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Abstract. The Toom-Cook method is a well-known strategy for building algorithms
to multiply polynomials efficiently. Along with NTT-based polynomial multiplication,
Toom-Cook-based or Karatsuba-based polynomial multiplication algorithms still
have regained attention since the start of the NIST’s post-quantum standardization
procedure. Compared to the comprehensive analysis done for NTT, the leakage
characteristics of Toom-Cook have not been discussed. We analyze the vulnerabilities
of Toom-Cook in the reference implementation of Saber, a third round finalist of
NIST’s post-quantum standardization process. In this work, we present the first
single-trace attack based on the soft-analytical side-channel attack (SASCA) targeting
the Toom-Cook. The deep learning-based power analysis is combined with SASCA to
decrease the number of templates since there are a large number of similar operations
in the Toom-Cook. Moreover, we describe the optimized factor graph and improved
belief propagation to make the attack more practical. The feasibility of the attack is
verified by evaluation experiments. We also discuss the possible countermeasures to
prevent the attack.
Keywords: post-quantum cryptography · Saber KEM · Toom-Cook · side-channel
attack · deep learning

1 Introduction
The impending threat of Shor’s algorithm [Sho99] to conventional public-key cryptographic
algorithms has prompted interest in alternate algorithms that are resistant to quantum
computers. The National Institute of Standards and Technology (NIST) started the
Post-Quantum Cryptography Standardization Project in 2016 [NIS]. The process for
post-quantum cryptography is currently in the third round. The remaining candidates
are the seven finalists and the eight alternates for Public Key Encryption (PKE), Key-
Encapsulation Mechanism (KEM) and Digital Signature (DS) schemes [AASA+20]. Among
the finalists for KEMs, 3 out of 4 finalists are latticed-based.

The lattice-based schemes are split into Learning With Errors (LWE)-based schemes
and NTRU-based schemes. Their security relies on the ideal lattices and learning with
errors problems. However, their implementations have shown vulnerability against side-
channel attacks (SCAs) in the context of PKE, KEM or DS [ATT+18,EFGT17,OSPG18].
Side-channel attacks aim to establish the relationship between the detectable leakages
from physical devices and sensitive information. NIST has clarified the resistance against
SCAs should be considered as an essential criterion for the Post-Quantum Cryptography
Standardization Project [AASA+20].

There has been a lot of work focus on the risks of lattice-based cryptographic systems to
side-channel attacks. Several works exploit vulnerabilities of different operations, including
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but not limited to polynomial multiplication [PPM17,HCY19,XPSR+21,AKJ+18], message
encoding/decoding [ACLZ20,RBRC22,NDGJ21], Gaussian sampler [Pes16,KH18], or the
Fujisaki-Okamoto (FO) transform [RSRCB20,BDH+21]. In particular, the polynomial
multiplication has attracted more attention for the vulnerability of long-term secret key.
Huang et al. performed various power attacks on NTRU Prime [HCY19]. The horizontal
DPA was proposed to reduce the traces required for the attack on implementations of
NewHope and Frodo on FPGA [ATT+18]. A more generic long-term key recovery attack
was proposed by Ravi et al. on several lattice-based PKE and KEMs [RSRCB20]. However,
it needed a large number of traces for full key recovery. Xu et al. constructed special
ciphertexts to classify secret coefficients in Kyber with a lower number of traces [XPSR+21].

An extreme case of these attacks is the single-trace attack, where the adversary
recovers the sensitive information with a single measurement. The single-trace attack
was viewed as the worst-case side-channel security evaluation, and many publications
researched the single-trace vulnerabilities of KEMs. In CHES 2017, a single-trace attack
was performed on the NTT-based polynomial multiplication [PPM17], and it was improved
in the later works [PP19,HHP+21]. Other works on the single-trace side-channel attack
have targeted the sampling [EFGT17,KAA21,AKP+], rejection procedure [FDK20], and
message encoding/decoding [SKL+20,ACLZ20].

Among the three third round finalists of KEMs, NTT-based polynomial multipli-
cation is used in the Kyber scheme [BDK+18], while NTRU-Prime [BCLVV16] and
Saber [DKSRV18] use Toom-Cook-based [Too63, CA69] and Karatusba-based [KO62]
polynomial multiplications. NTT-based polynomial multiplication is ubiquitously used in
schemes for multiplications are low time complexity. While the inherent design constraints of
NTT-based polynomial multiplication, Toom-Cook-based and Karatsuba-based polynomial
multiplication with well chosen parameters and optimal technologies fare well against their
NTT-based counterparts [BMKV20]. Recent works showed that the schemes could benefit
from transforming into a larger prime modulus for NTRU-Prime/Saber [CHK+21,ACC+21].
However, Toom-Cook is still an alternative to NTT in many post-quantum cryptographic
algorithms, and its security against side-channel attacks has never been analyzed.

The family of Toom-Cook methods (Karatsuba can be shown to be similar to a Toom-
Cook-2-way algorithm) is a well-known strategy for building algorithms to multiply dense
univariate polynomials efficiently. It has been applied to optimize the implementations of
RSA, ElGamal, Diffie-Hellman [SV93], high-speed ECC Processors [DLG19], improving
the efficiency of McEliece cryptosystem [RU01], big number arithmetic [GT15]. We aim to
discuss the security of Toom-Cook in Saber in the two aspects. Firstly, the specification and
reference implementation of Saber still uses the Toom-Cook in round 3. The research on
achieving more efficient polynomial multiplication has been continuous and uninterrupted
(both on NTT and Toom-Cook). For example, Mera et al. proposed an optimized Toom-
Cook implementation in Saber [BMKV20] (later surpassed by [CHK+21,ACC+21]). On
the other hand, the NTT-based implementation was attacked in a known way, while the
resistance of Toom-Cook is still unknown. We exhibit that this approach is also vulnerable
to single-trace attacks.

The existing works mainly perform divide-and-conquer attacks on the Karatsuba and
schoolbook. One original contribution is that we analyze the characteristics of Toom-Cook
and MLWE and exhibit the challenge for divide-and-conquer attacks on the Toom-Cook
in Saber. Another existing work on attacking NTT used the SASCA [PPM17], which was
also utilized to attack Keccak [KPP20]. We show how to construct the factor graphs in
the Toom-Cook, more importantly, optimize the factor graphs and algorithms to make the
SASCA more practical. In addition, the deep learning-based power analysis into SASCA
to improve the attack efficiency. To the best of our knowledge, we are the first to analyze
the vulnerability of Toom-Cook against side-channel attacks.

The remainder of the paper is organized as follows. Section 2 describes the background
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of Toom-Cook, Karatusba and Saber. Section 3 introduces the vulnerabilities analysis of
Toom-Cook multiplication in Saber. We then describe our attack on Toom-Cook in detail
and provide various optimizations to decrease the complexity of the attack in Section
4. The evaluations and experiments are provided in Section 5. Furthermore, Section 6
provides the discussion. Section 7 concludes the paper.

