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Abstract. In this study, we present new analytical metrics for evaluating the perfor-
mance of side-channel attacks (SCAs) by revisiting the perceived information (PI),
which is defined using cross-entropy (CE). PI represents the amount of informa-
tion utilized by a probability distribution that determines a distinguishing rule in
SCA. Our analysis partially solves an important open problem in the performance
evaluation of deep-learning based SCAs (DL-SCAs) that the relationship between
neural network (NN) model evaluation metrics (such as accuracy, loss, and recall)
and guessing entropy (GE)/success rate (SR) is unclear. We first theoretically show
that the conventional CE/PI is non-calibrated and insufficient for evaluating the SCA
performance, as it contains uncertainty in terms of SR. More precisely, we show that
an infinite number of probability distributions with different CE/PI can achieve an
identical SR. With the above analysis result, we present a modification of CE/PI,
named effective CE/PI (ECE/EPI), to eliminate the above uncertainty. The ECE/EPI
can be easily calculated for a given probability distribution and dataset, which would
be suitable for DL-SCA. Using the ECE/EPI, we can accurately evaluate the SR
through the validation loss in the training phase, and can measure the generalization
of the NN model in terms of SR in the attack phase. We then analyze and discuss the
proposed metrics regarding their relationship to SR, conditions of successful attacks
for a distinguishing rule with a probability distribution, a statistic/asymptotic aspect,
and the order of key ranks in SCA. Finally, we validate the proposed metrics through
experimental attacks on masked AES implementations using DL-SCA.
Keywords: Side-channel analysis · Deep learning · Optimal distinguisher · Success
rate · Perceived information

1 Introduction
1.1 Background
Deep-learning based side-channel attack. Deep-learning based side-channel attacks (DL-
SCAs) on cryptographic modules have been increasingly emerged in recent years [MHM14,
CDP17,HHGG20,RWPP21,UXT+22]. DL-SCA is a profiling attack which consists of two
phases: profiling and attack. In the profiling phase, an attacker obtains side-channel traces
from profiling device(s) with similar leakage characteristics as the target device, then
trains a neural network (NN) model representing the leakage characteristics. In the attack
phase, the attacker utilizes the trained NN model to estimate the secret key from the
target device’s side-channel leakage. Compared with conventional profiling attacks, such
as template attacks [CRR02], DL-SCA can achieve a higher attack performance (e.g., key
recovery capability) even on implementations with SCA countermeasures, such as masking
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and random delay. Thus, it has become necessary to develop an assessment methodology
to evaluate DL-SCA threats because of the increasing number of cryptographic devices that
are now operated in a scenario where an attacker can perform a profiling, such as Internet
of Things applications. Actually, several literatures have showed/discussed the possibility
and potential of profiling attacks in the real scenarios such as [OP11,DK18,WVdHG+20].

Performance evaluation of DL-SCA. Performance evaluation in DL-SCA has an impor-
tant open problem. During the validation/test phase of a typical DL, the performance of an
NN model has been evaluated through using metrics such as the accuracy, loss, and recall.
In contrast, SCA performance has frequently been evaluated using the guessing entropy
(GE) and success rate (SR) [SMY09]. However, the relationship between the evaluation
metrics is unclear so far. In fact, it is reported that the DL metrics sometimes contradict
the SCA performance [PHJ+19]. For example, in an extreme case, an NN model with an
accuracy of 0% could succeed in the key recovery in the attack phase. In addition, in terms
of cross-entropy (CE) loss, an overfitting model sometimes outperforms non-overfitting
models. The mismatch between the metrics leads to a non-negligible computational cost
for the empirical evaluation of the attack performance (i.e., GE/SR) of a model, and
makes it difficult to determine the timing of generalization and early stopping. Addressing
the problem, we could easily evaluate the SR of a given NN model and determine its
generalization of a model in terms of SR.

Perceived information. Perceived information (PI) was proposed in 2011 [RSVC+11].
Conceptually, PI represents the amount of information between secret intermediate vari-
able and side-channel leakage exploited by a probability distribution that determines a
distinguishing rule. Because mutual information between the secret intermediate vari-
able and side-channel leakage is essential for SCA and can be used to evaluate the
SR [GBTP08,DFS15,dCGRP19], PI might be useful for evaluating the SR given a proba-
bility distribution that determines a distinguishing rule (e.g., a trained NN in DL-SCA).
It was shown in [MDP20] that the PI of a probability distribution r was a lower-bound
of mutual information and was defined using CE as H(Z) − CE(r), where H(Z) is the
entropy of secret intermediate variable Z and CE(r) is the CE between the true probability
distribution p and r. Nevertheless, there was still a mismatch between the attack perfor-
mance of a model and its PI, as the model could sometimes succeed in the key recovery in
DL-SCA even when the CE loss was large, implying PI looked too small for attack success.
In fact, it was mentioned in [BHM+19] and is confirmed also in this paper that PI-based
SR evaluation sometimes underestimates the actual attack performance. This implies that
there would still be a mismatch among the information-theoretic metrics (i.e., PI), CE
loss function, and SCA attack performance (i.e., SR).

1.2 Our contribution
This study revisits the PI to analyze and discuss the above mismatch. We first review the
Ito, Ueno, and Homma’s theorem [IUH21], which states that a probability distribution
with the minimum CE sufficiently but not necessarily provides an optimal distinguisher.
We then derive the relationship between the theorem and the CE/PI as Proposition 3 and
show that the existing definition of CE/PI is insufficient in SCA. Concretely, we prove
that the existing PI contains an uncertainty in terms of SR; that is, an infinite number of
probability distributions with different CE/PI yield distinct distinguishing rules with an
identical SR. This shows that the conventional CE/PI definition is insufficient as a metric
for evaluating the SCA performance.

With the above analysis result, we present a modification of CE/PI, named effective
CE/PI (ECE/EPI) to eliminate the above uncertainty. ECE and EPI are (hypothetically)
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respectively given by an infimum of CE and a supremum of PI of the probability distribution
that can achieve an SR. The proposed metrics can be easily calculated for a given probability
distribution and dataset as described in Section 4.4, which would be suitable for DL-SCA.
The use of EPI makes it possible to perform a more accurate SR evaluation through the
ECE during NN training in DL-SCA by a combination with an inequality developed by
de Chérisey et al. [dCGRP19]. Note that an SR upper-bound is closely related to the
lower-bound of the number of traces required for the attack success; and therefore, the
bounds are used in a quantitative evaluation metric of SCA [SMY09]. The proposed
metrics can also be used to measure the generalization of an NN model in terms of SR
during the attack phase. We analyze and discuss the proposed metrics in terms of their
relationship to SR, a statistic/asymptotic aspect, and conditions of successful attacks for a
distinguishing rule with a probability distribution. In addition, we provide an analysis
on the order of key ranks in SCA to show the suitability of ECE/EPI for SR evaluation.
Finally, we validate the proposed metrics through an experimental attack on masked AES
implementations using DL-SCA.

We suppose that the proposed approach would be especially helpful for evaluators
and (white) attackers as it easily evaluates the attack performance of a model. This
indicates that it would be useful for, for example, early stopping to maximize the SR and
comparison of two (or more) models to determine which model is superior in DL-SCA. The
experimental attack also validates this aspect. For example, in the experimental attack on
masked hardware, the SR evaluation using the proposed metrics/method takes at most
0.53 seconds even using 100,000 test traces, whereas a common empirical SR evaluation
requires far longer time, which may be in an order of minutes with 100,000 traces. Note
that the computation time corresponds to one SR evaluation at an epoch; in practice, we
should perform the computation for every epoch, which indicates that the usage of EPI
would yield a significant reduction of computation time. Thus, EPI can also contribute to
the SR evaluation in practical aspects, in addition to the theoretical contribution of this
paper.

1.3 Paper organization
The remainder of this paper is organized as follows: Section 2 introduces the mathematical
notation and reviews the previous studies on DL-SCA and PI. Section 3 derives the
relation between PI and SR from a probability-theoretical perspective. Section 4 proposes,
analyzes, and discusses a new information-theoretical metric named ECE/EPI. Section 5
demonstrates the validity of the proposed metric through experimental attacks on masked
AES implementations. Finally, Section 6 concludes this study.

2 Preliminaries
2.1 Notation
A calligraphic letter (e.g., X ) represents a set; an uppercase variable (e.g., X) represents
a random variable over the corresponding set (i.e., X for X); and a lowercase variable
(e.g., x) is an element of the corresponding set, if it is defined otherwise. Pr denotes
a probability measure. Throughout this paper, p denotes to the true density or mass
function; q denotes the probability density or mass function represented by an NN1.
For example, the true probability mass function of discrete random variables X,Y is
pX,Y (x, y) = Pr(X = x, Y = y). We may omit the subscripted random variables if the

1In this paper, the probability mass functions or density functions for any random variables exist by
making appropriate assumptions because we will focus only on discrete, continuous random variables, or a
mixture of them.
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random variables of the probability distribution are obvious. For example, we may simply
write p(x, y) instead of pX,Y (x, y). In addition, we may write a conditional probability
distribution represented by an NN with parameter θ by qθ , qZ|X(· | ·; θ). The expectation
is denoted by E. For example, EXf(X) denotes the expectation of f(X), where f : X → R
is a function. The conditional probability distribution is denoted by pX|Y (x | y) = p(x | y),
and E [f(X,Y ) | Y = y] denotes the expected value. Finally, log and ln denote the binary
and natural logarithms.

