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An energy and area efficient, all digital entropy
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on jitter pipelining
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Abstract. This paper proposes an energy and area efficient entropy source, suitable
for true random number generation, accompanied with a stochastic model in a 28 nm
CMOS technology. The design uses a jitter pipelining architecture together with
an increased timing resolution to achieve a maximal throughput of 298 Mbit/s and
a best energy efficiency of 1.46 pJ/bit at a supply of 0.8 V. The generated random
bits pass the NIST SP 800-90B IID tests with a min entropy rate of 0.933 bit/bit,
which is more than required by the AIS-31 standard. The all digital design allows for
effortless transfer to other technology nodes, taking advantage of all benefits related
to further technology scaling.
Keywords: TRNG · Entropy · AIS-31 · NIST SP 800-90B

1 Introduction
Modern cryptographic systems require a substantial amount of true random data (e.g. key
material, masks, initialisation, etc.). This demand for cryptographic grade randomness
only tends to increase in the near future with the emergence of post quantum secure
cryptographic algorithms. By providing high quality randomness, True Random Number
Generators (TRNGs) form a solid foundation that allows for the implementation of higher
level algorithms and protocols.

Validating the performance of an Entropy Source (ES) (entropy generating component of
a TRNG) is often done by solely assessing the quality of the generated random data [TRA21,
KLK17]. Following an iterative approach (Fig. 1, top), the verifier generates a certain
amount (determined by the selected test) of random data and applies that data to a series
of statistical tests. The tests determine if the data can be regarded as “random” with a
predefined significance level. If the data fails the tests, certain design parameters of the
ES circuit are fine-tuned and the tests are run again, until the ES output passes. Previous
examples [Dic03] have shown that this approach can lead to TRNGs that are prone to
prediction attacks. Statistical tests that only work with the output of the ES/TRNG
cannot differentiate between sequences generated by deterministic algorithms, TRNGs, or
a combination of both [BBF09].

To overcome this concern, a new approach (Fig. 1, bottom) was proposed by interna-
tional standardisation bodies [TBK+18, KS11, ISO19]. The new workflow is centered on
the existence of a stochastic model characterising the entropy extraction process taking
place in the ES circuitry. Entropy requirements (by the standard and/or the application),
model assumptions (e.g. the existence of a certain type of noise source), and platform
parameters (e.g. the intrinsic gate delay) form the input to this model. From the model, an
optimisation procedure can be determined to select the value of the ES design parameters
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Figure 1: Obsolete versus modern ES verification approach.

(e.g. number of Ring Oscillator (RO) stages, jitter accumulation duration, etc.). Addition-
ally, the model makes a prediction on the amount of entropy being generated. Statistical
tests can then be used to verify this prediction and serve as a sanity check for individual
prototypes.

ES designs that are compatible with this modern approach include the Transition
Effect Ring Oscillator (TERO) ES, first proposed by [VD10] and implemented in [YBS16]
(oscillator jitter based), a cross-coupled inverter pair ES, proposed and implemented
by [MSA+12] (metastability based), or the Self-Timed Ring (STR) ES, first proposed
by [CFAF13] and implemented in [CCF+18] (oscillator jitter based).

Following the modern approach, this work has the following contributions:

• A novel all digital ES architecture based on the unpredictable timing jitter in inverter
Delay Chain (DC) ROs is proposed. The timing jitter is resolved by a Time to Digital
Converter (TDC) based on two free running ROs, similar as in [KG04]. The benefits
of having an all digital architecture are twofold: it allows for an easy integration into
more complex digital systems, and it enjoys the benefits of further CMOS scaling,
without having to redesign the entire circuit.

• Reducing the TDC resolution and accumulating independent timing jitter concur-
rently (creating a jitter pipeline), decreases the jitter accumulation time required
and a throughput of several 100 Mbit/s could be achieved. This throughput is
substantially larger than previously reported for oscillator jitter based ESs [YBS16,
KLK17, CCF+18, YFH+14, KHL21].

• A detailed stochastic model is provided, capable of estimating the generated output
entropy.

• Effort was done to measure out and estimate the magnitude of the jitter strength
parameter (required by the stochastic model).

• A parameter optimisation strategy is provided to optimise the ES throughput.
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Figure 3: ES jitter pipelining timing diagram.

• The design is implemented in a 28 nm CMOS technology and measurement results
are available.

2 ES architecture
This section will provide a high-level description of the ES architecture and jitter pipeline
principle, before heading to a more detailed mathematical analysis of the design in Sect. 3.

2.1 Jitter pipeline
The proposed ES architecture is depicted in Fig. 2. Three components can be differentiated:
a DC, a TDC and a digitisation block. Both the DC and the TDC consist of two ROs:
DC0, DC1 and TDC0, TDC1 respectively. Timing jitter will naturally accumulate in all
four ROs, when left running for a specified accumulation time interval. The TDC ROs
are used to resolve the timing jitter generated by the DC ROs with a resolution related
to the period difference of the two TDC ROs. The resolvement action leads to a digital
representation of the timing difference created by the DC. This representation is then used
to construct a random output bit.

To minimise idle time, the DC can already be restarted to accumulate jitter for the
following output bit, during the resolvement phase of the current output bit. Timing jitter
further accumulates during the resolvement phase, as the TDC contains free running ROs
as well. Both phases therefore provide independent contributions to the output bit entropy,
effectively creating a jitter pipeline, where jitter is being generated in a first (DC) stage,
before being handed over to a second (TDC) stage, where it accumulates further. The
pipelining principle is indicated by the shaded boxes in Fig. 3.