2 Preliminaries

2.1 Saber key-encapsulation mechanism

Saber is a third round finalist post-quantum key-encapsulation mechanism candidate
[VBDK+21]. The security is based on the hardness of Module Learning with Rounding
problem (MLWR).

Let Zq be the ring of integers modulo a positive integer q and quotient polynomial
ring Rq(x) is defined as Zq(x)/(xn + 1). The symbol l determines the dimension of the
underlying lattice problem. The positive integers q, p, and T are the moduli involved
in the scheme and are chosen to be powers of 2, in particular q = 2εq , p = 2εp and
T = 2εT with εq > εp > εT . Setting parameter p and T to higher values results in lower
security, but lower failure probability. Its implementation resists the timing side-channel
attacks [GBHLY16,KRVV19]. The symbol � represents the bitwise right shift operation.
This type of operation can be extended to the coefficients in polynomials. Three constants
(h, h1, h2) are used to replace rounding operations with a simple bit shift.

The decryption of PKE is shown in Algorithm 1 [DKSRV18]. Saber.KEM is transformed
from Saber.PKE using the Fujisaki-Okamoto (FO) transform. It would be harmful to
security when p - q introduces bias in the generated keys. To avoid this noise, Saber
designers choose p and q as a power of two, i.e. 210 and 213 respectively.

Algorithm 1 Saber.PKE.Dec
Input: c = (cm, b′), s
Output: m′

1: v = b′T (s mod p) ∈ Rp
2: m′ = ((v − 2εp−εT cm + h2 mod p)� (εp − 1) ∈ R2
3: return m′

2.2 Toom-Cook & Karatsuba multiplication

The most straightforward method to compute the multiplication result between two n-
degree polynomials is the schoolbook multiplication [NG21]. The Karatsuba algorithm is
a divide-and-conquer approach to implementing the polynomial multiplication. Supposing
there are two n-degree polynomials A(x) and B(x). The polynomial A(x) can be split into
two n/2-degree polynomials ah(x) and al(x), where A(x) = ah(x) · xn/2 + al(x).

ah(x) = an−1 · xn/2−1 + · · ·+ an/2+1 · x+ an/2

al(x) = an/2 · xn/2−1 + · · ·+ a1 · x+ a0
(1)
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The polynomial B(x) is also split into two n/2-degree polynomials bh(x) and bl(x). Then
the multiplication C(x) = A(x) ·B(x) can be calculated by Karatsuba algorithm.

C(x) = A(x) ·B(x)
= (ah(x) · xn/2 + al(x)) · (bh(x) · xn/2 + bl(x))
= ah(x) · bh(x) · xn + (ah(x) · bl(x) + al(x) · bh(x))xn/2 + al(x) · bl(x)
= ah(x) · bh(x) · xn + ((ah(x) + al(x)) · (bh(x) + bl(x))
− (ah(x) · bh(x) + al(x) · bl(x))) · xn/2 + al(x) · bl(x)

(2)

Toom-Cook-4-way analogously splits the operands into 4 coefficients. Assuming the
two multiplicand polynomials are A(x) = an−1 · xn−1 + an−2 · xn−2 + · · · + a0 and
B(x) = bn−1 · xn−1 + bn−2 · xn−2 + · · ·+ b0. Consider the parameter n = 256 and k = 4,
they can be written as follows:

A(x) = A3 · x64·3 +A2 · x64·2 +A1 · x64 +A0
B(x) = B3 · x64·3 +B2 · x64·2 +B1 · x64 +B0

(3)

where A3 = a255 · x63 + · · ·+ a192, A2 = a191 · x63 + · · ·+ a128, A1 = a127 · x63 + · · ·+ a64,
A0 = a63 · x63 + · · ·+ a0. The coefficients of B(x) are defined similarly. For simplicity, we
define x64 = y and the above equations are written as

A(y) = A3 · y3 +A2 · y2 +A1 · y +A0
B(y) = B3 · y3 +B2 · y2 +B1 · y +B0

(4)

The polynomials are at 2k − 1 = 7 points of y, i.e. y = p0, · · · , y = p6. There are
no fixed values for the points. The points are selected the small values to decrease the
computation complexity. Generally, they can use p0 = 0, p1 = 1/2, p2 = −1/2, p3 = 1, p4 =
−1, p5 = 2, p6 =∞. A(p0), · · · , A(p6), B(p0), · · · , B(p6) are calculated. The second step
is multiplication, i.e. C(pi) = A(pi) ·B(pi) for all i ∈ [0, 6].

The product polynomial C(y) = C6 ·y6 +C5 ·y5 + · · ·+C0. The last step is interpolation
to calculate the coefficients from C(pi).

C0
C1
...
C6

 =


(p0)0 (p0)1 · · · (p0)6

(p1)0 (p1)1 · · · (p1)6

...
...

. . .
...

(p6)0 (p6)1 · · · (p6)6


−1

·


C(p0)
C(p1)

...
C(p6)

 (5)

Finally, C(x) can be reconstructed as C(x) = C6 ·x64·6 +C5 ·x64·5 + · · ·+C0. In Saber,
the Toom-Cook-based and Karatsuba-based multiplication are combined to implement
256 · 256 polynomial multiplication, which we will discuss in detail in Section 3.1.

2.3 Soft-Analytical Side-Channel Attacks
Soft-Analytical Side-Channel Attacks (SASCA) aims at exploiting more leakages than
the single attack point used in classical divide-and-conquer attacks for AES [VCGS14]. It
combines template matching with Belief Propagation on the factor graph of cryptographic
implementation. It first performs a template attack on the target intermediate variables
and retrieves the probabilities. For the intermediate variable xi, one gets probabilities
conditioned on the observable leakage `, i.e., Pr(xi = x|`), where x runs through all of the
possible values of xi, ` is the observed side-channel leakage.

The adversary can construct a factor graph of the cryptographical algorithm and
their implementation. The factor graph models the relationships among the intermediate
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variables. After adding the probabilities into the graph, the adversary performs the belief
propagation algorithm to determine marginal probability distributions for the subkey.
Next, we explain the factor graph and belief propagation more thoroughly.
Definition 1 (Factor graphs [KFL01]). A factor graph is a bipartite graph representing
the factorization of a function. Factor graph is comprised of variable node for each variable
xi, factor nodes for each function fj and edge-connecting variable node xi to factor node
fj if xi is an argument of fj.

The set of factor nodes can be separated into two subsets. The first type of factor
reflects the relationships among the variables in the implementation. For example a
cryptographic operation OP(xi1 , xi2), the factor can be represented as

fi(xi1 , xi2 , xi3) =
{

1 if OP(xi1 , xi2) = xi3
0 otherwise

(6)

The second subset describes the probabilities of the variables by observable side-channel
leakages `. These factors are non-deterministic and can be represented as fi(xi) = Pr(xi =
x|`).

Based on these rules, the common arithmetic circuit of cryptographic implementation
can be constructed by the adversary. The variables correspond to the variable nodes and the
factors describe the relationship among the variables. In the original SASCA work, it showed
how to construct a factor graph for AES (http://point-at-infinity.org/avraes) [VCGS14].

