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Abstract. This paper introduces and analyzes Triplex, a leakage-resistant mode of op-
eration based on Tweakable Block Ciphers (TBCs) with 2n-bit tweaks. Triplex enjoys
beyond-birthday ciphertext integrity in the presence of encryption and decryption
leakage in a liberal model where all intermediate computations are leaked in full and
only two TBC calls operating a long-term secret are protected with implementation-
level countermeasures. It provides beyond-birthday confidentiality guarantees without
leakage, and standard confidentiality guarantees with leakage for a single-pass mode
embedding a re-keying process for the bulk of its computations (i.e., birthday confi-
dentiality with encryption leakage under a bounded leakage assumption). Triplex
improves leakage-resistant modes of operation relying on TBCs with n-bit tweaks
when instantiated with large-tweak TBCs like Deoxys-TBC (a CAESAR competition
laureate) or Skinny (used by the Romulus finalist of the NIST lightweight crypto
competition). Its security guarantees are maintained in the multi-user setting.
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1 Introduction
Protecting cryptographic implementations against side-channel attacks is a tedious process
and generally leads to significant performance overheads [MOP07]. Research to design
modes of operation with good properties against leakage has therefore gained interest
over the last decade. One popular approach for this purpose is to leverage so-called
“leveled implementations”, in which security is obtained by combining the minimum use
of a highly protected component while the rest of the computations only requires frugal
protections [PSV15]. As surveyed by Bellizia et al., this approach has led to different
authenticated encryption schemes, which can be viewed as different tradeoffs between
mode-level and implementation-level protection mechanisms [BBC+20].

Starting with the top of the hierarchy established in [GPPS19], ISAP [DEM+17,
DEM+20] and TEDT [BGP+20] are two-pass modes of operation that guarantee both
Ciphertext Integrity with Misuse-resistance and Leakage in encryption and decryption
(CIML2) and CCA security with misuse-resilience and Leakage in encryption and de-
cryption (CCAmL2). Relaxing the confidentiality with decryption leakage requirement,
Ascon [DEMS21] and Spook [BBB+20] are one-pass algorithms that guarantee CIML2 and
CCAmL1, and follow the blueprint of the TETSponge mode of operation [GPPS20]. Such
leakage-resistant designs have also been recognized as relevant for lightweight cryptography:
ISAP and Ascon are both finalists in the ongoing NIST competition1, one of the modes

1 https://csrc.nist.gov/Projects/lightweight-cryptography
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proposed by the Romulus finalist relies on an adaptation of TEDT (that takes advantage
of its 2n-bit tweaks) [IKMP20] and Spook was a Round-2 candidate.

Looking at their internal components, ISAP, Ascon and Spook are sponge-based designs,
building on the good leakage properties of the Duplex construction [DM19]. By contrast,
only TEDT is based on a Tweakable Block Cipher (TBC). As for one-pass modes relying on
TBCs, the only existing options are the TET scheme given in the appendices of [BGP+20],
which aims at CIML2 and CCAmL1 guarantees like Ascon and Spook, and the AET-LR
scheme in [GKP], which only targets CIML2 (ignoring confidentiality with leakage).

In this paper, we focus on the challenge of designing a more efficient leakage-resistant
mode of operation that provides similar guarantees as Ascon and Spook, but is based on
TBCs. For this purpose, we follow the recent trend of leveraging TBCs with large tweaks,
which it is the case for Romulus, but also for Deoxys-TBC-384 [JNPS21]. As discussed by
List [Lis21], large-tweak TBCs are handy to improve the bounds and efficiency of TEDT
(while also simplifying the analysis). We therefore leverage such a primitive to design a
new mode of operation, coined Triplex, that additionally improves the rate of the TET
construction. Namely, while TET requires two TBC calls (with n-bit tweaks) to encrypt
and authenticate n bits of message, Triplex can encrypt and authenticate 2n bits with
three TBC calls (with 2n-bit tweaks).2 Concretely, Triplex enjoys:

• n − log2(n) bits of confidentiality without leakage in the nonce misuse-resilient
setting [ADL17]. That is, the confidentiality of messages under unique nonces holds
as long as the total query complexity of the adversary does not exceed 2n/n, even
when other messages are compromised due to nonce misuse.

• n− log2(n) bits of CIML2 in the unbounded leakage model. That is, the integrity
guarantees hold as long as the query complexity of the adversary does not exceed
2n/n, even with nonce misuse and full leakage of the unprotected components.

Furthermore, these security guarantees do not vanish in the multi-user setting: Triplex still
provides n− log2(n) bits of confidentiality and integrity in this context.

Besides its excellent features for leakage-resistance, we believe Triplex is also an inter-
esting candidate to feed the comparison between Sponge-based and TBC-based designs in
general [Pey20]. In particular, its improved rate makes it similar to TETSponge, Ascon
& Spook regarding this metric. We initiate a comparative discussion of these ciphers by
analyzing prototype hardware implementations in the last section of the paper.

Cautionary note. The confidentiality and the integrity of Triplex are analyzed in the ideal
TBC model. This is a common trait of most formal analyzes in the multi-user regime. In
this setting, we are concerned with how local computation (captured by the number of
ideal TBC queries) affects security. The classical assumption on TBC (i.e., TPRP security)
is not helpful for this estimation and will induce a security loss due to the black-box
replacement. Thus, the bounds exclude generic attacks with local computations that just
call the primitive. Besides, in the unbounded leakage model (for CIML2), the internal
values (including ephemeral keys) are leaked and the standard model becomes vacuous.

Related works. With the goal to take advantage of efficient AES co-processors that are
frequently available in embedded devices, the retrofitting mode of [USS+20] and the LR-BC
mode of [BMPS21] only rely on n-bit block cipher calls. These modes are in general less
efficient than TBC-based modes due to this additional constraint, but they can lead to
excellent performance in practice when these co-processors are indeed available.

2 TBCs with larger tweaks require slightly more rounds, but current values suggest that the tradeoff is
positive. For example, Triplex instantiated with Deoxys-TBC-384 (which has 16 rounds) would require less
rounds per message blocks than TET instantiated with Deoxys-TBC-256 (which has 14 rounds).
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Structure of the paper. After providing the necessary background in Section 2, we give
the high-level ideas behind Triplex and its full specification in Section 3. Sections 4
and 5 provide the confidentiality analysis without leakage and the integrity analysis with
leakage of Triplex. In the confidentiality section, we also provide a short discussion of its
confidentiality with leakage, which we do not detail due to place constraints and its strong
similarity with the analysis of other leakage-resistant modes leveraging re-keying. We end
the paper with some hardware implementation results in Section 6.

2 Preliminaries
Notation. Let ε denote the empty string. Let {0, 1}∗ be the set of all finite bit strings
including the empty string ε. For a finite set S, let x $←− S denote the uniform sampling
from S assigning a value to x. Let |x| denote the length of the string x. Let x[i : j]
denote the substring from the i-th bit to the j-th bit (inclusive) of x. Concatenation of
strings x and y is written as x ‖ y or simply xy. If A is an algorithm, let y ← A(x1, . . . ; r)
denote running A with randomness r on inputs x1, . . . and assigning the output to y. Let
y

$←− A(x1, . . .) be the result of picking r at random and letting y ← A(x1, . . . ; r). Let
Perm(n) denote the set of all permutations over {0, 1}n, and let finally Func(∗, n) denote
the set of all functions from {0, 1}∗ to {0, 1}n.

Tweakable block cipher [LRW11]. A block cipher E : K ×M→M is a family of
permutations, where EK(·) = E(K, ·) is a permutation overM. A tweakable block cipher
E : K× T ×M→M (with a slight abuse of notation E) is a family of permutations over
M, indexed by two functionally distinct parameters: a key K ∈ K that is secret and used
to provide the security, and a tweak t ∈ T that is public and used to provide variability.
We write EK(t, ·) = E(K, t, ·), a permutation overM.

Nonce-based authenticated encryption [Rog02]. An AE scheme Π is a triplet of
algorithms (K, E ,D), where K is the key-generation algorithm, E the encryption algorithm
and D the decryption algorithm. The key-generation algorithm K samples a key K
uniformly at random from the key space. The encryption algorithm E takes as input a key
K, a nonce N , an Associated Data (AD) A, a message M , and returns a ciphertext and
tag C ‖ tag← EK(N,A,M). The decryption algorithm D takes as input a key K, a nonce
N , an AD A, a ciphertext and tag C ‖ tag, and returns either a message M or a symbol
⊥ indicating invalidity. For correctness, we assume that if C ‖ tag← EK(N,A,M) then
M ← DK(N,A,C ‖ tag). In this paper, the tag is always of fixed length.

Privacy security. We define the privacy security with respect to nonce-misuse resilience
as introduced in [ADL17]. The privacy security game Gpriv

Π is detailed in Figure 1. We
consider the security in the multi-user setting. For queries to the same user, the adversary
may repeat the nonce in the first encryption oracle Enc1, but the nonce in the second
encryption oracle should be unique and fresh. For queries to different users, the adversary
may repeat the nonce in both oracles. With access to oracles Prim, Enc1 and Enc2, the
goal of the adversary is to distinguish the second encryption oracle of an AE scheme from
a random function. Formally, given an adversary A, we define

Advpriv
Π (A) = 2Pr

[
Gpriv

Π (A)
]
− 1

as the advantage of the adversary against the privacy security of an AE scheme Π in the
nonce misuse-resilience setting, with Gpriv

Π (A) the abbreviation of Gpriv
Π (A) = true.

Authenticity security. We consider the authenticity security in the leakage setting,
and follow the notion of Ciphertext Integrity with Misuse-resistance and encryption and
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Game Gpriv
Π (A)

K1,K2, . . . ,
$←− K; b $←− {0, 1}

b′
$←− APrim,Enc1,Enc2 ; return (b′ = b)

procedure Prim(J, T,X)
if X = (+, x) then return EJ (T, x)
if X = (−, y) then return E−1

J (T, y)

procedure Enc1(i,N,A,M)
C ‖ tag← E(Ki, N,A,M)
return C ‖ tag

procedure Enc2(i,N,A,M)
C1 ‖ tag1 ← E(Ki, N,A,M)
C0 ‖ tag0

$←− {0, 1}|C1|+|tag|

return Cb ‖ tagb

Figure 1: Game Gpriv
Π : multi-user privacy security of an AE Π with nonce-misuse resilience.