The concept of jitter pipelining is not limited to the jitter accumulation and resolvement
using a DC and a TDC structure as showcased in this work, but should be regarded as a
broader concept, that might be exploited in other ES architectures as well.
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2.2 Architecture timing description
A start edge is applied to both DC ROs. Each DC RO consists of a chain of four delay-
configurable inverters. The Edge To Level (E2L) blocks in Fig. 2 react to the n-th positive
edge generated by the DC ROs by disabling the DC ROs and outputting a positive edge
(DC0 and DC1). The time it takes for the start edge to propagate through both DC ROs
for n cycles, to the output of the E2L block is indicated as Tn0 and Tn1 , for DC0 and DC1
respectively at the timing diagram in Fig. 3. Random timing jitter variations make the
timing difference: Tn∆ = Tn0 − Tn1 , a random variable over multiple evaluations. The E2L
outputs (DC0 and DC1 in Fig. 2) enable the TDC ROs to start oscillating (TDC0 and
TDC1).

Both TDC ROs are configured to have a slightly different oscillation period, which
defines the TDC resolution: res = |PTDC0 − PTDC1|. The ROs start with an initial phase
difference determined by Tn∆ and keep oscillating until the phase difference is either 0◦
or 180◦ (π radians). The digitisation circuitry detects this phase synchronisation as the
bottom RO (TDC1) will start to sample a different logic value from the top RO (TDC0)
by means of an XOR gate. A T flip-flop will determine if during the phase synchronisation,
TDC1 experienced an odd or an even amount of cycles. The output of this T flip-flop is
used as the random output bit.

3 Stochastic model
This section elaborates a mathematical characterisation of the proposed circuit in Sect. 2
and quantifies the amount of entropy being extracted from the available timing jitter.
The entropy estimation presented in this work, will be solely based on the existence of
unmanipulatable thermal noise. Other noise sources will inevitably also be present. As we
assume thermal noise is independent from all other sources of noise, the coexistence of
these other noise sources will not lead to an entropy reduction and the estimation provided
here is certainly a lower bound.

3.1 Model assumptions
To start off, four main assumptions made in the model are listed below:

• Thermal noise is unmanipulatable and independent from other noise sources.

• DC and TDC ROs are all mutually independent oscillators, affected by thermal
noise.

• RO phase affected by thermal noise behaves as a Wiener process with drift.

• Jitter strength (defined in Sect. 3.2.2) is small: Fnoise � 1 s.

3.2 Prerequisites
3.2.1 Notation

In this text, random variables and their realisations are denoted as uppercase and lowercase
characters respectively. A stochastic process through time t ≥ 0 is represented as an
uppercase function (e.g. {X(t)}t≥0) and a realisation as a lowercase function (e.g. {x(t)}t≥0).
The Probability Mass Function (PMF) or Probability Density Function (PDF) for a
discrete or continuous random variable respectively Y is denoted as fY (·). The Cumulative
Distribution Function (CDF) of a random variable Y is represented as FY (·). The expected
value and variance of a random variable Y are:



92 An nrg. and area eff., all digi. entropy src. comp. with mod. stds. based on jit. pl.

E[Y ] =
∑
i

yifY (yi), for Y discrete

=
∫ ∞
−∞

yfY (y)dy, for Y continuous,
(1)

Var[Y ] = E[(Y −E[Y ])2]. (2)

The probability of an event E is noted as P[E]. A conditioned random variable X, given
the knowledge of another random variable Y is denoted as: X|Y .

A random variable Y following a distribution D, with parameters pi is represented as:
Y ∼ D(p1, p2, · · · ). The distributions being used in this text are:

• Gaussian distribution: N (a, b2), with mean a and variance b2.

• Inverse Gaussian distribution: IG(a, b2), with mean a and variance a3

b2 .

The PDF and CDF of a standard normal distributed variable (Gaussian distributed with
mean 0 and variance 1) are denoted as ϕnorm(·) and Φnorm(·) respectively.

3.2.2 Description of a noisy oscillating signal

Some prerequisite knowledge on timing jitter in free running ROs is given.

Noiseless The phase of an oscillating noiseless signal is a continuous linear function
through time t:

ϕ(t) = µt+ ϕ0, (3)

with µ defining the oscillation speed or angular frequency and ϕ0 determining the phase
at time zero. The phase of an oscillator cannot be explicitly observed. The observable
waveform e(ϕ) (current flow or node voltage) is defined as a function of the implicit phase,
some examples are:

e(ϕ) = A sin(ϕ),

e(ϕ) =
{
A, if ϕ mod 2π < π

0, if ϕ mod 2π ≥ π,

e(ϕ) = A

2πϕ mod 2π,

(4)

representing sinusoidal, square and sawtooth waveforms respectively, with amplitude A.
The operator · mod a, is shorthand notation for · −

⌊ ·
a

⌋
a, or the positive remainder

after division by a. The waveform can then be described as a composite function of
time: w(t) = (e ◦ ϕ)(t) Each of these waveforms has a period: Pw = 2π

µ , meaning that
w(t+Pw) = w(t) for any t. The waveform frequency is the inverse of the period: Fw = µ

2π .