The belief propagation algorithm is a message-passing algorithm on graphical models
such as factor graphs. It was initially proposed to compute the marginalization of a
function efficiently.

Each variable node represents one variable xn in the factor graph, and the factor node
represents one factor fm. We denote n, m as variable and factor indices, respectively. Let
xm be the variables that factor fm depends on, xm\n denotes the set of variables in xm
without xn, and vn represents the value of the domain of xn. We denoteM(xn) as the
neighbors of the variable node xn, and N (fm) denotes the neighbor variables that the
factor fm depends on. These notations are the same with the indices n′,m′.

The message passing includes from variables to factors (uxn→fm
) and from factors to

variables (ufm→xn):
Messages from variable to factor:

uxn→fm
(vn) =

∏
m′∈M(xn)\m

ufm′→xn(vn) (7)

Messages from factor to variable:

ufm→xn(vn) =
∑

xm\n

(fm(xm\n, vn)
∏

n′∈N (fm)\n

uxn′→fm(vn′)) (8)

In a factor graph of cryptographic implementation, there have two types of factors. The
one corresponds to the variables of implementation while the another describes the priori
knowledge of the variables acquired through template attacks on side-channel leakages. The
BP applies the above message rules to all the nodes and factors. Finally, the probabilities
of sensitive nodes (i.e. key) are obtained with the iteration of propagation.

3 Vulnerabilities Analysis of Toom-Cook Multiplication
We analyze the leakage characteristics of Toom-Cook adopted by Saber using divide-and-
conquer attacks in this section. Firstly, we describe the implementation of Toom-Cook
multiplication. Then we exploit the vulnerabilities in the implementation and illustrate
the challenges for the traditional attacks.
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void indcpa_kem_dec(const uint8_t sk[], const uint8_t ciphertext[], uint8_t m[])
1. BS2POLVECq(sk, s); BS2POLVECp(ciphertext, b);
2. InnerProd(b, s, v);
3. /*processing results*/

void InnerProd(const uint16_t b[][], const uint16_t s[][], uint16_t res[])
1. for (j = 0; j < SABER_L; j++)    poly_mul_acc(b[j], s[j], res);

void poly_mul_acc(const uint16_t a[], const uint16_t b[], uint16_t res[])
1.toom_cook_4way(a, b, c);

static void toom_cook_4way (const uint16_t *a1, const uint16_t *b1, uint16_t *result)
1. Split a1 to A0, A1, A2, A3; Split b1 to B0, B1, B2, B3;
2. Calculate 7 points        //Evaluation  

aw1=A3;                                                   bw1=B3;                             
aw2=8A3+4A2+2A1+A0;                       bw2=8B3+4B2+2B1+B0;
aw3=A0+A2+A1+A3;                              bw3=B0+B2+B1+B3;
aw4=A0+A2-(A1+A3);                             bw4=B0+B2-(B1+B3);
aw5=8A0+2A2+4A1+A3;                        bw5=8B0+2B2+4B1+B3;
aw6=8A0+2A2-(4A1+A3);                      bw6=8B0+2B2-(4B1+B3);
aw7=A0;                                                    bw7=B0;

3. karatsuba_simple(aw1, bw1, w1);…; karatsuba_simple(aw7, bw7, w7);    //MULTIPLICATION
4. /*INTERPOLATION*/

static void karatsuba_simple(const uint16_t *a_1, const uint16_t *b_1, uint16_t *result_final)
1. for (i = 0; i < 16; i++)
2.     acc1=a_1[i]; acc2=a_1[i+16]; acc3=a_1[i+32]; acc4=a_1[i+48];
3.       for (j = 0; j< 16; j++)
4.              acc5=b_1[j]; acc6=b_1[j+16];
5.              result_final[i+j]=result_final[i+j]+OVERFLOWING_MUL(acc1, acc5);
6.              /*The same method to calculate the 9 multiplications in 2-level Karatsuba*/
7.   /*processing the results*/

Figure 1: Pseudo code of reference implementation of Saber.PKE.Dec().

3.1 Polynomial Multiplication in Saber

During the multiplication, the polynomials are of degree 256. To perform a 256 · 256
polynomial multiplication C(x) = A(x) ·B(x), it adopts the Toom-Cook-4-way split the
A(x) and B(x). The step transforms the multiplication of two 256-degree polynomials to 7
multiplications of 64-degree polynomials. Then split the polynomials into 9 multiplications
of degree 16 through 2-levels of Karatsuba multiplication. Finally, the polynomials perform
the schoolbook multiplication.

Currently, the polynomials multiplication of Saber reference C implementation is
implemented based on the Toom-Cook. The full implementation is a very complex process.
We simplify it for clarity, as shown in Figure 1. The IND-CPA decryption receives a
ciphertext and the secret key sk. The polynomial multiplication is performed by b and s,
which are transformed from ciphertext and the secret key respectively by data conversion
algorithms BS2POLVECp/BS2POLVECq. The data conversion algorithms map a byte
string to a vector in the ring.

After the call of InnerProd and poly_mul_acc functions, the toom_cook_4way is
conducted to implement multiplication, which is our mainly target in analysis. The
toom_cook_4way function takes as input a1, b1 (256 coefficients) and outputs the multipli-
cation result. The 256-degree polynomial can be split into 4 polynomials B3, B2, B1, B0
of degree 64. During the evaluation, bw1, · · · , bw7 can be obtained by substituting the
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points value y = p0, · · · , y = p6 into the Equation (4), shown as Equation (9).

bw1 = B3
bw2 = 8 ·B3 + 4 ·B2 + 2 ·B1 +B0
bw3 = B0 +B2 +B1 +B3
bw4 = B0 +B2− (B1 +B3)
bw5 = 8 ·B0 + 2 ·B2 + 4 ·B1 +B3
bw6 = 8 ·B0 + 2 ·B2− (4 ·B1 +B3)
bw7 = B0

(9)

Similarly to a1, aw1, · · · , aw7 can be obtained in the same way. The complexity of
multiplication between polynomials of degree 64 is still unacceptable to implementation.
Therefore, it further split 64-degree polynomial to 4 polynomials of degree 16, for example
splitting bw1 into bw1_3, bw1_2, bw1_1, bw1_0, where bw1 = bw1_3 ·x48 + bw1_2 ·x32 +
bw1_1 · x16 + bw1_0. The 9 polynomials of degree 16 can be obtained using the 2-level
Karatsuba algorithm according to Section 2.2.

bw11 = bw1_3
bw12 = bw1_2
bw13 = bw1_3 + bw1_2
bw14 = bw1_1
bw15 = bw1_0
bw16 = bw1_1 + bw1_0
bw17 = bw1_3 + bw1_1
bw18 = bw1_2 + bw1_0
bw19 = bw1_3 + bw1_2 + bw1_1 + bw1_0

(10)

3.2 Vulnerability Analysis
Side-channel attacks threaten cryptographic algorithms through the physical information
such as timing, power, and electromagnetic emissions. In the view of timing leakage, a
powerful source code analyzer [FGL+18] can be exploited to perform the static analysis
to track the sensitive information in the code. The goal of the tool is to detect the
cache-timing leakages on the code level. The candidates submitted to the first round of
the PQC project have been analyzed by this tool, which showed Saber was one of the
submissions to be correctly protected against timing attacks [FGL+18]. In Saber, all
moduli are powers of 2 and allow the explicit modular reduction to be removed. The lack
of modular reduction also implies that Saber is naturally constant time, making it resistant
to cache timing attacks.