Let X denote a random variable of the side-channel trace. Side-channel traces are
represented as a multidimensional real vector x ∈ X ⊂ Rmt , where mt ∈ N is the
number of sample points. This study focuses on SCAs on block ciphers, particularly
AES. Let nk denote the bit length of the partial key, and let nt denote the bit length
of the partial plaintext and ciphertext. The secret intermediate value is denoted as
z = g(k, t) ∈ Z = {0, 1}nz , where g is a selection function2, nz denotes the bit length of z,
k ∈ K = {0, 1}nk is a key, and t ∈ T = {0, 1}nt is public information such as plaintexts
and ciphertexts. Their random variables are also defined in the aforementioned manner.
Here, let K denote the random variable of the correct key, and k∗ denote the correct key
value. T and K are assumed to have uniform distributions. If we require to specify the
key value for Z, we write Z(k) = g(k, T ).

In this study, the conditional probability distribution between the secret intermediate
variable Z and side-channel leakage X (e.g., pZ|X , qθ) plays an essential role. For simplicity,
we assume that every conditional probability distribution rZ|X satisfies −E log rZ|X(Z |
X) <∞. This condition ensures that the cross entropy of every distribution exist. Let
R be a set of all the conditional probabilities such that, for every rZ|X ∈ R, ∀z ∈ Z,x ∈
X ; rZ|X(z | x) > 0 holds, and ∀z1, z2 ∈ Z; z1 6= z2 ⇒ rZ|X(z1 | X) 6= rZ|X(z2 | X)
holds almost surely. Because qθ probably meets these two conditions in many cases, the
conditional probability of model qθ is contained in the set R in practice. The first condition
is natural because the NN model cannot take a zero value if Softmax function is used as
the activation function of its last layer. On the other hand, although there would exist
parameters which do not satisfy the second condition, it would be highly unlikely that
such parameters are selected during learning because of the randomness of the learning
algorithms3. Note that the true distribution pZ|X is necessarily not contained in the set
R. For example, there exist different z1 and z2 such that Pr(p(z1 |X) = p(z2 |X)) > 0
holds if the leakage model is Hamming weight, and there is no noise in the traces (e.g.,
(z1, z2) = (1, 2)). Even in this case, we assume that qθ ∈ R holds because of the randomness
of the learning algorithms.

For the sake of simplicity, we assume that the distribution of Z is independent of the
key used. This assumption is closely related to the key-independence condition [IUH21],
which states that the key can be fixed during the profiling. Many practical selection
functions are proven to satisfy this condition. For example, a typical selection function
for 16 bytes of software AES implementation (i.e., Z = Sbox(K ⊕ T ) and its Hamming
weight) satisfies this condition.

2.2 Overview of DL-SCA
The DL-SCA has two phases: profiling and attack. During the profiling phase, we train a
model to approximate the conditional distribution as the device leakage characteristics.
Let Sp = { (Xi, Zi) | 1 ≤ i ≤ mtr } be a training dataset used in the profiling phase, Xi

denotes the side-channel trace (i.e., power consumption or electromagnetic radiation) of
2In this paper, we assume that g does not consist in a leakage function (e.g., Hamming weight), as we

focus on the probability distribution rZ|X .
3Formally, this can be stated as follows. Let Sp be a training dataset, and let M : Sp 7→ θ be a learning

algorithm which is a randomized function. Note that a learned parameter θ̂ $←−M(Sp) is regarded as a
random variable. This paper assumes that qθ̂ ∈ R holds almost surely (i.e., Pr(qθ̂ ∈ R) = 1))
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the i-th observation, Zi denotes the corresponding intermediate value, and |Sp| = mtr
is the number of traces used in the profiling phase. We assume that X1,X2, . . . ,Xmtr

and Z1, Z2, . . . , Zmtr are independent and identically distributed (i.i.d) random variables,
respectively. Let θ denote the NN model parameter. The goal of the profiling phase is
to estimate the optimal model parameter θ̂ using the training dataset Sp. This optimal
parameter is usually given as the solution to the minimization problem of the CE loss
function, defined as

CE(qθ) = −EZ,X log q(Z |X; θ) = −
∫ ∑

z

pZ,X(z,x) log q(z | x; θ) dx, (1)

where Z and X are the random variables of a label z and trace x, respectively, and
qθ represents the conditional probability distribution represented by the NN with the
parameter θ.

CE(qθ) in Equation (1) takes the minimum value if and only if p = qθ [Bis06,GBC16].
Note that, depending on the hyperparameter and p, it is not generally guaranteed that there
exists a model parameter such that p = qθ. We can obtain a model that approximates
the true distribution p if we determine the optimal parameter θ̂ that makes CE(qθ̂)
sufficiently small; however, we cannot calculate Equation (1) because it contains the
integral and summation of the unknown probability distribution p. Therefore, in general,
we approximate CE(qθ) using the training data Sp as follows:

CE(qθ) ≈ L(qθ) = − 1
mtr

mtr∑
i=1

log q(Zi |Xi; θ). (2)

The approximated CE in Equation (2) is called negative log-likelihood (NLL). The NLL is
expected to converge in probability to CE(qθ) as mtr →∞ for fixed qθ.

During the attack phase, we estimate the secret key k∗ of the target device using the
trained model. Let Sa = { (Xj , Tj) | 1 ≤ j ≤ mat } be a dataset used during the attack
phase, where |Sa| = mat is the number of traces, Xj is the side-channel trace at the j-th
observation, and Tj is the corresponding plaintext or ciphertext. During the attack phase,
we calculate the NLL for each hypothetical key candidate k ∈ K using the intermediate
value Z(k)

j calculated from Tj as

L(k)(qθ̂) = − 1
mat

mat∑
j=1

log q(Z(k)
j |Xj ; θ̂).

Following that, the correct key is estimated to be the key candidate with the smallest NLL
value. This is equivalent to approximately computing and comparing

CE(k)(qθ) = −E log q(Z(k) |X; θ̂),

for each key candidate k.
In the following, for a simplified notation, we denote the number of traces for the attack

phase by m, instead of mat. As well, the number of traces for validation/test is also simply
denoted by m as a validation/test corresponds to an attack phase.

Instead of CE, some loss functions have been presented to improve the learning cost
and/or the attack performance of NN. In [ZZN+20], Zhang et al. presented the cross
entropy ratio (CER), and showed that it is useful for improving the attack performance
especially when the training and test datasets suffer from an imbalanced data problem, as
also analyzed in [ISUH21]. In [ZBD+21], Zaid et al. presented the ranking loss (RkL), the
usage of which can suppress the approximation error and can make the convergence faster.
As investigated in [KWPP21], such loss functions dedicated to DL-SCA can yield a high
attack performance, although a common CE can be a good option in most cases. Thus, it
is worth investigating the loss function dedicated to DL-SCA.
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2.3 SCA evaluation metrics
To evaluate the performance of (DL-)SCA, the SR and GE are commonly used as quanti-
tative metrics during the attack phase. The SR and GE with m traces during the attack
phase are represented as

SRm = Pr(rank(k∗,m, qθ) = 1),
GEm = Erank(k∗,m, qθ),

respectively [SMY09]. In the case of DL-SCA, the rank of correct key is defined as

rank(k∗,m, qθ) = 1 +
∑

k∈K\{k∗}

1{L(k∗)(qθ)≥L(k)(qθ)},

where 1 is the indicator function.
In [dCGRP19], de Chérisey et al. showed that the SR is upper-bounded using a

conditional mutual information between the secret intermediate variable Z and side-
channel leakage X given plaintext/ciphertext T , denoted by I(Zm; Xm | Tm), where
Zm = (Z1, Z2, . . . , Zm), Xm = (X1,X2, . . . ,Xm), and Tm = (T1, T2, . . . , Tm). In [IUH22],
Ito, Ueno and Homma proved that I(Zm; Xm | Tm) ≤ mI(Z; X). According to de Chérisey
et al. and Ito, Ueno, and Homma, SR is upper-bounded as

ξ(SRm) ≤ mI(Z; X), (3)

where ξ : [0, 1]→ R+ denotes a function defined as

ξ(SRm) = H(K)− (1− SRm) log(2nk − 1)−H2(SRm), (4)

where H(K) is the entropy of K (here, H(K) = nk if K is the uniform distribution on
{0, 1}nk) and H2 is the binary entropy function. Intuitively, ξ(SR) represents the amount of
information required for key recovery for a given SR. For example, if an attacker attempts
key recovery with SRm = 1, the attacker requires nk-bit information as represented by
ξ(1) = nk. In contrast, if the attacker has no advantage on the key estimation (that
is, SRm = 1/2nk), the attacker requires zero bit information about the secret key as
represented by ξ(1/2nk) = 0. Inequality (3) states that this amount of information is
upper-bounded by mutual information. To achieve a desired SR, Inequality (3) states that
the attacker requires to obtain mI(Z; X) bit information through the observation of m
side-channel traces.

Related to SR evaluation through the validation loss, Zaid et al. showed that RkL is an
SR lower-bound [ZBD+21]. Although its usage has some advantages in DL-SCA (e.g., a
suppression of the approximation error and a faster convergence), RkL-based SR evaluation
requires the computational cost as high as the conventional empirical evaluations. RkL can
be evaluated only experimentally/empirically, but not analytically, because RkL is derived
by approximating an indicator function in the GE as a binary loss function [IUH21]. This
indicates that RkL-based SR evaluation includes the conventional empirical SR evaluation.
For the assessment of DL-SCA performance, it is worth studying how to evaluate the SR
through the validation loss with less costs.

2.4 Optimal distinguisher
SCA can be formulated using a distinguisher, which is denoted by a function d : Xm×T m →
K. A distinguisher calculates the ranks of each key candidate using a score function from
side-channel trace, and estimates the correct key as the candidate with the highest score.
For example, correlation power analysis (CPA) uses Pearson’s correlation coefficient as the
score. DL-SCA uses the NLL as the score. An optimal distinguisher is a distinguisher that
maximizes the SR. The optimal distinguisher is formally defined as follows:
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Definition 1 (Optimal distinguisher [HRG14]). For attack traces Xm = (X1,X2, . . . ,Xm)
and inputs Tm = (T1, T2, . . . , Tm), the success rate of a distinguisher d : Xm × T m → K
is defined as SRm(d) = Pr(K = d(Xm, Tm)). A distinguisher dopt is called optimal if we
have SRm(dopt) = supd SRm(d).