Noisy In this work, we assume the phase of an oscillator affected by thermal noise,
{Φ(t)}t≥0, to behave as a Wiener process with drift:

Φ(t) = µt+ ϕ0 + σW (t), for t ≥ 0, (5)

with ϕ0 again the phase at time zero, µ the drift and σ2 the infinitesimal variance.
{W (t)}t≥0 represents a Wiener process without drift. The oscillator is assumed to start at
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Figure 4: Example instances of a random phase process.
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Figure 5: RO waveform and corresponding phase versus time.

time zero, as the Wiener process is undefined for negative time. The assumption is related
to the fact that a Wiener process with drift describes the integration of currents with a
white (thermal) noise component onto a load capacitor, as was explained by [Abi06]. Some
example instances of this phase process are given in Fig. 4. At any moment in time ta, the
value of the phase is Gaussian distributed:

Φ(ta) ∼ N (µta + ϕ0, σ
2ta). (6)

Noisy Ring Oscillator An RO is modelled using the square waveform with amplitude
equal to one as the observable waveform phase function (e(ϕ)), the phase is modelled by a
Wiener process with drift and zero initial phase: Φ(t) = µt+ σW (t), as shown in Fig. 5.

The half-period duration of the k-th half period is represented by the random variable
Xk. Due to the independent increment property of the Wiener process, each half period
duration of the RO output is Independent and Identically Distributed (IID) compared
to all other half periods and can be represented by a single random variable: X. This
time duration is equal to the time it takes for the oscillator phase to reach a multiple of
π. Again due to the independent increment property, we only look at the time required
to reach a phase of π, starting from phase zero. All other half periods have identical
distribution. The time required for a Wiener process with drift to hit a certain level, α,
for the first time is inverse-Gaussian distributed: IG(αµ , (

α
σ )2). The half-period duration

distribution is then given as:

X ∼ IG(π
µ
, (π
σ

)2). (7)

From this, the expected value and variance for X can be calculated: E[X] = π
µ and

Var[X] = πσ2

µ3 . The jitter strength, controlling the rate at which jitter accumulates in the
RO is then equal to:

Fnoise = Var[X]
E[X] = (σ

µ
)2, (8)

with units of time. In practical applications, this quantity is in the order of femtosec-
onds [YRG+17].
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Note that an assumption was made in case of positive drift µ and phase started at zero,
the phase would not return back and cross zero into negative values. Zero however is also
a multiple of π and will therefore produce an edge at the output when crossed. This is
related to the fact that the inverse-Gaussian distribution only describes the first passage
time. For small values of drift relative to the infinitesimal variance (µσ � 1), the phase
could pass a certain level multiple times, with each passage creating an edge at the output.

The assumptions made will therefore only hold when µ
σ � 1, which is true in most

applications (Fnoise � 1 s). The probability of the phase returning back to its starting
value and crossing it is equal to:

P[Φ(t) ≤ 0] = Φnorm(−µ
σ

√
t), (9)

This probability diminishes rapidly in time when Fnoise � 1 s. For very small time instances
(t ≈ (σµ )2 or lower), the assumption will also not hold, as the RO output waveform cannot
be seen as an ideal digital signal anymore.

3.3 Delay Chain time difference distribution
The DC consists of two noisy free running ROs. The RO phase is described as a stochastic
process:

ΦDC0(t) = µDC0t+ σDC0WDC0(t) for t ≥ 0,
ΦDC1(t) = µDC1t+ σDC1WDC1(t) for t ≥ 0.

(10)

The DCs start at time zero with a phase equal to zero. Both DCs run a prescribed number
of periods n and cause the E2Ls to activate at times Tn0 and Tn1 respectively:

ΦDC0(Tn0 ) = n2π,
ΦDC1(Tn1 ) = n2π.

(11)

The first passage time at a level n2π of a Wiener process with drift is, as before, described
by the inverse-Gaussian distribution:

Tn0 ∼ IG( n2π
µDC0

, ( n2π
σDC0

)2),

Tn1 ∼ IG( n2π
µDC1

, ( n2π
σDC1

)2).
(12)

The DC time difference distribution Tn∆ after n periods is equal to:

Tn∆ = Tn0 − Tn1 , (13)

which is defined by a subtraction of two independent random variables. Its CDF can be
calculated by integrating the PDFs of Tn0 and Tn1 .

FTn∆(t) = P[Tn∆ ≤ t] = P[Tn0 ≤ t+ Tn1 ]

=
{∫∞

0 fTn1 (t1)
∫ t+t1

0 fTn0 (t0) dt0 dt1 if t ≥ 0∫∞
0 fTn0 (t0)

∫∞
t0−t fT

n
1

(t1) dt1 dt0 if t < 0.
(14)

The PDF for Tn∆ is then equal to:
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Figure 6: Relation between TDC phases and sampling time instances. The middle graph
shows TDC phases modulo 2π (ΦTDC0(t) mod 2π and ΦTDC1(t) mod 2π), the top graph
shows the TDC phase difference (ΦTDC0(t)−ΦTDC1(t)), and the bottom graph shows the
output waveform of TDC0 (top), TDC1 (middle), and sampling flip flop (bottom).

fTn∆(t) =
∂FTn∆(t)
∂t

. (15)

Note that in this model, Tn0 and Tn1 are assumed to be independent. Effort was made in
the design and layout of all four ROs to make sure coupling is minimised by introducing
separate supply networks and placing each RO in its own N-well. If a dependency would
still be present, this leads to a reduced jitter strength estimate in Sect. 4 and therefore
reduces the entropy claim made by this model.

3.4 Time to Digital Converter run time distribution
The TDC oscillators start oscillating when the respective DC has finished running n cycles
(times Tn0 and Tn1 respectively). Each TDC is a free running RO and the phases can be
represented as a stochastic process:

ΦTDC0(t) = µTDC0(t− Tn0 ) + σTDC0WTDC0(t− Tn0 ) for t ≥ Tn0 ,
ΦTDC1(t) = µTDC1(t− Tn1 ) + σTDC1WTDC1(t− Tn1 ) for t ≥ Tn1 .