Game GCIML2
Π (A)

K1,K2, . . . ,
$←− K; b $←− {0, 1}

Q ← ∅; b′ $←− APrim,Enc,Dec

return (b′ = b)

procedure Enc(i,N,A,M)
Le ← LE(Ki, N,A,M)
C ‖ tag← E(Ki, N,A,M)
Q ← Q∪ {(Ki, N,A,C ‖ tag)}
return (C ‖ tag, Le)

procedure Dec(i,N,A,C ‖ tag)
Ld ← LD(Ki, N,A,C ‖ tag)
M ← D(Ki, N,A,C ‖ tag)
if (Ki, N,A,C ‖ tag) ∈ Q then

return (M,Ld)
if b = 0 then return (⊥, Ld)
else return (M,Ld)

procedure Prim(J, T,X)
if X = (+, x) then return EJ (T, x)
if X = (−, y) then return E−1

J (T, y)

Figure 2: Game GCIML2
Π : multi-user CIML2 security of an AE Π with nonce misuse-resistance.

decryption Leakage (CIML2) by Berti et al. [BPPS17]. In the leakage environment, the
adversary not only has access to encryption oracle E and decryption oracle D, but also to
their corresponding leakage functions LE and LD. Here we consider it in the multi-user
setting. Given an adversary A, we define

AdvCIML2
Π (A) = 2Pr

[
GCIML2

Π (A)
]
− 1

as the advantage of the adversary against the CIML2 security of an AE scheme Π,
where game GCIML2

Π is illustrated in Fig. 2 and GCIML2
Π (A) is the abbreviation that

GCIML2
Π (A) = true. The adversary is given encryption and decryption oracles, which

both contain the corresponding leakage function. She can repeat nonces in encryption
and decryption queries. She may also make a decryption query (i,N,A,C ‖ tag) even if
(i,N,A,C ‖ tag) has appeared in previous encryption queries. This kind of decryption
query lets her obtain additional leakage during decryption. The goal of the adversary is
to output a valid and new tuple (i,N,A,C ‖ tag) that passes the decryption oracle of the
real AE scheme, while in the ideal world she will always receive a rejection symbol ⊥.

Hirose’s Compression Function [Hir06]. Triplex makes use of Hirose’s compression
function (based on TBCs) to handle the message and associated data. We next recall the
definition of this compression function. It is also represented in Figure 3.

Definition 1. Let Hir : {0, 1}2n × {0, 1}2n → {0, 1}2n be a compression function such
that (hi, ki) = Hir(hi−1, ki−1,mi) where hi−1, ki−1, hi, ki ∈ {0, 1}n and mi ∈ {0, 1}2n. Hir
is built from a tweakable blockcipher E : {0, 1}n × {0, 1}2n × {0, 1}n → {0, 1}n as follows:{

hi = Eki−1(mi, hi−1)⊕ hi−1

ki = Eki−1(mi, hi−1 ⊕ θ1)⊕ hi−1 ⊕ θ1,
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Figure 3: Hirose’s compression function that is built on top of a tweakable block cipher E.

where θ1 is a non-zero constant.

Some useful Lemmas. We introduce some lemmas that will be useful in our analyzes.

Lemma 1. [HT17, Lemma 15] Suppose that we throw u balls uniformly at random
into 2n bins. Then, with probability at most 2−n, there exists some bin of more than
max{4n, 4u/2n} balls.

Lemma 2. [BHT18, Lemma 10] Suppose that we throw u balls into 2n bins and, condi-
tioning on the result of prior throws, the probability that each ball falls into any particular
bin is at most 2n−1. Fix 0 < ε < 1, and let u ≤ 2(1−ε)n−1. Then with probabilty at most
2−n/2, there exists some bin of more than d1.5/εe balls.

The collision probability of Hirose’s Double-block-length hash function based on a TBC
is formalized by the following lemma.

Lemma 3. Let H be a hash function composed of the compression function Hir specified
in Definition 1. Then, for any adversary A that makes at most p queries to the ideal TBC
E, we have

Pr [A finds a collision on H ] ≤ 8p2

22n .

The proof of this lemma is similar to the one of [Hir06, Theorem 4]. For the sake of
completeness, we present it in Appendix A.

3 Specifications of Triplex
In this section, we give the full details of Triplex. Triplex is a one-pass AE mode based on
TBCs with large tweaks. To achieve so-called Grade-2 leakage security (i.e., a combination
of CCAmL1 for confidentiality and CIML2 for integrity), we combine an ephemeral key
evolution process based on a compression function as in [BMPS21] with strengthened
Key Derivation Function (KDF) and Tag Generation Function (TGF). On the one hand,
the ephemeral key evolution allows iteratively processing each block of message with a
fresh key, which is reminiscent of other designs conferring confidentiality guarantees in the
presence of encryption leakage [BBC+20]. On the other hand, the compression function is
used to progressively absorb the blocks to make the computation more and more dependent
on the already processed blocks, leading to a kind of digest that can then be authenticated
using a fixed-length Leakage-Resilient Message Authentication Code (LR-MAC).

In the following, we explain the intuition behind the design of Triplex and discuss the
difference with sponge-based designs before providing the full specifications. The security
analysis is postponed to the next sections.
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3.1 Design Blueprint
Triplex follows the general 3-step blueprint suggested in [BBC+20] for Grade-2 designs. In
the initialization step, we generate a random 2n-bit state (h1, k1) from a key derivation
function KDFK(P,N), where k1 is an ephemeral encryption key. P is a random key that
can be public. It confers more security in the multi-user setting as in Spook [BBB+20]
and TEDT [BGP+20], since in order to implement key-collision attack, the adversary
needs to find a collision for both secret key K and public key P among many users. As
detailed later, the KDF requires only a single call to the protected TBC. Next, the bulk of
the computation is instantiated as a one-time encryption of M1‖ · · · ‖M` where, at each
successive processing of a message block Mi, the corresponding ciphertext block Ci is
created and absorbed, and the state is refreshed. We then also absorb the Associated
Data (AD) resulting in a final state (hf , kf ). Eventually, in the finalization step, we use
an LR-MAC for the TGF to authenticate (hf , kf ) and creating a tag using only a second
protected TBC call. That means that the linear number of TBC calls in the message (and
AD) processing part can remain unprotected, leading to performance benefits.

We now give more details about the intermediate step.

To improve the rate of our AEAD, we start from the Hirose compression function Hir
implemented with two calls to the TBC with large tweaks (see Section 2, Figure 3). This
allows absorbing 2n-bit blocks of message per iteration, plugged as the tweak of both TBC
calls. By iterating, we get a hash function with 2n-bit state (hi+1, ki+1), no matter the
size of the tweak. Our goal is to turn this hash function into a one-time encryption of the
2n-bit block of message by making a single additional call to the underlying TBC, thus
processing 2n bits with only 3 unprotected TBC calls. The reason why a single additional
call is enough is because we can already encrypt the first n bits of the block by XORing
it with the random half state hi. We use the other half state ki as an ephemeral key
to encrypt the last n bits of the message block (by XORing it with the output of the
additional TBC call). We absorb the resulting 2n-bit ciphertext block in the compression
function from (hi, ki). Since the key ki is used thrice per iteration, we use two constants
θ1, θ2 to enforce all the plaintext-inputs hi, hi⊕ θ1, hi⊕ θ2 of the TBC to be distinct. This
key-input and these 3 plaintext-inputs are thus deterministic in the current state (hi, ki),
and remain out of the direct control of the adversary.

In Figure 4, we depict the encryption of M1‖ . . . ‖M4 with associated data A1‖A2,
where (h1, k1) is the initial state. The 3 TBC calls per 2n-block of message can easily be
parsed from the picture. For each processing of message block, the 2 (vertical) TBC calls
in black represent Hir. In red, the additional TBC call corresponds to our plug-in that
turns Hir into a block encryption. The final state is (h4, k4) in this case.

We now picture Triplex’s initialization step (which derives the initial state) as well as
the finalization step (which generates the tag from the final state) in Figure 5. For the
KDF in Figure 5(A), we first use the key K, the public key P and the nonce N to set up
an IV (h0, k0) for the compression function, where h0 = 0n and k0 is the TBC output. The
preimage resistance of the half state hi-value as the image of a single-length compression
function ensures that no internal state can collide with (h0, k0) because otherwise hi = 0n.
To avoid initial-state-collisions between encryption and decryption, we simply apply Hir
once with the nonce and the public key: we make the unprotected call Hir(h0, k0, N‖P ).
This very first call to Hir inside KDF forces the initial state (h1, k1) to diverge for distinct
pairs (N,P ) even if some collision on k0 occurs. For the TGF in Figure 5(B), we borrow
the recent LR-MAC due to [BGPS21] which already leverages double-size tweak to get an
elegant and simple beyond-birthday authentication mechanism. For checking the validity
of the tag in decryption, this LR-MAC relies on the invertibility of the TBC in order
to avoid leaking any information on the right tag given any adversarially chosen invalid



Y. Shen, T. Peters, F.-X. Standaert, G. Cassiers, C. Verhamme 141

h1

EE

EE

EE

k1

M1 C1 C2M2

N||P

 1

 2

h2

k2

EE

EE

EE

M3 C3 C4M4

N||P

 1

 2

h3

k3

EE

EE

1
 1

A1||A2

h4

k4

K
D
F

KK

N

KK

T
G
F

tag
P

Figure 4: The Triplex mode of operation.
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the final state for 2l blocks of message and
2v blocks of associated data.

Figure 5: Triplex initialization and finalization (protected TBC in gray).

ciphertexts, as formalized in [BPPS17]. The verification thus simply checks whether the
inversion gives back the constant 0n, and otherwise the computed n-bit string is random
and independent of the valid tag. As a result, even this part can leak in full.

We can reuse the same key K in both initialization and finalization. Since the first
protected TBC call involves the tweak P‖0n, the n-bit 0-string serves as separation. Indeed,
in the second protected TBC call, it is very unlikely that the final state (hl+v+1, kl+v+1)
is such that kl+v+1 = 0n for the same preimage reason given above.

Note that it is easy to separate the computation of the unprotected TBCs with the
protected ones, which will be handy in our security analysese. While many unprotected
TBC calls use N‖P as tweaks with P 6= 0n, with very high probability these computations
cannot collide with the first protected TBC. In the same spirit, while the plaintext-input
of the protected TBC call in TGF is 0n, no internal unprotected TBC calls is going to
have the same input, except with very low (negligible) probability. The only exception is
actually with h0 in KDF, which will be handled in the proofs.