According to [HRG14], an optimal distinguisher dopt is given by

dopt(Xm, Tm) = arg max
k

Pr(K = k |Xm, Tm)

= arg max
k

∑
j

log pX|T,K(Xj | Tj , k).

In [IUH21], Ito, Ueno, and Homma proved that dopt has another equivalent form given by
the true conditional probability distribution of the secret intermediate variable Z given a
side-channel leakage X (denoted by pZ|X), which suits to the DL-SCA. This indicates that
the CE minimization in DL-SCA makes sense to achieve an optimal attack, as the goal of
DL is usually to imitate the true conditional probability distribution through the CE loss
minimization. However, in [IUH21], Ito, Ueno, and Homma also proved that an infinite
number of probability distributions with a non-minimum CE provide distinct optimal
distinguishers. Their theorem states that the true conditional probability distribution (i.e.,
a probability distribution with the minimum CE) sufficiently but not necessarily provides
an optimal distinguisher. Using the theorem, they stated that a probability distribution
with a relatively high CE does not always make the SR low in the attack phase of DL-SCA,
motivating them to propose a loss function (named Probability Concentration Inequality
(PCI) loss), which is used to directly maximize the SR. We review their theorem to reveal
the relationship between PI and SR in Section 3.

2.5 Perceived Information
The concept of PI was initially presented by Renauld et al. [RSVC+11]. PI is considered as
an amount of information utilized by a probability distribution (e.g., NN output) providing
a distinguishing rule. Let Jr(Z; X) denote the PI of a probability distribution r between
the secret intermediate variable Z and side-channel leakage X. Jr(Z; X) is defined as

Jr(Z; X) = H(Z)− CE(r) ≈ H(Z)− L(r). (5)

PI is a lower-bound of mutual information, that is, it holds Jr(Z; X) ≤ I(Z; X) for any
distribution rZ|X [MDP20,BHM+19]. The equality holds if and only if rZ|X is equivalent
to the true probability distribution pZ|X . Jr(Z; X) is expected to be always non-negative,
as it represents an amount of information. However, the original PI can take a negative
value as mentioned and shown in [BHM+19]. In this paper, Section 3.2 states one of its
reasons why PI can be negative.

Let SRm(r) denote the SR of an attack using m traces and a distinguisher with rZ|X .
According to the intuitive meanings of PI and ξ in Equation (4), SRm(r) is expected to be
upper-bounded by

ξ(SRm(r)) ≤ mJr(Z; X), (6)

similarly to Inequality (3). However, in practice, some counterexamples are found (like the
experiment in this paper). a probability distribution with so large CE (that makes PI too
small for the attack success with regard to Inequality (6)) sometimes can succeed in the
key recovery. This indicates that the existing PI does not adequately represent the amount
of information that can be used with the SR inequality (3) as mutual information. In this
study, we specify one of the reasons and present a modification of PI to address this issue.
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3 Uncertainty of CE/PI for SR evaluation
3.1 Review of Ito–Ueno–Homma theorem [IUH21]
Theorem 1 (Ito, Ueno, and Homma [IUH21]). Let rZ|X be a conditional probability
distribution of the secret intermediate value Z given side-channel leakage X. rZ|X yields
an optimal distinguisher if CE(rZ|X) is minimum (i.e., r = p). However, CE(rZ|X) is not
always minimum if rZ|X yields an optimal distinguisher.

Theorem 1 is proven by two propositions: one states that the true conditional probability
distribution (i.e., a conditional probability distribution with the minimum CE) sufficiently
yields an optimal distinguisher, and the other states that its inverse is false; that is, a
conditional probability distribution with the minimum CE does not necessarily yields an
optimal distinguisher.

Proposition 1 (CE minimization is sufficient for optimal distinguisher [IUH21]). Let
rZ|X be a conditional probability distribution of Z given X, and let dr be a distinguisher
defined as

dr(Xm, Tm) = arg max
k

m∑
j=1

log rZ|X(Z(k)
j |Xj).

The distinguisher dr(Xm, Tm) is optimal if rZ|X is equivalent to the true probability
distribution pZ|X ; that is, dp(Xm, Tm) is an optimal distinguisher.

Note that, for a probability distribution of trained |Z|-classification NN qθ̂, the distin-
guisher dqθ̂ is equivalent to

dqθ̂ (X
m, Tm) = arg max

k

m∑
j=1

log qZ|X(Z(k)
j |Xj ; θ̂).

which would be the reasons why, in DL-SCA, we train an NN to approximate the true
probability distribution pZ|X and utilize the NLL for the key estimation during the attack
phase. In the following, we always consider the distinguishing rule defined in Proposition 1
for a given probability distribution.

Before introducing Proposition 2, we review Lemma 1 followed by Corollary 1, which
are crucial to the proof of Proposition 2.

Lemma 1 (A conversion of probability distribution with order of key ranks preserved
[IUH21]). Let

r′Z|X(z | x) =
rZ|X(z | x)β∑
z′ rZ|X(z′ | x)β ,

where rZ|X : Z × X → (0, 1] is a probability distribution, and β is a positive real number.
Then, for all k ∈ K and m ∈ N, rank(k,m, r) = rank(k,m, r′) holds.

Corollary 1. For a given probability distribution rZ|X and Sa, the success rate SRm and
guessing entropy GEm are invariant to the above conversion of probability distribution with
any β.

Lemma 1 guarantees that the conversions from r to r′ do not change the SCA perfor-
mance (i.e., SR and GE). Note that the conditional distribution rZ|X must be a positive
real-valued function to hold Lemma 1. NN models satisfy this condition because they
usually use a Softmax as the activation function of the last layer. Lemma 1 implies that
an infinite number of such conversions exist because β is any positive real number. Using
Lemma 1, Ito, Ueno, and Homma proved Proposition 2.
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Proposition 2 (CE minimization is not necessary for optimal distinguisher [IUH21]). Let
d be a distinguisher for the attack phase, defined as

dr(Xm, Tm) = arg max
k

m∑
j=1

log rZ|X(Z(k)
j |Xj),

where rZ|X : Z × X → (0, 1] is a conditional probability distribution. Even when the
distinguisher d is optimal, infr′′ CE(r′′) = CE(rZ|X) does not necessarily hold.

3.2 Relation between CE/PI and SR

We then show the uncertainty of CE/PI in terms of SR evaluation using Lemma 1. In this
study, we focus on the conversion of probability distribution used in Lemma 1. We first
define the conversion notation.

Definition 2. Let rZ|X be a conditional probability distribution. For any positive real
number β, define a conversion of rZ|X as

Hβ [rZ|X ](z | x) =
rZ|X(z | x)β∑
z′ rZ|X(z′ | x)β .

The application of Hβ to a probability distribution is equivalent to the usage of Softmax
with temperature for the activation function of output layer of an NN model. In the
DL community, such a Softmax with temperature is used for emphasizing a label with
the highest probability if β > 1 or for placing importance relatively on labels with small
probability if 0 < β < 1. It is known that the accuracy of an NN model is invariant to the
temperature [GPSW17], which obviously indicates that, for one trace attack (i.e., m = 1),
the rank order, SR, and GE are also invariant to the temperature. Proposition 2 generalizes
this fact to more-than one traces attack; the temperature is generally meaningless for
distinguishing rules in terms of attack performance with any (finite) number of traces.
Meanwhile, CE and PI are dependant on β. To analyze the dependency, we derive the
limits of CE and PI of Hβ [r] as β ↘ 0 and β → ∞. For the derivation, we introduce
Lemma 2.

Lemma 2. Let rZ|X ∈ R be a conditional probability distribution, and let β be a positive
real number. Hβ [rZ|X ](Z|X) converges almost surely to 2−nz (i.e., uniform distribution
over Z) as β ↘ 0 and 1{Z=arg maxz′r(z′|X)} (i.e., one-hot distribution) as β →∞, where
1{Z=arg maxz′r(z′|X)} is measurable.

Proof. First, we derive the limit of β ↘ 0 as follows:

lim
β↘0

Hβ [rZ|X ](z | x) = lim
β↘0

rZ|X(z | x)β∑′
z rZ|X(z′ | x)β

= 1
|Z|

= 2−nz ,

for every z ∈ Z and x ∈ X . Second, we derive the limit of β → ∞. Let (Ω,F ,Pr) be a
probability space. From the assumption of R, there exists a null set N such that

N = Ω \
⋂

z1,z2∈Z
z1 6=z2

{rZ|X(z1|X) 6= rZ|X(z2|X)}.
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Let {βi}∞i=1 be any sequence such that βi →∞. For every (z,x) ∈ (Z,X)(Ω \ N ),4

lim
i→∞

H [rZ|X ]βi(z | x) = lim
i→∞

rZ|X(z | x)βi∑
z′ rZ|X(z′ | x)βi

= lim
i→∞

(
rZ|X(z|x)

maxz̄ rZ|X(z̄|x)

)βi
∑
z′

(
rZ|X(z′|x)

maxz̄ rZ|X(z̄|x)

)βi
=
{

1 if z = arg maxz′rZ|X(z′ | x)
0 otherwise

= 1{z=arg maxz′rZ|X(z′|x)}.

Therefore, 1{Z=arg maxz′rZ|X(z′|X)} is measurable, and it holds limβ→∞Hβ [rZ|X ](Z|X) =
1{Z=arg maxz′rZ|X(z′|X)} almost surely because Pr(Ω \ N ) = 1.