There are many leakage assessment methodologies to evaluate the detectable leakage
in the power/electromagnetic analysis. The general method of Welch’s t-test evaluates
the leakage independent of any power model and sensitive value [GGJR+11], which
was improved by Becker et al. and renamed Test Vector Leakage Assessment (TVLA)
[BCDM+13]. It has been applied to detecting the leakage of lattice-based algorithms such
as Kyber, Saber, NewHope and LAC. The polynomials transformed from the secret key
are marked as the sensitive variables, as dotted arrows in Figure 2. The sensitive variables
obtained from the input secret key will eventually be multiplied with the ciphertext
coefficients, which leads to side-channel leakage inevitably. Next, we analyze the challenges
and limitations of Toom-Cook in Saber to classical divide-and-conquer attacks in the view
of the attack.
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...

(ciphertext)
a1=[A3,A2,A1,A0]

(key)
b1=[B3,B2,B1,B0]

aw1  bw1 aw4  bw4 aw7  bw7

Toom-Cook 
Evaluation

Aw11×bw11...aw19×bw19 aw41×bw41...aw49×bw49 aw71×bw71...aw79×bw79

Karatsuba

result=a1×b1
Interpolation

...

... ...

Figure 2: The dataflow of Toom-Cook multiplication in Saber.

Incomplete key recovery. The schoolbook multiplication is vulnerable to SCA [ATT+18,
SMS19] since its intermediate values depend on the known ciphertext and unknown
secret key. Huang et al. demonstrated the private-key recovery from the Karatsuba
multiplication in NTRU Prime [HCY19]. Karatsuba’s method itself can not resist against
the vertical power analysis attacks on lowest-level multiplications. However, the application
of Toom-Cook makes these attacks fail to recover full private-key, as considered in [HCY19]
"Unfortunately, if the optimized version uses Toom-k as the first layer, the approaches
can only reveal the first and last 1/k of private-key coefficients. How to adapt them to
a fully optimized NTRU Prime in pursuit of full private-key recovery is worth further
investigation". According to Equation (9), the lowest-level multiplication of bw1 × aw1
and bw7× aw7 can be used to recover B3 and B0 while the other coefficients are hardly
recovered straightforwardly.

Indistinguishable guessing keys. A critical factor of successful power/electromagnetic
analysis is distinguishing the statistical analysis results of the correct key from the other
wrong keys. In general, divide-and-conquer attacks can use the correlation, differential,
or mutual information between the power/electromagnetic samples and the Hamming
weight of the intermediate value in the cryptographic algorithm. Xu et al. focused on
the output of multiplication in Kyber and mounted a chosen-ciphertext SPA attack on
polynomial multiplication using few traces [XPSR+21]. Kyber executes the Montgomery
reduction (mod ± q) by fqmul() after the multiplication. The coefficients of the secret-key
range from −2 to 2 and are obtained from the binomial distribution. The adversary can
distinguish the coefficient values(−2,−1, 0, 1, 2) by choosing different ciphertexts, while the
Hamming weights of the output of fqmul() can be divided into different classes. However,
in Saber, the integer moduli are powers of 2 so that there is no need for explicit modular
reduction. The last-level multiplication is implemented by the OVERFLOWING_MUL
function.

OV ERFLOWING_MUL(scoeff , bcoeff )
= ((uint16_t)((uint32_t)(scoeff ) ∗ (uint32_t)(bcoeff )))

(11)

where scoeff denotes the coefficient of the secret key and bcoeff denotes the coefficient of
the ciphertext b. In Saber, the possible values of scoeff ∈ {0, 1, 2, 3, 8188, 8189, 8190, 8191}
and the coefficient of ciphertext satisfies 0 ≤ bcoeff ≤ 210. Under Hamming weight leakage
model, the power sample is approximately relating to the HW (Hamming weight) of
the output of OVERFLOWING_MUL. We calculate the Pearson’s correlation coefficient
among the HW vectors corresponding to different guessing keys for bcoeff ∈ [0, 210], as
shown in Table 1. It is obvious that all elements of multiplication results are zero for
scoeff = 0, which is not available to the correlation calculation.

It can be seen that there are many similar correlation coefficients, even completely equal
values. For example, the output of OVERFLOWING_MUL for an arbitrary bcoeff and
scoeff = 2 can be viewed as a one-bit left shift of bcoeff . Without modular reduction, the
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Table 1: The Pearson’s correlation coefficient among different guessing keys

scoeff
guessing key

1 2 3 8188 8189 8190 8191

co
rr
ec
t
ke
y

1 1 1 0.48 0.75 0.14 0.75 0.74
2 1 1 0.48 0.75 0.14 0.75 0.74
3 0.48 0.48 1 0.33 0.79 0.33 0.33

8188 0.75 0.75 0.33 1 0.42 0.99 0.99
8189 0.14 0.14 0.79 0.42 1 0.42 0.43
8190 0.75 0.75 0.33 0.99 0.42 1 0.99
8191 0.74 0.74 0.33 0.99 0.43 0.99 1

HW of the output under scoeff = 2 is equal to the HW under scoeff = 1. The differences
between other guessing keys are also not obvious, making it difficult for the attack to
distinguish the correct key.

4 Single-trace attack on Toom-Cook
In the single-trace attack, it is crucial to extract as much information per trace as possible.
SASCA constructs a graphical model for a cryptographic algorithm. The factor graph
contains the information of intermediate variables in the attacked cryptographic algorithm
and its specific implementation. The posterior distributions provided by performing
Template Attack (TA) [CRR03] on all the intermediate variables are added as function
nodes to the factor graph. It propagates the information by the Belief Propagation (BP)
algorithm [MMK+04] to determine marginal probability distributions for subkeys.

...

aw1i[0]

bw1i
aw1i[15]

r1i[0]

fmul

fmul

r1i[15]

fL_0

fL_15

(a) Original SFG

bw1i

fmul

r1i

16fL

(b) Bayes-based SFG

Figure 3: Schoolbook multiplication with factor graph representation (SFG)

4.1 SASCA on the Toom-Cook
In this section, we describe how to construct a factor-graph targeting such generic Toom-
Cook software implementations.

In a factor graph, each variable node (represented by a circle) is connected to a factor
node (represented by a rectangle) by an edge if the factor depends on it. As seen in Section
3, the variables are interconnected after Toom-Cook&Karatsuba transformation. The
secret key s is split into bw1, bw2, . . . , bw7 of degree 64, multiplying aw1, aw2, . . . , aw7
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obtained by the ciphertext. It further splits the polynomial into four polynomials of
degree 16 and transforms to decrease the complexity. For example, aw11, . . . , aw19 and
bw11, . . . , bw19 deduced from aw1 and bw1 perform the 16 · 16 schoolbook polynomial
multiplications, respectively.