Regarding the difference between Triplex and sponge-based designs, although security
goals may be similar (CCAmL1 + CIML2), the underlying primitives and security proofs
are quite different. Triplex is built on top of a TBC and uses Hirose hash to absorb data,
has different KDF, TGF and message processing parts as detailed above, and innovatively
uses a third TBC to encrypt messages, leading to a better rate than TET. While the state
(hi, ki) is also used to encrypt 2n-bit block of message, the Hirose compression function
actually absorbs hi, ki and the resulting 2n-bit encrypted block. Somehow, and unlike
sponge-based designs, our state can be seen as cleverly playing both the roles of the rate
and the capacity in the Duplex mode: while the state is used as one-time encryption key
(partially thanks to our third TBC call), and thus as a “rate,” it is also absorbed without
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any adversarial manipulation, and can also be considered as a “capacity.” Therefore, even
if hi can be deduced from the encryption of a known plaintext it still plays a fundamental
role in the high collision resistance of the compression function together with ki. For
confidentiality, only the ephemeral key ki should remain secret to produce the next secret
state (hi+1, ki+1). We elaborate further on the comparison with the rate and the capacity
in sponge -based designs in Appendix C.

For the security analysis, we cannot generically rely on the collision resistance of Hirose’s
hash function in the hope to deal independently with our additional third TBC call for
confidentiality. This would have made the proof simpler at a first sight but the third TBC
call uses the same key ki of the internal two TBC calls of the Hirose compression function
at each iteration. Moreover, exploiting the best of the re-keying mechanism in the proof
would become more complex. On the positive side, studying security “from scratch” at
the fine-grained TBC level allows us to derive precise and higher security bounds.

Table 1: Parameters for Triplex. For example, the underlying TBC can be instantiated with
Skinny-384 for 121-bit security (implementation results are given in Section 6).

Parameters General n n = 128 (e.g., Skinny-384)
Key size 2n bits 256 bits

n secret, n public 128 secret, 128 public
Tweak size 2n bits 256 bits
Nonce size n bits 128 bits

Maximal message 2n/n blocks 295 GiB
Maximal AD 2n/n 295 GiB

Tag size n bits 128 bits
Security level n− log2(n) bits 121 bits

3.2 Formal Description
The code description and figure are illustrated in Figure 6 and Figure 7.
The concrete parameters for Triplex are given in Table 1.

Padding Method. The padding function first appends a single 1 and then the smallest
number of 0s to the plaintext M such that the length of the padded plaintext is a multiple
of 2n bits (since in each iteration, it can handle a 2n-bit string). The resulting padded
plaintext is parsed into 2` blocks of n bits where ` = d|M |/2ne, namely M [1] ‖ . . . ‖M [2`]
where |M [i]| = n. The same padding function is applied to parse the associated data A
into 2v blocks of n bits where v = d|A|/2ne, namely A[1] ‖ . . . ‖ A[2v] where |A[i]| = n,
except if the associated data A is empty. In this case, no padding is required and no
associated data is processed. Formally, for any M ∈ {0, 1}∗ and A ∈ {0, 1}∗,

M [1] ‖ . . . ‖M [2`]← pad(M) = M ‖ 1 ‖ 02n−1−(|M |mod2n),

A[1] ‖ . . . ‖A[2v]← pad(A) =
{
A ‖ 1 ‖ 02n−1−(|M |mod2n) if |A| > 0,
∅ if|A| = 0.

4 Confidentiality Analysis of Triplex
In this section, we give the privacy analysis for Triplex in the nonce-misuse resilience setting.
We also explain how the techniques of [BGP+20, GPPS20] can easily be applied to Triplex
to derive its CCAmL1 security at the end of the section.
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procedure E(K ‖ P,N,A,M)
Input: key K ∈ {0, 1}k,

public key P ∈ {0, 1}k

nonce N ∈ {0, 1}n

associated data A ∈ {0, 1}∗
plaintext M ∈ {0, 1}∗

Output: ciphertext C ∈ {0, 1}|M|
tag tag ∈ {0, 1}n

Initialize
M [1] ‖ . . . ‖M [2`]← pad(M)
A[1] ‖ . . . ‖A[2v]← pad(A)
h0 ← 0n; k0 ← EK(P ‖ 0n, N)
(h1, k1)← Hir(h0, k0, N ‖ P )

Processing Plaintext
for i← 1 to ` do
C[2i− 1] = hi ⊕M [2i− 1]
C[2i] = Eki (N ‖ P, hi ⊕ θ2)⊕M [2i]
T ← C[2i− 1] ‖ C[2i]
(hi+1, ki+1)← Hir(hi, ki, T )

C ← dC[1] ‖ . . . ‖ C[2`]e|M|

Processing Associated Data
k`+1 ← k`+1 ⊕ 1
for i← 1 to v do
j ← `+ i

T ← A[2i− 1] ‖A[2i]
(hj+1, kj+1)← Hir(hj , kj , T )

Finalize
i← `+ v + 1
tag← EK(hi ‖ ki, 0n)
return C ‖ tag

Inner Function Hir(hi−1, ki−1,mi)
hi ← Eki−1 (mi, hi−1)⊕ hi−1

ki ← Eki−1 (mi, hi−1 ⊕ θ1)⊕ hi−1 ⊕ θ1

return (hi, ki)

procedure D(K ‖ P,N,A,C ‖ tag)
Input: key K ∈ {0, 1}k,

public key P ∈ {0, 1}k

nonce N ∈ {0, 1}n

associated data A ∈ {0, 1}∗
ciphertext C ∈ {0, 1}∗
tag tag ∈ {0, 1}n

Output: plaintext M ∈ {0, 1}|C| or ⊥

Initialize
C[1] ‖ . . . ‖ C[2`]← pad(C)
A[1] ‖ . . . ‖A[2v]← pad(A)
h0 ← 0n; k0 ← EK(P ‖ 0n, N)
(h1, k1)← Hir(h0, k0, N ‖ P )

Processing Ciphertext
for i← 1 to ` do
M [2i− 1] = hi ⊕ C[2i− 1]
M [2i] = Eki (N ‖ P, hi ⊕ θ2)⊕ C[2i]
T ← C[2i− 1] ‖ C[2i]
(hi+1, ki+1)← Hir(hi, ki, T )

M ← dM [1] ‖ . . . ‖M [2`]e|C|

Processing Associated Data
k`+1 ← k`+1 ⊕ 1
for i← 1 to v do
j ← `+ i

T ← A[2i− 1] ‖A[2i]
(hj+1, kj+1)← Hir(hj , kj , T )

Finalize
i← `+ v + 1
x← E−1

K (hi ‖ ki, tag)
if x = 0n then return M

else return ⊥

Figure 6: Authenticated encryption and decryption procedures of Triplex.

Nonce-misuse resilience. We next show that Triplex provides beyond-birthday privacy
security in the nonce-misuse resilience setting (see the experiment in Figure 1).
Theorem 1. For any adversary A against u users that makes at most q encryptiones
queries, p ideal TBC queries, with the total number of primitive calls among these q
encryption queries being at most σ, we have

Advpriv
Triplex(A) ≤ u2 + 16(σ + p)2

22n+1 + 3c1(σ + p) + q + 3np+ nσ + 3σ + 3p+ 1
2n + 2

2n/2

where c1 = max{4n, 4u/2n} and assuming that q ≤ 2n−1, σ ≤ 2n−3 and p+ σ ≤ 2n−1.
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Figure 7: Triplex’s full encryption details. The first 3 TBC calls on the left represents KDF
producing the initial state (h1, k1). The last TBC call on the right represents TGF producing the
tag. Only the TBC calls colored in gray at the extremities are protected.

Discussion and overview of the proof. Theorem 1 implies that Triplex provides
confidentiality security as long as the total number of primitive calls σ and the total
number of ideal TBC queries p (also known as the offline queries) does not exceed 2n/n,
and the number of users u can be as large as 2n.

The proof is based on the observation that Triplex is indistinguishable from a random
scheme as long as there are no full collisions among the 2n-bit state value (hi, ki). Due
to freshness of the nonce in the second encryption oracle, this state value collides with
probability approximately σ2/22n. Regarding (key,tweak) collisions between direct calls
to TBC and KDF, these happen with probability around c1p/2n for some constant c1
since multiplicities of the public keys Pi can be bounded by Lemma 1. For collisions
between direct calls to the TBC and internal TBC calls among Triplex, the influence on
the bound is not significant since the maximum number of state values with the same hi
can be bounded by Lemma 2. Regarding (key, tweak) collisions between direct calls to
TBC and TGF, these happen with probability about p/2n since there is no full collision
among the final 2n-bit state value (h`+v+1, h`+v+1). Regarding key collisions among many
users, these happen with probability about u2/22n with the help of public key Pi. More
details can be found in the formal proof. Note that our security analysis (including the
integrity analysis in Section 5) can be modified syntactically to cover the case when Triplex
processes associated data (AD) before message M . The proof idea is exactly the same.

Proof. Recall that in the security game as illustrated in Figure 1, the adversary is granted
access to three oracles, namely the first encrytion oracle, the second encryption oracle and
the ideal TBC oracle. The first encryption oracle and the ideal TBC oracle behave exactly
the same in both the real and ideal worlds. Hence our goal is to prove that it is hard for
the adversary to distinguish the outputs of the second encryption oracle in the real world
from those outputs in the ideal world, except with a negligble probability.

Formally, from the interaction with its oracles, the adversary can obtain:

• Ideal TBC queries. For each query Prim(J, T, (x,+)) with answer y, we associate
it with an entry (prim, J, T, x, y,+). Similarly, for each query Prim(J, T, (y,−)) with
answer x, we associate it with an entry (prim, J, T, x, y,−).

• Queries to the first encryption oracle. For each query Enc1(i,N,A,M) with
answer C ‖ tag, let M = M [1] ‖ . . . ‖ M [2`], C = C[1] ‖ . . . ‖ C[2`], and A =
A[1] ‖ . . . ‖ A[2v]. Let h0 = 0n, k0 = EKi(Pi ‖ 0n, N), h1 = Ek0(N ‖ Pi, 0n),
k1 = Ek0(N ‖Pi, θ1)⊕θ1, and for 1 ≤ j ≤ `, let hj+1 = Ekj (C[2j−1]‖C[2j], hj)⊕hj
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and kj+1 = Ekj
(C[2j − 1] ‖ C[2j], hj ⊕ θ1) ⊕ hj ⊕ θ1. Let k`+1 = k`+1 ⊕ 1, and

for 1 ≤ j ≤ v, let h`+j+1 = Ek`+j
(A[2j − 1] ‖ A[2j], h`+j) ⊕ h`+j and k`+j+1 =

Ek`+j
(A[2j − 1] ‖ A[2j], h`+j ⊕ θ1) ⊕ h`+j ⊕ θ1. We associate the query with an

entry (enc1, i, N,A,M,C ‖ tag). We also use the entry (inter, J, T, x, y) to record the
underlying primitive calls during the computation of this query, which are used for
the analysis and hidden from the adversary’s view.