We then introduce Proposition 3.

Proposition 3. Let rZ|X ∈ R be a conditional probability distribution. Suppose that

Pr
(
Z 6= arg max

z′
r(z′ |X)

)
> 0. Then we have

CE(Hβ [rZ|X ])→ nz as β ↘ 0, (7)
JHβ [rZ|X ](Z; X)→ 0 as β ↘ 0, (8)

CE(Hβ [rZ|X ])→∞ as β →∞, (9)
JHβ [rZ|X ](Z; X)→ −∞ as β →∞. (10)

Proof (Informal sketch). Intuitively5, Limits (7) and (8) hold because Hβ [rZ|X ] converges
almost surely to a uniform distribution over Z and CE of the uniform distribution is
equivalent to nz. As well, Limits (7) and (8) hold because Hβ [rZ|X ] converges almost
surely to a one-hot distribution and limx↘0 log x = −∞. See Appendix A for a formal
proof.

Proposition 3 states the CE/PI is dependant on β. In particular, we can make the CE
arbitrarily large and the PI arbitrarily small by increasing β. A conditional probability
distribution can be converted to other distributions with arbitrarily large CE and small
PI, while the SR and GE of the distinguishing rule with such probability distributions
are invariant to β. In an extreme case, according to Proposition 1, the true probability
distribution pZ|X , which has the minimum CE/maximum PI, gives an optimal distinguisher
(i.e., achieves the theoretically maximum SR); but Hβ [pZ|X ] also provides an optimal
distinguisher, although JHβ [pZ|X ](Z; X) is smaller than zero for sufficiently large β. This
statement also holds for any non-optimal probability distribution that can achieve a
meaningful SR. Thus, CE and PI include an uncertainty in terms of SR; that is, for a
given SR, the CE and PI of a probability distribution are not unique and the probability
distribution can have an arbitrarily large CE/small PI. Moreover, PI can take any negative
value although it is expected to intuitively represent an information amount. This reveals
that the conventional CE/PI is non-calibrated and not always appropriate in terms of
SR evaluation and is insufficient for the evaluation of the attack performance (with
Inequality (6)).

4Note that (Z,X) can also be regarded as a random variable.
5To prove Proposition 3 formally, we need a formal treatment of convergence through the measure

theory, such as the interchange of lim and expectation in CE. This proof sketch describes just an intuition.
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4 Proposed metrics: Effective CE/PI
4.1 Basic concept
In Section 3, we showed the uncertainty of CE/PI in terms of SR. To avoid such an
uncertainty, we present a modification of CE/PI, named effective CE/PI (ECE/EPI). The
ECE and EPI are defined as a CE lower-bound and PI upper-bound for a given probability
distribution with regard to the conversion Hβ , respectively.

Definition 3 (Effective cross-entropy (ECE) and effective perceived information (EPI)).
Let rZ|X ∈ R be a conditional probability distribution of secret intermediate variable Z
given a side-channel leakage X. ECE and EPI for rZ|X are defined as

CE∗(rZ|X) = inf
β∈(0,∞)

CE(Hβ [rZ|X ]) = inf
β∈(0,∞)

−E log Hβ [rZ|X ](Z |X),

J∗r (Z; X) = sup
β∈(0,∞)

JHβ [rZ|X ](Z; X) = H(Z)− CE∗(rZ|X),

respectively. If Z follows a uniform distribution over {0, 1}nz , then H(Z) = nz.

Note that EPI is always non-negative as proven in Proposition 4.
Thus, we define the ECE/EPI of rZ|X by the infimum of CE/supremum of PI of

probability distributions in {Hβ [rZ|X ] | β ∈ (0,∞) }. In other words, given rZ|X , we
can generate an infinite number of conditional probability distribution as Hβ [rZ|X ] which
has the same SR as rZ|X with a different CE/PI. To uniquely determine CE/PI as
ECE/EPI, we take the infimum of CE (or supremum of PI) among them. Thus, it is
likely that ECE/EPI is given by a lower-bound of CE (or an upper-bound of PI) of
probability distributions that can achieve an SR, and a probability distribution with the
same ECE/EPI yields the same SR. This indicates that ECE/EPI is more appropriate for
SR evaluation with regard to conversion Hβ (See Section 4.3 for more detailed discussion).

Recall that PI is designed to represent the amount of information utilized by a con-
ditional probability distribution between secret intermediate variable and side-channel
leakage. Because ECE/EPI is defined as the infimum of CE/supremum of PI for a given
probability distribution rZ|X , we expect that ECE/EPI can be used for the tightest
and most accurate SR evaluation for rZ|X with an SR inequality (3) by de Chérisey et
al. [dCGRP19]. We expect that the following inequality holds.

Conjecture 1 (SR–EPI inequality). Let SRm(r) denotes the success rate with a distin-
guishing rule in Proposition 1 using a conditional probability distribution rZ|X when the
number of attack traces is m. Then, we have

ξ(SRm(r)) ≤ mJ∗r (Z; X), (11)

for the evaluation of SR upper-bound for a given probability distribution rZ|X . To achieve
SRm(r) = 1, Inequality (11) is also represented by

nk
J∗r (Z; X) ≤ m. (12)

As in Inequality (12), SR upper-bound conversely represents a lower-bound of the
number of traces required for an attack success (i.e., to achieve an SR). We demonstrate
the validity, effectiveness, and tightness of the SR evaluation using EPI/ECE through
experimental attacks in Section 5.

As well as PI, EPI is upper-bounded by the mutual information I(Z; X). In addition,
EPI is always non-negative, although the conventional PI can take any negative value.
Proposition 4 describes the range of EPI.
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Proposition 4 (Range of EPI). For any probability distribution rZ|X ∈ R, we have

0 ≤ J∗r (Z; X) ≤ I(Z; X).

The equality J∗r (Z; X) = I(Z; X) holds if and only if rZ|X is equivalent to Hβ [pZ|X ] for
some β, where pZ|X denotes the true probability distribution.

Proof. Firstly, 0 ≤ J∗r (Z; X) = H(Z)− CE∗(rZ|X) holds because supr CE∗(rZ|X) = nz,
which follows from Limit (7): CE(Hβ [rZ|X ])→ nz as β ↘ 0.

Secondly, we prove J∗r (Z; X) ≤ I(Z; X). Recall that CE(r) takes the minimum if
and only if r = p, which is followed by CE(Hβ [rZ|X ]) ≥ CE(pZ|X) = H(Z | X) for
any β, where H(Z | X) = −E log pZ|X(Z | X) is the conditional entropy of Z given X.
Therefore, we have

J∗r (Z; X) = H(Z)− CE∗(rZ|X) ≤ H(Z)−H(Z |X) = I(Z; X).

This inequality also states that the equality holds if and only if CE∗(rZ|X) = H(Z |X) =
CE(pZ|X). If rZ|X = Hβ [pZ|X ] for some β, then CE∗(rZ|X) = infβ CE(Hβ [pZ|X ]) =
CE(pZ|X); otherwise, CE∗(rZ|X) > CE(pZ|X).

Proposition 4 would validate the usage of Inequality (11) for the SR evaluation; that
is, the SR–EPI inequality (11) does not overestimate the attack performance (i.e., SR
upper-bound and lower-bound of the number of traces required for attack success) than an
optimal attack with pZ|X , as a larger Jr(Z; X) implies a higher performance. Moreover,
EPI provides a tighter and more accurate evaluation than the conventional PI (as it always
holds Jr(Z; X) ≤ J∗r (Z; X) due to its definition), whereas PI is likely to underestimate
the attack performance as discussed in Section 3. Major differences of Proposition 4 from
the inequality Jr(Z; X) ≤ I(Z; X) in [MDP20,BHM+19] are the equality condition and
that EPI is guaranteed to be non-negative. EPI is consistent with its intuitive meanings,
as EPI is maximized by all probability distributions that provide optimal distinguisher
with regard to Hβ and is always non-negative.

4.2 Relation between attack success and ECE/EPI
To discuss ECE/EPI in detail, we introduce Lemma 3, stating that L(Hβ [r]), which is an
approximation of CE(Hβ [r]), is a strictly convex function in terms of β.

Lemma 3. Let rZ|X ∈ R be a conditional probability distribution, and let Hβ be a
conversion of probability distribution defined above. Let β be a positive real number.
L(Hβ [rZ|X ]) is almost surely a strictly convex function in β and and CE(Hβ [rZ|X ]) is a
strictly convex function in β.

Proof. To handle NLL and CE simultaneously, we introduce the empirical distribution. Let
FZ,X be a true cumulative probability function, and let F̂ (m)

Z,X be an empirical probability
distribution for m samples. We can denote NLL and CE by

L(Hβ [rZ|X ]) = −E(Z,X)∼F̂ (m)
Z,X

log
rZ|X(Z |X)β∑
z′ rZ|X(z′ |X)β , (13)

CE(Hβ [rZ|X ]) = −E(Z,X)∼FZ,X log
rZ|X(Z |X)β∑
z′ rZ|X(z′ |X)β ,

respectively. Therefore, it is sufficient to consider the following equation:

−E log
rZ|X(Z |X)β∑
z′ rZ|X(z′ |X)β = −E

[
β log rZ|X(Z |X)− log

∑
z′

rZ|X(z′ |X)β
]
. (14)
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Recall that the sum of linear and convex/concave functions is a convex/concave function,
and a concave function is the negative of a convex function and vice versa. In the
expectation in Equation (14), the first term β log rZ|X(Zj | Xj) is linear in terms of β.
We then consider the convexity of the second term − log

∑
z′ rZ|X(z′ |X)β . The second

term can be rewritten as

− log
∑
z′

rZ|X(z′ |X)β = − log
∑
z′

exp(β ln r(z′ |X))

= − log(e)LSE(β ln r(0 |X), . . . , β ln r(|Z| − 1 |X)), (15)

where LSE is a log-sum-exponential (LSE) function. Equation (15) is concave because it
is well-known that a LSE function is convex. We then prove that it is strictly concave
with probability 1. We first investigate the condition where a LSE function becomes
strictly convex. Let y ∈ Rn be an n-dimensional real vector. For a twice-differentiable
function f : Rn → R, let ∇2f be the Hessian matrix of f , respectively. Let v =
(
∑
i e
yi)−1(ey1 , ey2 , . . . , eyn)T . We then have

∇2LSE(y) = diag(v)− vvT .