(16)

Note that both Tn0 and Tn1 are random variables, following the distributions from Eq. 12.
ΦTDC0(t) and ΦTDC1(t) are therefore representing random Wiener processes with drift
and a random starting time instance.

TDC1 samples TDC0 by using a Data Flip Flop (DFF). Figure 6 shows the relation
between the TDC phases and the sampling time instances. Whenever the sampled value
(DFF output) toggles, the TDCs stop oscillating and the number of TDC1 periods is
outputted. From this figure, it can be seen that the toggling of the DFF output happens
whenever the two TDC phases have diverged by a value of more than π. The TDCs stop
at the next positive edge of TDC1. The TDC phase difference Φ∆(t) is defined only for
time instances after the second TDC has started:

Φ∆(t) = ΦTDC0(t)− ΦTDC1(t)
= (µTDC0 − µTDC1)t+ µTDC1T

n
1 − µTDC0T

n
0

+N (0, σ2
TDC0

(t− Tn0 ) + σ2
TDC1

(t− Tn1 )) for t ≥ max(Tn0 , Tn1 ).
(17)
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The notation: ·+N (a, b2) in Eq. 17 indicates the addition of a normal distributed variable
X, such that X ∼ N (a, b2). This normal distributed variable follows from the properties of
Wiener processes and addition of normal variables: aW (b) ∼ N (0, a2b), for any b ≥ 0, and
N (a, b2)−N (c, d2) ∼ N (a− c, b2 + d2), for two independent normal distributed random
variables. Here, three cases can be distinguished:

1. T n
∆ > 0 or T n

0 > T n
1 : the clock TDC (TDC1) starts running first. A time shift is

performed to Φ∆(t), such that: t′ = t− Tn0 . Substituting this into Eq. 17:

Φ∆(t′ + Tn0 ) = (µTDC0 − µTDC1)(t′ + Tn0 ) + µTDC1T
n
1 − µTDC0T

n
0

+N (0, σ2
TDC0

t′ + σ2
TDC1

(t′ + Tn0 − Tn1 )) for t′ ≥ 0.
(18)

This can be further simplified into:

Φ∆(t′ + Tn0 ) = (µTDC0 − µTDC1)t′ +
√
σ2
TDC0

+ σ2
TDC1

W ′TDC(t′)

− ΦTDC1(Tn0 ) for t′ ≥ 0.
(19)

Equation 19 shows that the TDC phase difference Φ∆(t), for t ≥ Tn0 , can be written
as a new Wiener process with drift µ∆ = µTDC0 − µTDC1 and infinitesimal variance
σ2

∆ = σ2
TDC0

+ σ2
TDC1

, subtracted with the accumulated phase ΦTDC1(Tn0 ) (from
time Tn1 to Tn0 ). This accumulated phase in TDC1 is independent of the Wiener
process W ′TDC(t′), as this process only starts at time t′ = 0 or t = Tn0 and due to the
nature of Wiener processes, phase accumulated over non-overlapping time intervals
is independent.

2. T n
∆ < 0 or T n

0 < T n
1 : the clock TDC (TDC1) starts running last. The reasoning

from the case Tn∆ > 0 can be repeated with a time shift: t′ = t − Tn1 . This will
produce:

Φ∆(t′ + Tn1 ) = (µTDC0 − µTDC1)t′ +
√
σ2
TDC0

+ σ2
TDC1

W ′TDC(t′)

+ ΦTDC0(Tn1 ) for t′ ≥ 0.
(20)

Again, the phase accumulated in TDC0 (ΦTDC0(Tn1 )) from Tn0 to Tn1 is independent
of the Wiener process W ′TDC(t′), starting at time t′ = 0 or t = Tn1 .

3. T n
∆ = 0 or T n

0 = T n
1 : both TDCs start at exactly the same time. Note that this

is only a theoretical case, as Tn∆ is described by a continuous probability density
function and the probability of this case happening is effectively equal to zero.
To be complete however, the TDC phase difference is now equal to (with a time shift:
t′ = t− Tn0 = t− Tn1 ):

Φ∆(t′ + Tn0 ) = (µTDC0 − µTDC1)t′ +
√
σ2
TDC0

+ σ2
TDC1

W ′TDC(t′)

= Φ∆(t′ + Tn1 ) for t′ ≥ 0.
(21)

In this case, the subtraction with the phase accumulated in one of the TDCs
disappears, as no TDC had been running before the second one starts.
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The shifted TDC phase difference Φ′∆(t) is now introduced:

Φ′∆(t) = Φ∆(t+ max(Tn0 , Tn1 )) for t ≥ 0. (22)

The TDC phase difference starts off at a random variable, determined by the DC time
difference Tn∆:

Φ0
∆ = Φ′∆(0) =


−ΦTDC1(Tn0 ) if Tn∆ > 0
ΦTDC0(Tn1 ) if Tn∆ < 0
0 if Tn∆ = 0.