• Queries to the second encryption oracle. For each query Enc2(i,N,A,M) with
answer C ‖ tag, similarly to the case of the first encryption oracle, we associate it
with an entry (enc2, i, N,A,M,C ‖ tag), and use the entry (inter, J, T, x, y) to record
the underlying primitive calls during the computation of this query. Note that the
only difference between queries to the first encryption oracle and second encryption
oracle is that the nonce in the former ones may repeat while the nonce in the latter
ones should be unique and different from those of the former ones.

We next define some bad events in the real world, and argue that the outputs in the
real world are the same as random strings when none of these bad events happen. De-
note as parent(hai,b ‖ kai,b) a sequence of state values that lead to hai,b ‖ kai,b at the a-th
query to user i, with parent(hai,1 ‖ kai,1) = hai,0 ‖ kai,0 = 0n ‖ kai,0 and parent(hai,b ‖ kai,b) =
(hai,0 ‖ kai,0, . . . , hai,b−1 ‖ kai,b−1). We say the flag bad1 is set to true if at least one of the
following bad conditions is triggered:

(1) There exits two users i and j (i 6= j) such that Ki = Kj and Pi = Pj .

(2) The same Pi repeats at least c1 times among u users.

(3) There exists an ideal TBC query (prim, J, T, x, y, ∗) such that J = Ki and T = Pi ‖0n
for some user i.

(4) There exists an internal primitive call (inter, J, T, x, y) such that J = Ki and T =
Pi ‖ 0n for some user i.

(5) There exists an entry (enc2, i, N
a
i , A

a
i ,M

a
i , C

a
i ‖ tagai ) such that Na

i ‖ Pi = N b
j ‖ Pj

and kai,0 = kbj,0 for some other entry (enc∗, j,N b
j , A

b
j ,M

b
j , C

b
j ‖ tagbj).

(6) There exists an entry (enc∗, i, Na
i , A

a
i ,M

a
i , C

a
i ‖ tagai ) such that kai,`a+va+1 = 0n.

(7) For some entry (enc2, i, N
a
i , A

a
i ,M

a
i , C

a
i ‖ tagai ), there exists an ideal TBC query

(prim, J, T, x, y, ∗) such that J = kai,0 and T = Na
i ‖ Pi, or there exists some internal

primitive call (inter, J, T, x, y) such that J = kai,0 and T = Na
i ‖ Pi.

(8) For some entry (enc2, i, N
a
i , A

a
i ,M

a
i , C

a
i ‖ tagai ), there exists some ha′i′,b′ ‖ ka

′

i′,b′ such
that parent(ha′i′,b′ ‖ ka

′

i′,b′) 6= parent(hai,b ‖ kai,b) and ha′i′,b′ ‖ ka
′

i′,b′ = hai,b ‖ kai,b.

(9) For any entry (enc2, i, N
a
i , A

a
i ,M

a
i , C

a
i ‖ tagai ), each kai,b appears at least c2 times, or

each hai,b appears at least c2 times.

(10) For some entry (enc2, i, N
a
i , A

a
i ,M

a
i , C

a
i ‖ tagai ), there exists some ideal TBC query

(prim, J, T, x, y, ∗) such that x ‖ J = hai,b ‖ kai,b.

(11) For some entry (enc2, i, N
a
i , A

a
i ,M

a
i , C

a
i ‖ tagai ), there exits some ideal TBC query

(prim, J, T, x, y, ∗) such that J = Ki and T = hai,`a+va+1 ‖ kai,`a+va+1, or there
exists some internal primitive call (inter, J, T, x, y) such that J = Ki and T =
hai,`a+va+1 ‖ kai,`a+va+1.
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We briefly comment on the intuition behind these bad conditions.
Condition (1) is to avoid key collisions among u users. Condition (2) is to put a threshold
on the maximal repeated times of a public Pi among u users, which helps to analyze other
bad conditions. Conditions (3) and (4) are to guarantee that the inputs (including the
secret key and tweak) of the first TBC remain different from that of the ideal TBC queries
or underlying primitive calls, thus preserving the randomness of the output. Condition
(5) is to ensure that even when (N,A,M) may repeat between two users, the initial value
(k0, N ‖ P ) of the hash function remains different, thus avoiding trivial collisions for the
hash function between two users. Condition (6) is to avoid the input collision between
the first TBC and last TBC, that is if kai,`a+va+1 6= 0n, then the tweaks of these two
TBCs are always distinct. Condition (7) is to ensure that for each encryption query
(enc2, i, N

a
i , A

a
i ,M

a
i , C

a
i ‖ tagai ), the initial input kai,0 and Na

i ‖ Pi are fresh from that of
ideal TBC queries and internal primitive calls. Condition (8) is to ensure that for each
encryption query, the internal input hai,b ‖ kai,b is always fresh from other internal inputs.
Condition (9) is to put a threshold on the maximum number of repetitions of the key kai,b
and the outer part hai,b needed in the analysis of following event. Condition (10) is to
ensure that for each encryption query, the internal input hai,b ‖ kai,b is always fresh from
inputs of ideal TBC. Condition (11) is to ensure that the input of last TBC is fresh from
that of ideal TBC queries and internal primitive calls.

Denote by p(K,T ) the number of ideal TBC queries with key K and tweak T that
are issued by the adversary. Then

∑
K∈K,T∈T

p(K,T ) = p. If bad1 is not set to be true,

then for each entry (enc2, i, N
a
i ,M

a
i , C

a
i ‖ tagai ), tagai is always a n-bit random string since

the (key,tweak) pair of (Ki, h
a
i,`a+va+1 ‖ kai,`a+va+1) is fresh, and each Cai [b] is sampled

uniformly at random from a set {0, 1}n \S(kai,b−1, T ) where S(kai,b−1, T ) is the set of values
that have been sampled for the TBC under the pair of key and tweak (kai,b−1, T ). Here
T = Na

i ‖ Pi if b is odd and T = Cai [b− 2] ‖ Cai [b− 1] otherwise. Instead of sampling each
Cai [b] from the corresponding set {0, 1}n \S(kai,b−1, T ) directly, we will first sample a value
v uniformly at random from the set {0, 1}n, and if v ∈ S(kai,b−1, T ), then a flag bad2 ← true
and v $←− {0, 1}n \ S(kai,b−1, T ) is resampled. Finally the value v is assigned to Cai [b]. So if
the flag bad2 is false, then each Cai [b] behaves exactly the same as a random string. Hence,
when neither bad1 nor bad2 is true, the outputs from the second encryption oracle in the
real world are merely random strings, which are independent from queries of the adversary.
By applying the fundamental lemma of game playing technique [BR04, BR06],

Advpriv
Triplex(A) ≤ Pr [ bad1 ] + Pr [ bad2 | ¬bad1 ] .

In Lemma 4 and Lemma 5 we will bound these two terms by

u2 + 16(σ + p)2

22n+1 + 3c1(σ + p) + q + 3np+ nσ + 3σ + 3p+ 1
2n + 2

2n/2 ,

which completes the proof.

Lemma 4. Assume that the adversary makes at most q encryption queries, p ideal TBC
queries, with the total number of primitive calls among these q encryption queries being at
most σ. Then we have

Pr [ bad1 ] ≤ u2 + 16(σ + p)2

22n+1 + 3c1(σ + p) + 2np+ q + 3σ + 3p+ 1
2n + 2

2n/2

where c1 = max{4n, 4u/2n}.

Proof. We now analze the probability that the flag bad1 is set to be true. Let eventi be
the event that the i-th condition is triggered. We consider each event in turn.
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For event event1, since both Ki and Pi (1 ≤ i ≤ u) are chosen uniformly at random
from the set {0, 1}n, the probability that Ki = Kj and Pi = Pj is exactly 1/22n. Summing
over at most u2/2 pairs of (i, j),

Pr [ event1 ] ≤ u2

22n+1 .

Next, we analyze event event2. In this case, each Pi is public and chosen uniformly at
random from the set {0, 1}n. Let c1 = max{4n, 4u/2n}. Then by using the balls-into-bins
result from Lemma 1,

Pr [ event2 ] ≤ 1
2n .

We then analyze event event3. Conditioned on ¬event2, each Pi repeats at most c1
times among all users. Hence for each ideal TBC query (prim, J, T, x, y, ∗), there are at
most c1 users such that Pi ‖ 0n = T . The probability that J = Ki for any of these c1 users
is 1/2n since Ki is uniformly and randomly distributed in the set {0, 1}n. Summing over
at most p ideal TBC queries,

Pr [ event3 ] ≤ c1p

2n .

The analysis of event4 is similar to that of event3. Summing over at most σ primitive calls,

Pr [ event4 ] ≤ c1σ

2n .

We then analyze event event5. For each Na
i ‖Pi, there is only one corresponding N b

j ‖Pj
such that N b

j ‖ Pj = Na
i ‖ Pi. On the other hand, conditioned on ¬event1, if Pi = Pj , then

Ki 6= Kj must hold. Thus, the probability that EKi
(Pi ‖ 0n, Na

i ) = EKj
(Pj ‖ 0n, N b

j ) is
1/2n since these two TBCs use different keys. Summing over at most q queries,

Pr [ event5 ] ≤ q

2n .