Note that 1T∇2LSE(y)1 = 0 because 1Tv = 1, where 1 = (1, 1, . . . , 1)T is an n-dimensional
vector whose elements are 1. Since rank(diag(v)) = n and rank(vvT ) = 1, the rank of
the Hessian matrix rank(∇2LSE(y)) is equal to n − 1. In other words, for any vector
u ∈ Rn, uT∇2fu > 0 if u is linearly independent of v. Let f be a function (0,∞) 3 β 7→
LSE(β ln r(0 |X), β ln r(1 |X), . . . , β ln r(|Z| − 1 |X)). For any β1, β2 ∈ (0,∞) and any
λ ∈ (0, 1), we have f(λβ1 + (1 − λ)β2) < λf(β1) + (1 − λ)f(β2) almost surely, because
(ln r(0 |X), ln r(1 |X), . . . , ln r(|Z| − 1 |X))T is linearly independent of 1 almost surely
due to r ∈ R.

Thus, the summation β log rZ|X(Z | X) − log
∑
z′ rZ|X(z′ | X)β is almost surely

a strictly concave function. Because the expectation of a convex/concave function is
a convex/concave function [BBV04, Section 3.2.1], Equation (14) is a strictly convex
function.

A strictly convex function has at most one stationary point and the function takes the
unique minimum at the stationary point. There are two cases for a given r: there exists a
minimum of L(Hβ [rZ|X ]) for β > 0 or not. If there exists minβ L(Hβ [rZ|X ]) for β > 0,
then CE∗(rZ|X) < H(Z) and J∗r (Z; X) > 0. This is because there exists some β such that
L(Hβ [rZ|X ]) < limβ↘0 L(Hβ [rZ|X ]) = nk owing to the convexity. Therefore, in this case,
we can conclude that the attack using such r would succeed for some number of traces m
that satisfies the SR–EPI inequalities (11) and (12).

We then consider another case. If there does not exist minβ L(Hβ [rZ|X ]), then
L(Hβ [rZ|X ]) is monotonically increasing on the range of β ∈ (0,∞) owing to its convexity.
Therefore, according to Proposition 3, infβ L(Hβ [rZ|X ]) = nz because limβ↘0 L(Hβ [rZ|X ])
= nz for any r, which is equivalent to J∗r (Z; X) = 0. Thus, such a conditional probability
distribution exploits as little information about secret intermediate variable from side-
channel leakage as a uniform distribution over Z; and therefore, the attack using this condi-
tional probability distribution would fail. Note that, if J∗r (Z; X) = 0, then ξ(SRm(r)) = 0
according to the SR–EPI inequality (11), which is followed by SRm(r) = 1/2nk for any m.
In contrast, the conventional PI cannot guarantee an attack failure even if Jr(Z; X) = 0 as
discussed in Section 3, whereas EPI would (relatively) correctly evaluate the attack perfor-
mance with a probability distribution. Hence, infβ L(Hβ [rZ|X ]) = minβ L(Hβ [rZ|X ]) < nz
if there exists minβ L(Hβ [rZ|X ]) for β > 0; otherwise, infβ L(Hβ [rZ|X ]) = nz. This nota-
tion, which implies that EPI is always non-negative (as J∗r (Z; X) = H(Z)− CE∗(rZ|X)
where supr CE∗[rZ|X ] = nz), is consistent with the intuitive meanings of EPI, although
the conventional PI defined in Equation (5) can be a negative value. In summary, the
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condition that minβ L(Hβ [rZ|X ]) exists for β > 0 would be sufficient for an attack success
from the viewpoint of EPI, whereas our EPI-based SR evaluation method also indicates
that a conditional probability distribution which does not satisfy this condition would fail
to attack.

4.3 Suitability of ECE/EPI for SR evaluation
Using Lemma 1, we can prove that the order of ranks for each key candidate is invariant
to the conversion Hβ (as in Theorem 2); and thus, SR/GE is invariant to β. EPI/ECE
is a metric to address this uncertainty. If there exist other conversions of conditional
probability distribution which preserve the order of key ranks, EPI/ECE may not be
able to accurately evaluate the SR using Inequalities (11) and (12). Fortunately, we can
prove that there exists no such conversion except for Hβ , which states that ECE/EPI
is appropriate for SR evaluation with regard to probability distribution conversion that
preserves the order of key ranks. For the proof, we first define an equivalence relation,
quotient set, and order to represent key ranks.

Definition 4 (Key rank order). Let a = (a1, a2, . . . , am) and b = (b1, b2, . . . , bn) be an
element of Rm. Define an equivalence relation ∼ as a ∼ b ⇒

∑
j aj =

∑
j bj . Denote a

quotient set of a by [a] ∈ Rm/∼. Define a strict total order / on Rm/∼ as [a] / [b] ⇒∑
j aj <

∑
i bj .

This equivalence relation, quotient set, and order represent key rank, because key ranks
are calculated as NLL, namely, a sum of negative log-probabilities (i.e., real numbers) like∑
j aj . We then introduce Lemma 4.

Lemma 4. Let F : Rm → Rm; (a1, a2, . . . , am) 7→ (f(a1), f(a2), . . . , f(am)) be a function
defined using a function f : R→ R. Function F is assumed to be well-defined as a function
from Rm/∼ to Rm/∼. F is order automorphic on (Rm/∼, /) if and only if f is given by
a linear polynomial function f(a) = βa+ γ, where β is a positive real number and γ is a
real number.

Proof. Let S([a]) =
∑
j aj . Because a / b ⇔

∑
j aj <

∑
j bj , it holds F (a) / F (b) ⇔

S(F (a)) < S(F (b)). Hence, if S ◦F : Rm/∼ → R is an order isomorphism from (Rm/∼, /)
to (R, <), then F is an order automorphism. Therefore, we show that S ◦ F is an order
isomorphism if and only if f(a) = βa+ γ (β > 0).

(⇐) If f(a) = βa+ γ, then S ◦ F ([a]) =
∑
j βaj +mγ and S ◦ F ([b]) =

∑
j βbj +mγ.

Hence, if [a] / [b], then S ◦F ([a])− S ◦F ([b]) = β
(∑

j aj −
∑
j bj

)
< 0, which is followed

by S ◦ F ([a]) < S ◦ F ([b]).
(⇒) Order automorphism on (R, <) is always a strictly monotonically increasing

function. According to the assumption that S ◦ F is order isomorphic, there exists a
strictly monotonically increasing function g such that g(

∑
j aj) = (S ◦ F )([a]) =

∑
j f(aj).

Consider the functional equation g(
∑
j aj) =

∑
j f(aj). Let h be a translation of f such

that h(0) = 0, that is, h(a) = f(a) − f(0). Let e(a) = g(a) − mf(0). We then have
e(
∑
j aj) =

∑
j h(aj). In addition, it holds e = h because e(a1) = e(a1 +

∑m
j=2 0) =

h(a1)+
∑m
j=2 h(0) = h(a1). Here, h (and e) is a conditional solution of Cauchy’s functional

equation h(a1 + a2 + · · ·+ am) = h(a1) + h(a2) + · · ·+ h(am), where the condition is that
e is a monotone function. Therefore, h(a) is given by h(a) = βa for some positive real
number β, and β > 0 because e is monotonically increasing. By letting f(0) = γ, we
conclude f(a) = βa+ γ.

Using Lemma 4, we prove Theorem 2.
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Theorem 2. Let Sa be a trace dataset for the attack. Let rZ|X , r′Z|X ∈ R be conditional
probability distributions. Then, for all k ∈ K and m ∈ N, we have rank(k,m, r) =
rank(k,m, r′) if and only if there exists a positive real number β such that r′Z|X(z | x) =
rZ|X(z | x)β/

∑
z′ rZ|X(z′ | x)β.

Proof. It is obvious from Lemma 1 that the sufficient condition is true. We prove that the
necessary condition is true; that is, if the order of ranks for each key candidate is identical for
r and r′, then r′ = Hβ [r] for some β. Because L(k)(r) is given by a sum of m real numbers
(i.e., negative log-output of conditional probability distribution), the ranks correspond to
the strict total order / defined in Definition 4. According to the assumption that the order
of ranks (namely, NLLs for key candidates) is preserved, Lemma 4 states that the conversion
applicable to − log r(z(k)

j | xj) is only f(− log r(z(k)
j | xj)) = −β log r(z(k)

j | xj) + γ for
any j. Therefore, it holds

− log r′(z | x) = −β log r(z | x) + γ,

which is followed by
r′(z | x) = γ′r(z | x)β ,

where γ′ = 2−γ . Additionally, because r′ is a probability distribution,
∑
z′ r
′(z′ | x) = 1;

hence,
∑
z′ r
′(z′ | x) = γ′

∑
z′ r(z′ | x)β = 1, which is followed by γ′ = 1/

∑
z′ r(z′ | x)β .

Thus, we conclude r′(z | x) = r(z | x)β/
∑
z′ r(z′ | x)β .