The factor graph corresponding to the example of schoolbook polynomial multiplication
of bw1i and aw1i is illustrated in Figure 3 (a), named as SFG for simplicity.

bw12

bw11

bw14

bw15

f5add

bw19

f3add

bw18

f2add

bw17

f4add

bw16

f1add

bw13

Figure 4: Factor graph corresponding to Karatsuba (KFG).

The factor graph represents variables and factor nodes by circles and squares, respec-
tively. The factor nodes are further split into two groups. The first group of factors is
characterized by side-channel information. Its purpose is to add the side-channel infor-
mation, i.e., the results of the template matching. During the schoolbook multiplication
of bw1i and aw1i, the value of aw1i is known according to a known ciphertext. The
attack can observe the side-channel information during the execution of the multiplication
operation to obtain the posterior distribution of the multiplication result r1i. Thus the first
type of factor corresponds to the a priori knowledge of the multiplication results obtained
by side-channel leakages, for example, fL_0 = Pr(r1i[0]|L_0), where L_0 represents the
observed leakage of r1i[0]. It is the same with other operands, so fL_0, fL_1, . . . , fL_15
are connected to the multiplication results r1i[0], r1i[1], . . . , r1i[15], respectively.

The second group of factors is modeling the relationships between the variables nodes
in the schoolbook. We add the multiplication as factor nodes fmul, which can be defined
as:

fmul(x, y, z) =
{

1 if z = OV ERFLOWING_MUL(x, y)
0 otherwise

(12)

where OV ERFLOWING is defined in Equation (11).
In the Karatsuba multiplication, bw11, . . . , bw19 are obtained from bw1 based on Equa-

tion (10). Figure 4 depicts the Karatsuba factor graph (KFG) of this operation. The nodes
bw11, . . . , bw19 are connected to the corresponding SFG, i.e. SFGbw11 , · · · , SFGbw19 ,
that is, a total of 9 SFG. Based on Equation (10), bw11, . . . , bw19 and aw11, . . . , aw19
are generated to perform the 2-level Karatsuba algorithm. Since bw11, . . . , bw19 are
related to the secret key while aw11, . . . , aw19 are all known under a known cipher-
text, we only construct the factor graph for the relationships among bw11, . . . , bw19.
For example, bw11 = bw1_3, bw12 = bw1_2, bw13 = bw1_3 + bw1_2mod q, there has
bw13 = bw11 + bw12 mod q. The factor fadd describes how variables nodes inside a 2-levels
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f1

B1 B0 bw1 bw2 bw3 bw4 bw5B2 bw6B3 bw7

f2 f3 f4 f5 f6 f7

f1(B3,bw1)=1                       if bw1=B3

f2(B3,B2,B1,B0,bw2)=1      if bw2=8B3+4B2+2B1+B0

f3(B3,B2,B1,B0,bw3)=1      if bw3=B0+B2+B1+B3

f4(B3,B2,B1,B0,bw4)=1      if bw4=B0+B2-(B1+B3)

f5(B3,B2,B1,B0,bw5)=1      if bw5=8B0+2B2+4B1+B3

f6(B3,B2,B1,B0,bw6)=1      if bw6=8B0+2B2-(4B1+B3)

f7(B0,bw7)=1                       if bw7=B0

Figure 5: Factor graph corresponding to Toom-Cook evaluation (TFG).

of the Karatsuba algorithm are related:

fadd(bw11, bw12, bw13) =
{

1 if bw13 = bw11 + bw12 mod q

0 otherwise
(13)

It is the same with other variables. The difference is the number of input nodes for
bw19 = bw1_3+bw1_2+bw1_1+bw1_0, corresponding to the factor fadd(bw11, bw12, bw14,
bw15, bw19). It can be found that there are many shortest cycles in the KFG, which are
not beneficial to the efficiency of belief propagation. The next section will show how to
avoid it and improve belief propagation.

The last step is to formalize the implementation of the Toom-Cook evaluation. During
the Toom-Cook-4-way evaluation, bw1, · · · , bw7 can be obtained by substituting the seven
points values, as Equation (9). The nodes bw1, · · · , bw7 are connected to its corresponding
KFG, i.e. KFGbw1, · · · ,KFGbw7. We defined the factors f1, · · · , f7 to describe the
relationships among variables during the evaluation of different points, shown in Figure 5.

The various factor graphs above construct the complete factor graph for implementing
Toom-Cook. The relationships among the different factor graphs are described in Figure 6.

...

TFG

...

... ...

KFGbw1

SFGbw11       SFGbw19

KFGbw4

SFGbw41       SFGbw49

KFGbw7

SFGbw71       SFGbw79

Figure 6: The construction of the full algorithm.

There are 16 · 2 + 1 = 33 variable nodes in one SFG and 9 in one KFG. The overall
graphs include 33 · 9 · 7 + 4 = 2083 variable nodes. The 16 · 9 · 7 = 144 leakage factors fL
modeled the observed side-channel leakage of multiplication in a trace. It requires close to
ten million templates (216 · 144) overall. Moreover, the BP algorithm is used to determine
the marginal probabilities of the secret key B3, B2, B1, B0 by iteratively executing the
message propagation computation. It can be found that many short loops degrade the BP
performance in the factor graph.
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4.2 Improving Practical Single-Trace Attacks
This section shows how to address these problems and perform single-trace attack on the
Toom-Cook more practical. Firstly, we decrease the templates number by deep neural
networks. Secondly, we prove the factor graph can be optimized by merging tracks based
on Bayes’ algorithm. Then, the update rules are improved for the short loops during belief
propagation.

4.2.1 Decreasing the Number of Templates

One straightforward way to decrease required templates is to switch to Hamming weight
templates. For the large bit width of the intermediate value in the algorithm, we profile
templates for Hamming weights instead of every possible value. It performs a template
matching and, therefore, gives a vector of probabilities conditioned on the leakage l. We
take node r1i[0] in SFG as an example. It has

fL_0 = Pr(r1i[0] = v|l) (14)

where v represents the value of r1i[0] and l represents the observable leakage. If it profiles
the templates of Hamming weight of the intermediate value, the probabilities of Hamming
weight are assigned to the factor nodes. Let HW () denote the Hamming weight function.
There has

fL_0 = Pr(HW (r1i[0]) = HW (v)|l) (15)

It can be found that the class number of each node is decreased by using Hamming
weight templates. However, it still requires 7 ∗ 144 ∗ 17 = 17, 136 templates. The existing
work of power analysis showed that neural network technology could build an efficient
model that is at least as effective as a standard template model without any preprocessing
operations.

...

...

...

Input Layer

Hidden Layers

Output Layer
(Softmax)

(hidden_layer_sizes=
(512,256,128,64))

(SeLU)

...

..
.

..
.

..
.

..
.

Figure 7: The MLP Architecture in our attack.

