affect
the evaluation result of SILVER, i.e., with and without such internal registers SILVER
reports the security of the designs made by GHPC gadgets.

However, PROLEAD reports first-order leakage when transitions are taken into account.
The second GHPC gadget initially calculates the given input c based on r1 and the output
of the first gadget 〈t0, t1〉, which is not yet ready. After two clock cycles, when the output
of the first gadget is valid, the second gadget calculates its output with the same fresh
mask r1. The transitional leakage related to the consecutive values stored in the registers
of the second gadget would cancel the effect of fresh masks, leading to first-order leakage.
This unfortunately cannot be solved by updating the fresh masks at every clock cycle,
since the circuit without optional internal registers would not generate the correct output
at every clock cycle. More precisely, if the optional internal registers are removed, the
fresh masks must stay stable until the circuit is fully evaluated. The only way to operate
GHPC circuits securely and functionally correct is to keep the optional internal registers
and update the fresh masks at every clock cycle. Note that such optional internal registers
are independent of extra registers which may be added to the circuit (outside of gadgets)
to synchronize the input of every gadget and construct a fully-pipeline design.

5.5 Summary
We have provided several case studies, in which the security of only small components (e.g.,
S-Boxes) have been analyzed, e.g., by SILVER. However, when such modules are plugged
into larger designs, the security of the final constructions could only be evaluated by
experimental analysis, which can naturally be erroneous. The authors of those designs have
not seen the leakages which we observed by PROLEAD, but it does not mean that the same
implementations evaluated by means of a different setup in another environment (with
lower noise) show the same level of robustness. This indeed re-highlights the application
of composable secure gadgets and the necessity of having proofs for the implementations
instead of being dependent on manually-crafted optimized designs and experimental
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Table 2: Evaluation results, using enough traces to detect effects of size ϕ ≥ 0.1. For the
non-secure designs, the required time reflects the duration needed to detect the largest
effect.

Design Ref. Security Performance
[expected] [probes] [time]

unmasked, SKINNY-64 [BJK+16] 0 3 200 0.1 sec
TI, PRESENT S-Box [PMK+11] 1 3 84 0.1 sec
TI, PRESENT S-Box [EGMP17] 1 7 84 0.1 sec
TI, AES S-Box [MPL+11] 1 3 1 359 3.6 min
DOM, AES S-Box [GMK16] 1 3 1 386 1.5 min
DOM, AES S-Box [GMK16] 2 3 39 873 2.4 hour
DOM, AES S-Box [GMK16] 3 3 16 583 602 3.7 week
CMS, AES S-Box [CRB+16] 1 3 1 530 3.5 min
CMS, AES S-Box [CRB+16] 2 3 39 597 3.3 hour
TI, nibble-serial PRESENT-80 [PMK+11] 1 3 14 942 1.6 min
TI, nibble-serial PRESENT-80 [EGMP17] 1 7 14 942 5.3 sec
TI, byte-serial AES-128 [MPL+11] 1 3 43 855 50 min
DOM, byte-serial AES-128 [GMK16] 1 3 28 420 13 min
CMS, byte-serial AES-128 [CRB+16] 1 3 28 763 25 min
Null Fresh, Midori-64 [SM21a] 1 3 3 855 8.5 min
Null Fresh, PRESENT-80 [SM21a] 1 7 8 990 4.0 sec
Null Fresh, PRINCE [SM21a] 1 7 4 736 18 sec
Null Fresh, AES-128 [SM21a] 1 7 12 958 13 sec
Null Fresh 2, Keccak-f [200] [SM21b] 1 3 1 692 1.7 sec
Null Fresh 2, Keccak-f [200] [SM21b] 2 3 39 185 460 5.8 day
Null Fresh 2, Midori-64 [SM21b] 2 3 39 195 148 3.6 week
Null Fresh 2, PRINCE [SM21b] 2 3 57 658 755 2.3 week
Null Fresh 2, SKINNY-65 [SM21b] 2 3 11 083 068 14 hour
Null Fresh 2, PRESENT-80 [SM21b] 1 7 48 200 1.0 sec
Null Fresh 2, PRESENT-80 [SM21b] 2 7 3 036 288 53 sec
Low-Latency Keccak-f [25] [ZSS+21] 1 7 1 248 11 sec
Low-Latency Keccak-f [25] [ZSS+21] 2 3 1 136 450 1.5 hour
Low-Rand, LED-128, 5-stage [BDMS22] 2 3 13 597 965 8.1 day
Low-Rand, LED-128, 3-stage [BDMS22] 2 7 3 070 704 5.6 hour
Low-Rand, Midori-64, 4-stage [BDMS22] 2 7 2 541 844 2.3 day
Low-Rand, Midori-64, 3-stage [BDMS22] 2 7 788 140 2.7 hour
Low-Rand, PRINCE, 6-stage [BDMS22] 2 7 10 392 858 4.2 week
Low-Rand, PRINCE, 4-stage [BDMS22] 2 7 18 110 620 3.4 week
Low-Rand, SKINNY-64, 4-stage [BDMS22] 2 7 2 726 080 1.6 hour
Low-Rand, SKINNY-64, 3-stage [BDMS22] 2 7 1 424 442 1.3 day
GHPC gadgets, without optional regs [KSM22] 1 7 110 0.1 sec
GHPC gadgets, with optional regs [KSM22] 1 3 162 0.1 sec
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evaluations. This might be highly relevant for the new activities and public call by NIST
on “Masked Circuits for Block-ciphers”11.