Theorem 2 states that the proposed metrics are the most appropriate for SR and GE
evaluations among any conversions of probability distribution that preserve the order of
key ranks. However, if there is a conversion such that SR is preserved but the order of key
ranks are not preserved, ECE and EPI are not guaranteed to be unique to an SR and be
appropriate for SR evaluation. If there does not exist such a conversion, then ECE and
EPI are truly unique in terms of SR evaluation. The analysis on the existence of such a
conversion is an important future work.

4.4 Computation of ECE/EPI in practice
In this subsection, we describe how to evaluate ECE/EPI of a probability distribution
using a given dataset. Recall that CE cannot be calculated directly in practice, and
NLL is used for its approximation. This indicates that, to calculate infβ CE(Hβ [rZ|X ]),
we need to approximate it as infβ L(Hβ [rZ|X ]). Let β̂m be the optimal β value derived
by an empirical calculation of infβ L(Hβ [rZ|X ]) using m traces (namely, β̂m satisfies
L(Hβ̂m

[rZ|X ]) = infβ L(Hβ [rZ|X ])).
Let β0 be a parameter that satisfies CE(Hβ0 [rZ|X ]) = infβ CE(Hβ [rZ|X ]). For a better
approximation of ECE through an empirical derivation of L(Hβ̂m

[rZ|X ]), β̂m should
converge to with β0 in a sense. For this purpose, we prove Theorem 3, which states
that empirically calculated β̂m and L(Hβ̂m

[rZ|X ]) are “good” approximations of β0 and
CE(Hβ0 [rZ|X ]) = CE∗(rZ|X) in terms of strong consistency, respectively.

Theorem 3. Let rZ|X ∈ R be a conditional distribution. Assume that −E
∑
z′ ln r(z′|X) <

∞. Let B = [0,Mβ ] be the set of β, where Mβ is a positive real number6. Let β0 be a
parameter that satisfies CE(Hβ0 [rZ|X ]) = infβ∈B CE(Hβ [rZ|X ]). Suppose that β0 ∈ B. Let
m be the number of traces that used for the empirical calculation of NLL L(Hβ [rZ|X ]), and
let β̂m ∈ B be a random variable of a parameter such that L(Hβ̂m

[r]) = infβ∈B L(Hβ [r]).
Then, we have β̂m

a.s.−−→ β0 as m→∞, where a.s.−−→ denotes the almost sure convergence.
6To preserve SR and GE, β must be in (0,∞). However, in this theorem, we assume the range of β

contain 0 because the infimum of β can be 0. By changing the range of β, the infimum of β is equivalent
to the minimum of β.
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Proof. Theorem 3 is proven on the basis of [Fer96, Theorem 17]. See Appendix B.

Theorem 3 means that if β is restricted to the closed set [0,Mβ ] and −E
∑
z′ ln r(z′|X)

is bounded, the maximum likelihood estimator7 β̂m converges almost surely to the true
value β0. According to Theorem 3, we can approximately evaluate the ECE for a given
probability distribution rZ|X (i.e., infβ CE(Hβ [rZ|X ])) and the corresponding EPI using
an empirical evaluation of minβ L(Hβ [rZ|X ]). In other words, Theorem 3 validates the
usage of L(Hβ̂m

[rZ|X ]) as an approximation of CE(Hβ0 [rZ|X ]) for a large number of
traces.

Finally, we describe a concrete method for calculating β̂m and L(Hβ̂m
[rZ|X ]) for given

rZ|X and dataset. Recall that β̂m is a solution of ∂
∂βL(Hβ [rZ|X ]) = 0 for β > 0 if it exists,

as discussed in the proof of Theorem 3. Since L(Hβ [rZ|X ]) is convex as proved in Lemma 3,
we can approximately derive β̂m such that L(Hβ̂m

[rZ|X ]) = infβ L(Hβ [rZ|X ]) using the
Newton–Raphson method. Owing to the convexity of L(Hβ [rZ|X ]), the solution of the
Newton–Raphson method always converges to β̂m that satisfies ∂

∂βL(Hβ [rZ|X ])
∣∣∣
β=β̂m

= 0
if there exists minβ L(Hβ [rZ|X ]) for β > 0; otherwise, let infβ L(Hβ [rZ|X ]) = nz. Recall
that the validation loss L(Hβ [rZ|X ]) (at base 2) is given by

L(Hβ [rZ|X ]) = − 1
m

m∑
j=1

(
β log rZ|X(Zj |Xj)− log

∑
z′

rZ|X(z′ |Xj)β
)
. (16)

For the use of Newton–Raphson method, the first and second partial derivatives of
L(Hβ [rZ|X ]) in terms of β are given by8

∂

∂β
L(Hβ [rZ|X ]) = − 1

m

m∑
j=1

(
log rZ|X(Zj |Xj)−

ψ
(1)
r,Xi,β

ln(2)ψ(0)
r,Xi,β

)
,

∂2

∂β2L(Hβ [rZ|X ]) = − 1
m

m∑
j=1

(
ψ

(1)
r,Xi,β

)2
− ψ(0)

r,Xi,β
ψ

(2)
r,Xi,β

ln(2)
(
ψ

(0)
r,Xi,β

)2 ,

respectively, where ψ(s)
r,Xi,β

denotes the s-th partial derivative9 of
∑
z′ r(z′ |Xj)β in terms

of β; that is,

ψ
(s)
r,Xi,β

= ∂s

∂βs

∑
z′

rZ|X(z′ |Xj)β =
∑
z′

rZ|X(z′ |Xj)β(ln rZ|X(z′ |Xj))s.

Note again that the condition for the existence of minβ L(Hβ [rZ|X ]) is that a solution
of ∂

∂βL(Hβ [rZ|X ]) = 0 exists for β > 0. If no solution exists for β > 0, then J∗r (Z; X) = 0.

5 Experimental validation using DL-SCA
5.1 Overview
In this section, we conduct two experiments of DL-SCAs to validate the effectiveness of
EPI. In the first experiment, we investigate the relation between SR and EPI during
training and show that EPI can be used to measure the generalization of the training

7Note that β̂m is a maximum likelihood estimator due to its definition.
8If we calculate the NLL with the natural logarithm, the coefficient ln(2) is unnecessary and should be

replaced with 1.
9We consider the zeroth derivative as the function itself.
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Figure 1: Our NN architecture used in experiment.

model in terms of SCAs. The second experiment demonstrates that EPI is also useful to
compare the performances of several models. Our metrics enable us to select a model with
good performance without the intensive calculation of SR.

5.2 Performance evaluation during training
5.2.1 Experimental setup

We demonstrate the validity of the proposed metrics through experimental attacks on
masked AES software and hardware implementations. For the experiment, we employ a
DL-SCA, considered as one of the best attacks with a distinguishing rule that directly
utilizes a conditional probability distribution, which is the main focus of this study. The
experiment also demonstrates that the proposed metrics can be used to measure the
generalization of NN model in terms of SR during the attack phase.

As a masked software implementation, we employed the ASCAD dataset, which is one
of the most common datasets to evaluate DL-SCA [BPS+20]. For the attack on ASCAD
dataset, we employed an NN model presented by Zaid et al. [ZBHV19], which is a publicly
available NN model developed for DL-SCA. For the training, we used a categorical CE as
a loss function, used Adam as an optimizer, and set the learning rate to 0.001.

As a masked hardware implementation, we used an open-source masked AES hardware
based on the threshold implementation (TI) [git21], which was presented in [UHA17].
We synthesized the masked AES hardware as it is (i.e., without the hierarchy broken),
implemented it on a Xilinx Kintex-7 FPGA on SAKURA-X board, and acquired its side-
channel traces through an on-board co-axial connector. We used a Keysight DSOX6004A
oscilloscope and set the sampling rate as 455 MSa/s. We used one million traces for the
NN training with random secret keys and plaintexts. The target hardware is byte-serial
implementation, which indicates that we should guess two consecutive key bytes to employ
XOR based selection function in a practical attack. However, for the simplicity, we consider
one byte known and attack on the other one byte in this experiment. Hence, the partial key
length in the attack is nk = 8 for both the AES software and hardware implementations
in our experiment.

We attempted many NN architectures/hyperparameters to apply DL-SCA to the above
TI-based AES hardware, and employed the most successful one for the experiment. In
fact, we found that it was difficult to achieve a successful key recovery from the TI-based
AES hardware using common NN models in DL-SCA, such as ASCAD and Zaid et al.’s
models [BPS+20,ZBHV19]. Figure 1 illustrates the NN architecture finally used in our
experiment. In the figure, r× c indicates the size of each feature map or kernel, where r is
the length of each filter, and c is the number of channels. Table 1 summarizes our NN
hyperparameters. We used CUDA 11.4 cuDNN 8.2.4 Tensorflow 2.6.0 for the training. We
used the NLL as a loss function, and set the learning rate, batch size, and the number of
epochs as 0.0001, 512, and 1,500, respectively.
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Table 1: Hyperparameters of our model

Name Filter shape Activation function Batch normalization Pooling layer
Conv1 1× 1× 4 SELU No -
Conv2 4× 1× 4 SELU No -
Conv3 4× 3× 4 tanh No -
Conv4 4× 3× 4 SELU No -
Conv5 4× 3× 4 SELU Yes -
Conv6 4× 3× 4 SELU Yes Avg pool (2)
Conv7 4× 3× 8 SELU Yes Avg pool (2)
Conv8 8× 3× 8 SELU Yes Avg pool (2)
Conv9 8× 3× 8 SELU Yes Avg pool (2)
FC1 248× 20 SELU - -
FC2 20× 20 SELU - -
FC3 20× 256 Softmax - -

5.2.2 Experimental results

Let qθ denote the probability distribution of the NN output with a parameter θ. Figure 2
and Figure 3 report the experimental results, where the horizontal axis is the number of
epochs in the training. In Figure 2 and Figure 3(a), the red curve denotes raw NLL whereas
the blue curve denotes β-optimized NLL loss (i.e., infβ L(Hβ [qθ]) in Equation (13) or in
its summation form (16)), which is an approximation of ECE loss. Figure 3(a’) magnifies
the blue curve of Figure 3(a) in its range. Figure 2(b) and Figure 3(b) denote the number
of traces required for achieving SRm = 0.9, where the red curve is the empirical result
and the blue curve is an estimation value using the proposed metrics with the SR–EPI
inequality (11). Note here that the red curve in Figure 2(b) is missing in some epochs where
the NN cannot achieve SR10,000 = 0.9 because the ASCAD dataset contains only 10,000 test
traces. To obtain the blue curves, for a given NN model, we computed infβ L(Hβ [rZ|X ])
with the test traces using the Newton–Raphson method described in Section 4.4 for an
approximation of its ECE and EPI. The terminal condition of the Newton–Raphson
method was set such that the difference of the values before and after an iteration is less
than 0.001. For ASCAD dataset, it takes about 0.0378 and 14.1 seconds to calculate
EPI and SR per one epoch, respectively. For masked AES hardware implementation, it
takes about 0.531 and 145 seconds to calculate EPI and SR per one epoch, respectively.
Figure 2 and Figure 3 denote the estimated β using the Newton–Raphson method. As we
require to evaluate SR for many epochs, the usage of EPI yields a significant advantage in
computational cost over the conventional empirical SR evaluation.