Moving to event event6, if this event happens, it implies that the n-bit output of the
Davies-Meyer construction of the Hir compression function equals 0n. The Davies-Meyer
construction cannot be inverted and each of its outputs is uniformly distributed in a set of
size at least 2n − σ − p. Summing over at most σ + p TBC calls and internal primitive
calls, we get

Pr [ event6 ] ≤ σ + p

2n − σ − p ≤
2σ + 2p

2n

by assuming σ + p ≤ 2n−1.
We next consider event event7. For each ideal TBC entry (prim, J, T, x, y, ∗) or internal

primitive call (inter, J, T, x, y), conditioned on ¬event2, there are at most c1 encryption
queries (enc2, i, N

a
i , A

a
i ,M

a
i , C

a
i ‖ tagai ) such that Na

i ‖ Pi = T . Among these queries, the
value kai,0 is chosen uniformly at random from a set of size at least 2n − q. Hence the
probability that kai,0 = J is at most 1/(2n − q). Summing over a total of p+ σ ideal TBC
queries and interal primitive calls,

Pr [ event7 ] ≤ c1(σ + p)
2n − q ≤ 2c1(σ + p)

2n

by assuming q ≤ 2n−1.
Next, we analyze event event8. If this event happens, then it implies that the adversary

found a collision on the hash function by using at most σ + p TBC queries. Hence, from
Lemma 3:

Pr [ event8 ] ≤ 8(σ + p)2

22n .
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For the event event9, we rely on the biased balls-into-bins result of Lemma 2. Note
that conditioned on ¬event8, for b − 1 ≥ 1, each hai,b−1 ‖ kai,b−1 is fresh, and thus each
internal output kai,b is uniformaly distributed in a set of size at least 2n − σ− p. Hence the
proability that kai,b equals to some particular value is at most 1/(2n − σ − p) ≤ 1/2n−1 by
assuming σ+ p ≤ 2n−1. The argument for hai,b is similar. Let c2 = n. Then from Lemma 2
and assuming σ ≤ 2n−3,

Pr [ event9 ] ≤ 2
2n/2 .

Next, we analyze event event10. Note that conditioned on ¬event9, for each ideal
TBC query (prim, J, T, x, y, ∗), there are at most n values hai,b such that hai,b = T . The
probability that J = kai,b for any of these hai,b ‖ kai,b is at most 1/(2n − σ − p). Summing
over at most p ideal TBC queries,

Pr [ event10 ] ≤ np

2n − σ − p ≤
2np
2n

by assuming σ + p ≤ 2n−1.
We finally analyze event event11. Conditioned on ¬event8, each hai,`+v+1 ‖ kai,`+v+1

is unique. Hence, for each ideal TBC query (prim, J, T, x, y, ∗) or internal primitive call
(inter, J, T, x, y), there exists at most one entry (enc2, i, N

a
i , A

a
i ,M

a
i , C

a
i ‖ tagai ) such that

hai,`a+va+1 ‖ kai,`a+va+1 = T . On the other hand, the probability that Ki = J is 1/2n since
Ki is a ranom n-bit string. Summing over totally σ + p internal primitive calls and ideal
TBC queries, we get

Pr [ event11 ] ≤ σ + p

2n .

Wrapping up, the probability that the flag bad1 is set to be true is at most

u2 + 16(σ + p)2

22n+1 + 3c1(p+ σ) + q + 2np+ 3σ + 3p+ 1
2n + 2

2n/2 ,

which concludes the proof.

Lemma 5. Assume that the adversary makes at most q encryption queries, p ideal TBC
queries, with the total number of primitive calls among these q encryption queries being at
most σ. Then

Pr [ bad2 | ¬bad1 ] ≤ nσ + np

2n .

Proof. Recall that S(kai,b−1, T ) is the set of values that have been sampled for the TBC
under the pair of key and tweak (kai,b−1, T ), and p(K,T ) is the number of ideal TBC queries
with key K and tweak T that are issued by the adversary. Conditioned on ¬bad1, the size
of S(kai,b−1, T ) is at most n+ p(kai,b−1, T ) since each kai,b−1 appears at most n times. Hence
for each encryption query (enc2, i, N

a
i , A

a
i ,M

a
i , C

a
i ‖ tagai ), each Cai [b] is sampled uniformly

at random from the set {0, 1}n \ S(kai,b−1, T ) of size at least 2n − n− p(kai,b−1, T ). Note
that the flag bad2 is set to be true if and only if v ∈ S(kai,b−1, T ) where v $←− {0, 1}n, which
happens with probability at most (n+ p(kai,b−1, T ))/2n. Recall that

∑
K∈K,T∈T

p(K,T ) = p

and each kai,b appears at most n times among all encryption queries, and summing over at
most σ primitive calls,

Pr [ bad2 ] ≤ nσ + np

2n

which conludes the proof.
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CCAmL1. Here we only present heuristic analysis for the confidentiality with leakage since
the proof is standard and follows from previous analyzes for leakage-resistant modes of
operations [GPPS20, BMPS21, GPPS19, BGP+20] without technical novelty. The formal
definition of CCAmL1 security is given in Appendix B. As a heuristic argument, it is easy
to see that ignoring decryption leakages and assuming fresh nonces, every message block is
encrypted with a fresh key up to the birthday bound. Note that hi and ki are outputs of
single-length compression functions. So at high-level, and using the simplified assumptions
of [BBC+20], the security of our mode reduces to the SPA security of a single (freshly
keyed) iteration encrypting a 2n-bit block of message.3

A bit more formally, to prove the CCAmL1 security of our mode, which stands for
CCA security with misuse-resilience and leakage-resistance [GPPS19], we can rely on the
hard-to-invert leakage assumption, which follows [YSPY10] and was used in [BGP+20] for
TEDT. In the CCAmL1 game, the adversary is not granted access to a leaking decryption
oracle but only to a black-box decryption (and the above black-box analysis of misuse-
resilience already covers such queries). We briefly sketch the leakage function in encryption
and challenge queries. For a fresh nonce in encryption, we can argue that the initial state
(h1, k1) ∈ {0, 1}2n is random (see Figure 5(A)). That is because, up to the birthday bound,
all the k0’s computed from the protected TBC are distinct, secret and random.4 Then,
the same holds for all the initial states (h1, k1) since there are only two calls to Ek0 in Hir,
and their leakage thus remains quite limited. For any repeated nonce in encryption, an
adversary could easily mount a DPA on the initial state by using many 2n-bit block of
message M1‖M2.5 However, the initial state related to any nonce-respecting query (as
required for the computation of challenge ciphertexts) remains independent and secret.

We now argue why any internal state remains sufficiently hidden in any challenge
encryption query and why the security follows. Let (hi, ki) be the current state and
M2i−1‖M2i the 2n-bit block of message that is being processed in the computation of a
challenge ciphertext. The ephemeral random key ki is only used thrice in this iteration with
distinct plaintext-inputs hi, hi⊕θ1, hi⊕θ2 (see Figure 4). Since ki will not be used anywhere
else (up to the birthday bound), the 3 TBC calls should not leak enough information about
the refreshed state (hi+1, ki+1) which will then be random and will remain secret (at least,
until this point). Therefore, the secrecy and the randomness of an internal state propagates
to the next one. Moreover, the final state and the TGF computation are independent of
the message processing since the last TBC call (see Figure 5(B)) is protected and the
long term key then remains secret. The CCAmL1 security thus reduces to the leakage
of the one-time XOR computation of C2i−1 = M2i−1 ⊕ hi and C2i = M2i ⊕ Yi, where
Yi := Eki(N‖P, hi ⊕ θ2). Up to the fact that hi is also involved in Eki(C2i−1‖C2i, hi ⊕ θ1)
and Eki(C2i−1‖C2i, hi), these XORs are the minimal amount of encrypting manipulations
one can hope. Since the involvement of hi in Eki

is internal and out of the adversary’s
control (in the challenge ciphertext computations), it is reasonable to assume that very
little informative leakage comes out. In the hard-to-invert leakage model, we can iterate
the argument until the final state as the leakage between the iterations are independent.

5 Integrity Analysis of Triplex
In this section, we present the authenticity analysis of Triplex in the leakage setting.

CIML2 Security of Triplex. We will analyze the CIML2 security of Triplex in the
unbounded leakage model [BPPS17, BKP+18]. In this model, the leakage functions expose

3 SPAs are attacks that can only exploit the leakage of a constant number of primitive IOs.
4 State-of-the-art confidentiality with leakage can anyway only be secure up to the birthday bound.
5 DPAs are attacks that can exploit an the leakage of an adversarially chosen number of primitive IOs.



150 Triplex: an Efficient and One-Pass Leakage-Resistant Mode of Operation

all the internal states to the adversary during the computation of unprotected building
blocks, while the key of strongly protected components remains secret from the adversary
and only their inputs and outputs are leaked. Concretely, in Triplex, the first and the last
TBCs used for the KDF and TGF have to be strongly protected thanks to implementation-
level countermeasures, while the rest of TBC calls (used for the bulk of the computation)
do not require any protection to ensure integrity.

Theorem 2. For any adversary A against u users that makes at most q encryption and
decryption queries, p ideal TBC queries, with the total number of primitive calls of these
encryption and decryption queries being at most σ, we have

AdvCIML2
Triplex (A) ≤ 3q

2n + u2 + 16(σ + p)2

22n+1 + 1 + (c+ 3)p+ (c+ 3)σ
2n ,

by assuming σ + p ≤ 2n−1 and c = max{4n, 4u/2n}.

Discussion and overview of the proof. Theorem 2 can be interpreted that Triplex
provides integrity security as long as the total number of primitive calls σ does not exceed
2n/n and the total number of ideal TBC queries p does not exceed 2n/n, and the number
of users can be as large as 2n. The proof is based on the fact that as long as the final 2n-bit
state value (h`+v+1, k`+v+1) is fresh, then it is hard for the adversary to predict the output
of Triplex. For queries to the same user i, since each input tuple (N,A,M) is unique,
these collisions can be reduced to the collision probability of Hirose’s Double-block-length
hash function that is captured by Lemma 3. For queries to different users, although the
tuple (N,A,M) may repeat, the key pair (Ki, Pi) is unlikely to collide and thus avoids
trivial collisions. Regarding (key, tweak) collisions between direct calls to TBC and KDF,
these happen with probability about cp/2n for some threshold c since multiplicities of Pi
can be bounded by Lemma 1. Regarding (key, tweak) collisions between direct calls to
TBC and TGF, these happen with probability about p/2n since each final state value
(h`+v+1, k`+v+1) is unique. The formal proof is more detailed.

Proof. From the interaction with its oracles, the adversary obtains responses from the
TBC oracle, encryption oracle and decryption oracle, formally leading to:

• Ideal TBC queries. For each query Prim(J, T, (x,+)) with answer y, we associate
it with an entry (prim, J, T, x, y,+). Similarly, for each query Prim(J, T, (y,−)) with
answer x, we associate it with an entry (prim, J, T, x, y,−).