(23)

From the description of the random processes in Eq. 16, Φ0
∆, conditioned to Tn∆, is

distributed as follows:

Φ0
∆|Tn∆ ∼


N (−µTDC1T

n
∆, σ

2
TDC1

Tn∆) if Tn∆ > 0
N (−µTDC0T

n
∆,−σ2

TDC0
Tn∆) if Tn∆ < 0

0 if Tn∆ = 0,
(24)

with X ∼ 0 indicating that the variable X follows a degenerate distribution centred at
zero, with PDF equal to the Dirac delta function δ(·). From the start on, the TDC phase
difference Φ′∆(t) will behave as a Wiener process with drift, added to this initial phase
difference. The TDCs will stop oscillating, whenever the value of Φ′∆(t) crosses for the
first time a multiple of π at time Tπ:

Tπ = min
t≥0

(t|Φ′∆(t) = mπ and m ∈ Z). (25)

An example phase instance of the two TDCs is shown in Fig. 7. Because we are only
interested in the first passage time of Φ′∆(t) at a multiple of π, the initial phase difference
can be reduced modulo π:

Φ̄′∆(t) = (Φ′∆(t)− Φ0
∆) + Φ0

∆ mod π for t ≥ 0. (26)
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Both Φ̄′∆(t) and Φ′∆(t) will have equal first passage times at a multiple of π: Tπ. Note
that for the reduced phase difference Φ̄′∆(t) the first passage level at a multiple of π will
be either zero or π:

Φ̄′∆(Tπ) = 0 or π. (27)

Depending on the sign of the phase drift difference (µ∆), the reduced phase difference
Φ̄′∆(t) will drift towards one of the two boundaries for µ∆ > 0 or µ∆ < 0, as shown in
Fig. 7.

When started too close to an opposite boundary 0 in case µ∆ > 0 and π in case µ∆ < 0,
the phase difference could hit this boundary, prematurely ending the oscillations. We can
now determine the CDF for Tπ, conditioned to Φ0

∆:

FTπ|Φ0
∆

(t|ϕ) = P[Tπ ≤ t|Φ0
∆ = ϕ] = 1− P[Tπ > t|Φ0

∆ = ϕ]

=
{

1− P[0 < Φ̄′∆(t) ≤ π|Φ0
∆ = ϕ] if t ≥ 0

0 if t < 0.
(28)

The condition for the oscillations to continue can be written more explicitly:

0 < µ∆t+ σ∆W
′
TDC(t) + ϕ mod π ≤ π. (29)

Moving all deterministic parts to the outside:

− µ∆t+ ϕ mod π
σ∆

< W ′TDC(t) ≤ π − µ∆t− ϕ mod π
σ∆

. (30)

From the property of Wiener processes: W (a) ∼
√
aN (0, 1), we can rewrite the boundaries

from Eq. 30:

− µ∆t+ ϕ mod π
σ∆
√
t

< X ≤ π − µ∆t− ϕ mod π
σ∆
√
t

, (31)

with X ∼ N (0, 1) (standard normal distributed). Substituting this result into Eq. 28 gives:

FTπ|Φ0
∆

(t|ϕ) =


1− Φnorm(π − µ∆t− ϕ mod π

σ∆
√
t

)

+ Φnorm(−µ∆t+ ϕ mod π
σ∆
√
t

)
if t ≥ 0

0 if t < 0.

(32)

Figure 8 depicts how these boundaries will evolve through time for different drift difference
(µ∆), infinitesimal difference variance (σ∆), and initial phase difference condition (Φ0

∆ = ϕ).
The conditional PDF for Tπ can then be obtained by differentiating the CDF.

3.5 Output bit probability distribution
The TDCs will stop oscillating at the first positive edge of TDC1 after time Tπ. The
number of cycles of TDC1 will then be used to construct the output random bit. The
number of completed cycles, R, is equal to:

R = dΦTDC1(Tπ + max(Tn0 , Tn1 ))
2π e. (33)

The term max(Tn0 , Tn1 ) is added to Tπ, as Tπ was defined for the shifted phase difference.
This term represents the accumulated phase in case TDC1 was started first.
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Figure 8: Lower and upper boundaries from Eq. 31, for different µ∆, σ∆, and Φ0
∆ = ϕ.
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Figure 9: Histogram of 1000 repeated simulations, showing the absolute ΦTDC1 phase
error introduced by using the simplified relation in Eq. 34. In most cases, the phase error
will be corrected by the ceil operation. The simulations were performed with jitter strength
equal to 30 fs.

There exists a dependency between Tπ and the Wiener process determining ΦTDC1(·).
This makes deriving an analytical expression for the distribution of R not straightforward.
To circumvent this issue, the noise contributing to ΦTDC1(·) is neglected: ΦTDC1(t) ≈
µTDC1(t− Tn1 ). This simplification is justified by the fact that the jitter strength in the
phase difference signal is much larger than in a single TDC: σ∆

µ∆
� σTDC1

µTDC1
. This is true for

decently matched TDCs (µTDC0 ≈ µTDC1 and |µ∆| � µTDC1). Simulation results shown
in Fig. 9 further justify the simplification as the introduced error in the phase ΦTDC1 is
low. The relative error (average deviation for R) is 0.2 %. Using this simplification, Eq. 33
is transformed to:

R = dµTDC1(Tπ + max(Tn0 , Tn1 )− Tn1 )
2π e. (34)

Depending on the sign of Tn∆, we have:

R =
{
dµTDC1 (Tπ+Tn∆)

2π e if Tn∆ > 0
dµTDC1Tπ

2π e if Tn∆ ≤ 0.
(35)

The term µTDC1T
n
∆ can be more accurately replaced by −Φ0

∆ for Tn∆ > 0 from Eq. 23,
as this term represents the accumulated phase in TDC1 before TDC0 was started. The
conditional CDF for R can now be calculated:

FR|Φ0
∆,T

n
∆

(r|ϕ, t) = P[R ≤ r|Φ0
∆ = ϕ, Tn∆ = t]

=
{
P[Tπ ≤ 2πr+ϕ

µTDC1
|Φ0

∆ = ϕ] if t > 0
P[Tπ ≤ 2πr

µTDC1
|Φ0

∆ = ϕ] if t ≤ 0
for r ∈ N.