We confirm that the red and blue curves in Figure 2(b) and Figure 3(b) are similar
in shape, which indicates that the proposed method can appropriately evaluate the
lower-bound of the number of traces required for attack success (or SR upper-bound
conversely) for a given probability distribution qθ in an analytical manner using the SR–
EPI inequality (11). In particular, we also confirm that the model at the number of epochs
with a minimum value of β-optimized NLL loss (i.e., 90 to 100 epochs for Figure 2 and
around 720 epochs for Figure 3) achieves the highest attack performance (i.e., achieves
the attack success with the smallest number of traces). This implies that the β-optimized
NLL loss, which is the approximation of the ECE loss, can also be used to measure the
generalization of the NN model in terms of SR maximization in this experiment, and to
determine the timing of early stopping.

Furthermore, we confirm that the blue curve in Figure 2(a) and Figure 3(a) (and
Figure 3(a’)) does not exceed nk = 8, as proven in Proposition 4. The attack did not
succeed for epochs in the experiment if the β-optimized NLL was nk = 8, which was
consistent with the discussion in Section 4. In contrast, in Figure 2(a), the raw NLL is
always greater than the β-optimized NLL, which is likely to result in an underestimation
of attack performance. Note that PI-based SR estimation is not guaranteed to remain a
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Figure 2: DL-SCA result on ASCAD dataset (i.e., masked AES software implementation).
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Figure 3: DL-SCA result on masked AES hardware implementation.

lower bound according to Proposition 3, although the EPI-based SR estimation provides a
consistent lower bound of the true SR in accordance with Conjecture 1. The situation is
more critical for Figure 3. The raw NLL was greater than nk = 8 for the most parts of
Figure 3(a); therefore, the corresponding conventional PI became smaller than zero, which
implies that the SR–PI inequality (6) cannot be applicable or significantly underestimates
the attack performance, although the attack was actually successful for most parts in the
figures in our experiment. Thus, we can confirm the validity, effectiveness, and usefulness
of the proposed method.
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Figure 4: PI, EPI, and empirical SR evaluation results of four models.

5.3 Model comparison
In this subsection, we experimentally calculate SR, PI, and EPI for some models to confirm
that our method can also be used as a performance metric for model selection through
an experimental attack on the ASCAD dataset without and with desynchronization. We
employed four pre-trained models [BPS+20,ZBHV19,WVdHG+20], which are publicly
available, to compute and compare their SR, PI, and EPI. The literature [BPS+20],
which proposes the ASCAD dataset, uses MLP based-NNs and CNN based-ones to attack
the ASCAD dataset, and its authors release the parameters of the best ones in their
GitHub repository10. For the experiment, we used the best MLP and CNN models
from their repository. It is known in [WAGP20] that the performances of Zaid et al.’s
model and Wouters et al.’s model depend significantly on the standardization of the input
traces. Therefore, to enhance their performance, we employ “feature standardization”
and “horizontal scaling between −1 to 1” for the ASCAD dataset with and without
desynchronization, respectively. These model parameters are obtained from the GitHub
repository released by Wouters et al.11 Other experimental conditions are the same as
that in Section 5.2.1.

Figure 4 reports the experimental results. In the figure, “ASCAD MLP” and “ASCAD
CNN” correspond to the models proposed in [BPS+20]. Also, “Nmax” means the amount
of desynchronization of the ASCAD dataset. The bars of the SR denotes the number of
traces required for successful attacks with 90% probability. The bars of PI and EPI denote
the estimated minimum number required for attack success with a 90% probability. The
absence of the bar means that the number of required traces for successful attacks would
be larger than 10,000.

First, when comparing the results of SR and PI, the number of required traces estimated
by PI becomes larger than 10,000, even when attacks succeed with high probability. This
would be because of the redundancy of CE/PI in terms of SR. Meanwhile, the figure shows
that the proposed method never overestimates the number of required traces. In addition,
the number of traces estimated by EPI is approximately proportional to that estimated by
SR. Thus, we could compare the attack performances of models by the EPI-based method
without the calculation of SR.

6 Conclusion
In this study, we revisited the perceived information (PI), and presented new metrics
to evaluate the SCA performance using a conditional probability distribution. We first

10https://github.com/ANSSI-FR/ASCAD
11https://github.com/KULeuven-COSIC/TCHES20V3_CNN_SCA

https://github.com/ANSSI-FR/ASCAD
https://github.com/KULeuven-COSIC/TCHES20V3_CNN_SCA
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showed that the conventional definitions of PI and cross-entropy (CE) had an uncertainty
in terms of SR evaluation, and therefore, were non-calibrated and insufficient as metrics
for evaluating the SCA performance (i.e., SR). We then presented new metrics, named
effective CE/PI (ECE/EPC), to remove the uncertainty. Using ECE/EPI, we can perform
more accurate measurements of the SR upper-bound for a given probability distribution
in an analytical manner using a PI-SR inequality. ECE/EPI is easily calculated from
a given probability distribution for SCA and a dataset, which can be adopted in the
context of DL-SCA. We experimentally validated the effectiveness of the proposed method
through experimental DL-SCAs on masked AES software and hardware implementations.
The experimental results validated our statement on the proposed method, and revealed
that the proposed metrics could be used to measure the generalization of NN model in
terms of SR maximization. In some ways, the proposed metrics could provide a solution
on the open problems on DL-SCA: the relationship between a DL evaluation metric
(i.e., loss) and SCA evaluation metrics (i.e., SR/GE) and the difficulty in measuring the
generalization and determining the timing of early stopping through the loss value during
training. In the future, we will conduct further validation of the proposed metrics using
other datasets/implementations. It is also important to prove the unexistance/existance
of probability distribution conversion that preserves SR but does not preserves the order
of key ranks, to reveal whether ECE and EPI are truly unique to an SR and the most
appropriate for the SR evaluation.

The side-channel trace dataset for our experiment on the masked AES hardware is
available at https://github.com/ECSIS-lab/perceived_information_revisited.
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Appendix A: Formal proof of Proposition 3
To prove Proposition 3, we introduce the following two lemmas.

Lemma 5 (Extension of Lebesgue’s dominated convergence theorem). Let Λ be a subset
of R ∪ {−∞,∞}, and let b ∈ Λ be a point of the closure of Λ denoted as Λ. Let {Xλ}λ∈Λ
be a family of random variable. Suppose that limλ→bXλ = X holds almost surely where X
denotes a random variable, and there exists an integrable random variable Y such that, for
all λ ∈ Λ, |Xλ| ≤ Y almost surely. We then have EXλ → EX as λ→ b.

Proof. Let {λi}∞i=1 ⊂ Λ be any sequence converging to b. We have limi→∞Xλi = X almost
surely. because limλ→bXλ = X almost surely. Therefore, from Lebesgue’s dominated
convergence theorem, we have limi→∞ EXλi = E limi→∞Xλi = EX. Since this holds for
any sequence {λi}, we have EXλ → EX.

Lemma 6 (Extension of Fatou’s lemma). Let Λ be a subset of R ∪ {−∞,∞}, and let
b ∈ Λ be a point of the closure of Λ denoted as Λ. Let {Xλ}λ∈Λ be a family of random
variable, where Xλ > 0 holds almost surely for all λ ∈ Λ. If lim infλ→bXλ is measurable,
we have lim infλ→b EXλ ≥ E lim infλ→bXλ.

Proof. Let {λi}∞i=1 ⊂ Λ be a sequence converging to b such that lim infi→∞ EXλi =
lim infλ→b EXλ. Note that we have lim infλ→bXλ ≤ lim infi→∞Xλi . Hence, from Fatou’s
lemma, we have

E lim inf
λ→b

Xλ ≤ E lim inf
i→∞

Xλi ≤ lim inf
i→∞

EXλi = lim inf
λ→b

EXλ.

We then prove Proposition 3.
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Proof. We prove only Limits (7) and (9) because Limits (8) and (10) is trivially proved
using them. Let (Ω,F ,Pr) be a probability space. For a simplified notation, we denote
Hβ [rZ|X ] by rβ in this proof.

We first prove Limit (7), which is represented as

lim
β↘0

CE(rβ) = lim
β↘0

E− log rβ(Z |X).