Many works have validated the efficiency of different NNs on side-channel analysis,
such as MLP [DGD+19, RAD20], VGG16 [BPS+20] and ResNets [ZS20]. Zaid et al.
also proposed an efficient CNN architecture and showed that the networks do not need
to be very complex to perform well in the side-channel context [ZBHV19]. We aim to
utilize a suitable model with a good balance between training time and effect. Our MLP
architecture is based on the model proposed in [RAD20], and hyperparameters are trained
to fit the requirements for the target implementation.
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In the profiling phase, we train the network using the Adam optimizer [KB14] and a
learning rate of 10−2. The inputs of our network are the power traces, and it outputs the
distribution over the class labels. The training label is set as the Hamming weight of the
intermediate values in Toom-Cook multiplication. The activation function for hidden layers
is SeLU, and that for output layers is Softmax. Softmax is a nonlinear function, mainly
used for the classifier output of multi-class classification, which produces a distribution over
the class labels. In some scenes, the output is used as the probability since it reflects the
difference among various classes [KSH12,SWT14,TYRW14]. In the deep learning-based
side-channel context, it also uses the output of NN into the multi-trace Bayes’ probability
to distinguish the secret [ZBHV19]. The outputs are assigned to the factor nodes fL
instead of the probabilities in Equation (15). The MLP model is shown in Figure 7. The
input layer contained inputs corresponding with the sample points of each schoolbook and
output layer had the same number neurons as the Hamming weights species to predict
target value y′ .

y
′

= fs(
N1∑
l=1

w
′

jlx
′

j − σ
′

l)

x
′

j = fs(
N2∑
i=1

wijxi − σj)

(16)

where fs denotes the nonlinear activation function, j denotes hidden layer j-th neuron, l
denotes output layer l-th neuron, N1 denotes the number of neurons in output layer, N2
is the number of neurons in a hidden layer, σ denotes the threshold of the neuron, wij
denotes weights between i-th and j-th neuron and x′

i denotes the neurons output. The
result of this classification is a probability vector of the Hamming weight prediction. The
samples of total schoolbook in one trace are send to the input of the network. Each trace
segment in the training set is assigned its label as the Hamming weight of multiplication
result to train the network. The normalization of the trace is applied to the input of the
network. Besides, we select the same number of training traces for each class of Hamming
weight to avoid overfitting training.

4.2.2 Factor Graph Optimization

The memory cost of a factor graph is influenced by the number of nodes and edges.
Generally, the larger graph requires more memory. The factor graph of schoolbook
multiplication contains 16 same factors fmul, as Figure 3 (a). Based on the Sum-Product
algorithm in the message-update rules, the marginal probability of variable bw1i is

p(bw1i) = vfmul→bw1i
(bw1i) . . . vfmul→bw1i

(bw1i)

=
∑

aw1i[0],r1i[0]

(fmul(aw1i[0], r1i[0], bw1i) · uaw1i[0]→fmul
(aw1i[0])

· ur1i[0]→fmul
(r1i[0]))

. . .
∑

aw1i[15],r1i[15]

(fmul(aw1i[15], r1i[15], bw1i) · uaw1i[15]→fmul
(aw1i[15])

· ur1i[15]→fmul
(r1i[15]))

(17)

whereas the variables aw1i[0], . . . , aw1i[15] denote the ciphertexts which are known to
adversary. There has uaw1i[0]→fmul

(aw1i[0]) = 1. It performs a template matching the
multiplication result and therefore gets a vector of conditional probabilities on the leakage
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l0, . . . , l15, i.e. ur1i[0]→fmul
(r1i[0]) = fL_0 = p(r1i[0]|t0). Thus,

p(bw1i) =
∑

aw1i[0],r1i[0]

(fmul(aw1i[0], r1i[0], bw1i) · fL_0)

. . .
∑

aw1i[15],r1i[15]

(fmul(aw1i[15], r1i[15], bw1i) · fL_15)

=
∑

aw1i[0],r1i[0]

(fmul(aw1i[0], r1i[0], bw1i) · p(r1i[0]|t0))

. . .
∑

aw1i[15],r1i[15]

(fmul(aw1i[15], r1i[15], bw1i) · p(r1i[15]|t15))

= p(bw1i|t0) · p(bw1i|t1) . . . p(bw1i|t15)

(18)

In template attacks, a single trace is usually not enough to recover the key with high
confidence in practice. The posterior probabilities of the key candidates are calculated
from multiple traces based on Bayes’ theorem [OM06].

p(bw1i|t0, . . . t15) =
(
∏
j

p(tj |bw1i))p(bw1i)∑
l

((
∏
j

p(tj |bw1li))p(bw1li))
(19)

The sum of probabilities of the candidates is equal to 1, i.e.
∑
l

(p(bw1li)). Based on

Bayes’ rule, the marginal probability can be represented as

p(bw1i) = p(bw1i|t0) · p(bw1i|t1) . . . p(bw1i|t15) =
(
∏
j

p(tj |bw1i)p(bw1i))∏
j

((
∑
l

p(tj |bw1li))p(bw1li))
(20)

Since the initial probability of bw1i is an uniformed value, the denominator in the above
formula does not influence the ranking among the key candidates. The Bayes’ probability
can be converted into the marginal probability by normalization.

p(bw1i) = p(bw1i|t0) · p(bw1i|t1) . . . p(bw1i|t15) = p(bw1i|t0, . . . t15) · C

C =

∑
l

((
∏
j

p(tj |bw1li))p(bw1li))
∏
j

p(bw1i)∏
j

((
∑
l

p(tj |bw1li))p(bw1li))
(21)

Figure 3 (b) shows the simplified graph according to the merging trick. In contrast with
the factor graph representation in Figure 3 (a), which includes 33 variable nodes, the new
one consists of only 2 variable nodes in one SFG. Moreover, the number of variable nodes
in the overall graphs drops from 2083 to 130, reducing time and memory complexities for
the following belief propagation.

4.2.3 Improving Belief Propagation

In this section, we analyze the factor graph on the performance of belief propagation.
Based on this, we improve the belief propagation steps for the special case during the
attack.

The way of SASCA to describe the implementation and leakage is similar to decoding
factor graphs using a BP algorithm in the Low-Density Parity Check Code (LDPC)
[GGSB20]. LDPC error correction decoders are widely used in communication systems for
their strong performance. The factor graph can be transformed into the Tanner graph.
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f1add

bw13 bw14 bw15 bw16 bw17 bw18 bw19bw12bw11

f2add f3add f4add f5add

Figure 8: Tanner graph associated with KFG.

It is viewed as a graphical representation for LDPC codes. The nodes correspond to the
variable nodes and factor nodes. The KFG in Figure 4 can be represented as a Tanner
graph as Figure 8.