• Encryption queries. For each query Enc(i,N,A,M) with answer (C ‖ tag, Le), let
M = M [1]‖ . . . ‖M [2`], C = C[1]‖ . . . ‖C[2`], and A = A[1]‖ . . . ‖A[2v]. Let h0 = 0n,
k0 = EKi(Pi‖0n, N), h1 = Ek0(N‖Pi, 0n), k1 = Ek0(N‖Pi, θ1)⊕θ1, and for 1 ≤ j ≤ `,
let hj+1 = Ekj (C[2j − 1] ‖ C[2j], hj) ⊕ hj and kj+1 = Ekj (C[2j − 1] ‖ C[2j], hj ⊕
θ1) ⊕ hj ⊕ θ1. Let k`+1 = k`+1 ⊕ 1, and for 1 ≤ j ≤ v, let h`+j+1 = Ek`+j

(A[2j −
1] ‖A[2j], h`+j)⊕ h`+j and k`+j+1 = Ek`+j

(A[2j − 1] ‖A[2j], h`+j ⊕ θ1)⊕ h`+j ⊕ θ1.
Define h = (h0, . . . , h`+v+1) and k = (k0, . . . , k`+v+1). Since we are working in the
unbounded leakage model, except the key K of the first and final TBC call, all the
values of h and k are leaked to the adversary. Hence, we associate the query with
an entry (enc, i, N,A,M, T ‖ tag,h,k). Note that the adversary is able to know the
underlying primitive calls from this entry. We use (leak, J, T, x, y) to record each of
these underlying primitive calls. That is, the tuple (leak, J, T, x, y) covers:

– (leak, k0, N ‖ Pi, 0n, h1) and (leak, k0, N ‖ Pi, θ1, k1 ⊕ θ1) during initialization;
– For 1 ≤ j ≤ `, (leak, kj , C[2j − 1] ‖ C[2j], hj , hj+1 ⊕ hj), (leak, kj , C[2j −

1] ‖ C[2j], hj ⊕ θ1, kj+1 ⊕ hj ⊕ θ1) and (leak, kj , N ‖ Pi, hj ⊕ θ2, C[2j]⊕M [2j])
during the message processing phase;
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– For 1 ≤ j ≤ v, (leak, k`+j , A[2j−1]‖A[2j], h`+j , h`+j+1⊕h`+j) and (leak, k`+j , A[2j−
1] ‖A[2j], h`+j ⊕ θ1, k`+j+1 ⊕ h`+j ⊕ θ1) during the AD processing phase.

Remark. In the CIML2 game, the adversary is allowed to make a decryption query
even this query has appeared in previous encryption phase. The intuition is that the
adversary may obtain some additional leakage information via this kind of repeated
decryption queries. However, in the unbounded leakage setting, all the internal
values are already leaked to the adversary in encryption queries. Therefore, we ignore
such trivial decryption queries in the following treatment.

• Decryption queries. For each query Dec(i,N,A,C‖tag) with answer (M,Ld) (here
M can be either a message or just a false symbol ⊥), with C = C[1] ‖ . . . ‖ C[2`],
A = A[1] ‖ . . . ‖A[2v]. Similarly to the case of encryption queries, the internal values
h = (h0, . . . , h`+v+1) and k = (k0, . . . , k`+v+1) are computed as follows: h0 = 0n,
k0 = EKi

(Pi‖0n, N), h1 = Ek0(N‖Pi, 0n), k1 = Ek0(N‖Pi, θ1)⊕θ1, and for 1 ≤ j ≤ `,
let hj+1 = Ekj

(C[2j − 1] ‖ C[2j], hj) ⊕ hj and kj+1 = Ekj
(C[2j − 1] ‖ C[2j], hj ⊕

θ1) ⊕ hj ⊕ θ1. Let k`+1 = k`+1 ⊕ 1, and for 1 ≤ j ≤ v, let h`+j+1 = Ek`+j
(A[2j −

1] ‖A[2j], h`+j)⊕ h`+j and k`+j+1 = Ek`+j
(A[2j − 1] ‖A[2j], h`+j ⊕ θ1)⊕ h`+j ⊕ θ1.

The checking value x is computed as x← E−1
Ki

(h`+v+1 ‖ k`+v+1, tag). We associate
this query with an entry (dec, i, N,A,M,C ‖ tag,h,k, x). We use (leak, J, T, x, y) to
record the underlying primitive calls that the adversary can learn from this entry.

We say that the adversary forges successfully if any of its decryption queries passes
the decryption oracle, namely the returning message M is not a false symbol ⊥. We now
proceed to prove that the probability that the adversary forges successfully is negligible.

To this end, we will first define some bad conditions. A flag bad is set to be true if at
least one of the following conditions is triggered:

(1) There exits two users i and j (i 6= j) such that Ki = Kj and Pi = Pj .

(2) The same Pi repeats at least c times among u users.

(3) There exists an ideal TBC query (prim, J, T, x, y, ∗) such that J = Ki and T = Pi ‖0n
for some user i.

(4) There exists a leaked primitive call (leak, J, T, x, y) such that J = Ki and T = Pi ‖0n
for some user i.

(5) There exists two queries (∗, i, Na
i , A

a
i ,M

a
i , C

a
i ‖tagai ,hai ,kai ) and (∗, j,N b

j , A
b
j ,M

b
j , C

b
j ‖

tagbj ,hbj ,kbj) from two users such that Na
i ‖ Pi = N b

j ‖ Pj and kai,0 = kbj,0.

(6) There exists an entry (∗, i, Na
i , A

a
i ,M

a
i , C

a
i ‖ tagai ,hai ,kai ) such that kai,`a+va+1 = 0n.

(7) For the decryption query (dec, F,Na
i , A

a
i ,M

a
i , C

a
i ‖ tagai ,hai ,kai , xai ), there exists some

previous encryption query (enc, i, N b
i , A

b
i ,M

b
i , C

b
i ‖tagbi ,hbi ,kbi ) such that (Na

i , A
a
i ,M

a
i )

6= (N b
i , A

b
i ,M

b
i ) and hai,`a+va+1 ‖ kai,`a+va+1 = hbi,`b+vb+1 ‖ kbi,`b+vb+1.

(8) For the decryption query (dec, i, Na
i , A

a
i ,M

a
i , C

a
i ‖ tagai ,hai ,kai , xai ), there exists some

previous decryption query (dec, i, N b
i , A

b
i ,M

b
i , C

b
i ‖ tagbi ,hbi ,kbi , xbi ) for b < a such that

(N b
i , A

b
i ,M

b
i ) 6= (Na

i , A
a
i ,M

a
i ) and hai,`a+va+1 ‖ kai,`a+va+1 = hbi,`b+vb+1 ‖ kbi,`b+vb+1.

(9) For the decryption query (dec, i, Na
i , A

a
i ,M

a
i , C

a
i ‖ tagai ,hai ,kai , xai ), there exists some

previous encryption query (enc, j,N b
j , A

b
j ,M

b
j , C

b
j ‖ tagbj ,hbj ,kbj) of different user j

such that Pi 6= Pj and hai,`a+va+1 ‖ kai,`a+va+1 = hbj,`b+vb+1 ‖ kbj,`b+vb+1.

(10) For the decryption query (dec, i, Na
i , A

a
i ,M

a
i , C

a
i ‖ tagai ,hai ,kai , xai ), there exists some

previous decryption query (dec, j,N b
j , A

b
j ,M

b
j , C

b
j ‖ tagbj ,hbj ,kbj , xbj) of different user j

such that Pi 6= Pj and hai,`a+va+1 ‖ kai,`a+va+1 = hbj,`b+vb+1 ‖ kbj,`b+vb+1.
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(11) There exists an ideal TBC query (prim, J, T, x, y, ∗) such that J = Ki and T =
hai,`a+va+1 ‖ ka`a+va+1 for some decryption query (dec, i, N,A,M,C ‖ tag,h,k, x).

(12) There exists a leaked primitive query (leak, J, T, x, y) such that J = Ki and T =
h`+v+1 ‖ k`+v+1 for some decryption query (dec, i, N,A,M,C ‖ tag,h,k, x).

We briefly discuss the intuition behind these bad conditions. Condition (1) is to avoid
key collisions among u users. Condition (2) is to put a theshold on the maximal repeated
times of a public Pi among u users, which is helpful to anlayze other bad conditions.
Conditions (3) and (4) are to guarantee that the inputs (including the secret key and
tweak) of the first TBC remain different from that of the ideal TBC queries or underlying
primitive calls, thus preserving the randomness of output. Condition (5) is to ensure
that even when (N,A,M) may be repeated between two users, the initial values of
the hash function remains different, thus avoiding trivial collision for the hash function
between two queries. Condition (6) is to avoid the input collision between the first
and last TBC calls. That is, if kai,`a+va+1 6= 0n, then the tweaks of these two TBCs
are always distinct. Conditions (7)-(10) are to ensure that for each decryption query
(dec, i, Na

i , A
a
i ,M

a
i , C

a
i ‖ tagai ,hai ,kai ), the tweak hai,`a+va+1 ‖ kai,`a+va+1 is different from

that of other encryption or decryption queries. Conditions (11) and (12) are to ensure
that for each decryption query (dec, i, Na

i , A
a
i ,M

a
i , C

a
i ‖ tagai ,hai ,kai ), either the key Ki or

the tweak hai,`a+va+1 ‖ kai,`a+va+1 is fresh from that of ideal TBC queries and underlying
primitive calls. It can be seen in the following that by excluding these bad conditions, the
analysis of the adversary forging successfully apppears to be transparent.

First observe that

Pr [A forges ] ≤ Pr [A forges | ¬bad ] + Pr [ bad ] . (1)

A bound on the probability that bad is set is given in Lemma 6.
We then analyze the chance that A forges given that bad is not set to be true. Such

a forgery requires that xai = E−1
Ki

(hai,`a+va+1 ‖ kai,`a+va+1, tagai ) = 0n for some decryption
query (dec, i, Na

i , A
a
i ,M

a
i , C

a
i ‖ tagai ,hai ,kai , xai ). We distinguish several cases according to

the type of decryption query (dec, i, Na
i , A

a
i ,M

a
i , C

a
i ‖ tagai ,hai ,kai , xai ).

• If (Na
i , A

a
i , C

a
i ) = (N b

i , A
b
i , C

b
i ) for some previous encryption query (enc, i, N b

i , A
b
i ,M

b
i ,

Cbi ‖ tagbi ,hbi ,kbi , xbi ), then tagai 6= tagbi and E−1
Ki

(hai,`a+va+1 ‖ kai,`a+va+1, tagai ) 6= xbi =
0n. Hence the probability that this query is a valid forgery is 0.