To use Lemma 2, we examine whether the limit limβ↘0 and expectation E can be in-
terchanged. Lemma 5 states that we can interchange them if there exists an integrable
random variable Y such that supβ − log rβ(Z | X) ≤ Y holds almost surely. we first
consider the range of β. Limit (7) can be rewritten as ∀ε > 0,∃δε > 0,∀β > 0; (0 < β <
δε ⇒ |CE(rβ)− nz| < ε). If there exists such δε, this holds even when we replace δε with
min({1, δε}). Therefore, without loss of generality, we assume that β ∈ (0, 1). We then
consider the supremum of − log rβ(Z |X). From the definition of rβ , we have

− log rβ(Z |X) = −β log r(Z |X) + log
∑
z′

r(z′ |X)β .

Here,
∑
z′ r(z′ | X)β is a monotonically decreasing function of β because it is a sum of

decreasing functions r(Z |X)β (assuming that r(Z |X) ∈ (0, 1)). Thus,
∑
z′ r(z′ |X)β <∑

z′ r(z′ |X)0 = 2nz , which is followed by log
∑
z′ r(z′ |X)β < nz. Therefore, it holds

− log rβ(Z |X) < −β log r(Z |X) + nz ≤ − log r(Z |X) + nz.

Lemma 5 holds if we consider Y = − log r(Z |X) + nz, where − log r(Z |X) + nz is an
integrable random variable. Lemma 5, Lemma 2, and the continuous mapping theorem
yield that

lim
β↘0

CE(rβ) = −E lim
β↘0

log rβ(Z |X) = nz,

as required.
We then prove Limit (9). In this proof, we consider log 0 as limx↘0 log x = −∞ because

we always consider the logarithm of positive real numbers. To use Lemma 6, we firstly
show that

lim sup
β→∞

log rβ(Z |X) = lim
β→∞

log rβ(Z |X) = log1{Z=arg max
z′

r(z′|X)}, (17)

holds almost surely. From Lemma 2, there exists a null set N such that rβ(z | x) →
1{z=arg maxz′rZ|X(z′|x)} holds as β → ∞, where (z,x) ∈ (Z,X)(Ω \ N ). For arbitrary
ω ∈ Ω \ N , let x = X(ω) and z = Z(ω). We divide the situation into two cases: (a)
z = arg maxz′r(z′ | x) and (b) z 6= arg maxz′r(z′ | x). (a) If z = arg maxz′r(z′ | x),
then limβ→∞ rβ(z | x) = 1 holds. In this case, we have limβ→∞ log rβ(z | x) =
log limβ→∞ rβ(z | x) = 0 because the log function is continuous at a point of 1. (b)
If z 6= arg maxz′r(z′ | x), then limβ→∞ rβ(z | x) = 0 holds. Note that rβ(z | x) approaches
0 from the right side because rβ(z | x) > 0. Therefore, we have limβ→∞ log rβ(z | x) =
log limβ→∞ rβ(z | x) = log 0 = −∞. This discussion proves Equation (17). From Equa-
tion (17), we can easily confirm that lim infβ→∞− log rβ(Z|X) = − lim supβ→∞ log rβ(Z|X)
= log1{Z=arg max

z′
r(z′|X)} is a measurable function. Thus, Lemma 6 yields that

lim
β→∞

CE(rβ) = lim
β→∞

E− log rβ(Z |X) ≥ −E lim sup
β→∞

log rβ(Z |X). (18)

From Inequality (18) and Equation (17), limβ→∞ CE(rβ) can be bounded as follows:

lim
β→∞

CE(rβ) ≥ −E log1{Z=arg max
z′

r(z′|X)}.
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According to the assumption that Pr(Z 6= arg max
z′

r(z′ |X)) > 0, we have

Pr(Z 6= arg max
z′

r(z′ |X)) = Pr(1{Z=arg max
z′

r(z′|X)} = 0)

= Pr(− log1{Z=arg max
z′

r(z′|X)} =∞) > 0.

We show that limβ→∞ CE(rβ) is unbounded (i.e., limβ→∞ CE(rβ) = ∞) by reductio
ad absurdum. Suppose that it is bounded (i.e., limβ→∞ CE(rβ) < ∞). Let an event

E =
{
− log1{Z=arg max

z′
r(z′|X)} =∞

}
. Then,

−E log1{Z=arg max
z′

r(z′|X)} =
∫

Ω
− log1{Z(ω)=arg max

z′
r(z′|X(ω))} Pr(dω)

=
∫

Ω\E
− log1{Z(ω)=arg max

z′
r(z′|X(ω))} Pr(dω)

+
∫
E

− log1{Z(ω)=arg max
z′

r(z′|X(ω))} Pr(dω)

≥
∫
E

− log1{Z(ω)=arg max
z′

r(z′|X(ω))} Pr(dω). (19)

In Inequality (19), if the assumption of reductio ad absurdum is true (i.e., limβ→∞ CE(rβ) <
∞), it should hold

∫
E
− log1{Z(ω)=arg maxz′r(z′|X(ω))} Pr(dω) < ∞. For arbitrary ω ∈ E,

we should have n < − log1{Z(ω)=arg maxz′r(z′|X(ω))} for every n ∈ N because it holds
− log1{Z(ω)=arg maxz′r(z′|X(ω))} =∞. Therefore, it should hold

nPr(E) =
∫
E

nPr(dω) <
∫
E

− log1{Z(ω)=arg max
z′

r(z′|X(ω))} Pr(dω) <∞,

for arbitrary n ∈ N. This should be followed by Pr(E) = 0, which contradicts the
assumption that Pr(E) > 0. Thus, we conclude limβ→∞CE(rβ) =∞.

Appendix B: Formal proof of Theorem 3
Before the proof, we introduce Lemma 7.

Lemma 7 ([Fer96, Theorem 16(b)]). Let X1, X2, . . . be a sequence of i.i.d random variables
with common distribution function. Let Θ is the set of parameters, and let U(x, θ) be a
measurable function in x for all θ ∈ Θ. Assume that EU(X, θ) exists, and EU(X, θ) is
finite for all θ ∈ Θ. Suppose that

1. Θ is compact,

2. U(x, θ) is upper semi-continuous in θ for all x,

3. there exists an integrable function K(X) such that U(x, θ) < K(x) holds for all x
and θ,

4. for all θ and sufficiently small ρ > 0, sup|θ′−θ|<ρ U(x, θ′) is measurable in x.

Then, we have

Pr
(

lim sup
m→∞

sup
θ∈Θ

1
m

m∑
i=1

U(Xi, θ) ≤ sup
θ∈Θ

EU(X, θ)
)

= 1.
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Using Lemma 7, we prove Theorem 3.

Proof. This proof is on the basis of [Fer96, Theorem 17]. Let U(x, z, β) = ln rβ(z |
x)− ln rβ0(z | x), where rβ(z | x) = Hβ(r). Note that, for all m,

1
m

m∑
i=1

U(Xi, Zi, β̂m) = sup
β∈B

1
m

m∑
i=1

U(X, Z, β).

To use Lemma 7, we confirm the conditions for the lemma. The first and second conditions
are obviously satisfied. Function U(x, z, β) is continuous in β for all x and z, which implies
that the forth condition is also satisfied because we have

sup
|β′−β|<ρ

U(x, z, β′) = sup
β′∈D

U(x, z, β′),

for any countable set D which is dense in {β′ | |β′ − β| < ρ }. We then examine the third
condition. Fix β ∈ B. For any x and z, we have

U(x, z, β) = ln rβ(z | x)− ln rβ0(z | x)

= (β − β0) ln r(z | x)− ln
∑
z′

rβ(z′ | x) + ln
∑
z′

rβ0(z′ | x)

= (β − β0) ln r(z | x) + ln
∑
z′ r

β0(z′ | x)∑
z′ r

β(z′ | x) .

Using the log-sum inequality [CT06, Theorem 2.7.1], we have

U(x, z, β) ≤ (β − β0) ln r(z | x) +
∑
z′

(
rβ0(z′ | x)∑
z′ r

β0(z′ | x)

)
ln r

β0(z′ | x)
rβ(z′ | x)

≤ −Mβ ln r(z | x) + (β0 − β)
∑
z′

(
rβ0(z′ | x)∑
z′ r

β0(z′ | x)

)
ln r(z′ | x)

< −Mβ ln r(z | x)−Mβ

∑
z′

ln r(z′ | x).

Therefore, K(x, z) = −Mβ(ln r(z | x) +
∑
z′ ln r(z′ | x)) satisfies the third condition

because, for all x and z, it holds U(x, z, β) ≤ K(x, z) and EK(X, Z) = −Mβ(E ln r(Z |
X) + E

∑
z′ ln r(z′ | X)) < ∞. Thus, the function U(x, z, β) satisfies the conditions of

Lemma 7.
Let V = {β | |β − β0| ≥ ρ }. Because V is compact, Lemma 7 yeilds that

Pr
(

lim sup
m→∞

sup
β∈V

1
m

m∑
i=1

U(Xi, Zi, β) ≤ sup
β∈V

EU(X, Z, β)
)

= 1. (20)

Note that, for all β ∈ V , it holds EU(X, Z, β) < 0 because EU(X, Z, β) = − ln(2)(CE(rβ)−
CE(rβ0)) and CE(rβ) is strictly convex in β, which takes the minimum value only at β0.
From Equation (20), with probability 1, there exists N ∈ N such that, for all m > N ,

sup
β∈V

1
m

m∑
i=1

U(Xi, Zi, β) ≤ sup
β∈V

EU(X,Z, β) < 0.

However, we also have

1
m

m∑
i=1

U(Xi, Zi, β̂m) = sup
β∈B

1
m

m∑
i=1

U(Xi, Zi, β) ≥ 0.

Thus, for all m > N , β̂m /∈ V and |β̂m − β0| < ρ hold almost surely. Since ρ is arbitrary,
we conclude that β̂m

a.s.−−→ β0 as m→∞.
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