In LDPC, short cycles especially, cycles of length 4, influence the performance using
the BP algorithm [CH06]. In this Tanner graph, there are also existing many circles of
length 4, for example, the red lines in Figure 8. To deal with these short cycles, we first
detect them with the parity-check matrix. The parity checks are used to check the errors
in the received codeword, called the parity-check matrix. The parity-check matrix H of
the above graph equals:

H =


1 1 1 0 0 0 0 0 0
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 0 1 1 1 0 0 0
1 1 0 1 1 0 0 0 1

 (22)

Firstly, it can straightly identify the cycles of length 4 in the matrix. It indicates that
the cycle of length 4 occurs when two rows have ones in two same column locations in
the parity-check matrix. It can be found that four cycles of length 4 are all connected to
factor f5

add, as shown in the bold numbers in the parity-check matrix H.

bw12

bw11

bw14

bw15f3add

bw18

f2add

bw17

f4add

bw16

f1add

bw13

(a) First step of BP on the subgraph

bw12

bw11

bw14

bw15

f5add

bw19

(b) Second step of BP on the subgraph

Figure 9: The BP strategy on the KFG with cycles of length 4.

To avoid those shortest cycles of length 4, we split the BP in KFG into two steps.
It can be found that the removal of factor f5

add in the parity-check matrix H can avoid
all cycles of length 4. Thus we first perform the standard BP algorithm on the sub-
graph, as shown in Figure 9.(a). Note that there are also exist cycles in the subgraph.
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However, the influence of a large cycle is slight on the BP. Then, the marginal probabili-
ties p(bw11), p(bw12), p(bw14), p(bw15) are input to the initial distribution in the second
subgraph, as shown in Figure 9.(b). In this step, it computes the joint distribution by

p(bw19) =
∑

bw11,bw12,bw14,bw15

f5
add(bw11, bw12, bw14, bw15, by19) (23)

Finally, the marginal probabilities of bw11, bw12, bw14, bw15, bw19 are updated. Com-
pared to the original BP on KFG, this method splits a whole loopy BP into two steps and
executes in sequential, which mitigates the performance degradation.

5 Attacks on the Saber case
In this section, we perform the SASCA on the Saber case. In particular, it uses performance
and success rate to show the efficiency of optimization methods including factor graph
optimization, improving belief propagation and decreasing the number of templates.

5.1 Evaluation
We evaluate our attack method using leakage simulations in various settings. The target
is the C reference implementation of Saber as submitted to the NIST contest1. The
experiments are run on an Intel i7-10510U (2.3GHz). The simulation traces are generated
by the Hamming weight (HW) with an additive Gaussian noise model. The simulated
leakage is L = HW (v) +N (0, σ), where N (0, σ) represents a Gaussian distribution with
zero mean and standard deviation σ. In this section, we analyze the improvement of our
methods under different noise levels (σ = 2, 5, 10).

For each simulation, we generate 30 samples for each intermediate variable, and there
have 144 intermediate variables of multiplication. The 30 samples are generated to simulate
the continuous leakage in the practical scene over a period. The same samples do not
influence the comparative evaluation of different methods. Thus, it has 4320 samples
in one trace. We use 50, 000 traces for training and perform the template matching to
obtain the corresponding conditional probabilities. For each noise level, we perform 100
experiments and compute the averaged results.
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Figure 10: Success rates of attacking bw11, . . . , bw19 in Bayes-based SFG under σ = 2, 5, 10.
The success rates with Bayes-based SFG are the same with the original SFG.

We first evaluate the effects of the factor graph optimization. The coefficient b1 of the
secret key is split into bw1, . . . , bw7 during Toom-Cook evaluation. Each element splits into

1https://www.esat.kuleuven.be/cosic/pqcrypto/saber/software.html
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9 coefficients during Karatsuba evaluation. For example, bw1 is split into bw11, . . . , bw19.
Thus these coefficients are our target during the attack. Based on Figure 3, we perform
BP on the original SFG and obtain the marginal probabilities of bw11, . . . , bw19. Then
we perform BP on the Bayes-based SFG. The 100 independent traces are performed to
compute the success rate. The success rates under original SFG and Bayes-based SFG are
the same, shown in Figure 10. The success rates tend to decrease with the increasing noise
level.

We also evaluate the whole factor graph under the two types of SFG. The execution
time during the BP on the factor graph is recorded to compare the efficiency of the two
SFGs. We average the results from 100 experiments to decrease the influence of noise.
Table 2 shows the performance metrics of Bayes-based SFG and original SFG under a
certain noise level (σ = 2). The execution time difference among different subgraphs
is due to the various scale of the distribution corresponding to the space of possible
values. Based on Equation (9), it can calculate the space of each variable, denoted as
Nbw1 = 8, Nbw2 = 624, Nbw3 = 65, Nbw4 = 65, Nbw5 = 624, Nbw6 = 624, Nbw7 = 8. The
higher complexity of distribution costs more time during BP. From Table 2, Bayes-based
SFG requires less time than the original SFG while maintaining the same success rate as
expected. The time needed to the same success rate reduces to less than 1/2 for original
attacks.

Table 2: The efficient of Bayes-based SFG compared to original SFG. (Time measured in
seconds.)

metric method bw1 bw2 bw3 bw4 bw5 bw6 bw7 sum

success rate Original SFG 0.86 0.88 0.83 0.88 0.87 0.87 0.86 0.86
Bayes-based SFG 0.86 0.88 0.83 0.88 0.87 0.87 0.86 0.86

time Original SFG 1.88 4.12 1.86 2.30 3.71 3.79 2.43 20.08
Bayes-based SFG 0.10 2.68 0.47 0.49 2.66 2.81 0.09 9.30

In order to evaluate the efficiency of improved BP, we perform the original BP and
the improved BP on the same KFG. Note that there exist cycles in the KFG, which
degrade the performance of the BP algorithm. The attack targets are the coefficients
bw1_3, bw1_2, bw1_1, bw1_0 corresponding to the nodes bw11, bw12, bw14, bw15 in the
KFG, as Equation (10). We first perform the original BP to calculate the marginal
probabilities. The number of iteration is set to 5 since the depth of the graph is not large.
We attack 100 traces with the independent key to compute the success rate. The same
case is also set to improved BP algorithm. A summary of the results obtained after the
two BP algorithms is given in Table 3. As predicted above, the cycles in the factor graph
significantly impact attacking performance. The attack’s success rate with improved BP
outperforms the original BP while taking less time.

Table 3: The success rate of our attacks on the KFG with improved BP algorithm.
metric success rate
noise 2 5 10

method Original Improved BP Original Improved BP Original Improved BP
bw1_3 0.84 0.94 0.81 0.95 0.71 0.81
bw1_2 0.92 0.94 0.80 0.94 0.71 0.80
bw1_1 0.86 0.97 0.68 0.97 0.73 0.87
bw1_0 0.87 0.94 0.67 0.95 0.72 0.78
metric time in seconds
noise 2 5 10

method Original Improved BP Original Improved BP Original Improved BP
time 0.12 0.07 0.18 0.07 0.13 0.06
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5.2 Analyzing a real device
The practical attack is performed with the electromagnetic radiation measurement of the
STM32F103RB (ARM Cortex-M3) micro-controller on the STM32 Nucleo-64 board. It
was also used by many other implementations of LWE encryption. The target consists of
the C reference implementation submitted to the NIST contest. The STM32CubeIDE and
the ST programmer from STMicroelectronics are used to compile and program the device.