(36)
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R is a discrete random variable:

fR|Φ0
∆,T

n
∆

(r|ϕ, t) = P[R = r|Φ0
∆ = ϕ, Tn∆ = t]

=
{
FR|Φ0

∆,T
n
∆

(r|ϕ, t)− FR|Φ0
∆,T

n
∆

(r − 1|ϕ, t) if r ∈ N1

FR|Φ0
∆,T

n
∆

(0|ϕ, t) if r = 0.
(37)

Removing the conditionals, to obtain the joint distribution:

fR,Φ0
∆,T

n
∆

(r, ϕ, t) = fR|Φ0
∆,T

n
∆

(r|ϕ, t)fΦ0
∆|T

n
∆

(ϕ|t)fTn∆(t), (38)

with fΦ0
∆|T

n
∆

(ϕ|t) and fTn∆(t) obtained from Eqs. 24 and 15 respectively. The random
variables Φ0

∆ and Tn∆ are integrated out, to obtain the distribution for R:

fR(r) =
∫ ∞
−∞

∫ ∞
−∞

fR,Φ0
∆,T

n
∆

(r, ϕ, t)dtdϕ. (39)

The produced random bit B is now equal to the least significant bit of R. From this, the
bit probability can be calculated:

P[B = b] =
∞∑
i=0

fR(2i+ b) for b ∈ {0, 1}. (40)

As the entire system does not contain a state that is transferred from one bit generation
to another, individual bits are IID by design.

4 Jitter strength measurement
The entropy estimate provided by the model in Sect. 3 is highly influenced by the platform
dependent parameter: jitter strength (Fnoise). This parameter determines the rate at
which timing jitter will naturally accumulate in a free running RO. In contrast to model
parameters (e.g. RO frequency), the value for the jitter strength cannot be measured out
directly. As was proposed by [YRG+17], jitter measurement should happen on-chip and
preferably with a differential measurement setup, to minimise external (non-thermal noise)
influences that might lead to an overestimation of the available timing jitter.

It is important not to overestimate the jitter strength parameter, and use a conservative
method here for the following two reasons: firstly, due to the nature of the measurement,
measurement errors (e.g. external noise sources other than thermal noise that might be
manipulable) will always manifest themselves as a positive bias. Intuitively, this can be
explained by the fact that the jitter strength parameter will be determined based on
observed measurement variance. If external, independent sources of error exist, they will
always lead to an increase of observed measurement variance (adding two independent
random variables will increase variance) and lead to an overestimation. Secondly, based on
the estimated output entropy, a security claim will be made. If the available jitter strength
was overestimated, this will lead to an overestimation of the produced output entropy, and
therefore to an invalid security claim.

To get accurate results, the jitter measurement experiment was repeated on five separate
devices (chips). The most conservative estimate will further be used to estimate entropy
for all devices tested.
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Figure 10: Jitter measurement circuit architecture.
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Figure 11: Jitter measurement time diagram.

4.1 On-chip measurement setup
The proposed ES architecture in Sect. 2 allows for on-chip differential jitter strength
measurement as well. A circuit diagram, showing only the relevant parts for the jitter
measurement, together with a timing diagram are shown in Figs. 10 and 11. By configuring
TDC0 and TDC1 to have a long and short oscillation period respectively (PTDC0 >
2PTDC1), it can be ensured that a positive edge of TDC1 will occur each half-period of
TDC0. When each half period of TDC0 is sampled, the TDCs will stop oscillating as soon
as both DCs have finished propagating. DC0 and DC1 are configured such that DC1 has
a shorter propagation delay than DC0 (Tn0 > Tn1 ). Therefore, TDC1 will oscillate during
the time interval when DC1 finished propagating, but DC0 did not. A counter, counting
the number of oscillations of TDC1 during this time interval, therefore produces an output
proportional to the propagation delay difference between DC0 and DC1. By observing the
counter output variance over multiple evaluations, an estimation for the differential DC
propagation variance and, therefore, also for the available jitter strength in DC0 and DC1
is obtained.

4.2 Theoretical jitter analysis
Based on the stochastic model from Sect. 3, an estimate for the observed counter output
variance can be made dependent on the value of Fnoise. In this work, we choose the
highest value for Fnoise, that will still lead to an underestimation of the observed variance,
as the final jitter strength estimate. The timing jitter accumulated by TDC1, will also
influence the counter output variance. The model from Sect. 3 is extended here, to get an
estimate for the counter output variance. The delay chain timing difference distribution
(Tn∆) is given by Eq. 14. Due to a hardware constraint, the TDCs are only allowed to stop
oscillating after both have gone through two full periods. The jitter accumulation time
interval is therefore given as:

TnA = Tn∆ + T2TDC0, (41)
with T2TDC0 a random variable describing the time required for TDC0 to oscillate for two
full periods. From Sect. 3, T2TDC0 is IG distributed:
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Figure 12: Jitter measurement results.

T2TDC0 ∼ IG( 4π
µTDC0

, ( 4π
σTDC0

)2). (42)

TDC1 will oscillate during this accumulation time interval TnA . The phase of TDC1 at the
end of this interval (assuming it started with zero phase), conditioned on the accumulation
time interval length, is Gaussian distributed:

[ΦJ |TnA = ta] = ΦTDC1(ta) ∼ N (µTDC1ta, σ
2
TDC1

ta) for ta ≥ 0. (43)
The condition to the accumulation time interval length can be removed similarly as was
done in Sect. 3:

fΦJ (ϕ) =
∫ ∞

0

1
σTDC1

√
ta
ϕnorm(ϕ− µTDC1ta

σTDC1

√
ta

)fTn
A

(ta)dta. (44)

The TDC oscillations will only stop after a positive edge has occurred in TDC1. All phases
of TDC1 in the interval (2π(r − 1), 2πr] will therfore produce the same counter output: r.
The probability of the counter output R being equal to a value r (PMF) is then given by:

fR(r) = P[R = r] =
∫ 2πr

2π(r−1)
fΦJ (ϕ)dϕ for r ∈ N1. (45)

From this result, the variance Var[R] can be calculated and compared with the measure-
ments.