• If (Na
i , A

a
i , C

a
i ) = (N b

i , A
b
i , C

b
i ) for some previous decryption query (dec, i, N b

i , A
b
i ,M

b
i ,

Cbi ‖ tagbi ,hbi ,kbi ), then tagai 6= tagbi , and E−1
Ki

(hai,`a+va+1 ‖ kai,`a+va+1, tagai ) = 0n with
probability at most 1/(2n − q) since conditioned on ¬bad, the value xai is randomly
picked up from a set of size at least 2n − q.

• If neither of above two cases happens, then due to bad not happening, either Ki or
hai,`a+va+1‖kai,`a+va+1 is fresh, and thus the probability that E−1

Ki
(hai,`a+va+1‖kai,`a+va+1,

tagai ) = 0n is exactly 1/2n.

Therefore, summing over at most q decryption queries, the probability that A forges
conditioned on ¬bad is worth

Pr [A forges | ¬bad ] ≤ q

2n − q ≤
2q
2n

by assuming q ≤ 2n−1. Equation 1 and the bound of Lemma 6 complete the proof.
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Lemma 6. Assume that the adversary makes at most q construction queries (including
both the encryption queries and decryption queries), p ideal TBC queries, and the total
number of primitive calls of these encryption and decryption queries is at most σ. Then

Pr [ bad ] ≤ u2 + 16(σ + p)2

22n+1 + q + 1 + (c+ 3)p+ (c+ 3)σ
2n ,

where the threshold c = max{4n, 4u/2n}.

Proof. We now bound the chance that the flag bad is set to be true. Denote by eventi the
event when the i-th condition is triggered. We analyze each event in turn.

For event event1, since both Ki and Pi (1 ≤ i ≤ u) are chosen uniformly at random
from the set {0, 1}n, the probability that Ki = Kj and Pi = Pj is exactly 1/22n. Summing
over at most u2/2 pairs of (i, j),

Pr [ event1 ] ≤ u2

22n+1 .

Next, we analyze the event event2. In this case, each Pi is public and chosen uniformly at
random from the set {0, 1}n. Let c = max{4n, 4u/2n}. Then by using the balls-into-bins
result from Lemma 1,

Pr [ event2 ] ≤ 1
2n .

We then analyze the event event3. Conditioned on ¬event2, each Pi repeats at most c
times among all users. Hence for each ideal TBC query (prim, J, T, x, y, ∗), there are at
most c users such that Pi ‖ 0n = T . The probability that J = Ki for any of these c users
is 1/2n since Ki is uniformly and randomly distributed in the set {0, 1}n. Summing over
at most p ideal TBC queries,

Pr [ event3 ] ≤ cp

2n .

The analysis of event4 is similar to that of event3. Summing over at most σ primitive calls,

Pr [ event4 ] ≤ cσ

2n .

We then analyze event event5. For each Na
i ‖ Pi, there is only one corresponding N b

j ‖ Pj
such that N b

j ‖ Pj = Na
i ‖ Pi. On the other hand, conditioned on ¬event1, if Pi = Pj , then

Ki 6= Kj must hold. Thus the probability that EKi(Pi ‖ 0n, Na
i ) = EKj (Pj ‖ 0n, N b

j ) is
1/2n since these two TBCs use different keys. Summing over at most q queries,

Pr [ event5 ] ≤ q

2n .

Moving to event event6, if this event happens, it implies that the n-bit output of
Davies-Meyer construction of the Hir compression function equals to 0n. The Davies-Meyer
construction cannot be inverted, and each of its outputs is uniformly distributed in a set
of size at least 2n − σ − p. Summing over at most σ + p TBC calls and internal primitive
calls, we get

Pr [ event6 ] ≤ σ + p

2n − σ − p ≤
2σ + 2p

2n

by assuming σ + p ≤ 2n−1.
Next, we analyze the events from event7 to event10. If any of these four events happens,

it means that the adversary can find a collision on the hash function H via at most σ + p
ideal TBC queries. Hence, from Lemma 3 we get

Pr
[
∨10
i=7eventi

]
≤ 8(σ + p)2

22n .
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Next, we analyze the event event11. Note that conditioned on that there is not collision on
the hash function H, for each ideal TBC query (prim, J, T, x, y, ∗), there is at most one de-
cryption query (dec, i, Na

i , A
a
i ,M

a
i , C

a
i ‖tagai ,hai ,kai , xai ) such that hai,`a+va+1 ‖kai,`a+va+1 =

T , and the probability that J = Ki is 1/2n since Ki is a random n-bit string. Summing
over at most p ideal TBC queries, we get

Pr [ event11 ] ≤ p

2n .

The analysis of event event12 is similar to that of event11, and summing over at most σ
primitive calls we get

Pr [ event12 ] ≤ σ

2n .

Wrapping up, the probability that the flag is set to be bad is at most

Pr [ bad ] ≤ u2 + 24(σ + p)2

22n+1 + q + 1 + (c+ 3)p+ (c+ 3)σ
2n ,

which concludes the proof.

6 Implementation Results
As mentioned in introduction, the natural competitors of Triplex are TET when it comes
to TBC-based modes and Ascon & Spook when it comes to Sponge-based ones. Since the
improvement of the rate over TET is clear, we use this last section to initiate a comparative
discussion of the implementation features of leakage-resilient modes of operation based on
TBCs and permutations. For this purpose, we introduce a leveled implementation of Triplex
in hardware with Skinny-384+ as TBC [BJK+16, Kha22]. We compare this implementation
with a leveled implementation of Ascon [DEMS21]. For both ciphers, the implementation
is made of a masked and an unmasked implementation of the primitive (Skinny-384+ and
the Ascon permutation), targeting resistance against DPA and SPA, respectively. The
primitive implementations are integrated in top-level mode implementations (containing
the datapath of the mode and the control FSM). This architecture has been chosen for its
simplicity and, as described below, our implementations of the primitives are also designed
for simplicity. As any prototype implementations, they could be further optimized, but we
do not expect such optimizations to change our main conclusions.

The implementation of Skinny is round-based (instantiating 32 S-boxes), and takes
one cycle per round for the the non-masked implementation, while it takes 6 cycles per
round for the masked implementation. Each masked S-box implementation contains
two instances of the HPC2 masked AND gadget [CGLS21]. The implementations of the
Ascon permutation are more serialized and based on an 80-bit S-box pipeline datapath
(instantiating 16 S-boxes). The unmasked implementation therefore takes 4 cycles per
round, while the masked implementation requires 6 cycles per round. In order to make
the advantages of leakage-resistant modes of operation explicit, we add the results for
Romulus-N [IKMP20], which uses the same long-term key in all its call to the Skinny-384+
TBC and therefore requires a uniformly masked implementation.

In Figure 8A, we show the number of cycles required for encrypting messages of various
length. For short messages, the encryption time is dominated by the KDF and TGF.
This duration is longer for Triplex than for Ascon, mainly due to the larger number of
rounds in Skinny (the Hirose part in the KDF only takes less than 15 % of the KDF/TGF
cycles). For longer messages, Ascon takes 24 cycles to encrypt a 64 bit message block,
while Triplex takes 3 × 40 cycles to encrypt 256 bits of message. Overall, Ascon has a
slightly better throughput despite a more serial architecture (80-bit vs. 128-bit). But
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Figure 8: Ascon (A), Romulus-N (R) and Triplex (T) hardware implementation figures.

these results are admittedly quite sensitive to the security margins taken by designers.6
Eventually, the different slope of Romulus-N’s performance curve confirms an interest of
leveled implementations from the performance (throughput) viewpoint.

The implementations have been synthesized for a 65 nm CMOS commercial technology.
In Figure 8B, we can see that the area of these implementations is dominated by the masked
primitives (confirming the limited overheads of the leveled approach when high physical
security levels are required).7 So compared to Romulus-N, Triplex has a slightly higher
area cost due to the need for both a masked and an unmasked cipher implementations. But
this overhead shrinks relatively with a growing number of shares in the masking scheme,
and is rewarded with a significantly better performance for messages larger than as little as
48 bytes. Moreover, we observe that the masked Skinny and Ascon have similar areas for
small number of shares, while the area of Ascon grows faster than the one of Skinny-384+
as the number shares increases, due to the larger number of AND gates to mask: 80 for
the 80-bit Ascon architecture (since it uses 5-bit S-boxes with 5 AND gates), 32 for the
128-bit Skinny-384+ architecture (using 16 serial S-boxes with 2 AND gates). We note
that these values could be reduced with a more serialized masked implementation, at the
cost of a higher KDF and TGF latency (amortized for long messages).

In both cases the unmasked primitives have a low area. So reducing their serialization
would bring a significant throughput increase at the cost of limited area increase.

This study shows that the performances of optimized implementations of modes like
Triplex heavily depend on the characteristics of its underlying TBC. Overall, Triplex
instantiated with Skinny can achieve performance comparable to a sponge like Ascon, with
variations depending on the implementation architectural tradeoff targeted.

Source code is available at https://github.com/uclcrypto/aead_modes_leveled_hw.

6 The best-known cryptanalysis result against Skinny reaches only 27 rounds out of 40, and is a
related-tweakey impossible differential [LGS17, SMB18].

7 The cost of the mode corresponds to the additional control logic / state machine, registers and
multiplexers needed to implement the mode over the masked (and possibly unmasked) primitives.

https://github.com/uclcrypto/aead_modes_leveled_hw


156 Triplex: an Efficient and One-Pass Leakage-Resistant Mode of Operation

Table 2: Parameters’ comparison between leakage-resistant TBC-based AEAD. Grade 2 means
CCAmL1 + CIML2, Grade 3 means CCAmL2 + CIML2 [BBC+20]. The first n key bits correspond
to the secret key K and the last ones to the public P (for multi-user security). The rate is the
amortized value of the ratio to process n-bit message blocks per number of TBC calls.