A Langer RF2 near-field probe is placed in proximity to the chip. The electromagnetic
signals are sampled through a digital oscilloscope DSOX3024T from KEYSIGHT. Besides,
a PA303 Amplifier is used to pre-treatment signals. The setup is depicted in Figure 11(a).
We record the leakage traces at a sampling rate of 100MSa/s and the bandwidth limit
of 200MHz. Figure 11(b) presents the EM patterns of multiplications on the target
device. The leakage is located at line 3 of toom_cook_4way() procedure (Figure 1), where
the decoded ciphertexts are multiplied by the secret key. Each operation contains 144
schoolbook multiplications, implemented by the MUL instruction. The leakage of MUL
instruction is exploited to perform the SASCA.

(a) Measurement setup.
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Figure 11: (a)Experimental setup demonstrating the measurement oscilloscope, PC and
target board. (b)The measured EM trace of implementation.

To magnify the leakage of multiplication results, we choose the 16 ciphertexts which
distinguish HW difference among different key classes, similar with the chosen ciphertext
on attacking Kyber [XPSR+21]. The training set consists of 90,000 traces captured for
the chosen ciphertexts. We use a unified deep learning model to profile all the leakage of
multiplications. The MLP architecture is shown in Figure 7. Each trace segment in the
training set is assigned its label as the Hamming weight of multiplication result to train
the network. We set the learning rate to 10−2 and the number of epochs to 1000 with a
batch size of 4096. The normalization of the trace is applied to the input of the network.

After training the network, we use the profiled model to attack the target trace. The
target trace segment is sent into the network to predict the Hamming weight of the
intermediate value. Thus the probability distribution under 17 classes (0~16) is obtained.
These probabilities are assigned to the side-channel leakage nodes fL in the SFG factor
graph. In this type factor graph, aw1i[0] ∼ aw1i[15] are the ciphertext values, while the
bw1i is the unknown node. Since the efficiency has been proved and evaluated, it performs
BP on the Bayes-based SFG.

To compared to the traditional template attack, we also perform the template attack
on the same profiling measurements. We use the trace set to build Hamming weight
templates for each multiplication. The points-of-interest (POIs) used for template building
are determined with the correlation coefficients. We have also set different numbers of
POIs in our attacks, i.e. 50, 80, 100. Then the obtained probabilities are used to perform
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the BP on our factor graph. We perform 100 experiments with independent attacking
traces. The success rates of attacking bw1_3, bw1_2, bw1_1, bw1_0 are shown as the grey
histograms in Figure 12.
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Figure 12: Success rates of practical attacks. The results of SASCA with the template
attack (SASCA-TA) are indicated as the grey histograms while SASCA with deep learning
power attack (SASCA-DP) are the black.

During the deep learning-based attack, the parameters are the same with template
attacks. After BP, it can recover the coefficients of the secret key. The success rates are
shown as the black histograms in Figure 12. We can observe that the deep learning-assisted
SASCA achieves a higher success rate than the template attack. Meanwhile, it simplifies
the profile procedure other than a large number of templates in the template attacks.

6 Discussions
We establish that single-trace attacks on the Toom-Cook. The method can be applied to
other cryptographic algorithms using Toom-Cook as a polynomial multiplication. We now
discuss the attack scenario and some possible countermeasures.

6.1 Scenario and limitation
A straight application of KEMs (NTRU, Saber) is the authenticated key exchange protocol.
New protocol standards, including TLS 1.3, are increasingly advocating and mandating
PKE/KEMs that utilize ephemeral key pairs to achieve the notion of perfect forward
secrecy [SFG20].

The key exchange at the beginning of a TLS session involves one keygen, one en-
capsulation, and one decapsulation in the post-quantum TLS key exchange schemes
[SSW20,BBCT22]. It makes session key recovery more attractive for recovering the real-
time encrypted information [RBRC20]. Some implementations reuse the keys at the cost
of limited forward secrecy. It usually restricts the update rules. For example, Microsoft
Windows TLS library Schannel caches keys for two hours [CNE+14]. It limits the number
of traces required by DPA/CPA and makes the single-trace attack more threatening.

Like template attacks, SASCA needs profiling and the ability to configure keys during
the profiling phase. Since the complexity of building the profiles takes more time than
DPA/CPA, it requires many traces to create a good template. The POI (Points-of-Interest)
for each attack point aligns with the observable leakage is necessary for a successful
attack. In addition, one needs to know the implementation to construct a factor graph
in the attack. We limit our attack to a single device. A more threatening attack can be
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extended to the cross-device scene. It needs more complicated profiling than on a single
device. There are many works to conquer the variation of devices, including multi-device
traces training [DGD+19], principle comportment analysis [GDD+19], and frequency
transformation [ZSX+20]. In the future, we will extend our method to the cross-device
context based on the related technologies.

6.2 Potential defenses
There already exist masking implementations for the lattice schemes [VBDK+21,BGR+21].
Masking was proposed to resist the DPA and lead to interference in single-trace attacks.
The randomized intermediate variables in the scheme destroy the relationship between the
sensitive information and side-channel leakage.

However, the SASCA on NTT can also attack the masked implementation [PPM17,
PP19]. The masking splits the secret key into two shares before decryption, and it simply
recovers each share individually and adds them up to obtain the unmasked input. Due
to the linearity of the polynomial multiplication and addition, masking is a natural fit
for lattice-based schemes [RSRVV15,VBDK+21]. In these schemes, the private key s can
be split into two shares s′, s′′, which satisfy s = s′ + s′′ mod q. Then, the polynomial
multiplications, additions and other operations can be computed on each share individually.
In the last step, the decoding module is designed carefully to output two shares of the
message. The targets are the polynomial multiplications between the two shares and the
ciphertext b′ at the beginning of the first stage. Thus it performs the SASCA on the
NTT implementation of b′T s′ and b′T s′′ to recover s′, s′′ individually [PPM17,PP19]. The
principle of attacking masking is also suitable for the single-trace attack on Toom-Cook.

Shuffling is one of the hiding countermeasures and is viewed as an effective counter-
measure against algebraic side-channel attacks. It can use Fisher-Yates algorithm [FY53]
to decrease the SNR during the execution. To seek higher security, it can integrate
other countermeasures, for example, clock jitter, instruction shuffling, and dummy opera-
tions [CK09,VCMKS12,BPS+20]. How to protect the implementation with lightweight
countermeasure is one of our future work.

7 Conclusion
In this work, we investigate the security of the Toom-Cook multiplication concerning
single-trace attacks. We show how to apply SASCA when targeting Toom-Cook in Saber
and additionally adapt the deep learning power attacks to decrease the tremendous amount
of multivariate templates of traditional SASCA. More concretely, we prove that the
marginal probabilities of the Sum-Product algorithm in the message-update rule are equal
to the posterior probabilities based on Bayes’ theorem in the factor graph of schoolbook
multiplications. The nodes in the graph representation of the schoolbook results in the
Toom-Cook can be merged by the Bayes’ theorem. We also improve the BP algorithm
to eliminate the influence of short cycles that frequently appears in the factor graph of
Toom-Cook. These technologies are also applicable to other cryptographic schemes that
perform Toom-Cook algorithm.
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