4.3 Measurement results
Figure 12 shows the jitter measurement results for five different devices. The experiment
was repeated for four different DC accumulation time differences (Tn∆), determined by the
parameter: n ∈ {1, 2, 4, 8}. For each device, 100 times 216 counter outputs are collected.
The counter output variance (Var[R]) was calculated over the 216 collected samples. Each
device at each value for n is represented as a box plot, showing the experimental distribution
for Var[Tn0 ] derived from measuring Var[R], and using the model from Sect. 4.2, over
the 100 repeated measurements. The straight lines in Fig. 12 represent the theoretical
DC0 period length variance (Var[Tn0 ]) for different jitter strength magnitudes (Fnoise),
calculated as: Var[Tn0 ] = FnoiseE[Tn0 ]. A conservative estimate equal to 30 fs is obtained.

5 Design parameter selection criteria
The proposed ES design has four design parameters that can be freely chosen by the
designer: µDC0 , µDC1 , µTDC0 and µTDC1 . The infinitesimal variances (σX) are related to
the phase drifts by the obtained jitter strength and Eq. 8. This section provides a selection
strategy for these four parameters.
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5.1 Pipeline balance
As for all pipelined architectures, balancing the propagation times for both stages is
necessary. The propagation delay of the DC stage is given as:

dDC = max(Tn0 , Tn1 ), (46)

the slowest DC will determine when the TDCs can start resolving the timing difference.
The maximal TDC resolving time is determined by the TDC resolution (res), defined as:

res = |PTDC0 − PTDC1 | = |
2π

µTDC0

− 2π
µTDC1

|. (47)

Each period of TDC0, the TDC1 positive edge will have shifted with an amount of res
compared to the positive edge of TDC0. The TDCs will stop oscillating as soon as TDC1
samples a different value from TDC0. This means at most PTDC0

2res cycles of TDC1 are
required. The maximal TDC resolving time is then given as:

dTDC = PTDC0PTDC1

2res . (48)

To make sure the TDCs finish resolving before the DCs finish accumulating jitter for
the next output bit, the TDC resolving time should be smaller than the maximal DC
propagation delay: dTDC < dDC . This constraint imposes an upper bound to the TDC
resolution:

res >
PTDC0PTDC1

2 max(Tn0 , Tn1 ) . (49)

5.2 Entropy density
According to [KS11], a minimal Shannon entropy density of 0.997 bit/bit at the output is
required. The stochastic model from Sect. 3 is used to determine the theoretical entropy
density at the output. Timing jitter will accumulate proportional to a square root with
respect to accumulation time (addition of independent variances). A maximal TDC
resolution size is required to be able to extract the required entropy from the accumulated
DC timing jitter. This observation leads to an upper bound on the required TDC resolution,
given as:

res < α
√
Fnoise max(Tn0 , Tn1 ), (50)

with α a constant related to the required entropy density and the shape of accumulated
timing jitter distribution. The value of α can now be determined by evaluating the model
from Sect. 3 for multiple values of DC accumulation time and searching for the upper
bound on the required resolution.

Figure 13 shows the model results. As can be observed, the obtained α is not perfectly
constant. A lower bound (horizontal line in Fig. 13) is selected, such that Eq. 50 will
always produce a valid upper bound for the TDC resolution. The value for α used in the
remainder of this work equals 1.94.

5.3 ES Throughput
The ES throughput is related to the DC accumulation time:

throughput = 1
max(Tn0 , Tn1 ) . (51)
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Figure 14: TDC resolution versus DC accumulation time optimisation.

A sketch, showing both constraints for the TDC resolution versus DC accumulation time
is depicted in Fig. 14. The top curve (1) and bottom curve (2) visualise Eqs. 50 and 49
respectively. Valid values for the TDC resolution are marked by the shaded region in
between the two constraint curves. Higher ES throughput favours points more to the left
of the graph. The optimal resolution/accumulation time point is at the intersection of
both constraint curves. To have a sufficiently stable ES implementation, some margin from
the constraint borders is required, which is indicated by the optimal region in Fig. 14.

5.4 Delay control circuit
To enable the throughput optimisation procedure, a fine control over the DC accumulation
time (Tn0 and Tn1 ) and the TDC resolution is required. Figure 15 shows a circuit breakdown
for both the DC and TDC ROs. Each DC RO consists of four stages and each stage
contains five inverters of decreasing effective length.

Some inverters (indicated in Fig. 15) can be switched on/off by controlling a con-
figuration input as shown at the right of Fig. 15. When an inverter is switched on, its
output current is used to accelerate (dis)charge of the load capacitance, reducing the
stage propagation delay. When the inverter is switched off, it still contributes to the load
capacitance seen by the previous stage, further increasing the propagation delay.

Both TDC ROs consist of two stages and each stage contains eight identical minimal
sized inverters that have the same on/off control. The inverters do not require analog
voltages to be configured, they are either turned fully on or fully off. Having an all digital
design removes the need for additional circuitry to generate analog voltages on chip.

Both DC and TDC ROs have 16 configuration bits each, driven by a controller
circuit external to the device. Given the architecture in Fig. 15, for all devices tested, a
configuration in the optimal region could always be found.