TEDT TET Romulus-T TEDT2 Triplex
Grade 3 2 3 3 2
Key size 2n− 1 2n− 1 n n 2n
# pass(es) 2 1 2 2 1
Tweak size n n 2n 2n 2n

Rate: |M |/TBC 1/4 1/2 1/3 1/3 2/3
Rate: |AD|/TBC 1/4 1/2 1 1/3 1

Nonce size 3n/4 n n n n
Message blocks max 2n/4−1 max 2n/2 max 2n/2−8 max 2n/2 max 2n/n

Multi-user yes yes no no yes

7 Conclusion
As a conclusion, we provide a summary of state-of-the-art leakage-resistant constructions
in Table 2, which contains the operational parameters of different published modes. We
note that the quantitative bounds of their leakage security are similar: CIML2 is beyond
birthday for all candidates and CCAmL1 and CCAmL2 can only be birthday secure given
current techniques in the model of Guo et al. [GPPS19]. All schemes require two protected
TBC calls for this purpose, excepted TEDT2 that needs 3.8

We note that the Romulus-T mode is very similar to TEDT implemented with a TBC
with 2n-bit tweaks. The first pass relies on PSV-encryption [PSV15] with a tweak schedule
à la Romulus. The second pass in an hash-then-MAC based on Hirose’s compression
function with a large tweak like ours, and with a final TGF as in TEDT. It requires 6 TBC
calls to process 2n bits of message. It is not designed for multi-user security but a direct
adaptation would lead to multi-user security up to the birthday bound.

One additional advantage of Triplex over TET is that does not require the related
tweakey security of the TBC (due to the fact that the state (hi, ki) is such that hi ⊕ ki =
Mi−1⊕Ci−i in TET). Furthermore, Triplex does not need to invert unprotected TBC calls
in decryption. As mentioned in introduction, Triplex also makes TBC-based designs more
comparable to Sponge-based ones in terms of rate and state size.

Quite naturally, this table casts as main open problem the quest of further improved
modes, whether being from the performance (e.g., rate) viewpoint, the simplicity of the
underlying primitive or the weakness of the underlying (physical) assumptions.
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A Proof of Lemma 3
Let A be a collision-finding algorithm of H with oracle access to the ideal TBC E (including
both forward and backward direction). Let (K,T,X, Y ) be the entry that records the
query and response of E, where K is the key, T the tweak, X the plaintext and Y the
ciphtertext. To compute the underlying compression function Hir, it requires a pair of
entries (ki−1,mi, hi−1, hi⊕hi−1) and (ki−1,mi, hi−1⊕ θ1, ki⊕hi−1⊕ θ1). We assume that
A makes at most p such pairs of queries to E. For two inputs (h, k,m) and (h′, k′,m′) to
Hir, we say they are matching if (h, k) = (h′ ⊕ θ1, k

′).
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We first consider the collision events when the inputs to Hir are non-matching. For
2 ≤ j ≤ p, let Cj be the event that a collision of non-mathcing inputs is found for Hir at
the j-th pair of queries. It implies that for some j′ < j,

Hir(hj−1, kj−1,mj) = Hir(hj′−1, kj′−1,mj′) or Hir(hj′−1 ⊕ θ1, kj′−1,mj′)

or

Hir(hj−1 ⊕ θ1, kj−1,mj) = Hir(hj′−1, kj′−1,mj′) or Hir(hj′−1 ⊕ θ1, kj′−1,mj′),

which is the same as:

(hj⊕hj−1, kj⊕hj−1⊕θ1) ∈ {(hj′⊕hj′−1, kj′⊕hj′−1⊕θ1), (kj′⊕hj′−1⊕θ1, hj′⊕hj′−1)} .

Hence,
Pr [Cj ] ≤ 2(j − 1)

(2n − (2j − 2))(2n − (2j − 1)) ≤
2(j − 1)

(2n − (2j − 1))2 ,

since hj and kj are chosen without replacement uniformly at random from a set of size at
least 2n − (2j − 2). Let C = ∨pj=1Cj . We then have:

Pr [C ] ≤
p∑
j=2

Pr [Cj ] ≤
p∑
j=2

2(j − 1)
(2n − (2j − 1))2 .

We next consider the collison events when the inputs to Hir are matching. Let (h, k,m)
and (h′, k′,m′) be the pair of inputs of Hir for the collision. Then (h, k) = (h′ ⊕ θ1, k

′)
since they are matching. (h, k) and (h′, k′) are both the outputs of Hir, or at most one
of them is the initial value (h0, k0) of H. Denote as (ĥ, k̂, m̂) and (ĥ′, k̂′, m̂′) the inputs
to Hir to produce (h, k) and (h′, k′) respectively. Then these matching inputs require the
following equation:

(h, k) = (h′ ⊕ θ1, k
′) or (h, k) = (h0 ⊕ θ1, k0).

If the former equation holds, then (ĥ, k̂, m̂) and (ĥ′, k̂′, m̂′) are non-matching since

(h, k) = (h′ ⊕ θ1, k
′) 6= (k′, h′),

where θ1 is a non-zero constant. Denote as Cmj the event that a collision from matching
inputs is found for Hir at the j-th pair of queries. Then from the above analysis,

Pr
[
Cmj

]
≤ 2(j − 1) + 1

(2n − (2j − 2)(2n − (2j − 1))) ≤
2j − 1

(2n − (2j − 1))2 .

Let Cm = ∨pj=1C
m
j . Then we finally have:

Pr [Cm ] ≤
p∑
j=1

Pr
[
Cmj

]
≤

p∑
j=1

2j − 1
(2n − (2j − 1))2 .

Hence by the union bound,

Pr [A finds a collision on H ] ≤ Pr [C ] + Pr [Cm ]

≤
p∑
j=2

2(j − 1)
(2n − (2j − 1))2 +

p∑
j=1

2j − 1
(2n − (2j − 1))2

≤
p∑
j=1

4j − 3
(2n − (2j − 1))2

≤ 2p2 − p
(2n−1)2 ≤

8p2

22n ,

which concludes the proof.
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Game GCCAmL1
Π (A)

K1,K2, . . . ,
$←− K; b $←− {0, 1}

b′
$←− APrim,LEnc1,LEnc2,Dec

return (b′ = b)

procedure Prim(J, T,X)
if X = (+, x) then return EJ (T, x)
if X = (−, y) then return E−1

J (T, y)

procedure Dec(i,N,A,C ‖ tag)
M ← D(Ki, N,A,C ‖ tag)
return M

procedure LEnc1(i,N,A,M)
C ‖ tag← E(Ki, N,A,M)
Le ← LE(Ki, N,A,M)
return (C ‖ tag, Le)

procedure LEnc2(i,N,A,M0,M1)
if |M0| 6= |M1| then return ⊥
Cb ‖ tagb ← E(Ki, N,A,M

b)
Lb

e ← LE(Ki, N,A,M
b)

return (Cb ‖ tagb, Lb
e)

Figure 9: Game GCCAmL1
Π : multi-user CCAmL1 security of an AE Π.

B Definition of CCAmL1 Security
In this section, we recall the notion of CCAmL1 security (Chosen-Ciphertext Attacks
security with misuse-resilience and Leakage) [GPPS19] in the multi-user setting. In
this model, the adversary is granted the access to encryption oracle with leakage and
decryption oracle, and aims at attacking the confidentiality of several messages encrypted
under unique and fresh nonces. The advantage of the adversary is formalized by the
left-or-right paradigm, namely for any two different messages M0 and M1 of equal length,
the probability that the adversary can distinguish the encryption of these two messages
is negligible. The selection of this paradigm is due to the conceptual difficulty to define
the leakage of idealized objects in the real-or-random game. The CCAmL1 security game
is illustrated in Figure 9. In this game, for queries to the same user, the adversary may
repeat the nonce in the first leaking encryption oracle LEnc1, but the nonce in the second
leaking encryption oracle LEnc2 should be unique and fresh. For queries to different users,
the adversary may repeat the nonce in both oracles. The adversary also has access to the
decryption oracle Dec, but cannot forward queries from the second encryption oracle to
Dec since this will result in trivial win. Given an adversary A, define

AdvCCAmL1
Π (A) = 2Pr

[
GCCAmL1

Π (A)
]
− 1

as the advantage of the adversary against the CCAmL1 security of an AE scheme Π.

C More State Comparison with Sponges
Among the existing one-pass sponge-based designs, [BMPS21] highlights that Ascon and
Spook achieve Grade-2 leakage security (i.e., CCAmL1 + CIML2), where the integrity
holds in the unbounded leakage model. Like Triplex, that means that as long as the KDF
and TGF functions are well-protected it is still infeasible to forge a ciphertext even if
the full state leaks. Up to the generation of the initial state, this is not surprising since
the design reduces to a hash-then-MAC in the CIML2 experiment, and the bulk of the
computation which processes the message is a Duplex-like hash function in both modes.

To formally prove CIML2, the permutations must be modeled as ideal objects, as if
the underlying permutation considered in the mode was uniformly picked among all the
permutations of the appropriate size. This size is the size of the state which is usually
denoted by b and decomposed into the rate part of r bits and the capacity part of c bits,
so that b = r + c. Let S be a state, so the output of a permutation call. The input of the
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next permutation call is thus of the form S⊕ (M ⊕ 0c), where the processed message block
has size |M | = r. Therefore, even if the adversary knows the full state S in the unbounded
leakage model, she has no direct control on the capacity that is being processed through the
several permutation calls. She can only explicitly choose the rate of the next permutation
input but not the capacity. Consequently, the bit size c plays an important role in the
CIML2 security bound since it is easy to see that state collision can be generically reached
from 2c/2 ideal permutation queries. Indeed, once the adversary finds a collision on the
c-bit state, she can easily choose the next message blocks to equalize the rate part she fully
controls to get the same states. As a result, we must have c ≥ 2n if we target n-bit security
for CIML2, and the TETSponge mode shows that taking c = 2n gives n − logn bits of
security in the single-user setting, and n− 2 logn bits of security in the multi-user setting
with appropriate KDF and TGF functions. With respect to Triplex based on TBC with
n-bit keys and outputs, these sponge-based designs must satisfy c = 2n to have a similar
CIML2 security. We eventually insist that the state leaks in full and that this security
result cannot rely on the fact the the capacity remains secret. Actually, the capacity is
known in the unbounded leakage setting. For the same reason, we can interpret (h, k) in
Triplex as being used also as a capacity.

To prove confidentiality, we can of course not rely on the unbounded leakage setting.
However, to generate the next random state it is enough that a sufficient number of bits
of the capacity remain secret. For instance, the secrecy of the last n-bit of the capacity
might be enough even if c > n. With n bit of secret in the state, the output of the next
permutation call is kept random and hidden and the ephemeral encryption process with
re-keying can be safely iterated. To make a comparison with Triplex, only the n-bit k in
the state (h, k) needs to be secret to iterate the process block by block. Obviously, neither
the rate of sponge-based modes nor h of Triplex of challenge ciphertexts should leak as
otherwise distinghuishing becomes easy. But given the ciphertext returned as an answer
to an encryption query for a chosen message, it is easy to deduce these values.
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