We further would like to stress that the leakages which we found by PROLEAD in the
aforementioned case studies are not necessarily exploitable. However, such designs cannot
be considered probing secure, which is often in contradiction with the authors’ claims. A
natural question is whether (robust) probing security is important in practice. It is true that
(robust) probing model is relatively conservative, but it captures any leakage independent
of how the actual circuit is realized in hardware and which timing information the cells of
the underlying library have. In short, we believe that if a circuit is (robust) probing secure
(guaranteed for example through composable gadgets), its physical realization is very likely
secure in practice as long as the specifications of the circuit are not changed, e.g., the
netlist stays unchanged. This statement stays valid even if the underlying ASIC library
changes which just alters the power and timing characteristics of the instantiated gates.

5.6 Limitations

While PROLEAD can evaluate the probing security of larger designs whose probing security
cannot be evaluated by formal verification tools, it turns out that some designs that
satisfy higher-order probing security are even too large for a complete evaluation with
PROLEAD. For example, consider the DOM, AES S-Box [GMK16] with different security
orders evaluated during Section 5.
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Figure 3: Evaluation time and the number of probing sets for a DOM protected AES
S-Box with increasing security order.

In Figure 3, we see that the number of probing sets grows exponentially with the
increasing number of shares leading to an exponentially increased runtime of PROLEAD.
We can conclude from Table 2 that we can analyze a DOM AES S-Box up to the third
order, while a fourth-order evaluation possibly takes months. Besides runtime, the memory
requirements grow exponentially and may become the limiting factor on some devices. On
the one hand, the number of contingency tables grows. On the other hand, each contingency
table may grow exponentially as the number of probes in a probing set increases with the
desired security order. Moreover, we remark that an increased number of probes per set
and the resulting larger contingency tables only lead to statistically confident results if
more simulations are considered. Hence, the number of required simulations to reliably
detect an effect also grows with the desired security order. Nevertheless, we remark that a
partial evaluation of larger designs is still possible as the user can limit the evaluation in
terms of considered probes and clock cycles. Thus, although a complete evaluation is not
feasible, PROLEAD can help the user to find potential vulnerabilities in a design.

11https://csrc.nist.gov/Projects/masked-circuits

https://csrc.nist.gov/Projects/masked-circuits
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6 Conclusions
In this work, we introduced PROLEAD, a new simulation-based approach to evaluate the
probing security of masked implementations. Although being dependent on simulations, in
contrast to the state of the art, PROLEAD is free of any leakage/power model and directly
examines the robust probing security of the given implementations. Thanks to gate-level
simulations, bit slicing, and parallelisms, PROLEAD enjoys a high-performance feature being
able to evaluate masked full cipher implementations in a reasonable time, e.g., first-order
security of a masked AES-128 encryption function in a couple of hours. This is certainly
out of the capacity of formal verification tools (like SILVER), which can at most evaluate
subcircuits, e.g., gadgets or small S-Boxes. We should also mention that since PROLEAD
is based on simulations and statistical hypothesis tests, its evaluation results cannot be
considered as a proof when it reports the robustness of the given design. However, if
PROLEAD detects a leakage, the found probing set can confidently be considered as a
counterexample violating the desired security. Furthermore, PROLEAD can estimate the
reliability of the results by reporting the false-negative probability. Users can adapt the
required statistical confidence level to their needs while PROLEAD computes the minimum
number of simulations that are needed to satisfy the required security level. Due to the
estimation of confidence, it is always clear what a user can expect from a result given
by PROLEAD and how reliable the results are. Naturally, the results of PROLEAD are more
reliable when a higher number of simulations are considered in the evaluations. Hence,
similar to any statistical hypothesis test, there is a trade-off between the confidence
level and the number of samples involved in the evaluation. Nevertheless, we believe
that PROLEAD is a highly helpful tool to rapidly examine the probing security of masked
implementations prior to experimental analyses and/or fabrications. The tool can also be
used by practitioners and engineers without having access to any SCA measurement setup.
Through several cases studies, we have shown the ability of PROLEAD to find design flaws
in implementations which are claimed robust probing secure. At the moment, PROLEAD
supports glitch- and transition-extended probing security. A natural follow-up work would
be in the direction of extending its features to cover security evaluations based on random
probing model.
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