6 Experimental results
Five devices containing the proposed ES architecture have been manufactured using a 28 nm
CMOS technology. Unless explicitly stated otherwise, all measurements are performed
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Figure 15: Detailed DC/TDC architecture.
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Figure 16: Measured sample correlation from 4096 samples.

at nominal conditions: 20 ◦C environment temperature and 0.9 V supply voltage. For
each device, the DC and TDC ROs are configured to obtain an operating point inside the
optimal region, as explained in Sect. 5. This was achieved by scanning all DC and TDC
RO frequencies and selecting an optimal combination.

6.1 IID claim verification
As claimed in Sect. 3.5, the output bits are by design IID. Two experiments are performed
to verify this claim: a correlation analysis of the generated counter (R) values, and the
NIST SP 800-90B IDD test [TBK+18].

Correlation analysis The sample correlation coefficient of 4096 consecutively generated
counter samples (realisations of R) from chip 0 is calculated for sample lags ranging from
1 to 1024. The sample correlation coefficient is calculated as:

correlation(lag) =
∑3072
i=1 (ri − r̄)(ri+lag − r̄)√∑3072

i=1 (ri − r̄)2∑3072
i=1 (ri+lag − r̄)2

, (52)

with ri the i-th generated sample and r̄ the sample mean. The results in Fig. 16 show no
significant sample correlation, further strengthening the IID assumption.

NIST SP 800-90B IID test All five devices pass the NIST SP 800-90B IID test, using
1 Mbit of consecutively generated bits.

6.2 Entropy validation
As minimally required by [KS11], the estimated output bit min entropy should be larger
than 0.91 per bit (equals 0.997 bits of Shannon entropy). In Sect. 5, the ES design
parameters have been selected to output at least 0.91 bit of min entropy, higher entropy
levels are possible at the cost of reduced throughput. Table 1 provides an overview of
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Table 1: Min entropy estimates.

Chip 0 1 2 3 4
Model estimate 0.99988 0.99861 0.99811 0.99895 0.99963
Test estimate 0.93341 0.94475 0.94722 0.95255 0.96221
Minimum 0.93341 0.94475 0.94722 0.95255 0.96221
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Figure 17: Measurement results.

the output min entropy estimates for all five devices tested, using 1 Mbit of consecutive
data at nominal conditions. Each of the devices reach the required min entropy level. The
entropy estimate obtained from the NIST SP 800-90B tests with 1 Mbit of data is even
more conservative than the one obtained from the stochastic model, which is expected as
these tests tend to underestimate the available entropy [Saa21]. The counter output (R)
could be used as a health metric, indicating a possible entropy reduction.

6.3 Power and throughput
All five devices tested achieve a throughput of over 250 Mbit/s at nominal conditions, as
can be seen in the left graph of Fig. 17. Process variations in the DC/TDC ROs can lead to
some devices having better/worse performance. One device (chip 1) has been extensively
tested at different voltage conditions. The experimental results in the middle graph of
Fig. 17 show that for all supply voltage levels tested, the output bit entropy remained
above the 0.91 bit/bit threshold.

The right graph of Fig. 17 shows the power consumption breakdown and energy
efficiency per generated bit. Best energy efficiency is achieved at 0.8 V supply: 1.46 pJ/bit,
which is lower than previous reported. The power breakdown shows that the Core, DC
and TDC consume 54.2 %, 8.2 % and 37.6 % of the total power consumption respectively
at nominal conditions. The core module contains the digitisation and synchronisation
circuitry.

7 Conclusion and comparison
7.1 Comparison
Compared to previous work in Table 2, the proposed design achieves best energy and
second best area efficiency (throughput generated per unit of normalised area). The jitter
pipelining architecture together with high TDC time resolutions allows for high throughput
at a modest area and power requirement. A chip photo is depicted in Fig. 18. The ES
circuitry (DC, TDC and core) occupies 750.7 µm2. Additional configuration flip-flops, to
store the DC/TDC configuration (Conf) and interfacing logic (Send) are added to measure
out the devices.
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Table 2: Comparison with previous work.

This ISSCC ISSCC JSSC JSSC Cryptogr.

work 2021 2017 2016 2012 2021
[TRA21] [KLK17] [YBS16] [MSA+12] [KHL21]

Technology [nm] 28 28 65 40 45 65

Entropy source Edge SRAM Edge Edge Meta- Edge
jitter leakage jitter jitter stability jitterjitter

Stochastic model
3 7 7 3 3 3available

All digital 3 3 7 3 7 3

Area [kF2] 957.5 36* 218 522.5 1977 59.2
Max throughput 298 3.6 9.9 2 8.27[Mbit/s] 2400

Best energy 9.6 35.5 11 2.9 128.2efficiency [pJ/bit] 1.46

Best area 311.2 100 45.4 3.83 139.7efficiency [bit/s/F2] 1214

Supply voltage 0.8 - 1.0 0.8 - 1.0 1.08 - 1.2 0.6 - 0.9 0.28 - 1.35 -range [V]
* SRAM area not included
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Figure 18: Chip photo with zoomed in region on the ES area.

7.2 Conclusion

The proposed ES architecture was designed and verified following an approach compatible
with modern standards. Thanks to the digital nature of the circuits used, this design gains
all benefits related to digital CMOS, such as scaling and design integration. A stochastic
model capable of estimating the output bit entropy is presented, together with an on-chip
jitter measurement methodology to quantify the jitter strength platform parameter. An
optimisation scheme is presented to guide the design parameter selection process and to
ensure maximal throughput is obtained for the given platform parameters. The jitter
pipelining structure allows for efficient (both in terms of area and energy usage) on-chip
entropy generation.
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